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Abstract

Phase-field dislocation dynamics modeling of multi-component alloys

by

Lauren T. W. Fey

Refractory metal alloys are candidates for the next generation of materials for extreme

conditions, but challenges associated with their ductility, processability, and environmen-

tal resistance limit their application. Computational modeling and simulation can help

understand the mechanisms underpinning these alloys’ mechanical properties so they can

be controlled in the future. In this dissertation, a mesoscale model, phase-field disloca-

tion dynamics (PFDD), is extended to model the fundamental aspects of refractory alloys

and used to simulate dislocation behavior in several refractory alloy systems.

First, the PFDD formulation is adjusted to simulate a newer class of materials, multi-

principal element alloys (MPEAs). The behavior of Frank-Read sources is simulated in

MoNbTi, revealing highly statistical behavior that is inherent to these random alloys.

Simulations of long dislocations in the same material show start-stop dislocation glide,

with the random nature of the MPEA providing both favorable kink-pair nucleation sites

and local pinning points. A direct connection to atomistic short-range order is made,

showing that the increase in strength with short-range order is caused by an increase in

the local unstable stacking fault energy.

Then, a local concentration parameter is added to PFDD to simulate the effects

of interstitial atoms such as oxygen and hydrogen. Both short-range and long-range

interactions between interstitial atoms and dislocations are accounted for. Interstitial-

dislocation interactions are simulated in two systems: Nb with O interstitials and W

with H interstitials. The effect on dislocation core structures, critical glide stresses,

vii



and mobility are simulated and discussed. This work provides both new insights into

dislocation behavior in refractory materials and a new mesoscale framework for simulating

other alloy systems of interest.
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Chapter 1

Introduction

1.1 Motivation

There is increasing demand for materials that can withstand extreme temperatures

and conditions. For example, the operating temperature of a jet engine is currently

limited by the turbine blade material [1], so there is a strong motivation to develop

new alloys that retain their strength at high temperatures. Fusion reactors are another

example of materials under extreme environments, as plasma-facing materials must be

able to withstand both high temperatures and high levels of radiation [2].

Due to their innately high melting temperatures, alloys composed of refractory ele-

ments are excellent candidates for high-temperature applications [1, 3]. These elements

include Cr, Hf, Mo, Nb, Ta, Ti, V, W, and Zr, which form the so-called refractory

block of the periodic table. In their pure forms, these elements form body-centered cubic

(BCC) or hexagonal-close packed (HCP) lattices. Nb-based alloys are currently used in

aerospace applications [4], while W is a leading candidate for plasma-facing materials in

fusion reactors [2, 5]. There are still several obstacles that must be overcome before the

use of these materials can become widespread. In particular, difficulties in processing
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Introduction Chapter 1

and the presence of interstitial atoms such as O and H can limit their applications [4].

A relatively new class of materials, multi-principal element alloys (MPEAs), have

emerged and greatly expanded the potential composition space for refractory alloys.

While conventional alloys are primarily composed of one element with small additions

of other elements to tune the properties, MPEAs are composed of several elements with

no one element composing the majority, forming a random solid solution [1]. First iden-

tified in the early 2000s, initial MPEAs had a face-centered cubic (FCC) structure [6].

The first refractory MPEAs were synthesized in 2010, forming a BCC solid solution [3].

Since then, research into refractory MPEAs has dramatically accelerated, and several

promising refractory MPEA compositions have been identified experimentally, including

the HfNbTaTiZr Senkov alloy [7]. Because of the nearly endless MPEA compositions

that could be studied, computational modeling and simulation have become important

filters for understanding MPEA behavior and identifying potential alloys with desirable

properties.

There are still many open questions as to how these materials deform and what can

be done to control their mechanical properties. As the motion of dislocations generally

controls plastic deformation in metals, it is critical to understand the unique dislocation

mechanisms and behaviors in these alloys. The presence of either interstitial atoms or the

random nature of an MPEA can both significantly affect how dislocations behave and thus

the macroscopic mechanical properties. Below, Sections 1.2 and 1.3 briefly summarize the

current understanding of dislocation mechanisms in refractory alloys, including MPEAs

and interstitial effects, in order to identify outstanding gaps in our knowledge.

2



Introduction Chapter 1

1.2 Dislocations in multi-principal element alloys

While several refractory MPEA compositions with desirable mechanical properties

have been identified experimentally, the dislocation mechanisms in MPEAs are not en-

tirely understood. In conventional BCC materials, it is well-known that screw disloca-

tions control the behavior due to their non-planar core structures [8, 9]. Screw disloca-

tions must glide through thermally-activated kink-pair nucleation and migration, leading

to significant temperature sensitivity in the mechanical response [8]. Some experimental

observations of refractory MPEAs show numerous straight screw dislocations aligned in

the ⟨111⟩ direction [10–12]. Combined with significant levels of dislocation debris and

loops [11, 12], these observations suggest that dislocations in these refractory MPEAs are

behaving in similar ways as in conventional BCC alloys. However, other experimental

observations show dislocations with significant edge character, wavy morphologies, or slip

on higher order glide planes, suggesting that there may be dislocation mechanisms that

are unique to certain refractory MPEAs [13].

In more conventional alloys, solid solution strengthening models are used to under-

stand the strength increase due to alloying. These models have been extended for MPEAs

with some success [7, 14, 15]. According to classical solid solution theory, the dilute solute

atoms create stress fields that interact with the stress fields of dislocations, thus increas-

ing the dislocation glide stress. In an MPEA, the lattice is highly distorted due to the

differing atomic radii of the constituents, creating a constantly changing landscape that

the dislocation must traverse. In dilute binary alloys, this increase in yield strength due

to solute atoms scales with c1/2 where c is the concentration of solute [16]. For higher con-

centrations of solute, the strengthening scales with c2/3 [17], but these laws break down in

the extreme case of MPEAs. For example, the yield strength of HfMoxNbTaTiZr alloys

increases linearly with increasing Mo content [18]. Traditional solid solution strengthen-
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Introduction Chapter 1

ing likely plays a role but does not tell the entire story of strengthening in MPEAs.

While solid solution strengthening generally concerns the long-range elastic interac-

tions between the dislocation and solute atoms, the dislocation core structure itself is

influenced by the atoms present at the core. In an MPEA, the random lattice causes

the dislocation core structure to change along the dislocation line itself. Dislocation core

structures cannot be observed experimentally, but atomic simulations can be used to

gain insight. Density functional theory (DFT) calculations have been used to calculate

the core structure of various refractory MPEAs, showing variations in the screw core

structure of NbTiZr along the dislocation line, with the core spreading asymmetrically

onto preferable planes [19]. In MoNbTaW, DFT calculations predicted a Gaussian distri-

bution of dislocation core energies [20]. Molecular dynamics (MD) simulations also show

variable core structures for both edge and screw dislocations [21]. Since the dislocation

core energies vary from point to point in a random MPEA, dislocations may become

trapped in low energy regions, further increasing the stress required for glide [22, 23].

In contrast to conventional BCC alloys, there is both experimental and computational

evidence for that edge and mixed-character dislocations may play an important role

alongside screw dislocations in controlling behavior. This effect was first observed in Nb-

Mo and Nb-Rh binary alloys [24] but was again observed in refractory MPEAs such as

TaTiNbHfZr and MoNbTi [13, 25]. In-situ measurements of dislocation velocities in Ti-

Zr-Nb alloys show screw and edge dislocation velocities on the same order of magnitude,

emphasizing that edge dislocations are not as mobile as often thought in these alloys [26].

Computational models for refractory MPEAs also predict mobilities of edge dislocations

comparable to thse of screw dislocations. For example the predicted Peierls stress of an

edge dislocation is only about half that of a screw dislocation at room temperature in

NbTiZr or a Co-Fe-Ni-Ti alloy [19, 21]. Some models have even been proposed which

suggest that edge dislocation glide is the limiting mechanism under certain conditions

4
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[27, 28].

The dislocation mechanisms in MPEAs are further complicated by the presence of

short-range order (SRO). While MPEAs do not contain long-range order by definition,

SRO can appear through the preferential clustering of certain elements. SRO has been

observed experimentally in both FCC MPEAs such as CoCrNi [29, 30] and VCoNi [31]

as well as the BCC RMPEAs such as HfNbZr [32]. Further evidence of SRO in MPEAs

have also been provided via density functional theory (DFT) and atomistic simulations

[33–37]. Synthesis and processing levers, such as temperature, can be used to control

the degree of SRO, which in turn can have a significant influence on the dominant dislo-

cation mechanisms and mechanical properties. For instance, computational simulations

have shown that a higher SRO in the NbMoTaW MPEA leads to increased barriers to

dislocation motion, leading to higher strength [20, 22, 38, 39].

Fully understanding the dislocation mechanisms in MPEAs presents a significant chal-

lenge that will require a multitude of experimental and computational approaches. On

the simulation front, atomistic approaches such as DFT and MD can reveal information

on smaller length scale, such as the presence of SRO or the core structures of short,

individual dislocations. To bridge the gap between atomistic information and macroscale

properties, mesoscale models that can simulate longer dislocations and their interactions

are necessary. Mesoscale models include phase-field and discrete dislocation dynamics

models, which were first applied to MPEAs in 2019 [40–42]. These models show many of

the same dislocation mechanisms that are seen experimentally and in atomistic simula-

tions, such as wavy dislocation glide and statistical glide stresses, but the challenge lies

in directly linking these mesoscale models with atomistic information.
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1.3 Dislocation interactions with interstitial elements

In both refractory MPEAs and conventional refractory alloys, interstitial solute atoms,

such as H, O, C, and N pose a significant challenge. These elements are readily dissolved

into refractory alloys during processing, and even in small amounts (< 1 at%), interstitial

atoms increase material strength at the expense of a drastic loss in ductility [43–45]. At

low solute concentrations, the deleterious effects of these elements are caused by disloca-

tion interactions with interstitials dissolved in the lattice [46, 47]. These interactions can

generally be divided into short-range and long-range interactions. In the short-range,

interstitial atoms alter the dislocation core structure and consequently the glide stress.

In the long-range, interstitials and dislocations interact through their elastic stress fields.

The interaction between interstitial and dislocation stress fields causes interstitials to

diffuse towards preferential sites in the lattice which lower their strain energy. A Cot-

trell atmosphere forms around dislocations as interstitial atoms preferentially segregate

to tensile areas over compressive areas, locking the dislocation in place [48]. The inter-

action energy between an interstitial atom and an external stress field can be described

analytically through linear elasticity. If the interstitial is in an elastic strain field ϵeij, the

interaction energy is given by

ψint = −Pijϵeij (1.1)

where Pij is the elastic dipole, a second rank tensor that fully characterizes the strain

distribution around a point defect [49–51]. Another representation of the interstitial

strain is the λij tensor [51, 52]. These two tensors are related through the materials

stiffness tensor cijkl [50] by

Pij = V cijklλkl (1.2)

6
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where V is the atomic volume for the host lattice. Through these equations, the Cot-

trell atmosphere around a dislocation can be predicted using the analytical solutions for

dislocation stress fields.

In a BCC lattice, larger atoms, including O, will generally prefer the octahedral

interstitial sites, while small atoms, including H, will prefer the tetrahedral sites. Unlike

the interstitial sites in a close-packed lattice, the octahedral sites in a BCC lattice have a

tetragonal symmetry, so there are three distinct orientations of the octahedral sites, each

with the largest distortion aligned with a different <100>-type direction. This leads to

a long-range effect that is specific to BCC lattices, known as the Snoek effect [53]. In a

stress-free state, these orientations are energetically equal, but in a stress field, such as

that created by a dislocation, interstitials will adopt the lowest energy orientation. Like

the Cottrell atmosphere, this may pin the dislocation in place [54, 55].

When interstitials are very close to the dislocation core, the linear elastic approxima-

tion of dislocation-interstitial interactions breaks down. This is evident from examining

the interaction energies, which measure the energy change of a solute due to a dislocation.

Atomistic calculations of the interaction energy between a C interstitial and dislocations

in Fe show that the calculated value diverges from the predicted value about 2 Å from

the dislocation core [56]. At this distance, the interstitial begins to affect the dislocation

core structure itself [57–59]. Notably, the BCC screw core structure changes from the

so-called easy core to the hard core [57–61]. The reconstructed core has a modified Peierls

barrier shape and magnitude, and can pin the dislocation and increase overall strength

[57, 58, 62].

Kink-pair nucleation and migration, which is the dominant mechanism for screw

dislocation glide in BCC materials [8], is also affected by interstitial atoms. Dislocations

may be attracted to interstitials, making kink-pair nucleation towards an interstitial atom

easier [45, 63, 64]. On the other hand, interstitials may pin kinks and thus inhibit kink
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migration [63, 65]. Additionally, the formation of kinks on different glide planes can

create immobile cross-kinks, pinning the dislocation [45, 64].

The combination of short- and long-range interactions leads to unique dislocation

mechanisms that are not fully understood. For example, in some cases, H enhances dis-

location glide [66–68]. Because H atoms are small and can diffuse through the lattice

quickly, they move along with the gliding dislocation and reduce its effective stress field

in a process known as hydrogen shielding. The lowered elastic stress fields reduce interac-

tions with obstacles and other dislocations, thus increasing mobility [67]. However, there

is still controversy over whether hydrogen shielding is the cause of hydrogen-enhanced

plasticity, with some computational models not finding the effect [68–70]. Unlike H,

larger interstitial atoms, like C and O, generally cannot diffuse fast enough to keep up

with gliding dislocations. This can cause a serrated flow behavior in which dislocations

repeatedly break free from and then are pinned by a trailing interstitial atmosphere,

which is known as the Portevin-Le Chatelier effect [55, 71].

Due to the atomistic nature of interstitial-dislocation interactions, most modeling of

interstitial effects is done with DFT or molecular statics/dynamics. DFT simulations

are critical for determining the properties of isolated interstitial atoms [51] or, in some

cases, dislocation core structures [57, 58, 60, 61], but the length scales are generally too

short to simulate the interactions between interstitials and dislocations. MD simulations

can access longer length scales, but the time scales are generally too short to capture sig-

nificant interstitial diffusion [71]. Additionally, MD models require accurate interatomic

potentials, which may not be available for all systems of interest.

Because simulating both interstitial diffusion and dislocation glide can be challenging

with atomistic methods, there is great interest in developing mesoscale models to inves-

tigate the complex dynamics between dislocations and interstitials. Discrete dislocation

dynamics (DDD) models have been developed to include interstitial atoms, primarily

8
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self-interstitials in the context of radiation damage [72]. These models require the input

of phenomenological rules that govern dislocation motion and hardening in the presence

of obstacles. There is a need for atomistically-informed simulation tools that can ad-

dress longer time and length scales in order to investigate the more complex and less

understood dislocation mechanisms.

1.4 Phase-field dislocation dynamics

1.4.1 Background

In an effort to study time and length scale regimes beyond those accessible by atom-

istic simulations, many different mesoscale models for plasticity have been developed. At

one extreme, continuum or crystal plasticity models simulate plasticity without tracking

individual dislocations. Between continuum models and atomistic models lie mesoscale

dislocation models, which resolve individual dislocations without resolving individual

atoms. These models include discrete dislocation dynamics (DDD) and phase-field dis-

location models. DDD is a force-based model in which dislocations evolve through a set

of predefined rules and mobility laws [73]. Phase-field models, on the other hand, are

energy-based and do not require the input of phenomenological rules.

Phase-field methods, as their name implies, were first developed to simulate the evolu-

tion of microstructural phases within a material. Phase-field models represent the current

state of the system through order parameters, which indicate something about the phase

at each point in space. The order parameters can represented conserved variables such

as concentration [74] or non-conserved variables such as local ordering [75]. The total

energy of the system is calculated from the order parameters and minimized to simulate

evolution over time.
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In a phase-field dislocation model, the order parameter represents the amount of local

slip, and the dislocations are represented by boundaries between slipped and unslipped

regions. Several models fit this definition, including the generalized Peierls-Nabarro

(GPN) model, phase-field microelasticity, and phase-field dislocation dynamics (PFDD)

[76–78]. In many cases, these formulations are numerically and physically equivalent [79,

80]. In this work, the term PFDD is used as the formulation originates from the work of

Koslowski et al. [78].

1.4.2 Formulation

PFDD represents the dislocation structure through non-conserved order parameters

ϕα(r), which represent the amount of dislocation slip at a point r = (x, y, z) in space

on slip system α with slip direction sα and slip plane normal nα. When ϕα(r) = 0

or 1, the point r is unslipped or slipped by a dislocation, respectively. The interface

between regions with different integer values represents the dislocation core. The vector

ϕ represents all slip systems with components ϕα for α = 1 to ns where ns is the number

of slip systems.

The total energy density ψ is a function of slip on all available slip systems, and

consists of the elastic energy, lattice (crystalline) energy, and external energy:

ψ(ϕ) = ψelas(ϕ) + ψlatt(ϕ)− ψext(ϕ) (1.3)

The elastic energy is given by

ψelas(ϕ) =
1

2
cijkl

(
ϵij(ϕ)− ϵpij(ϕ)

)
(ϵkl(ϕ)− ϵpkl(ϕ)) (1.4)

where cijkl is the elastic stiffness tensor, ϵij(ϕ) is the total strain, ϵpij(ϕ) is the plastic
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eigenstrain due to the dislocations. The plastic eigenstrain can be written as a function

of the order parameters as

ϵpij(ϕ) =
1

2

ns∑

α=1

bα

dα
(
sαi n

α
j + sαj n

α
i

)
ϕα (1.5)

where bα is the Burgers vector magnitude and dα is the slip plane interplanar spacing.

The total strain is related to the plastic strain in Fourier space as

ϵ̂kl = [ciukvquqv]
−1qjqlcijmnϵ̂

p
mn (1.6)

where ˆ denotes the Fourier transform and q is the wavenumber vector. The quantity

[ciukvquqv]
−1 is also known as the Green function Gki [78, 81].

The lattice energy represents the energy barrier for dislocation glide and is therefore

dependent on the crystallographic system. In one dimension, the lattice energy is usually

given by the generalized stacking fault energy (GSFE) curve, while in two dimensions, it

is given by the γ-surface [82]. In both cases, these functions represent the energy penalty

associated with the breaking of atomic bonds within the slip plane.

The final term, the external energy, represents the work done by an externally applied

stress state σapp
ij :

ψext(ϕ) = σapp
ij ϵpij(ϕ) (1.7)

As slip is a non-conserved order parameter, the dislocation configuration evolves by

minimizing the total energy via the time-dependent Ginzburg-Landau equation:

∂ϕα

∂t
= −mdisl

∂ψ

∂ϕα
(1.8)

where mdisl is a dislocation mobility coefficient.
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1.4.3 Applications to BCC materials

To simulate dislocations within a BCC lattice with PFDD, a BCC-specific lattice en-

ergy must be used. Since dislocations in BCC do not form partials, only a one-dimensional

GSFE curve must be calculated, which has been done with DFT for the {110}, {112},

and {123} slip planes for six refractory BCC elements (Figure 1.1) [83]. On the {110}

plane, these curves are sinusoidal, and the peak value is known as the unstable stacking

fault energy (USFE). Therefore, the lattice energy used in PFDD for BCC materials has

the form

ψlatt(ϕ) =
ns∑

α=1

γαusf
dα

sin2(πϕα) (1.9)

where γαusf is the USFE for the α slip system.

Dislocations in BCC lattices also exhibit a high degree of screw-edge anisotropy, with

edge dislocations gliding much more easily than screw dislocations. To address this in

PFDD, Peng et al. implemented a modification to the lattice energy to account for

dislocation character [84]. The modified lattice energy has the form

ψlatt(ϕ) =
ns∑

α=1

β(θ)
γαusf
dα

sin2(πϕα) (1.10)

where β(θ) is known as the transition function and θ is the dislocation character angle

(θ = 0 corresponding to screw and θ = π/2 corresponding to edge). The transition

function can be fit to atomistic information about the relative mobilities of screw and

edge dislocations. By fitting the transition function to molecular statics calculations of

the Peierls stress of Ta [85], the correct morphology of expanding dislocations can be

replicated in PFDD [84].
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Figure 1.1: The generalized stacking fault energy curves for six different pure refractory
metals. The black, red, and blue lines show the curves as calculated with DFT in [83].
Other reference curves, also calculated with DFT, are taken from [86–96]. Figure adapted
from [83].
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1.5 This work

In this work, phase-field dislocation dynamics (PFDD) is used to investigate disloca-

tions in refractory alloys, including MPEAs and pure refractory metals with interstitial

atoms. Advancements are made to the PFDD formulation to account for the unique

properties of these materials. This model is then used to simulate a variety of dislocation

mechanisms and behaviors, including dislocation sources, glide of straight dislocations

and loops, and cross slip.

In Chapter 2, extensions are made to PFDD to model refractory MPEAs for the

first time. The operation of dislocations sources is simulated, revealing variability in the

critical stress to operate the sources and size effects that are indicative of the underlying

variable structure. The glide of long, straight dislocations is analyzed in Chapter 3,

and the mechanisms for glide and distribution of glide stresses are discussed. Further

modifications are made to PFDD in Chapter 4 to simulate cross slip in pure Nb, which

also naturally incorporates the character-dependence of dislocations in BCC materials.

The effect of SRO in refractory MPEAs is studied with PFDD in Chapter 5. A direct

link is made between the atomistic arrangement of atoms in an MPEA and the mesoscale

PFDD simulations through a novel method for creating random lattice with SRO. The

mechanisms behind SRO-strengthening are investigated with PFDD and discussed.

In Chapter 6, PFDD is extended to include interstitials and their interactions with

dislocations. Short- and long-range interactions are accounted for, as well as interstitial

diffusion and the orientation-dependence of interstitial sites in BCC lattices. The PFDD

results from this new formulation are validated through comparisons to analytical and

atomistic models for the Nb-O model system. The extended model is used in Chapter 7

to investigate more complex dislocation mechanisms, and the effects of interstitials are

compared for the W-H and Nb-O systems. Finally, future applications of these methods

14



Introduction Chapter 1

and open questions are discussed in Chapter 8.
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Chapter 2

Dislocation Source Operation †

2.1 Introduction

In this chapter, PFDD is employed to study the mechanisms and critical stresses

associated with the activation of Frank-Read (FR) dislocation sources of both screw and

edge character in a refractory MPEA. FR sources are a primary mechanism of dislocation

generation, and the stresses to activate them are known to greatly affect yield strength

and plastic flow in metals [98–101]. Because the behavior of dislocations in MPEAs

will be statistical in nature due to the composition fluctuations, many iterations of each

simulation are required to understand the average behavior. Therefore, a mesoscale

modeling technique such as PFDD is necessary to reach the required lengths, times,

and number of simulations. Atomistic methods, such as MD or DFT, are limited by

computational power, and therefore cannot be used to study Frank-Read sources in a

statistical manner. The model is applied to an equal-molar MoNbTi MPEA, which

forms a single-phase BCC structure [102]. This MPEA exhibits an attractive combination

†This chapter adapted from Reference [97]: Smith, L. T. W., Su, Y., Xu, S., Hunter, A., & Beyerlein,
I. J. (2020). The effect of local chemical ordering on Frank-Read source activation in a refractory multi-
principal element alloy. International Journal of Plasticity, 134, 102850.
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of plastic properties, with a 1100 MPa room temperature compressive yield stress and

excellent thermally stability in yield stresses up to 1200◦C. With atomic-scale data from

MS and DFT calculations, a PFDD model is built for MoNbTi that considers both

chemical composition fluctuations of varying ranges from less than 1 nm to over 10

nm and dislocation character-dependent glide resistance. The critical stress to nucleate

dislocations from FR sources is statistical in nature and the variability in critical stress

strongly depends on the range of the composition fluctuations. Analysis of the critical

configurations for activation identifies a two-step process for FR source activation that

involves athermal kink-pair formation at a location in the source length where the energy

barrier is low. This leads to, on average, to lower critical stresses in the MPEA than in the

reference material without composition fluctuations. Another important consequence is

a much more severe size effect of FR source length on the critical stress than that derived

from line tension alone. The length scale of underlying composition variations also affects

the operation of a FR source and show that a distinct mechanism controls the behavior

of FR sources in MPEAs as opposed to that in pure materials.

This chapter is structured as follows. The extensions to the PFDD formulation as it

applies BCC MPEAs are described along with the necessary atomistic methods used to

inform the PFDD simulations. Then, PFDD is used to simulate FR sources in two model

materials. The first one is a reference, homogeneous approximation of MoNbTi, without

composition fluctuations, but bearing the same bulk elastic moduli and lattice constants

as the nominal random solid solution of this MPEA. The second one is the actual, het-

erogeneous MPEA MoNbTi, which includes variations in lattice energy due to changes in

the local chemical composition. The distribution of critical stresses required to nucleate

a dislocation loop from the FR sources is calculated, with and without line orientation-

dependent resistance. The mechanisms for dislocation nucleation are analyzed and com-

pared in the MPEA and the conventional reference material, with implications of these
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mechanisms on the statistical dispersion and size effects on these stresses. Although this

chapter focuses on one MPEA, the formulation, model, and trends described here can be

generalized to consider other MPEA compositions and crystal structures.

2.2 Methods

2.2.1 PFDD formulation

The lattice energy density, ψlatt, corresponds to the Peierls barrier that a dislocation

must overcome in order to glide. The functional form of this term thereby varies based

on the crystal structure of the material under consideration. Formulations have been

previously proposed for FCC (including high entropy alloys) [40, 103, 104], BCC [83,

84], and hexagonal closed packed (HCP) [105] metals. To apply generally to these three

crystal structures required ψlatt to account for differences in crystallography and permit

dissociation of perfect dislocations into extended dislocations, if energetically favorable.

In the case of BCC metals and alloys, the dislocation cores remain compact [106–109],

and can, therefore, be represented at the mesoscale as a perfect dislocation. The influence

of the atomic structure of dislocation core on ψlatt needs to be considered indirectly in

PFDD and with information from atomic-scale calculations. Accordingly, Eq. (1.10) is

modified such that ψlatt is represented by

ψlattice(ϕ) = A(x, y)β(θ) sin2(πϕ) (2.1)

where A(x, y) corresponds to the energy barrier field in the (x, y)-plane and β(θ) is the

transition function. In prior PFDD applications to pure metals [83], A was constant.

MPEAs, however, exhibit atomic-scale fluctuations in chemical composition and config-

uration, rendering a spatially varying A(x, y) within the slip plane. In a real MPEA, the
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energy barrier will vary in all 3 dimensions. However, here only individual dislocations

confined to a single slip plane are considered, so variation in the z-direction is neglected.

As a dislocation glides within its slip plane, it will encounter different local environments

which correspond to varying lattice energies. Here, the Peierls barrier coefficients and the

orientation-dependent transition function are determined with atomistic calculations.

2.2.2 Informing PFDD with atomistic simulations

Atomistic simulations are used to inform the orientation-dependent resistance, β(θ),

which incorporates the difference in mobility between edge, screw, and mixed-type dislo-

cations in BCC metals [84]. In pure metals, dislocations lines are typically not straight

and the character of a dislocation varies along the line due to line curvature. In MPEAs

that show wavy dislocation line configurations, the dislocation line character will vary

even more drastically along the dislocation line. This may become even more pronounced

as the system evolves and the dislocation line moves, curves, and bows. Thus, an on-the-

fly dislocation character identification scheme is used [84]. This procedure utilizes the

gradient of the order parameter, ∇⃗ϕ, in 3D space to determine where the dislocation line

is each time step, and its direction of maximum change. Using the slip plane normal, the

vector tangent to the dislocation line, t, at all points can be determined as:

t(r, t) =
∇⃗ϕ(r, t)× n

|∇⃗ϕ(r, t)× n|
(2.2)

where the tangent vector and gradient of the order parameter may change position over

time, t, during evolution of the system. Once the tangent vector at all points along a

dislocation curve, line or loop has been determined, the character angle, θ, can easily be

identified by:
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θ = arccos (t(r, t) · s) (2.3)

where the tangent vector and slip direction are already normalized vectors.

Once the character angle of all dislocation lines within the system is known, some

transition between the Peierls barrier for screw dislocations and the Peierls barrier for

edge dislocation must be defined. Because screw dislocation motion dominates plastic

flow in BCC metals, Peierls barriers of screw dislocations in pure BCC metals have been

calculated previously with DFT [110–113]. However, such DFT calculations can be time

consuming, and it is common for Peierls stress calculations to be performed using MS [85,

114], which require interatomic potentials. Furthermore, Peierls barrier calculations are

less common for edge dislocations, which are well known to move more easily through the

BCC crystal lattice. Even less common are Peierls stress calculations for dislocations of

mixed character. As a rare case, [85] calculated the {111} plane Peierls stress in Ta for the

full range of possible character angles. Such calculations proved ideal for informing the

mathematical form of the orientation-dependent barrier function for PFDD simulations

of anisotropic loop expansion and kink-pair motion in [84]. Yet, still to this day, such

simulations can be time consuming to complete for many character angles and in different

materials, especially MPEAs. Furthermore, they employ an interatomic potential, for

which there can be many to choose from for one metal, and which can produce different

results even for the same metal [115].

Recently, the local slip resistances (LSRs) for dislocations in MoNbTi were calculated

using MS [13]. Because of the random nature of MPEAs, there is a distribution of LSRs

for both screw and edge dislocations, with edge dislocations having lower slip resistances

on average. This difference is incorporated into the PFDD model through the orientation-

dependent barrier function β(θ) in Eq. (2.1). This function is defined as
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β(θ) =

(
1− 1

R

)
cos2 θ +

1

R
, (2.4)

where R is the ratio between the average LSR for screw and the average LSR for edge

dislocations in MoNbTi. The β(θ) function provides a smooth scaling for all dislocation

character types, while preserving the ratio of Peierls barriers between edge and screw

dislocations as determined by MS.

Based on MS calculations of several atomic instantiations of MoNbTi, it was found

that, on average, the LSR for edge dislocations is about 22% of that of a screw dislocation

[13]. Accordingly, β(θ) will be 1 for screw segments and 0.22 for edge segments with the

magnitude of the lattice energy defined by A(x, y), as shown previously in Eq. (2.1). In

order to characterize the role of differences in screw-edge resistance, in some calculations,

the orientation-dependent resistance is removed, in which case β(θ) = 1 for all line

orientations.

In addition to the transition function β(θ), the barrier height A(x, y) must be specified

in Eq. (2.1). Like prior PFDD simulations of BCC metals, this barrier is scaled by the

USFE. Advantageously, GSFE curves can be calculated readily with DFT, removing

any dependence on interatomic potentials. This attribute is particularly important for

MPEAs, in which the local composition and configurations vary widely on an atomic

scale.

Unlike in pure metals [116], in MPEAs, GSFEs in MPEAs are area-size dependent

[117, 118], influenced by the particular composition and configuration of atoms in the

plane being sheared. The MoNbTi GSFE curves were previously calculated with DFT

[117] for {110}-type glide planes that sample a small area of the plane, representing a

certain composition and configuration. These types were derived from random samplings

of parallel {110}-type glide planes of small cross-sectional area taken from a nominally
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(a) DFT-calculated GSFE curves (b) GSFE curve used in PFDD

Figure 2.1: The left figure shows the 24 DFT-calculated GSFE curves in MoNbTi on the
{110} glide plane family. There are 12 {110}-type glide planes each with two distinct
GSFE curves. The mean USFE is 768 mJ/m2. The right shows the idealized GSFE
curve used in the PFDD simulations (Eq. (2.1)). The peak value of the GSFE curve
varies depending on local composition, so a range of peak values is shown. Because the
structure used to calculate the GSFE curves requires two 1b translations in the [111]
direction to return to its original configuration, there are slight differences between the
starting and ending energies for each GSFE curve. The barrier height is considered to
be the average between the forward and reverse barrier.

equi-molar MoNbTi special quasirandom structures (SQS). The corresponding USFE

values from this set of GSFE curves are broadly distributed. The mean USFE is 768

mJ/m2 and the standard deviation is 111 mJ/m2. For comparison, the USFE calculated

from DFT for pure Nb is 677 mJ/m2, and for pure Mo it is 1443 mJ/m2 [83], showing

that for some compositions within MoNbTi, the local USFE can be lower than that for

Nb but none were higher than that for Mo. The range of USFE values for this MPEA is

used to parameterize Eq. (2.1) to create an idealized, symmetric GSFE curve (Fig. 2.1b).

To obtain a lattice energy density, ψlatt, the USFE is divided by the interplanar spacing

d110 to obtain the lattice energy coefficient A(x, y).

The USFE distribution is incorporated into PFDD by randomly generating spatially

correlated functions A(x, y) for Eq. (2.1). The generation method is based on the ap-

proach developed by Hu et al. for creating correlated rough surfaces [119]. This formu-
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lation can create many independent, random surfaces quickly by using the Fast Fourier

Transform, and the only inputs required are the correlation length and mean and stan-

dard deviation of the USFE distribution.

To determine a spatial varying but correlated matrix, an autocorrelation function is

defined as

ac(x, y) = exp (−2.3(x2 + y2)0.5

l
) (2.5)

where l is the correlation length at which the autocorrelation drops to 10%. Neighboring

points spaced within l are more likely to have the same USFE and when spaced beyond

l they are more likely to be different.

The autocorrelation matrix is then used to define a filter matrix F as

F (x, y) = F−1{
√
F{ac(x, y)}} (2.6)

where F and F−1 denote the Fourier transform and its inverse, respectively. To generate

a correlated matrix, an initial uncorrelated matrix, Auncorr, of the desired dimension is

created by drawing each value from a normal distribution with mean 0 and variance 1.

This uncorrelated matrix and the filter matrix are convoluted to determine the correlated

matrix:

Acorr(x, y) = F (x, y) ∗ Auncorr (2.7)

Finally, the correlated matrix is scaled and shifted to give the correct mean and

standard deviation for A(x, y).

A(x, y) =
susf
d110

Acorr(x, y) +
µusf
d110

(2.8)
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where µusf and susf are the mean and standard deviation of the USFE for the MPEA,

calculated with DFT. While not directly apparent in Eq. (2.8), note that an important

parameter associated with the calculation of A(x, y) is the correlation length, l. Addi-

tional, independent surfaces are created by changing the initial matrix Auncorr. As long

as the initial matrices are chosen randomly and are independent of one another, the final

correlated matrices will also be independent.

Eight different correlation lengths are studied: 1w0, 2w0, 3w0, 4w0, 5w0, 10w0, 15w0,

20w0, where w0 is the core width of a screw dislocation in homogeneous MoNbTi. The

width was determined by modeling a screw dislocation under zero stress. The dislocation

core is considered to be where ϕ is between 0.1 and 0.9, giving a core width of approxi-

mately 2.15b. This measured core width is highly dependent on the cutoff used to define

the core. For example, using a cutoff of ϕ between 0.2 and 0.8 gives a width of 0.78b,

while a cutoff of ϕ between 0.05 and 0.095 gives a width of 5.36b. 2.15b is chosen as

the core width as this distance contains 80% of the Burgers vector associated with the

dislocation, but caution should be exercised when interpreting this value as an absolute

measurement of dislocation core width. As the extent of SRO is expected to be on the

order of nanometers, the range of correlation lengths is chosen to span from about 0.5

nm to more than 10 nm. The exact value of the correlation length in a MoNbTi sample

will depend on external factors such as temperature and processing conditions. Fig. 2.2

shows example {11̄0} surfaces for six correlation lengths. For the sake of presentation,

the regions are colored by their local value of A(x, y). While the correlation length in

each glide surface is fixed, the range of composition ordering are still distributed across

the plane and transitions between regions of like composition are smooth.

In this model, the random variations within an MPEA are represented through fluc-

tuations in USFE only, while elastic moduli and screw-edge mobility ratios are assumed

independent of local composition. Position-dependent lattice energy has been used pre-
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Figure 2.2: Example correlated surfaces with various correlation lengths, l.

viously in an FCC material using PFDD [40], as well as in a Peierls-Nabarro model [41].

Rao et al. showed that for nine different BCC MPEAs, the solute-dislocation interaction

energy, which represents the change in dislocation energy caused by a solute atom, was

strongly influenced by the change in USFE due to the solute [120]. While solute atoms

also affect dislocation energies via other means, notably the solute size and modulus

misfit, the change in USFE outweighs those contributions for screw dislocations in BCC

MPEAs. Therefore, varying the lattice energy in PFDD in accordance with the under-

lying USFE will capture the heterogeneous nature of dislocation behavior in MoNbTi.

Edge dislocations may interact differently from screw dislocations with the various ensem-

bles of atom types, and here, these differences are accounted for through the transition

function. The formulation permits, however, alternative character-dependencies, such as

one that accounts explicitly for edge versus screw dislocation interactions with specific

atomic neighborhoods.

Other properties such as elastic moduli or screw-edge mobility ratio may also vary

within the MPEA, but these variations are expected to be second-order compared to
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the variations in lattice energy. Recent calculations of an FCC MPEA revealed that the

shear modulus varies within 4% of the mean for differing atomic configurations [104].

Therefore, significant variations in the elastic constants are not expected, and the elastic

stiffness tensor is assumed constant throughout the simulation cell. Calculations of the

screw-edge ratio in MoNbTi show variation from 2 - 80, with a mean screw-edge ratio

of 4.65 [13]. However, in Section 2.4.2 it is shown that the effect of the screw-edge ratio

is small compared to the effect of variations in lattice energy, so the screw-edge ratio is

held constant throughout the alloy.

2.2.3 Simulation setup

In order to compare the behavior of an FR source in an MPEA with that in a pure

metal, a reference case termed homogeneous MoNbTi is defined that uses the elastic

constants and mean USFE (768 mJ/m2) for MoNbTi, but with no spatial variations in

the lattice energy (i.e., A(x, y) = µusf/d110), similar to a pure metal. The homogeneous

MoNbTi also uses the same elastic moduli as the MPEA, and the same screw-edge ratio

for the orientation-dependent energy barrier as defined in Eq. (2.4).

The MPEA is also compared with two of its pure metal constituents, Mo and Nb.

The elastic constants and USFE are calculated in [83], and the screw-edge ratios are

taken from the critical resolved shear stresses calculated with molecular dynamics for

screw and edge dislocations [38]. This screw-edge mobility ratios are 30.66 and 18.11 for

Nb and Mo, respectively.

Fig. 2.3 presents a schematic of the FR source simulation set-up used in this work.

The simulation cell is rotated such that the [11̄0] slip plane normal is parallel with the

z-axis. A 128x128x128 computational grid is used with an interplanar spacing of 0.8165b

(i.e., in the z-direction) and an in-plane grid spacing of b = 2.79Å. Calculation of the
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elastic strain energy, Eq. (1.4), utilizes a Fast Fourier Transform, and accordingly, the

model employs periodic boundary conditions. Elastic anisotropy is fully accounted for

within the model [121]. Elastic constants for MoNbTi were calculated using DFT and a

model SQS of a 3D random solid solution of MoNbTi. The same SQS used to calculate

these constants is used to calculate the lattice energies [117]. The calculations provide

cubic anisotropic constants C11, C12, and C44 equal to 252.13 GPa, 134.11 GPa, and

34.41 GPa, respectively, using the energy-strain method [122]. For convenience, critical

stresses are reported in units of the equivalent isotropic shear modulus, which, for this

cubic elastic material, is 41.29 GPa.

An FR source is built in a similar fashion to phase field model set-ups used previously

[83]. An FR source is created in the system by creating a prismatic loop that spans

between two slip planes as shown in Fig. 2.3. Two slip systems are considered. The first

slip system is a (11̄0) slip plane with a normal in the z-direction, while the second is a slip

plane perpendicular to the first with a normal in the x-direction. Both use a [111] type

Burgers vectors, with the direction of the Burgers vector depending on the orientation of

the FR source. To create the prismatic loop, the order parameter corresponding to the

second slip system is initialized with a value of 1 on three planes: two (11̄0) glide planes

located at the top and bottom of the prismatic loop (indicated in blue in Fig. 2.3), and the

plane on which the prismatic loop itself is defined (indicated in green in Fig. 2.3), which

is normal to the (11̄0) plane. This configuration results in two pinned dislocation points

with non-zero order parameter values on the two glide planes. The order parameters are

set to zero outside of the prismatic loop. This prismatic loop is not permitted to evolve,

according to Eq. (1.8), and hence, it remains stationary through-out the simulations. In

addition, the dislocation segment at the bottom of the prismatic loop (i.e., at z = 0) is

also restricted from evolving. Only the order parameters in the slip plane at z = 64 can

evolve, so that the FR source can operate in this plane.
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Figure 2.3: The simulation setup for a Frank-Read source. A prismatic loop is shown on
green. Under an applied load, dislocation loops, shown in red, bow out from the edges
of the loop on the two blue slip planes. The Frank-Read source is screw or edge-oriented
depending on the orientation of the Burgers vector.

An FR source of length 20b is used in all simulations, unless stated otherwise. FR

sources are studied for both edge- and screw-oriented sources with the Burgers vector

oriented parallel to the FR-source for a screw-oriented source and normal for an edge-

oriented, as shown in Fig. 2.3. To activate the source, a shear stress is applied in the

direction of the Burgers vector of the initial FR source segment. The shear stress is

increased in increments of 0.001µ. The quantity mdisl∆t, where ∆t is the timestep, was

set to 0.35 µ−1. Note that all energy densities are normalized by the shear modulus µ and

the timestep and mobility constant mdisl are unitless. Following each stress increment,

the system is held at the current stress state for either 3000 timesteps or until the system

converges, whichever comes first. System convergence is achieved when the norm of the

order parameter changes by less than 10−5 between successive timesteps. The critical

stress is surpassed when the FR source creates a full dislocation loop. The critical stress

is then defined as the mean of the previous subcritical shear stress and the current

supercritical shear stress.

To ensure that a 128x128x128 simulation grid is adequate for a 20b FR source and

not strongly influenced by image effects, the critical stress for a 20b screw-oriented source
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in the homogeneous MoNbTi reference material is calculated using simulation grids with

side lengths 64, 128, and 256. The same grid resolution is used for all computational

grids, which is b within the slip plane and 0.8165b in the direction normal to the slip

plane (same resolution as mentioned above). The critical stress for all three sizes is

0.0885µ, indicating that the 128x128x128 grid size is adequate. As further confirmation,

note that a similar conclusion was reached in recent PFDD work on FR source operation

for six BCC refractory metals, varying widely in their lattice constants and elastic moduli

[83].

2.3 Results

Loop expansion and the corresponding critical stresses for the FR sources are cal-

culated for both the homogeneous MPEA, with uniform properties, and the heteroge-

neous MPEA, in which spatial variation in the lattice energy is considered. The critical

stresses are calculated both without and with the orientation-dependent barrier function

for screw-oriented sources and only with the orientation-dependence for the edge sources.

To garner adequate statistics for analysis, for each l, 60 different correlated surfaces are

created and FR source behavior on these surfaces is studied.

2.3.1 Homogeneous MoNbTi

To establish a basis for comparison, the homogeneous MoNbTi is studied first. Fig. 2.4

shows snapshots taken over time of a dislocation loop expanding from a screw-oriented

FR source without and with the orientation-dependent barrier function (Figure 2.4(a)

and (b), respectively), and an edge-oriented FR source with the orientation-dependent

barrier function (Fig. 2.4(c)) in homogeneous MoNbTi. Loop expansion is shown at the

respective critical stresses for each case. These critical stress values are reported for each

29



Dislocation Source Operation Chapter 2

Critical Stress (µ)

β=1 β=f(θ)

Screw 0.0885 0.0665
Edge 0.0705 0.0355

Table 2.1: The critical stress for Frank-Read source activation in homogeneous MoNbTi.
The critical stress is lower for edge-oriented sources than screw-oriented sources. When
β = f(θ), the orientation-dependent barrier function, is used character dependence of
the lattice energy is accounted for.

case in Table 2.1. The loop expansion over time is visualized by drawing a contour line

where ϕ = 0.5, which corresponds to the center of the dislocation core. A darker red

contour line corresponds to an earlier simulation time.

In all cases, an arc bows out from the FR source, eventually expanding and breaking

away as a dislocation loop, which then propagates out of the simulation cell to annihi-

late with its periodic images. In a screw-oriented FR source without the orientation-

dependent barrier function (Fig. 2.4a), the dislocation loop grows more or less isotrop-

ically because the edge and screw segments have similar energetic barriers for motion.

However, the loop structure is not circular because the dislocation line will attempt to

maximize screw-type segments due to their lower line energy with respect to edge-type

segments. When the orientation-dependent barrier is included, as in Figs. 2.4b and 2.4c,

the edge segments of the dislocation move much more quickly than the screw segments,

leading to the formation of an oblong dislocation loop with long screw segments. The

operation of FR sources seen in these three cases can be expected and thus, it serves as

a good reference to identify any potential unexpected behavior that could emerge in the

MPEA.

Table 2.1 shows that even without the orientation-dependent barrier, the required

stress to bow out a dislocation loop is higher in the screw-oriented source than the

edge-oriented source. This difference arises from the higher line energy associated with

30



Dislocation Source Operation Chapter 2

(a) Screw, β = 1 (b) Screw, β = f(θ) (c) Edge, β = f(θ)

Figure 2.4: Snapshots of Frank-Read source loop expansion in homogeneous MoNbTi for
three source setups at their respective critical stresses. Each curve shows the dislocation
at a separate timestep of the same simulation, with progressively lighter pink curves
showing later timesteps. The dislocation position is estimated by drawing a contour line
where ϕ = 0.5, which corresponds to the center of the dislocation core. When β = f(θ),
the orientation-dependent barrier is used and the relative barrier for motion of edge,
screw, and mixed-typed dislocations differs.

edge segments than screw segments, which makes it more difficult to create an initial

bow-out that introduces edge-oriented segments than one that introduces screw-oriented

ones. When the orientation dependence is included in the calculations, the critical stress

drops by 25% and 50% in the screw- and edge-oriented cases, respectively. While the

orientation-dependent barrier does not affect the lattice energy barrier for screw segments,

any orientation of the FR source requires screw, edge, and mixed-type segments be

created in order to generate a complete loop, so both orientations see a drop in critical

stress.

2.3.2 Dislocation loop waviness

With the reference behavior established, the behavior of the same FR sources in the

heterogeneous MoNbTi can be examined. As mentioned, these landscapes are character-

ized by l over which the barriers are similar (Fig. 2.2). A wide range of l are simulated
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since the length scale over which the USFE and/or the Peierls barrier varies in actual

MPEAs is unknown but finite and could be influenced by complex factors, such as ther-

modynamically driven SRO or proximity to grain boundaries [35, 123]. For each l con-

sidered, a total of 60 distinct realizations were studied for the screw- and edge-oriented

cases with the orientation-dependent barrier, as well as the screw-oriented case without

the orientation dependence.

Fig. 2.5 shows the progression of dislocation loop formation and expansion from a

screw-oriented FR source without and with orientation-dependent barriers and an edge-

oriented source with orientation-dependent barriers for an example lattice energy surface

with l = 5w0. The series of dislocation lines are shown on a glide plane with spatially

varying and correlated lattice energy surface. As before, they are colored to represent

the variation in the peak barrier due to local chemical clustering within the MPEA

encountered by the dislocation loop as it expands.

Without considering orientation-dependent barriers (Fig. 2.5(a)), loop expansion looks

qualitatively similar to that of the homogeneous MoNbTi reference case in Fig. 2.4(a),

except the dislocation loop that is wavy and does not expand uniformly. As it extends

and bows out under stress, the dislocation extends further through regions of low lattice

energy (shown in purple), while it becomes temporarily pinned at areas of high lattice en-

ergy (shown in yellow). These high energy regions are soft obstacles, and the dislocation

is able to pass through them with minimal bowing.

When the dislocation orientation dependence is taken into account (Fig. 2.5(b) and

(c)), the growing dislocation loop from both the screw- and edge-oriented FR sources

assume a much more oblong shape, as the edge segments extend much further than

the screw segments owing to their lower barrier. The loops are less wavy and smoother

than when the orientation-dependent barrier was not considered. In the case of the screw-

oriented FR source, the dislocation grows outwards from the sides of the FR source, while
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Figure 2.5: The expansion of Frank-Read sources under different conditions for the same
lattice energy surface with l = 5w0 under their respective critical stresses. (a) shows
a screw-oriented source without the orientation-dependent resistance, while (b) shows
the same source with the use of the orientation-dependent resistance. (c) shows an
edge oriented source with the orientation-dependent resistance. The red curve is drawn
at the contour where ϕ = 0.5. Several snapshots throughout the loop expansion are
superimposed with the lighter colored lines corresponding to later timesteps.

the screw portions bow out slowly. Eventually the edge segments annihilate one another,

permitting the two long screw segments to continue gliding away from the FR source.

These two screw segments are highly curved and wavy as they navigate the varying

lattice energies in the MPEA. In the edge-oriented FR source case, the edge segment

grows quickly away from the source, and the two initially straight screw segments begin

to bow out, eventually meeting and annihilating, releasing the loop.

In Fig. 2.6, the effect of l on the operation of an FR source is examined. For this

analysis, screw-oriented sources without the orientation-dependent barrier function are

considered. Sample surfaces with l equal to 1w0 and 20w0 are presented. The loop on

the 1w0 surface resembles the homogeneous case very closely (Fig. 2.4a), although the

loop that is produced exhibits a minimal amplitude of waviness. On the other hand,

the loop on the 20w0 surface expands unevenly, moving quickly through valleys of low

lattice energy and expanding much more slowly over peaks of high energy. The behavior

of FR sources in the MPEA with intermediate l scale falls between these two extremes.
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Figure 2.6: The expansion of a screw-oriented Frank-Read source using surfaces with
different correlation lengths: l = 1w0 and l = 20w0 for (a) and (b), respectively. The
red curve is drawn at the contour where ϕ = 0.5. Several snapshots throughout the
loop expansion are superimposed with the lighter colored lines corresponding to later
timesteps.

In general, a longer range of composition ordering corresponds to greater deviations from

the homogeneous case and an increase in the amplitude of the waviness in the dislocation

loops that are produced.

2.3.3 Critical FR source activation stress

The critical stress to generate a dislocation loop from the FR source was calculated

for each of the cases studied. This threshold stress is the stress required to expand the

initially straight FR segment into a critical bow out configuration. The length scale over

which the critical state is reached remains on the order of the FR source length itself, i.e.,

long before the loops shown in Figs. 2.5 and 2.6 are produced. Thus, the critical stress is

established locally by the environment near the FR source. After it is reached, the loop

propagates away from the source with no further increase in stress. The new loop is able

to continue to glide unhindered out of the simulation cell and annihilate with the periodic

image. This response is expected of a pure metal and seen in the case of the homogeneous

material. Yet still, for the heterogeneous MPEA, the critical stress to activate the source
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was also sufficient to propagate the shear loop away from the source, for all FR source

orientations and all realizations of all l studied. Therefore, in spite of the broad range of

barriers the dislocation encounters after being emitted from the source, none of them are

so high that the stress required to nucleate the dislocation cannot overcome them. This

response indicates that the nucleation stress is always higher than the propagation stress

for the loop. Overcoming line tension stills plays a dominant role in source activation.

The distributions of critical stresses at each correlation length are shown in Fig. 2.7

for screw-oriented sources with and without the character-dependent barrier. For com-

parison, the critical stresses for sources in pure Mo, pure Nb, and homogeneous MoNbTi

are also plotted. When the character-dependent barrier is included, nearly all realiza-

tions of FR sources in the MPEA exceed the critical stress for Nb,and many exceed the

critical stress for homogeneous MoNbTi. For both scenarios shown, the distribution of

critical stresses widens as the correlation length increases. Prior experimental studies

on a various BCC MPEAs have reported room temperature yield strengths higher than

any of the constituent yield strengths. The PFDD model predicts athermal dislocation

nucleation stresses for MoNbTi above that of Nb but below that of Mo since the DFT-

calculated USFE values lie in between those of Nb and Mo. Studies of propagation of

long dislocations and dislocations arrays and considerations of thermal effects within the

model may provide a different relationship between the MPEA and its constituents.

The calculations here show that the statistical dispersion in critical stresses among the

different realizations is substantial, too great in some cases to be appropriately evaluated

by standard Gaussian (or normal) statistical analyses. To determine the form of their

statistical distribution, the 60 calculated critical stresses at each l are fit to a variety of

probability distributions, using the appropriate axes scaling.

Fig. 2.8 shows lognormal probability plots for the critical stress distributions at l =

1, 3, 5, and 20 w0, wherein the axes are scaled such that a true lognormal distribution
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would manifest as a straight line. The wrong distribution would exhibit deviations from

linearity, particularly at the tails. Interestingly in all cases, the lognormal distribution

consistently provides the best representation, with a higher R2 value than either normal

or Weibull distributions. Although not shown, all other cases studied here also exhibit

lognormal character. This finding implies that conventional normal estimates of the mean

and dispersion would not appropriately represent the expected values and dispersion in

critical stress. Further, the fact that the distributions do not follow a Weibull distribution

indicates that FR source activation is not a weakest-link phenomenon. In other words,

activation is not based solely on the weakest energetic barrier on which the FR source

lies but on a combination of factors.

To examine altogether the effects of l, FR source orientation, and orientation-dependent

resistance, Fig. 2.9a plots the change in the lognormal mean critical stress (dots) and

standard deviation (error bars) with increasing l. For comparison, the critical stress for

the equivalent homogeneous case is shown by the dashed line, which is a deterministic

value. For all l and FR source characters, the mean critical stress is less than the critical

stress for the homogeneous case. Evidently, introducing spatial variation in energy bar-

riers above and below the average barriers more often weakens rather than strengthens

the source. Even more importantly, increasing the range of local chemical clustering by

increasing the l does not appreciably alter the mean critical stress. The critical stress

remains, on average, weaker than the homogeneous material for short and long l alike.

For the screw-oriented FR sources, the effect of the dislocation orientation-dependent

resistance was examined. Similar to the homogeneous MoNbTi case (Table 2.1), includ-

ing orientation-dependent barriers decreases the critical stress to activate the source.

Significantly, the reduction in critical stress relative to that for the homogeneous mate-

rial is, however, the same, whether or not orientation-dependent barriers are considered.

Apparently, accounting for less glide resistance for the non-screw segments is not respon-
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sible for weakening the MPEA relative to its homogeneous counterpart. Again, even with

screw/non-screw orientation dependence, the introduction of spatially varying barriers

lowers the average critical stress compared to the same material without such dispersion.

While the range of composition ordering l has little influence on the mean critical

stress, it can greatly affect the variance in the critical stresses. The coefficient of variation

(COV), defined as the ratio of the standard deviation to the mean, is calculated for each

lognormal distribution of critical stresses (Fig. 2.9b). For all FR sources, statistical

variation increases as l increases. Accounting for differences in glide resistance due to

dislocation orientation reduces the variation in critical stress values, particularly for larger

l (approximately 5w0 and greater), where the variation was the greatest. Compared to

the screw-oriented sources, the edge-oriented FR sources show considerably less variation

in critical stress. There is only a slight increase in variation in critical stress with l.

Of particular interest is the effect of local chemical ordering on the ratio of critical

stress for the screw-oriented FR source to the edge-oriented FR source. Like the ho-

mogeneous material, for the MPEA, the critical stresses for the screw-oriented sources

are higher than those for the edge-oriented sources. The screw-edge ratio for the critical

stresses in the homogeneous material is 1.87, which is comparable to the mean screw-edge

ratio in the MPEA of 1.76. However, the composition fluctuations lead to some consid-

erable differences in their behavior. The screw FR sources exhibit far more variation in

their strength than the edge. For the edge sources, the dispersion is smaller and less

sensitive to l. Also, while both screw- and edge-oriented sources are weakened relative

to the homogeneous MoNbTi, the screw sources experience a more substantial drops in

critical stress. The edge sources have a critical stress 6% lower than the homogeneous

case, whereas screw sources have critical stresses 12% lower. Another interesting aspect

is that the screw sources are always stronger than the edge sources. Even for the larger

correlation lengths, l¿ 5w0, for which the variance in critical stresses tends to be higher,
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(a) Screw-Oriented Source, without Character-
Dependent Barrier

(b) Screw-Oriented Source, with Character-
Dependent Barrier

Figure 2.7: The critical FR activation stresses for screw-oriented sources both (a) without
the character-dependent barrier and (b) with the character-dependent barrier. Each
black dot is a separate PFDD simulation, and the pink box represents the upper and
lower bounds of the calculated critical stress. Darker pink areas represent where several
realizations have the same critical stress. The dashed lines show the pure reference cases
of Mo, Nb, and homogeneous MoNbTi.

the screw-edge ratio in activation stresses still remains greater than one. For any indi-

vidual realization, however, the screw-edge ratio can vary substantially. In some planes,

it can be as small as 1.2, whereas in other planes, the ratio exceeds 2.5.

2.4 Discussion

In this work, PFDD simulations reveal significant effects of local chemical clustering

on the operation of FR sources in an MPEA. The calculations show that on average

the FR sources are easier to activate than the same source in a homogeneous material

with nominal MPEA properties. The dispersion in the critical stresses exhibits a strong

sensitivity to the range of composition ordering l. Specifically, the variance critical stress

can be small when l is small but substantial when it is large, particularly when l is
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Figure 2.8: Lognormal probability plots of the critical stress for Frank-Read source acti-
vation. From left to right, the plots show a screw-oriented source without the orientation-
dependent resistance, a screw-oriented source with the orientation-dependent resistance,
and edge-oriented source with the orientation-dependent resistance. Four correlation
lengths ranging from 2.15b to 43b are chosen to be representative. Where the best fit
line crosses the dashed blue line corresponds to the mean critical stress, and the dashed
black lines correspond to the mean critical stress plus or minus one standard deviation.

(a) Mean Critical Stress (b) Coefficient of Variation

Figure 2.9: (a) The critical stresses for Frank-Read activation at each l for three cases:
screw without the orientation-dependent resistance, screw with the orientation-dependent
resistance, and edge with the orientation-dependent resistance. In (a), the error bars
represent the standard deviation of the critical stresses at each l. (b) The coefficient of
variation (COV) for all three cases as a function of l.
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4-5 times the dislocation core width. The edge-oriented FR sources also experience a

reduction in strength, although less substantial than that of the screw sources. The edge

sources also show smaller statistical variation in critical stress and lower sensitivity to

the extent of clustering (i.e., l).

To understand the origin of these differences, the incipient stages of loop production

were closely examined. The critical stress is associated with expansion of the initially

straight dislocation segment to a certain critical configuration that must be reached in

order for the loop to expand unstably. The marked differences in screw and edge source

behavior suggests that different mechanisms leading to FR source activation may be

involved. The FR sources in the homogeneous MoNbTi reference material operate in the

classical manner with essentially no loop bowing observed at stresses below the critical

stress, but once the critical stress is exceeded, the loop begins to bow out uniformly from

FR source (Fig. 2.4).

In the heterogeneous MPEA, on the other hand, the mechanisms are different than

the conventional process and depend on the line orientation of the source. When the

stress is first applied to the edge-oriented sources, the line segment bows out as in the

conventional case. While still at stresses below the critical stress, the edge segment

glides forward, producing two long straight screw segments on either side, a consequence

of its lower barrier compared to that of the screw. At the critical stress, in one of the

low energy barrier regions along the screw portions, a kink-pair forms. This kink-pair

expands outward initiating the formation the full dislocation loop (Fig. 2.10). The process

of activation of the FR edge source, therefore, involves two steps: first, oblong bow-out

forming long screw segments, and second, kink-pair formation on the screw segments.

This basic edge-FR source process manifests in all slip plane realizations. The second step

distinguishes the MPEA FR operation from that occurring in the homogeneous material.

For the screw-oriented sources in the MPEA, the dislocation loops also expands non-
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uniformly under stress but by a different two-step mechanism than the edge-oriented

FR sources. After the stress is applied, the dislocation will first bow out in the form

of a kink-pair into a small region with low lattice energy (Figs. 2.11 and 2.12). Unlike

conventional kink-pairs, this kink-pair is athermal and its width is related to the extent

of the low energy barrier region along the source length. Next, the edge segments of

the kink-pair moves sideways. For some cases, the edge segments can glide without any

further increase in stress, and the critical stress corresponds to that needed for form the

first kink-pair. In other cases, sub-critical kink-pairs form, below the critical stress. The

critical stress corresponds to stress needed to enable the newly formed edge segments

to glide through the higher energy regions. Both steps in activating the screw-oriented

source are affected by the variable energetic barriers in the glide plane, making it distinct

from the operation of the same source in the homogeneous material.

This mechanism explains the reduction in the critical stress needed to operate an

FR source observed when the orientation-dependent barrier is incorporated. Analysis of

source operation both with and without the orientation dependence finds that this two-

step mechanism for activation of screw FR sources applies even when the orientation-

dependent barrier is not considered in the calculations. In all situations, source activation

relies on the side edge segments of the first kink-pair to overcome the local energetic

barriers. However, when dislocation motion becomes dislocation character-dependent

the critical stresses are reduced even further as it becomes easier for the newly created

edge and mixed type dislocations segments to move. It is expected that the larger the

difference between the barriers to move screw and edge, the lower the critical stresses to

activate the FR sources.

These FR source activation mechanisms can also explain many of the observed trends

in the critical stress for the MPEA. Due to the varying lattice energy surface, there is

likely to be a lower-than-average lattice energy region along the length of the FR source,
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allowing for the dislocation to bow out at a lower stress than the equivalent homogeneous

material. Consequently, the FR sources on average are easier to activate in the MPEA

with variable energetic barriers than the homogeneous crystal with an average barrier.

Furthermore, because all of the lattice energy surfaces use the same mean and variance

in the USFE, these low energy regions are equally likely to exist for all l, so the mean

critical stress is not influenced by l. However, l affects the width of the peaks and valleys

in lattice energy. An FR source in a material with a longer l will experience fewer

variations in energy barriers along its length than one with a shorter l. Results show

that the critical stress will be sensitive to the number of distinct energy barriers spanned

by the FR source length. The fewer barriers encompassed by a source, the greater the

variation will be among sources located in different locations of the glide plane and

crystal. Particularly for l ¿ 8w0 , the chances are higher that this 20b FR source will

lie entirely in a region of uniform lattice energy. The influence of l on source activation

for the screw-oriented sources is applicable with or without the orientation-dependent

barrier. Thus, the growing dispersion in critical stress with l, i.e., extent of chemical

ordering, is the same regardless of how much glide resistances differ based on dislocation

orientation.

2.4.1 Frank-Read source size effects

The dependency of kink-pair formation on the extent of local chemical ordering sug-

gests that many of the effects revealed here will become even more pronounced for longer

FR sources. Calculations for the critical stresses for screw-oriented FR sources were re-

peated for source lengths that were two and three times longer (L = 40b and 60b) than the

original 20b source. These simulations were performed for the screw-oriented FR source

using the orientation-dependent barrier. It was determined that the current 128x128x128
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Figure 2.10: The early stages of loop growth in edge-oriented Frank-Read sources with
the orientation-dependent resistance. Below the critical stress, a large bow-out with
straight screw segments on the sides is present. At the critical stress, a small section of
one of the screw segments expands into a low energy region (highlighted by the yellow
dashed circle), leading to nucleation of a kink-pair and expansion of the full dislocation
loop. Examples on three surfaces with different l are shown.

Figure 2.11: The early stages of loop growth in screw-oriented Frank-Read sources with-
out the orientation-dependent resistance. A small section of the dislocation expands into
a low energy region where a kink-pair is nucleated, thus expanding the loop. Examples
on three surfaces with different l are shown.
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Figure 2.12: The early stages of loop growth in screw-oriented Frank-Read sources with
the orientation-dependent resistance. A small section of the dislocation expands into a
low energy region where a kink-pair is nucleated, thus expanding the loop. Examples on
three surfaces with different l are shown.

cell size is sufficient for even these larger sources through a similar method as described

in Section 2.2.3. The critical stresses were calculated for the same 60 energy surfaces at

all eight previously studied ranges l. Statistical analysis of their distributions finds that

like the 20b source, the critical stresses at each l follows a lognormal distribution.

Fig. 2.13a shows the mean and standard deviation in the critical stresses for each

source size as a function of l. For comparison, the 20b results are also included, as

well as the critical stresses for FR sources in the homogeneous material. Similar to the

20b source, the (lognormal) mean critical stresses for the larger sources do not differ

appreciably with l, and the mean critical stress is always below the critical stress for the

homogeneous case. As expected, the sources become easier to activate, as the source

size lengthens. The important difference, however, is the greater size effect in critical

stress for the MPEA compared to the critical stress for the homogeneous material. In

fact, the critical stresses for the larger sources in the MPEA drop even further below the

homogeneous case than those for the 20b source. The critical stresses for the 20b source

are an average of 89% of the homogeneous critical stress, whereas the critical stresses are

85% and 77% of the homogeneous case for the 40b and 60b sources, respectively. Also
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like the shorter 20b source, the variances in critical stresses increase as the l increases.

For the homogeneous case, the FR source size effect is a consequence of overcoming

line tension to reach the critical configurations leading to an approximately proportional

relationship with log(L)/L [124]. For the FR source in the MPEA, the mechanism for

source activation is different and further, it gives rise to the more severe size effect than

line tension alone. Fig. 2.14 shows the critical configurations for the 40b and 60b FR

sources. Activation requires first forming a kink-pair followed by sideways glide of the

newly created edge segments. This first kink forms where the lowest energy barrier exists.

By increasing the length of the source, chances of encountering a low energy barrier to

form the kink-pair increases.

To compare the source size scaling effects, the critical stress for the homogeneous

material was calculated for L = 24b, 30b, 36b, and 50b in addition to the previously

calculated 20b, 40b, and 60b sources. These seven data points fit a power-law scaling

very well with R2 = 0.986 and give a scaling exponent of 0.11. Comparatively, the mean

critical stresses for the 20b, 40b, and 60b sources in the MPEA fit a power-law scaling with

a scaling exponent of 0.25. This emphasizes that the MPEA has a stronger FR source

size dependence than the homogeneous reference case due to the increased presence of

low energy barriers along the FR source length.

Unlike the conventional FR source operation, the FR source behavior in an MPEA

with lattice energy fluctuations is controlled by low lattice energy regions along the

source length. Longer source lengths sample more of the varying lattice energy surface,

so there are more opportunities for a dislocation to bow-out into a weak area, thus

making FR source activation easier. The difference in size effect between the MPEA and

the homogeneous material results in an increasing gap between their critical stresses. The

MPEA sources become much weaker than the homogeneous material sources. For the

20b sources with the largest correlation length (20w0) and variance, 33% of the sources
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in the distribution exceed the source strength of the homogeneous case. However, for the

60b sources for the same l = 20w0 and for which the variance is the largest, just 12% of

the sources exceed the homogeneous case. This trend implies that the longer FR sources

in an MPEA are unlikely to exceed the strength of the homogeneous case due to the

prevalence of low-strength areas.

The change in FR source activation mechanism with an MPEA also explains why

the statistical variation in critical stresses decreases with FR length L. Fig. 2.13b shows

the standard deviation normalized by the mean lattice energy (µusf/d110) for the three

source sizes studied. When the results are plotted against the ratio of FR source size

to l, the data points for all three source sizes collapse into a single curve. The source

size to correlation length ratio can be thought of as a proxy for the number of peaks

and valleys the FR source sees along its length. A higher ratio causes less variation in

the critical stresses because the FR source is sampling a larger number of fluctuations

within the slip plane, while sources with a low ratio are only sampling a few peaks

and valleys and are thus much more dependent on the specific placement of the FR

source. The magnitude of the standard deviation appears to be captured by the number

of peaks/valleys encountered by the source only, which suggests that the underlying

variation in the lattice energy, which does not change with source size, is driving the

variation of critical stresses. In fact, the standard deviation of the critical stresses follows

a power-law relationship as the standard deviation scales with (L/l)−0.30 as determined

by the slope of the best-fit line in Fig. 2.13b.

2.4.2 Impact of the Character-Dependent Energy Barrier

To understand the effect of the character-dependent lattice energy barrier (Eq. (2.4)),

several simulations were run with varying screw-edge ratios. The screw-edge ratio is cal-
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(a) Mean Critical Stress (b) Normalized Standard Deviation

Figure 2.13: (a) The critical stresses for Frank-Read source activation at each l for
three different Frank-Read source sizes. All calculations use a screw-oriented source
and include the orientation-dependent resistance. In (a), the error bars represent the
standard deviation of the critical stresses at each l. (b) The standard deviation of the
critical stresses plotted against the ratio of source size to correlation length. The standard
deviation is normalized by the average lattice energy coefficient, µusf/d110. The linear
relationship in the log-log plot reveals a power law relationship with an exponent of -0.30.
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(a) 40b FR Source

(b) 60b FR Source

Figure 2.14: The initial stages of Frank-Read source activation for the larger 40b and 60b
FR source lengths.
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culated using MS, which requires classical potentials for the MPEA of interest. Since

these potentials may not exist for multi-component systems or may not accurately capture

dislocation behavior, it is important to understand the sensitivity of the PFDD calcula-

tions to these input parameters. As an extreme case, 24 of the Frank-Read sources (3

of each correlation length) were rerun using a screw-edge ratio of 30. Screw-edge ratios

in pure BCC metals may be on the order of 10s-100s, but it is expected that the ra-

tios in BCC MPEAs are much lower. With this extreme difference between screw and

edge lattice energies, the maximum decrease in critical stress for screw-oriented sources

is 0.02 µ. The average decrease in critical stress is 0.0098 µ, which is a 16.8% decrease

relative to the original calculations with a screw-edge ratio of 4.65. The edge-oriented

sources show an even smaller dependence on the screw-edge ratio, with an average critical

stress decrease of 0.001 µ, a 3% decrease. Therefore, the screw-edge ratio in PFDD has

a higher order effect on the resulting critical stress compared to the underlying lattice

energy fluctuations, which drive the statistical variation in critical stresses.

This work uses a simple, smooth interpolation between screw and edge energies for the

character-dependent barrier (Eq. (2.4)), but other functional forms are possible. Peng et

al. used a piecewise function with multiple local minimums for the character-dependent

barrier of Nb and Ta, based on MS simulations of Ta [84]. Such calculations of a wide

range of dislocation character types are computationally intensive and heavily dependent

on the chosen potential, so this type of data is rare even for pure metals, and does not

currently exist for multi-component systems. Nevertheless, to compare the effect of the

functional form of the character-dependence, the critical stress for a Frank-Read source in

Nb is calculated using the character-dependence calculated for Ta [85]. The Peierls stress

has a local maximum at 71◦, so dislocations of this character will be resistant to glide in

addition to the pure screw dislocations. When the smoothly interpolated barrier is used

(Eq. (2.4)), the critical stress drops from 0.0785 µNb to 0.0435 µNb for a screw-oriented
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source. However, when the Ta character-dependence is used, the critical stress does not

change from the no character-dependence case. This is attributed to the immobile 71◦

dislocations which inhibits kink-pair migration. For the edge-oriented source, the critical

stress increases slightly from 0.0295 µNb for the smoothly interpolated barrier to 0.0345

µNb for the Ta barrier. This is expected as the barrier function β(θ) is 0.033 and 0.097

for edge dislocation with the smoothly interpolated barrier and Ta barrier, respectively.

The form of the barrier function does indeed affect the critical stress by either allowing

or suppressing kink-pair migration.

2.4.3 Implications on plastic behavior

In this work, glide was simulated on the {110} ⟨111⟩ slip family, while in BCC crystals,

slip on other families are possible. The present model can be used to study other slip

modes and aid in identifying preferred systems [83]. Other modes will, however, have

their own individual variations in energetic barriers and line orientation-dependencies,

which would need to be taken into account. In principle, this methodology can also be

used to study other refractory MPEAs, which will have their own distributions of local

slip resistances and unique screw-edge differences [117]. Based on the present findings,

it can be anticipated that MPEAs demonstrating greater fluctuations in composition

or greater screw-edge mobility ratios would experience greater drops in the average FR

critical stress drops relative to a homogeneous reference material. Moreover, since these

results show that the statistical dispersion in the critical stresses scales with that of the

underlying variation in lattice energy, it can be expected that MPEAs with less variation

in lattice energies among the short-ranged ordered compositions, the less variation in

activation stresses and vice versa. Here, SRO was not addresses directly, but generally,

these findings imply that the range of chemical ordering, represented here by higher
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values of l, affects the statistical variation in the critical stresses for activating sources

and less so the mean value.

The statistical distribution of critical stresses for FR sources in the material can have

macroscopic effects on its stress-strain behavior. Weaker FR sources will be activated

quickly, which may lead to a high dislocation density and increased work hardening.

Additionally, as the stress is increased, stronger FR sources will be activated, increasing

the work hardening even further. Recent work on nanocrystalline metals, in which double-

pinned sources in grain boundaries are the primary source for dislocations, find that with

more variation in source strengths, the greater the strain hardening rate [125, 126].

While not explicitly considered here, as a dislocation slips through a crystal, the local

compositions will change, which will alter the local USFE for subsequent dislocations

[117, 123]. Hence, one can predict that after an FR source emits one dislocation loop

at its critical stress, the underlying lattice energy surface will change, and a new critical

stress for that FR source will be drawn from the lognormal distributions calculated here.

This may lead to FR sources with low critical stresses being exhausted quickly, leaving

behind a predominance of strong FR sources.

2.5 Conclusion

The PFDD formulation has been extended to study refractory MPEAs by including

a spatially varying lattice energy coefficient and a dislocation character-dependence in

the lattice energy. This new formulation was used to study the behavior of Frank-Read

(FR) sources in MoNbTi. The shape of the expanding dislocation loop depends on the

underlying correlation length, l, of the MPEA and the orientation of the FR source. The

average critical stress to activate the FR source and create a full dislocation loop is not

influenced by the underlying l, but the variance in the critical stress does increase with
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clustering, represented by higher l. The critical stress for an FR source in the MPEA

is on average lower than in the homogeneous MoNbTi due to a shift in mechanism

for creating the initial dislocation bow-out. In the MPEA, the dislocation is able to

create an athermal kink-pair into a lower energy region first and then expand outwards,

allowing the dislocation loop to grow at a lower stress. This shift in mechanism leads to a

significant size effect as the critical stress is dependent on the sampling of the underlying

lattice energy surface, instead of merely the line tension of the dislocation bow-out. The

statistical nature of FR sources in refractory MPEAs may play a role in their macroscopic

mechanical properties by increasing dislocation densities and strain hardening.
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Chapter 3

Glide on Higher Order Slip Planes †

3.1 Introduction

Atomic-scale simulation and experimental studies have shown that dislocations in

MPEAs behave differently than in pure refractory metals or conventional, dilute refrac-

tory alloys [128, 129]. Due to the atomic-scale fluctuations in chemical composition in

the glide planes of the dislocations, the critical stress is no longer deterministic and scale

invariant, but depends on the length and location of the dislocation [97]. Atomic-scale

simulations have shown that the local chemical changes result in a variable dislocation

core structure along its line, causing the Peierls (lattice friction) stress for dislocation

glide to concomitantly change along the dislocation line [19–22, 130, 131]. As an analo-

gous measure to the Peierls stress for pure metals, the LSR of a short unit segment (3b–4b

in length) in a ternary MPEA MoNbTi were calculated with atomistic methods [132].

The LSRs varied substantially with a 60% coefficient of variation among dislocations in

different locations in the material.

†This chapter adapted from Reference [127]: Fey, L. T. W., Xu, S., Su, Y., Hunter, A., & Beyerlein,
I. J. (2022). Transitions in the morphology and critical stresses of gliding dislocations in multiprincipal
element alloys. Physical Review Materials, 6(1), 013605.
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Simulations of longer dislocations using atomistic or mesoscale dislocation dynamics

methods have shown that mechanisms for dislocation glide are also unusual [97, 128]. In

pure BCC metals, the edge-character dislocations move easily compared to the screw-

character ones, where the screw-to-edge ratio in critical stress ranges from 102 to 103 [24,

85, 133]. Screw dislocations move by the formation and migration of kink-pairs, straight-

ening after every kink-pair event and lying in wait for the next kink-pair event to occur

[8, 134, 135]. Long (> 100b) straight screw dislocations are often seen in post-mortem

microscopy of deformed BCC metals [135, 136]. In contrast, compared to dislocations

in conventional metals, the dislocation motion seen in MD, mesoscale dislocation sim-

ulations, or in-situ or ex-situ microscopy studies for a wide range of MPEAs, has been

described as wavy, tortuous, or jerky and for both edge and screw dislocations alike [13,

19, 21, 97, 123, 128, 137]. Dislocation waviness is generally understood to be a conse-

quence of the variation in local lattice distortion, bond strengths, and dislocation core

structure due to the atomic-scale variation in chemical composition. The statistically

harder areas for the dislocation to shear serve as local pinning points and the dislocation

bows between them, leading to the wavy appearance or pin/depinning jerky glide. Many

MD simulation studies also have reported that the parts of a moving screw dislocation

will locally cross slip onto other {110} planes, resulting in cross-kink pairs, which can

also cause a wavy morphology and jerky motion [21, 131, 138, 139].

Another peculiarity emerging from MD simulations as a characteristic of dislocations

in MPEAs is the markedly lower screw-to-edge ratio in critical stress. Values range from

2 to 10, easily an order of magnitude lower than that in pure metals [21, 25, 132]. Both

the short segments used in the LSR calculations and the longer segments in the wavy glide

calculations find screw-to-edge ratios in this range, indicating that the reduction cannot

be attributed to dislocation lengths. As a final oddity worth mentioning, a recent study

of the refractory MPEA MoNbTi found that dislocation slip occurred predominantly on

54



Glide on Higher Order Slip Planes Chapter 3

the higher-order {123} and {134} planes [13]. This is unexpected, as dislocation glide

in pure BCC metals is typically attributed to the lower-order {110} and {112} planes

[140, 141]. Apart from the LSR studies on MoNbTi [13, 132], most MD simulations of

dislocations in BCC MPEAs studied glide on the {110} plane.

Because of the computational costs, many of these studies simulated a few dislocation

samples moving over short distances. While a few instances can be sufficient for gleaning

unusual mechanisms, the substantial variability in critical stress makes it challenging to

understand relationship of unusual motion and the critical stress without statistically

significant data and statistical analysis. Furthermore, due in part to the waviness, no

standard method for defining the critical stress has been adopted. Some studies associate

the critical stress with the threshold stress to initiate motion or to move a prescribed dis-

location length over a prescribed distance. In the case of the LSR calculations, the short

segments of the screw dislocations intentionally precluded study of kink-pair formation

and migration.

In this chapter, PFDD is used to investigate the role of screw-to-edge ratio and lat-

tice energy distribution on the morphological transitions and evolution of the critical

stresses to move long screw dislocations in MoNbTi. The critical stresses to form dislo-

cation loops from screw-oriented FR sources are also calculated for multiple glide planes.

The calculations use generalized stacking fault energies of different areas in bulk random

equimolar MoNbTi calculated from DFT to take into account the effects of chemical,

distortional, and configurational fluctuations on local bonding and lattice energies. Be-

cause at the nanoscale on any given atomic glide plane, the elemental distribution cannot

be truly uniformly random, some amount of random local clustering is presumed. For

completeness, calculations treat a range of correlation lengths l, in which the extent of

the local chemical clustering is short, less than 1 nm, to relatively long, 6 nm. Respecting

the statistical nature of the underlying chemistry, hundreds of realizations are performed,
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each over extended glide distances, hundreds of times the width of the dislocation core.

The simulations show that under mechanical straining, dislocation motion is described

by successive intervals of wavy glide when the dislocation is gliding freely followed by full

arrest when the dislocation nearly recovers its screw orientation. This glide mechanism

leads to strengthening, in which the critical stress to re-activate motion increases with

glide distance. Statistical assessment indicates that the amount of hardening directly

scales with the dispersion in the underlying lattice energy distribution, in magnitude and

correlation length. The analysis explains that motion initiates at the weakest region to

form and migrate a kink-pair and stops when the entire region along the dislocation is

too strong to initiate and migrate one. Unlike screw dislocation glide within its pure

constituents, in the MPEA, temperature is not responsible for kink-pair formation and

the critical resolved stress would not increase with glide. These findings are based on

characteristics fundamental to MPEAs and explain why MPEAs behave differently than

their pure constituents.

3.2 Methods

3.2.1 PFDD formulation and simulation parameters

The PFDD formulation used here is identical to that introduced for refractory MPEAs

in Section 2.2.1. The lattice constant for MoNbTi is again a0 = 3.225 Å and cubic elastic

anisotropy with constants C11 = 252.13 GPa, C12 = 134.11 GPa, and C44 = 32.41 GPa is

assumed [117]. The spatial distribution of ψlatt(ϕ)(x, y) and the ratio R between screw to

edge dislocations for a given type of slip plane are determined from atomistic simulations

for four distinct slip planes.

For the USFE distributions in MoNbTi for the PFDD calculations to follow, the
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values are taken from DFT and MS calculations reported for MoNbTi [117]. In brief,

the calculations begin with a 3D special quasi-random structure of the MoNbTi. The

γ-curves are calculated for a given plane with a cross-sectional area of 30 to 60b2, several

times wider than the magnitude of the Burgers vector and longer than a complete lattice

translation vector. The calculations were repeated for a sampling of 10–30 distinct areas

in the volume for each plane type.

The USFE values are used to build correlated surfaces following the methodology in

Section 2.2.2. An important physical length scale of the method is the correlation length

l, which represents the extent of the local lattice energy in plane, or specifically, the

distance two neighboring regions of distinct lattice energy are correlated more than 10%.

As the lattice energy varies smoothly in the slip plane, any artificial modeling of phase

boundaries is avoided. Since l is unknown but yet an unavoidable consequence of the

atomic composition of MPEAs, calculations are repeated for l ranging from 1w0 to 20w0,

where w0 is the average core width of the dislocation in an average MoNbTi alloy on the

{110} plane, 2.15b [97]. The l range spans from one-tenth to twice the length of the FR

source and approximately one-hundredth to one-fifth the length of the screw dislocation.

To build hundreds of realizations of correlated USFE slip planes for PFDD simula-

tions, a Gaussian distribution is created from the USFE datasets provided by atomistic

simulation. Fig. 3.1 presents the Gaussian distribution fits along with the discrete USFE

distributions. The plane types exhibit USFE distributions distinct in mean and standard

deviation, which are summarized in Table 3.1. For a pure metal, the USFE is often used

to infer the preferred slip plane for dislocation glide [142, 143]. If the mean USFE is

compared, the {110} plane is the easiest and the {123} plane the hardest, a ranking

not unexpected for a pure metal. Yet, in MoNbTi, the coefficient of variations among

these planes are not the same. Since the USFEs are widely distributed and dissimilar,

the lower tails of these distributions follow a different ranking, suggesting that these
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Figure 3.1: The USFE values calculated with DFT for each slip plane type and the
normal distributions incorporated into the PFDD calculations. The mean and standard
deviation for each plane are shown by the white point and error bars, respectively. The
lighter colored points represent the bottom 20% of each distribution, where athermal
kink-pairs are likely to be nucleated.

planes are more similar in their weaker regions than the mean value would suggest. The

20% lower quantile, for instance, which is shaded a lighter hue in Fig. 3.1, starts at 775

MPa, 760 MPa, 745 MPa, and 660 MPa, for the {112}, {123}, {134}, and {110} planes,

respectively.

Finally an appropriate value for the screw-edge ratio R for each plane is also de-

termined for MoNbTi. In prior work, using atomistic simulations, the LSR for a unit

screw piece and edge piece less than 1 nm in length were calculated at different regions

in a uniformly random volume of MoNbTi [13, 132]. The segment length modeled was

intentionally made short so that the dislocation remains straight as it moves along the

lattice vector in the plane, as in a classic Peierls stress calculation. Importantly, for the

screw dislocation, this length is shorter than the width of a kink pair [144]. For PFDD

calculations, R is taken as the ratio of the average screw to the average edge LSR, and the
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plane-dependent R values are summarized in Table 3.1. All planes have a relatively low

R, an emerging commonplace characteristic for MPEAs [15, 19, 21, 26, 129], compared

to R for pure metals which is orders of magnitude higher [24, 133, 135, 145]. Among

these four planes R still varies by one order of magnitude. The {112} plane represents a

very low R plane, with only 1.4 and the {134} plane the highest with 11.8.

Together, the differences in USFE distribution and R among the four planes provides

the opportunity to study their effect on dislocation dynamics in the same material. For

each plane, 30 simulations of FR sources and 30 realizations of long dislocation propaga-

tion are performed per plane per l.

Table 3.1: The parameters used in the PFDD simulation for each plane type. The mean
and standard deviation of the USFE are given in mJ/m2. The screw-edge ratio (S.-E.
Ratio is unitless. The grid spacings dx, dy, and dz are given in units of the Burgers vector
b. dz is always the interplanar spacing in the slip plane normal direction, and dy is the
spacing in the Burgers vector direction.

Mean USFE S.D. USFE C.O.V USFE S.-E. Ratio dx dy dz
{110} 768 111 14.5% 4.65 1 1 0.8165
{112} 865 118 13.6% 1.40 0.8165 1 0.4714
{123} 911 125 13.7% 6.78 0.8135 1 0.3086
{134} 835 85 10.2% 11.8 0.8498 1 0.2265

3.2.2 Dislocation set up

The crystal is oriented such that the x and y axes lie in the slip plane and the z axis

is aligned with the slip plane normal. The computational grid is orthogonal and the grid

points coincide as closely as possible with the atomic positions [83]. Accordingly, the grid

spacings in each direction depend on the slip plane being simulated. Previous work has

shown that matching the grid points with the lattice points yields the best agreement

with molecular statics (MS) calculations for dislocation cores [80]. Table 3.1 summarizes

the grid spacings, where dx and dy are the spacings within the slip plane and dz, the
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interplanar spacing.

To study dislocation loop formation, an FR source is inserted onto the slip plane, using

the method described in previous PFDD models [83, 97]. In all calculations, the length

of the source is 20b and its Burgers vector is (a0/2)[111] and its plane lies in the center of

the crystal. Both screw-oriented and edge-oriented sources are considered. 3D periodic

boundary conditions and a computational grid size of 128 × 128 × 128 are employed.

This cell size has been shown previously to yield negligible effects of image dislocations

present due to the periodic boundary conditions for sources of this length [83, 97]. A

shear stress is applied in the slip plane and directed along the Burgers vector. Thus, the

plane on which the FR source lies is the maximum resolved shear stress plane (MRSSP).

The applied shear stress is raised in increments of 0.001µ (where µ is the isotropic Voigt

averaged shear modulus and is equal to 43 GPa) until the source activates, after which it is

held constant. At each stress increment, the solution procedure is run until convergence,

which is defined as when the norm of the change in order parameters is less than 10−5

between successive time steps. For convergence, the quantity mdisl∆t, where ∆t is the

time step, is set to 0.05µ−1.

To study long dislocation propagation, a screw-dislocation dipole with (a0/2)[111]

Burgers vector is inserted onto the slip plane lying in the center of the crystal. The

simulation cell dimensions are 256 × 128 × 128, and periodic boundary conditions are

employed in all three directions. The length in x is doubled to extend the distance

the dislocations can glide. The dislocation is 128 b long within the periodic cell, and

the dipole separation is 64 grid points in the x direction. A symmetrical USFE surface

mirrored over the line x = 128 is used such that the two parallel dislocations experience

identical USFE landscapes during glide. The applied shear stress is aligned with the

plane of the dislocation and in the direction of its Burgers vector, making the plane of

the dislocation the MRSSP. Application of the stress and solution procedure are the same
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as described previously for loop formation.

3.3 Results

3.3.1 Dislocation Multiplication

First, the effect of USFE distribution and R on operation of a screw-oriented FR

source is analyzed. The applied stress is raised just high enough to operate the dislocation

source and then held constant. Fig. 3.2 shows the time sequence of the dislocation

line from an activated source typical of each plane. The spatial variation in lattice

energy across the plane for these chosen realizations is indicated by the color mapping

of local USFE values. On the {110} plane, the most frequently studied plane in pure

and MPEA refractory metals, the line morphology of the screw and non-screw parts are

wavy. Particularly in the later sequences, the screw portions move slower than the edge

portions and the ensuing loops are oblong. The morphology of the line in each time

sequence from the source on the {112} plane have similar features, with the developing

loops that are noticeably oblong. Similar wavy glide has been seen in MD simulations

of other refractory MPEAs and has been a common observation for MPEAs [19, 21,

128, 129, 131]. In all the realizations, like those displayed in Fig. 3.2, each FR source

eventually produces a full dislocation loop that glides unhindered out of the simulation

cell. In none of the sequences shown does the dislocation loop fully arrest, although the

waviness of some or all parts of the dislocation line may suggest otherwise.

The time sequence of the dislocation line for sources on the {123} and {134} planes

show different morphologies. While the screw and non-screw portions are wavy, the lines

are less tortuous than those on the {110} and {112} planes. Also, in contrast to the other

two planes, the loops developing on the {123} and {134} planes have a lower aspect ratio,
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signifying similar edge and screw mobilities. The smoother glide behavior and nearly

equal mobilities are unexpected since these two higher order planes have the highest R.

Transitions to smooth glide have been reported to occur at high applied driving stresses

[128]. However, here, the applied stresses in the {123} and {134} examples are lower than

those in the {110} and {112} examples. While the nearly face-centered cubic (FCC)-like

behavior of FR sources on these planes is counter-intuitive, it is worth remarking that in

experimental testing of this MPEA, dislocations are seen most often on these two planes

in deformed material and less so on the {110} plane [13].
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Figure 3.2: Representative examples of screw-oriented FR source operation on each of
the four planes studied. All surfaces have correlation length l equal to 5w0. Dislocation
lines are colored with respect to time. Lighter loops indicate a later time step than darker
loops.

The critical stress, σFR, to activate each source was identfied. Fig. 3.3 shows values of
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σFR for all 60 realizations for each of the eight l. The variation in σFR is clearly substantial,

calling for a probability distribution that represents well each σFR distribution for a given

l. The analysis proves the data fit a lognormal distribution in all cases. Comparing the

lognormal mean, σ̄FR, finds that, on average, the FR sources were hardest to activate on

the {112} plane and easiest on the {134} plane. High critical stresses to move dislocations

in MPEAs are thought to be related to the variation in lattice energy or the random

occurrence of relatively larger local barriers [21, 128]. However, the mean and coefficient

of variation (COV) in USFE for the {112} plane are not the highest nor for the {134}

plane are they the lowest (see Table 3.1). Further, for no slip plane did l noticeably affect

σ̄FR.

To determine which properties govern σFR, the dislocation line morphology is exam-

ined at the moment σFR is reached and its relationship to the underlying USFE. In a pure

metal, the dislocation line bows out between the two pinned ends, and the critical shear

stress at which the line continues to glide unstably corresponds to a critical radius of cur-

vature. In the MPEA, instead of bowing out uniformly, a kink-pair nucleates along the

length of the source, and the edge-oriented portions of the kink-pair move along the dis-

location line to advance the dislocation. Examples of these kink-pairs on screw-oriented

FR sources are shown in the left column of Fig. 3.4. Activation of an FR source includes

both kink-pair formation, with the screw protruding normal to the line, and kink-pair

migration, with the two edge segments gliding apart. If the shear stress is removed before

migration, the straight source is recovered. An activated kink-pair advances the screw

portion of the dislocation line forward, into another region of the material, at which point

another kink-pair activates. Through successive activation of kink-pairs, the dislocation

line bows out. The edge portions having migrated to the pinned ends builds non-screw

portions. While in time, the source bows out as in a pure metal (as seen in the early

time sequences in Fig. 3.2), it is already in operation when it reaches this configuration
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in an MPEA.

Figure 3.3: The critical stresses to activate a screw-oriented FR source on each plane.
Each colored box is a separate simulation, and darker colors indicate where multiple
simulations give the same critical stress value. The mean for each correlation length is
also plotted with error bars corresponding to the standard deviation of the distribution.

It is, therefore, observed that the mechanism to activate unstable motion is a kink-

pair. The kink-pair triggering event applies to all l and crystallographic planes. Identify-

ing the size of a successful kink-pair is difficult, since by definition, the edge portions of

the kink-pair immediately move apart, but it is clear that they are b in height and, when

first formed, narrower than the length of the source, being approximately 1b to 3b. More

importantly, their size is found uncorrelated with l, in spite of the order-of-magnitude
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Figure 3.4: The critical stages of FR source activation for both a plane with a low screw-
edge ratio, {112}-type, and a plane with a high screw-edge ratio, {134}-type. Both
screw- and edge-oriented sources show kink-pair nucleation as the limiting step. Before
these kink-pairs form, the dislocation will fall back to its original position if the stress is
unloaded. The correlation lengths used in these examples range from 1w0 to 10w0.

wide range of l. Comparing the first successful kink-pair location with the underlying

USFE for all cases finds that the former is strongly correlated with the weakest region

along the initial source length. The weakest region means a low barrier to move both

the screw and edge parts of the kink-pair. The lower tail of the USFE distribution,

which applies to the screw parts, combined with the corresponding R, for the edge parts,

and not the mean USFE, decide σFR. Accordingly, the {112} plane has statistically the

hardest regions due to its low R, and the {134} the weakest regions due to its high R.

Next, the operation of edge-oriented FR sources of the same length are studied. The

initially straight edge segments are not expected to move by kink-pair activation. Fig. 3.5

shows the time sequence of the dislocation lines as these sources operate under an applied
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shear. A typical example is selected for each plane. On the {110} and {112} planes, the

lines are wavy and the growing loops are elongated, indicating their two lateral screw

portions are moving slower than the edges. On the {123} and {134} planes, a different

scenario occurs. The developing loops adopt only slightly wavy lines and the loops

expand nearly isotropically. The critical stress distributions σFR are obtained from the

60 realizations for a given l and slip plane. All data points are presented in Fig. 3.6.

Like the screw-oriented sources, the lognormal mean of σFR for the edge-oriented sources

are insensitive to l and indicate that sources are hardest to operate on the {112} plane

and easiest on the {134} plane. These similarities suggest that the same mechanism

activates edge and screw sources. However, with all else being equal, the edge sources

are consistently weaker than the screw sources, and even the ratios of critical stress for

screw to edge sources for all slip planes are similar, ranging from 1.5 to 1.7, and seemingly

unaffected by R or the USFE distribution.

The line configuration corresponding to σFR is identified for the edge-oriented sources.

Under subcritical stresses, the entire length of the source bows out between the two

pinning points, forming two straight screw segments normal to the source. The source

becomes critical when the loading state can activate a kink-pair along either of these

two screw segments. Otherwise, the bowed-out dislocation recovers its original position

when the stress is unloaded. Two examples are shown in the left column of Fig. 3.4.

This is why σFR for edge-oriented sources follow the same relationship with the USFE

as screw-oriented sources. Both are triggered by forming and migrating a kink-pair in

the weakest USFE region along the straight screw portions of the dislocation. The edge

cases are consistently about 60% weaker than the screw cases, since the edge-oriented

source can sample more of the USFE surface by extending the screw dislocation lines.
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Figure 3.5: Representative examples of edge-oriented FR source operation on each of the
four planes studied. All surfaces have correlation length l equal to 5w0. Dislocation lines
are colored with respect to time. Lighter loops indicate a later time step than darker
loops.

3.3.2 Dislocation Propagation

Next, dislocation propagation is studied by examining the role of the USFE and R

on glide of a long screw dislocation, > 40 nm in length, which is about 14 times greater

than the FR source length. The dislocation is not pinned and can glide freely. Six

different l ranging from 1w0 to 20w0 were studied with 30 distinct samplings from the

USFE distributions for each. To determine the threshold stress to move the dislocation

across the plane and outside of the simulation cell, the applied shear stress was slowly

incremented until dislocation glide was observed. Fig. 3.7 shows several example stress-

strain curves for each plane, all of which are unlike those expected in a pure metal. In a
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Figure 3.6: The critical stresses to activate an edge-oriented FR source on each plane.
Each colored box is a separate simulation, and darker colors indicate where multiple
simulations give the same critical stress value. The mean for each correlation length is
also plotted with error bars corresponding to the standard deviation of the distribution.

pure metal, the critical stress to move a screw dislocation corresponds to that needed to

form and migrate a kink-pair under a given temperature. It is deterministic and unvarying

temporally or spatially, apart from the aid from thermal noise. For each glide plane in

an MPEA, however, the responses among the different realizations are highly variable;

no two are alike. They indicate stop/start motion, wherein the dislocations become

pinned and stress increases are required to continue glide. Therefore, these dislocations

experience strain hardening. Yet, unlike classic strain hardening, the amount of strain
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between full stops varies, not necessarily increasing with each rise in stress. These curves

terminate at the final stress needed for runaway glide out of the simulation cell. In most

cases, the stress to initiate motion, σi, is not sufficient to sustain glide across the plane

and is lower than the penultimate stress reached in the stress-strain curve, σf , which is

designated as the stress required for the dislocation to escape the cell.

Figure 3.7: (A–D) Several stress-strain curves from screw dislocation propagation simula-
tions on each slip plane type. The curves show a characteristic “staircase” as dislocations
are pinned and unpinned several times before finally annihilating with periodic images.
The definitions of σi and σf are illustrated in (A).

Due to the substantial variation, the critical stress results are analyzed from a sta-

tistical viewpoint. Fig. 3.8A compares the distributions for σi among the four planes.
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As would be expected from the few examples in Fig. 3.7, substantial variation in σi is

seen in all cases. An interesting observation is the persistent consistency in the mean

and dispersion in the σi distributions in spite of differences in the USFE, l and R. These

calculations suggest that average σi does not represent well the critical resolved shear

stress to start the glide of a screw dislocation, is not sensitive to the spatial variation in

lattice energies, and not a discriminating measure of preferred glide plane.

An analysis of σf presents markedly different observations. Fig. 3.8B shows the

σf/σi distributions for the same cases. Motion of a screw dislocation on the {110}

plane experiences not only the greatest increase in critical stress but also additional

enhancements in resistance with l. However, glide on the {134} plane undoubtedly incurs

the least strengthening and shows negligible dependence on l. The other two planes

exhibit similar, non-negligible hardening propensity, like the {110} plane but to a lesser

degree. This significant difference in σf/σi could explain the experimental observations

of gliding dislocations on the {112}, {123}, and {134} planes, but not the {110} planes

in this MPEA [13].

To understand the hardening behavior, the morphology of the dislocations is more

closely examined under the applied shear stress. The dislocation line configuration

changes in time and is wavy during most of the simulation. Fig. 3.9 shows a typical

example for each slip plane throughout the full simulation time. In each case, the dis-

location remains straight and in its original position under zero stress. When the stress

is increased past a critical point, a kink-pair forms at some weak location and migrates

some distance, advancing this part of the dislocation by b. Each advancement places

that part of the screw dislocation into a new region, with a different random sampling

of lattice energies, providing the opportunity to activate more kink-pairs. As the lattice

energies vary over the long 40 nm length, when and where kink-pairs activate varies sta-

tistically. Under this glide mechanism, different kink-pair activation rates along the same
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dislocation give it a wavy appearance. Waviness is a common observation among MD and

other discrete dislocation dynamics simulations of dislocation lines tens of nanometers in

length for a wide range of MPEAs [19, 21, 128, 129]. Here, the waviness originates from

different parts of the same dislocation forming kink-pairs at different rates and it pertains

to all four planes, for all l, and in all realizations, in spite of differences in the underlying

USFE distributions, l and R. Only screw-character dislocations move in wavy glide via

this mechanism. The waviness alone does not explain the differences in hardening seen

in Fig. 3.7 and role of the USFE on σf .

To rationalize the USFE effects on strain hardening, dislocation line configurations

are analyzed in relation to changes in stress. In all cases, the dislocation glides via a

stop/start mechanism. It can be described as alternating intervals of non-stop glide

under constant stress and full arrest requiring an increment in stress (Fig. 3.10). The

dislocation takes on a wavy morphology as it glides continuously and then becomes nearly

straight, close to its original screw orientation, when it completely stops. Continuous

glide for the entire dislocation is sustained as long as any part of it can activate kink-

pairs. The dislocation moves in free flight by statistical kink-pair activation, until it

reaches a fully straight configuration when no kink-pair can be activated anywhere along

its length. The additional applied stress needed to restart wavy glide from the fully

arrested straight screw configuration is determined by the weakest region for forming

and migrating a kink-pair anywhere along the dislocation line in its new location in the

material.

During the intervals of wavy glide, the dislocation configuration is metastable. If

the applied stress is removed during free glide, the stress-free equilibrium configuration

is severely kinked, appearing to vary in character, not aligned with the original screw

orientation. Examples of unloaded dislocation lines from all four planes are shown in

Fig. 3.11. According to the PFDD simulations, the more rugged morphology of the
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{110} and {112} planes compared to the other two planes becomes more pronounced in

the stress-free state. Because R in the former planes are lower, kink-pair migration is

more difficult, so arrested dislocation lines on these planes contain several edge-segments.

With higher R values, kink-pair migration rates are higher, leaving the relaxed lines on

the {123} and {134} planes smoother. These wavy dislocations are not unlike those

observed experimentally in MoNbTi, where post-mortem investigation revealed wavy,

predominantly non-screw, dislocation lines on {110}, {112}, and {123} planes [13].

As kink-pair activation controls the stop/restart behavior, the first kink-pair formed

on each slip plane type is examined for two examples (Fig. 3.12). The kink-pairs on the

top row correspond to the first kink-pair in the lower tail of the σi distribution, whereas

the bottom row shows examples from the upper tail, i.e., the relatively stronger ones. In

all cases, the critical kink-pair begins to form by extending a small “foot” 1b in height

into a region with a relatively low USFE for formation and immediate migration. Thus,

the mechanism to first start motion does not change, only the stress required to activate

kink-pairs at the weak areas along the dislocation length. Drawing a parallel to brittle

fracture, the stress σi to first move the dislocation is governed by the weakest link along

the dislocation, wherein the link length is insensitive to l. The broad variation seen in

σi in all cases would be characteristic of weakest-link behavior. The value of σi would

consequently be mainly controlled by the lower tail of the USFE, which is similar for all

USFE distributions here, explaining the similarity in the mean value of σi among the

four slip modes.

Dislocations in all planes glide via this stop/restart mechanism in strain (or time).

However, for the {110} plane, dislocations, on average, stop/restart more often in their

excursion across the plane than the other planes. Many of the dislocations on the {134}

plane are an exception, where in roughly half the cases, σi = σf . The heterogeneity

in lattice energy across the plane increases with the variation in USFE and l. With
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increased heterogeneity in lattice energy both in space and in magnitude, the dislocation

is more likely to encounter a relatively harder location in material in which kink-pair

activation is not possible along the entire length of the dislocation, causing it to fully

arrest. Thus, for the most heterogeneous cases, the greatest hardening is seen where

the glide resistance increases markedly with glide distance. This explains the increase in

the ratio σf/σi with l for a given plane. To measure the strengthening provided by the

heterogeneity, the hardening ratio, (σf − σi)/σi, is calculated, which is the ratio of the

total rise in glide resistance to run the dislocation out of the cell (consistent signature

of runaway) divided by the critical stress to first start its motion. Fig. 3.8C confirms

the origin of hardening as posed; the strengthening increases with the dispersion (i.e.,

coefficient of variation) in the USFE.

3.4 Discussion

In studying the motion of long screw dislocations gliding over long distances, PFDD

simulations show that their glide is controlled by the activation of kink-pair formation and

migration. While kink-pair-controlled motion of screw dislocations occurs in pure BCC

metals, the kink-pair nucleation frequencies depend on thermal fluctuations and scale

with temperature and stress. Temperature introduces random thermal noise, and for a

moving dislocation, represents statistical dispersion in driving force. Otherwise, under

constant temperature and stress, the probability of forming and migrating kink-pair is the

same along the length and invariant with location in the crystal. The dislocation moves

by successive single kink-pair activation and straightening. While they are straight and

arrested, they lie in waiting for a sufficient thermal perturbation to form and migrate the

next kink-pair.

In the present work for an MPEA, the effects of temperature on the stresses to move
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the dislocation and how the dislocation moves are not included. Specifically, the applied

mechanical energy is not supplemented by thermal energy. The chemical composition

randomness in the MPEA represents statistical dispersion in the energetic barriers for

glide across the plane as opposed to random supply of thermal energy. Thus, the com-

position variations allow for kink-pairs to form randomly without the randomness from

thermal noise. At a non-zero temperature, one would expect that kink-pairs will form

more easily in the MPEA than in pure BCC metals because there are both thermal and

compositional fluctuations present that can nucleate kink-pairs. Significant numbers of

kinks forming on different slip planes can lead to immobile cross-kinks, which have been

proposed to play an important role in BCC MPEAs [19, 139].

As in pure metals under temperature and stress, the arrested screw dislocation is

nearly straight and the dislocation waits for sufficient additional energy, in the form of

mechanical energy here, to form and migrate a kink-pair or multiple kink-pairs along

its length. However, the statistical dispersion in lattice energy introduces periods of

wavy travels between arrested states, which does not occur in pure metals. The waviness

arises from variable kink-pair activation rates along the same line, leading to different

nanoscale segments incurring different amounts of travel. The probability of kink-pair

activation is not spatially invariant and depends on the level of heterogeneity in the

lattice energy distribution. As another consequence, much of the glide plane slipped by

a screw dislocation in an MPEA is accomplished by wavy glide, unlike in a pure metal.

In fact, when the MPEA is unloaded, the dislocation collapses to wavy, non-screw state.

This could explain prior microscopy studies of deformed refractory MPEAs that show

highly kinked rather than straight dislocations [13].

In all cases of glide planes and correlation lengths, the glide initiates with successful

formation and migration of a kink-pair in the weakest region along the length of the dis-

location. This activation mechanism will impact the critical stress in several ways. First,
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initial stresses depend on the lower tail of the lattice energy distribution, not its mean

value. Second, the initial stress will be highly position-dependent and can be expected

to vary substantially among different but otherwise like dislocations on the same glide

plane. Third, since the dislocation cannot advance until the kink-pair migrates, the easier

it is for the edge dislocations to move, i.e., the higher the value of R, the lower the initial

critical stress. Last, the weakest link type phenomenon engenders a size effect, wherein

longer is weaker. In actual materials, the lengths of screw dislocations can be much longer

than those studied here (128b). The implication is that longer dislocations will experi-

ence even more variations along their lengths and even lower activation stresses. These

outcomes result from the inherent compositional fluctuations characteristic of MPEAs

and can be expected to apply to other MPEA systems as well.

Wavy or jerky dislocation glide is emerging as a common and persistent character-

istic of dislocations in MPEAs. Several atomistic or mesoscale modeling simulations

and some microscopy studies have reported wavy dislocations in glide or post-mortem

[13, 19, 40, 97, 128]. Prior MD studies have associated tortuous morphology of dislo-

cations of any character to randomly occurring pinning points and formation of cross

kinks and/or interstitials and vacancies in some nanoscale segments [19, 21, 128, 131].

Similarly, mesoscale models of a generic dislocation have attributed wavy glide to dislo-

cation bowing out between randomly occurring pinning points [40, 41]. Here in analyzing

planar glide behavior of initially screw dislocations, wavy glide and jerky glide are classi-

fied as distinct behaviors. Wavy glide is a result of variable rates of kink-pair formation

and migration along the length of the dislocation, where nanoscale segments with higher

rates extend further. Wavy glide is not directly related to hardening, meaning the activa-

tion stress does not change, and any amount of atomic-scale variation in the underlying

lattice energy will cause wavy glide. Jerky glide, on the other hand, is a result of the

frequent transition between non-stop, free glide with non-zero kink-pair activation rates
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and complete arrest with zero kink-pair activation rates. Jerky glide means hardening,

in which the critical stress increases with strain. The greater the dispersion in lattice

energy, the greater the hardening. This glide mechanism, involving wavy morphologies

and jerky-induced hardening, is not applicable to initially edge-character dislocations.

Jerky glide and its associated hardening are studied over distances of just 96b. The

hardening seen in stress-strain curves among different dislocations on the same plane

type vary substantially as well, such that no two pathways and stress-strain curves are

alike. The greater the statistical variation in the USFE, in both content and length scale,

the more pronounced the hardening. For the {110} plane, for which the greatest amount

of hardening is observed among the four plane types, the critical stress increased, on

average, 25–50% from its initial value. In contrast, the {134} plane showed the least.

Experimental observations of dislocations in MoNbTi observe dislocations gliding on the

{112}, {123}, and {134} planes, with notably fewer dislocations on the {110} planes

[13]. In light of the current results, one could interpret this to mean that hardening,

rather than the initial critical stress, selects the preferred glide plane. Nevertheless, it

can anticipated that if the underlying USFE distribution has large dispersion with a long

upper tail (high lattice energy with low probability), then hardening could continue with

glide distances greater than the 100b simulated here.

Many MD simulations of dislocation glide in the {110} plane of MPEAs attribute

the high critical resolved shear stress (CRSS) to the formation of cross-kinks along the

same dislocation line [19, 21, 128, 131]. In the present simulations, the driving stress

was intentionally applied so that the dislocation glide plane corresponded to the MRSSP

of the dislocation; therefore, no driving stress component was applied to drive any part

of the dislocation to cross slip onto another plane. Including thermal effects and/or

other applied stress states would promote cross slip, however, the consequences would

not necessarily be the same as in a pure metal. As mentioned, in simulating in-plane
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glide, the motion involves wavy intervals, in which the original screw dislocation adopts

a non-screw character, which would not present many opportunities for cross slip. The

dislocation nearly recovers its straight screw orientation only when fully arrested under

stress, which would then leave the possibility for forming kink-pairs on cross-slip planes.

3.5 Conclusions

In summary, PFDD was employed to study the role of screw-to-edge ratio and lattice

energy distribution on the morphological transitions and evolution of the critical stresses

to move long screw dislocations in the refractory MPEA MoNbTi. The atomic scale

fluctuations in elements in MPEAs lead to dislocation-scale heterogeneity in the lattice

energies associated with shearing the glide plane. Atomistic calculations find that the

screw-to-edge ratios and the mean and dispersion in lattice energy distributions vary

among the four plane types in the BCC MPEA MoNbTi, providing the opportunity to

study their influence on dislocation dynamics in the same material. MPEA crystals were

constructed with over 70 nm long glide planes with these lattice energy distributions

and length scales over which the compositions associated with them are correlated. The

variation in lattice energy, in both content and scale, leads to a strain hardening-like

behavior, represented as an increase in the critical stress to activate glide with glide

distance. When the variation is large, the dislocation moves in a stop/start motion,

alternating between a wavy morphology in free flight and a nearly recovered straight

screw orientation in full arrest. Substantial strain hardening behavior is associated with

this glide behavior, where the critical stress increases, on average, 20–30% from the stress

to first activate motion. In contrast, when the variation is small, the stress to initiate

motion most often is the stress for runaway glide, indicating little to no hardening, and

the dislocation motion is continually wavy. In all cases, the wavy glide is the result
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of variable kink-pair formation and migration rates along the dislocation length, where

portions with higher rates travel greater distances. The critical stress to move an isolated

dislocation in pure metals would not exhibit the strain hardening seen here at the single

dislocation scale. The strain hardening induced by atomic-scale composition fluctuations

in MPEAs could play a part in explaining their superior strengths.

78



Glide on Higher Order Slip Planes Chapter 3

Figure 3.8: (A) The distribution of σi, the critical stress to initiate glide, grouped by
plane type and correlation length. Darker symbols correspond to critical stresses shared
by multiple iterations. The black dots show the mean stress for that correlation length
and plane, with error bars equal to standard deviation across the 30 iterations. (B) The
ratio σf/σi for each plane as a function of correlation length. This value corresponds
to the amount of hardening that occurs during dislocation glide. (C) The quantity
(σf − σi)/σi for each correlation length plotted against the coefficient of variation of
the underlying USFE surface. Higher variance in USFE leads to more hardening as the
dislocation glides.
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Figure 3.9: Representative examples of screw dislocation propagation on each of the four
planes studied. The dashed lines indicate stable dislocations under stress, which require
an increase in applied stress to advance. All four planes shown have a correlation length
of 3w0, and dislocation lines are colored with respect to time, where lighter colors indicate
a later time step.
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Figure 3.10: Representative examples of the progression of screw dislocation glide in
MoNbTi. The initially straight screw dislocation (shown in black) appears wavy during
glide (shown in white) but become arrested under stress and returns to a straight screw
morphology (shown in red). These examples are from a {110}-type plane and {123}-
type plane, but dislocation glide proceeds in a similar fashion for all planes studied. The
correlation length l is 3w0 for both cases.

Figure 3.11: Examples of dislocations that were unloaded during glide in PFDD. The
black line is the initial dislocation and the pink line is the unloaded dislocation. Just as
the dislocations are wavy during glide, they remain wavy under zero stress if the stress
is removed. The correlation length l is 1w0 for all four cases pictured.
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Figure 3.12: Examples of kink-pair nucleation on all four slip planes. The kink-pairs in
the top row are nucleated on the weakest screw dislocation for their slip plane, while the
bottom row shows kink-pairs on the strongest screw dislocation studied. The black line
shows the initial placement of the dislocation at zero stress. Regardless of the slip plane,
correlation length l, or critical stress, kink-pair nucleation controls the glide behavior of
the dislocations.
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Cross Slip †

4.1 Motivation

Cross slip occurs when a dislocation changes its glide plane and is a crucial dis-

location mechanism in refractory metals. Screw dislocations in BCC have a special,

compact, non-planar core structure that enables them to cross slip easily [147]. The

repeated cross slipping of screw dislocations in BCC materials is believed to cause wavy,

non-crystallographic slip traces, and the ability to cross slip can affect the material’s duc-

tility and work hardening [135, 148–150]. At the same time, the BCC screw dislocation

core also increases its resistance to move compared to edge character dislocations, making

screw dislocation glide the rate-limiting deformation mechanism [135, 149]. Therefore, in-

corporating cross slip into computational dislocation models is critical for understanding

refractory alloys, including refractory MPEAs.

The length scales accessed by dislocation simulation methods can range from the

atomic scale, such as DFT or MD, to the mesoscale, including DDD and GPN models.

†This chapter adapted from Reference [146]: Fey, L. T. W., Hunter, A., & Beyerlein, I. J. (2022).
Phase-field dislocation modeling of cross-slip. Journal of Materials Science, 1-15.
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DFT has been used widely to calculate γ-surfaces, energetic landscapes associated with

fault formation, and the core structures of dislocations in metals with compact and

narrow structures [9, 147, 151, 152]. Many DFT studies of BCC metals have found that

the cores of screw dislocations are non-planar and symmetric, equally spread on three

planes, with six-fold symmetry sharing the same zone axis of the dislocation line and

Burgers vector [9, 110, 147]. Studies of dislocation dynamics can be limited, due to short

length and time scales, and to date, none have studied cross slip in BCC crystals [153,

154]. Compared to DFT, MD is able to reach slightly longer length and time scales in

order to simulate the cross slip of screw dislocations [155–157]. These simulations can

give valuable insight into the cross slip behavior of individual dislocations, including the

formation of cross-kinks, pinning, and dislocation debris [45, 114, 138].

At longer length scales, DDD can simulate larger arrays of dislocations [73, 158–160].

Kinetic Monte Carlo has also been used to study dislocations in BCC metals, including

the effects of cross slip [161, 162]. Both simulation methods are based on predetermined

rules for dislocation interaction, mobility, and cross slip. The goal of these methods

is usually to understand the collective behavior of large numbers of long dislocations

over long periods of time, as opposed to atomistics, which is typically used to study

short dislocations over short periods of time. The GPN model is another mesoscale

computational technique that can represent discrete dislocations. Ngan first used GPN

to calculate the non-planar screw core, the stress and strain fields it generates, and its

self energy [163]. GPN models have been used to simulate cross slip in FCC crystals, but

none have studied cross slip in BCC crystals [164].

In contrast to DDD, PFDD does not require pre-set rules to determine the when,

where, and how dislocations move. Material parameters enter through the energetic terms

in the functional and these can be supplied by atomistic simulation or experimental data.

Early PFDD modeling studies usually considered just one slip system, simulating planar,
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compact dislocation cores [78]. By including more slip systems in the formulation, PFDD

was later used to model the dissociation of dislocations into partial dislocations in face-

centered cubic (FCC) and hexagonal close-packed (HCP) metals [82, 105]. Multiple slip

systems were also used to study the intersection of dislocations on different slip planes or

the multiplication of dislocations from a Frank-Read source [83, 97, 165, 166]. However,

cross slip, in which a full dislocation completely changes slip planes, has not been studied

previously with PFDD. Prior PFDD models of BCC crystals have assumed a simplified

planar dislocation core, requiring a correction term to account for screw-edge differences

[84, 97].

In this chapter, PFDD is advanced to simulate the glide and cross slip of screw

dislocations. The extended PFDD model captures the non-planar core structures of a

screw dislocation and when under stress, the higher lattice friction and drag of screw

dislocations relative to edge dislocations. The technique allows for simulations of kink-

pair controlled glide and cross slip without the need for rules or properties based on local

screw/edge character.

4.2 Methods

Here, the PFDD formulation is unchanged from Sections 1.4.2 and 1.4.3, although

the computational details and choice of slip systems are modified. Dislocations with a

a
2
[1̄11] Burgers vector are simulated. This vector lies in many different potential slip

planes, including three distinct {110}-type planes. In most prior PFDD simulations, an

orthogonal, cubic grid has been used. In these cases, the system has been rotated so that

the slip plane of interested is horizontal within the computational cell in order to minimize

numerical error. However, when there are multiple active slip planes, inclined glide planes

will be present and the density and spacing of grid points may not be equivalent on each
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plane in an orthogonal grid. Thus, the inclined nature of the glide planes within the

cubic computational grid may cause numerical differences in the PFDD model. PFDD

was extended by Peng et al. extended to use non-orthogonal grids, including FCC and

BCC grids [167]. To ensure the equivalence of all possible slip planes in the model, a

BCC grid is used with primitive vectors e1 = b√
3
[111̄], e2 = b√

3
[1̄11], and e3 = b√

3
[11̄1].

The grid spacing in each direction is b, so grid points align with the atomic positions in

a BCC lattice.

To compare the effects of using multiple slip systems, two different PFDD models are

studied. First, in the constrained PFDD model, only one order parameter ϕ1 is used.

This is the traditional PFDD model for perfect planar dislocations. The slip direction

s1 is 1√
3
[1̄11], and the slip plane normal is n1 = 1√

2
[110]. Second, in the unconstrained

PFDD model, three active order parameters, ϕ1, ϕ2, and ϕ3, are used to simulate three

slip systems with slip directions s1 = s2 = s3 = 1√
3
[1̄11], respectively. The slip plane

normals are n1 = 1√
2
[110], n2 = 1√

2
[011̄], and n3 = 1√

2
[101].

As a model BCC material, Nb is simulated using the elastic constants and lattice

parameter from experimental measurements made at room temperature [168], and the

USFE used in Eq. (1.9) is calculated from DFT simulations for Nb calculated at 0K

[83]. Elastic isotropy using the Voigt average is assumed resulting in an effective shear

modulus µ = 39.64 GPa and Young’s modulus E = 110.3 GPa. The Burgers vector is

2.86 Å, and the USFE is 676.8 mJ/m2. In the minimization, the quantity mdisl∆t in

Eq. (1.8) is set to 0.25 µ−1. All simulations ran until convergence, which is defined as

when the Euclidean norm of the change in order parameters is less than 0.0001. In the

following calculations, the effect of temperature on dislocation core structures, critical

stresses to glide or cross slip, and drag coefficients are not taken into account. The results

here correspond to the athermal values.

The relaxed core structures of dislocations are examined in both the constrained and
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unconstrained PFDD models. For the screw dislocation, the simulation cell contains a

screw dislocation dipole on the (110) plane. The cell dimensions are 128, 32, and 128 grid

points in the e1, e2, and e3 directions, respectively. Dislocation lines parallel to [1̄11] are

placed on the (110) face of the simulation cell. Similarly for the edge dislocation on the

(110) plane, an edge dipole is created in the simulation cell. Cell dimensions in this case

are 128, 128, and 384 grid points in each primitive direction, and the dislocation lines

are aligned in the [11̄2] direction on the (110) face. Initially, only one order parameter,

ϕ1, is non-zero, and ϕ2 and ϕ3 are set to zero. In both the screw and edge case, the

dislocation dipoles are separated by 64b, and the dislocations are infinitely long due to

periodic boundary conditions.

These dislocations are then studied under an applied stress to determine the critical

stress to move them. A pure shear stress is applied in one of three orientations, such

that the maximum resolved shear stress plane (MRSSP) corresponds to the (110) habit

plane or one of the two cross slip planes, (011̄) and (101). In each case, starting from

zero, the stress is increased in increments of 0.001µ. The stress at which the dislocation

glides (the supercritical stress) and the previous stress value at which it does not (the

subcritical stress) were determined.

Last, the expansion of a dislocation loop is simulated under a shear stress in order

to study the screw/edge dependent glide. The initial dislocation loop is a perfect circle

with radius 16b, and 128 grid points were used in each primitive e1, e2, and e3 direction.

The entire loop is placed on the (110) plane, which, again, is considered its habit plane.
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4.3 Results

4.3.1 Dislocation Core Structures

Fig. 4.1 shows the calculated core structures of the edge and screw dislocations under

zero stress from both constrained and unconstrained PFDD. In all cases, from the initial

unrelaxed state, the cores of the edge and screw dislocations in their relaxed state have

spread. In constrained PFDD, spreading is confined to the the (110) plane, so both edge

and screw dislocation cores are planar. When unconstrained PFDD is used, however, the

cores spread not only on the habit (110) plane but also onto the (011̄) and (101) planes,

as shown by the non-zero order parameters ϕ2 and ϕ3 in Fig. 4.1.

For the screw dislocation, the ϕ2 and ϕ3 fields in the core indicate core spreading

on the (011̄) and (101) planes, forming small fractional dislocations [142, 147]. These

dislocations on the two cross slip planes are nearly symmetric to one another, as the order

parameters ϕ2 and ϕ3 are similar when reflected across the (110) habit plane. The habit

plane remains clear as the order parameter ϕ1 transitions from 1 to 0 at the dislocation

core, indicating that the dislocation spreads predominantly on the (110) plane.

For the edge dislocation, changes in ϕ2 and ϕ3 vary predominantly in the y = 0,

plane, the (110) slip plane, and the magnitudes of these two order parameters are nearly

identical. Again, the dislocation can lower its strain energy slightly by forming small,

fractional dislocations. However, unlike the screw dislocation, the edge dislocation with

line direction [11̄2] only lies in the (110) slip plane, so its spread is limited even in

unconstrained PFDD. The newly formed fractional dislocations represented by ϕ2 and

ϕ3 lie only within the (110) plane and represent small amounts of slip in the Burgers vector

direction but on planes other than the (110). The line direction of the screw dislocation,

[1̄11], lies in all three potential slip planes. Therefore, in unconstrained PFDD, the core

of screw dislocation is non-planar and exhibits mirror symmetry about the (110) habit
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Figure 4.1: The order parameter fields of the dislocation core under zero stress in both
the constrained (leftmost column) and unconstrained (three rightmost columns) PFDD
models. The x-direction aligns with [11̄2] and [1̄11] for the screw and edge cases, respec-
tively. The y-direction is the slip plane normal [110] for both cases.

plane, while that of the edge dislocation is planar. Non-planar screw core structures are

consistent with those calculated from atomistic calculations of dislocation cores [147].

The core structures for BCC dislocations, especially BCC screw dislocations, are

distinct from core structures in close-packed crystals. Dislocations in both FCC and

HCP crystals dissociate into partial dislocations, which can be observed experimentally

[169], in atomistic simulations [170, 171], and in PFDD simulations [105, 172]. The partial

dislocations form due to a local energy minimum in the generalized stacking fault energy

surface [172]. As the GSFE surfaces for BCC crystals do not have a local minimum, the

dislocation cores remain compact [173]. Unlike dissociated dislocations in close-packed

crystals, the compact BCC screw dislocation line therefore lies in multiple slip planes,
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allowing for the out-of-plane core spreading predicted from atomistic calculations and

seen here in unconstrained PFDD simulations. This makes the use of unconstrained

PFDD instead of constrained PFDD especially important for BCC materials.

The elastic strain fields produced by these dislocations are examined, beginning with

the screw dislocation. Fig. 4.2 shows the out-of-plane σxz and σyz shear stress fields of

a relaxed screw dislocation calculated by both PFDD formulations. For reference, these

fields are compared with the those predicted from linear elastic isotropic dislocation

theory, which does not take into account the configuration of the core. The stress fields

calculated with PFDD qualitatively match the analytical solution. The stresses are most

intense near the core and decay in magnitude when moving away from it and the regions

of positive and negative stress are the same. The σxz stresses show Gibbs oscillations

in the [111̄] direction. These are Gibbs oscillations, which arise due to the difficulty of

representing a discrete peak in Fourier space and have been observed in PFDD previously

[167].

The magnitudes of the screw dislocation stress fields calculated with the uncon-

strained PFDD model are different from those of the analytical model and the con-

strained PFDD model. The non-planar core, spread on multiple planes, has weakened

the stress field produced outside of the core. The Burgers vector is represented by a

distribution of small fractional dislocations on the (011̄) and (101) planes. Compared to

the constrained case with the planar core, the elastic σxz component has reduced by half

and the σyz component by two-thirds, highlighting the significant effect of core spreading

on the local stress fields. The Gibbs oscillations are present in both unconstrained and

constrained PFDD, and their scaling with respect to the magnitude of the stresses is

unchanged.

Fig. 4.3 compares the in-plane σxx, σyy, and σxy relevant for edge dislocations. As for

the screw dislocations, the stress fields generated by the edge dislocation qualitatively
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agree with those predicted by the linear elastic isotropic solution. The PFDD solution

again displays Gibbs oscillations, especially in the σxx stresses. Like the screw case,

the magnitude of the dislocation stress field is slightly reduced in the unconstrained

case relative to the constrained case, but these differences are not as pronounced. The

maximum σxx is only 1.10x higher in the constrained case, and σyy and σxy are 1.15x

and 1.16x higher, respectively. Because the edge dislocation cannot spread onto multiple

{110}-type slip planes, it is less affected by the choice of constrained or unconstrained

PFDD.

In the analytical model of a compact dislocation line, the elastic line energy for a

screw dislocation is lower than that for an edge dislocation. The line energy calcula-

tion involves integrating the elastic strain energy outside a small nanometer-sized radius

around the dislocation. Since in PFDD, the model is built on linear elasticity, the entire

dislocation is included in the calculation. The line energies of the relaxed dislocations in

PFDD were calculated by integrating Eq. (1.4) within a cylinder of radius 28b around the

dislocation core. The line energy per Burgers vector for the screw dislocation is 0.188µb2

and 0.0591µb2 for constrained and unconstrained PFDD, respectively. By allowing spread

on multiple slip planes in unconstrained PFDD, the screw dislocation is able to lower its

line energy by more than a factor of three. For the edge dislocation, the line energies are

0.291µb2 and 0.240µb2 for constrained and unconstrained PFDD, respectively. The small

amount of spreading of ϕ2 and ϕ3 within the (110) plane in unconstrained slightly lowers

the line energy, but not nearly as significantly as the screw dislocation case. Like the

result from the analytical model, edge dislocations have a higher line energy than screw

dislocations in both constrained and unconstrained PFDD.
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Figure 4.2: Stress fields generated by a screw dislocation as calculated from the con-
strained and unconstrained PFDD models compared to those from the linear elastic
isotropic analytical solution. The x- and y-directions align with [11̄2] and [110], respec-
tively. The magnitude of the stresses near the core is reduced in the unconstrained PFDD
due to core spreading.

4.3.2 Dislocation Glide and Cross Slip

The core structures of these dislocations will affect the stresses needed to move them

and keep them in motion. The critical stresses to initiate glide of these dislocations were

calculated using both the constrained and unconstrained PFDD. Table 4.1 presents the

stress range within which the critical stress for dislocation glide lies. Ranges marked

with † indicate dislocations that cross slip off the habit plane and glide on the plane

corresponding to the MRSSP.

When the MRSSP is the habit plane, the applied stress is the Schmid stress. For

both edge and screw dislocations and in both formulations, the dislocations glide in the

(110) plane, provided the Schmid stress exceeds a critical value, given in Table 4.1. The

core structures of these dislocations do not change during glide. For both constrained

and unconstrained PFDD, the screw to edge ratio for glide stress is approximately 1.8.
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Figure 4.3: Stress fields generated by an edge dislocation as calculated from the con-
strained and unconstrained PFDD models compared to those from the linear elastic
isotropic analytical solution. The x- and y-directions align with [1̄11] and [110], respec-
tively.
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Table 4.1: Critical shear stresses required to initiate dislocation glide for different states
of applied stress in units of µ, the effective elastic shear modulus. The maximum resolved
shear stress plane (MRSSP) was either the (110) habit plane or one of the two cross slip
planes, (011̄) and (101). The dislocations glide within the (110) habit plane except those
marked with a †, which cross slip off the habit plane.

Screw Edge
MRSSP Constrained Unconstrained Constrained Unconstrained
(110) 0.063-0.064 0.106-0.107 0.035-0.036 0.060-0.061
(011̄) 0.126-0.127 0.131-0.132† 0.070-0.071 0.136-0.137
(101) 0.126-0.127 0.129-0.130† 0.070-0.071 0.129-0.130

The higher critical stress for screw compared to edge is commonly predicted from many

PN models and molecular statics and results from the wider core for the edge than

screw dislocations. The critical stress for screw and edge dislocation motion when the

MRSSP is the (110) habit plane in unconstrained PFDD is, however, higher by 68% and

70% than those in constrained PFDD. The enhancement is due to the spreading of the

dislocation cores onto multiple parallel or non-planar planes, outside of the habit plane in

unconstrained PFDD (see Fig. 4.1). For both the screw and edge dislocations, non-zero

values of ϕ2 and ϕ3 are present in the unconstrained case, which represent slip on the

(011̄) or (101) planes and make dislocation glide more difficult on the (110) habit plane.

When the MRSSP corresponds to either the (011̄) or (101) plane, then the applied

stress is considered a non-Schmid stress. In constrained PFDD, both the screw and edge

dislocations glide on the (110) habit plane, even when the applied stress is non-Schmid.

The non-Schmid stresses, however, need to be twice as high as the Schmid stress to

initiate glide. The double enhancement is expected based on the orientation relationship

between either cross slip plane and the habit plane.

In unconstrained PFDD, the response to a non-Schmid stress depends on the dislo-

cation screw/edge character. The edge dislocation either remains sessile or glides in the

(110) habit plane provided the applied stress is sufficiently high. The edge core, while
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spread, is still planar, with non-zero values of ϕ2 and ϕ3 mostly lying within the (110)

plane. It would be impossible for this core to cross slip onto the MRSSP. The screw

dislocation, on the other hand, cross slips onto the MRSSP. The critical value of the non-

Schmid stress for cross slip is more than twice the critical value of the Schmid stress for

it glide within its habit plane. Cross slip is enabled as a consequence of the non-planar

core structure of the screw dislocation (Fig. 4.1). Fig. 4.4 shows the order parameters

after a dislocation cross slips from the (110) plane to the (101) plane. Values where the

order parameter is one or more indicate slipped regions due to glide of a dislocation.

Accordingly, cross slip is observed where the trail of grid points with ϕ1 = 1 stops, and

a new trail of grid points with ϕ3 = 1 begins. At this intersection point, a right-handed

[1̄11](110) screw dislocation oriented in the [1̄11] direction meets with a net zero pair

of left-handed [11̄1̄](101) and right-handed [1̄11](101) screw dislocations. The first two

dislocations annihilate and the remaining right-handed [1̄11](101) screw continues gliding

on the (101) plane. As the screw dislocation glides away, the local plastic strain at the

intersection is zero due to the opposite character of the two dislocations at that point.

However, the lattice energy (Eq. (1.9)) is independent for each slip system, and therefore

does not cancel, leaving a residual non-zero lattice energy at the intersection line. A

different form of the lattice energy that combines slip from multiple planes, similar to

that developed by Zheng et al. for FCC crystals [165], would be required for the lattice

energies to cancel.

As expected in actuality, the PFDD model predicts the ability of screw dislocations to

cross slip and edge dislocations to not cross slip. Importantly, the unconstrained PFDD

formulation naturally accounts for this screw-edge difference through its calculation of

the minimum energy core structure and not by rules or calculations of the dislocation

character.
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Figure 4.4: Cross slip of a screw dislocation from the (110) plane to the (101) plane. The
arrows show the sense of the screw dislocations for each slip system.

4.3.3 Expansion of a Dislocation Loop

The foregoing study analyzes the effects of model formulation on the critical stresses

to initiate glide of an originally stationary dislocation. Both formulations reveal a sig-

nificant screw-edge character dependence in both the core structures and critical glide

stresses. Next, the effects of the formulation on the glide resistance of an already mov-

ing dislocation are studied. Considering the known influence of dislocation character,

the expansion of a dislocation loop, which bears all characters, is simulated using both

formulations.

Fig. 4.5 shows the resulting loop shapes under an applied shear stress σ = 0.12µ

at different time steps. In constrained PFDD, the dislocation loop expands into an

oval shape as screw segments glide at a slightly slower rate than edge segments. The

elongation of the screw portions over the non-screw portions can also be expected since

the non-screw portions have higher line energy. As shown in the inset, the elongated
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portion is curved and not pure screw. In unconstrained PFDD, the differences between

the mobility of the edge and screw segments are much more pronounced. The non-planar

screw cores are much more difficult to move than the planar edge cores, leading to a

more oblong shaped loop than in the constrained case. Unlike in the constrained case,

the screw segments are long and straight. While the edge and mixed character portions

of the loop are able to glide continuously, with segments several Burgers long advancing

together, the screw dislocation portion of the loop will only advance a 1-2 Burgers vector

long segment at a time. This segment then grows outwards as the newly formed edge

segments glide quickly along the length of the screw dislocation. This is indicative of a

kink-pair nucleation and migration mechanism for screw dislocations in unconstrained

PFDD. Experimental observations of dislocations in deformed BCC metals have often

reported predominance of screw-type dislocations and when in motion, these segments

are known to move via kink-pair nucleation and migration [8, 144, 174, 175]. Compared

to constrained PFDD, unconstrained PFDD evidently offers a much better representation

of the mechanisms of dislocation motion in BCC materials.

In Fig. 4.5, in unconstrained PFDD, the dislocations behave differently depending on

their character. Non-screw dislocation motion is smooth, while screw dislocation motion

is jerky in time. This staggered motion can be characterized by relatively long waiting

times between kink-pair formation compared to the time required to form and migrate

the kink-pair. When the applied stress increases from 0.12µ to 0.13-0.17µ, all portions

of the loop move smoothly. The screw portions still move by the kink-pair mechanism

but the waiting time between kink-pair formation becomes comparable to the time the

kink-pair forms and migrates, leading to steady-like motion.

To compare glide rates for screw and edge segments, the loop calculations are com-

pared at the higher applied stresses, 0.13-0.17µ, at which all portions of the loop move

in a smooth manner. In each simulation, the velocity v of the screw and edge dislocation
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Figure 4.5: Expansion of a dislocation loop in both the constrained and unconstrained
PFDD models. The dislocation line where ϕ1 = 0.5 is outlined in white. Both loops
have a Burgers vector equal to a

2
[1̄11]. The unconstrained case exhibits more screw-edge

anisotropy because of the slower glide of the screw dislocation resulting from its non-
planar core. The insets show the differences in screw dislocation morphology in the two
cases. The applied stress is 0.12µ.
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portions is calculated as the change in radius of the loop in the [11̄2] and [1̄11] directions

per timestep, respectively. Given v, the corresponding numerical drag coefficient B can

be calculated

B =
σb

v
(4.1)

where σ is the resolved shear stress in the slip plane. The parameter B has units of

1/mdisl, where mdisl is the kinetic coefficient in Eq. (1.8). Below, it is verified that B is

independent of the choice of mdisl, by repeating the calculations using mdisl∆t = 0.2 µ−1

and mdisl∆t = 0.3 µ−1 in the minimization. Fig. 4.6 compares B for the constrained and

unconstrained PFDD. In both cases, the screw segments of the loop have a much higher

B than the edge segments. It is worth noting that B correspond to athermal values.

Temperature generally tends to increase drag, so the B found here could be considered

practical lower bounds on drag resistance.

Fig. 4.6B studies the changes in the screw-to-edge B ratio with applied stress. In

constrained PFDD, the ratio ranges narrowly from 1.82 to 2.09, increasing slightly with

stress. These screw-to-edge drag ratios are comparable to 1.8, the screw-to-edge critical

stress ratio to initiate motion of a straight dislocation. The screw/edge character de-

pendence in static and dynamic resistance is maintained. Interestingly, in unconstrained

PFDD, the drag ratio is much larger than the screw-to-edge critical stress ratio and is

sensitive to the applied stress. The screw-to-edge drag ratio is 4.53 at 0.13µ, approxi-

mately two to two and a half times higher than the critical stress ratio and decreases

to 3.36 at 0.17µ. The dislocation character dependence is accentuated when dislocations

are dynamic and carrying plasticity, which is arguably just as, if not more, important

than when they are static.

The screw-to-edge dislocation drag ratios reported in the literature vary widely from
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Figure 4.6: (A) The numerical drag coefficients calculated from the dislocation loop
velocity simulations. (B) The ratio of the screw and edge numerical drag coefficients for
both the constrained and unconstrained cases.

near unity to several orders of magnitude, depending on both applied stress and tem-

perature [176–180]. Experimental measurements of Fe, K, and Nb at low temperatures

give relatively small ratios between 1 and 2 [177, 178]. As temperature is increased to

intermediate temperatures, this ratio tends to increase dramatically as edge dislocation

glide becomes easier relative to screw [176, 180].

It is important to verify that the calculated B is independent of the chosen numerical

value of mdisl. The calculated dislocation velocity, measured in Burgers vectors per

timestep, depends on mdisl through the Ginzburg-Landau equation. This in turn affects
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Figure 4.7: The drag coefficients for each dislocation type calculated with different values
of mdisl∆t

the drag coefficient B (Eq. (4.1)). To ensure that the drag results presented here do not

depend on the magnitude of mdisl, the same loop simulations in as in were repeated using

mdisl∆t equal to 0.2 µ−1, 0.25 µ−1, and 0.3 µ−1. Fig. 4.7 shows the calculated numerical

drag coefficients for both dislocation characters in both constrained and unconstrained

PFDD. When normalized by 1/mdisl, the results are consistent across each of the three

values of mdisl∆t tested. Small discrepancies, especially in the screw dislocation drag at

lower applied stresses, are due to the jerky nature of screw glide at these stresses and

therefore the inexact calculations of the glide velocity.
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4.3.4 Cross Slip Around an Obstacle

In addition to the resistances to initiate and sustain motion, the ability of a dislocation

to cross slip can affect macroscopic behavior. When a dislocation encounters an obstacle

in its glide plane, cross slip allows the dislocation to bypass the obstacle and continue

gliding. Earlier, it was demonstrated that a stationary screw dislocation can potentially

cross slip provided that the applied MRSSP coincides with the cross slip planes and the

amount of shear is sufficiently high, while an edge dislocation under the same driving

force could not, regardless of the amount of shear. Here, unconstrained PFDD model is

used to consider the propensity for a screw dislocation already in motion in its habit plane

to cross slip when it encounters an obstacle in its habit plane. In this event, whether the

screw dislocation cross slips should depend on the strength of the obstacle with all else

being the same.

Fig. 4.8A shows the initial model set up. The simulation cell consists of a [1̄11](110)

screw dislocation dipole with 32b spacing. The cell size is much larger, with dimensions

128, 4, and 256 grid points in each of the primitive cell directions ei, i = 1, 2, 3. In the

path of the dislocation, a coherent crystallographic cylindrical precipitate with radius 8b

is inserted, centered about the (110) plane. Its peak lattice energy, USFE, is greater than

that of the surrounding Nb, making it much more resistance to slip transmission by the

approaching dislocation. For a weak obstacle, the precipitate has a USFE 1.1 times that

of Nb and for a strong obstacle, 1.25 times that of Nb.

A shear stress of 0.16 µ is applied to the (121̄) plane, which results in equivalent

resolved shear stresses on the habit (110) plane and the (011̄) cross slip plane. Fig. 4.8A-

F show the path taken by the screw dislocation for both the weak and strong obstacles,

respectively. Initially, the dislocation glides on the habit plane in both cases. In the

case of a strong obstacle, when the dislocation encounters the obstacle within the glide
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plane, it cross slips onto the (011̄) plane, avoiding the obstacle. In the case of the weak

obstacle, it does not cross slip but rather transmits through the precipitate, shearing it

and continuing to glide on the (110) plane. As both of these simulations used the same

stress conditions, the differences in dislocation behavior are due solely to the differing

strengths of the obstacles.

A similar simulation is repeated for an edge dislocation. Fig. 4.8G-L present snap-

shots during the interaction between an edge dislocation and two obstacles with different

strengths. Under the same stress conditions as above, the edge dislocation glides on the

habit plane and shears through the precipitate when the obstacle USFE is 1.1x or 1.25x

that of Nb, as in the screw simulations. When the strength of the obstacle is increased by

making its USFE twice that of Nb, the dislocation is no longer able to shear the obstacle

and becomes pinned at the boundary of the obstacle. Since the edge dislocation cannot

cross slip, no further plastic strain can be accommodated.

4.4 Discussion

Prior PFDD simulations of BCC materials used a correction to the lattice energy

term to account for differences between edge and screw dislocation glide [84, 97]. This

correction scaled down the barrier for edge dislocations relative to screw dislocations in

order to make their glide easier. Here, by using unconstrained PFDD, substantial differ-

ences in the drag between edge and screw dislocations are fundamentally accounted for

through a more accurate representation of their core structures. These differences can

cause screw-character dislocations to move by kink-pair formation and migration. In the

standard formulation, kink-pairs would need to be inserted or promoted by introduction

of a locally weak region. Last, note that the stresses associated with kink-pair formation

and cross slip events reported here correspond to athermal values; both kink-pair forma-
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Figure 4.8: The interaction of dislocations in Nb with a cylindrical obstacle that has a
higher local USFE than Nb. The underlying color corresponds to the local USFE, and
the white line traces the path of the dislocation where the order parameters exceed 1.
When the obstacle USFE is only 1.1x that of Nb, both the edge and the screw dislocation
are able to shear the obstacle. When the obstacle has a USFE 1.25x that of Nb, the screw
dislocation cross slips to avoid the obstacle. When the obstacle has a USFE 2x that of
Nb, the edge dislocation becomes pinned and cannot cross slip.
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tion and cross slip are known to be aided by thermal energy, so increases in temperature

can help to overcome the barriers for kink-pair nucleation and cross slip.

This simple example of cross slip around a high-USFE obstacle shows how this model

can be used to understand more complex dislocation dynamics. For example, cross slip of

a portion of the dislocation line can create dislocation sources, increasing work hardening.

Cross slip can also aid in dynamic recovery by allowing for dislocation annihilation. Fu-

ture applications of unconstrained PFDD could include more complex dislocation motion

and interactions, such as cross slip around other dislocations or an elastically misfitting

obstacle.

4.5 Conclusion

PFDD was extended to model the character-dependent core structure and dislocation

cross slip in a BCC material by employing a non-orthogonal BCC grid and making avail-

able multiple non-planar glide planes within the formulation. Compared to the original

planar formulation, this model captures the low-energy, non-planar core structure of screw

dislocations. The differences in core structure between edge and screw dislocations results

in a higher degree of edge-screw glide anisotropy, leading to slower screw dislocation glide

and more elongated dislocation loops. Using the new PFDD model, screw dislocations

can move via kink-pair nucleation and when encountering a sufficiently strong obstacle

can cross slip. Most importantly, these outcomes occur in these simulations without

including any rules or correction terms. This model can be applied to more accurately

study the glide and cross slip of dislocations in BCC crystals, including multi-component

alloys.
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Short-range order †

5.1 Introduction

Chemical SRO, defined as the local preferential bonding of certain atom types, can

exist in alloys that are otherwise disordered and have no long-range order [183]. SRO

has been studied extensively in the context of binary alloys for decades [183–188]. There

is renewed interest in SRO due to the emergence of MPEAs, which contain thermody-

namically driven SRO [1, 29–31, 33–37, 39, 189–194].

SRO can play a role in the material properties of alloys. Fisher first proposed the idea

of SRO strengthening in 1954, positing the presence of SRO would increase the dislocation

glide stress due to the creation of a disordered interface as the dislocation disrupts the

SRO [184]. Further studies have shown that dislocation behavior is influenced by SRO

in both binary alloys [186] and MPEAs [20, 39, 123, 194–196]. With the possibility to

†This chapter adapted from Reference [181]: Fey, L. T. W., & Beyerlein, I. J. (2022). Random
Generation of Lattice Structures with Short-Range Order. Integrating Materials and Manufacturing
Innovation, 1-9. and Reference [182]: Zheng, H., Fey, L. T. W., Li, X. G., Hu, Y. J., Qi, L., Chen,
C., Xu, S., Beyerlein, I. J., & Ong, S. P. (2022). Multi-scale Investigation of Chemical Short-Range
Order and Dislocation Glide in the MoNbTi and TaNbTi Refractory Multi-Principal Element Alloys,
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control SRO via processing comes the exciting potential to tune SRO and thus mechanical

properties [30].

To model SRO, it must first be quantified, which is typically done via the Warren-

Cowley (WC) parameters [183, 197], defined as

αkij = (pkij − cj)/(δij − cj) (5.1)

where αkij is the WC parameter for the i-j pair type in the k-th nearest neighbor shell,

pkij is the probability that an atom is a j-type atom in the k-th nearest neighbor shell

of an i-type atom, cj is the overall concentration of type j, and δij is the Kronecker

delta. The WC parameter is zero for completely random alloys with no SRO. Positive

WC parameters indicate preferred and non-preferred bonding pairs for like and unlike

pairs, respectively, with the opposite being true for negative WC parameters. The WC

parameters for chemical or magnetic SRO are generally temperature dependent, as SRO

tends to increase with decreasing temperatures.

WC parameters are typically calculated with Monte Carlo (MC) methods, which

involve randomly swapping atoms according to an energy criterion until equilibrium is

reached. The energies can be calculated from atomistic methods, usually either DFT or

MD. DFT is considered to be the more accurate of the two. However the system sizes

used in most MC-DFT calculations of SRO are extremely limited, including about 100-

200 atoms [30, 31, 37, 198, 199] with traditional methods or about 1000 atoms with cluster

expansion methods [31, 35]. MC-MD simulations, on the other hand, require the creation

of a classical potential, which leads to relatively less accurate calculations, but can use

1-3 million atoms [39, 123, 188, 200–203]. This system size approaches that required to

study more complex material behaviors such as dislocation glide, but equilibrating the

structures with MC-MD to introduce SRO is computationally intensive and can limit the
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size and number of simulations [39, 201]. This limitation can be problematic in MPEAs

where the properties are known to be highly probablistic and many iterations of the same

simulation are desired [13, 132].

In this chapter, a new method is developed to generate large lattice structures with

SRO. The method, Order Through Informed Swapping (OTIS), uses known WC parame-

ters as input, and then starting from a completely random lattice, uses MC-like swapping

to find a structure with the desired WC parameters. In this way, the computationally

expensive MC-DFT or MC-MD calculations only need to be performed once using a

smaller, tractable cell size. The WC parameters are then extracted and used to create

unlimited lattices of any size that can be used as inputs to atomistic or mesoscale models.

The flexibility of OTIS is demonstrated by creating lattices with SRO for two different

BCC ternary MPEAS, one FCC ternary MPEA, and two BCC quinary MPEAs.

The lattices are then incorporated into a multiscale modelling approach to investigate

the effects of SRO on dislocation behavior. A highly accurate atomistic potential is

developed via machine learning for the Mo-Ta-Nb-Ti system [20, 204–207], and hybrid

MC/MD are carried out for temperature-dependent SRO calculations to calculate the

WC parameters, USFE values, and elastic constants for MoNbTi and TaNbTi. These

two MPEAs are chosen since experimental observations find that their equimolar forms

exhibit disparate mechanical properties, with the MoNbTi being substantially greater in

tensile yield strength, peak strength and strain hardening than TaNbTi.

The values calculated from atomistics are input into PFDD simulations to predict

stress-driven pathways taken by individual dislocations [208]. SRO strengthening mani-

fests in both MPEAs, with the average USFEs and critical stresses to initiate and sustain

propagation of dislocations increasing with SRO above those for the ideal random solid

solution. SRO strengthening contribution scales linearly with degree of SRO. The calcula-

tions also reveal that gliding dislocations in subcritical conditions experience significant
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hardening. This glide hardening is strongly correlated to the statistical dispersion in

the local USFE, and since SRO tends to narrow the distribution in USFE, glide hard-

ening decreases with degree SRO. In studying dislocation loop expansion across stress

regimes, a transition between jerky and smooth dislocation glide is identified and re-

lated to stress sensitivity of kink-pair nucleation rates of the screw character portions.

Finally, analysis reveals that initially screw- and edge-oriented dislocations will become

wavy in glide yet move via different mechanisms—kink-pair formation and migration vs.

pinning/depinning. Their individual glide mechanisms do not change with composition,

amount of SRO, glide distance, or subcritical or overdriven loading conditions. These

computations explain why MoNbTi is the stronger and has the greater strain hardening

and forecasts that it is more amenable to SRO strengthening.

5.2 Generation of lattices with short-range order

5.2.1 Algorithm for creation of lattices with short-range order

Let n equal the number of component elements, ci equal the concentration of type

i, and αij equal the desired WC parameters in the first nearest neighbor shell. The

simulation cell size is given in terms of the primitive vectors: e1 = a
2
[111̄], e2 = a

2
[1̄11],

and e3 =
a
2
[11̄1] for a BCC lattice and e1 =

a
2
[110], e2 =

a
2
[011], and e3 =

a
2
[101] for an

FCC lattice. The cell dimensions are N1, N2, and N3 in the directions e1, e2, and e3,

respectively, for a total of N = N1 ∗N2 ∗N3 lattice sites.

The OTIS algorithm is summarized in Figure 5.1. To begin, a lattice of the desired

shape and size is created. The total number of nearest neighbor bonds will beNZ/2 where

Z is the coordination number of the lattice. Given the probability pij of each bond type,

which can be extracted from the WC parameters (Equation (5.1)), the desired number
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of each bond type can be easily determined. The goal number of bonds is defined as an

n x n matrix where each element is given by

gij =
1

2
NZcipij (5.2)

Each site is randomly assigned an initial element type, maintaining the desired overall

concentration. The current bond numbers, which compose an n x n matrix denoted as

cij, are calculated from this structure.

In each step of the OTIS algorithm, two unlike atoms are randomly selected, and, if

the swap is favorable, swapped. Swapping is continued until cij = gij for all pair types

i-j. There are two major challenges with this method that need to be addressed. First,

an acceptance criterion for swaps must be defined. Because the probabilities pij must

sum to 1 for any atom type i and due to symmetry in gij, there are n(n−1)/2 constraints

that must be met. There is only one value to optimize for a binary alloy, and this has

been done previously for binary FCC lattices in the work of Gehlen and Cohen [209].

For MPEAs, the situation is more complicated. A swap that moves cij towards the goal

gij for one pair type i-j may move other pair types further from the goal. For the entire

structure, a distance d from the goal is defined as

d =
∑

i,j

|cij − gij| (5.3)

which gives the element-wise sum of the absolute difference of the current and goal

matrices. During the swapping procedure, only swaps that lower d will be accepted.

This means that all bond types are considered while swapping an i-type and a j-type

atom, not just the i-j bond type.

The second challenge is how to choose atoms for swapping. As noted by Gehlen and

Cohen, two atoms chosen completely at random are highly unlikely to be accepted for
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a swap [209]. This causes a high rejection rate and an excessively long computation

time to reach convergence. Instead, an informed, statistical swapping method is used by

choosing from a subset of atoms that are more likely to give us an accepted swap. For

each lattice site x, define δαij(x) as the change in cij if the atom at x is replaced by an

atom of type α.

Now, let A-B be the atom pair to be swapped. First the A-type atom is selected.

Instead of randomly choosing from all A-type atoms, an A-type atom is randomly selected

from the subset of A-type atoms where
∑

i,j |cij + δBij − gij| <
∑

i,j |cij − gij|. This means

that the only A-atoms considered are those where d would be lower if a B-type atom

were on that lattice site instead. If no A-type atoms that fit this criterion, the method

reverts back to choosing from all A-type atoms. The chosen lattice site is denoted from

either situation as xA.

The next step is to choose the B-type atom, for which a similar procedure is used.

Since xA is known, it is included in the selection criterion. A B-type atom is randomly

select from the subset of B-type atoms where
∑

i,j |cij+δBij (xA)+δAij−gij| <
∑

i,j |cij−gij|.

If there exists a site xB that meets this criterion, the atoms at site xA and xB are swapped.

If not, another unlike pair type is selected to swap and repeat the procedure. The pair

types are rotated through sequentially (e.g. A-B, A-C, B-C, B-A, and so on) at each

swapping step such that each pair type has an equal opportunity to be swapped.

After a pair of atoms is swapped, the current bond numbers cij are updated by adding

δαij(x
A) and δαij(x

B) to cij. δ
α
ij(x) must also be updated, but only for the two atoms that

were swapped and their neighbors. With both, the maximum number of updates to δαij

is 2(Z + 1), a small fraction of the total size N .

The swapping process is repeated until cij is within some tolerance gij for pairs i-j.

Here, a tolerance of 10−3NZ/n is used. This gives final WC parameters within less than

1% of the desired WC parameters.
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1Figure 5.1: A flowchart showing the Order Through Informed Swapping (OTIS) algo-
rithm

In the following section, OTIS is demonstrated by generating SRO lattices for several

different MPEAs for which the WC parameters have been calculated previously, including

MoNbTi, TaNbTi, CoCrNi, HfNbTaTiZr, and HfMoNbTaTi [39, 182, 210]. For each of

these alloys, the WC parameters were calculated at multiple annealing temperatures with

MC-MD using multi-component classical potentials, beginning with a random structure

and performing MC until equilibrium is reached [123, 182]. The WC parameters at

each temperature are listed in Tables 5.1 and 5.2. Considering the various alloy and

temperature combinations sums to 16 unique sets of WC parameters. For each set,

simulation cells are created with side lengths 16, 24, 32, 40, 48, 56, and 64, with 10

unique SRO lattices generated at each size. The software Ovito was used to visualize the

lattices and confirm the correct numbers of each bond type [211].
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MoNbTi [182]

Mo-Mo Nb-Nb Ti-Ti Mo-Nb Mo-Ti Nb-Ti

300K -0.338 -0.055 -0.121 -0.272 -0.405 0.162

1673K -0.079 -0.012 -0.041 -0.049 -0.108 0.026

TaNbTi [182]

Ta-Ta Nb-Nb Ti-Ti Ta-Nb Ta-Ti Nb-Ti

300K 0.109 -0.037 0.071 0.001 0.217 -0.076

1673K 0.025 -0.012 -0.010 0.023 0.026 -0.047

CoCrNi [39]

Co-Co Cr-Cr Ni-Ni Co-Cr Co-Ni Cr-Ni

350K -0.018 -0.108 0.470 -0.592 0.557 0.384

650K -0.058 -0.123 0.363 -0.543 0.427 0.298

950K -0.060 -0.116 0.163 -0.338 0.218 0.107

1350K -0.068 -0.098 0.089 -0.256 0.119 0.059

Table 5.1: The Warren-Cowley parameters for calculated with Monte Carlo Molecular
Dynamics for the ternary alloys.
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HfNbTaTiZr [210]

Hf-Hf Nb-Nb Ta-Ta Ti-Ti Zr-Zr Hf-Nb Hf-Ta

300K -0.241 0.056 0.093 -0.199 -0.231 -0.250 -0.242

600K -0.082 0.013 0.087 0.075 -0.067 -0.138 -0.068

900K -0.052 0.007 0.059 0.047 -0.048 -0.088 -0.046

Hf-Ti Hf-Zr Nb-Ta Nb-Ti Nb-Zr Ta-Ti Ta-Zr Ti-Zr

300K -1.427 0.951 -0.151 0.964 -0.340 0.984 -0.221 -1.319

600K -0.422 0.300 -0.127 0.471 -0.155 0.604 -0.059 -0.355

900K -0.276 0.204 -0.086 0.306 -0.104 0.411 -0.039 -0.254

HfMoNbTaTi [210]

Hf-Hf Mo-Mo Nb-Nb Ta-Ta Ti-Ti Hf-Mo Hf-Nb

300K -0.171 -0.080 0.038 0.132 0.688 -0.606 -0.238

600K -0.124 -0.048 0.057 0.098 0.734 -0.627 -0.177

900K -0.108 -0.048 0.038 0.073 0.382 -0.441 -0.032

Hf-Ta Hf-Ti Mo-Nb Mo-Ta Mo-Ti Nb-Ta Nb-Ti Ta-Ti

300K -0.029 0.213 -0.275 -0.224 0.760 -0.167 0.832 0.942

600K -0.067 0.384 -0.194 -0.206 0.827 -0.231 0.830 0.894

900K 0.028 0.014 -0.096 -0.131 0.470 -0.180 0.465 0.574

Table 5.2: The Warren-Cowley parameters for calculated with Monte Carlo Molecular
Dynamics for the quinary alloys.
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5.2.2 Random lattices

To compare the degree of SRO across multiple MPEAs and annealing temperatures,

an SRO figure of merit Ω is introduced, defined as the quadratic mean of the WC pa-

rameters for unlike pair types:

Ω =

√∑n
i=1

∑n
j=i+1 α

2
ij

n(n− 1)/2
(5.4)

Only unlike pairs are included in this sum as this will include the n(n−1)/2 indepen-

dent WC parameters, from which the WC parameters for the like pairs can be uniquely

determined. By this definition, Ω = 0 corresponds to no SRO, a completely random

structure, and increases in Ω signify more extensive SRO.

To demonstrate the versatility of the OTIS method, three examples are presented

with either BCC or FCC and either three (ternary) or five elements (quinary), all with

relatively high values of Ω, which are expected to be the more difficult cases to create.

Figure 5.2 shows the evolution of an equiatomic MoNbTi BCC lattice using the WC

parameters from 300K (Ω = 0.469) [182]. Starting from an initially random lattice,

atoms are swapped using the OTIS algorithm until the desired SRO is achieved. The

WC parameters from the final structure were recalculated by counting the number of each

bond type with Ovito and confirmed to be within 1% of the prescribed WC parameters.

This error can be decreased if desired by the lowering tolerance criteria. Figure 5.3

applies the OTIS algorithm to create an FCC equiatomic CoCrNi lattice structure using

the WC parameters at 350K (Ω = 0.785) [39]. For the same size, 32 x 32 x 32, the effect

of increasing Ω from the BCC ternary to the FCC ternary is readily apparent by the clear

regions of chemical segregation. Figure 5.4 shows an example lattice for the BCC quinary

alloy HfNbTaTiZr using the WC parameters at 300K. Among the three examples, this

one has the highest degree of SRO (Ω = 1.18) [210]. Further, unlike the ternary alloys,
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Figure 5.2: The creation of a 32 x 32 x 32 lattice for MoNbTi using the Warren-Cowley
parameters at 300K. The solid lines show the current bond probabilies pij while the
dashed lines show the goal probabilities.

which must meet three independent bond number constraints, a quinary alloy must meet

10. This case shows that because the OTIS algorithm takes into account all bond types

when accepting or rejecting a move, it can still create a structure that meets the desired

WC parameters despite the significant increase in bond number constraints.

Although all structures in Figures 5.2 to 5.4 have the same number of lattice sites

(32768) and high degrees of SRO, the total number of attempted swaps required to reach

the final goal varies widely, from about 11,000 to more than 47,000. To compare, the

number of actual swaps are plotted in Figure 5.5A; that is, excluding the rejected swaps,

to reach the desired WC parameter for all alloys, annealing temperatures (SRO degree),

and a broad range of lattice sizes (number of lattice sites). The total number of swaps are

averaged over the 10 SRO lattices generated for each alloy, size, and temperature. The
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Figure 5.3: The creation of a 32 x 32 x 32 lattice for CoCrNi using the Warren-Cowley
parameters at 350K. The solid lines show the current bond probabilies pij while the
dashed lines show the goal probabilities.
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Figure 5.4: The creation of a 32 x 32 x 32 lattice for HfNbTaTiZr using the Warren-
Cowley parameters at 300K. The solid lines show the current bond probabilies pij while
the dashed lines show the goal probabilities.
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number of swaps is linearly correlated with the total number of lattice sites, while the

number of swaps per site depends on several intuitive factors. First, more extensive SRO,

represented by higher values of Ω, increases the number of swaps required. Second, FCC

lattices require more swaps than BCC lattices due to the higher coordination number and

therefore higher number of bonds within the structure. Third, the quinary alloys tend

to require more swaps than ternary alloys since there are more bond number constraints

that must be met.

While OTIS uses informed swapping to identify bonds that are likely to be accepted,

there are still instances when an iteration fails to find an acceptable pair and the swap

is rejected. In all such cases, the initial acceptance rate, defined as the percentage of

swaps accepted across all pair types, is 100% for the first few iterations of the algorithm.

As individual pair types reach their goal bond numbers, it becomes more difficult to

find an acceptable atom pair to swap, and the acceptance rate drops. This can be seen

in Figures 5.3 and 5.4 when pij levels off as it approaches the goal numbers. The final

acceptance rates range from 20% to 100%, and the acceptance rate does not appear to

be sensitive to the system size, extent of SRO, or lattice type. In the cases tested here,

the acceptance rate varies up to 46% when repeating the same OTIS simulation with a

different random initial lattice.

The total simulation time, plotted in Figure 5.5B, is a function of the number of

swaps required and the acceptance rate. On a personal computer, the average time to

create a lattice with 262,144 atoms ranges from under two minutes for TaNbTi at 1673K

to 11 hours for HfMoNbTaTi at 300K.
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A B

Figure 5.5: (A) The number of swaps required to reach the desired Warren-Cowley
parameters for each alloy. (B) The average total simulation time on a personal computer
for each alloy as a function of system size.

5.2.3 Scope and future applications

OTIS is a time-efficient method for generating large numbers of simulation cells with

hundreds of thousands of atoms that can then be used in atomistic or mesoscale simula-

tions. It can be used when direct MC-MD calculations would be prohibitively expensive

or time-consuming for the simulation cell size, or when many distinct SRO lattices are

desired. The example structures here all concern equiatomic MPEAs, but OTIS can be

used for any system with SRO, including conventional binary alloys or non-equiatomic

MPEAs. Although not currently a feature of the code, the method itself could used for

other lattice types beyond BCC and FCC, including HCP. Additionally, while the focus

of this work was chemical ordering, the method could be applied to other types of SRO

such as magnetic SRO. The only requirement of the method is the input of known WC

parameters. In cases where the WC parameters are calculated for multiple temperatures,

one could interpolate the parameters to intermediate temperatures and use OTIS to cre-

ate the SRO structure, thus completely bypassing the need for additional MC-MD or

MC-DFT calculations to create atomic lattices for those annealing temperatures.
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The OTIS code could also be advanced to consider WC parameters beyond the first

nearest neighbor shell. While most studies only calculate and report the WC parameters

from the first nearest neighbor shell, WC parameters can be calculated for the second

nearest neighbor shell and beyond [209]. In these cases, the additional WC parameters

would simply be added as new bond types, represented as additional rows and columns in

the cij, gij and δ
α
ij(x) matrices. In other words, A-B first nearest neighbor bonds would be

considered separately from A-B second nearest neighbor bonds. The atom selection and

acceptance criteria outlined here would account for all of these bond types when making

swaps. Of course, this would increase the number of constraints that OTIS must meet to

find a valid structure, but as shown here through the quinary MPEA calculations, OTIS

can handle at least ten independent constraints.

5.3 Effect of short-range order on dislocations

5.3.1 Atomistic simulations

OTIS is combined with atomistic simulations and PFDD to study the effect SRO

on dislocation behavior. Atomistic simulations here are enabled by the development of

a highly accurate machine learning interatomic potential for the Mo-Ta-Nb-Ti system

based on the moment tensor potential (MTP) formalism [204–207]. Fig. 5.6a provides

an overview of the MTP fitting procedure, which is based on a well-established workflow

developed previously [20, 38]. Full details of the potential fitting can be found elsewhere

[182]. To investigate the effect of composition variations on SRO and dislocation glide,

the training data were carefully selected to encompass all known unary, binary, ternary

and quaternary phases in the Mo-Ta-Nb-Ti system. Fig. 5.6(b,c) show that extremely low

test mean absolute errors (MAEs) were achieved for energies (4.1 meV·atom−1) and forces
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(0.067 eV·Å−1), comparable to that achieved previously for the NbMoTaW RMPEA [20,

38]. The MTP also reproduces very well the DFT elastic constants for the constituent

elemental systems. The shear moduli µ are 29.6 and 32.3 GPa for TaNbTi and MoNbTi,

respectively, and the Young’s moduli are 82.7 and 90.7 GPa, respectively.

To calculate the WC parameters, bulk BCC supercells with equimolar MoNbTi and

TaNbTi as well as non-equimolar ternaries with elemental ratio of 3:4:4 and 3:1:1, i.e.,

X4Nb3Ti4, X4Nb4Ti3, X3Nb4Ti4, X3NbTi, XNbTi3, XNb3Ti, where X = Mo or Ta, were

constructed. For each composition, three levels of SRO are achieved by studying the

as-constructed random solid solution (RSS) and annealing at 300K and 1673K using

MC/MD simulations with the MTP. The SRO for the final equilibrium structures is

characterized using Warren-Cowley parameters. By definition, for a RSS, αij ≈ 0 and

for greater degrees of SRO, the absolute value of αij increases. Fig. 5.7 shows the Warren-

Cowley parameters for the annealed alloys. For all compositions, lower annealing tem-

peratures lead to greater levels of SRO, consistent with previous studies.[35, 212]. For the

same set of elements, greater degrees of SRO can be accomplished with off-equimolar sto-

ichiometry, i.e., the 3:1:1 and 3:4:4 compositions, than equimolar. In materials annealed

at 300 K, the SRO exhibited by MPEAs containing Mo (MoxNbyTiz) are much higher

than those containing Ta (TaxNbyTiz). These two types of MPEAs would be expected

to respond differently to the same processing condition or heat treatment, with MoNbTi

being much more susceptible than TaNbTi.

Fig. 5.8 plots the calculated unstable stacking fault energy (USFE) on the {110}

plane, shifting along with ⟨111⟩ directions for as-constructed RSS and samples equili-

brated at two different annealing temperatures. In all cases, a higher concentration of

Ti reduces the USFE. In the Mo-Nb-Ti system, greater concentrations of Mo increases

the USFE, in agreement with a prior work using another interatomic potential [117].

On average, for the same composition, annealing at 300 K raises the USFE indicating
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Figure 5.6: (a) Moment tensor potential development workflow. (b-c) Parity plots of
the MTP predicted (b) energies and (c) forces against DFT values, broken down into
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Figure 5.7: Heat maps of the equilibrium Warren-Cowley parameters αij for alloys an-
nealed at 1673 K and 300 K. By definition, αij = αji for equimolar systems, which is
reflected in the heatmap with a diagonal symmetric color matrix. However, for the sys-
tems with non-equimolar composition, αij ̸= αji. The color scale distinguishes between
low SRO (|αij| < 0.25), medium SRO (0.25 ≤ |αij| < 0.75) and high SRO (|αij| ≥ 0.75).
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that SRO increases USFE. To correlate the USFE with its local composition, the local

composition is determined based on the composition of the first nearest neighbor planes

surrounding the cleaving plane. The correlations between the USFE of a plane and its

local composition are consistent with those observed for average USFE of different bulk

concentrations. Higher local fractions of Mo significantly increase the USFE, while higher

fractions of Ta also increase the USFE but not as significantly as Mo. Higher fractions

of Ti substantially decrease the USFE. The trend of USFE with local composition is

consistent with the trends observed for the bulk composition as discussed above.

The SRO of different pairs from 300K also reflects the bonding preference in MPEAs.

As shown in Fig. 2, for equimolar systems, the SRO of the Mo-Ti pair is negative

(attractive interaction), while the Ta-Ti pair is positive (repulsive interaction). The

SROs of Mo-Nb and Ta-Nb are both negative, but the value for the Mo-Nb pair (-

0.26) is much more negative than that of the Ta-Nb pair (-0.01). Consequently, the

MoNbTi corresponds to higher USFE compared to the TaNbTi. The driving forces for

the differences in the SRO can be attributed to pairwise interactions, as explained from

the perspective of binary formation energy, bond length, and electronegativity.

5.3.2 PFDD simulations

Using OTIS, BCC lattices were generated for MoNbTi and TaNbTi at annealing

temperatures 300K and 1673K, as well as the RSS. Each lattice point was assigned a

local composition based on the type of the atom and its neighbors. Atomistic simulations

of the solute-dislocation interaction energy in BCC MPEAs showed that solute atoms

beyond just the core of the dislocation significantly influence the dislocation energy [213].

In fact, the highest solute-dislocation interaction energy was found at the fifth nearest

neighbor from the screw dislocation center. Therefore, the local composition of each grid
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Figure 5.8: The USFE values calculated with the MTP as a function of the local com-
position around the fault plane in the two alloys at different levels of SRO. The values
obtained from energy minimization using MTP are shown with dots. The values in the
remainder of the triangles are interpolated from the calculated values and colored.
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Atoms Local Composition USFE

Mo Nb Ti

A B C

Figure 5.9: The conversion of an atomic lattice into local USFE values for use in PFDD.

point is determined using all the atoms within a cutoff radius of two Burgers vectors,

which corresponds to and includes atoms up to the fifth nearest neighbor. Only atoms

within the two adjacent (110) planes sheared by a dislocation are included for a total of

31 atoms. The composition of the grid point was associated to a local value of USFE,

which were calculated above (Fig. 5.9).

In each PFDD simulation, three order parameters are used to represent three different

slip systems, each with a Burgers vector a
2
[1̄11]. The slip planes are (110), (011̄), and

(101), which makes cross slip possible and gives the distinct screw-edge differences seen

in BCC materials [146]. A BCC primitive cell is used to define the lattice grid points with

primitive vectors p1 =
b√
3
[111̄], p2 =

b√
3
[1̄11], and p3 =

b√
3
[11̄1]. In each simulation, the

first order parameter is set to 0 or 1 depending on the initial dislocation configuration to

create a dislocation on the (110) plane. All other order parameters are initially zero. For

the screw dislocation dipole simulations, a 128b×362b×136b simulation cell is used, and

the dislocations are initially 362b long and separated by 32b. For the edge dislocation

dipole simulations, a 128b × 128b × 384b simulation cell is used, and the dislocations

are also initially 362b long and separated by 32b. In the dislocation loop simulations, a
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128b× 128b× 128b cell is used and the initial loop radius is 16b.

PFDD is first used to study the role of SRO in the glide behavior of initially straight

edge or screw dislocations. Due to the randomness in underlying fault energies, twenty

independent realizations are performed for each alloy and each level of SRO. To study

critical behavior, the applied shear stress is gradually increased in increments of 0.001µ

until the dislocation glides and is held constant until it fully arrests.

Fig. 5.10 shows snapshots in time of edge dislocation glide. When the stress is initially

applied and raised, the dislocation remains straight. Once the applied stress exceeds

the first threshold, the edge dislocation becomes slightly wavy, as small portions of the

dislocation line bow out into low USFE regions and are held back at the higher USFE

regions. The stress must be increased further for the dislocation to glide, and small

bowed out segments of the dislocation will glide independently through the lower USFE

regions, dragging the neighboring (non-edge) segments through the higher USFE regions.

The dislocation arrests several times during the simulation, each time requiring the stress

to be raised to restart glide. The arrested dislocation morphologies are wavy, unlike the

original pure edge orientation. The stop/start behavior leads to glide plane hardening,

a continual increase in applied stress with increasing plastic strain, as seen in the stress-

strain curve in Fig. 5.10. This is in contrast to PFDD simulations of pure metals, in

which dislocations gliding have a single critical stress and remain straight during glide.

Screw dislocation glide proceeds in a different manner from edge dislocation glide. As

the stress increases, the dislocation remains completely straight with pure screw character

until a kink-pair only a few Burgers vectors wide is nucleated into a low USFE region.

Kink-pairs form naturally when a screw dislocation segment advances by one Burgers

vector in a location where the local applied stress exceeds the local resistance. Unlike

the variable wavy bow out in the edge dislocation, these kink-pairs always have a height

of just 1b, and the kinks will usually, but not always, glide along the length of the screw
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Figure 5.10: Representative examples of dislocation glide and their associated stress-
strain curves. (A-D) and (E-H) show edge and screw glide, respectively, in a TaNbTi
sample at 300K SRO. (I-L) and (M-P) show edge and screw glide, respectively, in a
MoNbTi sample at 300K SRO.
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dislocation to advance the full dislocation line forward. Like the edge dislocations, the

screw dislocations may become arrested under stress, but unlike the edge dislocations,

the arrested dislocation morphologies are nearly straight, apart from a few metastable

kinks, recovering the original pure screw orientation. The start/stop mechanism of glide

of the screw dislocation also leads to glide plane hardening, although at a lower level

than edge dislocation glide plane hardening.

The different dislocation glide mechanisms can be related to differences in their core

structures. The zero-stress, relaxed dislocation core structures, represented through the

PFDD order parameters, are shown for MoNbTi in Fig. 5.11. Two MoNbTi core struc-

tures for both screw and edge dislocations are chosen: one in an “easy” region with a

lower critical stress and one in a “hard” region with a higher critical stress. For compar-

ison, core structures in a material with the pure Mo and pure Nb USFE are also shown.

The elastic constants for all of these structures are the same, so any differences are at-

tributable to USFE alone. The local dislocation core structure changes as the dislocation

glides due to the changing local UFSE.

As is well-known for BCC materials and observed in prior PFDD simulations [146],

screw dislocation cores spread onto the three equivalent 110-type slip planes while edge

dislocation cores remain planar. The non-planar structure of screw dislocations is respon-

sible for the increased glide stresses and the predominance of kink-pair nucleation glide

mechanisms. The width w of the dislocation core in the (110) habit plane is estimated by

measuring the distance between ϕ1 = 0.05 and ϕ1 = 0.95, using a linear interpolation be-

tween grid points as necessary. Higher local USFE values produce narrower dislocations.

Dislocations in pure Mo have the narrowest cores, while Ti-rich regions of MoNbTi have

the widest cores. Wider dislocation cores are associated with lower Peierls stresses [143],

thus explaining the link between lower USFE and lower critical stresses.

Fig. 5.12A plots the stresses to initiate glide σi and the final stresses for runaway glide
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Figure 5.11: The order parameters at the relaxed dislocation cores under zero stress for
MoNbTi. The first and second rows show dislocation in pure Mo and pure Nb, respec-
tively, using the MoNbTi elastic constants. The third and fourth rows show dislocation
segments with low and high critical stresses, respectively. The core width within the
habit plane is annotated.
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σf of edge and screw dislocations based on twenty independent initializations. Regardless

of SRO, both σi and σf for the TaNbTi alloy are lower than those for the MoNbTi alloy.

From Fig. 5.12B, mean glide resistance across the plane scales directly with the average

USFE across the plane. Thus, changes in USFE caused by SRO have a direct influence

on the stress to initiate and propagate dislocations, as seen in Fig. 5.12C. The higher the

Ω, the higher the USFE is increased relative to the RSS case, which translates directly

to increased glide resistance for both screw and edge dislocations.

The hardening in glide resistance is also related to the degree of dispersion of the

USFE values in the glide plane as opposed to the mean. In Fig. 5.12D, the role of

composition and its fluctuations is analyzed by adopting the fractional increase from σi

to σf as a measure of glide-plane hardening. While screw dislocations do not experience

significant hardening, the hardening of edge dislocations scales directly with the USFE

COV for both alloys. The strikingly linear relationship even when considering both alloys

implies that it transcends composition. Thus, apparent differences in the hardening seen

in these alloys can be explained. Compared to TaNbTi, MoNbTi achieves, on average,

greater hardening in the ideal random case and lower hardening in the highest Ω case.

Further, while hardening for both screw and edge dislocations increase as the USFE

COV increases, the edge dislocations experience greater hardening than the screw dis-

locations for the same statistically sampled glide plane length (Fig. 5.12D). The edge

dislocations glide by depinning of the segments at the relatively harder regions, segments

which have reoriented to non-edge character due to bow out. Continued glide, therefore,

relies on overcoming those local regions of higher resistance. Encountering a region ahead

of the dislocation of even greater resistance than in the wake more likely occur when the

dispersion in USFE is greater. The screw dislocation moves by producing short and nar-

row atomic advances of screw-oriented segments, i.e., kink-pairs, in the weaker regions

and relying on the long advances of easier-to-move edge segments along the length of
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the dislocation. Those local domains of higher resistance that are more likely encoun-

tered when the dispersion in USFE is higher, can be easily overcome by migrating edge

dislocations. By virtue of their differing glide mechanisms, edge dislocations experience

greater sensitivity to the dispersion in USFE and hence greater hardening than screw

dislocations. Due to the narrow USFE distribution, screw dislocations in TaNbTi with

300K SRO experience essentially no hardening.

Fig. 5.12E examines the influence of Ω on hardening. It reveals that the role of SRO on

hardening corresponds to the extent to which SRO affects the COV in USFE. As increased

Ω tends to narrow the dispersion in USFE across the glide plane, it reduces glide-plane

hardening. Since the TaNbTi alloy achieves lower Ω than MoNbTi for the same annealing

treatment, hardening, like its strength, is weakly affected by SRO compared to MoNbTi.

Next, the effect of chemical fluctuations on screw/edge glide mobility is studied by

examining loop expansion on the (110) slip plane at constant stress. For given applied

stress, thirty dislocation loop expansion simulations are conducted representing different

locations in a given alloy and SRO. For all cases, the anisotropy in screw/edge behavior

reduces with increases applied stress. At low stresses, the difference in screw/edge behav-

ior is large, causing the loop to expand into an oblong shape (Fig. 5.13A-D). The edge

segments move continuously, constantly changing their wavy appearance. The screw dis-

locations advance very slowly, nucleating only a few kink-pairs at a time and recovering

the nearly straight orientation with each advancement. As the applied stress increases,

both screw and edge velocities increase and their ratio decreases towards unity. The loop

expands more isotropically, almost FCC-like (Fig. 5.13E-H). Fig. 5.13H shows the loop at

both low and high stress overlaid together. The two loops have similar widths (103b and

101b, respectively) but different heights (38b and 51b, respectively), demonstrating that

higher stresses decrease the loop aspect ratio. The screw dislocation has clearly changed

its mode of glide, as a result of a higher kink-pair nucleation rate. The screw portions
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Figure 5.12: Critical stresses for dislocation glide. (A) The mean critical stress for
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vs the coefficient of variation of USFE. (E) The hardening relative to the hardening for
the RSS alloy vs the extent of SRO.
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move continuously and adopt a wavy appearance, superficially much like the edge dislo-

cations. Wavy screw glide, however, occurs as many kink-pairs nucleate simultaneously

along the same dislocation. Newly advanced portions can nucleate further kink pairs,

causing different portions of the dislocations to advance at different rates.

The two extremes of screw dislocation behavior are separated into “jerky” glide at

low stresses and “smooth” glide at high stresses. To link the transition between jerky and

smooth dislocation the rate of kink-pair nucleation, the waiting time between kink-pair

nucleation events is calculated for all simulations. The waiting times from all thirty in-

stantiations of loops are combined into a single distribution for a given alloy and applied

stress, and the means are plotted in Fig. 5.14. Over 22,000 and 52,000 total waiting

times were recorded for TaNbTi and MoNbTi, respectively, and each individual distribu-

tion contains at least 200 values. For both TaNbTi and MoNbTi, higher levels of SRO

correspond to longer average waiting times and thus more jerky dislocation glide at all

applied stresses. Normalizing the applied stresses by the average σi for screw glide, the

three distinct SRO curves collapse into one. Thus, the critical stress to transition from

jerky to smooth scales with Peierls strength or with static strength. SRO affects the

transition stress in dynamic glide indirectly via its strengthening effect on static glide

resistance.

5.4 Discussion

There are limited experimental measurements of the mechanical properties of TaNbTi

and MoNbTi. The tensile yield stresses have been reported as 620 and 950 MPa for

TaNbTi and MoNbTi, respectively [13, 214, 215], which are consistent with the dislo-

cation dynamics predictions of higher glide stresses for MoNbTi. The ultimate tensile

strengths are 683 and 1500 MPa, respectively, so MoNbTi exhibits significant strain
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Figure 5.13: The same dislocation loop expanding in MoNbTi under different applied
stresses. The initial loop shape is shown by the dotted lines in (A) and (D). When a
lower stress is applied, the screw dislocation nucleates kink-pairs infrequently, causing
jerky dislocation glide and remaining largely pure screw. At higher applied stresses, the
screw dislocation nucleates many kink-pairs at once resulting in smoother glide and a
wavy morphology. The final loop from (C) is reproduced by the dashed line in (F) to
highlight the difference in aspect ratio between the two loops.
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hardening while TaNbTi does not. The PFDD simulations show higher hardening in

MoNbTi than TaNbTi due to the increased coefficient of variation in USFE. The dislo-

cation dynamics simulations also revealed that the amount of dislocation hardening is

decreased by the presence of SRO, especially for MoNbTi. As edge dislocations undergo

more hardening than screw dislocations, the PFDD simulations predict the differences

in macro-scale strain hardening in these alloys are largely controlled by edge dislocation

behavior.

From the Warren-Cowley parameter calculations, it is clear that MoNbTi has a higher

propensity for SRO and will be more affected by processing conditions. There has been

interest in tuning the SRO parameters through heat treatment, although experimentally

this is difficult to achieve [30]. Findings indicate that MoNbTi is a better candidate for

exploring SRO strengthening than TaNbTi since SRO promotes two relatively stronger

Mo-Nb and Mo-Ti bonds. However, the relative increases in the average dislocation glide

resistance due to SRO amount to less than 20% even in the most extreme cases, so large

changes in the mechanical properties must be accompanied by changes in the chemical

composition, not SRO alone.

Via MD simulations, a few studies have shown SRO-enhanced dislocation glide re-

sistance [20, 30, 123] and one study on CoFeNiTi alloy reported a slight SRO softening

[201]. Strengthening or softening was related to the formation of immobile dislocation

segments via cross slip. Here, SRO strengthening in dislocation glide is demonstrated

without cross slip. While the current dislocation model permits cross slip [146], it was

not observed in the present calculations since the influence of thermal fluctuations is not

taken into account. Including temperature would undoubtedly increase the chance for

cross-slip or cross-kinking, adding another mechanism for SRO strengthening.
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5.5 Conclusion

In this chapter, OTIS, a novel method to randomly generate atomic lattices with a

given set of WC SRO parameters, was developed. The algorithm begins with a random

structure and swaps atoms until the goal WC are reached. The method uses an informed

selection criterion to choose the atoms for swapping, greatly increasing the efficiency

and convergence of the algorithm. The code can be used to generate input structures

for atomistic and mesoscale simulations without computationally intensive repeated MC

simulations. These structures can the facilitate future studies of the effects of short-range

order in multi-component alloys.

OTIS was combined with atomistic simulation methods and PFDD for a multi-scale

investigation of dislocation mechanisms in MoNbTi and TaNbTi at different levels of

SRO. Increased SRO is associated with higher mean USFE, thereby increasing the stress

required for dislocation glide. The gliding dislocations experience significant hardening

due to pinning and depinning caused by random compositional fluctuations, with higher

SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally,

PFDD simulations of expanding dislocation loops show that the morphology is affected

by the applied stress, with higher SRO requiring higher applied stresses to achieve smooth

screw dislocation glide.
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Chapter 6

Interstitial Solute Atoms in PFDD †

6.1 Introduction

Interstitial solutes, such as O, C, and H, greatly affect the mechanical properties of

body-centered cubic (BCC) metals. Even in small amounts (< 1 at%), interstitial atoms

increase material strength at the expense of a drastic loss in ductility [43–45]. At con-

centrations below the interstitial solubility limit, these changes are generally attributed

to the interaction of dislocations and interstitial atoms [46, 47].

Dislocations may interact with interstitials through several different mechanisms,

which can generally be broken into short-range and long-range interactions. In the

short-range, interstitials change the dislocation core structure, notably the screw core

structure from the so-called easy core to the hard core [57–61]. The reconstructed core

has a modified Peierls barrier shape and magnitude, and can pin the dislocation and

increase overall strength [57, 58, 62]. Kink-pair nucleation and migration, which is the

dominant mechanism for screw dislocation glide in BCC materials [8], is also affected by

†This chapter adapted from Reference [216]: Fey, L. T. W., Reynolds, C., Hunter, A., & Beyerlein,
I. J. (2023). Phase-field modeling of dislocation-interstitial interactions, Journal of the Mechanics and
Physics of Solids, Under Review.
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interstitial atoms. Dislocations may be attracted to interstitials, making kink-pair nu-

cleation towards an interstitial atom easier [45, 63, 64]. On the other hand, interstitials

may pin kinks and thus inhibit kink migration [63, 65]. Additionally, the formation of

kinks on different glide planes can create immobile cross-kinks, pinning the dislocation

[45, 64].

In the long-range, dislocations and interstitials interact through their elastic stress

fields [56, 217]. A Cottrell atmosphere forms around dislocations as interstitial atoms

preferentially segregate to tensile areas over compressive areas, locking the dislocation in

place [48]. A related phenomenon, the Snoek effect, is specific to BCC materials [53]. In

a BCC lattice, larger interstitials such as O and C occupy the octahedral interstitial sites,

creating a tetragonal distortion. There are three possible orientations of the octahedral

sites, each with the largest distortion aligned with a different <100>-type direction. In

a stress-free state, these orientations are energetically equal, but in a stress field, such as

that created by a dislocation, interstitials will adopt the lowest energy orientation [53].

Like the Cottrell atmosphere, this may pin the dislocation in place [54, 55].

Simulating both interstitial diffusion and dislocation glide can be challenging. The

time and length scales associated with atomistic simulations are generally too short to

capture significant interstitial diffusion [71]. Therefore, there is great interest in devel-

oping mesoscale models to investigate the complex dynamics between dislocations and

interstitials. Discrete dislocation dynamics (DDD) models have been developed to in-

clude interstitial atoms, primarily self-interstitials in the context of radiation damage

[72]. These models require the input of phenomenological rules that govern dislocation

motion and hardening in the presence of obstacles.

Phase-field models have also been used to study dislocations and solute atoms [218].

Recently, Zheng et. al developed a phase-field model to study H interstitials in FCC

materials [70, 219]. By adding a concentration phase-field variable, they simulated both
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the short- and long-range interactions of H with dislocations in Ni. The model assumes

interstitial diffusion is essentially instantaneous, and the interstitials always remains in

equilibrium with gliding dislocations. However, some important mechanisms, such as

the Portevin-Le Chatelier effect, in which dislocations are repeatedly pinned by trailing

solute atoms, depend on the interplay between dislocation and interstitial velocities [55,

71].

Here, the PFDD framework is extended to include interstitial solute atoms in a BCC

lattice. Unlike other mesoscale models, an interstitial mobility is included that governs

the timescale over which interstitials diffuse. Due to the symmetry of the BCC lattice,

there are multiple possible orientations of interstitial sites. Multiple phase-field variables

are employed and coupled to track the concentration of interstitials in each site type.

Short-range interactions are accounted for by a concentration-dependent stacking fault

energy, and long-range interactions are accounted for by modifications to the elastic

energy. Full elastic anisotropy is employed, which atomistic simulations have shown is

necessary to accurately capture dislocation-interstitial interaction energies [56].

The new PFDD formulation is described in Section 6.2. As the interstitial formulation

relies on the gradients in the dislocation stress field, a modified Green’s function is em-

ployed to minimize Gibbs oscillations. The new PFDD-interstitial method is applied to

Nb-O as a model system. The concentration-dependent stacking fault energy and elastic

dipole are obtained from ab initio calculations and input into the model. First the effects

of interstitial O on the structure of screw and edge cores in Nb is studied. Then, the Cot-

trell and Snoek atmospheres are formed around screw and edge dislocation cores through

interstitial diffusion, and the critical stresses is calculated for dislocations to break free

from these interstitial atmospheres. As cross-kinking is an important strengthening mech-

anism [45], the ability of screw dislocations to cross slip and the associate critical stresses

are studied. The implications of these results and future applications of the method are
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discussed.

6.2 Methods

6.2.1 Phase-field formulation

To simulate interstitial atoms within the PFDD framework, a conserved phase field

variables cβ(r) is added, which represents the local concentration of interstitials of type β

at point r. The type β can be used to represent different interstitial elements or interstitial

site types e.g., octahedral and tetrahedral. Here, β is used to represent the three distinct

orientations of octahedral sites within a BCC lattice. The maximum concentration of a

site type β is cβmax. The vector c contains all local concentrations with components cβ

for β = 1 to nint where nint is the number of interstitial site types. Let ctot represent the

total concentration at a point,
∑nint

β=1 c
β.

The total energy density ψ is now a function of both slip and interstitial concentration,

and consists of the elastic energy, lattice (crystalline) energy, and external energy:

ψ(ϕ, c) = ψelas(ϕ, c) + ψlatt(ϕ, c)− ψext(ϕ, c) (6.1)

The elastic energy is given by

ψelas(ϕ, c) =
1

2
cijkl

(
ϵij(ϕ, c)− ϵpij(ϕ)− ϵintij (c)

) (
ϵkl(ϕ, c)− ϵpkl(ϕ)− ϵintkl (c)

)
(6.2)

where cijkl is the elastic stiffness tensor, ϵij(ϕ, c) is the total strain, ϵpij(ϕ) is the plastic

eigenstrain due to the dislocations, and ϵintij (c) is the interstitial eigenstrain. By includ-

ing the interstitial eigenstrain in the elastic energy, long-range interactions between the
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dislocation and the interstitial are accounted for. The eigenstrain for the interstitials is

given by

ϵintij (c) =

nint∑

β=1

λint,βij cβ (6.3)

where λint,βij is a tensor describing the strain introduced by an interstitial atom [51, 52].

The λint-tensor is related to another commonly measured parameter, the elastic dipole

P int
ij , through the materials stiffness tensor cijkl via Equation (1.2) [50]. The elastic

dipole can be calculated readily through atomistic simulations [56, 220] and converted to

a λint-tensor for PFDD simulations.

For a BCC lattice, the lattice energy has the form

ψlatt(ϕ, c) =
ns∑

α=1

γαusf (c)

dα
sin2(πϕα) (6.4)

where γαusf is the unstable stacking fault energy (USFE). To account for the short-range

effects of interstitials at the dislocation core, γαusf is now a function of interstitial concen-

tration.

The external energy now includes the dependence on interstitial eigenstrain:

ψext(ϕ, c) = σapp
ij

(
ϵpij(ϕ) + ϵintij (c)

)
(6.5)

As in prior PFDD models, the dislocation order parameter evolves via the Ginzburg-

Landau equation (Eq. (1.8)), which requires the partial derivative of each energy term

with respect to ϕα. The partial derivative of the elastic energy is most easily written in

Fourier space. First, the elastic energy term can be rewritten in Fourier space as

ψ̂elas =
1

2
Âmnuv(ϵ̂

p
mn + ϵ̂intmn)(ϵ̂

p∗
uv + ϵ̂int∗uv ) (6.6)
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where Âmnuv = cmnuv − ckluvcijmnĜkiξjξl, Gki is the Green’s tensor, ξ is the wavenumber

vector, and a superposedˆdenotes the Fourier transform [78]. For simplicity, replace the

tensor 1
2

∑ns

α=1
bα

dα

(
sαi n

α
j + sαj n

α
i

)
in Eq. (1.5) with λdisl,αij .The derivative is then given by

∂̂ψelas

∂ϕα
= Âmnuvλ

disl,α
mn (ϵ̂p∗uv + ϵ̂int∗uv ) (6.7)

which is the form used in the PFDD code.

The remaining derivatives of the lattice and external energy contributions are given

by

∂ψlatt

∂ϕα
=
γαusf (c)

dα
sin(2πϕα) (6.8)

∂ψext

∂ϕα
= σapp

ij λdisl,αij (6.9)

Unlike slip, the total concentration ctot is conserved, but interstitials are able to diffuse

between the different site types β to lower their chemical potential. Therefore, interstitial

diffusion will occur in two steps. First, the interstitials will be equilibrated at a point

r between the different site types β. Second, the total concentration ctot will diffuse in

space. The chemical potential at 0K is given by

µβ =
∂ψ

∂cβ
=
∂ψelas
∂cβ

+
∂ψlatt
∂cβ

− ∂ψext
∂cβ

(6.10)

Calculating the chemical potential requires the partial derivative of each energy term

with respect to concentration. An analogous equation to Eq. (6.7) can be written for

∂ψelas

∂cβ
, but it is more informative to calculate the derivative in real space. The total elastic

energy can be written as
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ψelas(ϕ, c) =
1

2
cijkl(ϵ

elas,disl
ij (ϕ) + ϵelas,intij (c))(ϵelas,dislkl (ϕ) + ϵelas,intkl (c)) (6.11)

where ϵelas,dislij and ϵelas,intij are the elastic strains due to the dislocation only and intersti-

tials only, respectively. Rearranging gives

ψelas(ϕ, c) =
1

2
cijklϵ

elas,disl
ij (ϕ)ϵelas,dislkl (ϕ) +

1

2
cijklϵ

elas,disl
ij (ϕ)ϵint,dislkl (c)

+
1

2
cijklϵ

int,disl
ij (c)ϵelas,dislkl (ϕ) +

1

2
cijklϵ

int,disl
ij (c)ϵint,dislkl (c) (6.12)

ψelas(ϕ, c) =
1

2
σdislij (ϕ)ϵelas,dislij (ϕ) +

1

2
σintij (c)ϵelas,intij (c) + σdislij (ϕ)ϵelas,intij (c) (6.13)

The first term does not depend on c and can be neglected in the chemical potential.

The derivative of the second term is µ0, which represents the formation energy for the

interstitial and is equivalent for the three different octahedral orientations [221]. The

final term can be rewritten as σdislij (ϕ)ϵelas,intij (c) = −σdislij (ϕ)ϵintij (c) [81]. Therefore, the

elastic contribution to the chemical potential is

∂ψelas

∂cβ
= µ0 − σdislij λint,βij (6.14)

This equation is independent of cβ and allows the interstitial concentrations to be

redistributed efficiently over the various site orientations. The remaining contributions

to the chemical potential are given by
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∂ψelas

∂cβ
= µβ0 − σdislij λint,βij (6.15)

∂ψlatt

∂cβ
=

ns∑

α=1

∂γαusf
∂cβ

1

dα
sin2(πϕα) (6.16)

∂ψext

∂cβ
= σapp

ij λint,βij (6.17)

where µβ0 is a reference chemical potential and σdislij is the stress field created by the

dislocation only, neglecting the interstitials. Importantly, if γusf has a linear dependence

on concentration, each term is independent of cβ.

At 0K, the interstitials will fill the site types with lower chemical potentials first. At

a point r, the chemical potential for each site type is calculated, and the site types are

sorted from lowest to highest chemical potential. The total concentration ctot is assigned

to site types, beginning with the lowest µβ site type until that site type is filled (cβ = cβmax)

and continuing until the total concentration has been distributed. The overall chemical

potential µ for point r is then determined as the unfilled site with lowest µβ i.e., where

additional interstitial concentration would flow.

Now that the µ for each site has been determined, the interstitial flux J is simply

given by Fick’s first law:

J = −mint∇µ (6.18)

where mint is the interstitial mobility, which is equal to

mint = Dctot/kBT (6.19)
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where D is the diffusivity coefficient, kB is the Boltzmann constant and T is temperature.

The change in total concentration at a site is given by

∂ctot

∂t
= −∇ · J = ∇ · (mint∇µ) (6.20)

6.2.2 Unstable stacking fault energies

The lattice energy in Eq. (6.4) requires the USFE as a function of interstitial concen-

tration. Fan et al. is followed calculated the effect of substitional solute atoms on the

stacking fault energy of Mg, and their method is followed here [222]. An interstitial site

i, depending on its orientation and distance from the stacking fault (SF), will have an

interaction energy with the SF given by

Ei
int−SF =

(
Eint,i
SF − Eint,i

bulk

)
− (ESF − Ebulk) (6.21)

where Ei
int−SF is the interstitial-SF interaction energy, Eint,i

SF is the total energy of a

simulation cell with an interstitial and an SF, Eint,i
bulk is the total energy of the cell with

an interstitial in the bulk, and ESF and Ebulk are the total energies of an interstitial-free

cell with and without a SF, respectively.

The USFE for a given local concentration is then

γusf (c) = γusf (0) +
n∑

i=1

ciEi
int−SF

A
(6.22)

where γusf (0) is the interstitial-free USFE, n is the total number of sites considered, A

is the area per atom of the fault plane, and ci is the concentration of site i.
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6.2.3 Atomistic calculations

Elastic dipole calculation

The elastic dipole calculation method is outlined by Clouet et al [51]. The elastic

dipole is a model of a point defect in a crystal which can fully describe its long range

elastic field and interactions with external stresses. The dipole Pij is a second-rank tensor

and is calculated as the first moment of the point-force distribution:

Pij =
N∑

q=1

F q
i a

q
j (6.23)

where the force distribution consists of N forces F q
i acting at position aq. In mechanical

equilibrium, the interaction energy of the point defect can be characterized as

Eint = −Pijϵextij (⃗0) (6.24)

where ϵextij (⃗0) is the external strain tensor at the point defect. The total energy of a

simulation cell with a point-defect can be written as follows

E(ϵ) = E0 + EPD +
V

2
cijklϵijϵkl − Pijϵij (6.25)

The first two terms are the total energy of the pristine crystal and the point defect.

The third term is an expression of the strain energy due to any distortions to the pristine

crystal. The final term accounts for the interaction energy from the elastic dipole.

After taking a derivative of the total energy with respect to strain and normalizing

by the simulation cell volume V ,

⟨σij(ϵ)⟩ = cijklϵkl −
1

V
Pij (6.26)
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If a calculation is conducted in constant strain conditions by fixing the cell volume

and shape, then ϵij is fixed to zero and the equation further simplifies to

Pij = −V ⟨σij⟩ (6.27)

Thus, the elastic dipole Pij can be directly calculated from the residual stresses deter-

mined through first principles calculations. To this end, DFT calculations are performed

on a 128 Nb atom cell using the VASP [223–226] software package. These calculations

employed the projector augmented wave (PAW)[227, 228] method and generalized gradi-

ent approximation (GGA) with the Perdew, Burke, and Ernzerhof (PBE)[229] functional,

selecting a 575 eV planewave energy cutoff and a Γ-centered 4x4x4 k-point grid. The

calculations were also spin polarized calculations, in which all structures are initialized

in ferromagnetic states. In all cases, they relaxed to nonmagnetic states.

With this approach, the pristine Nb structure is relaxed to a force convergence of 0.02

eV/A, allowing the cell volume, shape and atomic position to fully relax. An oxygen atom

is then inserted into an interstitial octahedral site. The structure was then relaxed again,

but with a fixed cell volume and shape, to an energy convergence of 1e-5 eV. Structural

relaxations were then carried out with a Gaussian smearing of partial occupied states with

a width of 0.1 eV, while final static calculations were performed with the tetrahedron

method with Blöch corrections to improve accuracy. The stress states of the static

calculations with and without the interstitial oxygen were compared to determine the

residual stresses and calculate Pij with Eq. (6.27).

Unstable stacking fault energy calculation

The interstitial-SF interaction energies are calculated with DFT using VASP [230].

The projected augmented wave method is used with a plane-wave basis with cutoff energy
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of 600 eV, and the Methfessel–Paxton smearing method is used with a smearing width

of 0.2 eV. The conjugate gradient scheme is used to relax the ionic positions until the

energy change is less than 10−4 eV. A simulation cell is created with size and orientation

x = a[1̄12̄], y = 6a[110], and z = a
2
[1̄11] where the equilibrium lattice parameter a for

Nb equals 3.324Å [83] (Figure 6.1). This cell contains 36 atoms and 12 (110) layers,

where the stacking fault plane area A is 23.4 Å2. A vacuum layer of 12 Å is added to

the y-dimension to create a series of non-interacting slabs. The k-point mesh is 15 x 1 x

15. The energy of this structure after relaxation is Ebulk. To obtain ESF , the rightmost

six (110) layers are shifted by a
4
[1̄11]. The two outermost (110) layers on either side of

the simulation cell are frozen, and all other atoms are allowed to relax in the y direction

only.

Excluding sites within the frozen layer, this structure contains 14 unique octahedral

sites. The [100]- and [010]-oriented sites exist between (110) planes and the [001]-oriented

sites are within the (110) planes. For each calculation of Eint,i
bulk , an oxygen atom is placed

at one of these sites, and all atoms except for the frozen layers are allowed to relax. The

rightmost six (110) layers of the relaxed structure are shifted by a
4
[1̄11], and atoms are

relaxed again in the y direction only to calculate Eint,i
SF . For the two sites within the SF

itself, the nearest neighbor atoms to the interstitial are also allowed to relax to account

for the change in neighbors due to the SF. The resulting structures are visualized with

Ovito [211].

Within PFDD, the concentration ci is assumed to be equal to the concentration cβ

for that site type. For the three octahedral orientations, Eq. (6.22) can be written as

γusf (c) = γusf (0) +
c[100]

A

n[100]∑

i=1

Ei
int−SF +

c[010]

A

n[010]∑

i=1

Ei
int−SF +

c[001]

A

n[001]∑

i=1

Ei
int−SF (6.28)
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Figure 6.1: The simulation cell used to calculate the stacking fault-interstitial interaction
energies. The interaction energies are calculated for 14 distinct octahedral interstitial
sites indicated by red dots. The pink region is shifted by a

4
[110] to create a stacking

fault.

where the first sum is over the [100] site types, the second over the [010] site types, and

the third over [001] site types.

6.2.4 Phase-field simulation setup

In all PFDD simulations, a non-orthogonal BCC simulation cell with primitive vectors

e1 = [111̄], e2 = [1̄11], and e3 = [11̄1] is used with grid spacing equal to one Burgers

vector [167]. Periodic boundary conditions are used in all three dimensions. To allow for

cross slip of screw dislocations, three slip systems are used, ϕ1, ϕ2, and ϕ3. All three have

slip direction s1 = s2 = s3 = 1√
3
[1̄11]. The slip plane normal vectors are n1 = 1√

2
[110],

n2 = 1√
2
[011̄], and n3 = 1√

2
[101].

To create a screw dislocation, the order parameter ϕ1 is set to one between two dis-

locations parallel to [1̄11] on the (110) plane. All other order parameters are set to zero.

The simulation grid is 128b x 8b x 128b, creating infinitely long screw dislocations sepa-

rated by 64b. To create an edge dislocation, the order parameter ϕ1 is set to one between

two dislocations parallel to [11̄2] on the (110) plane, with all other order parameters

equal to zero. The simulation grid is 128b x 128b x 384b, creating two infinitely long edge

dislocations separated by 64b.

The applied stress to the simulation cell is always a pure shear stress with the maxi-
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mum resolved shear stress plane (MRSSP) corresponding to the (110) habit plane or one

of the two cross slip planes, (011̄) and (101). To find the critical stress to glide on one of

these planes, the stress is increased from 0 in increments of 0.001G where G is the shear

modulus until dislocation glide is observed.

Experimental values are used for the elastic stiffness tensor of Nb, setting C11 = 245

GPa, C12 = 132 GPa, and C44 = 28.4 GPa in Equations (1.2) and (1.4) [168]. Full elastic

anisotropy is employed. The Voigt-averaged shear modulus G = 39.64 GPa is only used

to normalized the energy densities and stresses. The lattice parameter a is set to the

experimental value of 3.301Å [168]. The interplanar distance dα in Equation (1.5) is set

to 0.8165.

In the Ginzburg-Landau minimization (Eq. (1.8)), the quantity mdisl∆t is set to

0.25G−1. The quantity mint∆t/c
tot is also set to 0.25G−1 (Eq. (6.19)). By defining the

mobility constants as the product of mobility and the simulation time step, there is no

physical time scale in the current simulations. In what follows, evolution is compared

among different situations for a fixed number of time steps. The dislocation configuration

is considered converged if the Euclidean norm of the change in order parameters between

successive timesteps is less than 10−4.

6.2.5 Minimizing Gibbs oscillations

Due to the discrete Fourier transform used in calculating the elastic strains, the stress

fields calculated by PFDD exhibit Gibbs oscillations in the periodic directions. While

the presence of these oscillations was known previously [167], they were generally ignored

since their presence is primarily in the out-of-slip plane direction and therefore not seen

by the gliding dislocations. However, when considering the case of interstitial diffusion,

the presence of artificial local minima and maxima in stress causes significant problems.
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Interstitial atoms will pool into wells of low chemical potential that are not true local

minima and are simply artifacts of the Fourier solver. Reducing Gibbs oscillations is,

therefore, necessary to reliably simulate interstitial diffusion.

Gibbs oscillations appear due to the difficulty of representing a discontinuous func-

tion in Fourier space, and researchers in many fields have developed various methods to

minimize their presence [231]. Here, two separate methods are employed to minimize the

Gibbs oscillations in PFDD. First, a modified Green’s function is employed, which was

first introduced by Willot [232]. In PFDD, the total strain is given in Fourier space by

ϵ̂kl = [ciukvquqv]
−1qjqlcijmnϵ̂

0
mn (6.29)

whereˆdenotes the Fourier transform, ϵ0mn is the total eigenstrain (Eqs. (1.5) and (6.3)),

and q is the wavenumber vector. The quantity [ciukvquqv]
−1 is the Green’s function Gki

[78], so this original form is denoted G0 to represent the original Green’s function. This

expression is derived using continuous differentation of the strains. Willot replaces the

continuous derivatives with finite difference approximations [233]. The finite differences

are calculated using a centered, rotated grid in which the strains are evaluated at the

centers of the voxels and the displacements are evaluated at the corners [232]. In this

formulation, the total strain is given by

ϵ̂kl = [ciukvku(q)kv(q)]
−1kj(q)kl(q)cijmnϵ̂

0
mn (6.30)

where

kj(q) =
i

4
tan

(
q · el
4

)(
1 + eiq·e

1
)(

1 + eiq·e
2
)(

1 + eiq·e
3
)
ξlj (6.31)

where ej and ξj are the primitive vectors in real and Fourier space, respectively, and the
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form is generalized from [232] to account for non-orthogonal grids. This formulation is

denoted GR for the rotated Green’s function.

Figure 6.2(A) and (B) compare the stress field of a screw dislocation with G0 and G
R

as calculated with PFDD. The Gibbs oscillations, most prominent in the [111̄] direction,

are significantly reduced by using the modified Green’s function. Smaller oscillations still

appear in the [1̄11] direction, so a second modification, a Gaussian blur, is added to the

strain calculation [234]. An approximate 3x3x3 Gaussian filter matrix F is defined as

F =

1
64

1
32

1
64

1
32

1
16

1
32

1
64

1
32

1
64

1
32

1
16

1
32

1
16

1
8

1
16

1
32

1
16

1
32

1
64

1
32

1
64

1
32

1
16

1
32

1
64

1
32

1
64

(6.32)

The blurred strain is the convolution of the calculated strain and F . This effectively

reassigns the strain at each point to be a weighted average of its strain and its neighbors’

strains. Since the Gibbs oscillations are between nearest neighbor points, this drastically

reduces any oscillations, as shown in Figure 6.2(C) and (D).

To completely eliminate the most prominent Gibbs oscillations in the calculated

stress, it is sufficient to use either only GR or only the Gaussian blur (Figure 6.2(E)).

However, the interstitial diffusion depends not just on the local value of stress, but on

its second derivative through the chemical potential. The chemical potential µ due to

the dislocation stress field is predicted using Equation (6.15), and its Laplacian is plot-

ted in Figure 6.2(F) along the [111̄] direction. For clarity, only the blurred values are

shown, as the unblurred values show much more extreme oscillations. While∇2µ exhibits

oscillations when using G0 and the Gaussian blur, it is monotonically increasing when

using GR and the Gaussian blur. Even though the oscillations from using G0 are small
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Figure 6.2: (A)-(D) The xz component of stress around a screw dislocation as calculated
with PFDD. (A) shows the field for the original PFDD formulation. (B),(C), and (D)
show the field using a rotated, centered Green’s function, a Gaussian blur, and both,
respectively. (E) The xz component of stress plotted in the [1̄1̄1] direction, indicated by
the black arrow in (A). (F) The Laplacian of the chemical potential in the [1̄1̄1] direction

in magnitude, they compound over time as the concentration at a grid point evolves at

a different rate than its neighbors, leading to larger magnitude oscillations in the local

interstitial concentration. For this reason, both GR and the Gaussian blur are used in

all subsequent simulations. In addition to the stress and strain calculations, which affect

interstitial diffusion, this will also affect the elastic energy calculation, which uses the

Green’s function.
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6.3 Results

6.3.1 Nb-O interstitial parameters

The elastic dipole tensor for oxygen in Nb is calculated to be

P =




11.4 0 0

0 4.45 0

0 0 4.45



eV (6.33)

for a [100]-oriented interstitial site. The [010]- and [001]-oriented sites have P11 swapped

with P22 or P33, respectively. Only one experimental measurement of this tensor was

found in the literature [235, 236]. These Snoek effect measurements reported P11 =

11.8eV and P22 = P33 = 4.89eV, giving good agreement with the above DFT result.

Converted to the λint-tensor through the experimental elastic constants, λint11 = 0.485

and λint22 = λint33 = -0.0645.

The DFT-calculated interstitial-SF interaction energies are shown in Figure 6.3. The

[100]- and [010]-oriented sites, which lie between (110) slip planes, have essentially iden-

tical, positive interaction energies which decay towards zero as the distance from the SF

plane increases. The interstitial sites within the SF itself become distorted upon shear-

ing, and have a slightly lower interaction energy than those 1d110 from the SF plane.

The important difference is that the [001]-oriented sites, which lie within (110) planes,

have interaction energies that are dependent on whether shearing changes the number

of neighboring Nb atoms. When the interstitial is directly adjacent to the SF plane,

the interaction energy is negative. At this site, there is one Nb neighbor in the [110]-

direction which lies across the SF plane. After shearing by a
4
[1̄11], the interstitial now

straddles two Nb neighbors across the the SF plane, giving it seven neighbors instead of
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Figure 6.3: The interstitial-stacking fault interaction energies for each interstitial site as
a function of distance from the stacking fault plane.

six, and thus an increased site volume. At all other sites, the interstitial neighbors are

unchanged upon shearing, and interaction energies are positive and decay towards zero

as the distance from the SF increases.

Inserting these interaction energies into Equation (6.28) yields

γusf (c) = 677 + 1100c[100] + 1100c[010] + 74c[001][mJ/m2] (6.34)

for the (110) plane. The interstitial site types are rotated accordingly for the (011̄) and

(101) planes.

The simulation cell size used here only includes interstitial sites up to 4d110 from the

SF. The magnitude of the interaction energy at 4d110 is 26% of its peak magnitude for the

[100]- and [010]-oriented sites. While it is very likely that interstitial sites further from

the SF will have also have non-zero interaction energies, they are expected to continue

to decay from this value towards zero. In contrast, the interaction energies for the [001]-

oriented sites decay much more quickly, and reach nearly zero at the fourth site from the

SF.
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6.3.2 Relaxed dislocation cores in static interstitial field

First, let us consider the situation in which the interstitials are immobile to under-

stand their effect on the dislocation core structures. The core structures, represented

by the three active order parameters, are shown in Figure 6.4 for dislocations relaxed in

interstitials fields with constant concentration ctot between 0 and 0.05. Interstitial diffu-

sion is disallowed by setting mint = 0. The total concentration is equally divided among

the three available site orientations. As observed in previous works, both screw and edge

dislocations show slight spreading within the (110) plane, while only screw dislocations

spread onto the (011̄) and (101) cross slip planes. Visually, the shape of the core and

type of spreading (i.e. planar or non-planar) is not significantly influenced by the in-

terstitial concentration. However, the width of the dislocations within the (110) plane

slightly narrows with increasing concentration. The dislocation core width is defined as

the distance within the (110) slip plane from where ϕ1 = 0.05 and ϕ1 = 0.95, using a

linear interpolation between grid points as necessary.

The simulations are repeated using only the long-range dislocation-interstitial inter-

actions (by setting γusf to a constant 677 mJ/m2) or the short-range interactions (by

setting λintij = 0). For a homogeneous interstitial field, only the short-range interactions

affect the dislocation results since the interstitial strain is constant throughout the cell.

Therefore, the narrowing of the dislocation core width is caused solely by the increase in

γusf with increasing oxygen concentration.

6.3.3 Interstitial distribution around dislocations

In actuality, the interstitials may not be uniformly distributed throughout the cell,

but may instead segregate around defects based on the local chemical potential. The

diffusion of oxygen interstitials is simulated around previously relaxed and frozen screw
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Figure 6.4: (Left) The equilibrium dislocation core widths for screw and edge dislocations
as a function of oxygen concentration. (Right) The dislocation core structures for screw
and edge dislocations represented by the PFDD order order parameters.
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and edge dislocation cores using initial concentrations c0 ranging from 0.01 to 0.05. Fig-

ure 6.5(A)-(D) and Figure 6.6(A)-(D) show the evolution of total concentration around

a screw and edge dislocation core, respectively. The simulations show that, when nor-

malized by c0, the evolution of the interstitial concentration is independent of the initial

concentration. Since the chemical potentials are independent of the local concentrations

c, the concentration only comes into play through the interstitial mobility mint, which

scales with the local ctot (Eq. (6.19)). In all cases, the shape of the interstitial concen-

tration field is immediately apparent once diffusion begins and only intensifies over time.

The change in interstitial concentration decreases at each time step but does not reach

zero. At 0K, the equilibrium state will have the interstitials completely filling the lowest

energy sites and all other sites empty [237], which does not occur within the simulation

time period.

The evolution of local interstitial concentration is primarily due to the long-range

elastic interactions between the interstitial and dislocation stress fields. Figure 6.5(E)-

(G) show the long-range portion of the chemical potential (Equation (6.15)) around a

screw dislocation for the three different octahedral site orientations, as calculated from

the PFDD stress fields. The chemical potential for each site is identical with a 60◦

rotation. Unlike a hydrostatic interstitial strain, such as those in FCC crystals, the

tetragonal symmetry of the BCC octahedral site allows the interstitial to interact with

the shear stress field surrounding a screw dislocation. Taking the minimum of these

three chemical potentials gives an overall energy landscape with three-fold symmetry

(Figure 6.5(H)), where each of the three lobes prefers a different site orientation, matching

prior computational predictions [238]. Local maximums in the overall chemical potential

are formed where the individual chemical potential surfaces intersect. This causes a

local depletion of interstitials at these cusps, which can be seen by the purple lines in

Figure 6.5(D). When ctot is decomposed into the three site orientations (Figure 6.7(A)-
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(C)), each site is preferred in the lobe where its chemical potential is lowest, as expected.

[238]

Because the edge dislocation has hydrostatic stress components in addition to shear

components, its interaction with the interstitials is substantially different that of the

screw dislocation. The long-range chemical potentials of the [100]- and [010]-oriented

sites are identical but mirrored across the (1̄11) plane, while the form of the chemical

potential for the [001]-oriented sites is unique. For all sites, the chemical potential is

lowered when the interstitial is below the slip plane, where the hydrostatic stress is

tensile. The combined chemical potential (Figure 6.6(H)) is not radially symmetric like

the screw dislocation and shows a clear preference for sites in the tensile region. This is

seen in the local depletion of interstitials above the slip plane in Figure 6.6(D). Unlike

the screw dislocation, each site orientation is preferred in three distinct, non-continguous

regions around the edge dislocation, forming a total of nine interfaces between regions of

different preferred site orientations (Figure 6.7(D)-(F)).

These interstitial atmospheres can be compared and contrasted with those calcu-

lated analytically. Considering long-range, elastic interactions only, the distribution of

interstitials in a dislocation stress field is given by [237]

χ(r) =

(
1 +

1− χ0

χ0

+ exp

(
−Eint(r)

kBT

))−1

(6.35)

where χ is the interstitial fraction, equal to ctot/3, χ0 is the average interstitial frac-

tion, and Eint is the interstitial-dislocation interaction energy. The interaction energy

is calculated using the anisotropic PFDD stress fields (Eq. (1.1)), and the predicted

equilibrium interstitial concentrations at T = 300K are shown in Fig. 6.8 along with

the PFDD simulation results. Like the PFDD results, the analytical screw dislocation

atmosphere shows three distinct lobes, and the analytical edge dislocation atmosphere
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shows depletion above the slip plane and increased interstitial concentration below the

slip plane.

However, there are several key differences between the analytical predictions and

those simulated with PFDD. First, the analytical prediction shows the final, equilibrium

distribution while the PFDD simulations capture intermediate steps during the inter-

stitial diffusion. Second, the analytical solution includes temperature, while the PFDD

simulations are performed at 0K. This causes the interstitials in PFDD to flow towards

local minimums in chemical potential only with no temperature or entropic effects. The

locally depleted regions on the boundaries between different interstitial orientations are

created by this 0K behavior and are therefore not present in the analytical solution. The

equilibrium 0K atmosphere, as noted by Cai et al. would show the lowest chemical poten-

tial regions completely filled with interstitials (χ = 1) and all other regions completely

depleted of interstitials (χ = 0) [237]. By simulating interstitial diffusion, PFDD has

the advantage of capturing intermediate and meta-stable interstitial concentration fields.

Finally, analytical calculations typically assume elastic isotropy, while PFDD accounts

for full elastic anisotropy.

6.3.4 Dislocation glide

After relaxing the interstitial concentration for 2000 timesteps, the concentration

fields are frozen and a shear stress applied to the (110) slip plane, starting from zero and

incrementing by 0.001G. The stress required to initiate dislocation glide is recorded and

shown in Figure 6.9 as a function of average oxygen concentration c0. The breakaway

stress σb, defined as the stress required to glide completely across the simulation cell,

is indicated by the closed symbols. Below σb, the dislocations are able to glide a short

distance before becoming pinned again. An initial critical stress σi is defined as the stress
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Figure 6.5: (A-D) The evolution of total oxygen concentration around a screw dislocation
where c0 is the bulk oxygen concentration. (E-G) The chemical potential of oxygen
interstitials in different interstitial site orientations due to a screw dislocation stress
field. (H) The minimum chemical potential of the three site orientations.

required to glide at least 1b, which is indicated by the open symbols in Figure 6.9. This

is in contrast to dislocation glide in interstitial-free Nb, which has a single critical stress,

σb.

For edge dislocations, both the σi and σb increase with interstitial concentration.

The dislocation core, in its initial position, decreases in width with increasing interstitial

concentration, thus increasing σi. Because of the dislocation stress field, the region

directly in front of the edge dislocation is depleted of interstitials as interstitial atoms flow

to the tensile region below the slip plane. The dislocation is able to glide easily through

this region for 3b before becoming pinned again where the interstitial concentration is

non-zero. The stress required to overcome the barrier to glide into the interstitial region

is then σb. When c0 equals 0.05, the stress required to break into this region is so high

that dislocations form elsewhere in the cell where the stress is sufficiently high. In reality,
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Figure 6.6: (A-D) The evolution of total oxygen concentration around an edge dislocation
where c0 is the bulk oxygen concentration. (E-G) The chemical potential of oxygen
interstitials in different interstitial site orientations due to the edge dislocation stress
field. (H) The minimum chemical potential of the three site orientations.

thermal assistance may be needed to overcome this high barrier, and thus this value is

excluded from Figure 6.9. If, instead of 2000 timesteps, the interstitial field is relaxed

for 500, 1000, or 1500 timesteps before the critical stress calculations, the linear trend of

σb with average interstitial concentration continues to c0 = 0.05. After fewer timesteps,

the concentration at the dislocation cores is less extreme, and thus glide is still possible

at c0 = 0.05.

The critical stresses for screw dislocations follow a markedly different trend, as σi

decreases with increasing concentration due to the change in core structure. Figure 6.10

shows the core structure for a screw dislocation with c0 equal to 0.04 both before and

after interstitial diffusion. After diffusion, the dislocation core is less spread onto the

cross slip planes, as indicated by the lower magnitude of ϕ2 and ϕ3 on these planes. This

is most noticeable on the (101) plane, which corresponds to ϕ3. Because the spread,
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non-planar screw core is more difficult to glide than compact cores, this has the effect of

decreasing the glide stress.

After gliding 1b, the dislocation encounters a region of high interstitial concentration

and becomes pinned again. The breakaway stress σb is then the stress required to slip past

this region. While σb increases with interstitial concentration like the edge dislocation, the

magnitude of stress levels off around c0 = 0.02. Closer inspection of the dislocation glide

path reveals that, at these concentrations, the dislocation cross slips to an adjacent (110)

plane to avoid a locally high concentration of interstitial atoms (Figure 6.9). This new

glide plane is depleted of interstitials, and therefore the stress required for this process is

less dependent on average concentration, and thus σb levels off towards a constant value.

When the maximum resolved shear stress plane is not the (110) habit plane, the screw

dislocation is able to cross slip to a more favorable glide plane. The above simulations are

repeated for the screw dislocation with the maximum resolved shear stress (MRSS) on

the (011̄) or (101) plane. The critical resolved shear stress for dislocation glide is shown

in Figure 6.11(A). The path of the dislocation gliding on the (011̄) plane is shown in

Figure 6.11(C) by the sum of the three order parameters. Like the simulations above on

the (110) plane, the dislocation will glide 1b on the (110) plane before becoming pinned.

The dislocation will then have to overcome a high interstitial concentration on the (011̄)

plane. At interstitial concentrations less than or equal to 0.03, the critical stress required

for cross slip onto the (011̄) plane decreases with concentration, which is attributed to

the decreased screw core spreading. At higher interstitial concentrations, the critical

stress begins to increase sharply due to the significant increase in USFE with higher

interstitial concentrations, and therefore higher stress required to break into these high

concentration regions.

When the MRSS is on the (101) plane, the critical stress increases sharply even from

at low interstitial concentrations. Cross slip is observed onto the (101) plane for c0 = 0.01
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Figure 6.9: (Left) The stress required to initiate dislocation glide for screw and edge
dislocations as a function of interstitial concentration. The open symbols correspond to
the stress to glide at least one Burgers vector (σi), and the closed symbols correspond to
the breakaway stress (σb) to glide completely across the slip plane. (Top Right) Image
of screw dislocation glide at a lower interstitial concentration, which glides within the
(110) habit plane. (Bottom Left) Image of screw dislocation glide at a higher interstitial
concentration, which cross slip onto an adjacent (110) plane.

(Figure 6.11(D)), but above this concentration, the applied stress required is so high that

dislocation nucleation is again observed in high-strain regions. Like the edge dislocation,

this case most likely requires thermal activation to glide.

6.4 Discussion

The PFDD-interstitial formulation has several advantages over prior PFDD models

and other methods of modeling dislocation-interstitial interactions. First, this model is

the first phase-field model to include the tetragonal distortion created by interstitials in

BCC materials. This significantly changes the interaction of interstitials with disloca-

tions’ stress fields, particularly screw dislocations, whose shear stress fields do not inter-

act with hydrostatic strains. Including the tetragonal distortion necessitates tracking the

concentration of multiple interstitial site types and coupling their total concentrations.

169



Interstitial Solute Atoms in PFDD Chapter 6

0.0 0.5 1.0

1

0.1 0.0 0.1

2

0.1 0.0 0.1

3

-5

0

5

[1
10

] (
b)

Screw Core Structure, Before Interstitial Diffusion

-5 0 5
[112] (b)

-5

0

5

[1
10

] (
b)

-5 0 5
[112] (b)

Screw Core Structure, After Interstitial Diffusion

-5 0 5
[112] (b)
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diffusion for average concentration c = 0.04.
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Figure 6.11: (A) The critical resolved shear stress required to initiate cross slip onto
each of the two cross slip planes. (B) The total concentration of interstitials around the
screw dislocation core. (C) and (D) The dislocation path during cross slip onto the (011̄)
or (101) plane, respectively. The red circle indicates the initial position of the screw
dislocation in (B), (C), and (D).
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The model assumes interstitial diffusion from one site orientation to another at the same

PFDD grid point was instantaneous, whereas diffusion between grid points is controlled

by the interstitial mobility mint, an assumption made in other models [221, 239]. By

including a diffusive time scale, intermediate, pre-equilibrium interstitial concentration

states can be captured. Finally, the combination of a modified Green’s function and a

blurring function significantly decrease the presence of Gibb’s oscillations, an artifact of

the Fourier transform.

The dislocation core calculations show that the core structures are influenced primar-

ily by the short-range interactions, which is expected and has been shown in both phase-

field and atomistic models [58, 59, 219]. Long-range interactions, on the other hand,

control the diffusion of interstitials within the dislocation stress field and the formation

of a Cottrell and Snoek atmosphere. The shape of the interstitial concentration fields

around screw and edge dislocations qualitatively match analytical predictions, verifying

the phase-field formulation [238–240]. The major difference between these calculations

and prior analytic calculations is that the analytic calculations include an entropic term

in the generalized chemical potential [238, 239], whereas the PFDD calculations are per-

formed without temperature. This causes the PFDD-interstitial model to predict locally

depleted interstitial regions at the border between two regions with different interstitial

site types. At these borders, there is a cusp in the local chemical potential, and the

atoms are driven towards local minima in the absence of thermal fluctuations.

As expected, the solute atmospheres increase the critical stress for a dislocation.

While the breakaway stress σb increases linearly with interstitial concentration for edge

dislocations, σb for screw dislocations levels off above a critical interstitial concentration.

At higher concentrations, the dislocation will cross slip to a more favorable glide plane.

This suggests that there is a limit to interstitial strengthening by increasing the glide

stress alone; other mechanisms, like cross slip, can be activated and must be considered.
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In addition to σb, the dislocations are able to glide a short distance, between 1 and 3b,

at a lower stress before becoming pinned. This initial glide stress σi is controlled by

different factors for screw and edge dislocations. For screw dislocations, the dislocation

cores become more planar, and σi decreases with interstitial concentration. Conversely,

for edge dislocations, the narrower dislocation core causes σi to increase with intersti-

tial concentration. While dislocation simulations in BCC metals frequently study screw

dislocations only, these results suggest that screw and edge dislocations interact with

interstitials in distinct ways and should both be considered.

This PFDD-interstitial model has the necessary components to simulate the various

complicated dislocation-interstitial interactions that can take place, both in the short-

and long-range. By controlling the ratio of the mobility coefficients mint and mdisl, future

simulations can include the dynamic nature of interstitial diffusion and dislocation glide

to capture the Portevin-Le Chatelier effect. Because the model includes screw dislocation

cross slip, the formation of kinks on alternating glide planes can allow for cross-kink for-

mation, thought to be another important dislocation strengthening mechanism. Finally,

including temperature in the model in the future would allow for a physical timescale

to be obtained, and for thermally activated mechanisms, like kink-pair nucleation, to be

simulated.

6.5 Conclusion

The PFDD model was extended to include the diffusion of interstitial solute atoms.

The model tracks the local concentration of interstitial atoms through coupled phase-

field variables, and both short- and long-range interactions are accounted for. The new

formulation is verified for a model system by calculating Nb dislocation core structures

in the presence of O interstitials, and then predicting the formation of interstitial at-
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mospheres around static dislocation cores. These calculations show that the interstitials

influence dislocation core structures through short-range interactions, whereas disloca-

tions influence interstitial diffusion through long-range interactions. The critical stress

required for dislocations to break away from a solute atmosphere increases linearly with

concentration for edge dislocations, while screw dislocations are able to cross slip onto a

more favorable glide plane above a critical concentration. In future work, the model can

be used to study more complex interactions between dislocations and interstitial atoms,

including the Portevin-Le Chatelier effect and cross kink formation.
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Chapter 7

Effect of Interstitial Atoms on

Dynamic Dislocation Glide

7.1 Introduction

Pure refractory metals readily absorb interstitials elements such as O, C, and H

from the atmosphere, typically with deleterious effects on their mechanical properties

[4]. These interstitials generally cause an increase in strength at the expense of ductility

[43–45]. However, the mechanisms by which these elements affect dislocation behavior

are not completely understood and are likely to be different for different interstitial atom

types. In BCC crystals, larger interstitials like O and C occupy the octahedral sites in

the lattice, creating a tetragonal distortion with three distinct orientations depending on

the specific octahedral site. The interstitials may adopt the lowest energy orientation for

a given stress state, forming a Snoek atmosphere [53].

H interstitials, which also have a negative impact on mechanical properties, are be-

lieved to affect dislocation glide through different mechanisms than larger interstitials

like O or C. Instead of pinning dislocations, Hmay promote dislocation glide, causing
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embrittlement through hydrogen-enhanced local plasticity (HELP) [66–68, 241]. Macro-

scopically, the increased dislocation mobility causes highly planar, localized slip, leading

to failure [67]. Unlike O or C, H atoms are small and can diffuse quickly through the lat-

tice, making it possible for interstitial atoms to keep up with gliding dislocations. The H

interstitial atmosphere reduces the dislocation’s effective stress field in a process known

as hydrogen shielding, lowering interactions with obstacles and other dislocations and

thereby increasing mobility [67, 242]. However, there is still controversy over whether

hydrogen shielding is the cause of hydrogen-enhanced local plasticity (HELP), with some

computational models attributing thee increased mobility to short-range core effects in-

stead of long-range elastic effects [68–70, 243]. By comparison, C and O, being larger

atoms, generally cannot diffuse fast enough to keep up with gliding dislocations. This

can cause a serrated flow behavior in which dislocations repeatedly break free from and

then are pinned by a trailing interstitial atmosphere, which is known as the Portevin-Le

Chatelier effect [55, 71].

Because direct experimental observation of dislocation interactions with interstitials

is extremely difficult, simulation tools can be used to understand dislocation mechanisms

at the nanoscale. Due to the atomistic nature of interstitial-dislocation interactions,

much of the modeling of interstitial effects is done with DFT or MD. DFT simulations

are critical for determining the properties of isolated interstitial atoms [51] or, in some

cases, dislocation core structures [57, 58, 61], but the length scales are generally too

short to simulate the interactions between interstitials and dislocations. MD simulations

can access longer length scales, but interstitial diffusion is rare on MD time scales. For

this reason, most MD simulations examine a dislocation gliding through a random field

of essentially stationary interstitial atoms, find that both screw and edge dislocations

can become pinned when encountering a large interstitial atom like C or O [59, 64,

244]. Screw dislocations, which are especially important in BCC crystals, experience
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more difficult glide due to pinning of migrating kinks and the formation of cross-kinks

[59, 64]. However, none of these simulation are able to capture the effects of interstitial

atmospheres trailing gliding dislocations, which is necessary to study mechanisms like

hydrogen shielding and the Portevin-Le Chatelier effect.

There is significant interest in using mesoscale models, which can access longer time

and length scales, to study interstitial-dislocation interactions. Elastic shielding effects

have been included in discrete dislocation dynamics, showing the hydrogen shielding

increased dislocation slip planarity and reduced dislocation pileup spacing in BCC metals

[242]. Recently, a kinetic Monte Carlo model was used to study interstitial-dislocation

interactions in W-O [71]. The model allowed for both interstitial diffusion and kink-pair

nucleation and migration, and the simulations reveal the Portevin-Le Chatelier effect to

occur only under certain temperature and strain rate combinations.

There remain open questions about the role of interstitials in dislocation glide in BCC

crystals, and it is not fully understood how different types of interstitials, especially H

compared to larger atoms like O or C, affect dislocations. Here, PFDD is used to study

dislocation behavior in two model refractory-interstitial systems: Nb with O interstitials

and W with H interstitials. The mesoscale time scales allow for simultaneous interstitial

diffusion and dislocation glide, which is inaccessible for most atomistic simulation meth-

ods and has been minimally studied. The simulation parameters for Nb-O and W-H are

obtained from both experiments and ab initio calculations.

PFDD is used to simulate perfectly straight, infinite edge and screw dislocations

with dilute solute concentrations. The PFDD simulations reveal the different interstitial

atmospheres that form around both edge and screw dislocations in the two systems due

to differences in the interstitial site occupation of O and H. The critical stress required

to glide is calculated as a function of interstitial concentration, showing that while O

increases the breakaway stress for both screw and edge dislocations in Nb, H has minimal
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impact on the critical stresses in W. Then, dislocation glide is simulated simultaneously

with interstitial diffusion, varying the ratio between interstitial and dislocation mobility.

In both systems, screw dislocation glide is enhanced by the presence of interstitials,

while edge dislocation glide is enhanced in W-H and inhibited in Nb-O. The mechanisms

responsible for these differences are examined and discussed. These simulations reveal

how interstitial effects on dislocation glide varies depending on the interstitial type, site

occupation, stress state, and mobility of the interstitials relative to dislocations.

7.2 Methods

The extended PFDD-interstitial formulation is described in Section 6.2. Several pa-

rameters are required to simulate a given solute-solvent system, including the elastic

constants, lattice parameters, λint,βij , and the USFE as a function of concentration. For

the two systems simulated here, Nb-O and W-H, the elastic constants and lattice param-

eters are taken from experimental measurements of pure Nb and W, respectively. The

elastic constants are C11 = 245 GPa, C12 = 132 GPa, and C44 = 28.4 GPa for Nb and

C11 = 523 GPa, C12 = 203 GPa, and C44 = 160 GPa for W, and the lattice constants

are 3.301 Å and 3.165 Å respectively [168]. Full elastic anisotropy is employed, and all

stresses in the simulations are normalized by the Voigt-averaged shear modulus G of the

solvent element, 39.64 GPa for Nb and 160 GPa for W.

The interstitial distortion term λint,βij can be obtained via experimental measurements

or simulations [50, 56, 220]. The tensor for Nb-O was previously calculated in Chapter 6

using DFT calculations, and the value closely aligned with prior experimental measure-

ments, and is given by
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λint,Nb−O =




0.485 0 0

0 −0.0645 0

0 0 −0.0645




(7.1)

As expected for an octahedral site in BCC, this tensor has tetragonal symmetry, so

there are three distinct orientations of the site that can have different chemical poten-

tials. In all PFDD simulations of Nb-O, the three interstitial site types are included and

interstitials will occupy the one with the lowest chemical potential.

H interstitials occupy the tetrahedral sites in W, creating a purely hydrostatic strain.

Hou et al. calculated the excess volume of H in W for the tetrahedral site with DFT

[245], which can be converted to a distortion tensor of

λint,W−H =




0.0677 0 0

0 0.0677 0

0 0 0.0677




(7.2)

In all PFDD simulations of W-H, only one interstitial site type is included as all

tetrahedral sites are equivalent.

DFT is used to determine the USFE for each system as well as its dependence on

local interstitial concentration following Eq. (6.22), which requires the interstitial-SF

interaction energies. These were previously calculated for the Nb-O system (Section 6.3).

To obtain the same parameters for the W-H system, DFT calculations were performed

using VASP [230]. The projected augmented wave method is used with a plane-wave

basis with cutoff energy of 600 eV. The Methfessel–Paxton smearing method is used

with a smearing width of 0.2 eV. The ionic positions are relaxed with the conjugate

gradient scheme until the energy change is less than 10−4 eV. The simulation cell has

x = a[1̄12̄], y = 6a[110], and z = a
2
[1̄11] where the equilibrium lattice parameter a for
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Vacuum Layer
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[1
11
]
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Tetrahedral site

Figure 7.1: (Above) The simulation setup for DFT calculations of the stacking fault-
interstitial interaction energies in W-H. There are 30 tetrahedral sites, numbered from 0
to 29 in increasing distance from the stacking fault. (Below) The calculated interaction
energy for each site.

W equals 3.138Å [83]. A vacuum layer of 12 Å is added to the y-dimension. The k-point

mesh is 15 x 1 x 15. Ebulk is simply the energy of this structure after relaxation. ESF is

obtained by shifting the rightmost six (110) layers by a
4
[1̄11]. Then, the two outermost

(110) layers on either side of the simulation cell are frozen, and the positions of all other

atoms are relaxed in the y direction only.

Accounting for symmetry across the SF plane, 30 unique tetrahedral sites are iden-

tified within this structure (Fig. 7.1). To calculate Ei
int−SF for each of these sites, a H

interstitial is placed in the site, and all atomic positions excluding the frozen layers are

relaxed. The energy of the relaxed system is denoted Eint,i
bulk . Then, the rightmost 6 layers

are translated, and the cell is relaxed again in the y direction only, giving Eint,i
SF .
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The calculated interaction energies are plotted in Fig. 7.1. Only the ten interstitial

sites nearest the SF have significant interactions with the SF. Using only these ten values

within Eq. (6.22), the USFE for W varies with H concentration as

γusf (c) = 1772− 1330c[mJ/m2] (7.3)

By contrast, the USFE for Nb increases with O concentration as

γusf (c) = 677 + 1100c[100] + 1100c[010] + 74c[001][mJ/m2] (7.4)

where c[100], c[010], and c[001] correspond to the concentration of octahedral sites with the

specified orientation.

PFDD simulations are performed for both pure edge and pure screw dislocation

dipoles. In all simulations, three order parameters are used, ϕ1, ϕ2, and ϕ3, which all

correspond to slip in the [1̄11] direction, and the slip planes are (110), (011̄), and (101),

respectively. A non-orthogonal simulation cell is used with primitive vectors e1 = [111̄],

e2 = [1̄11], and e3 = [11̄1]. The grid spacing is 1b such that the grid points align with the

atomic lattice. For screw dislocation simulations, a cell with size 128b x 8b x 128b is used,

and a screw dislocation dipole is inserted by setting ϕ1 = 1 between two dislocations 64b

apart with line direction [1̄11]. For edge dislocation simulations, a cell with size 128b

x 128b x 384b is used, and ϕ1 is set to 1 between two dislocations with line direction

[11̄2], also 64b apart. When stress is applied to the system, it is always pure shear with

the maximum resolved shear stress on the (110) plane. When stress is increased, it is

incremented in steps of 0.001G. In Eq. (1.8) and Eq. (6.20), the quantities mdisl∆t and

mint∆t/c
tot are both initially set to 0.25G−1. The dislocations are converged when the

Euclidean norm of the change in order parameters between successive timesteps is less

than 10−4.
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7.3 Results

7.3.1 Interstitial atmospheres

First, the interstitial atmospheres around screw and edge dislocations are calculated.

Previously, it was shown that the shape of the relaxed interstitial fields do not depend

on the initial average concentration c0, so only one value is simulated here, c0 = 0.01.

The dislocation is allowed to relax until convergence is reached, and then the interstitials

are allowed to diffuse for 500 timesteps. The concentration fields around the dislocation

cores are shown in Fig. 7.2.

In the Nb-O system, interstitial atoms occupy octahedral sites, which have three

distinct orientations of the tetrahedral distortion. As screw dislocations create only shear

stresses, the interstitial atoms occupy three distinct lobes around the screw dislocation,

where each lobe corresponds to a different octahedral site orientation. This matches

analytical predictions [238–240]. At the intersections of these lobes, there is a local

maximum cusp in the chemical potential. As interstitials flow towards lower chemical

potential sites, there is a local depletion of interstitials at the intersections, which can be

seen by the purple lines in Fig. 7.2A. The interaction of oxygen interstitials with edge

dislocations is more complicated due to the presence of both hydrostatic and shear stresses

around the dislocation, creating nine distinct regions with different preferred interstitial

orientations. Generally, though, oxygen interstitials cluster below the edge dislocation in

the tensile stress region, while the compressive region above the dislocation is depleted

of interstitial atoms.

In the W-H system, on the other hand, all interstitial sites have equivalent distor-

tions, which are exclusively hydrostatic. Because of this hydrostatic strain, the H atoms

interact minimally with the screw dislocation’s stress field. Only at the dislocation core

itself does the concentration of H atoms differ from the average concentration c0. In-
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Figure 7.2: The interstitial concentration fields around screw and edge dislocations for
Nb-O and W-H.
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terstitial atoms flow towards the two grid points bordering the screw dislocation core,

lowering the interstitial concentration of neighboring grid points. The atmosphere of H

atoms around the edge dislocation is also more axisymmetric than in the Nb-O system.

The compressive region is depleted of interstitials, while the tensile region has increased

interstitial concentration. Because there is only one interstitial orientation, there are no

cusps in the chemical potential landscape, so the locally depleted regions (identified as

the purple lines in Figure 7.2A and C) are not present in the W-H system.

7.3.2 Dislocation glide

Critical glide stress

After allowing the interstitials to diffuse for 500 timesteps under zero stress, the

critical stress to break away from the interstitial atmosphere was calculated for c0 ranging

from 0 to 0.01 (Fig. 7.3). Without interstitials (i.e., c0 = 0), there is a single critical

stress value. However, with interstitials, it is possible for the dislocation to glide a short

distance before becoming pinned again by the interstitial atmosphere. Therefore, two

critical stresses are identified: σi, the initial critical stress to glide more than 1b, and

σb, the breakaway stress to glide away from the interstitial atmosphere entirely. For the

Nb-O system, the screw dislocation σi decreases with c0 while σb increases. The decrease

in σi can be attributed to a reduction in dislocation core spreading, and the increase

in σb occurs when the dislocation encounters a locally high concentration of interstitials

within its glide plane. The edge dislocation σi in Nb-O is insensitive to c0 for the values

tested here, while σb increases with c0.

In the W-H system, both screw and edge dislocations are less sensitive to changes

in c0. The screw dislocation σb is constant regardless of c0, and, similar to Nb-O, σi

decreases slightly with c0. Unlike Nb-O, edge dislocations in the W-H system do not
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Figure 7.3: The critical stress required for glide of screw and edge dislocations in Nb-O
and W-H. Open symbols correspond to the stress to glide at least one Burgers vector (σi),
while closed symbols correspond to the breakaway stress (σb) to escape the interstitial
atmosphere entirely.

exhibit different σi and σb. Because the concentration changes are limited to a small

radius around the dislocation core, the initial stress required to initiate glide is adequate

for breakaway from the interstitial atmosphere completely. The critical stresses increase

slightly from 0.039G for the interstitial-free case to 0.040G with interstitials, although

this is within the resolution of the critical stress calculations (0.001G). This is only a 3%

increase for c0 = 0.01 from the c0 = 0 case, compared to an increase of 7% for the edge

dislocation in Nb-O.

Interplay between screw dislocations and interstitial mobility

In all simulations thus far, either interstitial diffusion or dislocation evolution was

simulated, but not both. Here, the interplay between dislocation glide and interstitial

diffusion is investigated. First, define the mobility ratio R asmintb/mdisl. In the following

simulations, mdisl was held constant at 0.25 (G∆t)−1 while mint was varied to simulate
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R = 0, 0.5, 1, and 2. The dislocation was allowed to relax under zero stress without

interstitial diffusion until convergence, and then the applied stress σapp was increased to

a stress greater than the interstitial-free critical stress to observe simultaneous dislocation

glide and interstitial diffusion. The interstitial distribution is initially homogeneous, and

an average concentration c0 = 0.01 was used in all cases.

The glide distances for screw dislocations are shown for a selection of applied stress

values in Fig. 7.4. The lowest and highest applied stresses are shown along with an

intermediate stress value. All of these stresses are above the critical stress, so “low” stress

refers to stresses near the critical stress while “high” stresses are significantly higher than

the critical stress. For both the Nb-O and W-H system, the glide behavior at the lowest

stress value depends significantly on the value of R, with higher R increasing dislocation

glide speed. At higher applied stresses, the dislocation glide behavior is insensitive to R

in both systems.

From these simulations, the dislocation drag B can be calculated as B = σappb/v

where v is the dislocation velocity. As the dislocations glide, they accelerate slightly due

to the influence of their periodic images, so only the first three glide steps (i.e., the first 3b

of glide) are used to calculate v. The calculated B is shown in Fig. 7.5. In both Nb-O and

W-H systems, B is sensitive to R at low applied stresses but not higher applied stresses.

Below the stresses shown here, the dislocations are unable to glide at all. Therefore, there

is a very narrow range of stresses for which R has an influence, approximately 0.111G -

0.113G for Nb-O and 0.068G - 0.071G for W-H.

To investigate why the mobility ratio R affects the dislocation drag at certain applied

stresses, Fig. 7.6 and Fig. 7.7 show the evolution of the dislocation order parameter ϕ1

and the total concentration. In the Nb-O system, the slip plane is depleted of interstitials

directly in front of the dislocation, while there are increased interstitial concentrations in

the out-of-plane direction (Fig. 7.6E). The interstitial atmosphere is different than the
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zero-stress case (Fig. 7.2A) because, under the applied load, the interstitials adopt the

[010]-oriented octahedral sites exclusively. The atmosphere decreases screw dislocation

core spreading and makes screw dislocation glide easier, which is similar to the mechanism

that causes the decrease in σi for screw dislocations in Nb-O.The reduced critical stress

allows the dislocation to glide forward 1b more easily, where it then becomes pinned by

a locally high interstitial concentration (Fig. 7.6F). However, unlike the critical stress

calculations above, simulations with R > 0 allow the interstitials to rearrange around

the new dislocation location (Fig. 7.6G). This rearrangement then allows the dislocation

to glide another 1b forward. This process repeats as the dislocation glides completely

across the slip plane in a cycle of 1b glide steps and interstitial rearrangement.

In the W-H system, H accumulates directly at the dislocation core itself. The in-

creased concentration of interstitials slightly lowers the glide stress (Fig. 7.3), allowing

the dislocation to glide more easily. The locally high concentration of interstitials glides

along with the dislocation core. In both Nb-O and W-H, the constant rearrangement of

interstitials around a gliding dislocation core leaves in its wake a slip plane that is locally

depleted of interstitials.

Both Fig. 7.6 and Fig. 7.7 are shown for relatively low applied stress values, just

above the screw dislocation critical stress. At high applied stresses, similar concentration

fields are observed trailing the gliding dislocation core. However, there is a plateau in

the calculated drag B around 1.5m−1
disl for Nb-O and 1.1m−1

disl for W-H (Fig. 7.5). Both of

these drag values correspond to a dislocation velocity v in which the dislocations glides 1b

approximately every 50 timesteps, indicating an upper limit to dislocation glide velocity.

Even with the interstitial atmosphere created by R > 0, the dislocations are unable to

increase the glide velocity beyond this, suggesting that there is a limit to the assistance

interstitials can provide during glide.
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Figure 7.4: The distance a screw dislocation glides for three different applied stresses for
different values of the interstial-dislocation mobility ratio R.
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Interplay between edge dislocations and interstitial mobility

Analagous simulations were repeated for edge dislocations in both Nb-O and W-H.

Figure 7.8 shows the glide distance over time for select applied stresses in both systems.

At low stresses and R >= 1, the dislocation becomes pinned during glide. The interstitials

are able to diffuse faster than the dislocation is gliding, increasing the concentration of

interstitials near the dislocation cores and arresting dislocation glide. When R is lower

or the applied stress is higher, the dislocations are able to glide completely across the

slip plane without being trapped by the interstitials.

Because the dislocation velocities change over time, with some dislocations accelerat-

ing and others decelerating, the dislocation drag B calculated from either the beginning

or end of the simulations do not represent the full dislocation behavior. Instead, the

total distance traveled in the 2000 simulated timesteps is compared in Figure 7.9. In

the Nb-O system, higher R values decrease the total distance traveled by the edge dis-

location. When R = 2 and σapp < 0.085G or when R = 1 and σapp < 0.082G, the edge

dislocations decelerate or become pinned during the simulation. At all other stress and

R combinations, there is a linear relationship between the distance traveled and σapp.

Unlike the screw dislocations, which converged to a similar velocity regardless of R at

high σapp, the edge dislocation glide distance is dependent on R for the full range of stress

values simulated here.

In the W-H system, the dislocations with R = 2 become arrested at low σapp, similar

to those in the Nb-O system. However, for dislocations which glide freely, the ranking of

distance with respect to R is reversed compared to Nb-O. Higher R values increase the

dislocation glide distance, meaning that edge dislocation glide is enhanced by H in W.

While the glide distances converge at higher stresses for R = 0, 0.5, and 1, the dislocation

glide is still enhanced by R = 2 for the highest stress value simulated.
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Figure 7.8: The distance an edge dislocation glides for three different applied stresses for
different values of the interstitial-dislocation mobility ratio R.

Figure 7.10 shows the interstitial concentration and dislocation evolution for an in-

termediate stress value with R = 1 in Nb-O. Similar interstitial concentration fields are

seen for other stresses and R > 0. Interstitials pile up below the glide plane in the tensile

region, as well as within the glide plane itself. At low stresses and high R, the interstitials

within the glide plane itself pile up to an extent that causes the dislocation to become

pinned. In other cases, the interstitials only slow the dislocation glide.

In the W-H system, interstitials also accumulate within the slip plane in front of the

edge dislocation Figure 7.11. Different values of R only change the magnitude of the

interstitial atmosphere, not its shape (Fig. 7.12). As in the screw dislocation case, a

locally high interstitial concentration follows the dislocation core as it glides, leaving a

wake of locally interstitial-depleted material in both Nb-O and W-H.
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7.4 Discussion

While O and H are both significant interstitial contaminants in refractory metals,

these simulations show that they affect dislocations in different ways. Because H oc-

cupies tetrahedral sites and creates a purely hydrostatic strain, it is unable to interact

with screw dislocation stress fields and has minimal impact on the critical stress of W.

O interstitials, on the other hand, are able to interact with screw dislocations and in-

crease the critical breakaway stress. Being a larger atom, O also interacts more strongly

with edge dislocation stress fields, creating a more intense and wider-ranged interstitial

concentration in Nb than H interstitials do in W.

The simulations show that screw dislocation glide is enhanced by the presence of

interstitials in both the Nb-O and W-H systems but only within a narrow range of

applied stress values. This is in contrast to atomistic simulation results which show

decreased mobility of screw dislocations by interstitials [47, 71]. However, due to time

scale constraints, atomistic simulations have only been performed in the low interstitial

mobility regime, essentially R = 0 in the PFDD simulations. Those results are consistent

with the increased critical stress of Nb-O screw dislocations when the interstitials are

frozen (Fig. 7.3A), and it is likely that interstitials will affect glide differently depending

on their mobility. Here, R is an artificial parameter that allows for any combination of

interstitial-dislocation relative mobilities. In reality, H will have a much higher mobility

than O, so it is possible that H will enhance screw glide while O is unable to diffuse

quickly enough to have an effect.

Unlike screw dislocations, edge dislocations exhibit different behaviors in the two

systems simulated here. In Nb-O, interstitials slow edge dislocation glide by increasing

the critical stress required for glide. In W-H, interstitials increase the velocity of edge

dislocations, and the effect is persistent over a wider range of stresses than for the screw
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dislocations. While H had little effect on the critical stress of edge dislocations, it may

be increasing the glide stress through a hydrogen-shielding type mechanism. Other sim-

ulation results have found that H increases dislocation mobility, but the conclusions are

split on whether this is caused by long-range elastic shielding [242] or short-range core

effects [243]. Future studies of dislocation pileup are necessary to fully understand why

H increases edge dislocation glide.

It should be noted that temperature is not included in these simulations, which is

especially significant for screw dislocation behavior. Screw dislocations in BCC crystals

glide via thermally activated kink-pair nucleation and migration, which is not simulated

here in the 0K PFDD simulations. The calculated 0K initial critical stresses for screw

dislocations suggest that barrier for dislocation glide is lowered in the presence of inter-

stitials for both systems. Kink-pairs may therefore be more likely to nucleate at high-

concentration regions under thermal fluctuations. The resulting kinks are edge-oriented,

and as seen in the pure edge glide simulations, interstitials slow down edge glide in Nb-O

but accelerate edge glide in W-H. Therefore, screw dislocations may be accelerated in

W-H by increased kink mobility but inhibited in Nb-O. Including temperature effects in

future PFDD simulations will be necessary to untangle these mechanisms.

7.5 Conclusion

Phase-field dislocation dynamics was used to study the behavior of dislocations in the

presence of interstitials in refractory metals. Two model systems were studied: H inter-

stitials in W and O interstitials in Nb. These two interstitial types occupy different sites

within the lattice, thereby interacting with dislocations in different ways. H interstitials

interact minimally with screw dislocations due to their purely hydrostatic strains, while

O interstitials interact with both screw and edge dislocations. The critical stress for dis-
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locations to break away from their interstitial atmospheres increases with concentration

in Nb-O for both screw and edge orientations. H, on the other hand, has minimal impact

on the critical stresses for dislocations in W. When the interstitial atmosphere is able to

follow a gliding dislocation, screw dislocation glide is enhanced in both systems, while

edge dislocation glide is enhanced in W-H but inhibited in Nb-O.
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Chapter 8

Summary and Outlook

8.1 Conclusions

In the work presented here, several separate extensions were made to PFDD to simu-

late specific systems of interest. The PFDD simulations of refractory MPEAs, including

long dislocations, loops, and Frank-Read sources, reinforce the high variability and sta-

tistical nature of dislocations in these materials. This is one of the critical differences

between MPEAs and pure metals or conventional alloys. Screw-oriented dislocations ad-

vance by forming a kink-pair in a low USFE regions, leading to a more extreme length-

dependence in the critical stress of Frank-Read sources and a wide range in critical stresses

to advance a screw dislocation. The critical stresses are highly dependent on the partic-

ular position of the dislocation within the lattice, so there will be a large distribution of

weaker and stronger dislocations and sources within a crystal. SRO generally increases

the mean critical stress due to the higher USFE values associated with SRO.

The PFDD simulations of pure Nb and W with O and H, respectively, reveal how

different interstitial types affect screw and edge dislocations in distinct manners. The O

interstitials interact more strongly with the stress fields of dislocations due to their larger
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distortion with shear components, while H interstitials create smaller, purely hydrostatic

distortions. The mobility of screw dislocations is enhanced by interstitials in both sys-

tems, as the interstitial atmosphere allows the screw dislocations to glide a short distance

at a lower applied stress. Edge dislocations in the two materials exhibit opposite trends:

O inhibits edge glide in Nb but H enhances edge glide in W.

8.2 Future Work

Temperature is an important aspect of dislocations in BCC materials and has not

been considered here. Future work may incorporate thermal fluctuations into the PFDD

model to simulate thermally activated behavior. The simulations presented here show

that athermal kink-pairs form due to the underlying composition fluctuations, so under-

standing the presence of thermal and athermal kinks under different conditions would be

necessary for understanding the mechanical properties of MPEAs at elevated tempera-

tures. Future simulations may also include multiple dislocations and their interactions.

As dislocations glide along their slip plane, the underlying USFE surface should change

as the local composition shifts. This is especially important when SRO is included, as

dislocation slip breaks the local SRO, potentially lowering the glide stress and increasing

the mobility of subsequent dislocations.

The PFDD simulations here indicate that mobility of edge dislocations is enhanced

by H in W, which may be indicative of hydrogen-enhanced local plasticity. Future work

should examine dislocation pileup to probe for hydrogen shielding effects. Additionally,

the inclusion of temperature would allow for the introduction of a real time scale, which

would allow experimental or simulated values for dislocation mobility and interstitial

diffusivity to be included in the PFDD simulations.

The work presented here both gives new insights into dislocation behavior in re-
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fractory metals and advances the PFDD method itself. Future researchers can use the

updated PFDD formulation and code to simulate their system of interest by obtaining

the appropriate parameters. For MPEAs, a distribution of stacking fault energies is re-

quired, which can be calculated with atomistic simulations. Cross slip in BCC crystals is

inherent to the three order parameter formulation and needs no additional parameters.

Short-range order can be incorporated with the help of OTIS and requires the Warren-

Cowley parameters for the system. Finally, interstitials can be included in PFDD by

inputting the elastic dipole tensor and concentration-dependent USFE. The current for-

mulation considers interstitials within a single element host lattice, but extensions could

be made in the future to consider interstitials within an MPEA, which would be of great

interest to the refractory MPEA community.
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A. P. Thompson, M. A. Wood, and S. P. Ong. “Performance and Cost Assessment
of Machine Learning Interatomic Potentials”. The Journal of Physical Chemistry
A 124.4 (2020), pp. 731–745. doi: 10.1021/acs.jpca.9b08723.

[207] J. Qi, S. Banerjee, Y. Zuo, C. Chen, Z. Zhu, M. Holekevi Chandrappa, X. Li, and
S. Ong. “Bridging the Gap between Simulated and Experimental Ionic Conduc-
tivities in Lithium Superionic Conductors”. Materials Today Physics 21 (2021),
p. 100463. doi: 10.1016/j.mtphys.2021.100463.

[208] S. Xu. “Recent progress in the phase-field dislocation dynamics method”. Compu-
tational Materials Science 210 (2022), p. 111419. doi: 10.1016/j.commatsci.2
022.111419.

[209] P. C. Gehlen and J. B. Cohen. “Computer Simulation of the Structure Associated
with Local Order in Alloys”. Physical Review 139 (3A 1965), A844–A855. doi:
10.1103/physrev.139.a844.

[210] S. Xu, W.-R. Jian, and I. J. Beyerlein. “Ideal simple shear strengths of two
HfNbTaTi-based quinary refractory multi-principal element alloys”. APL Materi-
als 10.11 (2022), p. 111107. doi: 10.1063/5.0116898.

[211] A. Stukowski. “Visualization and analysis of atomistic simulation data with OVITO-
the Open Visualization Tool”. Modelling and Simulation in Materials Science and
Engineering 18.1 (2010). doi: 10.1088/0965-0393/18/1/015012.
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