
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Four letter good, six letters better: Exploring the exterior letters effect with a split 
architecture

Permalink
https://escholarship.org/uc/item/6d67k61k

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 22(22)

Authors
Hicks, John
Oberlander, Jon
Shillcock, Richard

Publication Date
2000
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6d67k61k
https://escholarship.org
http://www.cdlib.org/


Four letters good, six letters better:
Exploring the exterior letters effect with a split architecture.

John Hicks, Jon Oberlander & Richard Shillcock
Division of Informatics
University of Edinburgh

Scotland
United Kingdom

(All correspondence to:John.Hicks@ed.ac.uk )

Abstract

Recent models employing split neural networks have demon-
strated that such architectures are effective for processing vi-
sual information. Furthermore, it has been shown that certain
emergent strategies of processing are particular to these split
architectures. We investigate one such strategy, the exterior
letters effect, extending and generalizing it, and go on to dis-
cuss the implications that effects which are marked in split ar-
chitectures bring to bear on lateralization and hemispheric spe-
cialization in human cognition.

Introduction
What might be the advantages for bi-hemispheric processing
of visual information? How does real-time high-density in-
formation management—such as that employed in the human
visual system—cope with the fact that processing of the same
thing is done in two halves, in two different places? What is it
about the interaction between the hemispheres that allows for
the apparently automatic co-operation between them? The
answers to these central questions inform almost all other ar-
eas of cognition, and discussion of them abounds in the litera-
ture. And yet modeling studies on such aspects of gross brain
morphology remain relatively under-developed, in spite of the
nervous system’s clear division centralised in two cerebral
hemispheres. The complex relationship that comes into play
between particular architectural features and general process-
ing strategies, as well as distinct variations in the nature of the
stimuli involved, can play a large role in empirical studies.
Although clearly the techniques implicit in learning and exe-
cution of a task could be multifarious, models such as the one
presented here assist in teasing apart the details of dual pro-
cessing. Split-architecture connectionist models of cerebral
function take as their motivation the well known psychology
of the hemispheres, but open out onto a field that is largely
uncharted.

Background
When cognitive science per se was still in its infancy, studies
on split brain phenomena were well underway (Gazzaniga,
1970). Work with patients who had undergone commissuro-
tomy made it clear that the two halves of the brain could func-
tion autonomously when disconnected. The highlight of this
discovery was the apparent inability of the right hemisphere
to speak for itself in any real sense (Gazzaniga, 1983). Thus, a
century after its initial stipulation, Broca’s hypothesis gained
even more secure footing. At the same time, the disparate ac-
tivity resulting from two hemispheres out of touch with each

other, and, in particular, the speechless fumblings of the right-
side, gave a real sense to the distance neuro-anatomically
(and thus perhaps experientially) that lay between the hemi-
spheres. This was a distance that was unbridgeable through
subcortical structures in the event that the corpus callosum
was cut (although see (Sergent, 1987)).

Such severe unlinking is by no means the only evidence
of separate identity of the hemispheres. The visual field is
split vertically about the fovea in the retina, the right and left
halves of the visual field projecting contralaterally into the
cortical regions of the left and right hemispheres respectively
(Sperry, 1968; Fendrich & Gazzaniga, 1989). Because of
this, large scale degradations which are specific to one hemi-
sphere, can lead to marked behavior in tasks reliant on appre-
hension of the entire visual field, as in cases of unilateral ne-
glect. This deficit, afflicting right-hemisphere stroke victims,
manifests itself commonly in the line-bisection task (Halligan
& Marshall, 1998; Reuter-Lorenz & Posner, 1990), where the
affected portion of the visual field is essentially omitted by
subjects asked to designate the midpoint of a line.

The clear contralateral routing of information to opposite
hemispheres by the visual system affords a lot of ground for
research in normals as well. Key issues about general pattern
recognition, symmetry and particularly face recognition can
be addressed (Bruce, Cowey, Ellis, Perrett, 1992). Similarly,
work in word recognition (e.g. Rumelhart & McClelland ,
1981) must at some level be affected by the constraints of the
visual processor; assuming the gaze is focussed around the
midline of a word, interactionist accounts of processing have
to deal at least with the transference of visual information to
the locus of letter activation, if not simultaneous activation in
different hemispheres.

Jordan’s account of letter activation (1990, 1995) bears on
the current study. With subjects focusing on a fixation point,
stimuli of 200msec or less, containing letter strings of a fixed
length but without a full complement of letters (e.g. “dk” is
a two letter string of length four) were presented and masked
with a null string of identical length. Subjects were asked
to report the letters that appeared. Significantly, letters com-
ing at the edge points of the string length were more robustly
reported than letters that came from interior positions. This
“exterior letters effect” (ELE) forms the vehicle for the cur-
rent discussion on split architectures, and has already been
successfully replicated in a connectionist network using a di-
vided “visual field” (Shillcock and Monaghan, in press) each
side of which projects separately to one of two hidden layers.

Reggia, Goodall, & Shkuro (1998) describe a word read-
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Figure 1: A typical instantiation of a split architecture net-
work, shown here with the aid of the PDP++ graphical inter-
face.

ing task which is learned by a split network. The task is a
vehicle for gauging the effects different network parameters
have on the degree of lateralization in the fully trained net,
lateralization being determined by a “winner take all” com-
petition between two hidden layers given a single input layer.
Other modeling work on lateralization deals with the nature
of the respective topographies, in terms of cortical organiza-
tion (Alvarez, & Reggia, 1998; Levitan & Reggia, in press),
while elsewhere Shestova & Reggia (1999) do relate a visual
identification task to which our models bears an implicit re-
semblance, insofar as there is a “dual route” strategy for the
reception of input.

Qualitative data using split network
Shillcock and Monaghan (in press) describe a network in
which the input field and the hidden units are split in two.
With a network similar to that pictured in Figure 1, they
present lexical input to the network, but include a positioning
technique which allows the four letter words to move across
the visual field, being presented in any one of five positions
(from occupying only the left hemi-field to occupying only
the right hemifield, passing through the midpoint, where two
letters of the four are projected to each side, halfway). It is
at root this method of data presentation that ensures that the
split net can and will develop a strategy for solution that is
not found in the non-split control.

This effect, which relates to Jordan’s work as described
above, manifests itself as a diminished reliance in the trained
network on the interior letters of words, with a related robust-
ness for recognition for letters in word-final and word-initial
positions. Sucn networks seem to exploit the exterior letters
to a greater extent than the nonsplit networks. We claim that
the preferential treatment of the exterior letters is provoked by
the manner of presentation and the current study is intended
to expand upon this idea.

To sum up Shillcock and Monaghan’s findings: there is an
ELE, comparable to that found with human subjects, demon-
strated by their model. After training the networks with a split
architecture showed a significant advantage in recognition of
the exterior letters when degraded stimuli consisting of the
original words with either the interior or exterior letter pair

“masked” with an ambiguous activation pattern. This finding
was true in their study for all positions across the two visual
fields. The study was slightly limited however; only four-
letter words were used. These are a special case, containing
two interior and two exterior letters. Below we explore the af-
fect in the six letter case, also expanding on the criteria used
to measure the effect.

Modeling with a Split Architecture
Rarely are claims made that align connectionist models di-
rectly with cellular components of the cortex, upon which the
design and operation of simulated neural nets may neverthe-
less be based.

This caveat is even more salient within the split architec-
ture paradigm, each of the hidden layers ostensibly standing
for an entire hemisphere to which input is projected. Other
things being equal, it is important to avoid such direct corre-
lations between the neural level and the grain of the model.

Experiments
Two experiments were performed. For each one, a number of
different simulations were run using split and non-split net-
work designs. Each simulation was repeated 10 times and the
results all reflect averages for the 10 runs. Subsequent tests
using degraded stimuli employed each of the 10 trained nets
for that class, the results again being averaged. Details of the
nets and the stimuli are given below.

Materials
A series of simulated neural networks, employing a back-
propagation learning algorithm, was trained using the top 601

four and six letter words of English respectively. Also used
was a list of 60 random strings of the same length2. The
words were coded following the system of Plaut and Shallice
(1994), assigning 8-bit features to each letter, each feature
representing an aspect of letter orthography such as “contains
closed area” etc. The coded words were then presented to
the network through a shift invariant identity mapping (SIIM)
task which maintains the integrity of the stimulus organiza-
tion, while moving it sequentially along the input window. In-
put nodes that fall outside the location of the word at any time
have activation zero, as do the inactive bits within the eight
bit feature vector of each letter. The vertical split in the in-
put reflects that of the fovea and thus, as a word is repeatedly
presented to the network from all possible positions across
the input, it crosses from one “visual hemifield” to the other,
activation being redirected to the associated hidden layer ac-
cordingly.

Separate networks were used for the four and the six let-
ter tasks, but the number of hidden units, 20, remained the
same in each case. Nets not possessing a split hidden layer
were used for a control task in which a simple visual field
(containing the same number of input units as the non-split
network). Networks featured full feed forward connectivity
between the layers, save in the case of the non-split models,

1Ranking of the words was based on frequency counts from the
celex lexical database.

2The distribution of letters in these strings was absolutely flat, in
opposition to the skewed frequency counts for high frequency words
of English.
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Figure 2: Comparison of nonsplit and split models when net-
works trained to recognize a set of random strings are fed
degraded stimuli, where only the exterior letters are present.
The error for the exteriors in the split model is much dimin-
ished.

in which the connectivity between the input and hidden layers
underwent a random pruning of half of the connection. This
was to ensure that the network’s power was consistent with its
split counterparts, network power being directly proportional
to number of weighted connections.

For all simulations the PDP++ Neural Nets software from
CMU was used, running on an Ultra 5 work station.

Results
Experiment One: Replication of previous Results
In attempting to replicate the exterior letter effect that Shill-
cock and Monaghan showed, we trained split and non-split
networks on the English and non-word stimuli. As their sim-
ulations mirror Jordan’s recognition task for exterior letters,
and this involved the presentation of degraded or masked let-
ter strings to trained nets, we used a similar technique. How-
ever, it is worth pointing out that we also found a general
advantage inword recognition for the split networks. This, of
course, relates to the size and nature of the lexicon and overall
error at the output layer, whereas the letter recognition task is
defined in terms of individual letter positions.

On the individual letter scores, for stimuli in which the in-
terior letters were rendered ambiguous, Shillcock and Mon-
aghan found an effect similar to Jordan’s empirical finding,
namely that recognition of exterior letters was favorable in
such conditions, but significantly more so when the network
employed a split architecture. This preference is seen in Fig-
ure 2 for non-words and Figure 3 for words. Paired t-tests
(two-tailed) checking relative error of exterior letters across
networks (d f = 19) gavet = 14:73; p < :0005 for the study
in non-word strings andt = 23:32; p< :0005 for that involv-
ing English words, a highly significant effect representing an
advantage for the split net in both cases.

Rather than the specific presentation of degraded stimu-
lus that Shillcock and Monaghan demonstrate, to generalize
the effects of the split architecture, if they are indeed robust,
a more general technique is helpful. The effects of mask-
ing letter pairs in strings becomes inordinately complex with
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Figure 3: Comparison of nonsplit and split models when net-
works trained to recognize the English word set are fed de-
graded stimuli, where only the exterior letters are present, and
the interiors masked.

strings even of 6 letters, as we later found (five types of mask-
ing means at least a 10 way comparison of maskedon each
network) and generally, we would like to find a more all en-
compassing and straightforward view of network behavior, in
terms of letter position error after training, for example. To
this end we compared the two models, without using masked
words.

However, although we were able to replicate and even gen-
eralize Shillcock and Monaghan’s findings to a degree, by
using degraded stimuli, we found that the effect itself did not
significantly cross over into analysis of error levels by letter
position as a whole, as Figure 4 shows.

Experiment Two: Extension of ELE

In the second experiment, our attention was directed to the
networks’ performance on the learning task with the six letter
stimuli. Again, training consisted of learning over all posi-
tions in the visual field, with two different stimulus sets; the
top 60 six letter words of English and 60 pseudo words, or
random letter strings.

While in the case of the four letter stimuli no significant
difference could be demonstrated using error by letter posi-
tion, for the six letter case there was indeed a notable differ-
ence in network performance as seen below. Figure 5 shows
the error for each letter position after non-split and split net-
works had both been trained on the non-word stimuli. In this
case a fairly significant drop in error was registered. Taking
the difference in error between exterior letters and their ad-
jacent interior letters, we then compared the differences in
these (i.e. has the network error dropped significantly for one
of the networks on the exterior letters?).d f = 9 for each of
the following two tailed t-tests: the word initial pair, for each
network,t = 6:64; p< :0005; the word initial pair in the split
network compared with the word final pair in the non-split
network,t =�3:47; p< :007; the word final pair in the split
network compared with the word initial pair in the non-split
networkt =�2:49; p< :034; and the word final pair for both
networkst = 4:65; p < :001. These figures in the main cor-
roborate the story told by the graph: that the split network



1 2 3 4
Letter Position

0

0.5

1

1.5

2
M

ea
n 

S
qu

ar
ed

 E
rr

or
Non−split Network
Split Network

Figure 4: Comparison of nonsplit and split models for the
top 60 4 letter words of English. The error is registered af-
ter 400 training epochs. Although the error drops across the
board for the split model, it does so uniformly, the exterior
letters showing no advantage (the best result from 4 sepa-
rate interior-exterior letter error comparisons between differ-
ent networks architectures, using a two tailed t-tests,d f = 9,
gavet =�2:89; p< :018)

purchases more success using outside letters than the non-
split network. This is statistically clearest for the first and
last of the above comparisons, where the only difference was
the network architecture (cross word comparisons, e.g. word
initial with word final, admit interference from the stimuli).
A similar comparison within each network (i.e. seeing if
there was a significant drop in performance between interior
pairs and exterior pairs not linked to a change in network ar-
chitecture) yielded,t = :97; p < :359, for the non-split net,
t = :54; p< :603, for the split, or, no difference.

Figure 6 shows the results for the different nets after train-
ing with the English word stimuli. As above,d f = 9 for each
of the following two tailed t-tests: the word initial pair, for
each network,t = 6:30; p< :0005; the word initial pair in the
split network compared with the word final pair in the non-
split network,t = �12:07; p< :0005; the word final pair in
the split network compared with the word initial pair in the
non-split networkt = �6:81; p < :0005; and the word final
pair for both networkst = 2:84; p< :019 The significant dip
in the error of exterior letters reiterates the trend shown in the
graph. Of particular interest here is the form of the “arch”
in the error by position of the split network, as well as the
quasi-sinusoidal effect the non-split net seems to find when
presented with the English word strings. These topics are
taken up in the general discussion.

Discussion
In this study we have performed experiments with a series
of split and non-split neural networks. The results re-affirm
the main finding of Shillcock and Monaghan, that a differ-
ence in network performance is based on the architecture,
split or non-split, that that network employs. Shillcock and
Monaghan’s model produced an ELE, which says exterior let-
ters of strings are favored in conditions of stimulus degrada-
tion. This effect was demonstrated by them under very spe-
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Figure 5: Comparison of nonsplit and split models for 60 ran-
dom strings of 6 letters each. The error is registered after 400
training epochs. See text for details.
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Figure 6: Comparison of nonsplit and split models for the top
60 6 letter words of English. The error is registered after 400
training epochs. See text for details.

cific conditions, which we were able to generalize as hold-
ing across the board for degraded stimulus3. The effect, a
large drop in relative error by the split network for exterior
letters only, is clearly seen in the corresponding figures (2
and 3). We tried but were not able to extend Shillcock and
Monaghan’s results still further using simple error monitoring
criteria, whereas with six letter strings the simple error metric
not only revealed the ELE, but did so strongly.

In general, the ELE can be seen as the benefit of having
a split hidden layer. With a single hidden layer, the map-
ping learned by the network for each pattern at each letter
position is highly interdependent. Thus instantiations of let-
ters at one position are much more likely to be conflated with
their immediate neighbors. What a separate layer for each
visual field buys is a foothold for representational indepen-
dence. The same mapping is learned in either case, but with

3It is worth noting that in their actual task, Shillcock and Mon-
aghan read error at single presentation positions of input, as well as
the corresponding letter position at output; that is, although they ex-
amined every position, we demonstrated the cumulative effect of the
error at different positions.



the split network, error back-propagated from the output to
hidden layers during learning brings each hidden layer into
line with the other through an indirect coordination. Thus a
modicum of independence in each layer is retained, and this
is used as collateral against an investment, or specialization,
that that layer makes in direct proportion to the input it is
exposed to. And this input favors, in the case of each hid-
den layer, the exterior letters of the stimulus, by simple fact
of relative exposure (interior letters disappearing across the
“fovea” and into the other hemi-field sooner for every pattern
presented). This potential “separateness” for marginal phe-
nomena (i.e. exterior letters) licenses, amongst other things,
the robust behavior in the face of degraded input the split net-
work demonstrated.

Other questions remain, however. For example, although
for the six letter case we were able to show preferential learn-
ing for exterior letters just by monitoring error by letter po-
sition, the four letter case yielded no such view. A possible
reason for this is network competence in terms of the capac-
ity of the hidden layer to find a secure mapping from input to
output. The total number of hidden units was the same in both
nets; yet the six letter strings required not only a larger input
area (two visual hemi-fields ofsix, as opposed to four, let-
ters each), but they also constituted a much larger input set in
general, as each word appeared in each possible position (five
for the four letter model, butsevenfor the six letter case).
Thus at the lower end of the extreme, the smaller net man-
ages its quarry rather elegantly, the residual shape of the error
by letter (Figure 4) probably reflecting nothing other than the
structural regularities present in English orthography. When
this competence envelope is pushed, as in the case of increas-
ing the task load on the hidden units with the introduction of
a six letter mapping, the hidden layer is forced to resort to
economic measures, visible as the ELE. Indeed, this would
provide some explanation of why, at the four letter level, the
ELE can only be detected with finer method, the presentation
of corrupted input.

If the effect is a conflation of these two trends, then that
goes some way to explaining the “arch” of the split bars in
figure 6: the pressure on the net to retain as much as it can
means a sacrificing of the representations of interior letters in
favor of the exterior representations which are easier for each
hidden layer to maintain. The contrary shape of the nonsplit
network in the same figure suggests that it needs to resort to
a different strategy4 in order to degrade gracefully under the
increased weight of the six letter task.

These suggestions form but a part of a larger set of topics
to which modeling with a split architectures gives rise. There
are many others besides, not the least of which is a retention
of the intuitive notion known as “modularity”at some level
in the brain. At one time, connectionist models threatened to
rule out the idea of “separate parts” altogether. The current
study is one which demonstrates the integration of two con-
cepts: the benefits brought by separation–e.g. the indepen-
dence of the hidden layers as a means of exploiting presen-
tational regularities, like exposure to exterior letters, which
are themselves brought aboutfor free through the relation-

4Perhaps one not unlike taking English C-V-C phonological reg-
ularities, or rather the way they manifest in orthography, as a tem-
plate for resolving input.

ship that obtains between the model and the environment; and
the importance of concentration, as that of the units within the
hidden layers, without which the error driven learning of such
problems would not be possible at all.
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