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ABSTRACT: Air pollution exposure disparities by race/ethnicity and
socioeconomic status have been analyzed using data aggregated at various
spatial scales. Our research question is this: To what extent does the spatial
scale of data aggregation impact the estimated exposure disparities? We
compared disparities calculated using data spatially aggregated at five
administrative scales (state, county, census tract, census block group, census
block) in the contiguous United States in 2010. Specifically, for each of the five
spatial scales, we calculated national and intraurban disparities in exposure to
fine particles (PM2.5) and nitrogen dioxide (NO2) by race/ethnicity and
socioeconomic characteristics using census demographic data and an empirical
statistical air pollution model aggregated at that scale. We found, for both
pollutants, that national disparity estimates based on state and county scale data often substantially underestimated those estimated
using tract and finer scales; in contrast, national disparity estimates were generally consistent using tract, block group, and block scale
data. Similarly, intraurban disparity estimates based on tract and finer scale data were generally well correlated for both pollutants
across urban areas, although in some cases intraurban disparity estimates were substantially different, with tract scale data more
frequently leading to underestimates of disparities compared to finer scale analyses.
KEYWORDS: air quality, spatial resolution, environmental justice, distributional justice, spatial inequality, inequity

■ INTRODUCTION
Air pollution exposure disparities by race/ethnicity and
socioeconomic status are a major environmental justice1

issue in the United States (US). Researchers, public agencies,
and communities are grappling with how to quantify air
pollution exposure disparities. There is an urgent need for
guidance on quantifying air pollution exposure disparities, due
to rapid evolution of data (e.g., from satellites, models, and
low-cost sensors) and to growing momentum in efforts to
measure, track, and address such disparities (e.g., from US state
environmental justice policies2,3 and screening tools4,5).
Analytic challenges6 in doing so include the definition of
disparity metrics, the collection of air pollution and
demographic data, the method of exposure assessment, and
the spatial scale of data aggregation.
Here, we investigate the spatial scale of data aggregation, i.e.,

the spatial resolution at which demographic data and air
pollution data are combined to quantify air pollution exposure
disparities. In such analyses, demographic data (e.g., race/
ethnicity from the census) and air pollution data (e.g.,
predicted pollutant concentrations from models) are often
aggregated to common spatial references, such as admin-
istrative boundaries (e.g., census tracts) or model grids (e.g.,
10 km grids), with varying spatial resolution. For example,
researchers have aggregated data at various air pollution model
grid resolutions (e.g., 1 km to 288 km)7 and at the county,8

census tract,9−11 and block group12,13 scales to quantify air
pollution exposure disparities in the US. Similarly, US public
agencies have aggregated data at the census tract5 and block
group4 scales in environmental justice screening tools.
The spatial scale of data aggregation may impact the analysis

of disparities.14 Both air pollution concentrations and
demographic characteristics can vary substantially within US
cities at fine spatial scales. For example, contrasts in air
pollution concentrations15 as well as patterns of racial/ethnic
residential segregation16,17 can be observed at the census block
level in US cities. Aggregating data at coarser spatial scales may
mask these finer variations and lead to inaccurate estimates of
air pollution exposure disparities.
The extent to which the spatial scale of data aggregation

impacts analysis of air pollution exposure disparities has not
been studied in detail, for example, across pollutants, disparity
metrics, spatial scales, and data sources. Prior studies, based on
mechanistic air pollution models in the US, found that coarser
spatial grid resolutions resulted in substantial underestimates of
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national race/ethnicity-based disparities in fine particulate
matter exposure,7 minor impacts on estimates of regional
income-based disparities in ozone exposure,18 and variable
impacts across three cities on estimates of intraurban race/
ethnicity-based disparities in fine particulate matter exposure.19

Thus, our research question is this: To what extent does the
spatial scale of data aggregation impact estimates of air
pollution exposure disparities in the US?

■ MATERIALS AND METHODS
To quantify the impact of the spatial scale of data aggregation,
we calculated and compared national and intraurban air
pollution exposure disparities for two pollutants in a consistent
manner using data aggregated at five census geographies (and
corresponding spatial scales) in 2010 for the contiguous US.
Data Aggregation. Spatial Scales of Data Aggregation

and Analysis. Our exposure disparity analyses have two
distinct spatial scales: the scale of input data aggregation (i.e.,
the scale at which demographic and air pollution data are
combined; data are typically assumed to be spatially uniform
within each spatial unit) and the scale of analysis (i.e., the scale
at which exposure disparity metrics between groups are then
analyzed).
We aggregated the inputs (air pollution and demographic

data) at five spatial scales (from coarsest to finest: state,
county, tract, block group, block; Table 1), representing
administrative boundaries with variable spatial resolution. The
census boundaries (tract, block group, and block) scale with
population density (i.e., areas with higher population density
have higher spatial resolution). We used spatial boundaries
from IPUMS20 for the 2010 Decennial Census geographies.
We then calculated and compared air pollution exposure

disparities at two spatial scales of analysis: (1) national
(contiguous US) and (2) intraurban (within 481 census-
defined urban areas in the contiguous US; details are in the
Supporting Information [SI]). National analyses include all five
spatial scales of data aggregation; intraurban analyses include
the three spatial scales with intraurban spatial resolution: tract,
block group, and block.
Air Pollution Data. We used year 2010 annual average

ambient pollution levels for two US Environmental Protection
Agency (EPA) criteria pollutants, nitrogen dioxide (NO2) and
fine particulate matter (PM2.5), from the CACES national
empirical statistical models.21,22 CACES models are based on
EPA air pollution monitoring data, land use data, and satellite-
derived air pollution and land cover data. These estimates
cover the contiguous US with block level spatial resolution.
CACES provides the model prediction at the centroid location
of each nonzero-population block in the 2010 Decennial
Census. For other scales, CACES provides the population-

weighted mean model predictions based on all block centroids
located within each block group, tract, county, or state.

Demographic Data. We used demographic data from the
2010 Decennial Census and from the 2008−2012 American
Community Survey (ACS) accessed via IPUMS20 at each
spatial scale of data aggregation for the following self-reported
demographic characteristics: race/ethnicity, housing tenure,
income, poverty, and language. The Decennial Census
provides public demographic data down to the block level
(race/ethnicity and housing tenure), and the ACS provides
data down to the block group level (income, poverty, and
language). Details for the demographic data are in SI.
Exposure Metrics. We estimate a person’s exposure as the

annual average ambient concentration for the specific geo-
graphic unit (i.e., state, county, tract, block group, or block) in
which that person lives. Our focus on outdoor, residential-
based exposures is consistent with recent US-based environ-
mental justice policy2,3 and screening tools.4,5 We estimated
exposures for groups of people defined using two distinct
approaches: population based and location based. Population-
based groups are defined based on demographic characteristics
of individual people, regardless of where they live. An example
of a population-based group is the low-income population
(across all states, counties, tracts, etc.). In contrast, location-
based groups are defined based on overall demographic
characteristics of locations (geographic units). An example of
a location-based group is the population living within a
geographic unit (e.g., states, counties, tracts, etc.) with a
greater than 35% low-income population (i.e., all people
[regardless of their own income level] who live in the
geographic units matching that condition). The population-
based approach is consistent with common approaches in
national health disparities research (e.g., comparing exposures
for different racial/ethnic groups). The location-based approach
is consistent with common approaches in environmental
justice screening tools (e.g., assessing exposures for people
who live in specific neighborhoods or locations defined as
environmental justice communities).
We calculated exposure metrics to represent the average

(mean, median) and high-end (90th percentile) concentrations
experienced for each group of people. We applied population
weighting in calculations so that exposure metrics reflect the air
pollution levels experienced by people (rather than by
geographic units or by land area), consistent with a focus on
potential public health impacts of air pollution. Details for
calculating exposure metrics are in the SI.
Exposure Disparity Metrics. For each group, we

calculated exposure disparities compared to the total
population, on an absolute basis (units: ppb [NO2]; μg m−3

[PM2.5]) and on a relative basis (units: %). Absolute metrics

Table 1. Spatial Scales of Data Aggregation

Total number of units Population-weighted median (IQRa) lengthb per unit (km)

Spatial scale Nationalc Urband Nationalc Urband

State 49e − 390 (350−520) −
County 3109 − 45 (36−59) −
Census tract 72,043 46,612 2.5 (1.5−6.4) 1.7 (1.2−2.5)
Census block group 215,491 137,312 1.4 (0.80−3.3) 1.0 (0.65−1.5)
Census block 6,182,882 2,477,876 0.26 (0.15−0.63) 0.20 (0.14−0.39)

aIQR is the population-weighted interquartile range (25th−75th percentile). bLength calculated as the square root of area. cAll nonzero-population
units within the contiguous United States in the 2010 Decennial Census. dAll nonzero-population units within the 481 urban areas in the
contiguous United States in the 2010 Decennial Census. e48 states and the District of Columbia.
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for exposure disparities are relevant for understanding
pollutant-specific health impacts; relative metrics are relevant
for understanding disproportionality in exposures and for
comparing exposure disparities across pollutants.23 We
calculated the absolute and relative exposure disparities
based on three statistics: differences in the population-
weighted mean, median, and 90th percentile exposures. Details
for calculating exposure disparity metrics are in the SI.

■ RESULTS AND DISCUSSION
This section focuses on the impact of the spatial scale of data
aggregation on estimated exposure disparities. Liu et al.24

describe the exposure disparities in detail. In summary,
exposure disparities across demographic groups were generally
larger for NO2 than for PM2.5 (on a relative basis), and
exposure disparities were generally larger by racial/ethnic
group than by income, across all scales of data aggregation.
Additionally, this section focuses on exposure disparities by

race/ethnicity; exposure disparities by other socioeconomic
characteristics (income, poverty, housing tenure, language) are
in the SI.
National Results. Population Based. We found that

analyzing national population-based exposure disparities using
the coarsest versus finest data often yielded inconsistent
results. For example, Figure 1 shows large differences in
estimated national relative exposure disparities by race/

ethnicity based on coarser-than-tract (i.e., state and county)
versus tract-and-f iner data (i.e., tract, block group, block). In
some cases, the state and/or county data yielded national
exposure disparity estimates in the opposite direction of the tract
and finer data. In the remaining cases, state and county data
often led to substantial underestimation of national exposure
disparities compared to the tract and finer data. For example,
county data led to underestimation of national exposure
disparities calculated using tract data by 20% (0.3 ppb) for
NO2 and 20% (0.1 μg m−3) for PM2.5, on average across six
racial/ethnic groups shown in Figure 1.
In contrast, for tract-and-f iner data, increasing the spatial

resolution had a relatively minor impact on the estimated
national exposure disparities. For example, Figure 1 shows
minor differences among the three finest spatial scales relative
to the exposure disparities themselves. The impact of spatial
scale (i.e., tract versus block data) accounted for 3% (0.04
ppb) of the national exposure disparity estimate (i.e., based on
block data) for NO2 and 7% (0.01 μg m−3) for PM2.5, on
average across six racial/ethnic groups (Figure 1). In most
cases, tract data led to minor underestimation of national
exposure disparities compared to block data.
We found similar patterns by spatial scale of data

aggregation for the other national population-based exposure
disparity metrics as shown in Figures S1−S11.

Figure 1. National relative exposure disparity (%) in 2010 calculated using five different spatial scales of data aggregation (state, county, tract, block
group, and block) for six racial/ethnic groups compared to the total population for (a) nitrogen dioxide (NO2) and (b) fine particulate matter
(PM2.5). The color of the bar indicates the spatial scale of data aggregation, with the lightest color indicating the coarsest spatial scale (state) and
the darkest color indicating finest spatial scale (block). The bar indicates the relative percent difference in median exposure for each racial/ethnic
group compared to the median exposure for the total population. The circle indicates the relative percent difference in population-weighted mean
exposures, and the “x” indicates the relative percent difference in 90th percentile exposures. Positive values indicate that the racial/ethnic group
experiences higher levels of air pollution exposure compared to the total population. The population for each racial/ethnic group in 2010 is listed at
the bottom of panel (b). Racial/ethnic groups do not include Hispanic or Latino populations, except for the “Hispanic or Latino” group.
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Location Based. We also found that analyzing national
location-based exposure disparities using coarser-than-tract
data often yielded inconsistent results, whereas using tract-and-
finer data generally yielded consistent results (Figures S12−
S27).
Intraurban Results. Population Based. We found that

rankings of intraurban exposure disparities across the 481 US
urban areas were generally consistent by spatial scale of data
aggregation. For example, Figure 2 shows intraurban exposure
disparities by racial/ethnic group based on tract versus block
data were well-correlated (r > 0.95). Other intraurban
population-based exposure disparity metrics based on tract
versus finer data were similarly well correlated (r > 0.93;
Figures S28−S32). However, we also identified exceptions to
this overall pattern (i.e., specific urban areas for which
estimated intraurban exposure disparities differ substantially
based on tract versus finer data); such outliers can be observed
in Figure 2 and Figures S28−S32. For example, Table S1 lists
urban area outliers from Figure 2 (complete data set is in SI).
The impact of increasing spatial resolution from tract to

block was generally similarly minor for intraurban exposure
disparities as for national exposure disparities, on an absolute
basis. However, because intraurban exposure disparities were
generally smaller than national exposure disparities, the impact
of increasing spatial resolution was more substantial for
intraurban exposure disparities on a relative basis. For example,
the impact of spatial scale (i.e., tract versus block data)
accounted for 80% (0.07 ppb) of the intraurban exposure
disparity estimate (i.e., based on block data) for NO2 and 80%
(0.02 μg m−3) for PM2.5, on average across the six racial/ethnic
groups and 481 urban areas (Table S2). Across the six racial/
ethnic groups and 481 urban areas in Figure 2, the absolute
difference in the intraurban relative exposure disparity between

tract and block data was greater than 1 percentage point in
34% of cases for NO2 and 1% of cases for PM2.5.
Tract data led to underestimates of intraurban exposure

disparities in most, but not all, cases, relative to finer data. For
example, tract data led to underestimation of intraurban
exposure disparities calculated using block data in 79% of cases
for NO2 and 66% of cases for PM2.5, across the six racial/ethnic
groups and 481 urban areas in Figure 2. Of cases in Figure 2 in
which the difference in the intraurban relative exposure
disparity between tract and block data was greater than 1
percentage point, tract data led to lower (i.e., under) estimates
in 85% of cases for NO2 and 87% of cases for PM2.5. Mean
absolute bias in intraurban relative exposure disparities based
on block versus tract data ranged from 0.4 to 1.0 percentage
points across racial/ethnic groups in Figure 2 for NO2 and 0.04
to 0.2 percentage points for PM2.5.

Location Based. For intraurban location-based exposure
disparity metrics based on tract versus block data, correlations
across US urban areas were moderately high, although
comparatively lower than for the population-based exposure
disparity metrics (r > 0.79). We found that the impact of
spatial scale had similar magnitude as the exposure disparities
themselves in many cases, and coarser data led to under-
predictions relative to finer data in most cases (Figures S33
and S34).
Discussion. Results demonstrate the importance of fine

spatial scale data for identifying and quantifying air pollution
exposure disparities, across a variety of exposure disparity
metrics, for PM2.5 and NO2, at national and intraurban scales.
In national analyses, the coarsest data (state and county scale)
generally substantially underestimated exposure disparities
based on the finer data (tract, block group, and block scale)
and, in a few cases, led to exposure disparity estimates in the
opposite direction. In intraurban analyses, the impacts of

Figure 2. Intraurban relative disparity (%) in mean exposure in 2010 calculated using block versus tract data for six racial/ethnic groups compared
to the total population in that urban area for (a−f) nitrogen dioxide (NO2) and (g−l) fine particulate matter (PM2.5) for 481 urban areas in the
contiguous United States. The area of circle indicates the relative total population of the urban area. Positive values indicate that the population-
weighted mean concentration is higher for that racial ethnic group than for the total population within that urban area. The dashed line (1:1)
represents perfect agreement between disparities calculated using block versus tract data. Racial/ethnic groups do not include Hispanic or Latino
populations, except for the “Hispanic or Latino” group. RMSE is root-mean-square error (units: percentage points). MAB is the mean absolute bias
(calculated as the mean of the differences in the absolute values of the block-based and tract-based intraurban exposure disparity estimates; units:
percentage points; positive values indicate lower tract-based estimates on average), and r is Pearson’s correlation coefficient.
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spatial scale for the coarsest (tract scale) versus finest (block
scale) data were often similar in magnitude to the intraurban
exposure disparities themselves�again, emphasizing the
importance of finest-scale spatial resolution.
Increasing spatial resolution from the tract to finer scales

(i.e., block group, block) generally had only a minor impact on
estimated national exposure disparities between groups. Those
findings are consistent with a recent mobile-monitoring air
pollution study25 in one US metropolitan region, which
reported that between-neighborhood differences (rather than
finer between-block differences) in pollution and in
segregation were a main contributor to between-group
racial/ethnic disparities in exposure.
Intraurban exposure disparities calculated using tract versus

finer data were generally well correlated across all urban areas,
although, in some cases, the impact of spatial scale on
intraurban exposure disparity estimates was substantial, with
tract data leading to lower estimates in most, but not all cases,
relative to block scale data. The finding that the impact of
spatial scale varied across urban areas is consistent with a
modeling study19 that reported that the impact of spatial scale
on PM2.5 exposures by race/ethnicity varied across three US
cities. Future studies could investigate the underlying reasons
for this variation in impact of spatial scale of data aggregation
across urban areas using the outliers identified here.
The impact of analyzing exposure disparities using data with

finer than tract scale resolution was greater for intraurban
analyses than for national analyses. This finding could be
explained in part by differences in spatial variability of
demographic patterns and/or air pollution levels at national
versus intraurban scales. Our analysis (Figure S35; methods in
SI) revealed substantially greater levels of variability in
residential patterns of race/ethnicity (i.e., higher levels of
racial/ethnic segregation, at finer spatial scales) at the
intraurban scale compared to at the national scale. In contrast,
variability in air pollution by spatial scale was relatively
consistent at the national and intraurban scales (Figure S35).
These findings demonstrate the potential importance of
aggregating data at the spatial scale of finest available
demographic data for intraurban analyses of exposure
disparities.
Limitations of this study include the following: (1) The

results are based on national air pollution models, which do
not account for all local sources of air pollution or within-block
differences in air pollution. (2) The exposure assessment is
based on at-residence, ambient air pollution levels and does
not account for other sources of exposure (e.g., during travel,
at work, etc.). (3) The analysis focuses on between-group
exposure disparities. Future studies could address these
limitations by incorporating other types of air pollution data
(e.g., from other empirical statistical models,13 chemical
transport models,26 reduced complexity models,27 satellite-
based observations,9,28 mobile monitoring,25 low-cost sensor
networks29), accounting for mobility30 and indoor31 environ-
ments in exposure assessment, and analyzing other spatial
scales (e.g., postal codes, parcels, etc.32) and metrics (e.g.,
within-group disparities, inequality metrics23,33). Additionally,
future studies could investigate the impact of uncertainty in air
pollution and demographic estimates on exposure disparity
estimates by spatial scale of data aggregation.
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