
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Accelerating Attention Models on Hardware

Permalink
https://escholarship.org/uc/item/6d62c22g

Author
Li, Zheng

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6d62c22g
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Accelerating Attention Models on Hardware

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Electrical Engineering (Machine Learning and Data Science)

by

Zheng Li

Committee in charge:

Professor Mingu Kang, Chair
Professor Hadi Esmaeilzadeh
Professor Yatish Turakhia

2022



Copyright

Zheng Li, 2022

All rights reserved.



The thesis of Zheng Li is approved, and it is ac-

ceptable in quality and form for publication on

microfilm and electronically.

University of California San Diego

2022

iii



iv



DEDICATION

To my family.

v



EPIGRAPH

Talk is cheap.

Show me the code.

—Linus Torvalds

vi



TABLE OF CONTENTS

Thesis Approval Page . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Thesis. . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Attention in Transformer . . . . . . . . . . . . . . . . . . 1
1.2 Exploiting Run-time Pruning in Transformer models . . . 3
1.3 Gradient-based optimization . . . . . . . . . . . . . . . . 4
1.4 Data-movement optimization . . . . . . . . . . . . . . . . 6

Chapter 2 Attention Mechanism in Natural Language Processing . . . . . 9
2.1 Algorithmic Design . . . . . . . . . . . . . . . . . . . . . 9
2.2 Learned Per-Layer Pruning . . . . . . . . . . . . . . . . . 10

2.2.1 Pruning with soft threshold. . . . . . . . . . . . . 11
2.2.2 Differentiable surrogate L0 regularization. . . . . . 12
2.2.3 Pruning mechanism . . . . . . . . . . . . . . . . . 14
2.2.4 Bit-Level Early-Compute Termination . . . . . . 16

2.3 Hardware Architecture of LeOPArd . . . . . . . . . . . 19
2.3.1 Overall Architecture . . . . . . . . . . . . . . . . 19
2.3.2 Online Pruning Hardware Realization via Bit-serial

Execution . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Back-End Value Processing . . . . . . . . . . . . . 23

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Methodology . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Accuracy and Algorithmic Optimization . . . . . 27
2.4.3 Accelerator Performance Results . . . . . . . . . . 29
2.4.4 Architecture Design Space Exploration . . . . . . 32

vii



Chapter 3 Sparse Attention Acceleration with Approximate In-Memory
Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Data Communication Optimization . . . . . . . . . . . . 43

3.2.1 Theoretical expectation of spatial locality. . . . . 44
3.3 In-memory Thresholding . . . . . . . . . . . . . . . . . . 46

3.3.1 Overview of ReRAM. . . . . . . . . . . . . . . . . 46
3.3.2 Vector-Matrix multiplication with ReRAM in-memory

computing. . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Application in run-time pruning. . . . . . . . . . . 47
3.3.4 Analog↔Digital challenges. . . . . . . . . . . . . 47
3.3.5 In-Memory Thresholding Challenges . . . . . . . . 48
3.3.6 Transposable ReRAM for Thresholding . . . . . . 50

3.4 Sprint Memory Controller . . . . . . . . . . . . . . . . . 52
3.4.1 Data Layout Organization . . . . . . . . . . . . . 53
3.4.2 Memory Controller Microarchitecture . . . . . . . 54
3.4.3 Memory Controller Execution Flow . . . . . . . . 54

3.5 On-Chip Accelerator . . . . . . . . . . . . . . . . . . . . 57
3.6 Methodology and Evaluation . . . . . . . . . . . . . . . . 60

3.6.1 Accuracy and Performance . . . . . . . . . . . . . 63

Chapter 4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



LIST OF FIGURES

Figure 2.1: Pruning operation on attention Score: (a) ideal magnitude-
based pruning, (b) proposed differentiable pruning operation
with soft threshold. . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.2: An example of attention layer sparsity and its corresponding
pruning threshold values for BERT-L model on QNLI task from
GLUE benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3: An example of normalized training loss as fine-tuning epochs
progress for BERT-L model on QNLI task from GLUE benchmark. 16

Figure 2.4: High-level overview of early-compute termination for dot-product
operation. Ks indicates the sign bit. For simplicity, K elements
are scaled to be between -1.0 and +1.0. The table shows the
partial sum values after each cycle. . . . . . . . . . . . . . . . . 18

Figure 2.5: Overall microarchitecture of a LeOPArd tile. . . . . . . . . . 34
Figure 2.6: A QK-DPU comprising (a) bit-serial dot-product engine, (b)

margin calculation logic, (c) thresholding module, and (d) score
index counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.7: Accuracy before and after pruning-aware fine-tuning (prefix
”G-”: GLUE). We evaluate GPT-2 using perplexity, which fa-
vors a lower value. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.8: Runtime pruning rate with LeOPArd. (prefix ”G-”: GLUE) . 36
Figure 2.9: Cumulative pruning rate with respect to the number of bits pro-

cessed during bit-serial early termination. Each line obtained
by averaging across all the pruning rates per task. . . . . . . . . 37

Figure 2.10: Speedup comparison to baseline design for AE-LeOPArd and
HP-LeOPArd (prefix ”G-”: GLUE dataset). . . . . . . . . . . 37

Figure 2.11: Total energy reduction for AE-LeOPArd and HP-LeOPArd
compared to baseline (prefix ”G-”: GLUE dataset). . . . . . . . 38

Figure 2.12: Normalized LeOPArd’s average energy breakdown and the
contribution of runtime pruning and bit-level early termination
in energy saving (-P: only pruning, LeOPArd: pruning + bit-
serial early termination) . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.13: AE-LeOPArd: (a) layout (2.3×2.8 mm2) and (b) area break-
down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.14: Back-end V-PU utilization over the QK-PU parallelism (NQK).
NQK = 6 and NQK = 8 form the favorable configurations
in terms of back-end utilization in AE-LeOPArd and HP-
LeOPArd, respectively. . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.15: Design space exploration for the resolution (B) of bit-serial
execution with respect to normalized average QK-DPU energy
per Score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



Figure 3.1: Percentage of energy spent on memory accesses to process one
attention head with respect to various percentages of available
on-chip memory. The results are shown across various sequence
(S) length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.2: Query-Key relation for the first attention layer of CoLA task
from GLUE dataset [61]. White squares represent pruned en-
tries. The gray stripes are masked regions. . . . . . . . . . . . . 44

Figure 3.3: Number of common indices between neighboring tokens (Qi vs.
Qi+1) with the practical dataset vs. randomly selected pruned
tokens with the pruning rate from [37]. . . . . . . . . . . . . . . 45

Figure 3.4: In-memory computing with ReRAM cross-bar array. . . . . . . 46
Figure 3.5: Sensitivity of model accuracy to the number of bits (b) used for

in-memory thresholding (comparison of in-memory scores with
T h, Equation 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.6: Transposable ReRAM crossbar array. (a) ReRAM crossbar
during in-memory pruning, (b) Transposed ReRAM crossbar
during normal read. . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.7: CORELET utilization imbalance with and without token inter-
leaving across CORELETs.corelet in the figure should be capital 57

Figure 3.8: 2-dimensional masking to reduce the inconsequential computa-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.9: Accuracy from software vs. LeOPArd with analog in-memory
run-time pruning. Here, GPT-2-L accuracy is measured as a
perplexity metric. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.10: Total data movement from main memory normalized to that
of S-Baseline configuration. . . . . . . . . . . . . . . . . . . . . 63

Figure 3.11: Speed-up comparison to Baseline design. . . . . . . . . . . . . 64
Figure 3.12: Total energy reduction compared to Baseline. . . . . . . . . . . 65
Figure 3.13: M-Sprint’s energy breakdown normalized to baseline. First

bar and second bar represent baseline and M-Sprint, respectively. 66
Figure 3.14: S-Sprint on-chip accelerator layout with estimated ReRAM

in-memory area overhead [59]. . . . . . . . . . . . . . . . . . . . 67

x



LIST OF TABLES

Table 2.1: the partial sum values after each cycle in Figure 2.4 . . . . . . . 19
Table 2.2: Microarchitectural configurations of a LeOPArd tile. . . . . . . 24
Table 2.3: LeOPArd performance comparison under different scenarios

with prior work [20, 62]. . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.1: Hardware configurations of Sprint. . . . . . . . . . . . . . . . . 61
Table 3.2: Sprint performance comparison with prior arts. . . . . . . . . . 67
Table 3.3: Sprint performance comparison with prior arts. . . . . . . . . . 68

xi



ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge my research advisor, Prof.

Mingu Kang. I have never imagined achieving so much in my master study. My

achievement today is not possible without your guidance in research, career and

personal growth.

I am also grateful to my family and friends who supported me to finish two-year

study during a global pandemic.

I would like to thank Professor Hadi Esmaeilzadeh, Dr. Amir Yazdanbakhsh,

Soroush Ghodrati and Ashkan Moradifirouzabadi for their contribution in our re-

search.

Chapter 2 is adapted from the material as it appears in Zheng Li, Soroush Gho-

drati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, Mingu Kang. 2022. Accelerating

Attention through Gradient-Based Learned Run- time Pruning. In The 49th An-

nual International Symposium on Computer Architecture (ISCA ’22), June 18–22,

2022, New York, NY, USA. ACM, New York, NY, USA, 14 pages. The thesis

author was the primary investigator and author of this paper.

Chapter 3 is adapted from the material that has been submitted for publication

as it appears in Amir Yazdanbakhsh, Ashkan Moradifirouzabadi, Zheng Li, Mingu

Kang. “Sparse Attention Acceleration with Approximate In-Memory Pruning.”

The thesis author was the primary investigator and author of this paper.

xii



VITA

2020 B. S. in Data Science, New York University Shanghai

2022 M. S. in Electrical Engineering (Machine Learning and
Data Science), University of California San Diego

PUBLICATIONS

Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, Mingu
Kang. 2022. Accelerating Attention through Gradient-Based Learned Run- time
Pruning. In The 49th Annual International Symposium on Computer Architecture
(ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA,
14 pages.

xiii



ABSTRACT OF THE THESIS

Accelerating Attention Models on Hardware

by

Zheng Li

Master of Science in Electrical Engineering (Machine Learning and Data Science)

University of California San Diego, 2022

Professor Mingu Kang, Chair

The attention mechanism is the key to many state-of-the-art transformer-based

models in Natural Language Processing and Computer Vision. The size of these

models are growing rapidly while the computation and data movement cost and

the on-chip memory demand is also growing beyond the capabilities of edge de-

vices. This thesis provides solutions to address these challenges by developing

strategies to prune the inconsequential attention scores efficiently and effectively.

Attention score is the core of the attention mechanism in all transformer-based

models. It measures the correlation of two tokens in a sequence. Low attention

score value indicates unimportant correlation and minimal impact in subsequent

calculation. Chapter 1 is the overall introduction of this thesis. In Chapter 2,
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a novel gradient-based method to find the optimal threshold by to prune the in-

consequential attention scores to reduce the computation cost is introduced. By

training the model with the threshold, the optimal threshold value that maximizes

the pruning rate and maintains model’s accuracy is found. Based on the work in

Chapter 2, an accelerator that features in-memory pruning of attention scores is in-

troduced in Chapter 3 to reduce the data movement cost for attention models with

long input sequence. Result shows these pruning strategies achieve high speedup,

low energy consumption while maintain the accuracy across different transformer

models on various benchmarks.
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Chapter 1

Introduction

Natural Language Processing (NLP) is one of the most important domains in

Artificial Intelligence and the key algorithm for many modern technological prod-

ucts, such as virtual assistants, real-time closed caption, etc. The fast advancement

in these technology products was made possible by various transformer models.

The core of these models is the self-attention algorithm. The attention algorithm

was first introduced to the NLP domain to solve machine translation tasks [5].

The Transformer models was developed by making structural modifications to the

previous model [58].

1.1 Attention in Transformer

The backbone of the attention mechanism across various transformer models is

the same. A word in a sequence is first projected to a vector by an tokenizer and

the resulting vector is called an embedding of the word. If we denote the length

of the sequence as s and the size of the embedding as dw, after tokenization, a

sequence is projected to a matrix X of size s × dw. By multiplying this matrix

with three different projection matrices of size dw × d, we get the key matrix K,

the query matrix Q and the value matrix V respectively as show in 1.1.

Qs×d = X ×WQ; Ks×d = X ×WK; Vs×d = X ×WV (1.1)
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The attention score is defined as the product of the query matrix Q and the key

matrix K.

Scores×s = Q×KT (1.2)

The attention score matrix shows the relevance between every two words in the

sequence. For example, the element Scoreij shows the relevance between word i

and word j in the input sequence. Then, the Score matrix is normalized by a

factor of 1/
√
d to ensure the gradient is stable. [58] After normalization, each row

of the attention score matrix is passed to a softmax function to transform the raw

score values to probabilities.

Ps×s = Softmax(Score) (1.3)

The final attention score is calculated by multiplying the softmax result and the

value matrix V .
Atts×d = P × V (1.4)

Different transformer models have different structures. But in general, the com-

putation introduced above is a basic building block for all models and is called

a head. Each attention layer has multiple heads with different weight and each

attention model has multiple attention layers.

Multi− Head Atts×dw = Concat(Att1, Att2, · · ·, Atth)×Wo (1.5)

Transformer models have become the state-of-the-art algorithm for natural

language processing tasks since it was first proposed. The achievement of the

transformer models is so extraordinary that not only the traditional deep learning

algorithms in the NLP domain, such as RNN and LSTM, are abandoned by many

researchers, but also in the Computer Vision (CV) domain, researchers’ attention

is shifting from the traditional Vision Convolutional Neural Networks (CNN) to

the Transformer Models [27, 34, 38, 69, 26, 15].
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1.2 Exploiting Run-time Pruning in Transformer

models

The attention algorithm was developed to find the importance of all words in

a sequence with respect to a single word. That is, how much attention is needed

for every words when translating one specific word [5]. This way, the context

is taken into account in translation. It is important to understand the context

to accurately capture the meaning of a word in all NLP tasks. For example, in

a financial news article, the meaning of the word ’Pound’ is most likely to be

currency unit. However, in other cases, the meaning of the word becomes a weight

unit.

The attention algorithm understands the context of a sequence by calculating

the attention score of every word in the sequence with respect to a word. The

higher the attention score is, the more important a word is for understanding

another word. It it intuitive that in a long sequence of text, only a few words are

important to understand a specific word, while other words are nearly irrelevant.

In Transformer models, smaller attention score values have little to none impact for

the computation in the subsequent calculation steps. That is too say, we can expect

the same result even if we ignore the unimportant words during computation.

However, if we ignore too many words, our understanding might be distorted. So

finding a good threshold to determine if a word is important or not becomes critical.

In modern Transformer models, multiple attention scores in different attention

layers to provide different perspectives in understanding a sequence. Thus, it is

ideal to have a different threshold for every attention layer, so that no information

is lost in all layers. At the same time, it is ideal that more smaller attention score

values are pruned and more computation can be skipped.

In some recent studies, attempts have been made to find such a threshold to

skip inconsequential computations and improve the efficiency of the models. But in

these studies, the threshold are all empirical values found manually [20, 62, 21, 56].

And all the attention layers and attention heads have the same threshold value.

Setting good values are highly dependent on the researcher’s experience and effort
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and there is no guarantee that the optimal threshold value can be found on different

models and tasks, especially when all attention heads and attention layers have

the same threshold value.

1.3 Gradient-based optimization

The method presented in this thesis, addresses the drawbacks of the empirical

methods. The threshold is integrated in the loss function of the Transformer

models as a regularization term. The detailed implementation will be explained in

Chapter 2, this section is a brief introduction of the whole algorithm.

Modern machine learning and deep learning model training can be framed as

a non-convex optimization problem. The loss function is defined to represent the

target of the optimization. And the loss function is usually a multi-dimensional

non-convex function with very complex shape. Given the complexity, it is almost

impossible to calculate the theoretical optimal value. Thus, almost all the machine

learning algorithm uses gradient-descent to find a point of minimum loss [47]. In

transformer models, the cross entropy loss [42] and the Kullback-Leibler diver-

gence [33] are two commonly used loss functions.

In machine learning, regularization terms are usually added to the loss func-

tion to prevent overfitting [32, 74, 52] and improve sparsity [17, 51, 3]. However,

in order to use gradient descent to train the machine learning model, the regu-

larization term added to the loss function has to be differentiable. In general,

pruning is not a differentiable operation. So no attempt has been made before to

use back-propagation to find an optimal value of the pruning threshold. In this

work, the pruning operation is replaced by a differentiable soft-pruning operation,

enabling gradient to flow across layers. The transformer models’ parameters are

optimized together with the pruning threshold by back-propagation to find the op-

timal threshold value for each attention layer in the model. Preserving the model

accuracy and increasing the threshold value are two opposite objectives. However,

with our method, by leveraging the loss function, the relative importance of these

two objectives can be determined and an theoretically optimal threshold value
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cam be found in all circumstances. Note that back-propagation is the fundamen-

tal method used for all machine learning models. So the method in this paper does

not rely on prior experience like the previous empirical methods.

In this design, at runtime, the attention score values below the learned thresh-

old are pruned by changing the value to −∞. This way, the following computation

can be skipped for the pruned values. A bit-serial architecture, called LeOPArd1,

is also proposed in this work to maximize the benefits by terminating the compu-

tation even before pruning the subsequent calculation. In stead of just pruning,

the computation cost is reduced to the lowest bit level by this early termination

design. The early termination algorithm is well designed such that the accuracy is

guaranteed to be preserved even if the computation is finished much earlier. More

specifically, it can be determined at bit level if the partial result of the dot-product

is possible to exceed the threshold after the computation is completely finished.

The performance improvement from the computational and micro architectural

design of LeOPArd is evaluated on different state-of-the-are transformer mod-

els using popular benchmarks in NLP and CV. On average, LeOPArd achieves

1.9× speedup and 3.9× energy reduction, compared to a baseline design without

pruning and early termination support in an iso-area setting. To further study the

improvement of LeOPArd, the contribution of runtime pruning and the bit-serial

early terminating are evaluated separately. On average, for the 3.9× overall en-

ergy reduction of LeOPArd, 2.1× is brought by the runtime computation pruning

algorithm and 1.8× comes from bit-level early termination. The result of LeOP-

Ard evaluation is also compared to similar previous accelerators, A3 [20] and

SpAtten [62], which also implemented runtime pruning. The comparison results

from LeOPArd shows the gradient-based soft pruning design finds the optimal

threshold that brings great benefit in runtime pruning and early termination.

1LeOPArd: Learning thrEsholds for On-the-fly Pruning Acceleration of tRansformer
moDels.
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1.4 Data-movement optimization

Despite saving self-attention computation cost, the pruning strategy itself does

not effectively address the main cost driver of the self-attention mechanism: data

communication overhead. This is because identifying the relevance of key em-

beddings per query, especially to preserve model accuracy, still requires fetching

all embeddings to on-chip resources and performing costly query−key computa-

tions. Commonly, these methods presume sufficiently large on-chip resources to

keep all embeddings on chip. As the input sequence of the model keeps growing,

this assumption does not hold for some mobile and edge devices. For example, if

we embrace a design with only 20% of requisite on-chip buffers available for em-

beddings, data communication emerges as the main determinant of efficiency (on

average, > 60% of total energy consumption as shown in Figure 3.1). To address

this, an in-memory pruning stragety that obviate the need to bring embeddings

onto the chip is described in Chapter 3.

An emerging body of work has illustrated significant benefits of ReRAM in-

memory computing, due to the inherent efficiency of analog computing and massive

parallelism capability [19, 67, 71, 63, 50, 12, 36, 41, 49]. We leverage ReRAM tech-

nology to enable in-memory pruning, reducing the pressure on the accelerator to

fetch all embeddings onto the chip. While appealing, materializing the possibility

of in-memory pruning comes with its own challenges, listed as follows:

• Circuit inaccuracies: There are various inaccuracies, such as thermal and

coupling noise, associated with ReRAM analog circuitry, which limit the

precision of in-memory computing.

• Data conversion overhead: Runtime pruning [37], a common approach to pre-

serve model accuracy, requires layer-wise comparisons with a threshold value.

The cost of converting the analog results of in-memory computing (multiple

bits) to the digital domain for perpetual comparisons against threshold values

can outweigh the benefits of in-memory computing.

• Selective read of unpruned embeddings: Supporting in-memory ReRAM

pruning enforces a particular data layout for key embeddings. However,

6



this layout constraints the ability to selectively read the unpruned vectors.

The detailed implementation will be explained in Chapter 3. As a brief introduc-

tion, the concerns mentioned above are solved in the following ways:

1. For circuit inaccuracies, we introduce a unique perspective on the ReRAM in-

memory computing paradigm. We employ approximate in-memory compute

and precise on-chip recompute in together to avoid performance degradation

caused by this issue.

2. For data conversion overhead, we employ analog comparators to carry out the

comparisons with threshold values and instead produce 1-bit data to indicate

the pruning status. With this shift in design, we reduce the hardware cost,

which is proportional to input bit precision, to merely the cost of a series of

1-bit analog to digital converters (ADCs).

3. For selective read of unpruned embeddings, we repurpose an existing solu-

tion, which enables us to implement data reuse based on our observations.

On the hardware side, we rely on recent taped-out transposable ReRAMs [60]

that introduce in-situ transposed read access. While initially intended for ef-

ficiently accessing neural network weights, our application of this hardware

selectively reads unpruned embeddings. For the data reuse, we observe that

there is a considerable spatial locality between unpruned key vectors of ad-

jacent queries. We exploit this spatial locality to improve data reuse and

further reduce the data communication overhead.

We evaluate our approach Sprint in several self-attention models with large

sequences, including BERT, ALBERT,ViT, GPT-2 [27, 34, 15], and two futuristic

designs (e.g. 2K and 4K input sequence length). Under an iso design, our results

show that, on average, Sprint delivers 7.5× speed-up and 19.6× energy reduction

compared to a baseline design with 16KB on-chip memory. The benefit increases

as on-chip resources become scarcer, representing a design point for resource con-

strained platforms, e.g. 1.6× more energy reduction with 16KB on-chip memory

than the case with 64KB capacity. Under an iso design, our results show that,
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on average, Sprint delivers 7.5× speed-up and 19.6× energy reduction compared

to a baseline design with 16KB on-chip memory. The benefit increases as on-chip

resources become scarcer, representing a design point for resource constrained plat-

forms, e.g. 1.6× more energy reduction with 16KB on-chip memory than the case

with 64KB capacity.
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Chapter 2

Attention Mechanism in Natural

Language Processing

Most of the computation in transformer models are from their most basic build-

ing block, attention layers. From the calculation steps introduced above, it is ob-

vious that the majority of the computation cost comes from the inner product of

the Query matrix and the Key matrix (Equation 3.4) and the inner product of the

Score matrix and the Value matrix (Equation 1.4), both of which are the multi-

plication of two matrices with s× d dimensions. And the time complexity of both

multiplications is O(s2d). If these computation steps can be save in one attention

layer, given the large number of layers in modern transformer models, a significant

portion of the total computation can be saved just by runtime pruning.

2.1 Algorithmic Design

The section introduces the algorithmic design of LeOPArd for soft threshold

learning, runtime pruning and early termination. As has been introduced in Chap-

ter 1, the challenge of finding the optimal threshold value is the differentiablity

issue of the pruning operation, which is solved by our first algorithmic design.

The first algorithmic design introduced is the differentiable soft threshold pruning

technique. This method eliminates inconsequential attention layer computations

as early as possible, right after the multiplication of Q matrix and K matrix, to ac-
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celerate the computation. Particularly, this algorithm sets the pruning thresholds,

which is a different value for each attention layer, as parameters to be learnt to-

gether with other model parameters in retraining. Both the task specific fine-tuned

model parameters and the pruning threshold are adjusted in the retraining process

to increase the model sparsity while maintaining the accuracy. After the layer-

wise thresholds are learned, the Score = Q×KT values are compared against the

learned pruning thresholds per attention layer and prunes the ones that are lower

than the learned threshold. Different from the learned weight pruning method for

image classification models [3], the pruning threshold values in our work depends

on the specific transformer model and the particular task. As a result, the sparsity

achieved by this algorithm varies from task to task and model to model. Because

of the content-specific nature of our pruning method, very high sparsity is achieved

in the attention layer computations while yielding almost no accuracy loss.

2.2 Learned Per-Layer Pruning

There are three major challenges in designing a algorithm to learn the optimal

pruning threshold for each layer. The first challenge is, each pruning threshold can

take any value from −∞ to ∞. However, it is common for a modern transformer

model to have a large number of layers. For example, the Bert Large model,

BERT-L has 24 layers. Then, there are 24 values, each can take any value, to

be learned. Second, as previous studies has found [20, 62], simply searching for

the threshold values only could be detrimental to the models’ accuracy, which is

the reason that previous studies used empirical values as threshold. Training the

model parameters together with the threshold could potentially solve the challenges

mentioned above. However, the pruning operation is not a differentiable. So we

cannot use train it directly using gradient descent. Also, if the loss function of

the model is not updated, the threshold value is bound to become infinity because

that way the model accuracy is the highest. To solve these new problems, the

original pruning operation is replaced by a new soft threshold pruning function.

And a surrogate regularizer is added the loss function to increase the sparsity of the

10
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Figure 2.1: Pruning operation on attention Score: (a) ideal magnitude-based prun-
ing, (b) proposed differentiable pruning operation with soft threshold.

model. In the following paragraphs, the two algorithmic design principles, namely

“pruning with soft threshold” and “surrogate L0 regularization” is introduced.

2.2.1 Pruning with soft threshold.

The original pruning operation for Score values (e.g. Score = Q×KT is shown

in Figure 2.1 (a), where Q and K are d-dimension vectors corresponding to a

single word in the input sequence). The Score values greater than the threshold,

T h, remain unchanged and those less than T h are changed to a negative number

with large a absolute value. The “softmax(·)” operation maps a set of values to

probability values, larger positive values are mapped to probability values closer

to 1 and negative values are mapped to probability values closer to zero. Changing

11



the value to a large negative number makes the corresponding values become zero

after the “softmax(·)” operation. This way, these values under the threshold are

pruned out and the subsequent calculation is not needed anymore. But as shown in

Figure 2.1 (a), this pruning operation is not continuous and thus not differentiable.

Current gradient descent optimization cannot be applied directly in this setting.

To bypass the difficulty caused by the original pruning operation, an approxi-

mate function is used to replace the original pruning operation. This approximate

function uses a soft threshold (shown in Figure 2.1) as follows:

SoftThreshold(x) =

x tanh(s(x− T h)), x ≥ T h

c tanh(s(x− T h)), x < T h
(2.1)

In this equation, the value of s controls the sharpness of the curve of this function.

If the value of s is larger, the curve becomes sharper and closer to the original

pruning operation’s curve. However, it’s still continuous. Thus it is differentiable

and gradient descent does work in this case. Supporting the learning gradients to

flow at the vicinity of T h allow the gradient-based learning algorithm to either

push down the model parameters (e.g. Q and K) below the threshold or lift them

above the threshold according to their contributions to the overall model accuracy.

From Figure 2.1, we can see that if the input value is larger than the threshold

T h, the output of the soft threshold function is asymptotically close to the input

value itself. And if the input is less than the threshold, the output is just −c.

Except a small range near the threshold, the soft threshold function approximates

the original pruning function. In most cases, the difference in the output of the

two functions are negligible. In our experiments, we empirically find that setting

c = 1000 and s = 10 yield a good approximation for pruning and enables robust

training.

2.2.2 Differentiable surrogate L0 regularization.

Applying the soft threshold function solves the problem of gradient. However,

the concern of sparsity is not still not addressed. Obviously, the original model’s

12



loss function only measures the accuracy of the model. So the only goal of the

optimization steps is to improve the accuracy of the model. Then it is possible

that the value of the threshold continuously drops in the training process so that the

model’s accuracy can be maximized. However, lowering the threshold value may

cause the sparsity after the pruning to drop as well. Imaging if the threshold value

is too low, that no value in the score matrix is pruned out and the sparsity is zero,

the pruning operation just becomes meaningless. To tackle this, a regularization

term is added to the loss function. This is a commonly used method to prevent

model over-fitting in machine learning. To increase the sparsity of the model, a L0

regularizer is used on the model parameters. The updated loss function is shown

in the equation below:

Ltot(θ) =
1

N

( N∑
i=1

L
(
A(xi; θ), yi

))
+ λ||θ||0 (2.2)

λ||θ||0 =
|θ|∑
j=1

1[θj ̸= 0] (2.3)

Here, L is the original loss of the model before the update, where A(·) is the

model’s prediction for the input xi when the parameters are θ and yi is the true

value. This part of the loss function measures the accuracy of the model. ||θ||0 is

the L0 regularization term. 1 in 2.3 is a function that counts the number of non

zero elements in the model parameters. λ is a weight that controls the importance

of this regularization term.

However, like the original pruning operation, this L0 regularization term is not

differentiable as well. Louizos et al. [40] sloved a similar problem by reparameter-

ization of model parameters in order to take the gradients. This method worked

well on Wide Residual Networks [72] and small datasets, but it has been shown

that it fails to work as well on larger models and more intensive tasks. To solve

this problem in this particular case, an alternative representation of the regular-

ization term is used to bypass the non-differentiable issue. Here, instead of simply

counting the number of values after pruning, a Sigmoid function, as shown in equa-
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tion 2.5, is applied to approximate the counting function and enable the gradient

calculation, similar to the soft pruning method introduced above.

||θ||0 =
|score|∑
j=1

1[scorej > −c] (2.4)

||θ||0 ≈
|score|∑
j=1

sigmoid(k(scorej + c− α)) (2.5)

In all experiments, k is set to 100 and α is set to 1. This way, the sigmoid(·)
function is very close to one for input values larger than −c and close to zero when

the input value is smller than −c. Thus, the output of equation 2.5 is almost the

same as the output of equation 2.4.

2.2.3 Pruning mechanism

After solving the problem of pruning with differentiable operation to enable

threshold learning and adding the L0 regularization term to increase the model

sparsity, the fine-tuned models are retrained with the two techniques applied. Note

that the retraining step is task-spesific and model specific. For example, a model

like the Bert base, BERT-B, is first fine-tuned on a specific task dataset, like

SQUAD. Then the soft threshold pruning and regularization term is added to the

model and the model is trained again on the same dataset. In the training process,

both the threshold value and other model parameters are slightly adjusted based

on the gradient descent rules enabled by the soft threshold pruning. As a result, in

the Score matrix, the important values become larger relative to the threshold T h

after training, so that they are not pruned out. On the other hand, unimportant

values in the Score matrix are made smaller relative to the threshold T h so that

they are pruned and the model sparsity is increased. Using this method, the

model parameters are updated according to the gradient to change which values

in the Score matrix are kept after pruning and which are pruned after pruning.

The threshold value T h were initialized as zero at the beginning of the retraining
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Figure 2.2: An example of attention layer sparsity and its corresponding pruning
threshold values for BERT-L model on QNLI task from GLUE benchmark.

process. And the retraining process is five epochs for all the models and tasks

evaluated in this study.

The retraining is proven to be highly effective. As shown in Figure 2.2, the

threshold value increases over the process of training and correspondingly the

model sparsity increases as well, which is the expected outcome after adding the

L0 regularization term. In epoch 3, despite the threshold value slightly drops,

the model sparsity still increases. This suggests the benefit of training both the

threshold and other parameters together. Even though the threshold declines,

other parameters are adjusted to increase the model sparsity. It can also be ob-

served from Figure 2.3 that during the five epochs of training process, the overall

loss is steadily decreasing and gradually converging to an optimal spot. Both of

the figures shows the training process of retraining BERT-L model on the QNLI

task from the GLUE benchmark.

15



0 1 2 3 4 5
Fine-Tuning Epochs

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

No
rm

al
ize

d 
Tr

ai
ni

ng
 L

os
s

Figure 2.3: An example of normalized training loss as fine-tuning epochs progress
for BERT-L model on QNLI task from GLUE benchmark.

2.2.4 Bit-Level Early-Compute Termination

The learned pruning offers a unique opportunity to further improve the LeOP-

Ard performance through bit-serial Q×KT computation. After getting the opti-

mal pruning threshold values through the retraining process, it is ideal to further

exploit the high model sparsity achieved, so that the performance of LeOPArd

can be further improved. If the LeOPArd is aware that the value of the Q×KT

product matrix will never reach the pruning threshold found in retraining, the

bit-serial computation can be stopped earlier to further reduce the cost. But stop-

ping the computation early is not trivial. Because if applied incorrectly, it may

be detrimental to the model’s accuracy because of the false termination, which is

against the purpose of developing the LeOPArd system.

In order to make sure the termination does not change the final result of the

computation, a dynamically adjusted conservative margin value is calculated to

compensate for the part that has not been calculated in the bit-serial computation
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step. The purpose of adding this conservative margin is to judge whether the

value will exceed the threshold given the maximum value for the unseen bits. If

the LeOPArd system finds that even after adding the margin to the current result,

the final result will still be lower than the learned threshold, the computation is

terminated at this step. The value in the Q × KT product matrix is pruned and

the computation for the remaining bits are skipped. In the following paragraph,

the calculation of early-compute termination with a conservative margin will be

explained.

Early-compute termination for dot-product operation.

In Figure 2.4, an example of the computation process of the Q × KT inner

product is shown. The bit-level representaion of K is displayed vertically from

MSB → LSB. The Q values are stored in full-precision fixed-point format. For

simpler illustration, this Figure assumes the computation is performed in sign-

magnitude form, where ks represents the sign-bit for K vector, and the absolute

values of K elements are less than one.

In the first cycle, the elements with the same signs, for example, (k0, q0) and

(k1, q1), are used to calculate the first margin. The reason behind this design

is simple: only the multiplication of numbers with the same signs yields positive

number and contribute to a larger product result in the end. However, two numbers

with different sings are ignored because the margin because it only contributes

negatively to the final result, which is against the conservative design of the margin.

As shown in the table 2.1, both the product of k2 and the q vector and the margin

are updated. The margin is changed according to the largest possible positive

contribution to the final value. In the second cycle, because the sum of P2 and

M2 is below the threshold, the computation just ends here and the following cycles

(highlighted in gray) are no longer performed. Note that, with this conservative

margin design, it is guaranteed that the result of the pruning will be the same with

the calculation without early termination.
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Figure 2.4: High-level overview of early-compute termination for dot-product
operation. Ks indicates the sign bit. For simplicity, K elements are scaled to be
between -1.0 and +1.0. The table shows the partial sum values after each cycle.

18



Table 2.1: the partial sum values after each cycle in Figure 2.4

Cycle P = Partial Sum M = Conservative Margin Early Termination? (T h = 5)

1 P1 = 0 M1 = (9 + 5)(2−1 + 2−2 + 2−3) = 12.25 P1 + M1 = 12.25 ≥ 5;

2 P2 = P1 + (5 − 7)2−1 = −1 M2 = (9 + 5)(2−2 + 2−3) = 5.25 P2 + M2 = 4.25 < 5;

3 P3 = P2 + (5 − 2)2−2 = −0.25 M3 = (9 + 5)(2−3) = 1.75 P3 + M3 = 1.5 < 5;

4 P4 = P3 + (9 + 5)2−3 = 1.5 M4 = 0 P4 + M4 = 1.5 < 5;

2.3 Hardware Architecture of LeOPArd

The hardware architecture of LeOPArd is designed in consideration of the

following factors to exploit the algorithmic advancements introduced above:

• Localize the unpruned Score values and their corresponding positions in the

output matrix utilizing the learned threshold value.

• Reduce the computation and memory access by implementing the bit-serial

processing strategy to terminate the computation early.

• Skip the pruned Score×V operation and maintain high compute utilization

at the same time

2.3.1 Overall Architecture

Since the available parallelism in multi-head attention layers, a tile-based hard-

ware architecture is designed for LeOPArd, where attention heads are partitioned

across the tiles, and the operations in the tiles are independent of each other on

their corresponding heads. The high-level microarchitecture of a single LeOP-

Ard tile is show in Figure 2.5. There are two modules in each tile to conduct the

computation in the attention layer:

• A front-end unit, named Query Key Processing Unit (QK-PU). This unit

readsQ row vectors from the Q matrix from the off-chip memory in a stream-

ing fashion and it reads theKmatrix from a local buffer, and conducts vector-

matrix multiplication between a Q vector and a K matrix. Here, every Q
row vectors is corresponds to a single word/token from the raw input to the

model. There is also a 1-D array of bit-serial dot-product unit, QK-DPUs,,
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in this unit. The QK-DPU implements the early termination algorithm ac-

cording to the pruning threshold and locates the unpruned values in order

to passing it to the next stage.

• A back-end unit, named Value Processing Unit (V-PU). This unit conducts

the softmax operation on the Score matrix after pruning followed by the

Score× V multiplication to generate the final result.

A group of FIFOs that stores the unpruned Score values and their positions con-

nect the front-end unit and the back-end unit. Multiple (NQK) QK-DPUs in front-

end shares a single V-PU in the back-end, since the pruning rate is high enough,

even one V-PU can handle multiple QK-DPUs in front-end. In the case of the

Q × K is finished in the front-end, but the back-end is still processing the last

Q vector, then the frond-end unit has to pause until the back-end finishes the

computation.

In this design, the choice of the NQK is crucial for maximizing the overall

throughput and resource utilization in the back-end. In this study, both NQK =

6 and 8 are selected to in order to get area efficiency and higher utilization, re-

spectively. All the K and V matrices are read from off-chip memory and stored on

on-chip buffers before any multiplication starts, while the Q vectors are steamed

in. This way, the DRAM costs are amortized because the vectors can be re-used

by the number of sequence elements (e.g. 512 in BERT).

2.3.2 Online Pruning Hardware Realization via Bit-serial

Execution

To exploit the benefit from the algorithm innovation in threshold learning and

sparsity improvement, the frond-end design shown in Figure 2.5-(a) as a collection

of bit-serial dot-product units (QK-DPU).

Overall front-end execution flow. For theQ×K multiplication in the front-

end unit, the Q vectors are streamed in from Q-FIFO and then distributed to each

QK-DPU To perform the Score computations, the Q vectors are read sequentially

from Q-FIFO and then broadcasted to each QK-DPU, while each QK-DPU reads
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a K vector from its local Key Buffer and performs a vector dot-product operation.

As such, while the Q vector is shared amongst the QK-DPUs, the K matrix is

partitioned along its columns and is distributed across the Key Buffers. Each

QK-DPU performs the dot-product operations in a bit-serial mode, where the K
elements are processed in bit-sequential manner and the Q elements are processed

as a whole (e.g. 12 bit). Whenever each QK-DPU finishes the processing of all

its K bits for unpruned Scores or early terminates the computation due to not

meeting the layer pruning threshold based on the margin calculation described

in Section 2.2.4, it proceeds with the execution of next K vector. If a QK-DPU

detects a unpruned Score, it stores the Score value and its corresponding index

on Score-FIFO and IDX-FIFO, respectively, to be processed by the back-end unit

later. Once all the QK-DPUs finish processing all their K vectors, the QK-PU

reads the next Q vector from Q-FIFO and starts its processing.

Bit-serial dot-product execution. Figure 2.6-(a) depicts the microarchi-

tectural details of our Bit-Serial Dot-product Engine (BS-DPE). The BS-DPE is

a collection of Multiply-ACcumulate (MAC) units and it performs a 12-bit×B-bit
dot-product operation per cycle, where the Q vector is kept in a local register and

Ks are read from the Key Buffer B-bit at a time in a sequential mode. We chose

B = 2-bit as opposed to conventional bit-by-bit serial designs as the number of bits

processed per cycle opens a unique trade-off space for the design of LeOPArd.

Increasing the bits leads to better power efficiency due to less frequent latching

of intermediate results, however it may degrade the performance as it reduces the

resolution of bit-level early termination. As such we perform a design space explo-

ration (Figure 2.15 in Section 2.4.4) and chose 2-bit serial execution as it strikes

the right balance between power efficiency and performance. The BS-DPE accu-

mulates all the intermediate results in around 20 bits to keep required precision

of the computations. The output of the last 2-bit×12-bit MAC unit then goes to

a shifter to scale the partial results according to the current K bit position and

is accumulated and stored in a register that holds the (partial) results of Score

computations.

Pruning detection via dynamic margin calculation. As discussed in
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Section 2.2.4 and Figure 2.4, to detect whether a current Score needs to be pruned

and corresponding computations be terminated, QK-DPU dynamically calculates

a conservative upper-bound margin (M) and adds it with the current dot-product

partial sum (P) to compare it with the layer threshold (T h). Figure 2.6-(b) and (c)

show the details of hardware realization for margin calculation and thresholding

logic, respectively. To calculate the margin according to Table in Figure 2.4, the

margin calculation module first detects the Q and K pairs in the dot-product that

yield positive product. To do so, during the processing of K’s MSBs, the sign

bits of Qs and Ks are XORed. Only if the result is positive (XOR = 0), the

absolute values of the corresponding Q are summed up to calculate the margin

(e.g., resulting in (9 + 5) in the Table of Figure 2.4). The summation result is

stored in a Sum Register. Then, it is scaled by the fixed number, largest positive

value (e.g. 0111...), which corresponds to (2−1+2−2+2−3+...) in Figure 2.4, storing

(9+5)(2−1+2−2+2−3+ ...) in the margin register. On the other hand, if it turns

out the multiplication yields a negative value (XOR = 1) during the processing of

K MSBs, the computation is excluded and skipped toward the margin calculation,

which is enabled via multiplication by zero (000...). The margin needs to be

calculated dynamically for each bit position during bit-serial execution (such as M
changing in each row of the Table in Figure 2.4). This is enabled by subtracting

the shifted version of Sum Register value from the current margin in the margin

register, e.g., (9+5)(2−1+2−2+2−3+...)−(9+5)(2−1) = (9+5)(2−2+2−3+...) in the

second row of the Table in Figure 2.4. This operation is iterated every bit position

to generate the values in the subsequent rows of the Table in Figure 2.4. Note

that, the margin calculation is a scalar computation (mostly shift and subtraction),

which is amortized over the d = 64 dimension vector processing, incurring virtually

no overhead.

Note that, since the Queries need to be multiplied by either of the three afore-

mentioned bit streams, these multiplications are implemented merely with Shift

and Add, instead of complex and expensive multipliers. Finally, the accumulated

result of these operations yields the current margin.

After each cycle of the bit-serial operation, the thresholding module (Figure 2.6-
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(c)) adds the updated partial sum with the current margin and compares it with

the layer threshold T h to determine the continuation of the dot-product or its

termination for pruning of the current Score.

Final score index calculation. The QK-DPU calculates the indices of the

unpruned Scores using a set of two counters, as shown in Figure 2.6-(d). First, Bit-

serial Cntr increments with the number of bits processed by the QK-DPU and gets

reset whenever it reaches its maximum (i.e. 6 (= 12bit/B)) for processing all bits

for unpruned Scores) or the Early stop flag is asserted. Second, the value of IDX

Cntr shows the position of the current Score in the vector and increments whenever

the Bit-serial Cntr gets reset, ending the computation of that Score. Finally, if

the IDX Cntr increments and the Early stop flag is low, the QK-DPU pushes the

content of this counter to IDX FIFO, because it means that the corresponding

Score is not pruned and will be used for further processing in the V-PU.

2.3.3 Back-End Value Processing

As shown in Figure 2.5-(b), the LeOPArd tile’s back-end stage, V-PU, con-

sumes the unpruned Scores and executes the Softmax operation, followed by multi-

plication with V vectors and finally storing the results to an Output-FIFO. When-

ever the Score-FIFO is not empty, the V-PU starts the Softmax operation (ex and

accumulation) to calculate the probabilities. We implemented the Softmax mod-

ule of V-PU similarly to the Look-Up-Table (LUT)-based methodology in A3 [20].

Whenever the output probability is produced, the V-PU uses the indices of the

unpruned Scores to read the corresponding V vector. Finally, the V vector is

weighted by the output of the Softmax module with a 1-D array of MAC units.

The elements of V vector are distributed and the probabilities are shared across the

MAC units, similar to a 1-D systolic array. With such design, the V-PU consumes

the Scores sequentially to complete the weighted-sum of V vectors, and accumu-

lates the partial results over multiple cycles while only accessing the unpruned

V vectors. As such, it rightfully leverages the provided pruning by the front-end

stage and eliminates the inconsequential computations.
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Table 2.2: Microarchitectural configurations of a LeOPArd tile.

Hardware modules Configurations
QK-PU 6 / 8 QK-DPU (=NQK), each 64 (=D) tap 12×2 bit-serial
Key Buffer 48KB in total (= 8KB×6 / 6KB×8 banks), 128-bit port per bank
V-PU Single 1-D 64 (=D) way 16×16-bit MAC array
Value Buffer 64KB (= 8KB × 8 banks), 128-bit port per bank
Softmax 24-bit input, 16-bit output, LUT: 1 KB
Score and IDX FIFOs 24-bit × 512 depth for Score, 8-bit × 512 depth for IDX

2.4 Evaluation

2.4.1 Methodology

Workloads. We evaluate LeOPArd on various NLP and Vision models:

BERT-Base (BERT-B) [27], BERT-Large (BERT-L) [27], MemN2N [55], ALBERT-

XX-Large(ALBERT-XX-L) [34], GPT-2-Large (GPT-2-L) [45], and ViT-Base(ViT-

B) [15]. To evaluate these models, we use five different datasets: (1) Facebook

bAbI, which includes 20 different tasks [64] for MemN2N, (2) General Language

Understanding Evaluation (GLUE) with nine different tasks [61] for BERT mod-

els, (3) Stanford Question Answering Dataset (SQUAD) [46] with a single task

for BERT models and ALBERT-XX-L, (4) WikiText-2 [1] for GPT-2-L, and (5)

CIFAR-10 [31] for ViT. The dimension (d) of Q, K, and V vectors for all the work-

loads is 64 except MemN2N with bAbI dataset, which is 20. The sequence length

is 50 for MemN2N with bAbI whereas 512 and 384 for BERT and ALBERT-XX-

L models with GLUE and SQUAD datasets, respectively. Finally, the sequence

length for GPT-2 with WiKiText-2 is 1280.

Fine-tuning details. We use the baseline model checkpoints from Hugging-

Face [65] with PyTorch v1.10 [44] and fine-tune the models on an Nvidia RTX 3090,

except for GPT-2-Large, for which we use an Nvidia A100. For default task-level

training, we use the Adam optimizer with default parameters and the learning rate

of {2, 3}×e−5 (same as baseline). To obtain the layer-specific threshold values, we

perform an additional pruning-aware fine-tuning step for one to five more epochs

to learn the optimal values while maintaining the baseline model accuracy. For

this step, we use the learning rate of 1e−2 for T h (5e−6 for the other parameters),

as training for the T h is generally slower and a higher learning rate facilitates con-
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vergence. To leverage faster fixed-point execution, we perform a final post-training

quantization step with 12 bits for inputs in QK-PU hardware block and 16 bits for

V-PU block similarly to [62].

Hardware design details. Table 3.1 lists the microarchitectural parame-

ters of a single LeOPArd tile for two studied configurations: (1) A LeOPArd

tile with six and (2) eight QK-DPUs that share a single 1-D MAC array in V-

PU. The number of QK-DPUs is set such that the compute utilization for front-

end and back-end units is balanced, while considering the pruning and bit-level

early-termination rates across all the workloads. We synthesised and performed

Placement-and-Route (P&R) for our designs with two tiles. The on-chip memory

sizes for K and V are designed to store up to 512 sequences for a single head in a

layer for both configurations.

Accelerator synthesis and simulations. We use Cadence Genus 19.1 [6]

and Cadence Innovus 19.1 [7] to perform logic synthesis, floorplan, and P&R for

the LeOPArd accelerator. We use TSMC 65 nm GP (General Purpose) standard

cell library for the synthesis and layout generation of the digital logic blocks. These

digital blocks are rigorously generated to meet the target frequency of 800MHz in

consideration of all the CMOS corner variations and temperature conditions from

−40◦ to 125◦C. For the SRAM on-chip memory blocks, we use Memory Compiler

with ARM High density 65 nm GP 6-transistor based single-port SRAM version

r0p0 [2].

We also develop a simulator to obtain the total cycle counts and number of

accesses to memories for both LeOPArd and baseline accelerators. The simulator

incorporates the pruning rate and the bit-level early-termination statistics for each

individual workload. Using these statistics, the simulator evaluates runtime and

total energy consumption of the accelerators.

Comparison to baseline architecture. We compare LeOPArd to a con-

ventional baseline design without any of our optimizations (e.g. runtime pruning

and bit-level early compute termination). For a fair comparison, we use the same

frequency, bitwidths for Q × KT and ×V , and on-chip memory capacity for all

the designs. The baseline design employs a single 12×12-bit QK-DPU as op-

25



posed to multiple 12×2-bit-serial ones, while both designs have the same back-end

V-PU. As shown in Table 3.1, we evaluate LeOPArd under two design config-

urations. The first design with six QK-DPUs, dubbed Area-Efficient LeOPArd

(AE-LeOPArd), almost perfectly matches the area of the baseline design (¡ 0.2%

overhead) and provides an iso-area comparison setting. The second one with eight

QK-DPUs, dubbed Highly-Parallel LeOPArd (HP-LeOPArd), provides an area

15% larger than baseline and delivers a better balance in the compute utilization

of the front-end and back-end stages.

Comparison with A3 and SpAtten. We also compare LeOPArd with two

state-of-the-art attention accelerators, A3 [20] and SpAtten [62], with support for

runtime pruning. A3 employs token pruning by comparing the Softmax output

(probability) to a relative threshold, which is set using a user-defined parameter

that adjusts the level of approximation. A3 also employs a sorting mechanism to

make the pruning decision after processing only a small number of large elements

from the sorted K matrix in the order of magnitude. SpAtten performs cascaded

head and token pruning by comparing the Softmax output with a user-defined

threshold obtained empirically. There are no raw performance/energy results for

individual workloads and simulation infrastructures of the accelerators. There-

fore, we follow the comparison methodology of SpAtten [62], using throughput

(GOPs / s), energy efficiency (GOPs / J), and area efficiency (GOPs / s / mm2)

metrics to provide the best comparisons. Both A3 and SpAtten are implemented

in 40 nm technology. To provide a fair comparison, we scale HP-LeOPArd

from 65 nm to 40 nm based on both Dennard scaling (indicated with †) and

measurement-based scaling rules [53] (indicated with ‡). We use a single tile with

an area comparable to A3 and SpAtten. Moreover, A3 implements the Q × KT

using 9 bits as opposed to 12 bits in LeOPArd. As such, we scale the QK-PU of

HP-LeOPArd from 12 bits to 9 bits to provide a head-to-head comparison with

the A3 accelerator.

26



2.4.2 Accuracy and Algorithmic Optimization

Impacts on model accuracy. Figure 3.9 compares the accuracies of the

LeOPArd gradient-based on-the-fly pruning method and the baseline models in

their vanilla implementation [65], across various tasks of evaluated workloads. On

average, across all the evaluated tasks, LeOPArd runtime pruning degrades ac-

curacy by only 0.07% for MemN2N with the bAbi dataset, 0.31% and 0.33% for

BERT-B and BERT-L with the GLUE dataset, and 0.26% and 0.21% for BERT-B

and BERT-L with the SQUAD dataset. For ALBERT-XX-L with the SQUAD

dataset, the LeOPArd runtime pruning leads to only an 0.07% accuracy loss,

whereas the degradation for ViT-B with the CIFAR-10 dataset is 0.76%.

In the GPT-2-L model, we use perplexity, which is the key metric for auto re-

gressive language models. Note that perplexity is derived from the model loss, and

thus lower perplexity is better. As shown in Figure 3.9-(f), LeOPArd runtime

pruning results in a 0.07 decrease in perplexity. This is achievable because LeOP-

Ard learns the optimal threshold values and co-adjusts them with the weight

parameters simultaneously via gradient-based optimization. Figure 3.9 also illus-

trates that the LeOPArd pruning-aware fine-tuning pass evenly improves the

accuracy for some of the benchmark tasks, with the maximum of 2.2%. However,

this also degrades the accuracy for other tasks with the maximum of 2.6%. This

accuracy fluctuations are unavoidable due to randomness in deep learning training,

but overall the accuracy degradation, averaged across the evaluated benchmarks,

converges adequately to a near-zero value (≤ 0.2%). Performing the post-training

quantization adds at most only 0.1%, for both the baseline and our pruning-aware

fine-tuned models.

Runtime pruning rate analysis. Figure 2.8 shows the percentage of total

Q×KT Scores that are pruned away by our method using the learned threshold

values across various benchmarks. In transformer software implementations, zeros

are padded to maintain regular vector length despite the varying sequence length in

each workload. The padded zeros are not counted for sparsity contribution in this

paper. On average, LeOPArd prunes 91.7% (max. 97.4%) of Scores across all

the 20 tasks for the MeMN2N model with the bAbI dataset. LeOPArd achieves
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Table 2.3: LeOPArd performance comparison under different scenarios with prior
work [20, 62].

Metric (unit) A3-Base A3-Conserv SpAtten HP-LeOPArd HP-LeOPArd † HP-LeOPArd ‡ HP-LeOPArd †∗ HP-LeOPArd ‡∗

Process (nm) 40 40 40 65 40 40 40 40
Area (mm2) 2.08 2.08 1.55 3.47 1.31 1.31 1.05 1.05
Key Buffer (KB) 20 20 24 48 24 24 24 24
Value Buffer (KB) 20 20 24 64 24 24 24 24
(Q, K)-bits (9, 9) (9, 9) (12, 12) (12, 12) (12, 12) (12, 12) (9, 9) (9, 9)
GOPs / s 259.0 518.0 728.4 574.1 932.8 1084.9 1143.9 1330.3
GOPs / J 2354.5 4709.1 772.9 519.3 2224.8 2028.8 3353.8 3058.4
GOPs / s / mm2 124.5 249.0 470.0 165.5 710.4 826.1 1093.8 1272.1

† Dennard scaling trend applied to map on 40 nm process – ‡ Scaling rule from [53] applied to
map on 40 nm process – *scaled to 9 bit Q, K

the average pruning rates of 78.6% (max. 93.2%) and 75.5% (max. 93.0%) for

the BERT-B and BERT-L models with the GLUE dataset, while achieving 73.9%

and 74.1% with the SQUAD dataset, respectively. Moreover, LeOPArd provides

a 72.6% pruning rate for ALBERT-XX-L with the SQUAD dataset, 60.3% for

ViT-B with the CIFAR-10 dataset, and 73.9% for GPT-2-L with the WikiText-2

dataset. As the results suggest, LeOPArd can significantly prune out the Scores

across various tasks, with greater benefits to MeMN2N tasks compared to the

BERT ones. We conjecture the lower pruning rates in BERT models are due to

the higher probability of correlation between various tokens in the more complex

language processing tasks compared to MemN2N.

As Figure 2.8 shows, in the case of ALBERT-XX-L with SQUAD, we see more

pruning opportunities compared to BERT, presumably because of its larger model

architecture with more redundant computations. Similar trend is observed for

GPT-2-L. With regard to ViT-B, we see lower pruning compared to NLP tasks,

commensurate with prior studies [11]. This occurs because information is more

local in images compared to texts, and therefore there is less redundancy in the

attention layers for vision tasks.

Bit-level early-compute termination. Figure 2.9 depicts the proposed bit-

level early compute termination feature and its relation with the achieved runtime

pruning rates. The x-axis shows the number of bits processed sequentially, while

the y-axis shows the cumulative achieved pruning rate averaged over all of the

datasets’ tasks. Intuitively, as more bits are processed during Score computa-

tions, the dynamic margin becomes smaller and thus the pruning rate increases.

As shown, as the average number of processed bits increases, the cumulative prun-
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ing rate gradually plateaus, indicating saturation. In this scenario, the higher

number of bits are only required for fully calculating unpruned Scores. We estab-

lish that the lower redundancy in model parameters of some transformer models,

e.g. BERT-L / ViT-B, hinders higher runtime pruning. Because lower redundancy

generally translates to a higher number of average bits calculations, it proportion-

ally diminishes the potential gains from bit-wise early termination. Averaged over

pruned Scores in bit-serial mode, MemN2N with the bAbi dataset requires 4.5

bits, while BERT-B and BERT-L require 8.3 and 8.0 bits with the GLUE dataset.

With the SQUAD dataset, the average number of bits in BERT-B and BERT-L

are 7.6 and 9.0 bits, whereas ALBERT-XX-L maintains 8.0 bits. The average

number of bits in GPT-2-L and ViT attain 7.6 bits and 8.5 bits, respectively. This

devised early-termination mechanism significantly reduces the computations of the

Q×KT .

2.4.3 Accelerator Performance Results

Performance and energy comparison to baseline. Figure 3.11 shows the

speedup improvements delivered by LeOPArd compared to the baseline design,

across all the 43 studied tasks. In this comparison, we consider the total execution

runtime for all attention layers of the models. On average across all tasks, AE-

LeOPArd and HP-LeOPArd provide 1.9× and 2.4× speedup over the baseline,

respectively. These improvements stem from both LeOPArd runtime pruning

that reduces operations on the back-end unit (e.g., Softmax and ×V) and bit-level

early compute termination that saves cycles on Q×KT computations for pruned

Scores. Across the workloads, LeOPArd delivers higher speedups for MemN2N

compared to the other benchmarks. We attribute these improvements to the higher

pruning rate and consequently more bit-level termination opportunities in this

model’s tasks. Among all the tasks, MemN2N-Task-1 enjoys the maximal speedup

(3.8× for AE-LeOPArd and 5.1× for HP-LeOPArd) while ViT-B gains the

minimal improvements (1.1× for both AE-LeOPArd and HP-LeOPArd). The

benefits are more pronounced for HP-LeOPArd because it deploys more QK-

DPUs, which both improves the performance of the front-end Q-PU unit, and
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delivers more inputs (Scores) to the back-end stage. The latter generally increases

the back-end utilization.

Figure 3.12 compares the energy reduction (including compute and on-chip

memory accesses) achieved by LeOPArd to the baseline. On average, LeOPArd

reduces total energy consumption by a factor of 3.9× for AE-LeOPArd and 4.0×
for HP-LeOPArd, across all the studied tasks. Similarly to the speedup com-

parisons, MemN2N enjoys a greater energy reduction than the other benchmarks

due to the higher pruning rate and therefore faster bit-level compute terminations.

Across all tasks, the energy reduction is the greatest for MemN2N-Task-1 (9.2× for

AE-LeOPArd and 9.6× for HP-LeOPArd) and ViT-B achieves the lowest sav-

ings (≈ 2.0× for AE-LeOPArd and HP-LeOPArd). The impact of LeOPArd

on energy exceeds that on speedup, because runtime pruning and bit-level early

termination reduce computation energy (contributing to both energy savings and

speedup) and memory accesses (only contributing to energy savings). The energy

reductions for both AE-LeOPArd and HP-LeOPArd are not substantially dif-

ferent. Because the additional QK-DPUs in HP-LeOPArd increase both power

and performance, total energy consumption remains similar.

Analysis of energy savings breakdown. Figure 3.13 analyzes the break-

down of total energy consumption across five microarchitectural components: (1)

Q×KT computations, (2) K buffer memory access, (3) Softmax, (4) ×V compu-

tations, and (5) value buffer memory access. We report the average breakdown

across all tasks for each workload. Additionally, Figure 3.13 illustrates the contri-

bution of LeOPArd’s two main optimizations: (1) runtime pruning and (2) early

compute termination through bit-serial execution to the overall energy savings in

AE-LeOPArd. We normalize the energy breakdowns to a baseline, which does

not utilize any of the LeOPArd’s optimizations. In the baseline, ×V computa-

tions and value buffer memory accesses proportionally consume the highest energy

due to the lack of runtime pruning; ergo, higher average number of bits in Q×KT .

Recall that the LeOPArd’s back-end unit encloses Softmax, ×V , and its asso-

ciated buffer accesses. As the results show, this unit consumes more than 65%

of the total energy in the baseline design. LeOPArd’s runtime pruning enables
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skipping computations and memory accesses for inconsequential Scores during the

back-end processing, delivering 1.7× (ViT-B) to 2.5× (MemN2N) energy savings.

For these tasks, the bit-serial execution in LeOPArd along with its early termi-

nation brings further energy savings of 1.3× (ViT-B) to 2.3× (MemN2N) on top of

runtime pruning. These additional benefits arise from avoiding the inconsequential

bit computations in Q×K and their associated K buffer accesses.

Comparison with A3 and SpAtten. Table 3.3 compares the characteristics

and performance of HP-LeOPArd and its scaled versions with A3 and SpAtten.

Compared to SpAtten, HP-LeOPArd† (HP-LeOPArd‡) delivers 3× (2.6×) im-

provements in GOPs / J and 1.5× (1.7 ×) improvements in GOPs / s / mm2, while

both designs have virtually no model accuracy degradation. These benefits are

attributed to the LeOPArd’s higher pruning rate and to the bit-level early com-

pute termination. For comparison with A3, we evaluate HP-LeOPArd†∗ (HP-

LeOPArd‡∗), which are scaled to 40 nm and deploy 9-bit arithmetic for Q×KT .

A3-Conservative deploys heuristic approximation to minimize accuracy degrada-

tion on top of A3-Base, which does not use approximation. HP-LeOPArd†∗ (HP-

LeOPArd‡∗) achieves 1.4× (1.3×) higher energy efficiency (in GOPs / J) and 8.8×
(10.2×) area efficiency (in GOPs / s / mm2) than A3-base. HP-LeOPArd†∗ (HP-

LeOPArd‡∗) also provides 4.4× (5.1×) improvements in terms of GOPs / s / mm2

compared to A3-Conservative. Although A3-Conservative provides 29% and 35%

higher energy efficiency compared to HP-LeOPArd†∗ and HP-LeOPArd‡∗, re-

spectively, this comes at the cost of visible accuracy degradation, e.g., 1.0% for

MemN2N and 1.3% for BERT-Base with the SQUAD dataset as reported in [20].

On the other hand, LeOPArd’s carefully crafted gradient-based training balances

pruning rate and model accuracy, providing accuracy degradation of only 0.06%

and 0.26% for the aforementioned models and datasets without manual configura-

tions for heuristic parameters.

LeOPArd accelerator layout area details. Figure 3.14(a) shows the layout of

LeOPArd architecture, which occupies 2.3 × 2.8 mm2, including two tiles. The

layouts are generated by meeting the design rule check in a 65 nm process and

targeting 65-75% physical density, commonly used for the routing convenience and
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tape-out yield. Figure 3.14-(b) reports the area breakdown, where QK-DPU takes

the largest proportion as we employ NQK QK-DPU in consideration of the high

pruning rate. This leads to 56% area occupied by the front-end unit, which includes

QK-DPU and K buffer. The on-chip memory for K and V occupies 34% of the

layout area.

2.4.4 Architecture Design Space Exploration

QK-PU parallelism degree. As discussed in Section 2.3.1, the number of

QK-DPUs (NQK) within one QK-PU exhibits a trade-off space in designing the

LeOPArd accelerator. To find the number of QK-DPUs that balances the uti-

lization of front-end and back-end units, we sweep the NQK from three to 12 in Fig-

ure 2.14 and report the V-PU utilization across the evaluated tasks. If utilization

exceeds 100% (common when NQK = 12), the back-end V-PU is over-subscribed

due to the throughput mismatch between V-PU and QK-PU. This mismatch throt-

tles the back-end V-PU and turns into the system bottleneck, frequently stalling

the front-end. On the other hand, when NQK = 3, the V-PU is chronically under-

utilized due to a significant reduction in its number of computations, attributed

to front-end runtime pruning mechanism. As marked by dark green diamonds,

NQK = 8 adequately balances the V-PU utilization and the number of front-end

unit stalls. Thus, we favor this configuration for HP-LeOPArd. The second best

configuration to balance front- and back-end utilization is NQK = 6 (marked by

light green diamonds). As such, we choose this configuration for AE-LeOPArd,

which matches the baseline chip area usage.

Bit-serial processing granularity. Figure 2.15 illustrates the design space

exploration for granularity of the bit-serial execution in QK-DPU (B). This bit-

level granularity creates a trade-off space, where decreasing the B stores interme-

diate results at the end of each bit processing cycle more frequently (escalating the

energy). At the same time, increasing B curtails the performance of early com-

pute termination due to lower resolution in stopping the computations. To find

the optimal point, we sweep the B for values of 1, 2, 4, and 12 bits and measure

the average consumed energy and its breakdown (Q×KT logic and key buffer ac-
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cesses) per one output Score. All the numbers are normalized to 12-bit processing

that does not employ any bit-serial execution. Figure 2.15 depicts this analysis

for MemN2N tasks (results for other models are similar) and reports the average

across all tasks. As shown, 2-bit-serial execution strikes the right balance between

energy consumption of the bit-serial computations and the resolution of bit-level

early compute termination.

Chapter 2 is adapted from the material as it appears in Zheng Li, Soroush Gho-

drati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, Mingu Kang. 2022. Accelerating

Attention through Gradient-Based Learned Run- time Pruning. In The 49th An-

nual International Symposium on Computer Architecture (ISCA ’22), June 18–22,

2022, New York, NY, USA. ACM, New York, NY, USA, 14 pages. The thesis

author was the primary investigator and author of this paper.
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Improvement over BitFusion
Baseline 
Accuracy

Accuracy 
with 

Pruning-
aware 

Fine-tuning
Task-1 99.9 100 -0.10
Task-2 84.8 83.2 1.60
Task-3 25.7 26.8 -1.10
Task-4 99.1 99.1 0.00
Task-5 85.5 86.3 -0.80
Task-6 89.6 90.9 -1.30
Task-7 80.2 79.5 0.70
Task-8 87.4 85.4 2.00
Task-9 91.5 92.2 -0.70

Task-10 85.4 82.8 2.60
Task-11 95.3 94.3 1.00
Task-12 100 99.5 0.50
Task-13 91.8 92.2 -0.40
Task-14 91.1 92 -0.90
Task-15 100 100 0.00
Task-16 42.7 44.7 -2.00
Task-17 54.8 55.2 -0.40
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Figure 2.7: Accuracy before and after pruning-aware fine-tuning (prefix ”G-”:
GLUE). We evaluate GPT-2 using perplexity, which favors a lower value.
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Figure 2.8: Runtime pruning rate with LeOPArd. (prefix ”G-”: GLUE)
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Figure 2.9: Cumulative pruning rate with respect to the number of bits processed
during bit-serial early termination. Each line obtained by averaging across all the
pruning rates per task.
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Figure 2.10: Speedup comparison to baseline design for AE-LeOPArd and HP-
LeOPArd (prefix ”G-”: GLUE dataset).
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Figure 2.11: Total energy reduction for AE-LeOPArd and HP-LeOPArd com-
pared to baseline (prefix ”G-”: GLUE dataset).
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Figure 2.13: AE-LeOPArd: (a) layout (2.3× 2.8 mm2) and (b) area breakdown.
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logs_vgg16

0_epoch 1_val_acc Top1 validation accuraccy2_val_acc_top5 Top5 validation accuraccy3_val_loss

1 1 70.332145 0.70332145 88.1234234 0.881234234 1.353112595048017

2 2 70.44543 0.7044543 88.87652 0.8887652 1.3550823365380915

3 2 70.66789 0.7066789 89.17762 0.8917762 1.3485757963148186

4 3 70.59554 0.7059554 89.588765 0.89588765 1.3519470051615066

5 4 70.877899 0.70877899 89.43544332 0.8943544332 1.348566629453572

6 5 71.000865 0.71000865 89.8777641 0.898777641 1.3448890438098866

7 6 71.118977 0.71118977 90.0032212 0.900032212 1.3483284945021623

8 7 71.043221 0.71043221 90.17877 0.9017877 1.3473637804775658

9 8 71.165667 0.71165667 90.1114323 0.901114323 1.348274378243558

10 9 71.281243 0.71281243 90.1843 0.901843 1.3371749764193077

logs_resnet50

0_epoch        = 3        = 4        = 5        = 6        = 8        = 12

2 1 0.10195477 0.13593969 0.16992461 0.20390954 0.27187938 0.40781907

3 2 0.237802558 0.317070078 0.396337597 0.475605117 0.634140156 0.951210233

4 3 0.32859164 0.43812219 0.54765274 0.65718328 0.87624438 1.31436657

4 4 0.12571925 0.16762567 0.20953208 0.2514385 0.33525133 0.502877

5 5 0.40107807 0.53477076 0.66846345 0.80215615 1.06954153 1.60431229

6 6 0.36825788 0.49101051 0.61376313 0.73651576 0.98202101 1.47303152

7 7 0.19227708 0.25636944 0.3204618 0.38455415 0.51273887 0.76910831

8 8 0.15121117 0.2016149 0.25201862 0.30242235 0.4032298 0.6048447

9 9 0.28348549 0.37798066 0.47247582 0.56697099 0.75596132 1.13394198

10 10 0.21660212 0.28880283 0.36100353 0.43320424 0.57760565 0.86640848

11 11 0.1119246 0.1492328 0.186541 0.22384919 0.29846559 0.44769839

12 12 0.12682234 0.16909645 0.21137056 0.25364467 0.33819289 0.50728934

13 13 0.15376298 0.20501731 0.25627164 0.30752597 0.41003462 0.61505193

14 14 0.12383524 0.16511365 0.20639206 0.24767048 0.3302273 0.49534095

15 15 0.16471988 0.21962651 0.27453314 0.32943977 0.43925302 0.65887953

16 16 0.23861821 0.31815762 0.39769702 0.47723642 0.63631523 0.95447285

17 17 0.31468117 0.41957489 0.52446861 0.62936234 0.83914978 1.25872467

18 18 0.36874408 0.49165877 0.61457346 0.73748815 0.98331754 1.4749763

19 19 0.26878355 0.35837807 0.44797259 0.53756711 0.71675615 1.07513422

20 20 0.11826988 0.15769317 0.19711647 0.23653976 0.31538635 0.47307952

21 21 0.30944588 0.4125945 0.51574313 0.61889175 0.825189 1.2377835

22 22 0.51037874 0.68050499 0.85063124 1.02075749 1.36100998 2.04151498

23 23 0.58355164 0.77806886 0.97258607 1.16710329 1.55613772 2.33420658

24 24 0.49693365 0.6625782 0.82822275 0.9938673 1.3251564 1.9877346

25 25 0.30748503 0.40998004 0.51247505 0.61497006 0.81996008 1.22994012

26 26 0.23999485 0.31999314 0.39999142 0.47998971 0.63998627 0.95997941

27 27 0.13234602 0.17646136 0.2205767 0.26469204 0.35292272 0.52938409

28 28 0.31207571 0.41610095 0.52012619 0.62415142 0.8322019 1.24830285

29 29 0.42335494 0.56447326 0.70559157 0.84670988 1.12894651 1.69341977

30 30 0.36499009 0.48665345 0.60831682 0.72998018 0.97330691 1.45996036

31 31 0.38956043 0.51941391 0.64926739 0.77912087 1.03882782 1.55824174

32 32 0.5289077 0.70521026 0.88151283 1.05781539 1.41042052 2.11563078

33 33 0.32870066 0.43826755 0.54783443 0.65740132 0.87653509 1.31480264

34 34 0.55942195 0.74589593 0.93236992 1.1188439 1.49179187 2.2376878

35 35 0.44251354 0.59001805 0.73752257 0.88502708 1.18003611 1.77005416

36 36 0.13187546 0.17583395 0.21979244 0.26375093 0.35166791 0.52750186

37 37 0.46476735 0.6196898 0.77461224 0.92953469 1.23937959 1.85906939

38 38 0.49769767 0.6635969 0.82949612 0.99539535 1.3271938 1.99079069

39 39 0.48556362 0.64741816 0.8092727 0.97112723 1.29483631 1.94225447

40 40 0.41173819 0.54898426 0.68623032 0.82347638 1.09796851 1.64695277

41 0.51156709 0.68208945 0.85261181 1.02313417 1.3641789 2.04626835

42 0.69826 0.93101334 1.16376667 1.39652001 1.86202668 2.79304001

43 0.50788558 0.67718078 0.84647597 1.01577117 1.35436156 2.03154234
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Figure 2.14: Back-end V-PU utilization over the QK-PU parallelism (NQK).
NQK = 6 and NQK = 8 form the favorable configurations in terms of back-end
utilization in AE-LeOPArd and HP-LeOPArd, respectively.
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Chapter 3

Sparse Attention Acceleration

with Approximate In-Memory

Pruning

In Chapter 2, it is assumed that the whole input sequence can be loaded to the

on-chip memory. However, as the input sequence become longer, this assumption

may not hold in many edge devices anymore. This Chapter proposes a solution to

reduce data movement transaction when the on-chip memory is limited.

3.1 Motivation

The LeOPArd design in Chapter 2 features efficient pruning, however, the

considerable overhead of data communication even with adequately sized on-chip

buffers is a problem remains to be solved. The data communication cost is ex-

acerbated when on-chip resources are limited, because of frequent instances of

data communication. Figure 3.1 measures the contribution of off-chip memory

read and write accesses to the overall energy consumption to process a single-head

self-attention layer1. The x-axis encompasses various fractions of on-chip memory

capacity with respect to different input sequence lengths.

1Section 3.6 outlines the experimental setup details.
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Table 1

Energy S = 32 S = 64 S = 128 S = 256 S = 512 S = 1024 S = 2048 S = 4096
20% 50.68263208 56.61428274 60.26328597 62.30631417 63.3902494 63.94894625 64.23262838 64.37557253
40% 45.09822312 51.07547817 54.90974417 57.11152943 58.29622509 58.91140823 59.22496704 59.38327213
60% 37.42390998 42.97566469 46.75928488 49.0166081 50.25793086 50.910093 51.24451954 51.41388175
80% 26.21644748 30.00449554 32.84506239 34.6524865 35.68522718 36.2393588 36.52668028 36.67301635

100% 8.306312002 5.877665169 3.708841025 2.133985002 1.153976799 0.6015066772 0.3072820899 0.1553269633
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Figure 3.1: Percentage of energy spent on memory accesses to process one attention
head with respect to various percentages of available on-chip memory. The results
are shown across various sequence (S) length.

As on-chip resources become scarce (20% of requisite on-chip buffers available

to store the entire key and value matrices), on average, the energy contribution of

on-chip memory increases to > 60%, turning into the dominant energy contributor.

In this tightly-budgeted scenario, approaches that unlock the opportunity to fetch

only a subset of relevant data become attractive.

One such compelling solution is applying the run-time pruning introduced in

Chapter 2. However, pruning require to bring in the entire key and value matrices

to exercise thresholding. As discussed in Chapter 1, the data movement can be

greatly reduced if the pruning operation is done on the main memory. Then

the data needed to be fetched from the main memory to the processor will be

greatly reduced. This chapter shows solutions that tackles above challenge by

approximatingQ×KT , followed by a comparison with threshold values. Despite the

approximation, our results ensure that this in-memory thresholding mechanism can

consistently identify the entire subset of relevant vectors. To guarantee accuracy

on par with baseline, we recompute the score values in a precise manner after

selective data fetching.
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3.2 Data Communication Optimization

In-memory Thresholding

Under scarce on-chip resources, a logical optimization step can leverage in

memory computing to eliminate inconsequential data communications for pruned

key and value vectors. For example, in Figure 3.2, the core simply stipulates

K2,4,5,6,11,13 for q1 × KT computations (q1 →The). This observation provides the

opportunity to significantly cut costs by informing the accelerator to only fetch

the requisite data.

Spatial Locality in Adjacent Queries

While in-memory thresholding trims down the amount of data per query that

are brought into on-chip buffers, it increases the frequency of data fetches. This is

because a new set of key and value vectors should be fetched to proceed computing

for subsequent queries once the computations for qi×KT completes. This increase

in the frequency of data fetches may well nullify the potential benefits of reducing

the amount of transferred data.

To explore future potential reductions in the amount of transferred data and

compensate for the likely overhead of frequent data transfers, we study the simi-

larities between unpruned keys across input queries. Figure 3.2 illustrates a real

example of CoLA task from GLUE dataset [61] (eighth head in the first attention

layer). Each row indicates a query and its corresponding unpruned key locations,

filled in green. The grey shading on the last few rows and columns specifies the

input mask, commonly used in transformer models when the sequence length in

the input dataset is less than the one in the model. It is visually evident that a

significant number of keys are inconsequential per query, and that there is a high

spatial locality between adjacent rows. For example, compared to query The, the

additional required keys for the adjacent query more are only appear and in. The

remaining unpruned key elements, such as more, of, and him, are identical between

these queries, obviating additional data transfers.
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Figure 3.2: Query-Key relation for the first attention layer of CoLA task from
GLUE dataset [61]. White squares represent pruned entries. The gray stripes are
masked regions.

3.2.1 Theoretical expectation of spatial locality.

Equation 3.1 calculates the probability of L, defined as the number of overlap-

ping elements between adjacent queries of size S. In this equation, M represents

the number of the unpruned elements in each query. The probability of L is cal-

culated by first multiplying the numbers of possible combinations of L elements

out of M and the remaining M - L elements out of S - M. This product is

subsequently divided by the number of possible combinations of M elements out

of S. The resulting probability of each L is then multiplied by the value of L and

summed across M to calculate the theoretical expected overlap between adjacent

queries, as demonstrated in Equation 3.1.

P (L) = [M]L × [S −M]M−L
[S]M E(L) =

M∑
L=1

L · P (L) (3.1)

In Figure 3.3, we compare the percentages of overlaps, averaged across multiple

inputs and observed in various extant datasets [27, 15, 45], with the theoretical
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Figure 3.3: Number of common indices between neighboring tokens (Qi vs. Qi+1)
with the practical dataset vs. randomly selected pruned tokens with the pruning
rate from [37].

expectation formula, as presented in Equation 3.1. The results reveals a striking 2

- 3× increase in the observed overlap percentage in the real world scenarios. This

increase highlights a notable data reuse opportunity because most of the requisite

elements already reside in on-chip buffers. Therefore, exploiting this data reuse

opportunity limits the number of data fetches only to the unpruned elements that

differ between adjacent queries, leading to a dramatic cost reduction.

Futile Computations in Padded Regions

It is a common practice [65] in transformer models to pad input sequences that

are shorter than the maximum supported length. The padded inputs do not mean-

ingfully contribute to the self-attention computations, and hence are irrelevant for

the final model accuracy. These padded regions are highlighted as gray squares in

Figure 3.2, where only 16 queries out of 128 are computationally relevant. This

leaves (128-16)×(128-16) score computations inconsequential. The padded regions

are commonly nullified by placing a sufficiently large negative value [65]. Passing

these negative values through Softmax prompts their probability to approach zero,

excluding them from subsequent computations. To further eliminate unnecessary

data communications in these padded regions, we can proactively identify them as

early as possible in memory.
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Figure 3.4: In-memory computing with ReRAM cross-bar array.

3.3 In-memory Thresholding

3.3.1 Overview of ReRAM.

Resistive Random Access Memory (ReRAM) is a non-volatile memory that

stores data using its adjustable resistance. Figure 3.4 demonstrates a ReRAM

2D crossbar array [43]. To further improve the density and energy efficiency of

ReRAM, recent methods [70, 66, 73, 39] use Multi-Level Cells (MLC) to store

multiple bits of information inside each cell. In contrast to Single-Level Cells

(SLC), the MLC ReRAM permits a range of resistance values inside each cell. Al-

though storing more bits per cell appeals by increasing ReRAM memory density,

it can easily become a limiting factor. As the number of bits/cell increases, each

cell renders itself more amenable to circuit noises and limits the accuracy of com-

putations. Recent studies [23, 4] deem a four bits/cell MLC ReRAM design the

optimal balance between robustness and complexity of current sensing detection

circuitry.

3.3.2 Vector-Matrix multiplication with ReRAM in-memory

computing.

ReRAM can perform efficient and highly parallel analog vector-matrix multi-

plications, as demonstrated by prior work [49, 12, 48, 19] on DNN acceleration.
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To perform such multiplications, the matrix elements are mapped onto memris-

tor conductance and the input vector is fed into ReRAM’s wordlines (Figure 3.4,

horizontal lines), one element per row, as biased voltages. Additionally, a sum

reduction can be executed on the resulting multiplications across the crossbar

columns as serial currents [68, 36]. Once complete, the weighted-sum vector forms

an analog current at the boundary of the ReRAM crossbar, one element per col-

umn. The following equation formally presents a multiplication between vector

v1×n and matrix Mn×m on a ReRAM crossbar array:

mij =
1

rij
o1j =

n∑
i=1

v1i ·mij (3.2)

where mij and rij represent each element of matrix M and its corresponding re-

sistance value in ReRAM cells.

3.3.3 Application in run-time pruning.

The in-memory principle introduced above can be seamlessly applied for accel-

erating the attention mechanism. This can be achieved by storing each ki vector

in a column of the crossbar array, and applying the input voltage level, which

corresponds to the element of query vector qi, to each wordline as described in

Figure 3.6(a). Ideally, we require s columns to store entire sequence length while

d rows are needed to accommodate the entire embedding size. If the array size

does not match with problem size, multiple banks of array can be employed in a

tiled manner. All of ki vectors stored in multiple columns are processed for parallel

dot-product operations in one shot. Once it completes, the next query vector qi+1

is processed in the subsequent cycle.

3.3.4 Analog↔Digital challenges.

It is shown [13, 48, 36] that digital↔analog conversion drains a significant

portion of total ReRAM power consumption, especially as the number of conversion

bits increases. For example, the power and area of a 5-bit ADC are >20× [57] and
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Table 1

Energy BERT-MRPC BERT-SQUAD ViT
1 0 0 0
2 0.4093137383 0.02686849574 0.9884

3 0.7892157435 0.7679280984 0.9878

4 0.8651961088 0.7986754967 0.9874

5 0.8578431606 0.8003784295 0.9858

6 0.8627451062 0.8000946074 0.985

7 0.8651961088 0.7987701041 0.9846

8 0.8676471114 0.8003784295 0.9846
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Figure 3.5: Sensitivity of model accuracy to the number of bits (b) used for in-
memory thresholding (comparison of in-memory scores with T h, Equation 3.3).

>30× [54] higher than a 1-bit ADC, respectively. Therefore, it is crucial to take

the power overhead of these converters into account, especially for designs with

greater than one-bit precision requirements. In the following, we discuss the main

challenges to in-memory thresholding.

3.3.5 In-Memory Thresholding Challenges

1. Analog computing inaccuracies. Analog computing in ReRAM is com-

monly known to be susceptible to inherent circuit noises and inaccuracies,

such as thermal noise and temperature fluctuations [22, 24], and coupling

noise between adjacent cells [9]. These inaccuracies limit the feasible pre-

cision of computations in ReRAM crossbar arrays. To evaluate the impact

of limited compute precision for in-memory thresholding on the final model

accuracy, we use the following approach2:

Prune = Argwhere (ScorebR < T h); Score[P ] = −c (3.3)

where ScorebR denotes the in-memory score values (e.g. results of qi × KT )

when the output has limited accuracy with a b-bit precision. “Argwhere”

finds the indices of score elements that are lower than the target threshold.

2As we explain in Section 3.6, we do not perform additional fine-tuning to quantize key values
to lower bit-precision.

48



Note that the threshold values (T h) are learned during the full-precision

finetuning process such as LeOPArd [37, 30]. The scores of the identi-

fied pruning indices are then forcefully set to a large negative value (−c)

to remove irrelevant elements. Also, recall that we perform low-precision

in-memory computing for the sole purpose of identifying the irrelevant key

vectors. With on-chip accelerators, the score computation for unpruned vec-

tors is still performed in full-precision.

Figure 3.5 compares the final model accuracy after quantizing the Score with

different bit-precisions (b) across three different models: BERT-Base [27]

with GLUE [61], BERT-Base with SQUAD [46], and ViT [15] with [31]

dataset. The results show that the quantization error with 4-bit precision

virtually has no impact on the final model accuracy3. Thus, the runtime

pruning mechanism is robust against approximation, even when the compu-

tation has a certain level of errors. This is intuitive because the incorrectly

pruned vectors already exhibit a small score value, likely in the vicinity of

T h. Hence, the impact on model accuracy is negligible. Finally, even more

sensitive workload to the noise can be in theory compensated by adding a

small margin on top of T h in Equation 3.3 at the cost of reducing the pruning

ratio (directly proportional to hardware performance).

2. ADC converter overhead. The overhead of ADC converters increases pro-

portionately to the precision of conversion. Two design choices can support

comparisons between vector-matrix multiplication outputs and the thresh-

old values. The first option uses a 5-bit ADC to convert the outputs and

employs digital comparators for thresholding. The other option utilizes ana-

log comparators for thresholding prior to ADC. The output of each analog

comparison represents a binary value, which indicates whether to prune the

corresponding key vector. Since the resulting pruning vector only requires

one bit per key, we can use a low-overhead 1-bit ADC (implemented as a

comparator). The low overhead of 1-bit ADC (>20× [57] lower area and

3A recent study from HP Lab [23] has shown that ReRAM in-memory computing for 64-tap
dot-product delivers 5-bit equivalent output accuracy after including all the error sources.

49



WL1

WL2

WLd

BL1 BL2 BLs
K1 K2 Ks

Wordline Driver

WL1

D
A

C

BL1

Analog Comparator

BL2

BLd

Wordline Driver

D
A

C

Analog Comparator

𝝋

+   -

𝑽𝝉𝒉
+   -

𝑽𝝉𝒉
+   -

𝑽𝝉𝒉

𝝋 𝝋

𝒊𝟏 𝒊𝟐 𝒊𝒔

(a) (b)

S
A

S
A

Q1.K1 Q1.K2 Q1.Ks

q11

q12

q1d

k11

k1d

k12

Not
Used

Not
Used

Figure 3.6: Transposable ReRAM crossbar array. (a) ReRAM crossbar during
in-memory pruning, (b) Transposed ReRAM crossbar during normal read.

>30× [54] lower power consumption compared to a 5-bit ADC) favors the

second option for in-memory thresholding.

3. Reading unpruned vectors overhead. Finally, performing in-memory

thresholding followed by fetching each unpruned K vector from ReRAM

arrays (for digital re-compute) is arduous and can impose significant read

latency. This occurs because we store each vector of K vertically at each

ReRAM column (Figure 3.4), and ki is mapped to the ith ReRAM column.

On the other hand, accessing from ReRAM through a standard read op-

erations fetches the data stored horizontally in a row. Therefore, fetching

from ReRAM requires sequentially asserting all the (horizontal) wordlines,

bringing in each row of the K matrix (even the ones associated with pruned

k vectors), and selectively fetching the unpruned vectors to on-chip buffers.

We address this challenge by a recent taped-out transposable ReRAM pro-

posal [60], which we expound below.

3.3.6 Transposable ReRAM for Thresholding

Overview. A transposable ReRAM [60] supports (1) in-situ access to the ar-

ray to perform vector-matrix computations (in-situ computation), as well as (2)

reading their transposed values (transposed read). Figure 3.6 shows the overall de-
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sign of a transposable ReRAM in these two modes. In the “in-situ computation”

mode, the ReRAM array performs vector-matrix multiplications, similarly to con-

ventional (non-transposable) ReRAM crossbar shown in Figure 3.4. In this case,

we assign the value of each element in input vector qi to wordlines (horizontal) and

assert all the bitlines (vertical) to enable parallel multiplications. On the other

hand, in the new “transposed read” mode, the horizontal lines become bitlines

and vertical line becomes wordline. In this mode, only one wordline gets asserted.

Once the bitline current from all the columns are fully developed, the sense ampli-

fier reads all the values stored on the ReRAM conductance of the asserted wordline

(in the column).

In-memory thresholding dataflow. As discussed in the previous section,

one of the challenges for performing in-memory thresholding is reading unpruned

vectors after score calculation. The “transposed read” mode presents a viable

solution to this challenge. Next, we present a dataflow to identify unpruned key

vectors leveraging transposable ReRAMs. In this dataflow, we store each key

vector vertically in the ReRAM crossbar array (the first key vector is mapped

onto the first ReRAM column, and so on). Because analog circuit noises limit the

supported bit-precision on each memory cell, we only store a predefined subset of

MSB-side bits within each cell. Our experiment showed that a 4-bit precision is

sufficient for in-memory thresholding, yielding on par model accuracy. As such,

we only store four MSBs per key vector element in transposable ReRAM arrays.

The rest of LSBs can be stored on conventional ReRAM modules. Similarly, the

elements of query and value vectors are stored on conventional ReRAM modules.

Note that these modules do not need any support for in-memory computations

and are solely used for storage4.

To process the query vector q1×S , the on-chip accelerator first transmits a subset

of query vector MSBs to the transposable ReRAMs5 that store the key matrix

KT
d×S . A low-precision DAC converts the digital values of the query vector to

4We homogeneously use ReRAM for storage of queries and values and in-memory thresholding
for simplicity. Another possibility can exploit a heterogeneous design, in which DRAM memories
are used for query/value matrices and small ReRAM crossbar arrays for in-memory thresholding.

5The number of MSBs in query and key are identically set to 4-bits.
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analog and feeds them into the ReRAM via wordlines. The transposable ReRAM

array performs a low-precision vector-matrix multiplication in analog to calculate

the Scores, which are produced after vertically applying an analog reduction sum

per key vector. The next step performs in-memory thresholding using analog

comparators. Note that the threshold values can either be set at the start of

the computations or sent along with each q vector. Finally, after performing the

analog comparisons, a voltage value (corresponding to a 1-bit digital value) flows

through a series of 1-bit ADCs. The ADC outputs indicate the pruning state of

their corresponding key vectors, where “1” means pruned.

The generated binary pruning vector is sent back to the on-chip accelerator,

which subsequently gets translated into multiple memory requests to selectively

fetch unpruned key and value vectors from their corresponding modules. Note that

the pruning vectors for both key and value are completely identical. Upon receiving

the first unpruned key vector, the accelerator can start recomputing Scores in full-

precision. The same process repeats for the rest of the query vectors.

3.4 Sprint Memory Controller

Background. A memory controller receives a stream of memory access requests

from core, generates their corresponding memory command stream. The memory

controller consequently arbitrate the memory commands and schedule them to off-

chip memory according to a scheduling policy. The technology of a memory (e.g.

DRAM or ReRAM) dictates a set of timing constraints that must be satisfied by

the memory controller between each issued memory command. To communicate

data between core and off-chip memory, a sequence of memory commands gener-

ated by the memory controller are required. These commands collectively retrieve

data from rows across multiple chips into their corresponding row buffers and se-

lect a column from the currently fetched retrieved data. A subsequent column

access to the same row enjoys the row-buffer locality, hence, lowest access latency.

However, the consecutive accesses between different rows are generally suffer from

substantially higher access latency. The memory controller aims to schedule the
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memory commands in order to maximize the row-buffer locality.

3.4.1 Data Layout Organization

We presume a similar organization as conventional memory subsystems for

Sprint. In general, optimizing the data layout organization for deep learning

applications is straightforward because of their predictable memory access pattern.

We observe the same pattern for Sprint data layout organization. As explained, to

support in-memory thresholding, we presume a non-interleaving data organization

for Ks (similar to prior work [29, 16, 35]). That is, we store each vector of k

(a column in KT
d×S) in one column of memory mat. Based on our observation

(spatial locality between key elements, Section 3.1), we distribute the neighboring

key vectors across different banks/channels. Our empirical results show that this

distribution of key vectors provide a better utilization of memory bandwidth and

reduce structural conflicts. Same data layout organization for value vectors Query

matrix, on the other hand, does not need to follow this particular data layout

organization. That is because each query vector is processed sequentially and

after every query-key vector-matrix multiplication which provides sufficient time

for the memory subsystem to handle the upcoming query read requests.

The final data layout organization requirement is for the MSB and LSB parts

of key vectors. As described in Section 3.3.6, MSB and LSB parts of key vectors

must be distributed across different type of ReRAM crossbar arrays, transposable

and conventional respectively. This separation of MSB and LSB bits can be estab-

lished statically before the computation starts. To effectively enable these special

data layout organization, we can provide device-side allocation APIs so the user

can specify different requirements for query/key/value matrices without exposing

physical underlying structure of memory subsystem. Similar software support has

been proposed in prior work [29, 14].

Scaling for large sequence length. One potential challenge to the proposed data

layout organization and in-memory thresholding mechanism is posed by scalabil-

ity. Specifically, as the embedding length of key vectors increases, applying the

reduction sum across each column of ReRAM arrays may seem infeasible. This lim-
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itation can be readily addressed by splitting the key vector into multiple adjacent

ReRAM columns, similarly to [25]. With this circuit modification, the resulting

analog current from the adjacent key vector splits can be subsequently merged and

compared with the threshold value.

3.4.2 Memory Controller Microarchitecture

The on-chip memory controller designed for Sprint is separated into a fron-

tend and a backend engine. The frontend engine communicates with multiple cores,

accepting memory requests, whereas the backend engine generates and issues com-

mands to off-chip memory modules with respect to their timing constraints.

3.4.3 Memory Controller Execution Flow

Overview. The memory controller in Sprint governs the tasks of in-memory

thresholding and fetching the corresponding unpruned d×1 vectors of KT
d×s matrix.

To complete these operations, the memory controller first sends a low-precision

variant of qi vector of size 1×d to KMSB ReRAM banks. Each KMSB ReRAM bank

executes low-precision in-memory thresholding and generates a binary pruning

vector of size s. The jth element of the generated binary vector indicates whether

to prune the jth column of KT
d×s matrix (i.e., ‘1’ → pruned and ‘0’ → unpruned).

Upon receiving the binary pruning vector, the memory controller processes this

vector and consequently issues a stream of read requests to fetch the unpruned

vectors of KT
d×s matrix.

Spatial locality detection engine. To further reduce the data movement between

off-chip memory and on-chip buffers, we design and integrate a spatial locality

detection (SLD) engine in the front-end of the memory controller. The primary

task of the engine is to detect and exploit spatial locality between the last and

current binary pruning vectors associated with the attention score computations

for adjacent query vectors (i.e., qi1×d and qi+1
1×d). The advantages of are two folds:

(1) “only” generating memory requests for key vectors that do not exists in on-

chip key memory, hence reducing data transfer and memory contention, and (2)
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bootstrapping the attention score (Q×KT ) computations for the key vectors that

already reside in on-chip key memory, hence minimizing the data transfer latency.

The following equations describe the logic behind these two tasks given the last

and current binary pruning vector:

Task 1→ Memory Requests Vector = P t−1
1×s ∧ P t

1×s (3.4)

Task 2→ Spatial Locality Vector = P t−1
1×s ∧ P t

1×s (3.5)

where P t−1
1×s and P t

1×s represent binary pruning vectors associated with the last and

current attention score computations at a given time point t, respectively.

Memory request generator engine. The main objective for the memory request

generator (MRG) engine is to produce a potentially limited number of memory

requests to fetch key vectors that do not currently reside in on-chip key memory.

Each memory controller retains one MRG engine to produce the corresponding key

vector addresses residing in that particular bank. At each cycle, a binary value is

read from the memory request vector. If zero, it means that the corresponding key

vector is not required for the current attention score computation; hence, bypassing

memory request generation step. On the other hand, a one-value indicates that a

key vector must be fetched from off-chip memory. Hence, a memory request with

an address corresponding to the location of the desired key vector is generated.

To satisfy the key vector organization requirement, we decided to statically

place the adjacent key vectors into memory modules attached to different channels.

As such, to properly generate the key vector addresses, we equip each MRG with a

base register and a shared up counter block. The base register indicates the starting

key vector index located on a particular memory channel. The up counter starts

from zero upon receiving a binary pruning vector and increases by the number

of memory channels. We also equip each memory controller with a key index

generator (KIG) engine, which has the exact same microarchitecture. However, in

lieu of memory request vector, KIG engine operates on spatial locality vectors to

generate the key vector addresses for Sprint on-chip engines in order to bootstrap

the attention score computations.

Memory commands and timing considerations. Supporting Sprint style in-
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memory thresholding into memory requires introducing additional memory com-

mands and memory timing constraints. To enable in-memory thresholding in

Sprint, we introduce two additional memory commands, CopyQ and ReadP.

CopyQ copies elements of query vector to in-memory query buffer, whereas ReadP

reads elements of resulting binary pruning vector from in-memory pruning vector

buffer. Depending on the bit-width of query and pruning vectors, the memory

controller may issue one or more consecutive CopyQ and ReadP commands. Note

that to initiate in-memory thresholding computations, we add one-bit in CopyQ

command in which a one-value indicating the start of computations. Issuing other

memory commands will be prohibited amid in-memory thresholding computations.

As you may observe, there is some similarities between CopyQ and ReadP

commands and normal memory read and write, respectively, projecting a similar

timing constraints as read/write commands. However, since CopyQ works with an

isolated buffer from memory arrays, it neither requires tRP for row pre-charging,

nor tRCD to activate a memory row. On the other hand, since consecutive CopyQ

command still occupy data buses, we adhere to the tCL timing constraint. The

scenario for ReadP is quite different as it communicates with the bank row buffers

to read the resulting binary pruning vectors into on-chip buffers for further pro-

cessing. Therefore, we conservatively follow the exact same timing constraints as

memory read command for ReadP. For both introduced commands, burst CopyQ

and ReadP follow the same timing constraints as normal burst memory read and

write.

While the described scenarios for CopyQ and ReadP covers most of the required

timing constraints, it still leaves one crucial timing constraints between adjacent

CopyQ and ReadP commands. This timing, dubbed tAxTh, represents the number

of cycles that each ReRAM crossbar requires to perform in-memory thresholding

and producing the resulting pruning vector. Our circuit simulations show that this

timing is < 8 cycles [8].

Power implications of in-memory thresholding. In addition to timing con-

straints, memory systems are also under power budget limitations. tFAW and

tRRD represent the memory timing constraints linked to power budget. To ac-

56



Figure 3.7: CORELET utilization imbalance with and without token interleaving
across CORELETs.corelet in the figure should be capital

count for this power budget limitation, we model the analog in-memory threshold-

ing circuit and estimate the power of analog comparators. Our simulation show

that the overhead of additional analog circuitry for analog comparisons merely

increase the total power budget by < 0.4% of total in-memory computation [36].

This power overhead has negligible implications on these timing constraints, hence

we posit the nominal values for tFAW and tRRD in our simulations (similar to

work [29, 28]).

3.5 On-Chip Accelerator

The Sprint processor includes N CORELETs to enable a higher parallelism

degree. Each CORELET consists of a QK-processing unit (QK-PU) and a V-

processing unit (V-PU). QK-PU performs the 1 × d dot product between Q and

K, whereas V-PU processes the 1 × d dot product between the Softmax output

and V in the digital domain. In addition, each CORELET has a small number of

buffers to store unpruned key and value vectors. Note that the query vectors are

processed in a stream manner, and thus do not need multi-entry buffers (Q-buf).

Finally, each CORELET has its own look-up-tables to record which Ks and V are

currently present on chip.
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Workload balancing across CORELETs. Sprint accelerator can simul-

taneously process multiple key vector sub-elements in each CORELET while the

same query vector is distributed among all the CORELETs. As soon as the com-

putations of one query and all of its associated keys complete, the computations

of the next query can begin. In this design, the adjacent key vectors are assigned

to different CORELETs, called token-interleaving. For example, given total four

available CORELETs, Sprint process K4n+is in the i-th CORELET if the token

is unpruned. This balances the workload across CORELETs while considering

the spatial locality, by which the unpruned indices tend to appear in adjacent

locations. Figure 3.7 shows the workload imbalance ratio. We calculate the im-

balance ratio by dividing the maximum by the minimum numbers of assigned

unpruned tokens per CORELET (i.e. the value of one implies ideal workload bal-

ance across CORELETs). We also analyzed alternative scenarios with two and

four CORELETs. We observe that a system with four CORELETs suffers from

poor balance as compared to a system with two CORELETs. This occurs because

the unpruned key vectors can be more evenly distributed across a larger number

of CORELETs, reducing utilization. The proposed workload distribution scheme

considerably improves the utilization balance compared to the sequential token

mapping, e.g. neighboring tokens belonging to the same CORELETs.

Handling data misses. To minimize the number of stalls due to data misses,

the unpruned key vectors are proactively prefetched by the memory controller

(as explained in Section 3.4.2). We also configure the main memory bandwidth

(Table 3.1) to provide a new pair of K and V in burst mode to further reduce such

stalls. Note that by leveraging the spatial locality between unpruned key vectors,

on average, only 2.1% of the sequence length is required to be fetched between

adjacent queries. This high data reuse drastically reduces the likelihood of data

misses. When a rare data miss occurs, the computations for the next available key

vector can proceed until the data miss is handled by the memory controller. We

implement this bypassing of unavailable key vectors by adding a rotating pointer

to key/value index buffers.

Sprint accelerator arithmetic operations. Once at least one key vector
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resides in K-buf, the computation can start. At each cycle, Sprint performs

a dot-product between each subset of elements from key and query vectors. If

all the key elements can not be processed during one compute iteration, Sprint

stores the partial sums in a register until the results are ready to be processed

by a Softmax module. Similar to prior work [20, 37], we use a two look-up-tables

method for exponent calculation. Afterwards, Sprint stores the streaming outputs

in FIFOs for accumulation. Once complete, each score is normalized to produce the

corresponding probabilities. To balance the throughput between different stages of

the pipeline, we employ two divider units. Finally, the computed score probabilities

are used in V-PU to calculate the weighted sum of Vs. Note that the unpruned

indices for key vectors can be used for the pruning of value vectors as well.

Two-dimensional sequence reduction. As introduced in 3.2.1, a large por-

tion (e.g. 46% for the SQUAD dataset) of the total sequence length is futile due

to zero-padding. Figure 3.2 illustrates the zero-padded (gray) area, which reduces

the required output computation in both vertical and horizontal dimensions. Hor-

izontally, the computation is reduced to K vectors per Q, whereas vertically, it

is reduced to Q vectors. We implement this mechanism by enabling the memory

controller to filter out the read request for these masked regions.

Sprint accelerator design choice. The Sprint accelerator does not employ

a double-buffering scheme for on-chip memory in order to avoid the doubled cost of

memory capacity. When the new data arrives from main memory, those are stored

in a temporary small buffer. Meanwhile, a stall request is issued to initiate the write

process into K-buf and V-buf. Note that, due to spatial locality across unpruned

k elements for adjacent q vectors, the number of newly fetched K/V is infrequent.

Similar to prior work [37, 62, 20], Sprint performs all the computations in 8-bit

precision, except softmax that is carried out in 12-bits. For final attention score,

we employ 16-bits precision.
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Figure 3.8: 2-dimensional masking to reduce the inconsequential computations.

3.6 Methodology and Evaluation

Benchmarks. The following models were used to evaluate the efficacy of

Sprint: BERT-Base (BERT-B) [27], BERT-Large (BERT-L) [27], ALBERT-X-

Large (ALBERT-X-L) [34], ALBERT-XX-Large (ALBERT-XX-L) [34], ViT-Base

(ViT-B) [10], and GPT-2-Large (GPT-2-L) [45]. We used the Stanford Ques-

tion Answering Dataset (SQUAD) [46] to test BERT-B, BERT-L, ALBERT-X-L,

ALBERT-XX-L, the WikiText-2[1] to test GPT-2-L and CIFAR10[31] dataset to

test the ViT-Base. The sequence length (s) of 197, 384, 1280 is used for the

CIFAR10, SQUAD and WikiText-2 dataset, respectively, whereas the same em-

bedding size d = 64 is used for all the cases. On top of above datasets which

exist today, we also create two more hypothetical synthetic models Synth1 and

Synth2 with 2K and 4K sequences to estimate the projected benefit of Sprint

architecture for the potentially larger models.

Model fine-tuning for target benchmarks. As a baseline, We used the pretrained

models from HuggingFace [65] and fine-tuned on each task using the hyperparam-

eters reported in the original paper of each model [27, 34, 15]. The only hyper-

parameter we change is the batch size due to our limited GPU memory size, but

the final fine-tuning result has no discernible change. These fine-tuned models are

used as our baseline. By integrating the differentiable soft thresholding described

in [37] into the HuggingFace transformer model [65], we find the optimal threshold

for each attention layer during the task-specific fine-tuning process. As for the

training hyperparamters, we use the same hyperparameter setting in BERT, AL-

BERT and ViT [27, 34, 15], except for the learning rate and the number of epochs.

60



Table 3.1: Hardware configurations of Sprint.

Hardware modules Configurations for S-Sprint / M-Sprint / L-Sprint
main memory BW 16× 64-bit channels @ 1 GHz per CORELET
ReRAM array size 256 × 128 standard bitcell, 64 × 128 transposable array with 4-bit MLC
On-chip cache 16 / 32 / 64KB in total (= 8 / 16 / 32 banks), 128-bit port per bank
QK-PU / V-PU 1EA / 2EA / 4EA of 1-D 64 (=D) way 8×8-bit MAC array
Softmax 1EA / 2EA / 4EA of 12-bit input, 8-bit output, 2EA of LUTs: 125 MB each

The search space for the threshold learning rate is {2e−3, 2e−4, 2e−5}, whereas the
search space of {2e−5, 2e−6} used for all other parameters. The number of epochs

ranges from 1 to 3 for different tasks. We run all the experiments mentioned above

with PyTorch v1.10 [44] on an Nvidia RTX 3090 GPU.

This results in the pruning rate of 74.6%, 75.5%, 65.1%, 73.1%, 64.4%, and

73.9% for BERT-B, BERT-L, ALBERT-XL, ALBERT-XXL with SQUAD dataset,

ViT-B with CIFAR10 dataset, and GPT-2-L with WikiText-2. For the Synth1 and

Synth2, 75% pruning rate and 50% padding ratio are assumed for the following

simulations. The estimated main memory access when switching to new query

vector for Synth1 and Synth2 are obtained by scaling up the numbers from BERT-

B based on the sequence length difference.

Sprint hardware simulations. Table 3.1 lists the design parameters of

Sprint for three studied configurations: (1) S-Sprint: a CORELET with 16KB

total on-chip memory capacity, (2) M-Sprint: two CORELETs with 32KB, and

(3) L-Sprint: four CORELETs with 64KB to analyze the impact over different

parallelism and on-chip memory size. We tested above configurations by using

Cadence Genus 19.1 [6] for the logic synthesis and Cadence Innovus 19.1 [7] for

the placement/routing (PnR) of digital blocks with 65 nm TSMC general-purpose

standard cell library. These digital blocks are generated to meet the target fre-

quency of 1GHz from the post-layout simulations. The SRAM on-chip memory was

generated by ARM Memory Compiler with High density 65 nm single-port SRAM

(version r0p0) [2]. On the other hand, ReRAM crossbar in-memory operation

consumes 0.10 pJ / MAC in 65 nm including the digtal-to-analog conversion [8]

whereas ReRAM standard read and write operation spend 3.1 pJ / bit and 24.4

pJ / bit, respectively [18]. Each analog comparator consumes 41 fJ [36]. An ex-

tensive study of ReRAM in-memory computing from HP Lab [23] has shown that
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64-tap in-memory dot-product delivers 5-bit equivalent output accuracy in terms

of signal-to-noise ratio after including all the error sources. To emulate the limited

accuracy of the in-memory thresholding, same error models in Section 3.3.5 is used

with b = 5. Based on above component analysis, we develop an Sprint simulator

to provide the total delay cycles and number of accesses to the memory for both

Sprint and baseline accelerators in consideration of the limited on-chip memory

capacity, main memory bandwidth, and pruning behavior with a special locality

from each workload.

Baseline architecture. As a baseline, we employed the same configuration

of S-Sprint, M-Sprint, and L-Sprint, but without the in-memory pruning, pro-

posed memory controller, and two-dimensional computing reduction for the padded

sequences. We compare Sprint and the baseline at iso-setups including the same

frequency, the number of processing elements, on-chip memory capacity, and bit

widths for all the input and output of digital logic blocks.

Comparison to A3, SpAtten, and LeOPArd. A3 [20], SpAtten [62], and

LeOPArd [37] also support the run-timing pruning to minimize the required com-

putation. A3 thresholds after processing a limited number of k vectors from the

sorted queue in a magnitude order to minimize the run-timing pruning overhead.

But, A3 does not consider the data movement cost from the main memory as-

suming enough on-chip memory capacity. LeOPArd performs the gradient-based

training to co-optimize the model accuracy and pruning rate by tuning the pruning

threshold automatically during the training instead of empirical methods. Again,

LeOPArd does not consider the cost from main memory access. SpAtten proposed

a cascaded pruning to exclude the redundant heads and tokens for all the sub-

sequent layers once those are pruned in the previous layer. SpAtten reduces the

DRAM access cost for GPT-2, but not for other models assuming enough on-chip

capacity. Due to the lack of available raw performance/energy results for indi-

vidual workloads and simulation infrastructures of the accelerators, commensurate

with comparison methodology of SpAtten [62], we use throughput (GOPs / s),

energy efficiency (GOPs / J), and area efficiency (GOPs / s / mm2) to provide the

best effort analyses.
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Figure 3.9: Accuracy from software vs. LeOPArd with analog in-memory run-
time pruning. Here, GPT-2-L accuracy is measured as a perplexity metric.

Figure 3.10: Total data movement from main memory normalized to that of S-
Baseline configuration.

3.6.1 Accuracy and Performance

Impacts on model accuracy from in-memory pruning. The accuracy of

the tested workload from Sprint architecture is described in Figure 3.9. To quan-

tify the impact from the run-timing pruning and the analog in-memory threshold-

ing’s inaccuracy separately, we measured three cases: 1) the baseline accuracy [65],

2) with the only run-timing pruning, and 3) run-timing pruning including the lim-

ited accuracy from the in-memory thresholding (equivalent to 5-bit at the output).

The accuracy degradation from the run-time pruning is 0.3% on average with

maximum of 0.8% compared to the baseline accuracy whereas the Sprint has the

degradation of 0.3% on average with the maximum of 0.8% accuracy compared

to the baseline. We can conclude that both run-time pruning and the inaccuracy

from the approximate thresholding have minimal impact on the model accuracy.

Main memory data movement analysis. Figure 3.10 shows the total

amount of data movement from the main memory to the processor during pro-
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Figure 3.11: Speed-up comparison to Baseline design.

cessing a single head in two configurations: 1) with sequence reduction for the

padded area, 2) with run-timing pruning on top of the sequence reduction of

the padded area. All the numbers are normalized to that of S-Baseline in each

testbench. In all the 48 studied configurations, the proposed scheme provides a

significant reduction in the data movement requiring, on average, 2.6%, 1.3%,

and 0.9% in S-Sprint, M-Sprint and L-Sprint, respectively, compared to the

S-Baseline. The benefit varies across workloads due to their different pruning rate

and the portion of padded area, e.g., BERT-B has higher data movement reduc-

tion due to its 46% padded area and 74.6% pruning rate compared to ViT with

64.3% pruning rate with zero padding. The sequence reduction only scenario has

a limited benefit still requiring a data movement of 30.0%, 13.3%, and 2.6% in

S-Sprint, M-Sprint, and L-Sprint, respectively, on average, as compared to the

S-Baseline case. The only exception is observed in ViT-B due to the lack of zero

padding. In all the configurations, L-Sprint requires fewer main memory access

than S-Sprint and M-Sprint due to the higher on-chip memory capacity. Again,

ViT-B shows the exception because M-Sprint has already sufficient memory ca-

pacity to store entire (197) sequence length. The gap among S-, M-, L-Sprint

configurations is smallest in Synth1 and Synth2, where sequence length is very

long. Thus, even L-Sprint model can accommodate only highly limited fraction

of the entire sequence length, e.g. 12.5% in Synth2. For the same reason, the data

movement reduction is less significant in Synth models compared to others as those

cannot contain enough number of correlated tokens in their tight memory space.
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Figure 3.12: Total energy reduction compared to Baseline.

Performance and energy comparison. We measure the speed-up achieved

by Sprint in Figure 3.11 compared to the Baseline design across all the 24 studied

task. S-, M-, and L-Sprint achieve 7.5× , 7.4× , and 7.1× speed-up, respectively,

on average over the Baseline design by skipping the majority of potential com-

puting cycles for the redundant tokens via the in-memory run-time pruning. The

speed-up benefit diminishes in L-Sprint slightly (<8% compared to S-Sprint)

because the workload utilization is not perfectly balanced across CORELETs as

shown in Figure 3.7 even after the proposed k vector distribution. BERT-L enjoys

the maximum benefits with 9.6 - 10.4× speed-up while ViT-B has minimum im-

provement of 2.7 - 2.8×. This is because of the different pruning rates and portion

of padded area in those models as mentioned above.

Figure 3.12 shows the energy reductions achieved by Sprint, including on-

chip accelerator and ReRAM-based main memory, compared to the Baseline for

the three configurations. The energy reductions of 19.6× for S-Sprint, 16.8×
for M-Sprint, and 12.0× for L-Sprint are achieved. The S-Sprint achieves

the largest improvement because the proportion of main memory access out of the

total energy is larger than the other cases due to the highly constrained memory

capacity and frequent memory access. This leads to more improvement by the

proposed technique which reduces the data movement effectively. On the other

hand, Synth1 and Synth2 show the exception in this trend because even L-Sprint

can contain only very few fraction of the entire sequence, e.g. 12.5% as mentioned

above whereas 100% in BERT-B in L-Sprint. In such a regime, where the memory
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Energy Breakdown
Platform Q*K 

Comput
e

Key 
Mem

Softmax *V 
Comput

e

Value 
Mem

sum ratio

Baseline MemN2N 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 1
LeOPArd 
(pruning 
only)

MemN2N

0.1728449 0.1669747 0.0117055 0.0245366 0.0184407 0.3945024 2.5
LeOPArd 
(pruning + 
bit-serial)

MemN2N

0.0533956 0.0610235 0.0174152 0.0202285 0.0178886 0.1699514 2.3
Baseline BERT-B 0.172844870.166974670.141319710.296227850.22263289 1 1.0
LeOPArd 
(pruning 
only)

BERT-B

0.172844870.166974670.019354320.040569620.030490490.43023397 2.3
LeOPArd 
(pruning + 
bit-serial)

BERT-B

0.097898320.11149883 0.0349426 0.040587180.040707690.32563462 1.3
Baseline BERT-B-S 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 0.3
LeOPArd 
(pruning 
only)

BERT-B-S

0.172844870.166974670.036884440.077315470.058107190.51212664 2.0
LeOPArd 
(pruning + 
bit-serial)

BERT-B-S

0.091679450.106059120.042854580.049777240.066682060.35705245 1.4
Baseline BERT-L 0.172844870.166974670.141319710.296227850.22263289 1 1.0
LeOPArd 
(pruning 
only)

BERT-L

0.172844870.16697467 0.0307414 0.064438710.048429530.48342919 2.1
LeOPArd 
(pruning + 
bit-serial)

BERT-L

0.099332610.11272461 0.048509090.047612650.056040520.36421948 1.3
Baseline BERT-L-S 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 0.4
LeOPArd 
(pruning 
only)

BERT-L-S

0.172844870.166974670.036177850.075834330.056994020.50882574 2.0
LeOPArd 
(pruning + 
bit-serial)

BERT-L-S

0.10115137 0.12483114 0.039038090.045344240.05643311 0.36679795 1.4
Baseline ALBERT 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 1.0
LeOPArd 
(pruning 
only)

ALBERT

0.172844870.166974670.038749860.081225680.061045940.52084102 1.9
LeOPArd 
(pruning + 
bit-serial)

ALBERT

0.093660330.106013140.045900190.053314830.072310450.37119894 1.4
Baseline GPT-2 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 1.0
LeOPArd 
(pruning 
only)

GPT-2

0.172844870.166974670.036870310.077285850.058084920.51206062 2.0
LeOPArd 
(pruning + 
bit-serial)

GPT-2

0.088672480.100674940.043275230.050265850.068175140.35106364 1.5
Baseline ViT-B 0.1728449 0.1669747 0.1413197 0.2962279 0.2226329 1.0000001 1.0
LeOPArd 
(pruning 
only)

ViT-B

0.172844870.166974670.056103920.11760246 0.088385260.60191118 1.7
LeOPArd 
(pruning + 
bit-serial)

ViT-B

0.11610642 0.11379396 0.067249420.07811279 0.1059437 0.48120629 1.3
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Figure 3.13: M-Sprint’s energy breakdown normalized to baseline. First bar and
second bar represent baseline and M-Sprint, respectively.

capacity is significantly limited, the larger memory provides the more room to fetch

the correlated data together increasing the chance of data re-use. For this reason,

L-Sprint achieves more energy benefit compared to S- and M-Sprint in Synth

models. The energy benefit is greater in Synth1 and Synth2 models than the other

cases as those require more frequent data access due to their large sequence length

so that the benefit by Sprint is magnified. In contrast, ViT shows the minimum

benefit due to its small sequence length, and thus infrequent data access.

Energy consumption breakdown. Figure 3.13 provides the detailed energy

breakdown of M-Sprint including following parts: 1) main memory read, 2) main

memory write, 3) in-memory pruning, 4) on-chip memory (K-buf and V-buf) read,

5) on-chip memory write, and computations in 6) QK-PU, 7) V-PU, and 8) Soft-

max. Roughly 50% of the energy consumption of the Baseline design is from

ReRAM read operations in all the benchmarks other than ViT-B, whose sequence

length is tiny. It is shown Sprint reduces the main memory access energy effec-

tively in all the workloads.Sprint’s in-memory pruning allows to skip the large

portion of computations as well, which results in remarkable reduction in computa-

tion energy by QK-PU, V-PU, and Softmax. The Sprint architecture also reduces

the writing energy of main memory to some degree by avoiding the ReRAM writing

for the zero padded area. Despite this reduction, main memory writing takes the

largest energy portion out of all the components in Sprint (except ViT-B) due

to more aggressive reductions in the other energy components. The overhead of

in-memory pruning including peripheral circuitry is negligible taking only 4% out
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Table 3.2: Sprint performance comparison with prior arts.

Metric A3 SpAtten LeOPArd M- M-
(unit) Sprint Sprint

(on-chip)
Sequence Length 50 - 384 384 - 1024 50 - 4096 128 - 4096 128 - 4096
Process (nm) 40 40 65 65 65
Area (mm2) 2.1 1.6 3.5 1.8 1.8
Key Buffer (KB) 20 24 48 16 16
Value Buffer (KB) 20 24 64 16 16
GOPs / s 518.0 360.0 574.1 518.0 1816.2
GOPs / J 4709.1 382.0 519.3 524.9 257.5
GOPs / s / mm2 249.0 238.0 165.5 290.0 1003.6
Mem Cost Included NO YES NO NO YES

QK-PU + Q-BUF

K-BUF

V-BUF

Softmax
V-PU

1180um

80
0u
m

estimated
ReRAM 
in-memory
dimension

Figure 3.14: S-Sprint on-chip accelerator layout with estimated ReRAM in-
memory area overhead [59].

of the entire energy due to its highly parallel and low-voltage analog operations.

This implies that the benefits from the in-memory pruning far outweighs its own

overhead.

Comparison with A3, SpAtten, and LeOPArd. Table 3.3 lists the details of prior

works and M-Sprint architecture in terms of throughput (GOPs / s), energy ef-

ficiency (GOPs / J), and area efficiency (GOPs / s / mm2). For fair comparison,

we also included the area from the in-memory thresholding [59], which takes only

3% out of total M-Sprint area. Due to the absence of reported results in A3, we

calculated above results in Table 3.3 given the frequency and power numbers ob-

tained from [20]. The prior arts considered the scenario of enough on-chip memory

with minimal consideration of the dram access cost. On the other hand, Sprint
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Table 3.3: Sprint performance comparison with prior arts.

Metric (unit) A3 SpAtten LeOPArd M-Sprint

Sequence Length 50 - 384 384 - 1024 50 - 1024 128 - 4096
Process (nm) 40 40 65 65
Area (mm2) 2.1 1.6 3.5 1.9
Key Buffer (KB) 20 24 48 16
Value Buffer (KB) 20 24 64 16
GOPs / s 518.0 360.0 574.1 1816.2
GOPs / J 4709.1 382.0 519.3 257.5
GOPs / s / mm2 249.0 238.0 165.5 973.5
Mem Cost Included NO YES NO YES

includes all the costs from the frequent main memory access assuming the limited

on-chip memory scenario by considering ¿ 4× longer sequences than prior arts.

Compared to any prior works, M-Sprint achieves the best GOPs / s and

GOPs / s / mm2 even including the main memory access cost due to it’s in-memory

pruning. Compared to A3, M-Sprint achieves 3.5× and 3.9× improvements in

GOPs / s and GOPs / s / mm2 respectively. However, it achieves 18× lower

GOPs / J. This is because the DRAM access read and write costs are not considered

in the results of A3 in addition to the lower process technology (40 nm) in A3. Sim-

ilarly, M-Sprint achieves 3.2× higher GOPs / s and 5.9× higher GOPs / s / mm2

than LeOPArd, while 2.0× lower GOPs / J is observed in M-Sprint due to the

consideration of main memory access cost. Although SpAtten incorporated the

DRAM access cost, M-Sprint employs insufficient on-chip memory capacity re-

quiring more frequent main memory access. Despite the fact, M-Sprint still deliv-

ers 5.0× and 4.1× enhancements in GOPs / s and GOPs / s / mm2, respectively,

while achieving 1.5× worse GOPs / J. This difference in GOPs / J is negligible in

consideration of the different process technology, e.g. 40 nm in SpAtten vs. 65 nm

in Sprint. The benefits that are gained from GOPs / s and GOPs / s / mm2 are

based on the early stage in-memory pruning by leveraging the spatial locality. We

expect greater benefit compared to the prior arts when the workloads with very

long sequence are tested equivalently.

Sprint on-chip accelerator and ReRAM in-memory Area. Figure 3.14 shows

the S-Sprint layout in a 65 nm process which occupies 1.8 × 0.8 mm2 including

total 16KB SRAM. The layout estimation of ReRAM in-memory, including 64×128

transposable array and other peripheral circuitry is also shown in Figure 3.14. Due
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to the inherent high-density of ReRAM, the area overhead takes only around 6% in

the S-Sprint case. This portion can be further reduced in M- or L-Sprint by

amortizing the overhead across cores.

Chapter 3 is adapted from the material that has been submitted for publication

as it appears in Amir Yazdanbakhsh, Ashkan Moradifirouzabadi, Zheng Li, Mingu

Kang. “Sparse Attention Acceleration with Approximate In-Memory Pruning.”

The thesis author was the primary investigator and author of this paper.
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Chapter 4

Conclusion and Future Work

Transformers through the self-attention mechanism have triggered an exciting

new wave in machine learning, notably in Natural Language Processing (NLP).

The self-attention mechanism computes pairwise correlations among all the words

in a subtext. This task is both compute and memory intensive and has become one

of the key challenges in realizing the full potential of attention models. However,

deploying these models on hardware with limited-resource can be challenging. To

address this, two accelerators, LeOPArd and Sprint are introduced in Chapter

2 and Chapter 3 in this thesis.

LeOPArd focuses on pruning the inconsequential scores at runtime through a

thresholding mechanism. The work in Chapter 2 exclusively formulated the prun-

ing threshold finding as a gradient-based optimization problem. This formulation

strikes a formal and analytical balance between model accuracy and computa-

tion reduction. To maximize the performance gains from thresholding, a bit-serial

architecture is shown in Chapter 2 to enable an early-termination atop pruning

with no repercussions to model accuracy. These techniques synergistically yield

significant benefits both in terms of speedup and energy savings across various

transformer-based models on a range of NLP and vision tasks. The application

of the proposed mathematical formulation of identifying threshold values and its

cohesive integration into the training loss is broad and can potentially be adopted

across a wide range of compute reduction techniques.

Sprint focuses on solving the on-chip memory limitation and data-movement
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overhead of self-attention Computation. It harnesses the inherent parallelism of

ReRAM crossbar arrays to compute the attention scores in low-precision format.

The resulting attention scores cross a lightweight analog thresholding circuitry,

which dynamically prune the inconsequential ones, based on the techniques in

Chapter 2. To mitigate the negative repercussion of approximate ReRAM com-

putations on model accuracy, Sprint recomputes the sparse attention scores for

the few fetched data in digital. The combined in-memory pruning and on-chip

recomputation of the relevant attention scores reduce the quadratic complexity of

self-attention mechanism into a merely linear one.

In the future, it is possible to leverage the retraining strategy and the regular-

ization term introduced in Chapter 2 to control the pruning rate to be the same on

different tasks for the same model. Then, more hardware designs can be developed

to exploit the uniform pruning rate of the algorithm.
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