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Smart Charging of Electric Vehicle Fleets: 
Modeling, Algorithm Development, and Grid 
Impact Analysis, with Emphasis on Fleets of 
Transit and Heavy-Duty Freight Vehicles 

Executive Summary 
High charging loads associated with fleets of commercial electric vehicles (EVs) are 
expected to significantly stress electric power distribution networks, leading to high costs 
seen by fleet operators. To address these challenges, we present a highly flexible smart 
charging (SC) algorithm for managing EV fleets that arrive and depart from a common 
depot on a schedule. Our algorithm features (i) primary consideration of multiple fleet 
operator preferences (e.g. minimizing cost, using carbon-free energy), (ii) secondary 
consideration of grid impact that leverages the existence of multiple optimal (or near-
optimal) ways to satisfy fleet operator preferences, and (iii) automatic detection and 
handling of infeasibility due to large energy demands (characteristic of fleet charging). 
Provided in this document are two numerical impact assessment studies in which our SC 
algorithm is shown to be superior to conventional rapid charging, and conventional ‘smart’ 
charging solutions on the market. Our studies utilize a set of synthetic, but realistic fleet 
charging requirements, a physics-based model of a real feeder and one year of real, hourly 
load data for that feeder. Our first numerical study shows that our proposed SC algorithm 
can lead to significant (up to 44%, but scenario-dependent) reductions in a fleet operator’s 
annual electricity bill. Our second numerical study shows that significant transformer 
overloading and voltage drop issues can be associated with conventional fleet charging 
methods, and that our proposed SC algorithm eliminates these issues, thereby enabling 
higher EV penetration levels and offsetting infrastructure upgrades. 
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1. Document Summary 
The most-recent quarterly project report (submitted 7/10/2024) listed five project 
objectives: (i) problem formulation, (ii) develop proficiency with methods and tools, (iii) 
define case studies for analysis, (iv) grid impact analysis and algorithm refinement, and (v) 
writing. Each of §3 – 5 is dedicated to deliverables derived from the five project objectives. 
§3 describes the problem formulation, §4 defines our case studies, and §5 presents the 
results of a fleet operator impact assessment and a grid impact assessment. The excluded 
project objectives (developing proficiency with methods and tools and writing) are 
illustrated in the presentation of this report and subsequent results. Final comments are 
provided in §6, followed by a list of references and data summary. 

2. Deliverable 1: Problem Formulation 
Formulate the smart charging problem for fleets of medium and heavy-duty vehicles with 
scheduled arrivals and departures, accounting for (i) interests of the fleet operator (e.g., 
minimizing costs, and/or maximizing renewable energy consumption), (ii) requirements of 
the fleet operator (charge requirements, fleet operating schedule), (iii) grid impact 
considerations. Mathematically pose the optimization-based problem formulations. 

In this section, we provide a brief motivation and summary of our contributions to the 
smart charging problem for electric vehicle fleets and disclose a mathematical algorithm 
for solving a fleet charging optimization problem. We wish to note that this mathematical 
algorithm is simply a series of calculations that is to be performed, and is independent of 
any particular computer implementation. We report only the algorithm’s essential 
components briefly, and defer detailed discussion to an upcoming publication. 

2.1 Motivation and Literature Review 

Electrification of commercial vehicle fleets is being driven by reduced cost of ownership, 
increasing environmental awareness, regulatory pressures, tax incentives, and positive 
customer response [1,2]. BloombergNEF projects that by 2040, electric vehicles (EVs) will 
constitute 80% (resp. 60%, 30%, 20%) of all sales globally in the bus (resp. light 
commercial, medium commercial, heavy commercial) segment [3]. It is expected that EV 
fleets will charge overnight at a depot, at least until public charging infrastructure is 
expanded [4]. For medium and heavy-duty EVs, depending on depot charging 
infrastructure, peak charging load can range from tens to hundreds of kilowatts per EV. 
Overnight charging loads are therefore expected to significantly stress power distribution 
networks, resulting in reduced power quality and overloaded transformers [5,6]. To combat 
this, nearly all utility companies penalize peak power draw by levying demand charges on 
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commercial energy customers [7–11]. Demand charges can constitute 30–70% of a 
customer’s total bill [11]. 

One potential solution to these challenges is to control the EV charging load through smart 
charging (SC). Fleet EVs will typically remain plugged in all night, but will only charge 
actively for a fraction of this time. By distributing charging activity overnight, as we will 
show, SC can realize benefits for the fleet operator and the grid operator, thereby enabling 
higher EV penetration levels and offsetting infrastructure upgrades. SC algorithms use 
optimization to distribute EV charging activity over time and formally represent the benefits 
seen by grid and/or fleet operators. 

Unscheduled Fleets: Several fleet charging scenarios (e.g., public EV parking lots, 
workplace charging) are characterized by unscheduled EV arrivals/departures. 
Representative works on this topic can be found in [12–21]. A common theme among these 
studies is to ensure that the aggregator’s total power limit is obeyed, which (often) means 
that requests for charge are partially satisfied. Of these works, [12–14] adopt probabilistic 
problem formulations wherein EV arrival/departure times are treated as random variables 
and satisfaction of a total power constraint is sought with high probability. Studies [15–21] 
adopt deterministic problem formulations wherein a finite amount of available power is re-
allocated among fleet EVs at each time by employing heuristic methods, optimization, or 
model-predictive control (MPC). Here, fairness concepts (see [18–20]) often guide the 
allocation of power. 

Scheduled Fleets: In this body of work and herein, optimization is used to determine a 
charging profile for each EV in a fleet. Representative studies from this body of work 
include [22–36], while reviews may be found in [37,38]. Fleet charging problems involve 
three (not necessarily distinct) stakeholders: individual EV owners, aggregators, and power 
utilities. If considering all stakeholders in an SC problem, EV owner-imposed charging 
demands, aggregator-imposed operational limits, and utility-imposed operational limits 
must always be satisfied (by imposing constraints). In addition, the objective function may 
favor any stakeholder (or combination thereof). Objective functions in [22–24,28–30,36] all 
aim to minimize aggregator operating cost; each study considers different cost 
components (e.g., energy charges, demand charges, revenues from grid services, battery 
degradation, various inconveniences). Other strategies in this body of work include (i) 
flattening the aggregator’s total load profile [26,27,33], (ii) flattening a grid-level total load 
profile through aggregator-utility cooperation [31,32,34], and (iii) balancing of grid and 
aggregator concerns through multi-objective optimization [25]. 

Impact Assessment: Impact assessment refers to the demonstration of a charging 
strategy’s benefits; relevant methods are found in the SC literature, and in [39–42], which 
treat grid impact assessment of conventional charging. Of the reviewed studies, only 
[15,16,23–25,27,32,33] reveal computational advantages (e.g., parallelizability, runtime) of 
their solutions or perform experimental impact assessments. In the remaining studies (and 
herein), impact assessments are done in simulation via case studies. Researchers agree 
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that a case study demonstrating the benefits of SC to non-utility aggregators (e.g., 
operators of fleets, parking lots, or workplace charging) should utilize the following 
information: (i) EV arrival/departure times, (ii) EV energy needs, (iii) non-EV load profile(s) at 
charging location(s), (iv) total power budget(s) at charging location(s), and (v) any other 
information that guides decision-making (e.g., price signals). Case studies considering grid 
impacts should additionally utilize: (vi) a circuit model of a distribution network (feeder) 
and (vii) non-EV load profile(s) at all nodes in the feeder. Constructing realistic case 
studies for impact assessment is crucial (unless solely focusing on computational 
benefits). Due to limited data, researchers often source necessary information separately 
and combine it speculatively. A lack of agreed-upon best practices for doing so leads to 
simulation results that vary in fidelity, interpretability, and generalizability. For further 
discussion on this topic, we refer readers to [37,43–45]. 

2.2 Contributions 

Contributions to SC Algorithm Design: Our fleet SC problem formulation is more 
comprehensive and flexible than those in the reviewed literature. Our algorithm features a 
multi-objective representation of the aggregator/fleet operator that allows interests to be 
divided over fleet vehicles. It also allows for the fleet operator’s interests to change day-to-
day. This contrasts with the typical profit-oriented representation in literature. Our 
algorithm also features automatic detection of infeasibility, and fairly allocates (limited) 
available power/energy among fleet vehicles if needed. This contrasts with the typical 
assumption that total power is always a limiting factor. Additionally, our representation of 
fairness is comprehensive, and captures most fairness metrics as special cases. Finally, 
our algorithm utilizes the two-stage methodology developed in [43] to address grid-level 
issues while bounding the compromise (including at zero) on fleet operator’s benefits. This 
contrasts with both single-objective and multi-objective approaches in the literature. 

Contributions to Fleet Operator Impact Assessment: Our work presents a high-fidelity 
assessment of fleet operator impact. We study electrified parcel delivery fleets (an 
emerging area, see [2]), and use mobility data from conventional parcel delivery fleets to 
obtain fleet size and arrival/departure information. Furthermore, we disclose how this 
mobility data is pre-processed before use in SC studies; this crucial step is often omitted 
or undisclosed in the literature. We use a real distribution feeder and associated load data 
from [44], and consider several (justified) placements of the fleet within this feeder to 
explore the effect of non-EV load and grid limits. We therefore speculate only with respect 
to the choice of EVs in use, leading to meaningful, representative assessment results. 

Contributions to Grid Impact Assessment: Our work also presents a high-fidelity grid 
impact assessment. We use feeder and load data from [44], eliminating the need for a 
great deal of speculation in case study formulation, leading (again) to meaningful, 
representative assessment results. Our analysis uses standard grid impact metrics (see 
[46]), but also presents voltage sensitivity results which do not appear in the literature. 
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Table 1. Nomenclature. 

Symbol(s) Units Interpretation 

𝑁 - vehicles in EV fleet 

𝑛 - vehicle index: 𝑛 = 1, 2, … , 𝑁 

𝑇 - integer length of time horizon 

𝑡 - time index: t = 1, 2, … , 𝑇 
𝑡𝑛, arr - time EV 𝑛 arrives at depot 
𝑡𝑛,𝑑𝑒𝑝 - time EV 𝑛 departs from depot 

Δ h time step 

𝜋[𝑡] $/kWh price of electricity at time 𝑡 

𝑚[𝑡] - grid energy mix at time 𝑡 

�̂�𝐶[𝑡] kW estimated non-EV load at time 𝑡 

𝑃𝐺[𝑡] kW power draw from grid at time 𝑡 

𝑃max
𝐺  kW 𝑃𝐺[𝑡] ∈ [0, 𝑃max

𝐺  ] (∀ 𝑡) 

𝑃𝑛
𝑉[𝑡] kW power flow into EV 𝑛 at time 𝑡 

𝑃𝑛,  max
𝑉  kW 𝑃𝑛

𝑉[𝑡] ∈ [0, 𝑃𝑛,  max
𝑉 ]  (∀ 𝑡) 

𝐸𝑛
𝑉[𝑡] kWh energy stored in EV 𝑛 at time 𝑡 

𝐸𝑛, min
𝑉 , 𝐸𝑛, max

𝑉  kWh 𝐸𝑛
𝑉[𝑡] ∈ [𝐸𝑛, min

𝑉 , 𝐸𝑛, max
𝑉 ]  (∀ 𝑡) 

𝐸𝑛, arr
𝑉  kWh measured value of 𝐸𝑛

𝑉[𝑡𝑛, arr] 

𝐸𝑛,  dep
𝑉  kWh desired value of 𝐸𝑛

𝑉[𝑡𝑛, dep] 

2.3 Smart Charging Algorithm for Fleets 

2.3.1 Overview 
The work presented in this report concerns charge planning for commercial EV fleets with 
scheduled arrivals and departures to/from a central depot, where the EVs charge. 
Examples of such fleets include parcel delivery fleets (e.g., Amazon, FedEx, UPS, USPS), 
bus fleets (e.g., public transportation, school buses), and refuse-hauling fleets. The SC 
problem is to determine an optimal charging plan for a fleet over a period of time (i.e., 
overnight). In principle, this requires determining both (i) a charging profile, and (ii) a 
parking spot assignment, for each EV, but we focus on the former in this report. The SC 
algorithm is an optimization-based procedure for solving the SC problem. It is envisioned 
that the charging plan produced by the SC algorithm will be followed in real-time using 
command following-capable power converters (e.g., [47]) that interface with the EVs. Table 
1 and Figure 1 provide nomenclature and an overview, respectively, supporting the SC 
approach presented herein. 
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Let the fleet contain N EVs, indexed by n = 1,...,N. Prior to execution, the SC algorithm is 
fed an operating schedule, which can be obtained from historical operating data and/or 
vehicle telematics. This schedule specifies the number of vehicles to charge (N), as well as 
the (i) arrival time 𝑡𝑛, arr, (ii) departure time 𝑡𝑛,𝑑𝑒𝑝, (iii) energy level upon arrival, 𝐸𝑛, arr

𝑉 , and 
(iv) required energy level upon departure, 𝐸𝑛,  dep

𝑉 , associated with each EV (i.e., for all n). 
The SC algorithm is also fed each EV’s availability to charge, denoted by 𝒫𝑛 ≔
{𝑡: EV 𝑛 plugged in}. Typically (and in this work) EV n is plugged in between 𝑡𝑛, arr  and 𝑡𝑛,𝑑𝑒𝑝; 
however, our formulation permits other possibilities. Furthermore, the SC algorithm is fed 
all relevant physical limits (𝑃max

𝐺 , {𝑃𝑛,  max
𝑉 }, {𝐸𝑛, min

𝑉 }, and {𝐸𝑛, max
𝑉 }), as well as three time-

varying signals: (i) π[t], a utility-provided time-of-use (TOU) price signal; (ii) m[t], a utility-
provided signal indicating the fraction of power generated from renewable sources (with 
m[t] ∈ [0,1]; see [48]); and (iii) �̂�𝐶[𝑡], an estimate of the commercial entity’s non-EV 
charging load at the depot (i.e., heating and cooling, lighting, etc.).  

 
Figure 1. Block diagram representation of a smart charging system for fleets. Black 
arrows indicate data or information flow and red arrows indicate power flow. This 
paper emphasizes smart charging algorithms, which would be contained within the 
Smart Charging Software block. 

All three time-varying signals are future projections; they must be specified for all 𝑡 =
1,… , 𝑇 before the SC algorithm is executed (prior to t = 1). π[t] will be specified a priori in a 
billing agreement and m[t] is likely to be published seasonally by a utility company, but 
�̂�𝐶[𝑡] will require a dedicated estimator. Any such estimator for �̂�𝐶[𝑡] would likely rely on 
measurements from a dedicated meter; estimation could be performed by averaging 
historical data (simple) or employing time-series forecasting tools (sophisticated). The SC 
algorithm plans charging activity on a time grid with T grid points and uniform spacing ∆. A 
typical time grid might span one night due to the use of future projections in the SC 
algorithm. Grid endpoints are determined by schedule information; t = 1 (t = T) coincides 
with the earliest (latest) scheduled arrival (departure) of any EV to (from) the depot. Time 
step ∆ could be inherited from the time-varying input signals, which are typically discrete-
time signals. For each interval 𝑡 = 1,… , 𝑇 − 1, the SC algorithm determines 𝑃𝑛

𝑉[𝑡], the 
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active power flow into EV n during interval t. The decision vector, or charging profile, 
associated with EV n is 

𝑷𝑛
𝑽 ∶= [𝑃𝑛

𝑉[1]   ⋯    𝑃𝑛
𝑉[𝑇 − 1]]

′
∈ ℝ𝑇−1. 

All decision variables in the SC problem are collected into 

𝑷𝑽 ≔ [𝑷1
𝑽    ⋯    𝑷𝑁

𝑽 ] ∈ ℝ(𝑇−1)×𝑁 . 

Algorithm 1 lists the computations that define our SC algorithm. Our algorithm has two 
modes of operation, Mode 1 and Mode 2, each with an associated convex optimization 
problem. Mode 1 further consists of two stages, Stage 1 and Stage 2, each with an 
associated convex optimization problem. 

As described in this report, the SC algorithm is to be executed one time, prior to initiating 
any charging activity. However, as discussed in [43,48], the SC algorithm can also be 
executed time-periodically during charging, using up-to-date input data. Repeated 
execution can help mitigate uncertainty in input data or deviations from schedule (e.g., 
changes in electricity price, late arrivals, early departures, extra EVs). The SC algorithm can 
also be repeatedly executed to optimize EV parking assignments, which is necessary when 
different types of charging stations (e.g., Level 2 and DC fast charging) are present at the 
depot. Since our algorithm relies exclusively on convex optimization, efficient numerical 
solution methods can be leveraged for implementation [49]. 

Algorithm 1. Smart Charging for EV Fleets 

Enter Mode 1, Stage 1 
Specify input parameters of (1) and attempt to 
solve  
if (1) was successfully solved then 

Enter Mode 1, Stage 2 
Record optimal objective function value, J⋆ 
Specify 0 ≤ ε ≪ 1 
Solve (5) to select an optimal or near optimal 

solution to (1)  
else 

Enter Mode 2 
Specify {vn} 
Solve (6) to fairly allocate (limited) available 

energy  
end if 
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2.3.2 Mode 1, Stage 1 
Mode 1, Stage 1 considers only the interests of the fleet operator. Optimal charging profiles 
are determined by solving 

minimize
𝑷𝑽

𝐽(𝑷𝑽) = ∑ ∑𝑤𝑛,𝑖 𝐽𝑖 (𝑷𝑛
𝑽) 

4

𝑖=1

𝑁

𝑛=1

 
(1) 

subject to constraints (2), (3) and (4), where 

 𝐽1(𝑷𝑛
𝑽) = Δ∑ 𝜋[𝑡]𝑃𝑛

𝑉[𝑡]
𝑇−1

𝑡=1
,    𝐽2(𝑷𝑛

𝑽) = Δ∑  (1 − 𝑚[𝑡])𝑃𝑛
𝑉[𝑡])

𝑇−1

𝑡=1
,  

 𝐽3(𝑷𝑛
𝑽) = ∑ 𝑡 𝑃𝑛

𝑉[𝑡],
𝑇−1

𝑡=1
 𝐽4(𝑷𝑛

𝑽) = ∑ (𝑃𝑛
𝑉[𝑡])2 

𝑇−1

𝑡=1
. 

The {Ji} represent potentially competing interests of the fleet operator. J1 is EV n’s 
contribution to the fleet operator’s energy charges (in $). J2 is the amount of non-renewable 
energy consumed by EV n during charging (in kWh). J3 (J4) encourages rapid (slow) charging 
of EV n to minimize charging time (battery degradation) (units not meaningful). 

Fleet operator-defined weights {wn,i} encode the relative importance of the {Ji} on a per-
vehicle basis. For (1) to be meaningful, the {wn,i} should all be non-negative. Fleet-level 
objectives can be achieved by choosing a common set of four weights for each vehicle. For 
example, to minimize the fleet operator’s energy charges, choose wn,1 = 1 and wn,2 = wn,3 = 
wn,4 = 0 for all n. The weights can also be used to partition the fleet. For example, suppose 
that EVs belonging to a ‘critical’ subset of the fleet, 𝒞 ∈ {1,… , 𝑁}, must be charged rapidly. 
This could be achieved by setting wn,3 = 1 and wn,1 = wn,2 = wn,4 = 0 for 𝑛 ∈ 𝒞. The remaining 
EVs could be charged at minimum cost by setting wn,1 = 1 and wn,2 = wn,3 = wn,4 = 0 for 𝑛 ∉ 𝒞. 

Power balance and battery dynamics are enforced through the following equality 
constraints at 𝑡 = 1,… , 𝑇 − 1: 

𝑃𝐺[𝑡] =  ∑ 𝑃𝑛
𝑉[𝑡] + �̂�𝐶[𝑡],

𝑁

𝑛=1

 
(2a) 

𝐸𝑛
𝑉[𝑡 + 1] = 𝐸𝑛

𝑉[𝑡] + Δ𝑃𝑛
𝑉[𝑡]  ∀𝑛 (2b) 

Physical limits on power and energy are enforced through the following inequality 
constraints at 𝑡 = 1,… , 𝑇 − 1: 

0 ≤ 𝑃𝐺[𝑡] ≤ 𝑃max
𝐺  (3a) 

0 ≤ 𝑃𝑛
𝑉[𝑡] ≤ 𝑃𝑛,  ub

𝑉  (3b) 

𝐸𝑛, min
𝑉 ≤ 𝐸𝑛

𝑉[𝑡] ≤ 𝐸𝑛, max
𝑉  (3c) 
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In (3a),  𝑃max
𝐺  represents a maximum draw from the grid; its value could be chosen based on 

a circuit breaker rating, a transformer rating, and/or a desire to cap demand charges. 
Constraint (3b) captures both an EV’s availability to charge, as well as power flow limits 
during charging. Here, 𝑃𝑛,  ub

𝑉 = 𝑃𝑛,  max
𝑉   for𝑡 ∈ 𝒫𝓃,  𝑃𝑛,  ub

𝑉 [𝑡] = 0 for 𝑡 ∉ 𝒫𝓃, and 𝑃𝑛,  max
𝑉  

represents the power flow rating of a charging point or an EV’s onboard charger. Finally, 
note that power flow into the grid (𝑃𝐺[𝑡]  <  0) and discharging of EVs (𝑃𝑛

𝑉[𝑡]  <  0)  are both 
disallowed in this study to limit scope. Boundary conditions are that 

𝐸𝑛
𝑉[𝑡𝑛, arr] = 𝐸𝑛, arr

𝑉 , which is measured ∀𝑛, (4a) 

𝐸𝑛
𝑉[𝑡𝑛, dep] = 𝐸𝑛, dep

𝑉  , which is specified ∀𝑛, (4b) 

Where 𝐸𝑛, arr
𝑉 ∈ [𝐸𝑛, min

𝑉 , 𝐸𝑛, max
𝑉 ], 𝐸𝑛, dep

𝑉 ∈ [𝐸𝑛, min
𝑉 , 𝐸𝑛, max

𝑉 ] and 𝐸𝑛, arr
𝑉 < 𝐸𝑛, dep

𝑉   if EV n needs to 
be charged. 

2.3.3 Mode 1, Stage 2 

If (1) is feasible, the SC algorithm records the optimal objective function value J⋆ and 
proceeds to Mode 1, Stage 2. Problem (1) can admit multiple optimal solutions. When the 
fleet operator is interested in minimizing energy charges, the set of optimal solutions 𝒮0  =
{𝑷𝑽: 𝐽(𝑷𝑽) = 𝐽∗}  is particularly rich – its elements exhibit a wide variety of temporal 
behaviors. Choosing among these multiple optimal solutions in a disciplined manner can 
give rise to simultaneous benefits for both fleet and grid operators, as shown in [43] and 
later in this report. Even if 𝒮0 is not rich, the superset 𝒮𝜀  = {𝑷𝑽: 𝐽(𝑷𝑽) ≤ (1 + 𝜀)𝐽∗ and 0 ≤
𝜀 ≪ 1}   can be. Here, ε is a small relaxation parameter, so 𝒮𝜀  is referred to as the set of 
near-optimal solutions to (1). Choosing ε > 0 introduces a slight increase in cost to the fleet 
operator, but allows for simultaneous benefits to be realized for fleet and grid operators in 
a wider range of SC scenarios. This logic is formalized in the Mode 1, Stage 2 optimization 
problem, which is to 

minimize
𝑷𝑽

∑(𝑃𝐺[𝑡])2

𝑇−1

𝑡=1

, 
(5) 

subject to constraints (2), (3), and (4), and the extra constraint 

𝐽(𝑷𝑽) ≤ (1 + 𝜀)𝐽∗. 

Note that (5) is feasible if and only if (1) is feasible. The solution to (5) is not unique, but 
every solution of (5) is an optimal (a near-optimal) solution of (1) if ε = 0 (ε > 0) which has 
the virtue of low grid impact, as measured by the peak value of 𝑃𝐺[𝑡]. Extensions of (5) can 
include multiple constraints of the above form, if desired, to accommodate partitioned 
fleets or differently encode fleet operator benefit(s). 

2.3.4 Mode 2 
Mode 2 is entered when (1) is infeasible. There are two detectable conditions under which 
(1) is infeasible: (i) at least one EV requests more energy,𝐸𝑛, dep

𝑉 − 𝐸𝑛, arr
𝑉 , than can be 
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delivered by its charging system within its availability period, or (ii) the combined demands 
of all EVs cannot be met without exceeding the total power limit for at least one time 
interval. In fleet charging, scenario (ii) is more common than scenario (i). Overcoming 
either scenario requires that energy requirements are relaxed. Therefore, the objective in 
Mode 2 is to charge the fleet ‘as much as possible’; i.e., to 

minimize
𝑷𝑽

∑ 𝑣𝑛(

𝑁

𝑛=1

𝐸𝑛,  dep
𝑉 − 𝐸𝑛

𝑉[𝑡𝑛,dep])
2  

(6) 

subject to constraints (2), (3), and (4a) (but not (4b)). Non-negative weights {𝜈𝑛} govern the 
allocation of available energy; possible settings for the {𝜈𝑛} include: 

1. Choose 𝜈𝑛  =  1 for all n to minimize the sum of squared deviations in energy across 
the fleet. 

2. Choose 𝜈𝑛 = (𝐸𝑛, max
𝑉 )

−2
 for all n to minimize the sum of squared deviations in state-

of-charge across the fleet. 

3. Choose 𝜈𝑛  to be proportional (or inversely proportional) to the plug-in duration (i.e., 
|𝒫𝓃|) of EV n (for all n). 

4. Choose 𝜈𝑛  to be proportional to the profit or revenue generated by operating EV n (for 
all n). 

5. Choose 𝜈𝑛 = 0 to ignore EV n’s request for energy. 

The solution to (6) is not unique, but every solution of (6) leads to (i) total demand profile 
PG[t] being largely flat, with 𝑃𝐺[𝑡] = 𝑃max

𝐺   for most time intervals (which benefits both fleet 
and grid operators); and (ii) a controlled distribution of undercharging errors 
{𝐸𝑛,  dep

𝑉 − 𝐸𝑛
𝑉[𝑡𝑛,dep]} across EVs. Property (ii) is clear from (6); property (i) follows from the 

fact that in Mode 2, energy delivered to the fleet is maximized by prolonged operation at 
the total power limit 𝑃𝐺[𝑡] = 𝑃max

𝐺  

3. Deliverable 2: Define Case Studies for 
Analysis 
Define scenarios under which to evaluate the grid impact of the proposed smart charging 
strategies. 

By design, both fleet and grid operators are positively impacted by use of our SC algorithm. 
The remainder of this report is dedicated to assessing the practical extent of these benefits 
through two numerical studies. Both studies consider the placement of a single, electrified 
fleet at various locations within a power distribution network, or feeder, and subsequent 
charging (smart or otherwise) of that fleet. Study design is described in this section and 
results are provided in §5. 
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3.1 Day Ahead, Cost-Minimizing Smart Charging 

Our impact assessments emphasize the common case of minimizing the fleet operator’s 
charging cost. However, we note that our SC algorithm provides fleet operators with great 
flexibility in specifying charging preferences and is designed to always benefit both fleet 
and grid operators. 

As stated in §3.1, commercial electricity customers (including commercial fleet operators) 
typically pay two load-dependent charges, energy charges and demand charges. Energy 
charges are typically assessed using piecewise-constant TOU price signals (i.e., π[t]; units 
of $/kWh) which have two or three price levels: (i) a low price for ‘off-peak’ times of the day, 
(ii) a high price for ‘on-peak’ times, and sometimes (iii) a medium price for ‘shoulder’ times 
which are neither on-peak nor off-peak [11]. Demand charges are typically assessed by 
multiplying a scalar (units of $/kW) by the peak power drawn over an entire billing period 
(usually one month). A truly cost-minimizing SC strategy would minimize the sum of both 
load-dependent charges. However, such an SC problem must be posed over an entire 
billing period, which is impractical considering input data requirements. Day-ahead 
planning is more practical, but necessitates a greedy handling of demand charges (if any). 
A naïve approach to demand charge mitigation is to charge as slow as possible every day, 
but this is not the optimal solution to the monthly SC problem (under a well-designed TOU 
price signal). Therefore, we propose executing our SC algorithm with wn,1 = 1 and wn,2 = wn,3 = 
wn,4 = 0 for all n; this is the definition of SC used in the following impact analyses. Assuming 
Mode 1 executes (nearly always true in our experiments), our two-stage approach 
automatically spreads charging out as much as possible while giving preference to ‘off-
peak’ times. Parameter ε controls the extent of this preference, but our analyses use ε = 0; 
i.e., daily peak power is minimized while ensuring that daily energy charges are truly 
minimal. Mode 2 is initialized with 𝜈𝑛 = 1 for all n (though rarely invoked). 

Our numerical studies consider a feeder located in Iowa, so a billing plan from 
MidAmerican Energy (a major utility company in Iowa) is also used. The ‘GDT’ plan of [7] 
defines a price signal (π[t]) for energy charges and a demand charge. 

3.2 Determination of Fleet Charging Requirements 

Our case studies consider an electrified fleet of parcel delivery vehicles in light of recent 
trends [2]. At this time, charging session data is not publicly available for electrified 
delivery fleets. However, real, anonymized mobility data for conventional parcel delivery 
fleets is available in [50]. We process this mobility dataset to obtain fleet charging 
requirements. Each record in [50] corresponds to one trip made by one vehicle; vehicle-
specific information, start time, end time, and distance traveled (among other quantities) 
are available for each trip. Vehicles make multiple trips per day, and trip data is recorded 
for multiple vehicles over multiple days. For our study, we consider only Class 3 and Class 
5 (as defined in [51]) parcel delivery vehicles. We replace conventional Class 3 (Class 5) 
with the low (high) payload configuration of the Arrival Van, which has an on-board Level 2 
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charger rated at 11 kW and a battery capacity of 139 kWh (89 kWh). This vehicle was 
selected because UPS, a major parcel delivery company in the United States, announced a 
partnership with Arrival and ordered 10,000 electric delivery vans in 2020 [2]. Further 
processing is performed as follows: 

1. For each vehicle on each day: 

(a) Determine the total distance traveled across all trips. 

(b) Determine the start time (end time) of the first (last) trip, which represents 
departure from (arrival at) the depot. Charge planning occurs on a discretized time 
grid, so round this time down (up) to the nearest grid point to ensure that charging 
ends before departure (begins after arrival). In this work, time grid points are 
separated by ∆ = 1 h (spacing inherited from load data in [44]). 

(c) Determine energy consumption from total distance traveled. For Class 3 (Class 5) 
vehicles, use an efficiency parameter of 0.659 kWh/mi (0.597 kWh/mi) 
corresponding to the Arrival Van’s low (high) payload configuration. 

2. For each day d: 

(a) As expected, vehicles tend to arrive at the depot in the evenings and depart in the 
mornings. Identify vehicles that must charge overnight, beginning on day d. All such 
vehicles arrive at the depot on day d and must depart on day d + 1. Vehicles that 
were not deployed on consecutive days get discarded in this step to avoid 
speculating on when those vehicles would recharge. 

(b) Discard artifacts of the conventional-to-electric conversion, such as requests for 
negligible amounts of energy (very few such artifacts were observed). 

The original dataset of trips in [50] (made by a single fleet operator over 15 days) was 
mapped to a record of 12 overnight charging sessions. Arrival times, departure times, and 
energy needs for each charging session were similar, so data from a representative session 
was selected for analysis. When more fleet trip/charging data becomes available, it is 
recommended to repeat the analyses in this report by randomly drawing charging session 
parameters from a dataset. Until such a time, the approach described herein is a practical 
alternative. 

Arrival times, departure times, and energy needs used in our numerical studies are 
provided in Table 2. Vehicles 1–7 (8–16) are Class 3, low-payload (Class 5, high-payload) 
delivery vans. Though all 16 vehicles actually belong to the same fleet, our studies 
consider two scenarios to capture the effect of varying fleet size: (i) a ‘small fleet’ scenario 
in which only vehicles 1–7 are charged overnight and (ii) a ‘large fleet’ scenario in which all 
vehicles (1–16) are charged overnight. 
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3.3 Distribution Feeder Model, Load Data 

Our impact assessment studies consider the placement of the fleet of §4.2 at various 
locations within a distribution feeder, and subsequent charging (smart or otherwise) of that 
fleet. To this end, we utilize a physics-based feeder model and one year of associated load 
data; both pieces of information are from [44], and are associated with a real feeder in 
Iowa. The chosen feeder model is shown in Figure 2. The feeder comprises 240 primary 
buses (collections of nodes) where customers connect; 53 buses (blue squares) are 
associated with commercial customers. Each bus has a dedicated secondary transformer 
which serves multiple customers. One year of hourly-averaged active and reactive power 
data is provided for each bus. However, this data is aggregated across the customers at 
each bus for privacy. 

Seven of the 53 commercial sites are selected as candidate fleet locations for our impact 
assessment studies. Selected locations are circled and labeled in Figure 2. Each selected 
location has three customers associated with it (other locations have up to 17 customers). 
As shown in Table 3, the selected locations have differing (i) typical active power 
consumption levels, (ii) transformer ratings, and (iii) capacities for additional load. There is 
also a small reactive power draw at each location (power factors exceed 0.9 at all times). 

Table 2. Fleet charging requirements. 

Vehicle ID Arrival Departure Energy Needed 

1 7:00 PM 8:00 AM 55.36 kWh 

2 8:00 PM 10:00 AM 31.74 kWh 
3 8:00 PM 8:00 AM 44.89 kWh 
4 8:00 PM 10:00 AM 26.14 kWh 
5 10:00 PM 8:00 AM 40.37 kWh 
6 11:00 PM 8:00 AM 41.31 kWh 
7 12:00 AM 8:00 AM 25.30 kWh 
8 7:00 PM 6:00 AM 11.26 kWh 

9 7:00 PM 7:00 AM 25.86 kWh 
10 7:00 PM 10:00 AM 31.99 kWh 
11 8:00 PM 10:00 AM 21.48 kWh 
12 8:00 PM 7:00 AM 46.52 kWh 
13 8:00 PM 7:00 AM 27.65 kWh 
14 10:00 PM 8:00 AM 29.51 kWh 
15 11:00 PM 8:00 AM 22.61 kWh 
16 12:00 AM 7:00 AM 27.14 kWh 
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Table 3. Select transformer and load characteristics. 

Depot 
Location 

Active Power Draw 
(Annual Average) 

Transformer 
Rating 

1008 9.46 kW 45 kVA 

1013 2.49 kW 45 kVA 
2003 14.01 kW 75 kVA 
2030 8.64 kW 75 kVA 
2035 6.87 kW 75 kVA 
2052 63.54 kW 225 kVA 
3048 2.87 kW 45 kVA 

Our seven locations were chosen to reveal a range of outcomes in our impact 
assessments (see §5). For example, the peak power reduction offered by our SC algorithm 
is likely of more (less) value at locations with less (more) capacity for additional load. 
Additionally, the demand charge reduction offered by our SC algorithm is likely of more 
(less) value at locations with less (more) average active power consumption. In our 
studies, when SC is performed at a particular location, the SC algorithm is supplied with 
the associated active power data and transformer rating. The former is utilized as  �̂�𝐶[𝑡] 
(equivalent to assuming perfect estimation of this quantity) while the latter determines 
𝑃max

𝐺 . Our use of aggregated load data is mildly limiting, as three customers are treated as 
one, at least for electricity billing and metering purposes. It should be noted, however, that 
this is sometimes the case in buildings/complexes with multiple tenants. Locations with 
few customers per transformer were intentionally chosen. 
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3.4 Fleet Operator Impact Assessment 

Fleet operator impact assessment is summarized in Algorithm 2. For a given day and fleet 
size, we consider the use of three strategies to meet the requirements in Table 2:  

 
Figure 2. Schematic of the distribution feeder model of [44]. Squares indicate 
distribution transformers and loads; each load is connected to a dedicated 
transformer. Locations selected for fleet placement are circled and labeled. 

1. Conventional Rapid Charging (RC): Each EV begins charging at maximum power 
immediately upon plug-in. 

2. Conventional Smart Charging: Each EV begins charging at maximum power at the 
earliest, low-cost time possible. 

3. Proposed Smart Charging: Charging profiles for the fleet are determined by executing 
Algorithm 1 with wn,1 = 1, wn,2 = wn,3 = wn,4 = 0, and vn = 1 for all n. 

Conventional RC and SC represent solutions on the market today [48]. For each charging 
strategy, we compute the resultant daily (i) energy charge (in $) based on π[t] and (ii) peak 
power. At the end of each month, monthly peak power is used to compute the monthly 
demand charge. We repeat this daily analysis for an entire year and report the following 
annual costs for multiple depot locations and fleet sizes: 

C1 : energy charge = sum of daily energy charges ($), 

C2 : demand charge = sum of monthly demand charges ($). 
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3.5 Grid Impact Assessment 

Grid impact assessment is summarized in Algorithm 3. For a given day and fleet size, we 
consider the use of the three charging strategies of §4.4 to meet the requirements in Table 
2; each strategy yields a set of charging profiles. For grid impact analysis, the total load at 
each depot location is the sum of (i) the baseline commercial load (from [44], not 
necessarily unity power factor) and (ii) the fleet charging load, which we assume to be unity 
power factor. Our assumption of unity power factor EV charging is both standard and 
supported by SAE J2894. The depot’s active and reactive power profiles are then fed, one 
hour at a time (along with active and reactive power profiles of all other loads on the 
feeder), to OpenDSS, a steady-state circuit equation solver for power distribution systems. 
For each 𝑡 = 1, … , 𝑇 − 1, OpenDSS returns: 

• the steady-state active and reactive power flow through each phase of each 
transmission line, 

• the steady-state active and reactive power flow through each phase of each 
transformer, and 

• the voltage magnitude and angle at each node. 

Algorithm 2. Fleet Operator Impact Assessment 

Initialize electricity billing plan 
[7]  
for each candidate depot location 
do 

for fleet size ∈ {small, large} 
do  
for each charging strategy 
do 

for each day of the year do 
Determine fleet charging load (Algorithm 1) 
Update monthly energy charge, peak power  
if end of month then 

Calculate monthly demand charge 
Update annual costs C1 and C2  

end if 
end for 
Record annual costs in Table 4 or Table 5 

end for  
end for 

end for 
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Additionally, for each 𝑡 = 1,… , 𝑇 − 1, we compute and record the sensitivity of voltage 
magnitude (i) at the depot and (ii) at any other node, to a marginal increase in active power 
draw at the depot. Sensitivity is calculated using the standard power flow Jacobian, which 
is constructed using nodal voltages (returned above), nodal current injections (specified 
through loads), and the feeder’s nodal admittance matrix (part of physics-based model) as 
described in [52]. 

According to the inverse function theorem, the power flow Jacobian J and its inverse are 
given by 

𝑱 = [

𝜕𝒑

𝜕𝒗

𝜕𝒑

𝜕𝜽
𝜕𝒒

𝜕𝒗

𝜕𝒒

𝜕𝜽

]  ⟺ 𝑱−1 =

[
 
 
 
 
𝜕𝒗

𝜕𝒑

𝜕𝒗

𝜕𝒒
𝜕𝜽

𝜕𝒑

𝜕𝜽

𝜕𝒒]
 
 
 
 

 

where 𝒑, 𝒒, 𝒗,  and 𝜽 are vectors of nodal active power injections, reactive power injections, 
voltage magnitudes, and voltage angles respectively. The upper-left block of −𝑱−1contains 
voltage magnitude sensitivities with respect to active power draws (not injections). It is 
well known that for distribution systems, 𝑱 can be ill-conditioned [53]. Therefore, instead of 
𝑱−1we utilize the Moore-Penrose pseudoinverse of 𝑱. This approach can yield approximate 
sensitivities, as numerical methods for pseudo-inverse computation (e.g., pinv in MATLAB, 
numpy, and scipy) typically pre-process ill-conditioned matrices by zeroing ‘small’ singular 
values. However, use of the pseudo-inverse requires much less computation than the 
standard alternative, in which 𝜕𝒗/𝜕𝒑 is estimated column-wise by perturbing nodal power 
injections, re-solving the power flow problem, and using a finite-differencing approach with 
the observed voltage magnitudes. 

This information is then summarized; the grid impact of a single overnight fleet charging 
session is represented by: 

• The duration and severity of voltage violations at any node. Violations occur when 
steady-state voltage magnitudes are not within ±5% of nominal (e.g., 120 V or 240 V) 
[53]. 

• The duration and severity of any overloads of any transformer or transmission line. 
Overloads occur when power flows exceed nominal device ratings. 

• The largest voltage sensitivity at each node.  
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Algorithm 3. Grid Impact Assessment 
Initialize electricity billing plan [7] 
𝒟 ≔ {92 (i.e., ceil(365/4)) distinct, randomly selected days of the year}  
for each candidate depot location do 

for fleet size ∈ {small,large} do 
for each charging strategy do 

for each day in D do 
Solve daily power flow problem without EVs (OpenDSS) 
Determine fleet charging load (Algorithm 1) 
Solve daily power flow problem with EVs (OpenDSS) 
Compute impact metrics 𝑀1-𝑀5 and 

others  
end for 
Average metrics 𝑀1-𝑀5 over all days 
Record averages �̅�1- �̅�5 in Table 6 or Table 7 

end for  
end for 

end for 

Above, ‘duration’ refers to the number of one-hour time intervals (not necessarily 
consecutive) where a violation/overload occurs. In general, violations/overloads can 
occur; only proposed SC prohibits transformer overloading and no charging strategy 
considered herein prohibits voltage violations. 

In repeating the above daily analysis over multiple days, depot locations, fleet sizes, and 
charging strategies, it was observed that there were (i) no transmission line overloads, (ii) 
no transformer overloads anywhere except at the depot, and (iii) no voltage violations 
anywhere except at the depot. It follows that (i) the grid impact of a single EV fleet will be 
spatially localized, as expected, and that (ii) transformers, rather than transmission lines, 
are the ‘weak links’ in our chosen distribution network. Thus, we chose to report only five, 
meaningful grid impact metrics for each day: 

M1 : duration of transformer overloading (h), 

M2 : average intensity of transformer overloading (per-unit), 

M3 : product of M1 and M2 (h, but energy-like quantity), 

M4 : duration of voltage violations (> 5% drop) 
(h), and  

M5 : voltage sensitivity change: with/without EVs 
(%). 
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Note that 𝑀1-𝑀3 refer to the transformer at the depot and 𝑀4-𝑀5  refer to voltage 
magnitudes at the depot. Also note that M3 captures the severity of transformer overloading 
in a single metric; high-intensity or prolonged overloading is detrimental [53]. In §5, we 
report (for each combination of depot location, fleet size, and charging strategy) �̅�1-�̅�5, 
averages of 𝑀1-𝑀5  taken over ceil(365/4) = 92 distinct, randomly selected days (down-
selection limits runtime).



 
19

 

4. Deliverable 3: Impact Assessments 
Present results of impact assessments for fleet operators and utility operators. 

Table 4. Fleet operator impact assessment results – small fleet scenario. 

Depot 
Location 

Conventional Rapid Charging Conventional Smart Charging Proposed Smart Charging 

𝐶1 𝐶2 𝐶1 + 𝐶2 𝐶1 𝐶2 𝐶1 + 𝐶2 𝐶1 𝐶2 𝐶1 + 𝐶2 
1008 7,047.99 5,288.28 12,336.26 5,318.47 7,389.29 12,707.76 5,383.00 3,807.53 9,190.53 
1013 5,553.36 4,362.23 9,915.59 3,823.85 6,805.31 10,629.16 3,824.01 3,513.64 7,337.65 
2003 8,384.41 5,280.41 13,664.82 6,654.90 7,744.59 14,399.49 6,654.90 4,685.02 11,339.92 
2030 6,766.45 5,497.72 12,264.17 5,036.94 7,314.93 12,351.87 5,036.94 4,223.67 9,260.61 
2035 6,177.26 4,798.22 10,975.48 4,447.75 6,950.45 11,398.20 4,447.75 3,797.66 8,245.40 
2052 19,687.77 12,109.91 31,797.68 17,958.26 12,549.14 30,507.40 17,958.26 11,604.14 29,562.40 
3048 5,721.31 4,463.91 10,185.22 3,991.80 6,828.28 10,820.09 3,991.80 3,443.38 7,435.18 

Table 5. Fleet operator impact assessment results – large fleet scenario. 

Depot 
Location 

Conventional Rapid Charging Conventional Smart Charging Proposed Smart Charging 

𝐶1 𝐶2 𝐶1 + 𝐶2 𝐶1 𝐶2 𝐶1 + 𝐶2 𝐶1 𝐶2 𝐶1 + 𝐶2 
1008 11,848.23 9,376.87 21,225.09 8,364.99 15,775.00 24,139.99 10,196.54 3,817.80 14,014.34 
1013 10,353.60 8,972.18 19,325.78 6,870.37 15,198.98 22,069.35 8,458.66 3,817.80 12,276.46 
2003 13,184.66 9,911.50 23,096.16 9,701.42 16,130.14 25,831.56 10,328.57 6,363.00 16,691.57 
2030 11,566.69 9,490.22 21,056.92 8,083.45 15,643.98 23,727.44 8,326.38 6,363.00 14,689.38 
2035 10,977.50 8,999.79 19,977.29 7,494.26 15,314.16 22,808.43 7,603.46 6,368.59 13,972.05 
2052 24,488.02 15,825.09 40,313.10 21,004.78 20,417.31 41,422.08 21,004.78 12,946.74 33,951.52 
3048 10,521.56 8,953.53 19,475.08 7,038.32 15,217.76 22,256.08 8,639.90 3,817.80 12,457.70 
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4.1 Fleet Operator Impact Assessment 

Results of executing Algorithm 2 are provided in this section; results for the small (large) 
fleet scenario are provided in Table 4 (Table 5). For the small fleet scenario, proposed SC 
outperforms conventional SC (RC) by 3-31% (7-27%) with respect to C1 + C2. For the large 
fleet scenario, proposed SC outperforms conventional SC (RC) by 18-44% (16-36%) with 
respect to C1 + C2. The proposed SC reduces C1 + C2 primarily through C2; this is particularly 
valuable for large fleets, where peak charging power under conventional schemes is high. 

Both conventional and proposed SC respond to TOU pricing and therefore outperform 
conventional RC with respect to C1. Note that conventional SC outperforms proposed SC 
with respect to C1. This occurs because proposed SC enforces an upper bound on the 
depot’s total demand, whereas conventional strategies do not; enforcing this bound can 
defer some charging to higher-cost ‘peak’ hours (while greatly reducing C2). Note also that 
conventional RC outperforms conventional SC with respect to C2. This occurs because 
conventional SC tends to temporally concentrate charging activity to ‘off-peak’ hours, 
whereas charging activity is somewhat distributed in conventional RC due to arrival time 
variation. Finally, we note that when executing Algorithm 1, energy demand was nearly 
always feasible, so fleet charging behavior was determined by Mode 1. Mode 2 was very 
rarely engaged; in these cases, negligible (< 1%) concessions in total fleet energy demand 
were required to preserve feasibility. 
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Table 6. Grid impact assessment results – small fleet scenario. 

Depot 
Location 

Conventional Rapid Charging Conventional Smart Charging Proposed Smart Charging 

�̅�1 �̅�2 �̅�3 �̅�4 �̅�5 �̅�1 �̅�2 �̅�3 �̅�4 �̅�5 �̅�1 �̅�2 �̅�3 �̅�4 �̅�5  

1008 2.989 3.200 11.305 0 2.938 3.065 4.925 15.187 0 5.549 0 0 0 0 2.429 
1013 0.391 0.398 0.671 0 3.183 3.000 4.511 13.533 0 5.681 0 0 0 0 2.722 
2003 0 0 0 0 1.575 2.000 2.153 4.305 0 2.608 0 0 0 0 1.487 
2030 0.054 0.059 0.131 0 1.347 0.326 0.333 0.623 0 2.317 0 0 0 0 1.294 
2035 0 0 0 0 1.388 0.065 0.066 0.132 0 2.380 0 0 0 0 1.321 
2052 0 0 0 0 0.879 0 0 0 0 1.169 0 0 0 0 0.545 
3048 0.826 0.846 1.364 0 3.307 3.000 4.541 13.623 0 5.297 0 0 0 0 2.695 

Table 7. Grid impact assessment results – large fleet scenario. 

Depot 
Location 

Conventional Rapid Charging Conventional Smart Charging Proposed Smart Charging 

�̅�1 �̅�2 �̅�3 �̅�4 �̅�5 �̅�1 �̅�2 �̅�3 �̅�4 �̅�5 �̅�1 �̅�2 �̅�3 �̅�4 �̅�5 
1008 5.978 10.230 61.774 0 9.122 4.000 10.771 43.086 6.000 16.761 0 0 0 0 2.575 
1013 5.120 8.750 44.929 0 9.320 3.761 10.114 38.234 6.000 17.064 0 0 0 0 3.230 
2003 3.989 4.745 18.941 0 4.846 3.000 5.989 17.966 0 9.264 0 0 0 0 2.800 
2030 2.261 2.719 6.513 0 4.519 3.000 5.695 17.084 0 8.854 0 0 0 0 2.996 
2035 2.076 2.461 5.237 0 4.584 3.000 5.629 16.888 0 8.880 0 0 0 0 3.166 
2052 0 0 0 0 2.998 0.120 0.121 0.121 0 5.940 0 0 0 0 1.872 
3048 5.098 8.864 45.295 0.054 9.596 3.989 10.362 41.348 2.000 16.533 0 0 0 0 3.194 
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4.2 Grid Impact Assessment 

Results of executing Algorithm 3 are provided in this section; results for the small (large) 
fleet scenario are provided in Table 6 (Table 7). For both fleet sizes, proposed SC 
outperforms conventional SC and RC by 100% with respect to �̅�1-�̅�4. With respect to �̅�5, 
proposed SC outperforms conventional RC (SC) by 3-39% (42-54%) in the small fleet 
scenario and by 30-72% (64-85%) in the large fleet scenario. 

Both conventional RC and SC lead to significant (and comparable) transformer overloading 
(�̅�1-�̅�3) at the depot. This is expected, as both conventional strategies perform high-power 
charging, differing only in the timing of this activity. Note, however, the varied severity of 
transformer overloading across depot locations. Due to differing transformer ratings and 
non-EV loads (see Table 3), the same fleet charging load creates severe overloading at 
buses 1008, 1013, and 3048; less intense (but substantial) overloading at buses 2003, 
2030, and 2035; and no overloading at bus 2052. 

Few voltage magnitude violations occurred in our studies (�̅�4  is nearly always zero); all 
recorded violations were due to conventional RC or SC of the large fleet at bus 3048. The 
value of �̅�4= 5/92 ≈ 0.054 associated with conventional RC corresponds to five, isolated 
one-hour intervals (over 92 days) with 5–9% undervoltage. The value of �̅�4 = 2 associated 
with conventional SC corresponds to two hours of 5–9% undervoltage every day. We also 
note here that for this feeder, voltage magnitudes at the selected depot locations tend to 
be 1–2% above nominal before EVs are introduced; this likely helped to reduce the number 
of undervoltage violations. 

5. Summary and Conclusions 

5.1 Summary 

The deliverables promised in our most recent quarterly project report (submitted 
7/10/2024) have been successfully completed. 

• The smart charging problem was clearly defined for fleets of electrified vehicles with 
scheduled arrivals and departures, considering i) fleet operator preferences 
(including renewable energy consumption), ii) travel demand, and iii) grid 
implications. 

• Detailed documentation was prepared on existing models and model-based 
analysis methods pertaining to EV charging and grid impact, as well as existing 
datasets, estimation methods, and/or analysis methods pertaining to charging 
demand and grid impact assessment. 

• Grid and fleet operator impact assessments were performed and detailed to 
illustrate the performance of our two-stage SC algorithm for EV fleets. 
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Additionally, the completion of this project has resulted in the submission of two academic 
papers as work products. 

• K. V. Sastry, C. Viteri, D. G. Taylor, and M. J. Leamy, “Two-Stage Smart Charging of 
Commercial Electric Vehicle Fleets to Benefit Fleet and Grid Operators,” IEEE 
Transactions on Smart Grid, 2024. (Submitted, Under Review) 

• C. Viteri, K. V. Sastry, D. G. Taylor, and M. J. Leamy, “Electric Vehicle Smart 
Charging in a Single Residence with Rooftop Solar and Energy Storage,” IECON 
2024 – 50th Annual Conference of the IEEE Industrial Electronics Society, 2024. 
(Accepted) 

5.2 Conclusions 

As the medium and heavy-duty (MD/HD) vehicle sectors (e.g., delivery vans, buses) 
transition to electric vehicles (EVs), large charging loads associated with commercial 
fleets of such vehicles are expected to significantly stress electric power distribution 
networks. Electricity pricing is designed to disincentivize this type of loading, leading to 
high fleet operating costs. To address these challenges, we present a highly flexible smart 
charging (SC) algorithm for EV fleets that arrive and depart from a common depot on a 
schedule. Our algorithm features (i) primary consideration of multiple fleet operator 
preferences (e.g., minimizing cost, using carbon-free energy), (ii) secondary consideration 
of grid impact that leverages the existence of multiple optimal (or near-optimal) ways to 
satisfy fleet operator preferences, and (iii) automatic detection and handling of infeasibility 
due to large energy demands. 

We perform two numerical impact assessment studies in which our SC algorithm is 
compared against conventional rapid charging (RC) and ’SC’ solutions on the market. Both 
studies utilize (i) a physics-based model of a real feeder, (ii) real, hourly load data for that 
feeder, and (iii) a set of realistic fleet charging requirements that are synthetically 
generated using operational data from a real fleet of conventional parcel delivery vehicles. 
Both studies reveal a range of fleet and grid operator benefits by considering various fleet 
sizes and placements within a feeder. This is important, as fleet sizing and placement are 
not always free choices; business needs may dictate the size of a fleet and its charging 
needs, and this load may need to be served at the business’ existing location. 

In comparison to conventional RC and SC, the proposed SC is shown to (i) provide fleet 
operators with significant cost savings by targeting both energy charges and (infamous) 
demand charges, and (ii) significantly reduce sensitivity of voltage magnitude (at the depot) 
to changes in active power (at the depot). The latter implies that use of the proposed SC 
(over conventional RC or SC) might allow a fleet operator to operate a larger fleet without 
degrading their service voltage. It is also shown that significant transformer overload and 
voltage drop issues can be associated with conventional RC and SC, and that the 
proposed SC mitigates these issues. The proposed SC achieves this without requiring daily 
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decision-making from the utility, making it a simple means to bring electrified fleets onto 
existing infrastructure, and to potentially defer expensive infrastructure upgrades. 

Finally, we note that the impact assessment methods in this work have decision-support 
value (independent of the SC algorithm), as existing methods (e.g., those suggested in [54], 
a guide to fleet electrification) are often crude and inaccurate due to a focus on average 
(not instantaneous) power. It is noteworthy that application of the methods of [54] to the 
charging requirements used in our studies leads to the faulty conclusion that no 
transformer upgrades are needed at the depot, whereas our high-fidelity methods tell a 
different, more accurate story. 
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Data Summary 
Data used in case studies was collected from open data catalogs, service plans, and 
commercial product specifications (e.g., NREL, Pecan Street, vehicle manufacturers, 
utility operators, and publications), and is cited herein. No data was collected from human 
or animal subjects. Data generated by the investigators is reported as graphical plots, 
figures, and tables included in thesis chapters and in published papers.  

Products of Research  
Data produced by this research is in the form of graphical plots, figures, and tables to be 
included in thesis chapters and publication of articles in peer-reviewed journals. The 
specific work products are:  

• K. V. Sastry, C. Viteri, D. G. Taylor, and M. J. Leamy, “Two-Stage Smart Charging of 
Commercial Electric Vehicle Fleets to Benefit Fleet and Grid Operators,” IEEE 
Transactions on Smart Grid, 2024. (Submitted, Under Review) 

• C. Viteri, K. V. Sastry, D. G. Taylor, and M. J. Leamy, “Electric Vehicle Smart Charging in a 
Single Residence with Rooftop Solar and Energy Storage,” IECON 2024 – 50th Annual 
Conference of the IEEE Industrial Electronics Society, 2024. (Accepted) 

Data Format and Content  
Data produced by this research is in the form of graphical plots, figures, and tables to be 
included in thesis chapters and publication of articles in peer-reviewed journals. No 
proprietary data formats were used.  

Data Access and Sharing  
Data produced by this research is in the form of graphical plots, figures, and tables to be 
included in thesis chapters and publication of articles in peer-reviewed journals. A 
Master’s Thesis will be made publicly available via SMARTech 
(https://smartech.gatech.edu/). The mission of SMARTech is to collect, curate, preserve, 
and provide access to digital content of enduring value to the Institute, including Georgia 
Tech scholarship and research.  

Reuse and Redistribution  
Data produced by this research may be reused and redistributed by the general public so 
long as proper citation to the corresponding publication is included in the reuse and 
redistribution.  

https://smartech.gatech.edu/
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