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Henselian valued fields and inp-minimality

Artem Chernikov∗†‡and Pierre Simon∗†

January 28, 2016

Abstract

We prove that every ultraproduct of p-adics is inp-minimal (i.e., of burden 1). More
generally, we prove an Ax-Kochen type result on preservation of inp-minimality for Henselian
valued fields of equicharacteristic 0 in the RV language.

1 Introduction

In his work on the classification of first-order theories [She90] Shelah has introduced a hierarchy of
combinatorial properties of families of definable sets, so called dividing lines, which includes stable
theories, simple theories, NIP, NSOP, etc. An important line of research in model theory is to
characterize various algebraic structures depending on their place in this classification hierarchy
(this knowledge can later be used to analyze various algebraic objects definable in such structures
using methods of generalized stability theory). Here we will be concerned with valued fields and
Ax-Kochen-type statements, i.e. statements of the form “a certain property of the valued field
can be determined by looking just at the value group and the residue field”. For example, a
classical theorem of Delon [Del78] shows that given a Henselian valued field of equicharacteristic
0, if the residue field is NIP, then the whole valued field is NIP. More recent result of similar type
are [Bél99] demonstrating preservation of NIP for certain valued fields of positive characteristic,
[She05] demonstrating that the field of p-adics is strongly dependent, and [DGL+11] demonstrating
that it is in fact dp-minimal.

A motivating example for this article is to determine the model-theoretic complexity of the
theory of an ultraproduct of the fields of p-adics Qp modulo a non-principal ultrafilter on the set
of prime numbers. Namely, let K =

∏
Qp/U , where U is a non-principal ultrafilter on the set of

prime numbers. Note that the residue field k is a pseudo-finite field of characteristic 0 and that the
value group Γ is a Z-group. Besides, both k and Γ are interpretable in K in the pure ring language
(e.g. by a result of Ax [Ax65]). This implies that the theory of K is neither NIP, nor simple —
the two classes of structures extensively studied in model theory. However it turns out that any
ultraproduct of p-adics is NTP2 [Che14]. The class of NTP2 theories was introduced by Shelah
[She90, Chapter III] and generalizes both simple and NIP theories. We recall the definition.

Definition 1. Let T be a complete first-order theory in a language L, and let M |= T be a monster
model. Let κ be a cardinal (finite or infinite).

1. An inp-pattern of depth κ is given by (φi (x, yi) , āi, ki : i ∈ κ), where φi (x, yi) are L-formulas
with a fixed tuple of free variables x and a varying tuple of parameter variables yi, āi =
(ai,j : j ∈ ω) are sequences of tuples of elements from M, and ki are natural numbers such
that:
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(a) For every i ∈ κ, the set {φi (x, ai,j)}j∈ω
is ki-inconsistent (i.e. no subset of size ≥ ki is

consistent).

(b) For every f : κ→ ω, the set
{
φi

(
x, ai,f(i)

)}
i∈κ

is consistent.

2. T is NTP2 if there is a (cardinal) bound on the depths of inp-patterns.

Other algebraic examples of NTP2 structures were identified recently, including bounded
pseudo real closed and pseudo p-adically closed fields [Mon14], certain model complete multi-
valued fields [Joh13] and certain valued difference fields, e.g. the theory VFA0 of a non-standard
Frobenius on an algebraically closed valued field of characteristic zero [CH14]. See also [CKS15]
and [HO15] for some general results about groups and fields definable in NTP2 structures.

The notion of burden was introduced by Adler [Adl07] based on Shelah’s cardinal invariant
κinp and provides a quantitative refinement of NTP2. In the special case of simple theories burden
corresponds to preweight, and in the case of NIP theories to dp-rank (e.g. see [Che14, Section 3]
for the details and references).

Definition 2. 1. T is strong if there are no inp-patterns of infinite depth.

2. T is of finite burden if there are no inp-patterns of arbitrary large finite depth, with x a
singleton.

3. T is inp-minimal if there is no inp-pattern of depth 2, with x a singleton.

Note that inp-minimality implies finite burden implies strong (the last implication uses submul-
tiplicativity of burden from [Che14]). All the examples mentioned above have been demonstrated
to be strong of finite burden, with the exception of VFA0: it remains open if VFA0 is strong,
see [CH14, Question 5.2]. Some results about strong groups and fields can be found in [CKS15,
Section 4] and [DG15].

Returning to ultraproducts of p-adics, we have the following more general result.

Fact 3. [Che14] Let K̄ = (K, k,Γ, val, ac) be a Henselian valued field of equicharacteristic 0,
considered as a three-sorted structure in the Denef-Pas language Lac (i.e. there is a sort K for
the field itself, as well as sorts k for the residue field and Γ for the value group, together with the
maps v : K → Γ for the valuation and ac : K → k for an angular component).

1. If k is NTP2, then K̄ is NTP2.

2. If both k and Γ are strong (of finite burden) then K̄ is strong (respectively, of finite burden).

Any pseudofinite field is supersimple of SU-rank 1, so in particular is inp-minimal. Any ordered
Z-group is dp-minimal, so in particular is inp-minimal. It follows that any ultraproduct of p-adics
is strong, of finite burden. However, Fact 3(2) gives a finite bound on the burden of K̄ in terms of
the burdens of k and Γ via a certain Ramsey number, and is far from optimal in general. It was
conjectured in [Che14, Problem 7.13] that all ultraproducts of p-adics in the pure ring language
are inp-minimal (note that in the Denef-Pas language, no valued field with an infinite residue
field can be inp-minimal as {ac (x) = ai} , {val (x) = vi} with (ai) , (vi) pairwise different give an
inp-pattern of depth 2).

In this paper we establish an Ax-Kochen type result for inp-minimality in the RV language for
valued fields, in particular confirming that conjecture.

Theorem 4. Let K̄ = (K,RV, rv) be a Henselian valued field of equicharacteristic 0, viewed as
a structure in the RV-language (see Section 2). Assume that both the residue field k and the
value group Γ are inp-minimal, and that moreover k×/(k×)p is finite for all prime p. Then K̄ is
inp-minimal.

Corollary 5. Any ultraproduct of p-adics is inp-minimal.
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Recall that an NIP theory is dp-minimal if and only if it is inp-minimal. Johnson [Joh15] shows
that a dp-minimal not strongly minimal field admits a definable Henselian valuation. It follows
that if K is dp-minimal, then K×/(K×)p is finite for all prime p (a fact which Johnson states and
uses). Combining this with Delon’s result on preservation of NIP we have the following corollary
(which also appears in Johnson [Joh15]).

Corollary 6. Under the same assumptions on K̄, if both k and Γ are dp-minimal, then K̄ is
dp-minimal.

There are three steps in the proof of the main theorem, corresponding to the sections of the
paper. First, we recall some facts about the RV setting and show that the whole valued field
is inp-minimal if and only if the RV sort is inp-minimal. Second, we show that the RV sort
eliminates quantifiers down to the residue field k and the value group Γ. Using this quantifier
elimination, in the last section we show that the RV sort is inp-minimal if and only if both k and
Γ are inp-minimal. Finally, we discuss some problems and future research directions.

2 Reduction to RV

We recall some basic facts about the RV setting, we are going to use [Fle11] as a reference. Fix a
valued field K, with value group Γ and residue field k. Let RV be the quotient group K×/ (1 +m)
where m = {x ∈ K : val (x) > 0} is the maximal ideal of the valuation ring. We have a short exact

sequence 1 → k× → RV
valrv→ Γ → 0.

Consider now the two-sorted structure K̄ = (K,RV, rv) in the language LRV+ consisting of:

• the quotient map rv : K → RV,

• on the sort K, the ring structure,

• on the sort RV, the structure ·, 1 of a multiplicative group, a symbol 0, a symbol ∞ and a
ternary relation ⊕.
The multiplicative group structure is interpreted as the group structure induced fromK× and
0 ·x = x ·0 = 0, ∞ = rv(0). The relation ⊕ is interpreted as the partially defined addition in-
herited fromK: ⊕(a, b, c) ⇐⇒ ∃x, y, z ∈ K (a = rv(x) ∧ b = rv(y) ∧ c = rv(z) ∧ x+ y = z).

Remark 7. 1. One can define the set WD(x, y) of pairs of elements for which the sum is well-
defined as ∀z, z′(⊕(x, y, z) ∧ ⊕(x, y, z′) =⇒ z = z′). Given a pair of elements x, y ∈ RV
such that WD(x, y) holds, we write x + y to denote the unique element z ∈ RV satisfying
⊕(x, y, z).

2. We have WD(rv(a), rv(b)) ⇐⇒ val(a+ b) = min {val(a), val(b)}, in which case rv(a+ b) =
rv(a) + rv(b) (see [Fle11, Proposition 2.4]).

3. The relation valrv(x) ≤ valrv(y) on RV is definable in this language [Fle11, Proposition
2.8(1)]. Namely, let d ∈ RV be arbitrary with valrv(d) = 0. Then valrv(x) > 0 ⇐⇒
dx + 1 = 1, and valrv(x) = 0 ⇐⇒ ¬ valrv(x) > 0 ∧ ∃y(x · y = 1 ∧ ¬ valrv(y) > 0). Then
valrv(x) = valrv(y) ⇐⇒ ∃u(valrv(u) = 0 ∧ x = u · y) and valrv(x) < valrv(y) ⇐⇒ x 6=
∞∧ x+ dy = x.

Let K̄ ≻ K̄ be a monster model. We may always assume that K̄ admits a cross-section map
ac : K → k×, so we can view K̄ also as a structure in the language Lac with ac added to the
language.

Fact 8. [Fle11, Proposition 5.1]

1. Let K be a Henselian valued field with char (k) = 0, and suppose that S ⊆ K is definable.
Then there are α1, . . . , αk and a definable subset D ⊆ RVk such that

S = {x ∈ K : (rv (x− α1) , . . . , rv (x− αk)) ∈ D} .
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2. The RV sort is fully stably embedded (i.e. the structure on RV induced from K̄, with param-
eters, is precisely the one described above).

The following two lemmas are easy to verify (see [Che10] for the details).

Lemma 9. Let (ai)i∈I be an Lac-indiscernible sequence of singletons in K, and consider the
function (i, j) 7→ val (aj − ai) for i < j ∈ I. Then one of the following cases occurs:

1. It is strictly increasing depending only on i (so the sequence is pseudo-convergent).

2. It is strictly decreasing depending only on j (so the sequence taken in the reverse direction
is pseudo-convergent).

3. It is constant (we’ll refer to such a sequence as a “fan”).

Lemma 10. Let (ai)i∈I be an Lac-indiscernible pseudo-convergent sequence from K. Then for
any d ∈ K there is some i∗ ∈ Ī ∪ {+∞,−∞} (where Ī is the Dedekind closure of I) such that
(taking a∞ from K such that I ⌢ a∞ is indiscernible):

For i < i∗: val(a∞ − ai) < val(d− a∞), val(d− ai) = val(a∞ − ai) and ac(d− ai) = ac(a∞ − ai).

For i > i∗: val(a∞ − ai) > val(d− a∞), val(d− ai) = val(d− a∞) and ac(d− ai) = ac(d− a∞).

Note also that for any non-zero x, y ∈ K, rv (x) = rv (y) if and only if val (x− y) > val (y) and
for any z ∈ K and x, y ∈ K \ {z}, rv (x− z) = rv (y − z) if and only if val (x− y) > val (y − z).

In the remainder of this section we will reduce inp-minimality of K̄ to inp-minimality of the
RV sort with the induced structure.

First we treat a key special case. Assume that there is an inp-pattern consisting of formulas
ψ (x, yz) = φ (rv (x− y) , z) and ψ′ (x, yz′) = φ′ (rv (x− y) , z′) and mutually Lac-indiscernible
sequences (ci)i∈Z

, (c′i)i∈Z
with ci = aî bi and c′i = a′î b

′
i where φ and φ′ are RV-formulas, bi ∈

RV|z|, b′i ∈ RV|z′| and ai, a
′
i ∈ K. Without loss of generality both {φ (rv (x− ai) , bi)}i∈Z

and
{φ′ (rv (x− a′i) , b

′
i)}i∈Z

are k-inconsistent, and let d |= φ (rv (x− a0) , b0)∧φ′ (rv (x− a′0) , b
′
0). We

may also add to the base elements a∞, a−∞, a
′
∞, a

′
−∞ continuing our sequences on the left and on

the right.

Claim 11. val (d− ai) ≤ val (d− a′0) and val
(
d− a′j

)
≤ val (d− a0) for all i and j. In particular,

val (d− a0) = val (d− a′0) = γ.

Proof. Assume that val (d− ai) > val (d− a′0) for some i. Then rv (d− a′0) = rv (ai − a′0). So
|= φ′ (rv (ai − a′0) , b

′
0), and by mutual indiscernibility ai |=

{
φ′

(
rv

(
x− a′j

)
, b′j

)}
j∈ω

— a contra-

diction. The other part is by symmetry.

Claim 12. γ ≤ val (a0 − a′0).

Proof. As otherwise val (d− a0) = val (d− a′0) = γ > val (a0 − a′0) = val (d− a0) — a contradic-
tion.

We now consider several cases separately.

Case A: val
(
ai − a′j

)
is constant, equal to some γ′ ∈ Γ.

As in this case the two sequences are mutually indiscernible over γ′, we may add it to the base.
Note that γ ≤ γ′ by Claim 12. The following subcases cover all the possible situations, using
mutual indiscernibility of the sequences over γ′.

Subcase 1: γ < γ′.

Then rv (d− ai) = rv (d− a′i) = α for all i, j, for some some α ∈ RV with valrv (α) = γ. Note
furthermore that for any α∗ ∈ RV such that valrv (α

∗) < γ′ we can find some d∗ ∈ K such that
rv (d∗ − ai) = rv (d∗ − a′i) = α∗.
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But then consider the array φ̃ (x̃, bi) = φ (x̃, bi)∧valrv (x̃) < γ′, φ̃′ (x̃, b′i) = φ (x̃, bi)∧valrv (x̃) <
γ′, where x̃ and bi, b

′
i are ranging over the RV sort and φ̃, φ̃′ are RV-formulas (we are abusing

the notation by writing valrv (x̃) < γ′ as a shortcut for valrv(x̃) < valrv (a∞ − a′∞)). We have

|= φ̃ (α, b0) ∧ φ̃′ (α, b′0) and
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i)

}
i∈Z

are both inconsistent by the previous

observation as the original array was inconsistent. This gives us an inp-pattern in the structure
induced on the RV sort, and so implies that RV is not inp-minimal.

Subcase 2: γ = γ′, val (ai − aj) > γ and val
(
a′i − a′j

)
> γ for all i < j.

It follows that there are α, α′ ∈ RV with valrv (α) = valrv (α
′) = γ such that rv (d− ai) = α

and rv (d− a′i) = α′ for all i. Furthermore, rv
(
ai − a′j

)
= α′ − α =: β for all i, j. It follows

that our sequences are mutually indiscernible over β and we can add it to the base. Moreover,
for any α∗ ∈ RV with valrv (α

∗) = γ we can find some d∗ ∈ K with rv (d∗ − ai) = α∗ and
rv (d∗ − a′i) = α∗ + β.

Then let φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = γ and φ̃′ (x̃, b′i) = φ′ (x̃− β, b′i) ∧ valrv (x̃) = γ. It

follows that α |= φ̃ (x̃, b0) ∧ φ̃′ (x̃, b′0) and that
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i)

}
i∈Z

are both inconsistent

as the original array was inconsistent — contradicting inp-minimality of RV.

Subcase 3: γ = γ′, val (ai − aj) > γ and val
(
a′i − a′j

)
= γ for all i < j.

In this case we still have some α ∈ RV such that rv (d− ai) = α for all i. On the other
hand, it follows that rv (d− a′i) = rv (d− a∞) + rv (a∞ − a′i). Moreover, for any α∗ ∈ RV with
valrv (α

∗) = γ and WD(α∗, rv(a∞ − a′i)) we can find some d∗ such that rv (d∗ − ai) = α∗ and
rv (d∗ − a′i) = α∗ + rv (a∞ − a′i).

Then define φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = γ and φ̃′
(
x̃, b̃′i

)
= φ′ (x̃+ rv (a∞ − a′i) , b

′
i) ∧

valrv (x̃) = γ ∧ WD(x̃, rv (a∞ − a′i)), so b̃′i = rv (a∞ − a′i) b̂
′
i. Note that (bi)i∈Z

and
(
b̃′i

)
i∈Z

are

mutually indiscernible sequences in RV. It follows that α |= φ̃ (x̃, b0) ∧ φ̃′
(
x̃, b̃′0

)
and that both

{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′

(
x̃, b̃′i

)}
i∈Z

are inconsistent — contradicting inp-minimality of RV.

Subcase 4: γ = γ′, val (ai − aj) = val
(
a′i − a′j

)
= γ for all i < j.

It then follows that rv (d− ai) = rv (d− a∞) + rv (a∞ − ai) and rv (d− a′i) = rv (d− a∞) +
rv (a∞ − a′i) (as val (d− a′i) = val (d− ai) = val (d− a∞) = val (a∞ − a′i)). Moreover, for any
α∗ ∈ RV with valrv (α

∗) = γ (and such that the corresponding sums are well-defined) there is d∗

such that rv (d∗ − ai) = α∗ + rv (a∞ − ai), rv (d
∗ − a′i) = α∗ + rv (a∞ − a′i).

We define φ̃
(
x̃, b̃i

)
= φ (x̃+ rv (a∞ − ai) , bi) ∧ valrv (x̃) = γ ∧ WD(x̃, rv (a∞ − ai)) and

φ̃′
(
x̃, b̃′i

)
= φ′ (x̃+ rv (a∞ − a′i) , b

′
i)∧valrv (x̃) = γ ∧WD(x̃, rv (a∞ − a′i)), so b̃i = rv (a∞ − ai) b̂i

and b̃′i = rv (a∞ − a′i) b̂
′
i. Note that

(
b̃i

)
i∈Z

and
(
b̃′i

)
i∈Z

are mutually indiscernible sequences in

RV. It follows that α |= φ̃
(
x̃, b̃0

)
∧ φ̃′

(
x̃, b̃′0

)
and that both

{
φ̃
(
x̃, b̃i

)}
i∈Z

,
{
φ̃′

(
x̃, b̃′i

)}
i∈Z

are

inconsistent — contradicting inp-minimality of RV.

Subcase 5: γ = γ′, val (ai − ai) = γ and val
(
a′i − a′j

)
> γ for all i < j.

Follows from Subcase 3 by symmetry.

Case B: Not Case A.

Claim 13. At least one of the sequences (ai)i∈Z
, (a′i)i∈Z

is not a fan.

Proof. Assume that both are, say val (ai − aj) = α and val
(
a′i − a′j

)
= α′ for all i < j. It follows

by mutual indiscernibility that val
(
ai − a′j

)
≤ min {α, α′} for all i, j. But then val

(
ai − a′j

)
=

val (a0 − a′0) for all i, j, thus putting us in Case A.

So we may assume that (ai)i∈Z
is a pseudo-convergent sequence (by Lemma 9, possibly ex-

changing (ai) with (a′i) and reverting the ordering of the sequence).
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Subcase 1: Some (equivalently, every) a′i is a pseudo-limit of (ai)i∈Z
.

Then rv (d− a′i) = rv (d− a∞) for all i (by Claim 12).

We define φ̃′ (x̃, b′i) = φ′ (x̃, b′i) ∧ valrv (x̃) < val (a∞ − a′∞).
By Lemma 10 it follows that there is some i∗ ∈ {−∞} ∪ Z ∪ {∞} such that rv (d− ai) =

rv (d− a∞) for i > i∗ and rv (d− ai) = rv (a∞ − ai) for i < i∗. Again by Claim 12, i∗ ≤ 0. Let’s
restrict (ai)i∈Z

to (ai)i∈ω .
If val (d− a∞) < val (a∞ − a0) then rv (d− ai) = rv (d− a∞) for all i. If val (d− a∞) =

val (a∞ − a0) then rv (d− ai) = rv (d− a∞) for all i > 0 and rv (d− a0) = rv (d− a∞) +
rv (a∞ − a0). We thus define

φ̃
(
x̃, b̃i

)
= (val (ai − a∞) > valrv (x̃) ∧ φ (x̃, bi)) ∨

∨ (val (ai − a∞) = valrv (x̃) ∧WD(x̃, rv (a∞ − ai)) ∧ φ (x̃+ rv (a∞ − ai) , bi))

with b̃i = bî rv (ai − a∞). Then
(
b̃i

)
, (b′i) are mutually indiscernible sequences in RV and

rv (d− a∞) |= φ̃
(
x̃, b̃0

)
∧ φ̃′ (x̃, b′0). By inp-minimality of RV we have that either there is some

α∗ |=
{
φ̃′ (x̃, b′i)

}
i∈ω

, in which case we can find d∗ with rv (d∗ − a∞) = α∗ and thus d∗ |=

{φ′ (rv (x− a′i) , b
′
i)}i∈ω, or that α∗ |=

{
φ̃
(
x̃, b̃i

)}
i∈ω

. Then it follows from the definition of φ̃

that there is d∗ satisfying rv (d∗ − a∞) = α∗ and such that that d∗ |= {φ (rv (x− ai) , bi)}i∈ω — a
contradiction.

Subcase 2: Not Subcase 1.

By inspection (remembering that we are not in the Case A), the only possibility is that (a′i) is
pseudo-convergent and that any ai is a pseudo-limit of it. But then reversing the roles of the two
sequences we are back to Subcase 1.

Now we reduce the case of a general inp-pattern to the special case treated above. Assume
that there is an inp-pattern of depth 2. By Ramsey and compactness we may assume that the
rows are mutually indiscernible in the Lac-language. Though in Fact 8 the formula defining D may
depend on the formula defining S, by indiscernibility, Ramsey and compactness we may assume
that the formulas in our inp-pattern are in fact of the form φ (rv (x− y1) , . . . , rv (x− yn) , zn) and
φ′ (rv (x− y1) , . . . , rv (x− yn) , z

′
n), for some n ∈ ω, where φ and φ′ are RV-formulas. Let d realize

the first column of the inp-pattern.
Case 1: val (d− a0,0) < val (a0,n − a0,0). Then rv (d− a0,0) = rv (d− a0,n) and we define

φ̃
(
x, aib̃i

)
= φ (rv (x− ai,0) , . . . , rv (x− ai,n−1) , rv (x− ai,0)) ∧ val (x− ai,0) < val (ai,n − ai,0)

with b̃i = bî rv (ai,n − ai,0).
Case 2: val (d− a0,0) > val (a0,n − a0,0). Then rv (d− a0,n) = rv (a0,n − a0,0) and we define

φ̃
(
x, aib̃i

)
= φ (rv (x− ai,0) , . . . , rv (x− ai,n−1) , rv (ai,n − ai,0))∧ val (x− ai,0) > val (ai,n − ai,0)

with b̃i = bî rv (ai,n − ai,0).
Case 3: v (d− a0,n) < v (a0,n − a0,0) and Case 4: v (d− a0,n) > v (a0,n − a0,0) are symmetric

to Case 1 and Case 2 respectively.
Case 5: v (d− a0,0) = v (d− a0,n) = v (a0,n − a0,0). Then rv (d− a0,0) = rv (d− a0,n) +

rv (a0,n − a0,0). We define

φ̃
(
x, aib̃i

)
= φ (rv (x− ai,n) + rv (ai,n − ai,0) , . . . , rv (x− ai,n−1) , rv (x− ai,n))

∧v (x− ai,n) = v (ai,n − ai,0) ∧WD(rv (x− ai,n) , rv (ai,n − ai,0))

with b̃i = bî rv (ai,n − ai,0).

In any of the cases, we still have that
(
b̃i

)
i∈Z

, (b′i)i∈Z
are mutually indiscernible, that d |=

φ̃
(
x, a0b̃0

)
∧φ′ (x, a′0b

′
0) and that

{
φ̃
(
x, aib̃i

)}
i∈Z

is inconsistent. Thus we get a new inp-pattern
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replacing {φ (x, aibi)} by
{
φ̃
(
x, aib̃i

)}
, with φ̃ involving one less term of the form rv (x− yi).

Repeating the same operation n times for φ, and then for φ′, we reduce the situation to the
special case of formulas considered before.

3 Relative quantifier elimination for RV

Now it will be more convenient to consider a valued field K in a slightly weaker language LRV.
Namely, we associate with it a three-sorted structure K̄ = (K,RV,Γ, valrv) such that on RV we
have the multiplicative group structure ·, 1, a constant 0, a predicate for the residue field k ⊆ RV
along with addition +̃ on k, and a map valrv : RV → Γ.

The partial addition relation ⊕ on RV is definable in LRV (using [Fle11, Proposition 2.7]):

⊕(x, y, z) ⇐⇒ (valrv(x) < valrv(y) ∧ z = x) ∨ (valrv(y) < valrv(x) ∧ z = y)∨

∨

(
valrv(x) = valrv(y) ∧

((
x

y
+̃1 = 0 ∧ valrv(z) > valrv(x)

)
∨

(
(
x

y
+̃1)y = z ∧ z 6= 0

)))
.

The conclusion is that in particular if (RV,Γ, valrv) is inp-minimal as an LRV-structure, then
(RV, ·,⊕) is inp-minimal as an LRV+ -structure. In the next section we are going to demonstrate
the former under the assumptions of the main theorem, but in order to do that we prove a relative
quantifier elimination result for (a certain expansion of) the LRV language.

Assumptions

• G is an abelian group such that G/nG is finite for all n < ω.

• K ⊆ G is a subgroup, with quotient H = G/K. Let π : G→ H denote the projection map.

• M is the two-sorted structure with sorts G and H , and the following language.

– On G: we have the group structure +,−, 0, a predicate K (x) for the subgroup K,
predicates (Pn (x) : n < ω) interpreted as Pn (x) ↔ ∃y ny = x, and constants naming
a countable subgroup G0 containing representatives of each class of G/nG, for each
n < ω (such that moreover all classes of elements from K are represented by elements
from G0 ∩K).

– On H : we have some language LH (containing the induced group structure) and we
assume that the structure (H,LH) eliminates quantifiers.

– OnK: we have some language LK such that (K,LK) eliminates quantifiers and contains
the language induced from G (via the group structure and predicates Pn).

– We have the projection group homomorphism π : G→ H .

• Moreover, we assume that the language contains no other function symbols apart from π
and the group structures on G and H .

• Finally, H is torsion-free.

Proposition 14. M has quantifier elimination.

Proof. We prove it by back-and-forth. So assume that M is ω-saturated and we have two sub-
structures A and B from M and a partial isomorphism f : A→ B. So A,B ⊇ G0 contain elements
from both G and H , both are closed under the group operations, inverse and π.

Let α ∈M be arbitrary, and we want to extend f to be defined on A1 = A (α), the substructure
generated by αA. We assume that α /∈ A.

Step 1: If α ∈ H , then we can extend f .
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As f |A∩H is LH -elementary by quantifier elimination in (H,LH), there is β ∈ H and a partial
LH-automorphism g extending f |A∩H and sending A (α) ∩H to B (β) ∩H . Then we extend f to
F defined on A (α) by taking F = f ∪ g (note that, as there are no functions from H to G in the
language, A (α) ∩G = A ∩G).

So by iterating Step 1 we may assume that α ∈ G and that π (a+ nα) ∈ A for all a ∈ A and
n ∈ Z.

Step 2: Assume that α ∈ K. Then we can extend f .

As f |A∩K is LK-elementarity by quantifier elimination, we can find β ∈ K and a partial LK-
automorphism g extending it and sending A (α)∩K to B (β)∩K. Then we define F on A (α) by
setting F (a+ nα) = f (a)+g (nα) = f (a)+ng (α) for all a ∈ A, n ∈ Z (note that nα ∈ A (α)∩K
for all n ∈ Z by the assumption) and F acts like f on A(α) ∩H = A ∩H .

• F is well-defined: Assume that a + nα = a′ + n′α, so A ∋ a − a′ = (n′ − n)α, and thus
f (a)− f (a′) = f (a− a′) = f ((n′ − n)α) = . . . as (n′ − n)α ∈ K ∩ A and g|A∩K = f |A∩K

. . . = g ((n′ − n)α) = ng (α) − n′g (α). Then we have F (a+ nα) − F (a′ + n′α) = f (a) +
g (nα)− f (a′)− g (n′α) = 0.

• F extends f : immediate from the definition.

• Note that F |A(α)∩K = g, as given a + nα ∈ A (α) ∩ K it follows that a ∈ A ∩ K, and as
f |A∩K = g|A∩K we have F (a+ nα) = f (a) + g (nα) = g (a) + g (nα) = g (a+ nα).

• F |G is a group homomorphism: indeed, F (a+ nα+ a′ + n′α) = F ((a+ a′) + (n+ n′)α) =
f (a+ a′) + g ((n+ n′)α) = f (a) + f (a′) + g (nα) + g (n′α) = F (a+ nα) + F (a′ + n′α).

• F is onto B(β): every element of B (β) is of the form b+ nβ, so F
(
f−1 (b) + nα

)
= b+ nβ.

• F preserves π: On one hand π (F (a+ nα)) = π (f (a) + ng (α)) = π (f (a))+nπ (g (α)) = . . .
as g (α) ∈ K . . . = π (f (a)) + 0 = f (π (a)) = F (π (a)) (recall that π (a) ∈ A). On the other
hand we have F (π (a+ nα)) = F (π (a) + nπ (α)) = F (π (a) + 0) = F (π (a)).

• In particular, F preserves K (x) = {x ∈ G : π (x) = 0}.

• F preserves Pk: Pk (F (a+ nα)) ⇔ Pk (f (a) + ng (α)) ⇔ Pk (a+ ng (α)) (as f (a) = a
mod kG) ⇔ Pk (a+ nα) (as g (α) = α mod kG because all representatives of classes of
α ∈ K are in G0 ∩K ⊆ A ∩K, Pk ∩K is LK-definable and g|A(α)∩K is LK-elementary).

• F preserves every φ(x1, . . . , xk) ∈ LK : As F |A(α)∩K = g and g is an LK-elementary map.

• F preserves every ψ ∈ LH : As π (a+ nα) = π (a) + nπ (α) ∈ A ∩ H (as π (α) ∈ A by the
assumption), and F |A∩H = f |A∩H is LH-elementary.

So F is a partial isomorphism as wanted.

By iterating Step 2 we may assume that a+ nα ∈ K ⇒ a+ nα ∈ A for all a ∈ A and n ∈ ω.

Step 3: Assume that mα ∈ A for some m ≥ 1. Then we can extend f .

Let m be minimal with this property.

Claim 15. There is β ∈ G satisfying mβ = f (mα) and β = α mod kG for all k ∈ ω.

Proof. By ω-saturation it suffices to shows this one k at a time. By assumption there is some g ∈ G0

such that Pk (α− g), then Pk (α− g) ⇒ Pmk (mα−mg) ⇒ Pmk (f (mα)−mg) (as mα,mg ∈ A,
f (mg) = mf (g) = g and f preserves Pl for all l < ω) ⇒ ∃γ ∈ G such that mkγ = f (mα)−mg.
Let β = kγ + g. Then mβ = f (mα) and β = g = α mod kG, and the claim is proved.

We define F on A (α) ∩ G by setting F (a+ nα) = f (a) + nβ and F |A(α)∩H = f |A(α)∩H as
A (α) ∩H = A ∩H .

8



• F is well-defined: If a + nα = a′ + n′α with a, a′ ∈ A, then (n− n′)α = a′ − a ∈ A. It
follows that m divides (n− n′) by minimality (assume that n − n′ = km + m1, |m1| <
m, then m1α = a′ − a − kmα ∈ A, contradiction), say (n− n′) = km. Thus f (a′) −
f (a) = f (a′ − a) = f ((n− n′)α) = f (kmα) = kf (mα) = kmβ = (n− n′)β. But then
F (a+ nα)− F (a′ + n′α) = f (a) + nβ − f (a′)− n′β = 0.

• F extends f is obvious from the definition.

• F is a group homomorphism from A (α) to B (β):

F ((a+ nα) + (a′ + n′α)) = F ((a+ a′) + (n+ n′)α) = f (a+ a′)+(n+ n′)β = (f (a) + nβ)+
(f (a′) + n′β) = F (a+ nα) + F (a′ + n′α).

• F preserves π: First observe that π (mβ) = π (f (mα)), so mπ (β) = π (f (mα))
as mα∈A

=
f (π (mα)) = f (mπ (α)) = mf (π (α)), and as H is torsion free this implies that π (β) =
f (π (α)). But then F (π (a+ nα)) = f (π (a+ nα)) = f (π (a) + nπ (α)) = f (π (a)) +
nf (π (α)) = π (f (a)) + nπ (β) = π (f (a) + nβ) = π (F (a+ nα)).

• In particular, F preserves K (x) = {x ∈ G : π (x) = 0}.

• F preserves Pk(x): By the choice of β we have α = β mod kG for all k, and for any a ∈ A we
have f (a) = a mod kG for all k (as G0 ⊆ A and f preserves Pk), hence Pk (F (a+ nα)) ⇔
Pk (f (a) + nβ) ⇔ Pk (a+ nα).

• F preserves LK-formulas: As a + nα ∈ K ⇒ a+ nα ∈ A by the assumption and F |A∩K =
f |A∩K is LK-elementary by elimination of quantifiers in (K,LK).

• F preserves LH-formulas: As F |A(α)∩H = f |A(α)∩H=A∩H by definition, and f is LH-
elementary.

So we may assume that:

1. A ∩H is a relatively divisible subgroup of H (iterating Step 1);

2. A ∩G is a relatively divisible subgroup of A(α) ∩G (iterating Step 3);

3. π (a+ nα) ∈ A for all a ∈ A, n ∈ Z (iterating Step 1);

4. a+ nα /∈ K for all a ∈ A, n ∈ Z \ {0} (as a+ nα ∈ K ⇒ a+ nα ∈ A by Step 2, so nα ∈ A,
so α ∈ A by divisibility of A — contradicting the assumption).

Step 4: General case.

Claim 16. There is some β ∈ G such that π (β) = f (π (α)) and α = β mod kG for all k ∈ ω.

Proof. By ω-saturation we only need to consider one value of k at a time. Let g ∈ G0 be such that
Pk (g + α) holds, then π (g + α) is k-divisible as well. As g ∈ A ⇒ g + α ∈ A (α) ⇒ π (g + α) ∈
A ∩ H and f |A∩H is LH-elementary, it follows that f (π (g + α)) is k-divisible as well. Take β

to be kβ′ − g where π (β′) = f(π(g+α))
k

(recall that H is torsion free). Now we have Pk (g + β)
and π (β) = kπ (β′) − π (g) = f (π (g + α)) − π (g) = f (π (g)) + f (π (α)) − π (g) = f (π (α)) as
f (π (g)) = π (f (g)) and f (g) = g, so the claim is proved.

We define F (a+ nα) = f (a) + nβ and F |A(α)∩H=A∩H = f |A∩H .

• F is well-defined: If a+ nα = a′ +n′α, then (a− a′) + (n− n′)α = 0 ∈ A, which implies by
the assumption that n = n′ and a = a′.

• F is a homomorphism: clear from definition and as f is a homomorphism on A.

• F preserves π (so in particular K): π (F (a+ nα)) = π (f (a) + nβ) = π (f (a)) + nπ (β) =
f (π (a)) + nf (π (α)) = f (π (a) + nπ (α)) = f (π (a+ nα)) = F (π (a+ nα)).
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• F preserves Pk: Pk (F (a+ nα)) ⇔ Pk (f (a) + nβ) ⇔ Pk (a+ nβ) (as f (a) = a mod kG
because we have all the representatives in G0) ⇔ Pk (a+ nα) (as α = β mod kG by the
choice of β).

• F preserves LK-formulas and LH -formulas: as in Step 3.

Corollary 17. H and K are fully stably embedded, i.e. any subset of H (resp. K) definable with
external parameters is already definable with internal parameters in LH (resp., LK) — this follows
directly from the elimination of quantifiers.

4 Reduction from RV to k and Γ

Proposition 18. Let M = (G,K,H) be a structure satisfying the assumptions from the previous
section. Assume moreover that:

1. K (viewed as an LK structure) and H (viewed as an LH structure) are both inp-minimal;

2. for every n, there are only finitely many x ∈ G for which nx = 0 (since H is torsion-free,
such elements are in fact in K).

Then M is inp-minimal.

Proof. First, we note that we may assume that K is infinite. To see this, assume that K is
finite, and let b ∈ G be given along with two mutually indiscernible sequences (ai : i < ω) and
(a′i : i < ω). By dp-minimality of H , we may assume that (π(ai) : i < ω) is indiscernible over
π(b). But then as ai ∈ acl(π(ai)), we have that (ai : i < ω) is indiscernible over acl(π(b)), hence
over b. This shows that G is dp-minimal. Hence from now on, we assume that K is infinite.

We are working in a saturated extension of M . Assume that the conclusion fails, then we
have an inp-pattern φ (x, y) , φ′ (x, y′) , ā = (ai) , ā

′ = (a′i) witnessing this, with ā and ā′ mutually
indiscernible. In particular they are mutually indiscernible over G0 ⊆ acl (∅) which contains
representatives of each class of G/nG and all torsion of G, and rows are k∗-inconsistent. It follows
from quantifier elimination that φ (x, ai) is equivalent to a disjunction of conjuncts of the form
θ(ti,0(x), . . . , ti,l−1(x), αi) ∧ ψ (π (x) , bi) ∧ χ (x, ci) ∧ ρ (x, ei) where:

• the ti,j are terms with parameters in G, αi ∈ K and θ is an LK-formula;

• ψ is an LH-formula and bi ∈ H ;

• χ (x, ci) is of the form
∧

j<k njx+ ci,j = 0∧
∧

j<kmjx+di,j 6= 0 with ci = (ci,j)j<k
(̂di,j)j<k

from G;

• ρ (x, ei) is of the form

∧

j<k

Pm′

j

(
n′
jx+ e′i,j

)
∧

∧

j<k

¬Pm′′

j

(
n′′
j x+ e′′i,j

)

with ei =
(
e′i,j

)
j<k

ˆ
(
e′′i,j

)
j<k

.

Forgetting all but one disjunct satisfied by b, we may assume that φ(x, ai) is equal to such a
conjunction.

Any term ti,j is of the form ni,jx−gi,j and the formula makes sense only when ni,jx−gi,j ∈ K,
that is when π(x) = π(gi,j)/ni,j . Choose some hi such that π(hi) = π(gi,j)/ni,j for some/all j.
We can then replace ni,jx−gi,j with n(x−hi)+h′i,j with h′i,j ∈ K. Adding h′i,j to αi and changing
the formula θ, we replace θ by a formula θ′(x− hi, α

′
i), θ

′ ∈ LK .
Recalling that G/nG is finite for every n < ω, ρ (x, ei) is equivalent to some finite disjunc-

tion of the form
∨

i<N Pki
(x− gi) where gi ∈ G0 (so for example to express ¬Pk (nx+ e) we

have to say that x belongs to one of the finitely many classes mod kG satisfying this, and to
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express Pk (nx+ e)∧ Pl (n
′x+ e′) we have to say that x belongs to a certain subset of the classes

mod klG).
Note that χ (x, c0) is infinite as χ (x, c0) ∧ φ′ (x, ai) is consistent for every i ∈ ω, while

{φ′ (x, ai)}i∈ω is k∗-inconsistent. Thus χ (x, ci) can only be of the form
∧

j<k njx + ci,j 6= 0
(as every equation of the form nx+ c = 0 has only finitely many solutions by assumption (2)).

Thus we may assume that φ(x, ai) = θ(x − hi, αi) ∧ ψ (π (x) , bi) ∧ χ (x, ci) ∧ Pl (x− g) where:

• αi ∈ K and θ is an LK-formula,

• ψ is an LH-formula and bi ∈ Γ,

• χ (x, ci) =
(∧

j<k njx+ ci,j 6= 0
)

• l ∈ ω, g ∈ G0.

Similarly, we may assume that φ′(x, a′i) = θ′(x− h′i, α
′
i)∧ψ

′ (π (x) , b′i)∧χ
′ (x, c′i)∧Pl′ (x− g′)

with the same properties.
Let b |= φ (x, a0) ∧ φ′ (x, a′0).

Case 1: b ∈ H . Then by full stable embeddedness of H we can replace our array by φ̃ (x, ãi) and

φ̃′ (x, ã′i) where φ̃, φ̃′ ∈ LH and ãi, ã
′
i ∈ H are such that φ̃ (x, ãi) ∩H (x) = φ (x, ai) ∩H (x), and

similarly for φ̃′. But this contradicts inp-minimality of (H,LH).

Case 2: b ∈ K. Similarly, by full stable embeddedness of K we can replace our array by φ̃ (x, ãi)

and φ̃′ (x, ã′i) where φ̃, φ̃′ ∈ LK and ãi, ã
′
i ∈ K are such that φ̃ (x, ãi) ∩K (x) = φ (x, ai) ∩K (x),

and similarly for φ̃′. But this contradicts inp-minimality of (K,LK).

Case 3: b /∈ K ∪H .
Subcase 3.1 Neither θ occurs in φ nor θ′ occurs in φ′.

Then we have φ(x, ai) = ψ (π (x) , bi) ∧ χ (x, ci) ∧ Pl (x− g) and φ′(x, a′i) = ψ′ (π (x) , b′i) ∧
χ′ (x, c′i) ∧ Pl′ (x− g′).

Consider ψ̃(x′, bi) := ψ(x′, bi)∧ “x′−π (g) is l-divisible” and ψ̃′(x′, b′i) := ψ(x′, b′i)∧ “x′ −π (g′)

is l′-divisible” — this is an array in the structure induced on H . Note that π (b) |= ψ̃ (x′, b0) ∧

ψ̃′ (x′, b′0).
As H is inp-minimal, it follows without loss of generality that the set

{ψ (x′, bi) ∧ “x′ − π (g) is l-divisible” : i < ω}

has a solution h in H .
Say h − π (g) = lγ. Take β ∈ G such that π (β) = γ. As K is infinite, there is an infinite

sequence (βi)i∈ω in K such that all the differences βi − βj are pairwise different. Let e′i = β + βi.
Then we still have that e′i− e

′
j are all pairwise different, and that π (e′i) = π (β)+π (βi) = γ. Note

that as by assumption there are only finitely many l-torsion elements in G, we may assume that
e′i − e′j is not l-torsion, for any i 6= j.

Finally, define ei = le′i + g. We have:

• all ei’s are pairwise different (as ei = ej ⇒
(
e′i − e′j

)
is l-torsion, contradicting the choice of

the elements b′i).

• π (ei) = lπ (e′i) + π (g) = lγ + π (g) = h.

• Pl (ei − g) holds as ei − g = le′i.

As the set
∨

i<k∗+1

(∨
j<k njx+ ci,j = 0

)
is finite, then one of the ei’s realizes k∗ elements of the

first row — a contradiction.
So let now (ei : i ∈ ω) be an infinite list of pairwise different solutions of {ψ̃(x′, bi) : i ∈ ω} in

H . In particular ei − π(g) = lγi for some γi ∈ H with (γi : i ∈ ω) pairwise different. Let βi ∈ G
be arbitrary such that π(βi) = γi. As all fibers of π are finite, we may assume that all of βi’s are
pairwise different as well. Finally, let fi := lβi + g. We have:
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• (fi : i ∈ ω) are pairwise different,

• Pl(fi − g) holds for all i ∈ ω, as fi − g = lβi,

• π(fi) = lπ(βi) + π(g) = lγi + π(g) = ei.

As the set
∨

i<k∗+1

(∨
j<k njx+ ci,j = 0

)
is finite, then one of the fi’s realizes at least k∗

elements of the first row — a contradiction.

Subcase 3.2 θ occurs in φ and θ′ occurs in φ′.
Syntactically, this is only possible if b − g0 ∈ K, b − g′0 ∈ K, hence both π(b) ∈ dcl(g0) and

π(b) ∈ dcl(g′0). By mutual indiscernibility of the rows it follows that ā, ā′ are mutually indiscernible
over π(b) and we can add it to the base.

Then by mutual indiscernibility of ā, ā′ over π(b), Ramsey, compactness and automorphism we
can find some f ∈ G such that π(f) = π(b) and ā, ā′ are mutually indiscernible over f . So we can
add f to the base as well.

Taking c := b−f we have c ∈ K. Translating by f , we can consider a new array φ̃ (x, ãi) , φ̃
′ (x, ã′i)

where φ̃(x, ai) = θ(x+f−hi, αi)∧ψ (π (x+ f) , bi)∧χ (x+ f, ci)∧Pl (x+ f − g), and analogously

for φ̃′. Note that the first column is realized by c ∈ K. By Case 2, we can find some c′ realizing,
say, the first row of the new array. But then taking b′ := c′ + f clearly b′ realizes the first row of
the old array.

Subcase 3.3 θ occurs in φ, but θ′ does not occur in φ′ (and the symmetric case by permuting
the rows).

By assumption φ′(x, a′i) = ψ′ (π (x) , b′i) ∧ χ
′ (x, c′i) ∧ Pl′ (x− g′). As in Subcase 3.1, it follows

that π(b) ∈ dcl(a0), say π(b) = f(a0) for some ∅-definable function f . We have b |= φ′(x, a′0). In
particular, |= ψ′(f(a0), b

′
0) ∧ “f(a0) − π(g′) is l′-divisible”. By mutual indiscernibility of ā, ā′ it

follows that |= ψ′(f(ai), b
′
j) ∧ “f(ai)− π(g′) is l′-divisible” for all i, j ∈ ω.

We may also assume that all of {f(ai) : i ∈ ω} are pairwise different. Otherwise, if f(ai) =
f(aj) for some i < j, by indiscernibility π(b) = f(a0) = f(a∞), and so ā, ā′ are mutually in-
discernible over π(b) — and we can conclude as in Subcase 3.1. It follows that the partial
type {ψ′(x′, b′j) ∧ “x′ − π(g′) is l′-divisible”} has infinitely many solutions in H , witnessed by
{f(ai) : i ∈ ω}. Now this implies that the second row of the original array {φ′(x, a′i) : i ∈ ω} is
consistent as in Case 3.1(a).

Proof of Theorem 4. Given a valued field K̄ satisfying the assumption of Theorem 4, via
the reductions in Sections 2 and 3 it is enough to demonstrate that (RV, k,Γ) is inp-minimal. For
this it is enough to show that the assumptions of Proposition 18 are satisfied for G = RV, K a
Morleyzation of k and H a Morleyzation of Γ. Both K and H are inp-minimal as Morleyzation
obviously preserves inp-minimality, H is torsion-free since Γ is an ordered abelian group.

As Γ is an inp-minimal ordered group, it follows from [Sim11, Lemma 3.2] that Γ/nΓ is finite
for all n ∈ ω. Besides, we have that k×/(k×)p is finite for all prime p by assumption. Therefore
also RV /nRV is finite for all n. Finally, k× has finite n-torsion for all n.

Remarks and questions

We do not know if the assumption that k×/(k×)p is finite for all p is in fact necessary. It follows
from the proof of [CKS15, Corollary 4.6] that if k is an inp-minimal field, then there can be at
most one prime p for which k×/(k×)p is infinite.

Problem 19. Let k be an inp-minimal field. Is it true that k×/(k×)p is finite for all prime p?
Or at least, can we omit this extra assumption from Theorem 4?

The answer is positive for a dp-minimal field by the results of Johnson [Joh15] (so under the
assumptions of Theorem 4, we have that K̄ is dp-minimal if and only if both k and Γ are dp-
minimal), but the proof relies on the construction of a valuation which doesn’t seem to be available
in the general inp-minimal case.
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Another natural direction is to generalize Theorem 4 from the case of burden 1 to a general
burden calculation.

Problem 20. Let K̄ = (K,RV, rv) be a Henselian valued field of equicharacteristic 0, viewed as
a structure in the RV-language. Is it true that bdn(K̄) = bdn(k)× bdn(Γ)?
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