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Abstract
Obtaining robust estimates of population abundance is a central challenge hindering 
the conservation and management of many threatened and exploited species. Close-
kin mark-recapture (CKMR) is a genetics-based approach that has strong potential to 
improve the monitoring of data-limited species by enabling estimates of abundance, 
survival, and other parameters for populations that are challenging to assess. However, 
CKMR models have received limited sensitivity testing under realistic population dy-
namics and sampling scenarios, impeding the application of the method in population 
monitoring programs and stock assessments. Here, we use individual-based simula-
tion to examine how unmodeled population dynamics and aging uncertainty affect 
the accuracy and precision of CKMR parameter estimates under different sampling 
strategies. We then present adapted models that correct the biases that arise from 
model misspecification. Our results demonstrate that a simple base-case CKMR 
model produces robust estimates of population abundance with stable populations 
that breed annually; however, if a population trend or non-annual breeding dynamics 
are present, or if year-specific estimates of abundance are desired, a more complex 
CKMR model must be constructed. In addition, we show that CKMR can generate reli-
able abundance estimates for adults from a variety of sampling strategies, including 
juvenile-focused sampling where adults are never directly observed (and aging error 
is minimal). Finally, we apply a CKMR model that has been adapted for population 
growth and intermittent breeding to two decades of genetic data from juvenile lemon 
sharks (Negaprion brevirostris) in Bimini, Bahamas, to demonstrate how application of 
CKMR to samples drawn solely from juveniles can contribute to monitoring efforts 
for highly mobile populations. Overall, this study expands our understanding of the 
biological factors and sampling decisions that cause bias in CKMR models, identifies 
key areas for future inquiry, and provides recommendations that can aid biologists in 
planning and implementing an effective CKMR study, particularly for long-lived data-
limited species.
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1  |  INTRODUC TION

Population abundance plays important roles in both fundamental 
and applied biological research and is associated with a wide range 
of ecological and evolutionary processes (Berryman, 1989; Carbone 
et al., 2011; Ellegren & Galtier, 2016; Hassell, 1975; Robertson, 1996). 
Abundance estimates and trends are also key metrics for conser-
vation and management and are commonly used to assess conser-
vation status (Wilson et al., 2011), quantify the impacts of threats 
and/or recovery efforts (Jennings,  2000; Magera et  al.,  2013; 
Ward-Paige et  al.,  2012), and scale regulated harvest quantities 
(e.g., allowable biological catch, annual catch limits) for managed 
populations of target and non-target species. Consequently, a wide 
range of methods have been developed for estimating population 
abundance (McCauley et al., 2012; Schwarz & Seber, 1999; Wilson & 
Delahay, 2001).

Capture-mark-recapture (CMR) is one prominent and widely 
used method in which abundance is estimated by constructing cap-
ture histories for each sampled (or tagged) individual, estimating 
capture probabilities, and comparing the number of re-captured in-
dividuals to the total number of sampled individuals (Cormack, 1964; 
Jolly, 1965; Seber, 1965). A number of variations of CMR methods 
have been developed over the years to account for varied popula-
tion demographics and sampling schemes (Amstrup et  al.,  2010; 
Pollock, 2000; Royle et al., 2013), but the approach remains largely 
intractable in situations where recapture rates are very low, as with 
many low density and highly mobile marine species (Boyd et al., 2018; 
Kohler & Turner, 2001; Webster et al., 2002). In addition, estimating 
a capture probability for CMR requires an estimate of the rate at 
which tags are lost (Arnason & Mills, 1981; Hyun et al., 2012) and 
reported (e.g., by fishermen or hunters; Green et al., 1983, Pollock 
et al., 2001, Sackett & Catalano, 2017), and tag loss and reporting 
rates vary with the species and experimental design (Oosthuizen 
et al., 2010). As such, their estimation is likely to require auxiliary 
studies that demand more time and resources and may be reliant on 
cooperation from individuals that encounter the tags.

CMR provides direct information about the sampled demo-
graphic, but many highly mobile marine species have spatially segre-
gated life histories and are only available for sampling in nearshore 
habitats as juveniles before transitioning to a less accessible pelagic 
habitat as adults. In such cases, CMR results are restricted to pro-
viding direct information about the juvenile portion of the popula-
tion, while the population dynamics of adults can only be modeled 
effectively if additional data are available and if key assumptions are 
met (Kendall, 1999; Pollock, 2000). As alternatives to CMR, surveys 

or transect-based methods can be helpful tools to estimate regional 
abundance (Schwarz & Seber, 1999). However, variability in survey 
length, uncertainty surrounding the proportion of habitat sampled, 
and shifts in habitat availability, as well as changes in behavior aris-
ing from the presence of human observers and observation error 
are common pitfalls that can make such methods unreliable or in-
comparable across studies (Boyd & Punt, 2021; Davis et al., 2022; 
McCauley et al., 2012).

While CMR, surveys, and transect-based methods can all be use-
ful tools for generating estimates of absolute abundance in certain 
contexts, applying them in an unbiased way can be prohibitively 
challenging in many systems. When estimates of absolute abun-
dance are infeasible, indices of relative abundance are commonly 
used to assess populations of exploited species (Campbell, 2015). In 
fisheries, abundance trends derived from catch and effort data (e.g., 
catch-per-unit-effort, CPUE), in concert with biological reference 
points, can inform management by providing critical information 
about whether a population is overfished or if overfishing is actively 
occurring (Cortés & Brooks,  2018). However, it is extremely chal-
lenging to account for all the factors that could influence catchability 
(Maunder et al., 2006); hence, indices of relative abundance derived 
from CPUE are rarely linearly proportional to actual abundance 
(Harley et al., 2001; Lynch et al., 2012; Maunder & Punt, 2004). Fish 
or fisher behavior contributes to hyperstability (Erisman et al., 2011; 
Ward et  al.,  2013) and biased inference about abundance trends 
can result if CPUE data are interpreted in isolation, or if linearity 
between catch rate and abundance is implicitly assumed (Maunder 
et al., 2006). Furthermore, estimating trends of relative abundance 
for highly mobile species frequently requires the integration of mul-
tiple independent surveys that suggest differing abundance trends, 
making it difficult to establish true abundance patterns (Peterson 
et al., 2021). All of these issues are amplified in taxa such as elas-
mobranchs (sharks, skates, and rays), where reported catch data are 
often unreliable (Cortés & Brooks, 2018). While CPUE can provide 
invaluable information regarding stock status and harvest pressure 
when analyzed in the right context (e.g., via an integrated model 
that incorporates additional data streams), there is an urgent need 
for methods that can provide robust estimates of absolute popula-
tion abundance in circumstances where catch data are unreliable or 
strongly correlated with factors other than population trend (e.g., 
changes in fishing practices, skill, or gear improvement, or environ-
mental perturbations).

Close-kin mark-recapture (CKMR) is a genetics-based ap-
proach for estimating absolute population abundance that over-
comes many of the logistical challenges associated with CMR 
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and other abundance estimation methods (Bravington, Skaug,  & 
Anderson, 2016; Skaug, 2001). As such, CKMR has great potential 
to expand monitoring efforts and improve or enable assessments 
of species for which conventional methods are intractable. In con-
trast to conventional CMR, the tags in CKMR are genotypes, and 
animals are considered “re-captured” when their kin are identified 
(Bravington, Skaug, & Anderson, 2016). This removes the need for in-
dividual recapture and allows for the estimation of adult abundance 
using samples collected solely from juveniles, as well as samples 
obtained lethally through fishing or hunting (Bravington, Skaug, & 
Anderson, 2016; Hillary et al., 2018). While CKMR can theoretically 
leverage any relationship, the most common applications so far have 
focused on parent-offspring pairs (POPs) (Bravington, Grewe,  & 
Davies, 2016; Marcy-Quay et al., 2020; Ruzzante et al., 2019) and/or 
half-sibling pairs (HSPs) (Hillary et al., 2018; Patterson, Hillary, Kyne, 
et al., 2022). Similar to conventional CMR, CKMR can estimate quan-
tities beyond abundance, including survival (Hillary et  al.,  2018), 
fecundity (Bravington, Grewe,  & Davies,  2016), dispersal (Conn 
et al., 2020; Feutry et al., 2017; Patterson, Hillary, Kyne, et al., 2022), 
and, potentially, population growth rate, though which parameters 
can be estimated depends on the form of the model and type of 
kin pairs modeled. In cases where sampling is limited to juveniles, 
CKMR can provide added value to conventional CMR by generating 
parameter estimates for the adult population while CMR estimates 
parameters for the sampled (in this case juvenile) portion of the pop-
ulation. These advantages and possibilities make CKMR an exciting 
tool to improve monitoring efforts and population assessments for 
data-limited species of management and conservation concern, ei-
ther in conjunction with, or in place of, conventional CMR.

Despite CKMR's strong potential to provide key information 
for conservation and management, its implementation has been 
slowed by a lack of clarity regarding the flexibility and limitations 
of the method. Several studies have discussed factors that are likely 
to cause bias if left unaccounted for in CKMR models (Bravington, 
Skaug, & Anderson, 2016; Conn et  al.,  2020; Trenkel et  al.,  2022; 
Waples & Feutry, 2021), but there have been few quantitative as-
sessments of the biases that arise from applying an overly simplistic 
CKMR model to a population with complex dynamics (but see Conn 
et al., 2020, Waples & Feutry, 2021). For example, a simple base-case 
CKMR model (e.g., equations 3.3 and 3.10 in Bravington, Skaug, & 
Anderson,  2016) produces an abundance estimate that assumes 
abundance is constant over the modeled time period. However, real 
populations experience interannual fluctuations in population size. 
If such changes are persistent or severe (e.g., following an environ-
mental disaster or introduction of heavy fishing pressure), then it 
will be necessary to specify a more complex CKMR model that can 
accommodate a changing population if year-specific abundance es-
timates are desired.

When modeling half-sibling relationships, a simple base-case 
CKMR model assumes that the probability of two individuals shar-
ing a parent is a simple exponential function of the year gap that 
separates their births. However, many long-lived species exhibit 
intermittent breeding whereby one or more years elapse between 

reproductive events (Bauwens & Claus, 2019; Desprez et al., 2018; 
Morbey & Shuter, 2013; Shaw & Levin, 2013; Skjæraasen et al., 2020), 
resulting in different probabilities of detecting half-siblings depend-
ing on the age gap (Waples & Feutry, 2021). Systematic intermittent 
breeding will cause bias in CKMR parameter estimates if unac-
counted for in the model (Waples & Feutry, 2021). While it may be 
possible to infer breeding periodicity based on the distribution of 
observed kin pairs in the data, instances of off-cycle breeding, mixed 
breeding schedules (e.g., a population comprising both annual and 
multiennial breeders), and aging uncertainty that leads to errors in 
cohort assignment may obscure the signal (Cubaynes et  al.,  2011; 
Higgs et al., 2020; Öst et al., 2018; Rivalan et al., 2005).

Finally, a core component of CKMR is the use of age data, which 
is required to assign individuals to the correct cohort (Bravington, 
Skaug, & Anderson, 2016). Direct aging is very challenging for some 
taxa (Cailliet,  2015), and length-based age assignment is prone to 
bias when growth curves are based on size-selective sampling, as 
they often are (Gwinn et al., 2010). While more advanced statistical 
methods can account for uncertainty in aging during the modeling 
process (Schwarz & Runge, 2009), it may also be possible to alleviate 
bias by targeting sampling to age classes that can be reliably aged, 
such as young-of-the-year (YOY) which are often easily distinguished 
from other age classes by their small size and/or the presence of 
umbilical scars (Feldheim et al., 2002). Sampling constraints will not 
always permit long-term sampling of YOY and the number of cohorts 
required to produce robust parameter estimates with CKMR is un-
clear. A better understanding of the circumstances in which unob-
served population dynamics or sampling limitations are likely to bias 
CKMR model estimates, in combination with strategies to mitigate 
that bias, will help ensure robust application of the method and facil-
itate its integration into conservation and management frameworks.

Elasmobranchs (sharks, skates, and rays) are a group of highly 
vulnerable marine species that play key ecological roles as apex- 
and meso-predators in ecosystems around the world (Ferretti 
et al., 2018; Vaudo & Heithaus, 2011) and are likely to benefit from 
future application of CKMR. Around one-third of the 1200+ elasmo-
branch species are threatened with extinction, due primarily to over-
fishing (Dulvy et al., 2021), while nearly half of elasmobranch species 
(46%) are classified on the IUCN Red List of Threatened Species as 
Data Deficient and only a small fraction of exploited populations 
are managed sustainably (Kindsvater et  al.,  2018). Conventional 
methods for estimating abundance and mortality are intractable for 
many elasmobranch populations because individual recapture rates 
for highly mobile elasmobranch species can be very low (Kohler & 
Turner, 2001), and it can be logistically challenging to physically cap-
ture and mark larger species (Guttridge et al., 2017). In contrast to 
conventional methods, CKMR requires only small tissue samples that 
can be obtained from adults via biopsy, or from juveniles that are 
easier to handle than their adult counterparts. There is also no need 
for individual recapture so each animal only needs to be captured 
and handled once, making this a more feasible approach for many 
elasmobranch populations. In addition, when adults are unavail-
able for sampling, the life histories of many elasmobranch species 
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may permit the use of juvenile-only CKMR models (e.g., half-sibling 
(HS) CKMR) that can estimate adult abundance without sampling a 
single adult (Bravington, Skaug, & Anderson, 2016; Førland, 2019). 
Considering that many migratory elasmobranchs use nursery areas 
where juveniles are more readily available for sampling than adults 
(Heupel et al., 2007), the potential for CKMR to provide novel in-
sights into difficult-to-study elasmobranch populations is vast.

Close-kin mark-recapture has been applied to several elas-
mobranch populations to date (Bradford et  al.,  2018; Bravington 
et  al.,  2019; Delaval et  al.,  2023; Hillary et  al.,  2018; Patterson, 
Hillary, Kyne, et  al.,  2022; Trenkel et  al.,  2022) and is likely to be 
an important tool to inform elasmobranch conservation and man-
agement in the future. However, elasmobranch populations are 
susceptible to steep population declines arising from overexploita-
tion (Ferretti et  al.,  2018), commonly exhibit multiennial breeding 
cycles (Nosal et al., 2021), and are exceptionally challenging to age 
(Cailliet, 2015). As such, there is a risk that CKMR models that do not 
sufficiently account for these factors will produce biased parameter 
estimates that will be incorporated into management frameworks 
and lead to incorrect management actions that ultimately threaten 
elasmobranch populations.

To facilitate the robust application of CKMR to elasmobranchs 
and other long-lived taxa facing similar challenges with abundance 
estimation, we investigated the sensitivity of CKMR parameter es-
timates to unmodeled dynamics related to population growth and 
breeding schedule, as well as uncertainty in age assignment. We 
used stochastic individual-based simulation to generate distinct 
populations of lemon sharks (Negaprion brevirostris), a representa-
tive long-lived species with promiscuous mating and multiennial 
breeding, under different population dynamics scenarios and sam-
pled each population using three sampling schemes that targeted 
different age classes. Two different CKMR models were fit to each 
dataset: one that was naïve to at least one component of the data-
generating model (naïve model) and one that was adapted to account 
for all relevant population dynamics (adapted model). We compared 
the bias in parameter estimates from both models (naïve vs adapted) 
and across all three sampling schemes, including one in which age 
data were unreliable. Finally, we applied a model that was adapted 
for population growth and multiennial breeding to two decades of 
real genetic data from a small population of lemon sharks in Bimini, 
Bahamas, to generate a time series of abundance estimates for the 
breeding population of females. Collectively, these results provide 
important insights into the ways in which unmodeled population 
dynamics, sampling selectivity, and aging error affect CKMR model 
performance, while also offering guidance regarding sampling de-
sign and model construction.

2  |  METHODS

Our simulation framework comprised four primary components: 
(1) an individual-based population simulation that stochastically 

generated distinct populations with known parameters, (2) selective 
sampling of age classes from those populations, (3) construction of a 
pairwise comparison matrix from the samples, and (4) a CKMR model 
that was fit to the pairwise comparison matrix to estimate the known 
population parameters. The first three components comprised our 
data-generating model (DGM) while the latter formed our estima-
tion model (Figure 1).

We then tested the interplay of population dynamics and model 
complexity by iteratively varying a subset of population parameters 
(Table  1) and fitting two CKMR models to the data: one that was 
naïve to the added dynamics, and one that was adapted to account 
for them. Each scenario was repeated 500 times, with each itera-
tion producing a population with a distinct pedigree and parameter 
estimates.

2.1  |  Data-generating model

Parameters governing our individual-based population simula-
tions were designed to replicate the life history traits and popula-
tion dynamics of lemon sharks in Bimini, Bahamas, (similar to White 
et al., 2014) (Appendix S1: Table S1). Females bred with one, two, or 
three distinct males each breeding cycle and produced two or three 
pups with each male, resulting in a range of 2–9 total pups produced 
per female per year. We set no limit on the number of females an 
individual male could breed with. As a consequence, the variance in 
reproductive output for males was much greater, ranging from 2 to 
41 offspring per breeding male per year (median = 6). After maturity, 
fecundity was age-invariant, so sex-specific lifetime reproductive 
output was approximately equal across the population. Survival was 
assumed constant within each of three life stages, which we desig-
nated as young-of-year (YOY; age 0), juvenile (age 1–11), and adult 
(age 12–50). We assigned knife-edged maturity following White 
et al.  (2014), so every individual age 12 and over was available for 
breeding, while no individuals younger than age 12 were allowed to 
breed.

2.1.1  |  Population growth

We varied population growth in our DGM by reducing or adding 
mortality in juveniles and adults (Appendix  S1: Table  S1). For the 
slight increase and decline scenarios (Table 1: Scenarios 2.1 and 2.2), 
mortality was increased or reduced by ~1% from the beginning of 
the simulation, resulting in a population growth rate of ±1% per year. 
To achieve more substantial declines in population size (Table  1: 
Scenario 2.3), we simulated a stable population for 80 years and 
then stochastically imposed 4–7% added mortality for juvenile and 
adult age classes for years 81–90 (when imposed from the beginning 
of the simulation, the population invariably went extinct). This pro-
duced a population that declined at a rate of ~7% per year for the last 
10 years of the simulation.
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2.1.2  |  Intermittent breeding

Many elasmobranchs systematically breed on multiennial cycles 
(Feldheim et al., 2002, 2017; Nosal et al., 2021). To examine the bias 
that accrues when this trait is unaccounted for in a CKMR model, 
we ran simulations where all females bred on a bi- or triennial cycle 
(Table 1: Scenario 3.1–3.3), including one scenario where we allowed 
20% of breeding females to stochastically breed off-cycle or fail to 
breed when they were on-cycle (Scenario 3.2). Each female in our 
simulation was assigned a breeding cycle at birth, which determined 
the first year of reproduction for multiennial breeders. In scenarios 
with biennial breeders, this resulted in a population where half of 
the females reproduced for the first time in the year they matured 
(age 12) and the other half reproduced for the first time the follow-
ing year (age 13). For the scenario with triennial breeding, a third 
group reproduced for the first time at age 14. Males were assumed 
available to breed every year once they reached maturity at age 12.

2.2  |  Sampling

All simulated populations were sampled using three different 
schemes that selected for different age classes: the first drew sam-
ples exclusively from young-of-year (age 0) individuals; the second 
made juveniles of all ages except young-of-year (ages 1–11) available 
to sample; and the third allowed sampling of all age classes (ages 
0–50). These scenarios were chosen to replicate potential sampling 
opportunities for elasmobranchs such as nursery areas (Feldheim 
et al., 2002; Heupel et al., 2007), juvenile aggregation sites (Jacoby 
et al., 2012; Rowat et al., 2007), and resident populations (Snelson & 
Williams, 1981), respectively.

In each case, the population was initially sampled at four differ-
ent intensities representing 0.5%, 1%, 1.5%, and 2% of the popula-
tion. Samples were drawn annually and non-lethally for 4 years at 
the end of the population simulation (i.e., years 87–90), following re-
production but before mortality each year. With a stable population, 
sampling 1.5% of the population resulted in an average of 616 total 
samples and 100–200 half-sibling pairs (HSPs), which is expected to 
produce a reasonable CV for all three sampling schemes (Bravington, 
Skaug, & Anderson, 2016). Therefore, following model validation, we 
focused on sampling 1.5% of the population for the remainder of our 
simulations.

2.2.1  |  Aging uncertainty

A crucial component of CKMR is accurate aging, yet some taxa, in-
cluding elasmobranchs, are notoriously difficult to age, with most ef-
forts relying on length-at-age growth curves to assign age to sampled 
individuals (Cailliet,  2015). To examine how imprecision in growth 
curves affects CKMR parameter estimates, we first constructed an 
age-length key for lemon sharks using data from a long-term study 
of the population in Bimini, Bahamas (Feldheim et al., 2014), and cal-
culated the standard deviation of lengths for individuals with known 
ages, the majority of which (>95%) spanned ages 0–3. We then simu-
lated lengths for each sampled individual (which were assigned ages 
in our DGM) using a von Bertalanffy growth curve for the species 
(Brown & Gruber, 1988). Each individual was assigned a length by 
drawing a value from a normal distribution with the mean length-at-
age specified by the von Bertalanffy curve, and the standard devia-
tion derived empirically from our age-length key for individuals aged 
0–2, and arbitrarily from a CV of 5%, 10%, or 20% for individuals aged 

F I G U R E  1 Schematic of CKMR sensitivity tests, examined via individual-based simulation (see also Tables 1 and 2; Scenario 1 was model 
validation, and Scenario 5 involved real genetic data, so are not included here). Populations with distinct pedigrees were produced and 
sampled via an individual-based data-generating model (purple). Population parameters were individually varied for each of three scenarios. 
Each population was sampled in three ways, and each set of samples was used as input to two estimation models (green): one model was 
naïve to the added population dynamics of the DGM, and one model was adapted to account for them. The year of estimation (year t) was 
varied for Scenario 2; otherwise, simulation results that are discussed in the text used the model settings highlighted in bold.
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3+. After assigning lengths to each individual, we used a reverse von 
Bertalanffy growth curve with the same values for theoretical age 
of zero size (t0 = −2.302), asymptotic average length (Linf = 317.65), 
and the growth coefficient (K = 0.057) and then re-assigned ages to 
sampled individuals based on their lengths, rounding to the near-
est integer. This produced plausible, yet sometimes incorrect, ages 
(similar to age-slicing; see Ailloud et al., 2015). The re-assigned ages 
were then used to construct the pairwise comparison matrix that 
was input to the CKMR model.

2.3  |  Pairwise comparison matrix

Close-kin mark-recapture produces estimates of abundance and 
other population parameters by defining kinship probabilities for 
every pair of sampled individuals given relevant covariates (e.g., age, 
sex). We constructed two standard pairwise comparison matrices for 
each set of samples. The first matrix contained positive and negative 
kinship assignments for half-siblings (HS). To satisfy the assumption of 
independent sampling, whenever full siblings or self-recaptures were 
present, all but one individual/instance was removed prior to the con-
struction of the matrix. Once the matrix was created, within-cohort 
comparisons were removed. Though CKMR models can be adapted 
to incorporate within-cohort comparisons (Førland,  2019), without 
considerable modifications to the equations, within-cohort and cross-
cohort comparisons will estimate different quantities (Waples  & 
Feutry, 2021). As such, removing within-cohort comparisons is com-
mon practice for the application of half-sibling  CKMR (Bravington, 
Skaug, & Anderson, 2016). Kinship assignment in our simulations was 
known without error, so each comparison was assigned as a positive 
if the two individuals being compared were a half-sibling pair, and 
negative if not. Because half-siblings are genetically indistinguishable 
from aunt/niece (uncle/nephew, etc.) pairs, we included one scenario 
(Table 1: Scenario 1.2) where we allowed such comparisons to con-
taminate the pool of half-siblings and evaluated the degree to which 
these false positives affected parameter estimates.

The second matrix was composed of parent-offspring (PO) com-
parisons, which were only relevant to the scenario that included 
sampling of adults. For each birth year represented in the dataset, 
individuals that were alive in that year were split into potential off-
spring or parents based on whether they were born in that year 
(potential offspring), reproductively mature at the time (potential 
parent), or neither, in which case they were left out of the matrix 
corresponding to that year. Each comparison was assigned as a posi-
tive if they were related as parent-offspring or negative if not.

Once the appropriate half-sibling and parent-offspring compar-
isons were defined, all matrices were collated and grouped by (1) 
type of relationship (HS or PO), (2) birth year of younger individual 
in each comparison (a.k.a. yj; see Section 2.4.1), (3) reference year 
gap (a.k.a. (yj–t0); see Section 2.4.2), and (4) birth year gap (a.k.a. δ; 
see Section 2.4.1), as applicable. The number of observed kin pairs 
(Y) was then modeled as a random variable, with the probability of 
success defined by Equations (1–9) below, and n equal to the total 

number of comparisons in each group (see Appendix S1: S1.1 and 
Table  S2 for more details on the pairwise comparison matrix, and 
Appendix S1: S1.2 for more details on kinship types that can cause 
issues for half-sibling CKMR e.g., aunt/niece pairs).

2.4  |  Estimation models

Kinship probabilities for each pairwise comparison in CKMR are 
derived from the expected reproductive output of individual ani-
mals (defined by covariates such as age and sex) relative to the 
total reproductive output of the population in the birth year of 
the younger individual in each pairwise comparison (Bravington, 
Skaug, & Anderson, 2016). The specific equations we used to define 
kinship probabilities in our CKMR models varied with the scenar-
ios we tested, with each scenario comparing a “naïve” model to an 
“adapted” model, where the naïve model ignored one key dynamic 
of the simulated population and the adapted model accounted for 
it. Our equations are based on the general equations defined in 
Bravington, Skaug, and Anderson (2016).

2.4.1  |  Base-case CKMR model

Let P{Ki,j = MHSP} be the probability that individuals i and j are a 
maternal half-sibling pair (i.e. they share a mother but not a father). 
Probabilities for Ki,j depend on the likelihood that the same individ-
ual that birthed the older offspring (i) survived and gave birth to the 
younger offspring ( j). If we assume that all animals of reproductive 
age in the population during i and j's birth years are equally likely to 
have birthed each of them, then the probability of kinship (K) can be 
defined as

where,

� is the annual survival probability for adults,
δ is the number of years between the birth years of individuals 
i and j (i.e. yj–yi) during which any potential parent of i may have 
died a.k.a. the “birth year gap”,
yj is the birth year of individual j (the younger sibling),
R(yi ,yj) reflects the total number of pairwise comparisons between 
individuals born in years yi and yj, and.
N♀(yj) is the total number of mature females in year yj.

Now, let P{Ki,j = MPOP} refer to the probability that individuals i 
and j are related as a maternal parent-offspring pair (MPOP). In this 
case, survival only enters the equation for MPOPs if sampling is non-
lethal (as it was in our simulations) and if the potential parent was sam-
pled before the potential offspring was born. If, on the contrary, the 
potential mother i was captured in or after the offspring j's birth year 
and was reproductively mature at that time, then we know that she 

(1)P
{
Ki,j = MHSP

}
∼ Binomial

(
��

N♀(yj)

,R(yi ,yj)

)
,
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was alive in the year the offspring was born and, assuming constant 
fecundity across the population, is equally likely to have birthed j as 
any other potential mother. Assuming the pool of potential parents 
was filtered to only include individuals that were mature and were not 
known to have died before j's birth year, the probability of kinship is

where ci refers to the year in which the potential parent was captured. 
For each offspring birth year (yj), it is crucial to ensure that individuals 
who were not reproductively mature are not included as potential par-
ents for that year. This restriction can be added directly to the model 
(Bravington, Skaug, & Anderson, 2016; Conn et  al.,  2020) or imple-
mented during the construction of the pairwise comparison matrix, as 
was done here.

Given that sampling was non-lethal for the parent, then the 
mother i's survival to the year of j's birth is conflated with detec-
tion probability (when ci < yj). In circumstances where the individual 
recapture rate of adults is non-negligible, an additional parameter 
defining the adult detection probability will be required to disentan-
gle the state (ϕ) and observation (detection probability) processes. 
However, if sampling is sparse such that individual recaptures are 
exceedingly rare, the cost of estimating an extra parameter for de-
tection probability likely outweighs the benefits.

Equations (1 and 2) define our base-case CKMR model. Though 
the probabilities presented here focus on maternal kinship, the same 
probabilities apply to males and paternal kinship (see Equations  8 
and 9 below). While all models presented here incorporate HSPs, 
POPs were only included in the likelihood for the sampling scheme 
in which adults were sampled with all other age classes; otherwise, 
the likelihood included HS kinship probabilities only.

2.4.2  |  Population growth model

To account for population growth/decline in our CKMR model, we 
defined a simple exponential growth model to describe the popula-
tion dynamics, where

As such, the kinship probabilities become:

and

Here, � defines the annual population growth rate and t0 refers 
to the initial model year, also called the “reference year” (Bravington, 
Skaug, & Anderson, 2016). The reference year typically refers to the 
earliest instance of yj in the pairwise comparison matrix but could 
refer to any modeled year.

To assess the capacity of CKMR to generate year-specific 
abundance estimates, we fit the same CKMR model to each data-
set four times. In each instance, we set the reference year (t0) to 
the earliest instance of yj and estimated N(t0), Then, we derived N(t) 
10 years prior to the reference year (before data were collected), 
in the reference year (t0), 5 years prior to the last year of the sim-
ulation, and the last year of the simulation (i.e., present). We also 
tested two different methods for generating year-specific abun-
dance estimates: one where t0 was fixed to the first year of data 
(first instance of yj) and N(t) was calculated as a derived quantity 
(Table 2 – our primary approach), and one where t0 was directly 
set to the year of interest (i.e., N was directly estimated in year t; 
see Appendix S1: S1.3 for more discussion on CKMR with a chang-
ing population).

2.4.3  |  Intermittent breeding model

If a population – or subset of a population – systematically breeds 
on a non-annual schedule, then CKMR estimates will be biased 
unless this behavior is accounted for in the model (Waples  & 
Feutry, 2021). We accounted for intermittent breeding dynamics 
in our CKMR model via the inclusion of parameters a and Ψ, where 
a refers to the number of years between breeding (e.g., 2 for bien-
nial breeders), and Ψ is the proportion of individuals that breed 
every a years (similar to Patterson, Hillary, Feutry, et  al.,  2022). 
This implies that (1–Ψ ) individuals breed annually. We assume that 
the proportion of on-cycle breeders that breed in a given year is 
1/a. Thus, the effective number of female breeders in a given year 
(Ñ♀(t)) is given by

Accounting for interannual population dynamics (Equation  3), 
the full probability of maternal half-sibling kinship for a population 
that reproduces on a multiennial schedule becomes

(2)P
�
Ki,j = MPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♀(yj)

,R(ci ,yj) ci <yj

1

N♀(yj)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
,

(3)N(t) = N(t0)�
t .

(4)P
�
Ki,j = MHSP

�
∼ Binomial

⎛
⎜⎜⎝

��

N♀(t0)�
(yj−t0)

,R(yi ,yj)

⎞
⎟⎟⎠

(5)P
�
Ki,j = MPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♀(t0)𝜆
(yj−t0)

,R(ci ,yj) ci <yj

1

N♀(t0)𝜆
(yj−t0)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
.

(6)
a + � -a�

a
N♀(t).

(7)P
�
Ki,j = MHSP

�
∼ Binomial

⎛⎜⎜⎜⎜⎝

a��(1−�)

(a+�−a�)N♀(t0)�
(yj−t0)

,R(yi ,yj) � not evenly divisible by a

a��

(a+�−a�)N♀(t0)�
(yj−t0)

,R(yi ,yj) � evenly divisible by a

⎞⎟⎟⎟⎟⎠
.
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If 100% of females breed on a biennial cycle (i.e. a = 2 and 
Ψ = 1), then the probability of finding half-siblings that are sepa-
rated by an odd number of birth years is 0. It is the presence of δ 
intervals that are not evenly divisible by a that provide informa-
tion on the parameter Ψ (see Appendix S1: S1.4 for derivation of 
Equations 6 and 7).

When a consistent pattern is observed in the year gaps that sep-
arate HSPs, one may be tempted to remove off-cycle comparisons 
from the pairwise comparison matrix – since they have no chance 
of revealing a positive comparison – and fit a model that is naïve to 
intermittent breeding (e.g., Equation 4) to the on-cycle comparisons 
only. We thus evaluated two different types of “naïve” model: one 
where we retained off-cycle comparisons in the pairwise compari-
son matrix (the “naïve” model), and one where we removed off-cycle 
comparisons (the “naïve – filtered” model).

In our simulations, intermittent breeding dynamics were only 
present for females, and all males in the population were available 
for breeding each year; as such, Equation (7) only applied to mater-
nal comparisons, while kinship probabilities for paternal half-sibling 
pairs (PHSPs) continued to be defined as:

which is the same as the maternal kinship probability defined in 
Equation (4).

Because the parent is directly sampled in PO CKMR, there is 
no need to explicitly account for breeding periodicity in the likeli-
hood; therefore, we continued to use Equation (5) for maternal PO 
comparisons when applicable. Similarly, kinship probabilities for pa-
ternal parent-offspring pairs (PPOPs) mirrored those for MPOPs in 
Equation (5):

For all multiennial simulations, we simulated a population with 
an approximately stable growth rate, set the reference year (t0) to 
the earliest instance of yj, and estimated N(t) in the present (i.e., most 
recent year of sampling), as we expect this to be a common approach 
in real-life applications of CKMR.

2.4.4  |  Estimation framework

We adopted a Bayesian approach to CKMR parameter estimation, 
which allows for the incorporation of auxiliary data and/or expert 
knowledge as priors on model parameters (Kéry & Schaub, 2012). 
For the scenarios tested here, survival and other parameters were 
assigned reasonably diffuse priors to reflect data-limited situa-
tions (Table 2). Though it is possible to estimate sex-specific sur-
vival (ϕ) and population growth rates (λ), these parameters were 
shared between males and females in our models. The posterior 
distributions for parameters were approximated using Markov 
Chain Monte Carlo (MCMC) sampling, implemented using the 
software JAGS (Plummer, 2003), and applied in the R environment 
(Denwood, 2016; R Core Team, 2021). We ran two Markov chains 
with a thinning rate of 20, drawing 40,000 samples from the pos-
terior distribution following a burn-in of 50,000 samples. These 
settings were empirically derived by assessing autocorrelation 
among successive draws and convergence among the chains. We 
assessed the convergence of the final Markov chains with trace 
plots and the Gelman-Rubin statistic (Gelman & Rubin, 1992) and 

(8)P
�
Ki,j = PHSP

�
∼ Binomial

⎛
⎜⎜⎝

��

N♂(t0)�
(yj−t0)

,R(yi ,yj)

⎞
⎟⎟⎠
,

(9)P
�
Ki,j = PPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♂(t0)𝜆
(yj−t0)

,R(ci ,yj) ci <yj

1

N♂(t0)𝜆
(yj−t0)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
.

TA B L E  2 Model parameters and priors.

Parameter Definition Prior

Ns(t0) Sex-specific abundance in year 0 Ns(t0) ~ Normal (μ, σ)
μ ~ Uniform (1, 10,000)
σ ~ Uniform (1, 10,000)

Φ Annual survival Uniform (0.5, 0.95): default
Uniform (0.5, 0.99): for small population simulations and application to Bimini data

λ Annual finite population growth 
rate

Uniform (0.95, 1.05): default
Uniform (0.80, 1.20): for severe decline scenario
Uniform (0.70, 1.30): for small population simulations and application to Bimini data

ψ Proportion of individuals that 
breed every a years

Uniform (0, 1)

a Years between breeding Fixed

Derived quantities Definition Equation

Ns(t) Sex-specific abundance in year t Ns(t0) ∗�
(yj−t0) (Equation 3)

N♀b(t) Abundance of breeding females 
in year t (in multiennial 
simulations)

a+� − a�

a
N♀(t) (Equation 6)

Note: Ns is a general term that encompasses both N♀, N♂ when the sex-specific parameters were treated the same.
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removed from further analysis any simulation replicate with an 
Rhat value >1.01, although these instances were rare (~1.5% of 
simulations).

2.5  |  Application to lemon sharks

2.5.1  |  Bimini lemon shark dataset

A long-term genetic dataset from lemon sharks in Bimini, Bahamas, 
was used to illustrate the application of our multiennial CKMR model 
(Equation 7) to a dataset derived entirely from juvenile tissue samples 
(Feldheim et al., 2014). Lemon sharks are large viviparous (live-bearing) 
elasmobranchs that reach sexual maturity at approximately 12 years of 
age (Brown & Gruber, 1988) with a lifespan exceeding 30 years (Brooks 
et al., 2016). Female lemon sharks at Bimini are regionally philopatric 
and return to Bimini to pup on a biennial schedule, while the males with 
which they mate likely reproduce over a much larger area (Feldheim 
et al., 2002). Juveniles use the shallow waters surrounding Bimini as a 
nursery and remain in the area until 2–3 years of age or until they reach 
90 cm in length (Morrissey & Gruber, 1993) and generally do not move 
between the North and South Islands (Gruber et al., 2001). The Bimini 
nursery contributes to a larger Western Atlantic population that is clas-
sified as Vulnerable on the IUCN Red List (Carlson et al., 2021; Hansell 
et al., 2018, 2021). The Bimini nursery has been intensively studied 
since 1995, with an estimated 99% of newborn sharks sampled at the 
Bimini North Island each year (DiBattista et al., 2011). The ability to 
heavily sample multiple litters has allowed for reliable reconstruction 
of maternal genotypes, while paternal genotype reconstruction has 
often relied on relatively few newborns, resulting in high confidence in 
maternal kinship assignment and lower confidence in paternal kinship 
(Feldheim et al., 2002, 2004, 2014).

Given the disparities in kinship assignment and breeding range, 
we focused our CKMR model on maternal comparisons to estimate 
abundance and survival of adult females. We used samples collected 
from the North Island, a small isolated nursery for lemon sharks aged 
0–3 years old (Chapman et al., 2009), from 1993 to 2015. Most in-
dividuals in our dataset were sampled as YOY (92%) and easily iden-
tified by the presence of umbilical scars, so their ages were known. 
We estimated abundance of total females in our CKMR model using 
Equation  (7) and derived the number of effective female breeders 
in each year using Equation (6). Thus, our scope of inference for pa-
rameter estimation encompassed the adult females that visited the 
North Island nursery to give birth during each modeled year, a num-
ber that is likely very small (White et al., 2014). We excluded sampled 
individuals without a known birth year from analysis as well as same-
cohort comparisons (Bravington, Skaug, & Anderson, 2016), and any 
individuals for which maternal kinship assignment was uncertain.

There were many full sibling pairs in the dataset (1515 individ-
uals contributing to 1129 pairs), but very few cross-cohort full sib-
lings (only 4% of full sibling pairs). Including more than one individual 
from each litter in a CKMR analysis can result in non-independence 
among pairwise comparisons and unreliable estimates of variance, 

especially in small populations where sampling effort may be high 
relative to the population size (i.e., non-sparse sampling; Bravington, 
Skaug,  & Anderson,  2016; Bravington et  al.,  2019). However, be-
cause Bimini lemon sharks were exhaustively sampled with rela-
tively few instances of cross-cohort full siblings, we hypothesized 
that the retention of littermates might provide valuable data to the 
CKMR model in this instance, even if it reduced the reliability of 
variance estimates. Therefore, we fit our multiennial CKMR model 
(Equation 7) to two sets of data: one where we included full litter-
mates in the analysis (though we still removed all within-cohort com-
parisons from the pairwise comparison matrix) and one where we 
only retained one individual per mother/sire breeding pair, similar to 
our approach with the larger simulated populations.

Finally, recognizing that the Bimini lemon shark dataset is unique 
in how thoroughly the population was sampled, we also examined 
whether the model performed similarly with a sparser dataset by 
randomly downsampling and reducing the number of samples from 
each year to 30% of the full dataset. To account for random varia-
tion surrounding which samples were retained, we iterated over the 
downsampling process 50 times, fit a CKMR model to each set of 
samples, and reported the average of the median and 95% highest 
posterior density intervals (HPDI) of the 50 posterior distributions.

2.5.2  |  Bimini lemon shark simulations

Preliminary application of our multiennial CKMR model (Equation 7) 
to the real Bimini dataset suggested the population likely experienced 
alternating periods of growth and decline during the modeled period. 
Our demographic model (Equation 3) assumes the population is grow-
ing exponentially, and we suspected that this may result in an averag-
ing effect and imprecise parameter estimates over our multi-decadal 
time series of data, especially if an inconsistent trend was present. To 
test this hypothesis and further examine the effects of applying our 
model to a small population, we refined our DGM to produce a popu-
lation of similar size and with similar dynamics as Bimini lemon sharks 
(DiBattista et al., 2011; Feldheim et al., 2002; White et al., 2014) and 
then sampled 90% of the YOY from that population over 20 years to 
achieve a dataset that resembled the real dataset.

We fit the first CKMR model after 4 years of sampling. Then, to 
replicate the type of real-time estimates that could be produced by 
integrating CKMR into long-term monitoring efforts, we iteratively 
added 1 year of samples to the dataset until reaching the end of the 
time series, fitting three CKMR models each time a year of samples 
was added: one that included all samples that had been collected up to 
the most recent year of sampling, one that subset for samples within 
a 5-year window of the most recent year of sampling, and one that 
subset for samples within a 3-year window. In each case, the refer-
ence year (t0) was set to the birth year of the second oldest individual 
in the dataset being used (i.e., the first instance of yj), and abundance 
(N♀(t)) was derived for the most recent year of sampling from estimates 
of N♀(t0) following Equation (3). Abundance trend was then tracked in 
two ways: via a time series of female abundance, and estimation of λ 
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over the window of included samples. Finally, we applied the same 
approach to the real genetic dataset to estimate the total number of 
adult females, then derived the number of year-specific female breed-
ers using Equation (6), and compared our estimates of yearly female 
breeders to estimates that have been independently obtained for the 
population using a reconstructed pedigree (DiBattista et al., 2011).

3  |  RESULTS

3.1  |  Model validation

When the assumptions of the base-case model (Equations 1 and 
2) were met, CKMR produced unbiased estimates of abundance 
under all sampling schemes and intensities (Figure  2a), with in-
creasing precision as sampling intensity increased (Figure  2b). 
The model produced unbiased estimates of abundance whether 
the likelihood included HSPs only (as in the “sample juveniles” and 
“target YOY” scenarios) or jointly considered HSPs and POPs (as in 
the “sample all ages” scenario), though we note improved precision 
for the latter. At very low sampling intensities (0.5% of the target 
population sampled), fewer than 25 HSPs were identified for all 
sampling schemes (Figure  2c) and fewer than 5 parent-offspring 

pairs (POPs) were identified for the sampling scheme that in-
cluded all ages (Figure  2d). In contrast, when 2% of the popula-
tion was sampled, over 200 HSPs were identified on average for 
all sampling schemes, while 10–40 POPs were identified for the 
scenario in which all age classes were sampled. Including aunt/
niece (uncle/nephew, etc.) pairs as HSPs had a minimal effect on 
abundance estimation, as such instances were rare in our dataset 
(Appendix S1: S1.2 and Figure S1); similarly, while same-cohort full 
siblings were common, instances of cross-cohort full siblings were 
rare (Appendix  S1: Figure  S2). These results demonstrate that a 
simple base-case CKMR model can produce unbiased abundance 
estimates across a range of potential sampling scenarios when 
population dynamics align with the model's assumptions while 
suggesting that false positive HSPs arising from misidentified 
aunt/niece (uncle/nephew, etc.) pairs are likely to be rare for ran-
domly sampled long-lived promiscuous species.

3.2  |  Population growth

When we simulated a population with a trend that was growing or 
declining in size and compared year-specific truths to the abundance 
estimates generated by our base-case CKMR model that was naïve 

F I G U R E  2 Base CKMR model performance and kin pairs detected for three different sampling schemes at four different sampling 
intensities over 500 iterations. (a) Relative bias of abundance estimates of adult females (Nf, or N♀) and males (Nm, or N♂) as a percentage of 
the truth (i.e. relative bias × 100). Bias was calculated from the median of each of 500 posterior distributions. (b) CV on abundance estimates 
with log-scaled y axis for visualization. (c) Number of half-sibling pairs detected by sampling scheme and sampling intensity. For each 
iteration, the number of half-sibling pairs for each sex was calculated and averaged. (d) Number of parent-offspring pairs detected for the 
“sample all ages” sampling scheme.
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to a population trend (Figure  3a–c, orange), the disparity between 
the quantities grew the further the estimation year (year t) was pro-
jected into the past. These disparities were rectified by adapting our 
CKMR model to include a population growth model (Equation 3) and 
deriving N(t) from estimates of N(t0) and λ (Figure 3a–c, blue; Table 2). 
Uncertainty accrued as N(t) was projected further from the mode 
of the data (Figure 3d), even with a stable population (Appendix S1: 
Figure S3a). When we varied N(t0) to generate year-specific abundance 
estimates rather than deriving N(t), the model showed similar, though 
not identical, trends (Appendix S1: S1.3 and Figure S4), suggesting that 
the two approaches are functionally equivalent in most cases.

Estimates of λ were highly correlated with abundance when 
more than four cohorts were represented in the dataset  (Table 3; 
Appendix S1: S1.3) and were mostly unbiased for scenarios that in-
volved a population that was monotonically increasing, declining, 
or stable (Figure 3e); however, the model tended to underestimate 
λ when the population began a severe decline during the modeled 

time period (“severe decline” scenario). Estimates of ϕ were unbi-
ased regardless of population trend but varied with the number 
of age classes sampled (Appendix S1: Figure S3b) and were highly 
correlated with abundance in the scenario that only included four 
cohorts (target YOY; Table 3). Combined, these results suggest that 
a CKMR model that is adapted for population growth can give un-
biased year-specific abundance estimates across a range of scenar-
ios, while estimates of population trend should be interpreted with 
caution (see also Sections 3.5 and 4.4 below for considerations to 
improve trend estimation).

3.3  |  Intermittent breeding

When a CKMR model that is fully naïve to intermittent breeding 
(Figure 4, orange) was applied to data from populations with females 
that bred on a consistent multiennial schedule, estimates of female 
(Figure 4a) and male (Figure 4b) abundance were positively biased. 
Males did not breed on a multiennial schedule, but they did share 
the survival parameter (ϕ) with females, and this parameter was also 
overestimated with the naïve model (Figure 4c).

When the pairwise comparison matrix was filtered to remove 
off-cycle comparisons before fitting a model that was otherwise 
naïve to intermittent breeding (Figure 4, white), estimates of abun-
dance and survival were unbiased for models that only included 
HSPs (“sample juveniles” and “target YOY” scenarios), but only if 

F I G U R E  3 Performance of CKMR models when confronted with a changing population (a–c) Relative bias of CKMR abundance estimates 
for mature females (N♀(t)) when applied to populations experiencing variable degrees of population growth or decline. Plots are split by 
sampling scheme (column), population growth pattern (row facet), and the year to which abundance estimates were targeted (year t). The 
dashed vertical blue line represents 0% relative bias. Scenarios assessed had population growth as (a) slightly increasing (+1% per year), 
(b) slightly declining (−1% per year), or (c) severely declining (−5 to 10% per year over the final 10 years). Two different models were fit to 
500 simulated populations for each scenario: a naïve model without a parameter for population growth (red) and an adapted model that 
included the parameter λ to account for population growth (blue). Plots were truncated at ±100% for visualization because there were long 
tails of positive bias for the 10-year past scenarios. Note that for the target YOY sampling scenario, t0 (the first instance of yj in the dataset) 
occurred 3 years in the past, making this the only scenario where an “estimation year” of t0 occurred more recently than when the estimation 
year was “present-5”. (d) Summary of age distribution of samples for all three sampling scenarios. The dashed vertical line represents t0, 
which varied depending on the ages sampled. (e) Relative bias of λ estimates over the modeled time period.

TA B L E  3 Mean cross-correlation values between female 
abundance at t0 (N♀(t0)

) and survival (ϕ) or population growth rate (λ) 
from population growth simulations (Table 1, Scenario 2.1–2.4).

Parameter ϕ λ t0 Sampling scheme

N♀(t0) 0.77 −0.13 88 Target YOY

N♀(t0) 0.34 −0.76 77 Sample all juveniles

N♀(t0) 0.28 −0.80 77 Sample all ages
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100% of females bred on the same schedule. When off-cycle breed-
ing was introduced (biennial* scenario), estimates of female abun-
dance were positively biased. When the model also included kinship 
probabilities for parent-offspring pairs (“sample all ages” scenario), 
estimates of female abundance, male abundance, and survival were 
all positively biased with the “naïve-filtered” model, reflecting the 
fact that the two kinship probabilities refer to different quantities 
(see Section 4.2 and Appendix S1: S1.5).

Parameter estimates were generally unbiased with the model 
that was adapted for intermittent breeding (Equation 7; Figure 4, 
blue), including the scenario with 100% annual breeders, in which 
case the naïve and adapted models performed identically (the 
“naïve – filtered” approach was not tested in this scenario because 
with annual breeding there were no off-cycle comparisons to re-
move). When we compared estimates of ψ to the realized proportion 
of HSPs that came from on-cycle females (the ‘true ψ ’ in the simu-
lated data), estimates of ψ were mostly unbiased when all females 
bred on a multiennial cycle, with or without stochastic off-cycle 
breeding (Figure  S5), though we note that when the multiennial 
model was applied to a population that bred annually, ψ had a non-
unique solution (but estimates of other parameters were unbiased; 
see Appendix S1: S1.5 for further discussion about considerations 
surrounding intermittent breeding). Taken together, these results 
demonstrate that our model that accounts for multiennial breed-
ing can accommodate variable or unknown breeding schedules and 

produce unbiased estimates of abundance and survival for popula-
tions that breed annually, biennially, or triennially, with or without 
instances of off-cycle breeding.

3.4  |  Aging uncertainty

When ages were misassigned to samples, older individuals were far 
more likely to be assigned to the wrong cohort (Figure 5a). The prob-
ability of age misassignment roughly corresponded to the slope of 
the von Bertalanffy growth curve, with the probability of age mis-
assignment being greatest as the curve approached its asymptote. 
Consequently, when sampling was targeted to YOY, individuals were 
far more likely to be assigned to the correct cohort (Figure 5a, right).

When multiple age classes were represented in the data, bias 
accrued in estimates of female abundance (Figure 5b) and survival 
(Figure 5c) as the CV surrounding age assignment increased, regard-
less of whether we simulated a population that bred annually or 
biennially. Targeted sampling of YOY showed a different trend: the 
probability of misassigning an age-0 individual to the wrong cohort 
was very low, so increasing the CV on length-based age assignment 
did not affect the bias of parameter estimates. These results confirm 
that reliable aging is a key component of CKMR and that targeted 
sampling of age classes that can be reliably aged can improve estima-
tion when accurate aging for other age classes is challenging.

F I G U R E  4 Relative bias of parameter estimates when naïve and adapted CKMR models were fit to samples from a population that bred 
intermittently. The “naïve” model references a model that included off-cycle comparisons, while the “naïve – filtered” model excluded off-
cycle comparisons. The reference year (t0) was set to the earliest instance of yj and abundance was derived in the present via Equation (3) 
and compared to the true abundance in that year. For the “naïve – filtered” scenario, the quantity estimated by the model was the effective 
female breeders in year t (Ñ♀(t)), while the “naïve” and “adapted” models estimated total females (N♀(t)). We derived the total N♀(t) for the 
“naïve–filtered” scenario by multiplying Ñ♀(t) by the breeding cycle (2 for biennial breeders and 3 for triennial breeders). We did not fit the 
“naive-filtered” model to the annual population simulation because there was no trend in the data that would justify removing a subset of 
comparisons based on the expected breeding cycle. On the x axis, “biennial*” refers to a situation where 10% of biennial female breeders 
bred off-cycle and 10% of on-cycle females failed to breed each year. (a) Relative bias of abundance estimates for adult females (Nf, or N♀(t)). 
(b) Relative bias of abundance estimates for adult males (Nm, or N♂(t)). (c) Relative bias of survival (ϕ) estimates.
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3.5  |  Application to lemon sharks

3.5.1  |  Bimini lemon shark simulations

When we simulated a small population that resembled the popula-
tion of lemon sharks at Bimini, Bahamas, and then heavily sam-
pled that population and used all samples for the construction 
of the pairwise comparison matrix, results varied depending on 
which window of data was used (Figure 6a–c). When mortality was 

reduced in the 90-year simulation and the population was growing 
(years 70–79), year-specific estimates of female abundance, abun-
dance trend (λ), and survival (ϕ) were mostly unbiased for the 5-
year window, and the scenario that included all available samples 
(Figure 6a–c). As mortality increased and the population stabilized 
(years 80–84), bias began to accrue for the scenario that included 
all available samples. Bias continued to rise for this scenario when 
mortality was increased again to produce a declining population 
(years 85–90). In contrast, results from the 5-year window of 

F I G U R E  5 Effect of aging error on CKMR parameter estimates. (a) Amount of error introduced per age for one of the 500 iterations that 
were run to test the effects of age misassignment on CKMR parameter estimates. The iteration represented here was chosen randomly 
and assumed to be generally representative of all 500 iterations. (b) Relative bias of abundance estimates for females (Nf, or N♀(t)) when 
uncertainty was introduced to length-based age assignments. (c) Relative bias of survival (ϕ) estimates when uncertainty was introduced 
to length-based age assignments. There was no intentional model misspecification in these simulations; rather, annual models were fit to 
populations that bred annually (light blue), while multiennial models were fit to populations that bred biennially (dark blue), thereby isolating 
the effects of aging error on the resulting bias.
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samples were unbiased whenever the sample window spanned a 
period that included a consistent population trend: each time a 
shift in population trend occurred (years 80 and 85), the 5-year 
window of samples produced biased parameter estimates for the 
following year, but that bias was reduced as the population trend 

stabilized. The 3-year window of samples produced parameter 
estimates that were both biased and imprecise, suggesting that 
more than three cohorts are needed to produce reliable param-
eter estimates with HS CKMR for a population that breeds bien-
nially. All sample windows estimated abundance at an absolute 

F I G U R E  6 Time series of CKMR parameter estimates for simulated (a–c) and real (d) female lemon sharks at Bimini, Bahamas using all 
samples collected before the estimation year (green; solid trendline), all samples collected in a 5-year window prior to the estimation year 
(orange; dotted trendline) and all samples collected in a 3-year window prior to the estimation year (purple; dashed trendline). (a–c) Relative 
bias from 100 distinct population simulations and model fits. (a) Relative bias of abundance estimates for adult females (Nf, or N♀(t)) in each 
year of the time series. (b) Relative bias of λ estimates relative to the observed population growth rate in the associated year. (c) Relative bias 
of estimated survival (ϕ) relative to the observed survival rate in the associated year. (d) Abundance estimates for breeding females (Nfb, or 
Ñ♀(t)) in the North Bimini Lagoon using real genetic data, derived from estimates of total N♀(t) using Equation (6). Points represent the median 
of the posterior distribution, and error bars reflect the 95% highest posterior density interval (HPDI). The trend is visualized using a loess 
regression. The black line labeled as “pedigree abundance” is a time series of abundance estimates for Nfb that was independently derived 
for the population by Dibattista et al. (2011).
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scale within an order of magnitude of the real population size (see 
Appendix S1: Figure S6 for an illustrative example).

When we retained just one full sibling from each mother/fa-
ther pairing, parameter estimates showed similar tendencies as 
when the full dataset was used, with the exception that estimates 
of λ were less biased for the 3-year window (see Appendix  S1: 
S1.6 and Figure S7a–c). Combined, these results demonstrate that 
CKMR can reliably estimate abundance within an order of magni-
tude for a small population that is heavily sampled, while inference 
of trends—whether through a time series of female abundance 
or estimation of λ—varies depending on the window of samples 
included.

3.5.2  |  Bimini lemon shark data

Application of our multiennial CKMR model to real data from 
Bimini lemon sharks showed a parabolic abundance trend and 
very low abundance regardless of whether we retained full sib-
lings (Figure 6d, Table 4) or filtered them (Appendix S1: Figure S7d 
and Table  S3), and whether the datasets were downsampled 
(Appendix S1: Tables S4, S5 and Figure S8) or not. These trends 
were consistent regardless of which window of samples was used, 
though the timing of peak abundance varied (see Appendix  S1: 
S1.6 for more discussion). Estimates of yearly female breeders 
(N♀b(t)) were close to, but slightly higher than, estimates indepen-
dently obtained by DiBattista et al. (2011) using a pedigree-based 
approach.

Estimates of adult survival (ɸ) were generally high for the 
full (Appendix S1: Figure  S9) and downsampled (Appendix S1: 
Figure  S8) datasets, but varied with the sample window and 
showed more variability when the dataset was both filtered for full 
siblings and downsampled (Appendix S1: Figure S8b). The 3-year 
window of samples gave rise to survival estimates that were highly 
correlated with estimates of abundance (Table 5) and did not vary 
across years (Appendix S1: Figure S9), again suggesting that the 
3-year window is too short a time period for reliable estimation 
of survival rates for populations that breed biennially. Overall, re-
gardless of how the data were subset, our results align with other 
studies that suggest low abundance (DiBattista et al., 2011) and 
high survival rates (White et al., 2014) of adult females at Bimini; 
however, we also note that estimation of abundance trend and 
survival were correlated with the number of cohorts included 
in the analysis and the mortality regimes that the population 
experienced.

4  |  DISCUSSION

Obtaining unbiased estimates of abundance is a central challenge 
for effective conservation and management of many threatened 
and exploited populations and is especially pertinent for popula-
tions of low-density and highly mobile species where effective 

sampling of adults is impractical. Our simulation results broadly 
concur with recent work supporting CKMR as a promising ap-
proach to estimate abundance and survival in data-limited circum-
stances, but emphasize the critical need to adapt CKMR models 
adequately to accommodate population dynamics and life history 
traits that violate the assumptions of a simple base-case model. 
Further, although we confirm the sensitivity of CKMR to aging 
error, we also find that bias in parameter estimates can be miti-
gated by sampling as few as four cohorts that can be reliably aged, 
providing options for applying the method when accurate aging is 
difficult or when long-term sampling is impractical. Our applica-
tion to lemon sharks in Bimini, Bahamas demonstrates that CKMR 
is a flexible framework that can be used to estimate abundance 
and survival of breeding adults when only juveniles are available 
for sampling. Taken together, the results of our application of 
CKMR to simulated and real populations with different popula-
tion sizes, trends, and breeding schedules support the recognition 
of CKMR's immense potential for monitoring populations of low-
density and highly mobile species, while also highlighting several 
promising avenues for future research.

4.1  |  Accounting for population growth/decline

A simple base-case CKMR model (e.g., Equations 1 and 2) estimates 
adult abundance over the modeled period by assuming that popu-
lation dynamics are stable and consistent over time. In cases with 
sex-specific or transient population dynamics, or if estimates of 
underlying population parameters are desired, population dynam-
ics can be modeled with CKMR using latent variables. Year-specific 
abundance estimates can also be obtained by modeling each year 
independently, but this approach requires a particularly rich dataset 
(e.g., heavily sampled salmonids; Ruzzante et al., 2019, Marcy-Quay 
et al., 2020). As such, most data-limited situations will likely benefit 
from leveraging all available data for a single abundance estimate. In 
such cases, specifying an exponential growth model where popu-
lation dynamics are broadly captured in a parameter like λ allows 
data to be shared across cohorts to produce a single estimate of 
abundance for a specified reference year (t0). Then, abundance in 
any modeled year (N(t)) can be derived from estimates of N(t0) and λ. 
In practical applications of CKMR, knowledge of a species' life his-
tory in combination with Leslie matrix simulations can help inform 
a prior on λ to improve the precision of parameter estimates. If a 
fishery-independent index or fishery-dependent CPUE index (from a 
fishery whose operations have been relatively constant) exists over 
the modeled period, then trend data could also be integrated into 
the model via specification of the prior on λ.

Including too many age classes in the data may hinder inference 
of abundance trends if a population's trajectory shifts during the 
modeled time period, as estimates of λ will represent an average of 
those trajectories. One way to mitigate this averaging effect is to 
subset the dataset for smaller time windows over which averaging λ 
has a less pronounced effect. This approach sacrifices precision and 
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may not be possible in many data-limited situations; even in a data-
rich scenario, the time window must be thoughtfully calibrated, as 
using too small a window provides limited data to the exponent on 
ϕ, resulting in a high degree of correlation between ϕ and N (e.g., the 
target YOY scenario in Table 3 and the 3-year window in Table 5). In 
contrast, our results suggest that using too large a window will result 
in an abundance trend that lags behind the real trend if the real trend 
shifts during the modeled period. For our Bimini lemon shark simu-
lations, a 5-year window produced a reasonable balance of precision 
and accuracy for parameter estimates and also for reconstructing an 
abundance trend for a population that experienced multiple mor-
tality regimes during the modeled period. In application to real data 
sets, one would not know the accuracy associated with a given win-
dow size, but the pattern of lag in estimated population trends as the 
window length is expanded may give some indication of where shifts 
in the trajectory have occurred. Alternatively, one could test for a 
quadratic trend by adding another parameter in the model for λ and 
then use model selection to determine the model that best captures 
the true population trend. Expanding CKMR to estimate population 
trends in a reliable and robust way is a ripe area for future research.

4.2  |  Intermittent breeding dynamics

When intermittent breeding coincides with a population that is most 
easily sampled during the juvenile life stage (e.g., when adults are not 
directly observed), our results indicate that abundance estimates de-
rived from a naïve half-sibling CKMR model will be biased if all pairwise 
comparisons are included in the model. In contrast, in circumstances 
where all individuals breed on the same schedule such that there is no 
possibility of off-cycle breeding, then filtering the pairwise comparison 
matrix to remove off-cycle comparisons and fitting a half-sibling model 
that is otherwise naïve to intermittent breeding (e.g., Equation 4) can 
give unbiased parameter estimates (Figure  4, white). Importantly, 
when off-cycle comparisons are removed, the non-breeding adults 

essentially become invisible to half-sibling CKMR (similar to infertile 
adults; see section 3.2 of Bravington, Skaug, & Anderson, 2016). As 
such, a naïve HS model that is filtered to remove off-cycle compari-
sons gives estimates of the number of effective female breeders (Ñ♀) in 
year t (Appendix S1: S1.4), a number that may be substantially different 
than the total number of adult females (N♀) in populations that breed 
intermittently. Without modification to the kinship probabilities, this 
difference precludes the use of POPs in the same model because PO 
CKMR gives estimates of N♀ (note the bias for the “sample all ages” sce-
nario in Figure 4). In addition, our simulations suggest that if off-cycle 
breeding produces HSPs that are separated by a birth year gap that 
does not align with the expected breeding cycle (e.g., when the birth 
year gap is odd for a population that breeds on a biennial schedule), 
then parameter estimates will be biased with a naïve model, whether 
off-cycle comparisons are retained in the pairwise comparison matrix 
or not. Overall, applying a model that is naïve to intermittent breeding 
to a population that breeds on a bi- or triennial schedule can produce 
unbiased parameter estimates if off-cycle comparisons are removed, 
but only in limited situations (e.g., when there is no off-cycle breeding).

The multiennial CKMR model presented here accommodates in-
termittent breeding via the inclusion of the parameters Ψ and a, which 
assigns a non-zero probability to off-cycle comparisons without as-
suming the probability is the same as on-cycle comparisons, resulting 
in estimates of N♀ rather than Ñ♀ (see Appendix S1: S1.4 and S1.5 for 
further discussion). While the parameter Ψ can be estimated, a must 
be fixed to the expected breeding cycle. If the breeding cycle for a 
population is unknown, and if adults are not available for sampling, 
then it may be possible to estimate a from the distribution of birth 
year gaps among identified half-siblings (Waples  & Feutry,  2021). 
As a cursory example, if most HSPs were born in year gaps that are 
divisible by 2, then fixing a to 2 would be logical. However, in real 
populations, reproductive periodicity may be challenging to infer from 
the distribution of kin pairs, as environmental conditions may cause 
individuals to fail to breed one year and then breed off-cycle the 
next (Cubaynes et al., 2011; Morbey & Shuter, 2013; Öst et al., 2018; 

TA B L E  5 Cross-correlation among parameters following application of CKMR to Bimini lemon sharks.

Parameter N♀(t0) ɸ λ ψ Time window

N♀(t0) 1.00 0.13 −0.84 −0.08 All available samples

ɸ 0.13 1.00 0.32 −0.10 All available samples

λ −0.84 0.32 1.00 0.02 All available samples

ψ −0.08 −0.10 0.02 1.00 All available samples

N♀(t0) 1.00 0.29 −0.73 −0.18 5-year window

ɸ 0.29 1.00 0.19 −0.11 5-year window

λ −0.73 0.19 1.00 0.09 5-year window

ψ −0.18 −0.11 0.09 1.00 5-year window

N♀(t0) 1.00 0.83 −0.43 −0.54 3-year window

ɸ 0.83 1.00 −0.01 −0.46 3-year window

λ −0.43 −0.01 1.00 0.21 3-year window

ψ −0.54 −0.46 0.21 1.00 3-year window

Note: Reported values represent the average cross-correlation values over all years (1997–2015).



    |  19 of 24SWENSON et al.

Rivalan et  al.,  2005; Skjæraasen et  al.,  2020). In our lemon shark 
dataset, for example, 30% of adult mothers bred off-cycle at least 
once before returning to a biennial cycle. With elasmobranchs and 
other species that are difficult to age, aging error will further obscure 
the inference of breeding schedule based on offspring birth years. 
Stochastic off-cycle breeding was not a problem for our multiennial 
model as long as there were no systemic differences in lifetime fecun-
dity (Bravington, Skaug, & Anderson, 2016; see Appendix S1: S1.6 and 
Figure S10). Future work that adapts CKMR to estimate Ψ and a across 
a range of scenarios, including populations with mixed mating sched-
ules (Driggers & Hoffmayer, 2009; Higgs et al., 2020; Walker, 2007), 
would further expand the potential of CKMR to illuminate aspects of 
population breeding dynamics.

4.3  |  Aging error

Close-kin mark-recapture depends heavily on accurate cohort as-
signment, which can be very challenging for many species, includ-
ing elasmobranchs. Our results confirm that age misassignment 
can substantially bias CKMR parameter estimates. A hierarchical 
model that accounts for aging error may help alleviate this issue, 
but such a model would require some estimate of the probability 
of age misassignment (Hirst et al., 2004; Schwarz & Runge, 2009) 
and selectivity (Francis,  2016; Henríquez et  al.,  2016), and such 
data may not be available in data-limited situations. Estimating 
the probability of age misassignment is not a trivial task, even 
for species with well-established aging methods (e.g., teleosts, 
O'Sullivan,  2007) and substantial upfront effort may be re-
quired to estimate the degree of error present. For example, pat-
terns of DNA methylation can be used to estimate age (Jarman 
et al., 2015) and these data can be obtained from the same tissue 
samples used for kinship assignment in CKMR. However, epige-
netic clocks are taxa-specific, and the discovery of informative 
biomarkers requires calibration using representative samples of 
known ages, which may be arduous to obtain in their own right 
(Beal et al., 2022; Polanowski et al., 2014). It is wise, therefore, to 
consider how samples will be aged and how much error there is 
likely to be prior to embarking on a large-scale CKMR study.

In cases where only YOY can be reliably aged, our results show 
that CKMR can generate reliable abundance estimates from targeted 
sampling of as few as four cohorts of YOY, even for a population that 
breeds bi- or triennially, though estimates of survival will improve 
as more cohorts are added. If mature individuals are also available 
to sample—for example, when visiting a nursery site to breed—then 
sampling potential parents as well as YOY can enable the use of 
POPs in the likelihood and improve the precision of parameter es-
timates. Aging error in this case would be less critical for adults as 
long as maturity can be confirmed in the year of sampling, though 
care must be taken to ensure that potential parents and offspring are 
sampled independently, as parameter estimates will be biased if the 
probability of sampling a parent is correlated with the probability of 
sampling its offspring (Bravington, Skaug, & Anderson, 2016).

4.4  |  Population dynamics and abundance of lemon 
sharks in Bimini

Our application of CKMR to Bimini lemon sharks highlights the flex-
ibility and potential of CKMR for long-term monitoring of populations 
of low-density highly mobile species with geographically distinct life 
histories. Estimates of abundance from CKMR suggest that a very 
small number of female lemon sharks give birth at the North Bimini 
Lagoon during each biennial breeding cycle (Figure  6d, Table  4). 
These results align with a previous study that reconstructed a pedi-
gree for the population and identified the number of adults that suc-
cessfully bred on the North Island each year between 1995 and 2007 
(DiBattista et al., 2011). In both cases, the number of females that 
gave birth at the North Island during this time period was estimated 
to be very small (<50 per year), with an increasing abundance trend 
through ~2006. At some point after or around 2006, results from 
CKMR suggest that the number of females using Bimini for breed-
ing began to decline. Intense dredging and mangrove deforestation 
took place around the North Bimini Island in March 2001 in prepa-
ration for the development of a mega-resort (Jennings et al., 2008). 
Although the number of breeding females at the North Island coun-
terintuitively increased immediately after the disturbance (DiBattista 
et al., 2011), there was a transient drop in the survival rates of age 0 
and age 1 individuals, though the degree to which juvenile mortality 
was affected is debated (DiBattista et al., 2011; Jennings et al., 2008). 
These cohorts would have reached maturity and begun returning to 
Bimini for reproduction around 2011, which may explain the decreas-
ing trend around that time (Figure  6d). All sampling windows and 
methods of downsampling showed a parabolic abundance trend over 
the time series, though the stationary point (where population size 
was stable) varied depending on the window.

Although our results closely resemble those reported in DiBattista 
et al. (2011), we note that our abundance estimates from CKMR were 
slightly higher. The degree to which our results differed depended on 
whether we included full siblings in the analysis and whether we used 
the full dataset or a downsampled dataset (see Appendix  S1: S1.6 
for more discussion on CKMR with small populations). Abundance 
estimates were generally similar (<50 breeding females) across the 
datasets we tested, except for a few instances when sampling was 
constrained to a 3-year window. When a population breeds bienni-
ally, sampling 3 years only includes one year gap with possible positive 
comparisons (years 1 and 3), which provides very limited information 
to the exponent on ɸ and impedes its estimation (see Appendix S1: 
Figure S9), as well as the estimation of other parameters (note the 
high correlation with abundance in Table 5).

Though all three windows of samples we tested (3-year, 5-year, 
all available) suggest the population of breeding females at Bimini 
is small, the 5-year window produced the least biased parameter 
estimates in simulation, and application to the real data resulted in 
estimates that aligned more closely with the estimates of Dibattista 
et al. (2011) than when all samples were used. More complex mod-
els (e.g., that allow for quadratic abundance trends) would likely im-
prove the performance of models that leverage long time series of 
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data; in the absence of such a model, calibrating the time window of 
samples to correspond to likely abundance trends can help alleviate 
the averaging effect of assuming exponential growth/decline over 
long time periods.

Adapting CKMR to produce more reliable parameter estimates for 
small populations will require additional work (Bravington, Skaug, & 
Anderson, 2016); however, when dealing with abundance estimates 
that are small enough to cause such issues, the practical implications 
of this known bias are likely minimal. Discarding estimates from the 
3-year window of samples, our model that retained full siblings in 
the dataset estimated a maximum of 47 females visited the North 
Island across all 18 years of abundance estimation (Table 4, Figure 6d). 
Removing full siblings from the dataset produced slightly higher val-
ues (Appendix S1: Figure S7 and Table S3) and, excluding the 3-year 
window of samples, even downsampling the dataset resulted in a 
maximum estimate of 70 females (Appendix S1: Tables S4, S5) . These 
quantities are small enough that any additional mortality would likely 
threaten the sustainability of this portion of the population.

4.5  |  Implications for sampling design

We have shown that the application of half-sibling CKMR to long-
lived species can generate reliable estimates of abundance—on its 
own, or in conjunction with parent-offspring CKMR—from a limited 
number of cohorts when aging is reliable; however, estimates of sur-
vival (ɸ) were more reliable when more cohorts were included in the 
dataset across our simulations. A dataset that spans enough cohorts 
to reliably estimate parameters beyond abundance can be obtained 
by intensely sampling multiple age classes over a small number of 
years, or by long-term sampling of nursery areas. The former would 
require reliable aging of all sampled age classes to avoid biased pa-
rameter estimates, especially for models that incorporate half-sibling 
kinship probabilities where estimates of survival and abundance both 
depend on the birth year of sampled individuals. The latter—long-
term sampling of nursery areas—represents a promising method for 
monitoring low-density highly mobile populations, especially in cir-
cumstances where aging error is likely for older age classes.

We are not the first to suggest that CKMR benefits from focus-
ing sampling efforts on individuals that can be reliably aged (Trenkel 
et al., 2022). Our results expand on this idea by demonstrating that 
CKMR can produce robust abundance estimates from as few as four 
cohorts, though estimates of survival will be less reliable as fewer 
age classes are included. In cases where sampling of juveniles is 
focused on nursery areas, sufficient biological knowledge to deter-
mine the scope of inference for CKMR will be required. If the tar-
get population uses multiple nursery areas, then sampling multiple 
nurseries can allow the model to estimate demographic connectiv-
ity (Patterson, Hillary, Kyne, et al., 2022). If sex-specific population 
dynamics are present, as with Bimini lemon sharks, the associated 
CKMR model should account for this and estimate parameters sep-
arately for each sex or focus solely on the sex for which the scope 
of inference is well-understood, as we did with Bimini lemon sharks.

One of the more exciting aspects of CKMR is its potential to 
generate rapid estimates of adult abundance without sampling a 
single adult (see Patterson, Hillary, Kyne, et al., 2022 for an applied 
example). Our results confirm that a sampling program that can 
procure as few as four or five reliably aged cohorts can be used in 
combination with half-sibling CKMR to produce robust estimates of 
present-day abundance as well as reasonable estimates of survival. 
In circumstances where a genotyping panel, workflow for assigning 
kinship, and appropriate CKMR model are already developed for a 
population, contemporary abundance estimates could conceivably 
be obtained within weeks of sampling. As such, CKMR can offer a 
rapid and cost-effective method for population monitoring in real 
time following an initial investment in the laboratory and analytical 
workflows.

5  |  CONCLUSION AND FUTURE 
DIREC TIONS

Close-kin mark-recapture is a powerful tool for estimating the pop-
ulation abundance of species that have been historically difficult to 
assess. Reliable application of the method requires careful considera-
tion of the relevant population dynamics matched to an appropriate 
sampling scheme. Here, we have identified a set of factors that must 
be considered for robust application of CKMR, proposed methods 
for accounting for them, and highlighted areas in need of further re-
search. Specifically, we found that a half-sibling-focused CKMR model 
can produce robust abundance estimates from as few as four or five 
cohorts, while reliable estimates of survival will likely require more 
data. Monotonic abundance trends can be dependably inferred by in-
corporating a simple exponential growth model; however, more com-
plex trends will require further model development or, at a minimum, 
deployment of a sliding window of samples, which prevents long-term 
averaging of λ and obfuscation of transient dynamics.

When ages are prone to misassignment, focusing sampling ef-
forts on individuals with known ages (e.g., YOY), or subsampling for 
these individuals if the dataset is sufficiently rich, can alleviate bias 
in parameter estimates, particularly abundance. Long-term monitor-
ing of highly mobile species can be enhanced by CKMR via sampling 
of nursery areas when one or both sexes are philopatric and can pro-
vide estimates of present-day abundance and abundance trends for 
adults that visit the nursery area without directly sampling a single 
adult. Overall, this study highlights the sensitivity of simple base-
case CKMR models to assumptions about population dynamics and 
sampling, while also demonstrating that the CKMR framework is 
easily adaptable to accommodate these factors, making it a promis-
ing tool for integration into long-term monitoring programs.
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