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PREFACE 

The magnetotelluric method has been under study at the University 

of California, Berkeley and the Lawrence Berkeley Laboratory for several 

years, most recently in connection with applications in geothermal explor

ation.· Based on theoretical calculations and field tests, it was learned 

by the authors that uncorrelated noise which biases and scatters impedance 

estimates could be eliminated to a high degree by means of the remote 

magnetometer magnetotelluric technique (Gamble, et al., 1978; Goubau, 

et al., 1978). Although the method requires more instrumentation 

than conventional tensor MT (e.g., a second magnetometer and telemetry 

equipment are needed), the potential advantages over conventional MT 

are significant in terms of enabling one to perform faster and more 

accurate MT surveys. In a practical sense, this should translate into 

a greater cost-effectiveness for connnercial MT surveys utilizing the new 

technology; it should provide better and less costly survey data for 

geothermal resource developers, particularly in areas contaminated by 

man-made electromagnetic noise. 

This report, a companion to Gamble, et al., (1978), describes in 

detail the ~heory for making a reference magnetometer error analysis. 

Probable errors are illustrated for apparent resistivity, rotation angle, 

skewness and phase angles calculated from MT data obtained near Hollister, 

California. 
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Abstract 

An error analysis is presented for the remote reference magneto-

telluric method. The variances in the elements of the remote reference 

impedance tensor, '!!_R, are calculated, and general expressions are found 

for the variances in an arbitrary function of '!!_R. The variances in the 

R apparent resistivities, the phases of the elements of '!!_ , and the skew-

ness are derived for a fixed coordinate frame. The variance in the 

rotation angle of the coordinate frame required to maximize the sum of 

the squares of the off-diagonal tensor elements is calculated, and 

expressions are presented for the variance in the apparent resistivities 

and phase angles in the rotated frames. The distribution of errors and 

the estimation of confidence limits are discussed. Expressions are given 

for the signal and noise power spectra of the electric, magnetic, and 

remote reference fields. Throughout the calculations, emphasis is placed 

on the physical assumptions made, and possible circumstances under which 

the assumptions may be violated are discussed. The calculations are 

illustrated with magnetotelluric data obtained near Hollister, California. 
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INTRODUCTION 

The magnetotelluric (MT) method requires a determination of the electro-

magnetic impedance of the earth's surface for normally incident plane waves. Let 

-+ -+ 
E (t) and H (t) be the horizontal electric and magnetic fields (signals) 

s s 

at the surfac~ of the earth generated by such waves. The impedance, ~(w), 

at an angular frequency w is related to the Fourier components of the fields 

by the relation 

-+ -+ 
E (w) = Z(w)H (w). 

s. = s 
(1) 

If one approximates E (w) and H (w) by the fields E(w) and H(w) obtained . s s 

from experimental data, one inevitably introduces errors into Equation (1). The 

-+ -+ 
relationship between E(w) and H(w) is 

-+ ·-+ -+ 
n = E - ~H, (2) 

-+ 
where n is the total error caused by the noises in all of the fields. The 

-+ -+ 
errors in measuring E and H may be caused by inhomogeneous (non-plane-wave) 

s s 

sources, measurement noise, or errors in signal processing. To estimate ~· 

a statistical analysis is required. 

Until recently, the most commonly used estimator 
H 

for ! was ! , obtained 

by minimizing the mean value of In 12 and In 12 (Vozoff, 1972). The estimator 
X y 

ZH for this least-squares analysis can be written concisely as 

(3) 
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where [AB] is the spectral density matrix for the fields A and B defined by 

* * A B A B 
[AB] X X X y 

(4) 

* * A B A B 
L 

y X y y 

and the bars denote averages over Fourier harmonics in a narrow band of 

frequencies, and, usually, over data obtained at different times. In 

equation (4) the inverse of [AB] is 

* ·* A B A B 
y y X y 

* J_ l [AB]-1 * A B A B y X X X 
• (5) 

* * A B A B 
X X y y 

* * A B A B 
y X X y 

The magnitudes of the elements of ZH are biased downward by the noise 

powers in the magnetic channels (Sims,~ al., 1971). If a reference field, 

-+ -+ -+ 
R, is measured simultaneously with E and H, an estimate of Z can be made that 

is not biased by noise in any field, provided the noise in the reference is 

-+ -+ 
uncorrelated withE or H (Clarke, et al., 1978; Gamble, et al., 1978; Goubau, 

~ al., 1978). The impedance ~R estimated using the reference field is 

[ER] [HR]-l. (6) 

In this paper we derive expressions for estimating the random errors in 

any function calculated from ZR. 

We begin by finding an exact expression that relates ZR - Z to the spectral 
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R 
density matrix [nR]. We then compute variances for~, and for any 

function of ZR in terms of measured cross-and autopowers, using the 

assumption that the signals and noises are statistically independent 

and that the noises are stationary. Expressions are given for the 

variances in the apparent resistivity, phase angles of the impedance 

tensor elements, and the skewness in a fixed coordinate system. Since 

it is a standard practice in MT to rotate the coordinate axes to minimize 

lz - z 12 
XX yy ' we give expressions for the variances in the 

rotation angle and in the apparent resistivities and phase angles in this 

rotated frame. The distribution of errors in both ZH and ZR and the 

calculation of confidence limits are discussed. 

We show that the remote reference enables one to calculate the signal 

and noise power spectra pf each field component and coherence between 

the noises in the two components of each field. This calculation also 

provides checks on the assumptions of the statistical independence of the 

noises. 

Finally, examples of the error analysis and of the calculation of the signal 

ari.d'noise powers are given for real NT data taken near Hollister, California. 

CALCULATION OF ZR - z 

~ 

To compute !:..R - Z it is convenient to introduce the error ~p predicted 

when ~R is substituted for Z in equation (2): 

+P + 
n = E 

R_t z 1f. 

+ 
On eliminating E between equations (2) and (7) one finds 

+ 
n 

+P + 
n + ~ H~ 

(7) 

(8) 
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where ~ = ZR - z. The spectral density matrix [nR] obtained by multiplying 

+ +* 
the components of n in equation (8) by the components of R and averaging is 

given by 

[nR] 

0 from the definition of '!;,_R, [equation. (6)], we find 

~ = [nR] [HR]-l. 

F · (10), the (1·J·)th rom equat1on element of ~ is given by 

~ij 

where 

A = 
X 

A = y 

and D = 

n.A.*/n (i 
1 J 

* R .H R 
X y y 

* R H R y X X 

* * H R H R 
X X y y 

x,y' j x,y), 

* R H R 
y y x' 

* R H R 
X X y' 

* * H R H R 
X y y X 

Equation (11) is exact for any level of noise in any field. 

ESTIMATION OF VARIANCES IN ZR 

To compute the expected variances in the elements R Z .. , we assume 
.lJ 

that we have an ensemble of estimates for ~R, and that each value of ZR 

(9) 

(10) 

(11) 

was computed from identical sets of signals and stationary random noises. 

R 
We wish to find the variance Var(Z .. ) defined by 

. 1] 



Var(Z~) 
1J 
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where < > is the ensemble average. This variance is the sum of the 

variances of the real and imaginary parts of R Z; .• 
1J 

-+ 
We assume that R 

un -+ 
is ~orrelated with n so that<~ .. >= 0. Then, from equation (11), 

1J 

R Var(Z •. ) 
1J 

R 
If we substitute the measured value of lnl 2 in equation (13), Var(Z .. ) 1J 

can be written in expanded form as 

R 
Var(Z . . ) = 

1J 
1 

N21Df2 
N N * * 

< E E n n A A > n=l m=l i,m i,n j,m j,n ' 

where N is the number of independent determinations of each field. This 

approximation introduces an error into the variance of order 1/N. For 

mIn, n. and A. are statistically independent of n. and A. 
1,m J,m 1,n J,n 

(assuming that the analog filtering and Fourier transforming are 

performed appropriately). Thus, equation (14) reduces to 

R Var(Z .. ) 
1J 

1 

(12) 

(13) 

(14) 

(15) 

If n.. and A. are statistically independent, <ln. 12 fA. [2> = <In I2><1A !2> 1 , m J , m 1 , m J , m 1., m J , m . 

Since the crosspowers in the A. are in fact not independent of the n. , the 
J,m 1,m 

equality is not exact. 
-+ -+ 

However, provided R is ndependent of n, the error 

introduced is of order 1/N, and can be neglected for large N. If the noises 
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are stationary, <ID. 12> is independent of m, and equal to ln. 12. Under 
1,m 1 

these conditions, equation (15) simplifies to 

R 
Var(Z .. ) 

1] (16) 

' It is easy to show, using equations (8), (11), and (16), that 

1Dil
2 = lnipl 2 

[1 + 0 (1/N)]. Thus, for large N, one can replace 

1Dil
2 

in equation (16) with 

ID~I 2 
= IE.I 2

- 2Re [z~ HE~+ z~ HE~- z~ z~* H H*] 
1 1 1X X 1 1y y 1 1X 1y X y 

where Re(x) is the real part of x. 

We emphasize that the variance 
R 

of Z .. is correctly given by equation (16) 
1] 

-+ 
only if: (1) R 

-+ -+ 
is uncorrelated with the noises 

-+ -+ 
in E and H, (2) 

in E and H 
the noises /are independent of the signals, and (3) the noises are stationary. 

The purpose of the remote reference technique is to ensure that the first 

condition is satisfied. The second assumption is likely to be well satisfied 

if the noises are generated locally. On the other hand, if the noises arise 

from inhomogeneous atmospheric sources, both assumptions 1 and 2 may be 

violated. Assumption 2 could also be violated if the measuring equipment 
(3) 

produces errors that·are proportional to the signals. The requirement/of 

stationarity is not particularly restrictive. We require only that the 

ensemble average and measured time average of the noise powers be equal. 

Stationarity does not require that the noise in short segments of our data 

be the same for all segments. For example, magnetic fields from passing 

vehicles might introduce much more noise into some data segments than others, 
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yet the ensemble and time averages of the noise power will still be equal, provided 

the times at which vehicles pass by in each experiment in the ensemble are random. 

It should be noted that we do not need to assume that the signals are stationary. 

R · R Z and the errors in Z involve only the ratios of average crosspowers, and, since 
-
E, H, and R are causally related, these ratios do not depend on the statistics of 

the fields. 

R 
It is important to note from equation (16) that Var(Z .. ) = 0 

1] 
+ + + 

when there is no noise in E and H, regardless of the noise power in R. Also, 

+ 
when the noise power in R is negligible and the crosspowernm A. and D 

J 

can be approximated by their noise-free values, it can be shown that 

Var(Z~.) is independent of the tensor relating Rand H. Under these 
. 1] 

conditions, for given lnl 2 , Var(Z~.) diverges as IH 1.2 -IH-12 -I H If< 12 
+ 0, 

1J sx sy sx sy 
. + 

that is, as the polarization of the signal, H , increases. When there 
s 

is noise in the reference, one can easily verify that the contribution 

R + 
of the noise power to Var(Z .. ) increases as the polarization of R increases. 

1] 

Thus, the electric field from a telluric array in a location with a highly 

anisotropic apparent resistivity may not be a suitable reference. 

+ 
It is interesting to realize that, if H is noise-free, and if one 

+ + 
~eplaces R by H in equation (10), equation (16) gives the expected. 

. * H var1ance in the least-squares estimate of Z . Since ~ is independent of 

the orientation of R relative to H, the variance in ZR is identical with the 

. . ZH f . f + f + 1 var1ance 1n or. any no1se- ree R i H is a so noise-free. Thus, because 

~His obtained by minimizing the mean square error in equation (1), ~R also 

+ 
minimizes the mean square error. On the other hand, if there is noise in H, 

In arriving at equation (16), w~ neglected terms of order 1/N in 

estimating ln. 12 • If the only noise is in the electric field, it is easy to 
1 

show that the unbiased estimator of ln. 12 fs [N/(N-2)] ln~l 2 for all Nand 
1 1 

+ 
for any noise-free R. 
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H 
for large N the bias errors in ~ are large compared to the random errors 

in either ZH or ~R· Therefore, when there is noise in H, ~H is not a good 

estimate of ~; and the question of the relative random errors in ZR and 

ZH becomes academic. 

There are two earlier attempts in the l.i terature to calculate the 

expected errors in .estimates of the individual elements of the impedance 

tensor. Bentley (1973) attempted such a calculation for ZH. His calculation 

assumes that there is no noise in the measured fields, that the signals 

have stationary power spectra, and that the only source of error is the sampling 

error. In fact, only the ratios of power spectra enter into the estimate of~· 

and these ratios are not affected by sampling errors. Thus, Bentley should have 

obtained a null estimate for the errors, but did not because he neglected the 

correlations between the errors in the estimates of the power spectra. 

Reddy et al. (1976) have estimated the random errors in the individual elements 

H 
of ~ using an expression derived from the error in a combination of the 

elements (Jenkins and Watts, 1968; Bendat and Piersol, 1971; and Goodman, 1965) 

via a very rough approximation. The approximation is necessarily very rough 

because the error distribution of the combination does not contain enough 

information to specify the individual errors, and, in addition, the expression 

for the joint errors is valid only for a noise-free magnetic field. Thus, 

neither approa~h appears to be appropriate for real MT data. 

ESTIMATION OF VARIANCES IN FUNCTIONS OF ZR 

However large the noise, the errors ~-. in equation 01) can be made 
1J 

arbitrarily small by making N sufficiently large. For small errors, any 
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R ·* 
of Z can be expanded to first order in~ .. and~ ... 

l.J l.J 
function F, In 

these expansions, it is convenient to shorten the notation as follows: 

~ .. (i=x,y, j=x,y) ·H· ~k (k=l,2,3,4), 
l.J 

where 1 = xx, 2 = xy, 3 = yx, 4 = yy. We also drop the supercript R from 

* In terms of ~k and ~k' the error, of,;, in t,; is given by 

Since <~k> = 0, the variance in t,; is Var(t,;) = <lot,;l 2>. 
-+ -+ 

If n and R are 
'I 

(18) 

(19) 

uncorrelated, <~k~t> = 0 for all k and t, since the signals and noises are 

·complex numbers of random phase. Thus Var(t,;) has the form 

Var(O 

which simplifies to 

Var(O 

Here, 

* dE,: dt,;* dE,: dt,;* 
Gkt = G~k = dZ,k dZ~ + dZ~ dZ t 

- [dE,: dt,;* J If E,; is real, Gk t- 2Re dZk dZ~ . We evaluate the ensembl.e 

* average <~k~t>' as discussed in the previous section, 

(20) 

(21) 

(22) 
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using equation (11). Using our original notation we ·replace 

* * <~k~"> with <~ .. ~ >,and find 
"' l.J nm 

* <~ .• ~ > 
l.J nm 

p p * n.n * A.A = 1n Jm 

ND 

(23) 

can be expressed in terms of measured crosspowers and autopowers as follows: 

= E.E* - Z. H E* - Z. HE* 
1 n J.X x n 1y y n 

z* ~- z* H*E + z. z* THT2 nx x 1 ny y i l.X nx x · 

+ z. z* ~ + z. z* ~ + z. z* 1Hyl2, (24) 
l.Y nx y x l.X ny x y 1y ny 

and 

--*- ---* -*- --* --* -*- --* 
A.A = R.R Hk~ H R + R R H R. H R 

J m J m k £. £. k £. k J £, m 

---------* *. . * R,R 0 H1.Rk H R 
J:tv < £-m 

where k = x,y,. £. = x,y, and k f. j and£. f. m. It is apparent that Var(!;) 

will, in general, depend on all 15 crosspowers and 6 autopowers of the 

components of the fields. 

(25) 

To illustrate the use of equation (21) we compute the variance in Re(Z ), 
~ 

where ~ 1, 2; 3, or 4. * * * * Substituting E:, = s = (Z~ + Z~ )/2 and ds/dZk = dE:, /dZk 

= l/2.o,.k (o is the Kronecker delta), one finds Var[Re(Z )] = 1/2<1~ I 2 >=~Var(Z ). 
~ ~ ~ ~ 

Since Var(Z ) = Var[Re(Z )] + Var[Im(Z )] [Im(x) is the imaginary part of x], 
~ ~ ~ 

this example proves that Var[Re(Z )] = Var[Im(Z )]. 
~ ~ 

The elements of the apparent resistivity matrix p associated with~ are 

defined by £. k = 0. 2T ~~ k 12 , ';lhere T is the period in second:; and Z has dimensions 

* of mV/(kmy). If we choose s= E:, * Z~Z~ in equation (21) then dt:,/dZk 
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* zll(\.tk' Gu = 2 lzlll 2 ollkollt' and 'Var(t,;) = Thus the 

variance of the element p is given by 
ll 

Var(p~) = (0.2T) 2 Var(F,;) 

* The phase, ~ of Z is defined by 
ll ll 

* * tan~ = (Z - Z )/i(Z + Z ), 
ll ll ll ll ll 

where i = 1=1. If F,; tan~ , Var(~ ) 
ll ll 

cos 4 ~ Var(F,;). In equation (22) 
ll 

* * dt,;/dZk = o,,k 2Z /i(Z + z )2 
,... ll ll ll ' 

and 

8 I z 1
2 0 k 0 ·" I I z + z * I 4 

• l.l 'l.l .. lJ x,. l.l lJ 

Thus 

To find the variance in the skewness, S, \<Je define F,; = S2 

= lz + Z 12/ lz - Z 12. One obtains 
XX yy xy yx 

Var(S) = Var(0/4S , . 

where Var(F,;) is given by equation (21) with the following values of Gkt : 

Gll = Gl4 = G44 = 2s2/lzxy zyxl2, 

G22 = G33 = -G23 = 52Gll' 

(2]) 

(28) 

(29) 

(30) 

(31) 
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and 

= -G11 Re[(Z + ~ ) 
XX yy 

lz -xy 

*· 
(Z -xy 

z 12 
yx 

* z )] 
yx 

The rotation angle, 0, that minimizes lz - Z 12 also maximizes 
XX YY 

lz 12 + lz. 12 (Sims and Bostick, 1969). 0 satisfies the equation xy yx 

tan 48 
* * 2Re [(Z - Z )(Z + Z )] yy xx xy yx 

lz + z 12 - lz - z 12 
xy yx yy xx 

(32) 

(33) 

For any integer,m,0 ± m'TT/4 also satisfies equation (33), but the solutions 

with odd m maximize lz - Z 12 • 
XX yy 

* If we choose ~ = ~ tan 40, then Var(0) 

= cos440 Var(~)/16. Var(~) is given by equation (21) with 

The expressions for the variances in the apparent resistivities and the 

phases of the impedance tensor in this rotated coordinate system are given in 

the Appendix. 
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CONFIDENCE LIMITS 

Although least squares linear regression is not the best method of 

determining Z, the least squares principle is appropriate for the comparison 
= 

of different estimates of Z. For example, the best model of the ground in 

a statistical sense minimizes the mean square of the magnitudes of the dif-

ferences between the modeled and measured values of ~' weighted in inverse 

proportion to the variances. However, to determine the statistical significance 

of this discrepancy, one requires the distribution of the errors of the estimates, 

not just the variances. 

In the expression for the error, /':, .. [equation (11)], D can be approximated 
1] 

by its noise~free value for large N. In this approximation, /':, .. is just the 
1] 

sum of N complex random .errors (one for each k, 1~~), and, by the central 

limit t:heorem(Jenkins and Watts, 1968), its real and imaginary parts are 

normally distributed. Since the error /':, .. is of random phase 
Thus, 1 J 

<Re(/':, .. )Im(t:, .. )> = 0./Re(/':, .. ) and Im(t:, .. ) are also statistically independent. 
1] 1] 1] 1] 

The sums of the squares of n independent normally distributed random variables 

2 with unity variance and zero mean has a X 
n 

are noise-free, It:, .. 1 2 /Var[Re(/':, .. )] 
1] 1] 

+ + 
distribution. Thus, if Hand R 

distribution. In this .expression, the unknown quantity <ln. 12> is best 
1 . 

approximated by ln?l 2 • The errors introduced by this approximation must be 
1 

included to obtain an unbiased estimate of the confidence limits. Since 

(2N-4) lnil 2 /<lnil 2> ha~x;N_4 distribution (Jenkins and Watts, 1968) the 

quantity It:, .. 1 2 NIDI 2 /In~l 2 IA.I 2 has a Fisher F distribution 
1] . 1 J . 

F 
2 2N-4. ·For large N, the modification in'troduced by 
' ' 
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is small. For example, for N>25, the confidence limits for the 

F2'2N - 4 distribution are less than 6% larger than those for the x2 
2 

distribution up to the 95% confidence level. If the signal-to-noise ratios of 

+ + + 
R and H are much greater than the signal-to-noise ratio of E, this small correction 

to the confidence limits may be significant. If the noise is not predominantly 

+ . 
in E, the other correct1ons of order 1/N that we have neglected will cause mod-

ifications of the distribution comparable with the difference between the x2 

and F distributions. These modifications cannot be described in terms of 

elementary distribution functions. Thus, for most applications, the x2 

distribution should be adequate, and as accurate as can be obtained without 

extraordinary effort. 

Errors estimated from the first-order Taylor expansion, equation (19), 

for example errors in the apparent resistivity, are linear functions of the 

R 
errors in the real and imaginary parts of ~ Within the limits of accuracy 

of the Taylor expansion, these errors are also normally distributed. The 

confidence limits of these quantities are again modified by the estimation 

of <ln. 12> by ln~l 2 so that the proper distribution is that of the ratio of a 
1 1 

normally distributed to a x2 
- distributed variable, or a Student t distribution. 

However, the corrections to a normal distribution will be significant only 

when the confidence intervals are so small that the Taylor expansion introduces 

+ 
a negligible error, and, as before, the noise is predominantly in E. For most 

purposes, a normal distribution should be entirely adequate. 

As an example, consider two independent sets, a and b, of M estimates of 

a · b 
Z .. (w), Z .. (wk) and Z .. (wk)' where l~k~M. We calculate the probability that the 
1] 1] 1] 

disagreement between the sets arose from random errors alone assuming that the 

errors in set b are negligible compared to the errors in set a. Such a calculation 
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would be required if one wanted to determine the significance of the 

difference between a model of the ground (set b) and a sounding (set a) 

or if one considered rejecting a small subset of the data (set a) 

because of its disagreement with the rest of the data (set b). If the 

quantity 

o .. (wk) = 2lts .. (wk) I2NIDI 2/(Inpl2 .klz) 
~J ~J i J (37) 

has a X~ distribution then the total discrepancy, k~lo~j(wk), 

has a x~M distribution. Neglecting the errors in Z~j(wk), we find 

M a M 21 z~. (wk) z~. (wk) 12Nal Da 12 

k~l0 ij(wk) z; = k~l 
. ~J ~J (38) -

ln~al 2 
~ 

IA~I 2 

J 
2 ' 

Thus the probability that z; >a through random errors alone is 1- x2M(a). 

DETERMINATION OF SIGNAL AND NOISE POWERS 

The random errors in ~R depend only on the combined noise,~, rather.than 

-+ -+ 
on individual no~ses in E and H. Nevertheless, the determination of the noises 

in the individual fields is obviously of practical interest. With a remote 

reference the signal and noise power spectral densities can be evaluated as 

follows. 

The value of ZR obtained from equation ( 6 ) and the measured magnetic field, 

-+ -+P 
H, predict an electric field E , where 

-+ 
Ep contains contributions from the signal Hs and the noise an 

-+ = H 
-+ 
H 

s 

(39) 

If the 

noises are uncorrelated with each other and with the signals, the spectral density 

matrix 
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has the expectation value of the spectral density matrix [E E ], where s s 

IE 12 E E * sx sx sy 

[E E ) = s s . 

* IE 12 E E 
sy SX SX 

The matrix [E E .] is Hermitian: The diagonal elements are real, and the 
s s 

off-diagonal elements are the complex conjugates of each other. On the 

other hand, [E E] is, in general, not Hermitian because of the noises p 

E ,H , and R . From Figure 1, it can be seen that if the phases of the n n n 

noises are unknown, the best estimate for [E E ] is the Hermitian part of 
s s 

[EPE], [E E ]p given by 
s s 

where t denotes the Hermitian conjugate. 

(40) 

(41) 

The spectral density matrixes for the other fields can be estimated similarly: 

[H H ]p = ( [HPH] + [HHP]) /2, (42) 
and 

s s . 

[R R ]p = ( [Rp R] + [RRP]) /2, (43) 
where s s 

[HPH] = [HR] [ER-l][EH], ( 44) 
and 

[RPR] [RE] [HE]-l[HR]. ( 45) 
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One can calculate the spectral density matti~es for the noises by 

subtracting the estimated signal density matrices from the measured spectral 

density matrices, for example 

[E E ] 
n n· 

[ EE] - [ E E ] p. 
s s 

(46) 

The noise matrixes contain the crosspowers E E * H H * and R R *. 
nx ny' nx ny' nx ny 

Thus, one can determine whether there are significant correlations between 

the noises in the two components of each field. Such correlations may be 

indicative of measurement errors, and could be g·enerat·ed,. for· example, by 

noise from a common electrode, or by a moving magnetic object. 

The remote reference method requires the measurement of the three fields 

E, H, and R, each With two components. Correlations between the noises in the 

two components of each field do not bias the estimates of :fR, the errors in 

~R,.or the signal and noise power spectral density matrices. However, any 

correlation between a measured field and the noise in another field will bias 

the estimates of the signal and noise power spectra. Such correlations would 

usually cause a significant non-Hermitio.n part in the matrices [EPE], [HPH], 

p 
and [R R]. 

ZR will be biased only by correlations between -;;- and R. Thus, under most 

circumstances, the requirement that [EPE], [HPH], and [RPR] be Hermitian provides 

a sufficient but not necessary check on the correlations that would bias ZR. 

However, if the ionospheric signal is from a fixed inhomogeneous source, these 
still 

matrices would/be Hermitia~ but :fR would be biased. 
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APPLICATION TO MAGNETOTELLURIC DATA 

We illustrate the calculations of signal and noise powers and the error 

analysis with magnetotelluric data obtained at the Upper La Gloria site in 

Bear Valley~ near Hollister, California (Clarke et al., 1978, Gamble et al., 
-- to (43~-

1978, Gouba~ ~ al., 1978). The signal powers, equations ·(41)/ and noise powers, 

-+ -+ -+ 
equation (46), for the components of E, H, and Rare shown in figures 2, 3, and 

4, respectively. The non-Hermitian parts of the predicted autopower spectral 

density matrices were very small. For example, the imaginary parts of the 

predicted autopowers (such as EPE *)were always less than 10% of the real 
X X 

parts, and averaged about 1%. For periods shorter than 3 seconds, where we 

had the most data, they were always less than 2%. Thus, even if the noise 

coherencies were statistically significant, they were too small to have any 

practical importance in these calculations. 

Because of random errors in the calculated signal spectral density matrices, 

it is possible for the calculated noise powers to be negative. This behavior was 

never observed in the data presented, even though the signal-to-noise ratios 

varied from 100:1 for E at 0.1 second period and 200:1 for H at 85 second 
y y 

period to 1:7 for R at 9 second period. The signal power spectra for these 
X 

data are particularly steep; for example, around 15 second period they increase 

roughly as the 8th power of the period. Nonetheless, the calculated noise 

spectra are comparatively smooth, indicating that the random errors are small. 

In Figure 5 we plot the rot<Hed apparent resistivities and their 

associated probable errors as functions of period. In Figure 6 we plot 8 
nx 

(the angle between magnetic north and the rotated x-axis) and the skewness 
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with their probable errors. Similarly, the phases of Z (8) and Z .: (e·.) are 
xy yx 

plotted in Figure 7. 

The results are reproducible within the calculated random error. Where 

bands overlap the values usually agree within the probable errors. One can 

draw very smooth curves through at least 50 percent of the probable error 

ranges. For periods shorter than 3 seconds we made a crude estimate of the 

expected standard deviations of the resistivities by comparing the results 

calculated from subsets of the data gathered at different times (Gamble,~ al., 

1978). For the 25 apparent resistivities with the smallest calculated probable 

error the rms expected standard deviation of the means from that estimate was 88% 

of the rms of the standard deviations calculated in this paper. 

CONCLUDING REMARKS 

The remote reference method enables one to obtain unbiased estimates of 

the impedance tensor, and to calculate accurate confidence limits for each 

element. The absence of bias enables one to perform fast, accurate MT surveys. 

For example, the smallest random error in apparent resistivity reported in this 

paper, ±0.4% for p at a period of 0.062 second, was obtained from only 30 
xy 

minutes of data. Furthermore, the method can be used to determine the impedance 

tensor accurately even in areas contaminated by high levels of noise. 

The separation of signal from noise using a remote reference may make 

possible new types of geophysical measurements. For example, the separation 

of ionospherically generated magnetotelluric signals from local natural sources 

of electric and magnetic field fluctuations may enable one to study the electrical 

and magnetic effects of seismic waves or tidal stress. One could also subtract 
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the magnetotelluric signals from the measurements of active electric 

or electromagnetic surveys, and thus extend the accuracy and efficiency 

of the survey and the effective range of the transmitter (Morrison, 1978). 
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APPENDIX 

The equations obtained in the body of this paper can be used 

to calculate variances in any coordinate system provided one first 

rotates the measured spectral density matrixes to the desired orientation. 

However, if the rotation angle of the coordinate system is itself determined 

from the data, additional errors will be introduced in the calculated 

quantities because of the uncertainty in the rotation angle. This 

appendix contains expressions for the variances of the apparent 

resistivities and of the phases of the elements of the impedance tensor 

in the coordinate system rotated by the angle 8 obtained from equation (33). 

A rotation of a right-handed coordinate system about the ~ axis by 

an angle 8 will change the matrix representation of any tensor from T to 
~ 

where 

-1 
£:k2 

' 

Q = (,Q-1') -t = [ cos8 sine] 
·- ·- -sinS cos8 • 

Rotated Apparent Resistivities 

(A-1) 

(A-2) 

Define the rotated apparent resistivity matrix (which is not a tensor) 

I 

by p~ = 0.2Tiz'l 2 , where i is the impedance tensor in the rotated coordinate . ~ ,..., 

system. (0.2Tfvar(t ). Var(t) is given by 
~ ~ 

equation (21) ~ith 

2Re [~~ (dt~) *] dZk dZfl, 
(A-3) 

and 

(A-4) 
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Using equations (A-1) and (A-4) we find 

di; 
z•*· * ae (A-5) --~ = u (k) + 2Re[z' V ] ' 

dZk ~ ~ ~ ~ az k 
where 

,!l(k) c~) -1 
= ~ azk ~ ' (A-6) 

and 
()0-1 ao 

v ~ -1 
+ JJ k a; (A-7) =as~~ 

The elements of equation (A-6) are 

[· cos
2

a -sine co sa]' 
!J(xx) (A-8) 

-sin8cos8 sin2e 

[ sin6cosa cos2a J 
,!l(xy) = 

-sin8cose ' 
(A-9) 

-sin2e 

[ sinacosa -sin
2

a J 
JJ(yx) = 

-sin8cos8 ' 
(A-10) 

cos 2e 

[ sin
2

a sinacosB J . 
and JJ(yy) = (A-ll) 

sin8cos8 cos 2e 

:& can be written as 

esin2 a cos2a J [zxx - z Z: + z J v = 
yy xy 

z:: . 
~ 

(A-12) -cos28 -sin28 z + z-.--- z xy ,yx YY 
From equation (33)' 

ae/az -ae/az -a*cos 24e(z + z )/4, (A-13) 
XX yy xy yx 

and 

ae/z ae/az - - a*cos 248(Z - z )/4, (A-14) 
yx·· xy ··.·-XX yy 

where a is defined in equation (36). 



.:..zs-

Phase of Z 1 

~ 

Let <P 
1 

· be .the phase of Z 1
, and define 

~ ~ 

t; = tan</> 1 

~ ~ 

Z I - Z 1 * 
= --:---Jl':--:--::-';;Jl---:::

i(Z1 + Z1*) 
~ ~ 

Then, Var(</>'') = cos 4<P 
1 Var( ~ ) , and Var(t; ) is given by equation (21). 

~ ~ ~ ~ 

From equations (A-15) and (A-4), we find 

= - 2i( z~_* dZ' , dZ
1

*) ~ - zll ~ 

(Z I + z I*) 2 
~ Jl 

. (Z 1 * u (k) + 2ilm[z'* v ]ae;azk) = -2i ~ ~ ~ ~ , 
· (Z 1 + Z1 *)2 

~ ~ 

(A-15) 

(A-16) · 

where Jr(k), ~· and ae/azk have been defined in equat~ons (A-8) through (A-14). 
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CAPTIONS 

Graph in the complex plane of an autopower estimate, Ep E* which x · x' 

is the sum of the signal autopower E E * and an error r of unknown 
SX SX 

phase. XBL 783-4695 

Fig. 2. Electric field signal and noise power spectral densities vs. period. 
XBL 783-4697. 

Fig. 3. Magnetic field signal and noise power spectral densities vs. period. 
XBL 783-4696. 

Fig. 4. Remote magnetic reference signal and noise power spectral densities 

vs. period. XBL 783-4698. 

Fig. 5. Apparent resistivities in the rotated coordinate system and their 

probable error vs. period. XBL 783-4692. 

Fig. 6. Angle between magnetic north and rotated x-axis and skewness with 

their probable errors vs. period. XBL 783-4693 

Fig. 7. Phases of Z and Z in rotated coordinate system and their probable 
xy yx 

errors vs. period. XBL 783-4694 



-29-

Imoginory 

XBL 783-4 695 

Fig. 1 



-30-

102~------------~------~--~--------~--------~ 

C\J 

I 
N 

I 10 ->IE 
~~I 

+-

(/) -l 
~ 10 
0 

0 
"
+-
u 
Q) 

0.. -3 
(f) 10 
"-
Q) 

3 
0 

Q_ 

X axis 
Y axis 

Signal Noise 
• 0 

• v 

105~----------~---------~---------~----------~ 
0.01 0.1 10 100 

Period (s) 

XBL 783-4697 

Fig. 2 



-IN 10-l 
:c 

C\1 

~102 

>. -·-

Signal 

X axis • 

Y axis .., 

-31-

0 

v 

I 
Period .(s) 

Fig. 3 

100 

XBL 783-4696 



-

X axis 

Y axis 

0.1 

• 
• 

-32-

Noise 

0 

v 

I 
Period (s) 

Fig. 4 

10 100 

XBL 783-4698 



-> -(f) 
(f) 
Q) 

0: -c 
Q) 
~ 

0 2 
0.10 a. 
<( 

f;.y a • • 

. . 

I 

-33-

z• 
•. •. a• a• 

Pyx x '" • • • • '" 

I I 1 I I 

• • z ~ I I I I I ,:r :r 

a 

:r 

I 

10~--------~------~~--------~--------~ 
10- 2 10 

Period (seconds) 

X B L 783-4692 
Fig. 5 



-34-

180~-------~--------~----~~------~ 

(/) 
Q) 
Q) 
~ 

CJl 

:S 90 
Q) 

CJl 
c 
<! 
c 

~ 45 
0 -0 
cr 

(/) 

0 
1.0 

~ 0.5 
c 
3: 
Q) 

~ 
(.f) 

I I 1 z 2 • z 1 

I 

x. 
J• 

1 • 

I 

I 
1 

I I II 
I I 1 

I 

I 
Z• 

1 z 2 2 • z z ~ 

OL-~------~--~----~--------~------~ 
10- 2 10 

Period (seconds} 

XBL 783-4693 

Fig. 6 

() 



-35-

180~--------~--------~--------~------~ 

135 
z :r I z 

• I I 
en Zyx 

I f I Q) z . 
I Q) I. I I I 

~ :1 . I 
0'1 • I Q) 

I 
:1 I I 

.:g I I en 90 I Q) I 
- 0 0'1 
c: 
<( 

Q) 

I en I I I 0 I 
I 

..c:! I I 
0... ••• %• 1. . I I . 

J 1 I -45 Zxy 
. .. :1 :z I • • 

• 
I 

:1 

-90 
10~2 10- 1 10 102 

Period (seconds) 

Fig. 7 XBL 783-4694 

U.S.GP0:1978-789-158/(F)11 



This report was done with support from the Department of Energy. 
Any conclusions or opinions expressed in this report represent solely 
those of the author(s) and not necessarily those of The Regents of the 
University of California, the Lawrence Berkeley Laboratory or the 
Department of Energy. 



TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

... 

;" 




