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PREFACE

The magnetotelluric method has been under study at. the University
of California, Berkeley and fhe Lawrence Berkeley Laboratory for several
‘years, most recently in conhection-with applications in geothermal explor-
ation.  Based 6n theoretical caiculations‘and field tests, it was learned
by the authors that uncorrelated noise which biases and scatters impedance
éstimates could be eliminatéd.tO'a high degree by means of the remote
magnetometer magnetotelluric tecﬁnique (Gamble, et al., 1978; Goubau,
et al., 1978).. Although the method requires more instrumentation
than conventional fensér MT (e.g., a second magnetometer and telemetry
eQuipment are needed), the potential advantages over conventional‘MT
are significant in terms of enabling one to perform faster gnd more
accurate MT surveys. In a practical sense, this should translate into
a greater cost-effectiveness for commercial MT surveys utilizing the new
technology; it should provide better and less costly survey data for
geothermal resource'developers, particularly in‘areas contaminated by

man-made electromagnetic noise.

. This report, a companion to Gaﬁble, et al., (1978), describes in
detail thé theory for making a reference magnetometer error analysis.
Probable errors arg.illusfrated for apparent resistivity, rotation angle,
skewness and phase angles calculated from MT data obtained near Hollister,

California.
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Abstract

An error analysis is presented for the remote reference magneto-
telluric method. The variances in the elements of the remote reference
impedance tensor, EF, are calculated,.;nd general expressions are found
for the variances in an arbitrary function of EF. The variances in the
apparent resistivities, the phases of the elements of.ZB, and the skew—
ness are derived for a fixed céordinate frame. The variance in the
rotation angle of the coordinate frame required to maximize the sum of
the squares of the off-diagonal tensor elements is calculated, aﬁd
expressions are presented for the variance in the apparent resistivities
and phase angles in the rotated frames. The distributioﬁ of errors and
the estimation of confidence limits are discussed. Expressions are given
for the signal and noise power spectra of the electric, magnetic, and
remote reference fields. Throughout the calculations, emphasis is placed
on the physicai assumptions made, and possible circumstances under which
the assumptiqns may be violated are discussed. The calculations are

illustrated with magnetotelluric data obtained near Hollister, California.



INTRODUCTION

The magnetotelluric (MT) method requires a determination of the electro-

magnetic impedance of the earth's surface for normally incident plane waves. Let

.+

Es(t) and ﬁs(t) be the horizontal electric and magnetic fields (signals)

at the surface of the earth generated by such waves. The impedance, Z(w),

at an angular frequency w. is related to the Fourier components of the fields

by the relation

| ,Es(w) ='é(w)ﬁs(w). - (1)

If one approximates ﬁs(m) and ﬁs(w) by the fields f(m) and ﬁ(m) obtained
from experimental data, one inevitably introduces errors into Equation (1). The

relationship between E(w) and ﬁ(w) is
; = _ﬁ - Zﬁ’ ' (2)

—>
where n is the total error caused by the noises in all of the fields. The
) ’ . - . _) + . .
-errors in measuring ES and HS may be caused by inhomogeneous (non-plane-wave)
sources, measurement noise, or errors in signal processing. To estimate Z,
'a statistical analysis is required.
| N - . H .
Until recently, the most commonly used estimator for Z was Z, obtained

by minimizing the mean value of fnxlz and |ny|2 (Vozoff, 1972). The estimator

H _. . . . .
Z for this least-squares analysis can be written concisely as

EF = [EH][HH]—l, (3)



where [AB] is the spectral density matrix for the fields A and B defined by

[AB] _ | xx X'y

, | (4)

and the bars denote averages over Fourier harmonics in a narrow band of
frequencies, and, usually, over data obtained at different times. In

equation (4) the inverse of [AB] is

A B - AB
vy Xy
- : * % '
[AB]l=v—AB A B . . (5)
y X X X ‘ )
* * x *
AB AB - AB  AB
XX vy yx Xy

The magnitudes of the elements of Zﬁ are biased downward by the noise

- powers in the magnetic channels (Sims, EEHEL-a 1971). If a reference field,
> A . x = ;
R, is measured simultaneously with E and H, an estimate of Z can be made that

is not biased by noise in any field, provided the noise in the reference is
uncorrelated with Eor H (Clarke, et al., 1978; Gamble, et al., 1978; Goubau,

et al., 1978). The impedance R estimated using the reference field is

N
it

[ER] [HR] L. (6)

i

In this paper we derive expressions for estimating the random errors in

ZR “and any function calculated from ZF.

We begin by finding an exact expression that relates ZB - Z to the spectral




density matrix [nR]. We ﬁhen compute variances for EF’ and for aﬁy
function Qf éR iﬁ terms of measured cross—-and autopowers, using the
assumption that the signals aﬁd noises are.statiStically independent
and that the noises are stationary. Expressions aré given for the
variances in the apparent resistivity, phaéé angles of the impedance
tensor elements, and the skewness in‘a fixed coordinate system. Since
it is a standard practice in MT to rdtate the coordinate axes to minimize
]Zxx - Zyylz’ ‘we give expressions for the variances in the
rotation angle and in the apparent resistivities and phase angleé in.this
rotated frame. The distribution of errors in both EF andéR and the
calculatioﬁ of confidence limits are discussed.

We show that the remote reference enables one to calculatevthe signal
and noise power.spectra of each field component and coherence between
the noises in the two componeﬁts of each field. This calculation also
provides checks on the assumptions of the statistical independence of the
- noises.
Finally, examples of the error analysis and of the calculation of the signal

and-noise powers are given. for real MT data taken near Hollister, California.

CALCULATION OF z} - z

, R c , '
To compute_i - Z it is convenient to introduce the error ;P predicted

R | .
when Z— is substituted for Z in equation (2):

= ﬁ‘— ZRﬁ. ' » (7)

> > >
n=n +AH, . - (8)



where A = EB - Z. The spectral density matrix [nR] obtained by multiplying

- % :
the components of n in equation (8) by the components of R and averaging is

given by
[nR] = [n'R] + A[HR]. €)

0 from the definition of R,[equation.(6)L we find

i

Since [nPR]

| -1
A = [nR][HR] ~. (10)
. ' ..\ th o :
From equation (10), the (ij) : element of A is given by
* . I3
Aij = niAj D (i =x;y, j=x,y), ] (11)
where
* - *
A =R _H R - R H R,
X X y vy y y X
* *
A =R_H R - R H R,
y Yy X x X Xy
* * * *
and D =HR H R - HR HR .
X X vy X'y v X

Equation (11) is exact for any level of noise in any field.

- ESTIMATION OF VARIANCES IN ZB _

To compute the expected variances in the elements Zﬁj, we assume

. R R

that we have an ensemble of estimates for Z , and that each value of Z
was computed from identical sets of signals and stationary random noises.

R
We wish to find the variance Va;(Zij) defined by



var(zly = <lag (2 - 1,12, | a2

where < > is the ensemble average. This variance is the sum of the

R

: ’ ->
variances of the real and imaginary parts of zi] We assume that R

un v ‘ .
is torrelated with ; so that <Aij> = 0. Then, from equation (11),

In.A, |2 l ¥
Var (z},) tIA. (13)
1]
|p|?
. ' 2 . . R
1f we substitute the measured value of |D|? in equation (13), Var(Zij)
can be written in expanded form as
Var (zX 1 S * AT 14)
= < X
ar ij) =5 n=1 mél ni,mni,n Aj,m j,n>’ (

NZ[p[z " |

where N is the number of independent determinations of each. field. This
approximation introduces an error into the variance of order 1/N. For
m # n, n, and A, are statistically independent of n, and A,

i,m ,M ' i,n 3

(assuming that the analog filtering and Fourier transforming are

- performed appropriately). Thus, equation (14) reduces to

. N '
Var(z;) = 1 1 <[n, |2 |a, |25 (15)
N?.IDIZ m=1 i,m J,m .
If ni;m and Aj,m are statistically independent, <|ni,m|2 [Aj,m|2> = <IW5HJ2><I%,HJZT

‘Since the crosspowers in the A, o 2re in fact not independent of the PR the
bl . bl

) > > :
‘equality is not exact. However, provided R is independent of n, the error

“introduced is of order 1/N, and can be neglected for large N. If the noises



%

are stationary, <|ni mI2> is independent of m, and equal to In.lz. Under
’ . 1

these conditions, equation (15) simplifies to

R
Var(Zij) = !nilz IAjIZ//NID|2. | (16)

It is easy to show, using equations (8), (11), and (16), that

2 - Pi2
lnil = |ni I [1+ 0 (1/N)]. Thus, for large N, one can replace

Iﬂilz in equation (16) with

P R * R I
Ini]2 = |E,|2 - 2Re |25 w E, + 25 wEY - 2R Ry
i i ‘ _ ix x'i iy 'y 1 ix iy x vy

A T
I w2+ 127 2 an

where Re(x) is the real part of x.

. . » R . . : .
We emphasize that the variance of Zij is correctly given by equation (16)
: 3z . . . . >
only if: (1) N N R is uncorrelated with the noises in E and H, (2)
in E and H -
the noises Are independent of the signals, and (3) the noises are stationary.
The purpose of the remote reference technique is to ensure that the first
condition is satisfied. The second assumption is likely to be well satisfied
if the noises are generated locally. On the other hand, if the noises arise
from inhomogeneous atmospheric sources, both assumptions 1 and 2 may be
violated. Assumption 2 could also be violated if the measuring equipment
. ' (3)
produces errors that -are proportional to the signals. The requirement/of
~ stationarity is not particularly restrictive. We require only that the
ensemble average and measured time average of the noise powers be equal.
Stationarity does not require that the noise in short segments of our data

be the same for all segments. For example, magnetic fields from passing

vehicles might introduce much more noise into some data segments than others,
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yet the ensemble and time averages of the noise power will still be equal, provided
the times at which vehicles pass by in each experiment in the ensemble are random.

It should be noted that we do not need to assume that the signals are stationary.

ZR and the efrors in ZR involve only the ratios of average crosspowers, and, since
E, ﬁ, and R are causally related, these ratios do not depend on the statistics of
the fields.

. R )
It is important to note from equation (16) that Var(Zij) =0
) > > : L
when there is no noise in E and H, regardless of the noise power in R. Also,
N , _
when the noise power in R is negligible and the crosspowensjn'Aj and D
can be approximated by their noise-free values, it can be shown that

. ‘ . N
Var(Zij) is independent of the tensor relating R and H. Under these

i ) R o Tk
conditions, for given |n|2, Var(z,,) diverges as [ _|2JH _|? - |H H’lz > 0,
ij , SX sy
. N .
that is, as the polarization of the signal, HS,‘increases. When there
is noise in the reference, one can easily verify that the contribution
. Ry | >

of the noise power-to'Var(Zij) increases as the polarization of R increases.
Thus, the electric field from a telluric array in a location with a highly
anisotropic apparent resistivity may not be a suitable reference.

. v N ‘ |

It is interesting to realize that, if H is noise-free, and if one

. -+ _>. 3 : . . '
" replaces R by H in equation (10), equation (16) _ gives the expected
% l
variance in the least-squares estimate of gﬁ. Since A is independent of
. . > . > o R . .

the orientation of R relative to H, the variance in Z is identical with the

. . H . - .
variance in Z~ for any noise-free R if H is also noise-free. Thus, because

: R

Z 1is obtained by minimizing the mean square error in equation (1), Z° also

>
minimizes the mean square error. On the other hand, if there is noise in H,

*
" In arriving at equation (16), we neglected terms of order 1/N in

estimating Inilz. If the 6n1y noise is in the electric field, it is easy to

show that the unbiased estimator of |ni|2 is [N/ (N-2)] |n§_|2 for all N and

v » N
for any noise-free R.
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for large N the bias errors in EP are large compared to the random errors
in either éﬁ or ég. Therefore, when there is noise in ﬁ, Eﬁ is not a good
estimate ofzé; and the question of tﬁe relative random errors in ZF and
EF becomes apademic.

There are two earlier attempts in the literature to calculate the
expected errors in . estimates of the individual elements of the impedance
tensor. Bentley (1973) attémpted such a calculation for éﬁ. His caiculation
assumes that there is no noise in the measu;ed'fields,.’i that.the signals
have stationary power spectra, and that the only source of error is the sampling
error. In fact, only the ratioé of power spectra enter into the estimate oflég
and these ratios are not affected‘by sampling errors. Thus, Bentley should have
obtained a null estimate for the errors, but did not because he neglectéd the
corrélations between the erfors in the estimates of the power spectra.
Reddy et al. (1976) have estimated the raﬁdom errors in the individual elements
of EF using an expression derived from the error in a combination of the
elemgnts (Jenkins and Watts, 1968; Bendat and Piersol, 1971; and Goodman, 1965)
via a very réugh approximation. The approximatioﬁ is necessarily very rough
becépse the error distribution of the combination does not contain enough
information to specify the individual errors, and, in addition, the expression

for the joint errors is valid only for a noise-free magnetic field. Thus,

neither approach appears to be appropriate for real MT data.
ESTIMATION OF VARIANCES IN FUNCTIONS OF g?

- However large the noise, the errors Aij in equation (1) can be made

arbitrarily small by making N sufficiently large. For small errors, any
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. * '
function £ of Zg can be expanded to first order in Aij and Aij . In

these expansions, it is convenient to shorten the notation as follows:
B (i=x,y, i=x,y) < b (k=1,2,3,4), ' (18)

~where 1 = xx, 2 = xy, 3 = yx, 4 = yy. We also drop the supercript R from

*
vgg. In terms of Ak and Ak’ the error, 8, in £ is given by
St = .1 (dg—'A + W (19)
k=1 \dZ, "k = dz k /
k k
. . 2 > >
Since <Ak> = 0, the variance in £ is Var(g) = <|6£| >. If n and R are
uncorrelated, <AkAZ> = 0 for all k and 2, since the signals and noises are

" complex numbers of random phase. Thus Var(g) has the form

L 4 Lk
= dg d *
Var(®) =Ly % [ z_ az¥ Mt 7
k "%
dg dg* *
*az* az <AkA2>]’ -0
k "7g
“which simplifies to
4 ) 3 4 -
Var(g) = L) Gy <|a, |%> + 2Re [k§1 Eit1 Gk£<AkA2>]. (21)
FHere,
* de dg* | ag dg*
G. =G . = ¥ + == , (22)
ke k. dgk dZZ de dZ2 :
dg  dg* '
-~ 1f & is real, G = 2Re | ==— 2% |. We evaluate the ensemble
. kg de de . )

. % . . ; .
average <AkAl>’ as discussed in the previous section,

v
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using equation (11). Using our original notation we Teplace

* Sk
<A A > with <A, ,A >, and find
k2 ij nm v

P P
*
_n.n % A, A
<AijAnm> = 1 n jm (23)
’ ND

: * P PP *
where we have. approximated <ninn> by ninn*. In equation (23) ninn* and A A

can be expressed in terms of measured crosspowers and autopowers as follows:

n,n_ ¥ =EE* -z HE*-zZ, -z HWE, -z* HE +72Z, |H | 2
in  in ix "x'n iy "y'n nx x i ny y i 1x nx
z, 2" HH +2z, zF WH +2z z* [H_|2, @ (20)
iy 'nx y'x ix ny "x'y iy ny 'y
and

* % - * e
- AA* =RR H H R + R HR H - . N
38m = RyRp BRHy Rk m - RyRy BR HRY

R R @)
- RRo HkR HQRQ

where k = x,y, & = x,y, and k # j and 2 # m. It is apparent that Var(g)

will, in general, depend on all 15 crosspowers and 6 autopowers of the

compdﬁents of the fields.

To illustrate the use of equation (21) we compute the variance in Re(Z ),
: * * O
where py = 1,2,3, or 4. Substituting £ = ¢ = (Zu + Zh)/Z and dE/de = d¢ /dz

= 1/2-5uk (d_is the Kronecker delta), one finds Var[Re(Zu)] = 1/2<lAu|2>=¥§Var(Zu).

Since Var(Zu) = Var[Re(Zu)] + Var[Im(Zu)] [Im(x) is the imaginary part of x],

this example proves that Var[Re(Zu)] = Var[Im(Zu)].

" The elements of the apparent resistivity matrix p associated withZ are

defined by p Xk = 0. 2T|Z |2, where T is the period in secondsand Z has dimensions
*

*
of mV/(kmy). If we choose &= § = ZuZu in equation (21) then dE/de
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*
=276

. - 2
WS G = 2 ]zul 8

\ ) L 2 ‘ 2
kSyge and Var(e) = 2 |zuj <|Au| >. Thus the

variance of the element pu’is given by
Var(p) = (0.21)2 Var(g) = 0.4Toy <|a;]%. ’ (26)
*
The phase, ¢u of Zu is defined by
(2 2*5/'(2 +2) R CY))
t = - .
?n ¢u u w ey u’ 21
where i =‘/:1.” If ¢ = tan¢u, Var(¢u) = cos“d)u Var(£). 1In equation (22)

* *
Z, =68 . 22 /i(Zz + Z )?, -
dg/dzy =8, 22 /i(Z __u) s
and
ke

o 2 TR
G 8 |zu| 8., aM,/lzu + zu| .

k-
Thus '
v .
\/ ') = 8coshy <|A |2> |z 2/’2 + 7 |".
ar(¢,) = 8cos™s | ul | ul | u ul (28)
To find the variance in the»skewness, S, we define £ = s2
=z_ +2z |2/ |z -2z |2 oOne obtains
XX yy Xy yx

Var(S) = Var(£)/4s , . (29)

where Var(g) is given by equation (21) with the following values of Gkg:

[}
]
[}
i

- - 252/l7 - 2 30
11 =6, = 6 28%/\z vA , | (30)

44 y vX

. o,
Gyg = G33 = =Gyq = 8%G, (1)



and

* £
Gyg = Gp4 = =Cy3 = ~G34 = =Gy Re[(Z,  +2 ) (2, - 2ol - (32)
12, = 2,17
Xy . ¥X .
The rotation angle, ©, that minimizes szx - Zyy|2 also maximizes
leylz + |Z§xl2 (Sims and Bostick, 1969). © satisfies the eQuation
e [(z, -2 )25 + 2% )] (33)
e -
tan 46 = __ yy XX~ Xy yX
lz. +z |2~z -2z |2
"Xy yxX vy XX

For any integer,m,0 * mn/4 also satisfies equation (33), but the solutions

with odd m maximize IZ

XX

tan 40, then Var(0)

9 *
| . If we choose £ = ¢ =

Z
yy

=‘cos“4® Var(g)/16. Var(g) is given by eﬁuatioh (21) with

Gy = G4y = =Gy 2|a| lzxy + zyxl ,
= = = 2 - 2 34
Gyp = G353 = Cpy = 2[e|? |z -z |, G
and” '
- G, =G, =G, =G, = 2|a|2Re[(z* +2. 9z -2 )] (35)
‘12 13 - 724 34 Xy yx’ " yy xx”
where
: (Z - +2Z )2+ (z. -2 )2
llz. +z |2 -]z -z |22
Xy ¥X vy XX

‘The expressions for
phases of the impedance

the Appendix.

the variances in the apparent resistivities and the

tensor in this rotated coordinate system are given in
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CONFIDENCE LIMITS

Although least squares linear regressién is not the best method of
determining ég.the least sqﬁares principle is appropriate for the comparison
of.different‘estimates of Z. For example, the best model of the ground in
a statistical sense minimizes the mean squafe of’the magnitudes of.the dif-
ferences between the modeled and measured values of i, weighted in inverse
proportion to the variances. -However, to determine the statistical significance
of this discrepanéy, one requires the distribution of the errors of the estimates,

- not just the variances. |

In the expressioﬁ fo? the errof, Aij [equation (11)], D can be appro#imated
by its noise-free value for large N. 1In this approximation, Aij is just the
sum of N complex randoﬁ errors (one for each k, 1<ksN), and, by the central
limit theorem(Jenkins and Watts, 1968), its real and imaginary parts are
normally distribdted. Since the error Aij is of random phase

Thus,
<Re(Aij)Im(Aij)>.= O./Re(Aij) and Im(Aij) are also statistically independent.
.The sums of the squares of n independent normally distributed random variables

. . . 2 . . e X >
with unity variance and zero mean has a Xn_ distribution. Thus, if H and R

‘ : o : ,
are noise-free, IAij|2/Var[Re(Aij)] = 2|Aij|2 NID|2/<|ni|2>|Aj|2 hgs a X,

distribution. In this expression, the unknown quantity <|ni|2> is best

~

approximated by |ﬁ§12. The errors introduced by this approximation must be
-included to obtain an unbiased estimate of the confidence limits. Since

2N-4

(ZN—4)|n§|2/<|ni|2> has a X2 distribution (Jenkins and Watts, 1968) the '
v quantity |Aij|2 N|D|2/|n§_|2 |Aj|2 has a Fisher F distribution

‘FZ ZN?ﬁ’ For large N, the modification introduced by
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’

[n?lz. is small. For example, for N>25, the confidence limits for the
i :
F2’2N -4 distribution are less than 6%  larger than those for the Xg

distribution up to the 957 confidence level. If the signal-to-noise ratios of
R and H are much greater than the signal-to-noise ratio of E, this small correction
to the confidence limits may be significant. If the noise is not predominantly
in f, the other corrections of order 1/N that we have neglected will cause mod-
ifications of the distribution comparable with the difference between the X
and‘F distributions. These modifications cahnot be described in terms Of.
elementary distribution functions. Thus, for most applications, the X2
distribution should be adequate, and as accurate as can be obtained without
extraordinary effort.

Errors estimated from the first-order Taylor expansion, equation (19),
for example errors in the apparent resistivity,. are linear functions of the
.errofs in the real and iméginary parts of EF. Within the limits of accuracy
- of the Taylor expansion, these errors are also hormally distributed. The
confidence limits éf these quantities are again modified by the estimation
of §|ni[2> by Inglz so that  the pfoper distribution is that of the ratio of a
normally distributed to a X2 - distributed variable, or a Student t distribution.
Howeﬁér, the corrections to a normal distribution will be significant only
when the confidence intervals are so small that the Taylor expansion introdnces
‘a negligible error, and, as before, the noise is predominantly in f. For most
purposes, a normal distribution should be entirely adequate. |

- As an example, consider two independent sets, a and b, of M estimates of
Zij(w); Zii(wk) andbzig(wk), where lsksM; We calculate the probability that.the
disagreement between the sets arose from random errors alone assuming that the

errors in set b are negligible compared to the errors in set a. Such a calculation
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would be required if one wanted to determine the significance of the
difference between a model of the ground (set b) and a sounding (set a)
or if one considered rejecting a small subset of the data (set a)

because of its disagreement with the rest of the data (set b). If the

quantity ' ' , ‘ -
» = \ ( L 2 2 Py 2
aij(wk) _.2|Aij(wk)| N|D| /<|“i| IAjI ) (37)
' 2 X ' ' PV a
has a X2 distrlbution then the.total dlgcrepancyf kglaij(wk)’» |
has a ng distribution. Neglecting the errors in Z?j(wk)’ we find
, ’ a _ b 281 nd |2
o2 wyzc= ¥ 2|z, () Zij(“’k)| N |7 (38)
k=1"ij k" k=1 _ - :
Paj» ajo
| gl |41 | | |
Thus the proBability that ¢. > a through random errors alone is 1 - xiMQx).

- DETERMINATION OF SIGNAL AND NOISE POWERS

The random errors in_gR depend only on the combined noise,n, rather than
T T
on individual noises in E and H. Nevertheless, the determination of the noises
in the individual fields is obviously of practical interest. With a remote
i_reference the signal and noise power spectral densities can be evaluated as
follows.
R . . L
The value of Z obtained from equation (6 ) and the measured magnetic field,

S ) : ’ . ) >P
H, predict an electric field E, where

>
E =2 H. : ' (39)
-> .
. N . : > > > e
E  contains contributions from the signal HS and the noise Hn = H - HS. If the
noises are uncorrelated with each other and with the signals, the spectral density

matrix
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[EPE] = zN[HE] = [ER][HR]'[HE] (o)
has the expectation value of the spectral density matrix [ESES], where

i ]
lE |2 E _E
SX SX 8y

[(EE ] -

| 2

| sy sx Esx

The. matrix [ESESJ_iS Hermitian: The diagonal elements are real, and the
off-diagonal elements are the complex conjugates of each other. On the
other hand, [E_E] is, in.general, not Hermitian because of the noises

p : .
ﬁh,ﬁh, and Kn' From Figure 1, it can be seen that if the phases of the
noises are unknown, the best estimate for [EsEs] is the Hermitian part of

[EPE], [ESES]P given by
(£ 5 17 = B(EE] + [EE1T) = ([E%R) + (eg®D)/2, D

where + denotes the Hermitian conjugate.

- The spectral density matrixes for the other fields can be estimated similarly:

(mH 1 = ((H] + (RED)/2, (42)
and,‘: _ P .P P
= [RSRS] = ([R'R] + [RR"])/2, (43)
where p -1
{HH] = [HR][ER "~ J{EH], (44)
and p -1
[R"R] = [RE][HE] "[HR]. (45)
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One can calculate the‘spectral density matrices for the noises by
subtracting the estimated signal density matrices from the measured spectral

density matrices, for example

. P :
[EE ] = [EE] - [ESES] . | (46)

= H *, and R R *

The noise matrixes contain the crosspowers E_E .
, : nx ny nx ny nx ny

vThus, one can determine whether there are significant correlations between

the noises in the two components of each field. Such correlations may be
indicative of measurement errors, ana could be generated, for-éxamplé,.by
‘noise from-a common . .electrodeé, or by a moving magnetic object.

>Thé remote reference.method requires the measurement.of the three fieldsH

ﬁ; ﬁ,'and §, each ﬁith two components.. Correlations between the noises in the
two components of each field do not bias the estimates of é?, the errors in
'gé;;or the signal and noise power spectral density matriceé. However, any

' Eofrélation between a measured field and the noise in another field will bias

bthe estimates of the signai and noise power spéctra. Such correlations‘would
'fusually<cause a significant non-Hermitian part in the matriées [EPE], [HPH],
and [R'R].

“béﬁfwill be biased only by corrélations between ;'and ﬁl Thus, under most
circumstgnces;~the requirement that [EPE], [HPH], and [RPR] be Hermitian provides
a sufficieﬁt-but not necessary éheck on the correlations that wouldvbias ég.
However, if‘the ionospheric signal is from a fixed iﬁhomogeneous source, these

still .
matrices would/be Hermitian,but‘gg would be biased.
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APPLICATION TO MAGNETOTELLURIC DATA

We illustrate the calculations of signal and noise powers and the error
analysis with magnetotelluric data obtained at the Uﬁper La Gloria site in
- Bear Valley, near Hollister, California (Clarke et al., 1978, Gamble et al.,

v : to (43),
1978, Goubau et al., 1978). The signal powers, equations'(4l)/and_noise powers,
equafion (46), for the components of E, ﬁ, and R are shown in figures 2, 3, and
4, respectively. The hon—Herﬁitian"parts of the predicted autopower spectrél
density matrices were very small. For exambie, thg imaginary parts of thé’
predictéd aﬁtopowers (sﬁch as ﬁﬁl%{) wefe always less than 10% of the rea¥
parts, énd averaged aboﬁt 1%. For periods shorter than 3 seconds, where we
had the most data, they were alWays less than 27%. Thus, even if the noiée
coherencies were statisticallylsignificanf, they were too sméll to have any
practical iﬁportance in these calculations.

Because of random errors in the calculated signal spectral dénsity matrices,
it is possible fdi the»calcuiated noise pbwers'to be negative. This behavior was
never observed in the data presented, even'though'the signal-to-noise ratios
variea from IQOil for Ey at 0.1 second period and 200:1 for Hy at 85 second
peridd to 1:7 for RX at 9 second period. The signal power spectra for these
data are particularly steep; for example, around 15 second period they increase
roughly as the 8th power of the period. Nonetheless, fhe calculgted noise
spectra are comparatiﬁely smooth, indicating that the random erroré are small.

In Figure 5 we plot the rotated apparent resistivities and their
associated probable errors as functions of period. 1In Figure 6 we plot an

(the angle between magnetic north and the rotated x-axis) and the skewness
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with their probablé errors. Similarly, the phases of ny(e)vandrzy%(g) are
plotted in'Figure.7.

The results are reproducibie within the calculated random error. Where
bandé overlap the values usually agree within'the‘probable erfors. One can
draw very smootﬁ curves through at least 50 percent of the probéble_error
ranges. For periods shorter than 3 seéonds we made a crude estimate of the
expected standard dgviations of the resistivities by comparing the results
calculated from sﬁbsets of the data gathered at differént-times (Gamble, et al.,
1978). For the 25 apparent resistivities with the smallest calculated probable

error the rms expected standard deviation of the means from that estimate was 887%

of the rms of the standard deviations calculated in this paper.
CONCLUDING REMARKS

The remote reference method enables one to obtain unbiased estimates of
the impedance tensor, and to calculate accurate confidence limits for each
element; The absence of bias enables one to perform fast, accurate MT surveys.
Fofveiample, the smallest random error in apparent resistivity reported in this
" paper, *0.4% for.pxy at a perioa of 0.062‘second, was obtained from only 30
minutes of data. ;Furthermore, the method can be used to determine the impedance
tensor accurately even in areas contaminated by high levels of noise.

The separation of signal from noise using a remote reference may make
possible new types of geophysical measurements. For exémple, the separation
of ionoépherically generated magnetotelluric signals from local natural sources
of electric and magnetic field fluctuations may enable one to study the electriéai

and magnetic effects of seismic waves or tidal stress. One could also subtract
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the magnetotelluric signals from the measurements of active electric
or electromagnetic surveys, and thus extend the accuracy and. efficiency

of the survey and the effective range of the transmitter (Morrison, 1978).
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APPENDIX

The equations obtained in the body of ﬁhis paper can be used
to calculate vafiances in any coordinate system provided one first
fotates the measured spectral density matrixes to the desired orientation.
However, if the rotation angle of the coordinate system is itself determined
from the data, additional errors will be introduced in the calculated
quantities because of the uncertainty in the rotation angle. This
appendix contains expressions for the variancés of the apparent
resistivities and of the phases of the elements ofvthe impedance tensor
in the coordinate system rotated by the angle 6 obtained from equation (33).
A rotation of a righﬁ—handed coordinate system about the Z axis by

an angle 6 will change the matrix representation of any tensor from T to

T -ozg9" (a-1)
where
e @ - [ NN =

Rotated Apparent Resistivities
ﬁefine the rotate& apparent resistivity matrix (which is not a tensor)
by pL = O.2i|Z;i2, wherezg_'is the impedance temsor in the rotated coordinafe
system. Then, if Eu = |Z;i2, Var(pL)'= (O.ZTfZVar(Eu). Var(Eu) is given by

equation (21) with

d&u <d5u>* . _
G, = 2Re | —— | — s (A-3)
k& dZk le »
and
dEu B 3Eﬁ , Biu 30 . (A-4)

= + -
. 8 5Z
dzk azk ) ) K
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Using equations (A-1) and (A-4) we find

dg :
W 1% r % 86,
az A Uu(k) + 2Re[Zu Vu] VN
k : k
where
2 \ _;
L) =9l )Q s
k
and
30 4 2071
V=348 *L8%3
The elements of equation (A-6) are
~ cos?9 -sinfcosf]
g(XX),-_- ’
| -sinBcosb sin?6 |
" sinbcos8  cos?6 |
Uixy) = . b
| -sin?8 -sinfcosf
" sinBcosd  —sin26 |
lyx) = | - _ i
L cos?8  -sinBcos6
' - - sin%6  sinfcosb
and Ulyy) =
sinbcosH cos?0

Y can be written as

<
i

From equation (33), .

36/azxx = —39/3Zyy =
and

30/2 =
yx:

-2

—sin26 cosze] Zoy yy
~cos20 -sin20) |z o + 2z,

Xy yx

368/3Z - ='a*cos?46(Z. - Z /4,
Xy . o4 vy

where a is defined in equation (36).

Zky
z.
yy

—a* 2
a*cos 46(ny + Zyx)/4,

yX

XX

]

(a-5)

(A-6)

(A-7)

(4-8)
(A-9)
(A-10)

(A-11)

(A-12)

(A-13)

(A-14)
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Phase of Zu"
Let ¢J‘ be the phase of.Zd, and define

Z' __'.Z'*

= Y H
12" + 2'%)
) i )

£ = tan¢'
u ¢u

Then, Var(¢&) = cos“¢& Vaf(&u), and Var(gu) is given by equation (21).

From equations (A-15) and (A-4), we find

o [ vk
g dz o dz)
e Y4z Wz
U o .. k . k
dz Tt ' 1%
kK . (z' +2'")2
u Uv
Z'* 7y (k) + 2iIm[2'* 'V ]138/32
Y Uu( ) iIm[ y u] / K\,

ALY
¢ u u

(A-15)

(A-16)

where H(k),;y, and 86/32k have been defined in equations (A-8) through (A-14).
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CAPTIONS

Fig. 1. Graph in the complex plane of an autopower estimate, Eg_Ei, which

is the sum of the signal autopower ESXESSE and an error r of unknown

phase. XBL 783-4695

Fig. 2. Electric field signal and noise power spectral densities vs. period.
: XBL 783-4697. '

Fig. 3. Magnetic field signal and noise power spectral densities vs. period.
. XBL 783-4696. :

Fig. 4. Remote magnetic reference signal and noise power spectral densities

vs. period. XBL 783-4698.

Fig. 5. Apparent resistivities in the rotated coordinate system and their

probable error vs. period. XBL 783-4692.

Fig. 6. Angle between magnetic north and rotated x—axis and skewness with

their probable errors vs. period. XBL 783-4693

~Fig. 7. Phases of ny and Zyx in rotated coordinate system and their probable

errors vs. period. XBL 783-4694
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