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Abstract
Obtaining	robust	estimates	of	population	abundance	is	a	central	challenge	hindering	
the	conservation	and	management	of	many	threatened	and	exploited	species.	Close-	
kin	mark-	recapture	(CKMR)	is	a	genetics-	based	approach	that	has	strong	potential	to	
improve	the	monitoring	of	data-	limited	species	by	enabling	estimates	of	abundance,	
survival,	and	other	parameters	for	populations	that	are	challenging	to	assess.	However,	
CKMR	models	have	received	limited	sensitivity	testing	under	realistic	population	dy-
namics	and	sampling	scenarios,	impeding	the	application	of	the	method	in	population	
monitoring	programs	and	stock	assessments.	Here,	we	use	individual-	based	simula-
tion	to	examine	how	unmodeled	population	dynamics	and	aging	uncertainty	affect	
the	accuracy	and	precision	of	CKMR	parameter	estimates	under	different	sampling	
strategies.	We	then	present	adapted	models	that	correct	the	biases	that	arise	from	
model	 misspecification.	 Our	 results	 demonstrate	 that	 a	 simple	 base-	case	 CKMR	
model	produces	robust	estimates	of	population	abundance	with	stable	populations	
that	breed	annually;	however,	if	a	population	trend	or	non-	annual	breeding	dynamics	
are	present,	or	if	year-	specific	estimates	of	abundance	are	desired,	a	more	complex	
CKMR	model	must	be	constructed.	In	addition,	we	show	that	CKMR	can	generate	reli-
able	abundance	estimates	for	adults	from	a	variety	of	sampling	strategies,	including	
juvenile-	focused	sampling	where	adults	are	never	directly	observed	(and	aging	error	
is	minimal).	Finally,	we	apply	a	CKMR	model	 that	has	been	adapted	 for	population	
growth	and	intermittent	breeding	to	two	decades	of	genetic	data	from	juvenile	lemon	
sharks	(Negaprion brevirostris)	in	Bimini,	Bahamas,	to	demonstrate	how	application	of	
CKMR	to	samples	drawn	solely	from	juveniles	can	contribute	to	monitoring	efforts	
for	highly	mobile	populations.	Overall,	this	study	expands	our	understanding	of	the	
biological	factors	and	sampling	decisions	that	cause	bias	in	CKMR	models,	identifies	
key	areas	for	future	inquiry,	and	provides	recommendations	that	can	aid	biologists	in	
planning	and	implementing	an	effective	CKMR	study,	particularly	for	long-	lived	data-	
limited	species.

https://doi.org/10.1002/ece3.10854
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-3740-3984
https://orcid.org/0000-0001-6141-9719
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:jswenson@umass.edu
mailto:lkomoroske@umass.edu


2 of 24  |     SWENSON et al.

1  |  INTRODUC TION

Population	 abundance	 plays	 important	 roles	 in	 both	 fundamental	
and	applied	biological	research	and	is	associated	with	a	wide	range	
of	ecological	and	evolutionary	processes	(Berryman,	1989;	Carbone	
et	al.,	2011;	Ellegren	&	Galtier,	2016;	Hassell,	1975;	Robertson,	1996).	
Abundance	 estimates	 and	 trends	 are	 also	 key	metrics	 for	 conser-
vation	and	management	and	are	commonly	used	to	assess	conser-
vation	status	 (Wilson	et	al.,	2011),	quantify	the	 impacts	of	threats	
and/or	 recovery	 efforts	 (Jennings,	 2000;	 Magera	 et	 al.,	 2013; 
Ward-	Paige	 et	 al.,	 2012),	 and	 scale	 regulated	 harvest	 quantities	
(e.g.,	 allowable	 biological	 catch,	 annual	 catch	 limits)	 for	 managed	
populations	of	target	and	non-	target	species.	Consequently,	a	wide	
range	of	methods	have	been	developed	 for	 estimating	population	
abundance	(McCauley	et	al.,	2012;	Schwarz	&	Seber,	1999;	Wilson	&	
Delahay,	2001).

Capture-	mark-	recapture	 (CMR)	 is	 one	 prominent	 and	 widely	
used	method	in	which	abundance	is	estimated	by	constructing	cap-
ture	 histories	 for	 each	 sampled	 (or	 tagged)	 individual,	 estimating	
capture	probabilities,	and	comparing	the	number	of	re-	captured	in-
dividuals	to	the	total	number	of	sampled	individuals	(Cormack,	1964; 
Jolly,	1965;	Seber,	1965).	A	number	of	variations	of	CMR	methods	
have	been	developed	over	the	years	to	account	for	varied	popula-
tion	 demographics	 and	 sampling	 schemes	 (Amstrup	 et	 al.,	 2010; 
Pollock,	2000;	Royle	et	al.,	2013),	but	the	approach	remains	largely	
intractable	in	situations	where	recapture	rates	are	very	low,	as	with	
many	low	density	and	highly	mobile	marine	species	(Boyd	et	al.,	2018; 
Kohler	&	Turner,	2001;	Webster	et	al.,	2002).	In	addition,	estimating	
a	 capture	 probability	 for	CMR	 requires	 an	 estimate	of	 the	 rate	 at	
which	tags	are	 lost	 (Arnason	&	Mills,	1981;	Hyun	et	al.,	2012)	and	
reported	(e.g.,	by	fishermen	or	hunters;	Green	et	al.,	1983,	Pollock	
et	al.,	2001,	Sackett	&	Catalano,	2017),	and	tag	 loss	and	reporting	
rates	 vary	 with	 the	 species	 and	 experimental	 design	 (Oosthuizen	
et	al.,	2010).	As	 such,	 their	estimation	 is	 likely	 to	 require	auxiliary	
studies	that	demand	more	time	and	resources	and	may	be	reliant	on	
cooperation	from	individuals	that	encounter	the	tags.

CMR	 provides	 direct	 information	 about	 the	 sampled	 demo-
graphic,	but	many	highly	mobile	marine	species	have	spatially	segre-
gated	life	histories	and	are	only	available	for	sampling	in	nearshore	
habitats	as	juveniles	before	transitioning	to	a	less	accessible	pelagic	
habitat	as	adults.	 In	such	cases,	CMR	results	are	restricted	to	pro-
viding	direct	information	about	the	juvenile	portion	of	the	popula-
tion,	while	the	population	dynamics	of	adults	can	only	be	modeled	
effectively	if	additional	data	are	available	and	if	key	assumptions	are	
met	(Kendall,	1999;	Pollock,	2000).	As	alternatives	to	CMR,	surveys	

or	transect-	based	methods	can	be	helpful	tools	to	estimate	regional	
abundance	(Schwarz	&	Seber,	1999).	However,	variability	in	survey	
length,	uncertainty	surrounding	the	proportion	of	habitat	sampled,	
and	shifts	in	habitat	availability,	as	well	as	changes	in	behavior	aris-
ing	 from	 the	 presence	 of	 human	 observers	 and	 observation	 error	
are	common	pitfalls	 that	can	make	such	methods	unreliable	or	 in-
comparable	across	studies	 (Boyd	&	Punt,	2021;	Davis	et	al.,	2022; 
McCauley	et	al.,	2012).

While	CMR,	surveys,	and	transect-	based	methods	can	all	be	use-
ful	tools	for	generating	estimates	of	absolute	abundance	in	certain	
contexts,	 applying	 them	 in	 an	 unbiased	 way	 can	 be	 prohibitively	
challenging	 in	 many	 systems.	 When	 estimates	 of	 absolute	 abun-
dance	 are	 infeasible,	 indices	 of	 relative	 abundance	 are	 commonly	
used	to	assess	populations	of	exploited	species	(Campbell,	2015).	In	
fisheries,	abundance	trends	derived	from	catch	and	effort	data	(e.g.,	
catch-	per-	unit-	effort,	 CPUE),	 in	 concert	 with	 biological	 reference	
points,	 can	 inform	 management	 by	 providing	 critical	 information	
about	whether	a	population	is	overfished	or	if	overfishing	is	actively	
occurring	 (Cortés	&	Brooks,	2018).	However,	 it	 is	 extremely	 chal-
lenging	to	account	for	all	the	factors	that	could	influence	catchability	
(Maunder	et	al.,	2006);	hence,	indices	of	relative	abundance	derived	
from	 CPUE	 are	 rarely	 linearly	 proportional	 to	 actual	 abundance	
(Harley	et	al.,	2001;	Lynch	et	al.,	2012;	Maunder	&	Punt,	2004).	Fish	
or	fisher	behavior	contributes	to	hyperstability	(Erisman	et	al.,	2011; 
Ward	 et	 al.,	 2013)	 and	 biased	 inference	 about	 abundance	 trends	
can	 result	 if	 CPUE	 data	 are	 interpreted	 in	 isolation,	 or	 if	 linearity	
between	catch	rate	and	abundance	is	implicitly	assumed	(Maunder	
et	al.,	2006).	Furthermore,	estimating	trends	of	relative	abundance	
for	highly	mobile	species	frequently	requires	the	integration	of	mul-
tiple	independent	surveys	that	suggest	differing	abundance	trends,	
making	 it	 difficult	 to	 establish	 true	 abundance	 patterns	 (Peterson	
et	al.,	2021).	All	of	 these	 issues	are	amplified	 in	 taxa	such	as	elas-
mobranchs	(sharks,	skates,	and	rays),	where	reported	catch	data	are	
often	unreliable	(Cortés	&	Brooks,	2018).	While	CPUE	can	provide	
invaluable	information	regarding	stock	status	and	harvest	pressure	
when	 analyzed	 in	 the	 right	 context	 (e.g.,	 via	 an	 integrated	model	
that	 incorporates	additional	data	streams),	there	 is	an	urgent	need	
for	methods	that	can	provide	robust	estimates	of	absolute	popula-
tion	abundance	in	circumstances	where	catch	data	are	unreliable	or	
strongly	 correlated	with	 factors	 other	 than	population	 trend	 (e.g.,	
changes	in	fishing	practices,	skill,	or	gear	improvement,	or	environ-
mental	perturbations).

Close-	kin	 mark-	recapture	 (CKMR)	 is	 a	 genetics-	based	 ap-
proach	 for	 estimating	 absolute	 population	 abundance	 that	 over-
comes	 many	 of	 the	 logistical	 challenges	 associated	 with	 CMR	
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and	 other	 abundance	 estimation	 methods	 (Bravington,	 Skaug,	 &	
Anderson,	2016;	Skaug,	2001).	As	such,	CKMR	has	great	potential	
to	 expand	monitoring	 efforts	 and	 improve	 or	 enable	 assessments	
of	species	for	which	conventional	methods	are	intractable.	 In	con-
trast	 to	 conventional	CMR,	 the	 tags	 in	CKMR	are	 genotypes,	 and	
animals	are	considered	 “re-	captured”	when	their	kin	are	 identified	
(Bravington,	Skaug,	&	Anderson,	2016).	This	removes	the	need	for	in-
dividual	recapture	and	allows	for	the	estimation	of	adult	abundance	
using	 samples	 collected	 solely	 from	 juveniles,	 as	 well	 as	 samples	
obtained	 lethally	 through	 fishing	or	hunting	 (Bravington,	Skaug,	&	
Anderson,	2016;	Hillary	et	al.,	2018).	While	CKMR	can	theoretically	
leverage	any	relationship,	the	most	common	applications	so	far	have	
focused	 on	 parent-	offspring	 pairs	 (POPs)	 (Bravington,	 Grewe,	 &	
Davies,	2016;	Marcy-	Quay	et	al.,	2020;	Ruzzante	et	al.,	2019)	and/or	
half-	sibling	pairs	(HSPs)	(Hillary	et	al.,	2018;	Patterson,	Hillary,	Kyne,	
et	al.,	2022).	Similar	to	conventional	CMR,	CKMR	can	estimate	quan-
tities	 beyond	 abundance,	 including	 survival	 (Hillary	 et	 al.,	 2018),	
fecundity	 (Bravington,	 Grewe,	 &	 Davies,	 2016),	 dispersal	 (Conn	
et	al.,	2020;	Feutry	et	al.,	2017;	Patterson,	Hillary,	Kyne,	et	al.,	2022),	
and,	potentially,	population	growth	rate,	though	which	parameters	
can	 be	 estimated	 depends	 on	 the	 form	of	 the	model	 and	 type	 of	
kin	pairs	modeled.	 In	cases	where	sampling	 is	 limited	 to	 juveniles,	
CKMR	can	provide	added	value	to	conventional	CMR	by	generating	
parameter	estimates	for	the	adult	population	while	CMR	estimates	
parameters	for	the	sampled	(in	this	case	juvenile)	portion	of	the	pop-
ulation.	These	advantages	and	possibilities	make	CKMR	an	exciting	
tool	to	improve	monitoring	efforts	and	population	assessments	for	
data-	limited	species	of	management	and	conservation	concern,	ei-
ther	in	conjunction	with,	or	in	place	of,	conventional	CMR.

Despite	 CKMR's	 strong	 potential	 to	 provide	 key	 information	
for	 conservation	 and	 management,	 its	 implementation	 has	 been	
slowed	by	 a	 lack	of	 clarity	 regarding	 the	 flexibility	 and	 limitations	
of	the	method.	Several	studies	have	discussed	factors	that	are	likely	
to	cause	bias	if	 left	unaccounted	for	in	CKMR	models	(Bravington,	
Skaug,	&	Anderson,	2016;	Conn	et	 al.,	2020;	 Trenkel	 et	 al.,	2022; 
Waples	&	Feutry,	2021),	but	 there	have	been	few	quantitative	as-
sessments	of	the	biases	that	arise	from	applying	an	overly	simplistic	
CKMR	model	to	a	population	with	complex	dynamics	(but	see	Conn	
et	al.,	2020,	Waples	&	Feutry,	2021).	For	example,	a	simple	base-	case	
CKMR	model	 (e.g.,	equations	3.3	and	3.10	in	Bravington,	Skaug,	&	
Anderson,	 2016)	 produces	 an	 abundance	 estimate	 that	 assumes	
abundance	is	constant	over	the	modeled	time	period.	However,	real	
populations	experience	 interannual	 fluctuations	 in	population	size.	
If	such	changes	are	persistent	or	severe	(e.g.,	following	an	environ-
mental	 disaster	 or	 introduction	 of	 heavy	 fishing	 pressure),	 then	 it	
will	be	necessary	to	specify	a	more	complex	CKMR	model	that	can	
accommodate	a	changing	population	if	year-	specific	abundance	es-
timates	are	desired.

When	 modeling	 half-	sibling	 relationships,	 a	 simple	 base-	case	
CKMR	model	assumes	that	the	probability	of	two	individuals	shar-
ing	 a	parent	 is	 a	 simple	 exponential	 function	of	 the	 year	 gap	 that	
separates	 their	 births.	 However,	 many	 long-	lived	 species	 exhibit	
intermittent	breeding	whereby	one	or	more	years	elapse	between	

reproductive	events	(Bauwens	&	Claus,	2019;	Desprez	et	al.,	2018; 
Morbey	&	Shuter,	2013;	Shaw	&	Levin,	2013;	Skjæraasen	et	al.,	2020),	
resulting	in	different	probabilities	of	detecting	half-	siblings	depend-
ing	on	the	age	gap	(Waples	&	Feutry,	2021).	Systematic	intermittent	
breeding	 will	 cause	 bias	 in	 CKMR	 parameter	 estimates	 if	 unac-
counted	for	in	the	model	(Waples	&	Feutry,	2021).	While	it	may	be	
possible	 to	 infer	 breeding	periodicity	 based	on	 the	distribution	of	
observed	kin	pairs	in	the	data,	instances	of	off-	cycle	breeding,	mixed	
breeding	schedules	 (e.g.,	 a	population	comprising	both	annual	and	
multiennial	breeders),	and	aging	uncertainty	that	 leads	to	errors	 in	
cohort	 assignment	may	obscure	 the	 signal	 (Cubaynes	et	 al.,	2011; 
Higgs	et	al.,	2020;	Öst	et	al.,	2018;	Rivalan	et	al.,	2005).

Finally,	a	core	component	of	CKMR	is	the	use	of	age	data,	which	
is	 required	 to	assign	 individuals	 to	 the	correct	cohort	 (Bravington,	
Skaug,	&	Anderson,	2016).	Direct	aging	is	very	challenging	for	some	
taxa	 (Cailliet,	2015),	 and	 length-	based	 age	 assignment	 is	 prone	 to	
bias	when	growth	 curves	 are	based	on	 size-	selective	 sampling,	 as	
they	often	are	(Gwinn	et	al.,	2010).	While	more	advanced	statistical	
methods	can	account	for	uncertainty	 in	aging	during	the	modeling	
process	(Schwarz	&	Runge,	2009),	it	may	also	be	possible	to	alleviate	
bias	by	targeting	sampling	to	age	classes	that	can	be	reliably	aged,	
such	as	young-	of-	the-	year	(YOY)	which	are	often	easily	distinguished	
from	 other	 age	 classes	 by	 their	 small	 size	 and/or	 the	 presence	 of	
umbilical	scars	(Feldheim	et	al.,	2002).	Sampling	constraints	will	not	
always	permit	long-	term	sampling	of	YOY	and	the	number	of	cohorts	
required	to	produce	robust	parameter	estimates	with	CKMR	is	un-
clear.	A	better	understanding	of	the	circumstances	in	which	unob-
served	population	dynamics	or	sampling	limitations	are	likely	to	bias	
CKMR	model	estimates,	 in	combination	with	strategies	to	mitigate	
that	bias,	will	help	ensure	robust	application	of	the	method	and	facil-
itate	its	integration	into	conservation	and	management	frameworks.

Elasmobranchs	 (sharks,	 skates,	 and	 rays)	 are	 a	 group	 of	 highly	
vulnerable	 marine	 species	 that	 play	 key	 ecological	 roles	 as	 apex-		
and	 meso-	predators	 in	 ecosystems	 around	 the	 world	 (Ferretti	
et	al.,	2018;	Vaudo	&	Heithaus,	2011)	and	are	likely	to	benefit	from	
future	application	of	CKMR.	Around	one-	third	of	the	1200+	elasmo-
branch	species	are	threatened	with	extinction,	due	primarily	to	over-
fishing	(Dulvy	et	al.,	2021),	while	nearly	half	of	elasmobranch	species	
(46%)	are	classified	on	the	IUCN	Red	List	of	Threatened	Species	as	
Data	Deficient	 and	 only	 a	 small	 fraction	 of	 exploited	 populations	
are	 managed	 sustainably	 (Kindsvater	 et	 al.,	 2018).	 Conventional	
methods	for	estimating	abundance	and	mortality	are	intractable	for	
many	elasmobranch	populations	because	individual	recapture	rates	
for	highly	mobile	elasmobranch	species	can	be	very	 low	(Kohler	&	
Turner,	2001),	and	it	can	be	logistically	challenging	to	physically	cap-
ture	and	mark	larger	species	(Guttridge	et	al.,	2017).	In	contrast	to	
conventional	methods,	CKMR	requires	only	small	tissue	samples	that	
can	be	obtained	 from	adults	via	biopsy,	or	 from	 juveniles	 that	are	
easier	to	handle	than	their	adult	counterparts.	There	is	also	no	need	
for	 individual	 recapture	so	each	animal	only	needs	 to	be	captured	
and	handled	once,	making	 this	a	more	 feasible	approach	for	many	
elasmobranch	 populations.	 In	 addition,	 when	 adults	 are	 unavail-
able	 for	 sampling,	 the	 life	histories	of	many	elasmobranch	species	
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may	permit	the	use	of	juvenile-	only	CKMR	models	(e.g.,	half-	sibling	
(HS)	CKMR)	that	can	estimate	adult	abundance	without	sampling	a	
single	adult	(Bravington,	Skaug,	&	Anderson,	2016;	Førland,	2019).	
Considering	that	many	migratory	elasmobranchs	use	nursery	areas	
where	juveniles	are	more	readily	available	for	sampling	than	adults	
(Heupel	et	al.,	2007),	 the	potential	 for	CKMR	to	provide	novel	 in-
sights	into	difficult-	to-	study	elasmobranch	populations	is	vast.

Close-	kin	 mark-	recapture	 has	 been	 applied	 to	 several	 elas-
mobranch	 populations	 to	 date	 (Bradford	 et	 al.,	 2018;	 Bravington	
et	 al.,	 2019;	 Delaval	 et	 al.,	 2023;	 Hillary	 et	 al.,	 2018;	 Patterson,	
Hillary,	Kyne,	 et	 al.,	2022;	 Trenkel	 et	 al.,	2022)	 and	 is	 likely	 to	 be	
an	 important	 tool	 to	 inform	elasmobranch	 conservation	 and	man-
agement	 in	 the	 future.	 However,	 elasmobranch	 populations	 are	
susceptible	to	steep	population	declines	arising	from	overexploita-
tion	 (Ferretti	 et	 al.,	2018),	 commonly	 exhibit	multiennial	 breeding	
cycles	(Nosal	et	al.,	2021),	and	are	exceptionally	challenging	to	age	
(Cailliet,	2015).	As	such,	there	is	a	risk	that	CKMR	models	that	do	not	
sufficiently	account	for	these	factors	will	produce	biased	parameter	
estimates	 that	will	 be	 incorporated	 into	management	 frameworks	
and	lead	to	incorrect	management	actions	that	ultimately	threaten	
elasmobranch	populations.

To	facilitate	the	robust	application	of	CKMR	to	elasmobranchs	
and	other	long-	lived	taxa	facing	similar	challenges	with	abundance	
estimation,	we	investigated	the	sensitivity	of	CKMR	parameter	es-
timates	 to	unmodeled	dynamics	 related	 to	population	growth	and	
breeding	 schedule,	 as	 well	 as	 uncertainty	 in	 age	 assignment.	We	
used	 stochastic	 individual-	based	 simulation	 to	 generate	 distinct	
populations	 of	 lemon	 sharks	 (Negaprion brevirostris),	 a	 representa-
tive	 long-	lived	 species	 with	 promiscuous	 mating	 and	 multiennial	
breeding,	under	different	population	dynamics	scenarios	and	sam-
pled	 each	 population	 using	 three	 sampling	 schemes	 that	 targeted	
different	age	classes.	Two	different	CKMR	models	were	fit	to	each	
dataset:	one	that	was	naïve	to	at	least	one	component	of	the	data-	
generating	model	(naïve	model)	and	one	that	was	adapted	to	account	
for	all	relevant	population	dynamics	(adapted	model).	We	compared	
the	bias	in	parameter	estimates	from	both	models	(naïve	vs	adapted)	
and	across	all	 three	sampling	schemes,	 including	one	 in	which	age	
data	were	unreliable.	Finally,	we	applied	a	model	that	was	adapted	
for	population	growth	and	multiennial	breeding	to	two	decades	of	
real	genetic	data	from	a	small	population	of	lemon	sharks	in	Bimini,	
Bahamas,	to	generate	a	time	series	of	abundance	estimates	for	the	
breeding	population	of	 females.	Collectively,	 these	results	provide	
important	 insights	 into	 the	 ways	 in	 which	 unmodeled	 population	
dynamics,	sampling	selectivity,	and	aging	error	affect	CKMR	model	
performance,	while	 also	 offering	 guidance	 regarding	 sampling	 de-
sign	and	model	construction.

2  |  METHODS

Our	 simulation	 framework	 comprised	 four	 primary	 components:	
(1)	 an	 individual-	based	 population	 simulation	 that	 stochastically	

generated	distinct	populations	with	known	parameters,	(2)	selective	
sampling	of	age	classes	from	those	populations,	(3)	construction	of	a	
pairwise	comparison	matrix	from	the	samples,	and	(4)	a	CKMR	model	
that	was	fit	to	the	pairwise	comparison	matrix	to	estimate	the	known	
population	parameters.	The	first	three	components	comprised	our	
data-	generating	model	 (DGM)	while	 the	 latter	 formed	our	estima-
tion	model	(Figure 1).

We	then	tested	the	interplay	of	population	dynamics	and	model	
complexity	by	iteratively	varying	a	subset	of	population	parameters	
(Table 1)	 and	 fitting	 two	CKMR	models	 to	 the	data:	 one	 that	was	
naïve	to	the	added	dynamics,	and	one	that	was	adapted	to	account	
for	 them.	Each	scenario	was	 repeated	500	 times,	with	each	 itera-
tion	producing	a	population	with	a	distinct	pedigree	and	parameter	
estimates.

2.1  |  Data- generating model

Parameters	 governing	 our	 individual-	based	 population	 simula-
tions	were	designed	to	replicate	the	 life	history	traits	and	popula-
tion	dynamics	of	lemon	sharks	in	Bimini,	Bahamas,	(similar	to	White	
et	al.,	2014)	(Appendix	S1: Table S1).	Females	bred	with	one,	two,	or	
three	distinct	males	each	breeding	cycle	and	produced	two	or	three	
pups	with	each	male,	resulting	in	a	range	of	2–9	total	pups	produced	
per	female	per	year.	We	set	no	 limit	on	the	number	of	 females	an	
individual	male	could	breed	with.	As	a	consequence,	the	variance	in	
reproductive	output	for	males	was	much	greater,	ranging	from	2	to	
41	offspring	per	breeding	male	per	year	(median = 6).	After	maturity,	
fecundity	 was	 age-	invariant,	 so	 sex-	specific	 lifetime	 reproductive	
output	was	approximately	equal	across	the	population.	Survival	was	
assumed	constant	within	each	of	three	life	stages,	which	we	desig-
nated	as	young-	of-	year	 (YOY;	age	0),	 juvenile	 (age	1–11),	and	adult	
(age	 12–50).	 We	 assigned	 knife-	edged	 maturity	 following	 White	
et	al.	 (2014),	so	every	 individual	age	12	and	over	was	available	for	
breeding,	while	no	individuals	younger	than	age	12	were	allowed	to	
breed.

2.1.1  |  Population	growth

We	 varied	 population	 growth	 in	 our	 DGM	 by	 reducing	 or	 adding	
mortality	 in	 juveniles	 and	 adults	 (Appendix	 S1: Table S1).	 For	 the	
slight	increase	and	decline	scenarios	(Table 1:	Scenarios	2.1	and	2.2),	
mortality	was	 increased	or	 reduced	by	~1%	from	the	beginning	of	
the	simulation,	resulting	in	a	population	growth	rate	of	±1%	per	year.	
To	 achieve	 more	 substantial	 declines	 in	 population	 size	 (Table 1: 
Scenario	 2.3),	 we	 simulated	 a	 stable	 population	 for	 80 years	 and	
then	stochastically	imposed	4–7%	added	mortality	for	juvenile	and	
adult	age	classes	for	years	81–90	(when	imposed	from	the	beginning	
of	the	simulation,	the	population	invariably	went	extinct).	This	pro-
duced	a	population	that	declined	at	a	rate	of	~7%	per	year	for	the	last	
10 years	of	the	simulation.
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2.1.2  |  Intermittent	breeding

Many	 elasmobranchs	 systematically	 breed	 on	 multiennial	 cycles	
(Feldheim	et	al.,	2002,	2017;	Nosal	et	al.,	2021).	To	examine	the	bias	
that	accrues	when	this	 trait	 is	unaccounted	 for	 in	a	CKMR	model,	
we	ran	simulations	where	all	females	bred	on	a	bi-		or	triennial	cycle	
(Table 1:	Scenario	3.1–3.3),	including	one	scenario	where	we	allowed	
20%	of	breeding	females	to	stochastically	breed	off-	cycle	or	fail	to	
breed	when	they	were	on-	cycle	 (Scenario	3.2).	Each	female	 in	our	
simulation	was	assigned	a	breeding	cycle	at	birth,	which	determined	
the	first	year	of	reproduction	for	multiennial	breeders.	In	scenarios	
with	biennial	breeders,	 this	 resulted	 in	a	population	where	half	of	
the	females	reproduced	for	the	first	time	in	the	year	they	matured	
(age	12)	and	the	other	half	reproduced	for	the	first	time	the	follow-
ing	 year	 (age	13).	 For	 the	 scenario	with	 triennial	 breeding,	 a	 third	
group	reproduced	for	the	first	time	at	age	14.	Males	were	assumed	
available	to	breed	every	year	once	they	reached	maturity	at	age	12.

2.2  |  Sampling

All	 simulated	 populations	 were	 sampled	 using	 three	 different	
schemes	that	selected	for	different	age	classes:	the	first	drew	sam-
ples	exclusively	from	young-	of-	year	 (age	0)	 individuals;	the	second	
made	juveniles	of	all	ages	except	young-	of-	year	(ages	1–11)	available	
to	 sample;	 and	 the	 third	 allowed	 sampling	 of	 all	 age	 classes	 (ages	
0–50).	These	scenarios	were	chosen	to	replicate	potential	sampling	
opportunities	 for	 elasmobranchs	 such	 as	 nursery	 areas	 (Feldheim	
et	al.,	2002;	Heupel	et	al.,	2007),	juvenile	aggregation	sites	(Jacoby	
et	al.,	2012;	Rowat	et	al.,	2007),	and	resident	populations	(Snelson	&	
Williams,	1981),	respectively.

In	each	case,	the	population	was	initially	sampled	at	four	differ-
ent	intensities	representing	0.5%,	1%,	1.5%,	and	2%	of	the	popula-
tion.	 Samples	were	drawn	annually	 and	non-	lethally	 for	4 years	 at	
the	end	of	the	population	simulation	(i.e.,	years	87–90),	following	re-
production	but	before	mortality	each	year.	With	a	stable	population,	
sampling	1.5%	of	the	population	resulted	in	an	average	of	616	total	
samples	and	100–200	half-	sibling	pairs	(HSPs),	which	is	expected	to	
produce	a	reasonable	CV	for	all	three	sampling	schemes	(Bravington,	
Skaug,	&	Anderson,	2016).	Therefore,	following	model	validation,	we	
focused	on	sampling	1.5%	of	the	population	for	the	remainder	of	our	
simulations.

2.2.1  |  Aging	uncertainty

A	crucial	component	of	CKMR	is	accurate	aging,	yet	some	taxa,	in-
cluding	elasmobranchs,	are	notoriously	difficult	to	age,	with	most	ef-
forts	relying	on	length-	at-	age	growth	curves	to	assign	age	to	sampled	
individuals	 (Cailliet,	2015).	 To	examine	how	 imprecision	 in	 growth	
curves	affects	CKMR	parameter	estimates,	we	first	constructed	an	
age-	length	key	for	lemon	sharks	using	data	from	a	long-	term	study	
of	the	population	in	Bimini,	Bahamas	(Feldheim	et	al.,	2014),	and	cal-
culated	the	standard	deviation	of	lengths	for	individuals	with	known	
ages,	the	majority	of	which	(>95%)	spanned	ages	0–3.	We	then	simu-
lated	lengths	for	each	sampled	individual	(which	were	assigned	ages	
in	our	DGM)	using	a	von	Bertalanffy	growth	curve	for	the	species	
(Brown	&	Gruber,	1988).	Each	 individual	was	assigned	a	 length	by	
drawing	a	value	from	a	normal	distribution	with	the	mean	length-	at-	
age	specified	by	the	von	Bertalanffy	curve,	and	the	standard	devia-
tion	derived	empirically	from	our	age-	length	key	for	individuals	aged	
0–2,	and	arbitrarily	from	a	CV	of	5%,	10%,	or	20%	for	individuals	aged	

F I G U R E  1 Schematic	of	CKMR	sensitivity	tests,	examined	via	individual-	based	simulation	(see	also	Tables 1	and	2;	Scenario	1	was	model	
validation,	and	Scenario	5	involved	real	genetic	data,	so	are	not	included	here).	Populations	with	distinct	pedigrees	were	produced	and	
sampled	via	an	individual-	based	data-	generating	model	(purple).	Population	parameters	were	individually	varied	for	each	of	three	scenarios.	
Each	population	was	sampled	in	three	ways,	and	each	set	of	samples	was	used	as	input	to	two	estimation	models	(green):	one	model	was	
naïve	to	the	added	population	dynamics	of	the	DGM,	and	one	model	was	adapted	to	account	for	them.	The	year	of	estimation	(year t)	was	
varied	for	Scenario	2;	otherwise,	simulation	results	that	are	discussed	in	the	text	used	the	model	settings	highlighted	in	bold.
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3+.	After	assigning	lengths	to	each	individual,	we	used	a	reverse	von	
Bertalanffy	growth	curve	with	the	same	values	for	theoretical	age	
of	 zero	 size	 (t0 = −2.302),	 asymptotic	 average	 length	 (Linf = 317.65),	
and	the	growth	coefficient	(K = 0.057)	and	then	re-	assigned	ages	to	
sampled	 individuals	 based	 on	 their	 lengths,	 rounding	 to	 the	 near-
est	integer.	This	produced	plausible,	yet	sometimes	incorrect,	ages	
(similar	to	age-	slicing;	see	Ailloud	et	al.,	2015).	The	re-	assigned	ages	
were	 then	 used	 to	 construct	 the	 pairwise	 comparison	matrix	 that	
was	input	to	the	CKMR	model.

2.3  |  Pairwise comparison matrix

Close-	kin	 mark-	recapture	 produces	 estimates	 of	 abundance	 and	
other	 population	 parameters	 by	 defining	 kinship	 probabilities	 for	
every	pair	of	sampled	individuals	given	relevant	covariates	(e.g.,	age,	
sex).	We	constructed	two	standard	pairwise	comparison	matrices	for	
each	set	of	samples.	The	first	matrix	contained	positive	and	negative	
kinship	assignments	for	half-	siblings	(HS).	To	satisfy	the	assumption	of	
independent	sampling,	whenever	full	siblings	or	self-	recaptures	were	
present,	all	but	one	individual/instance	was	removed	prior	to	the	con-
struction	of	the	matrix.	Once	the	matrix	was	created,	within-	cohort	
comparisons	were	removed.	Though	CKMR	models	can	be	adapted	
to	 incorporate	 within-	cohort	 comparisons	 (Førland,	 2019),	 without	
considerable	modifications	to	the	equations,	within-	cohort	and	cross-	
cohort	 comparisons	 will	 estimate	 different	 quantities	 (Waples	 &	
Feutry,	2021).	As	such,	removing	within-	cohort	comparisons	is	com-
mon	 practice	 for	 the	 application	 of	 half-	sibling	 CKMR	 (Bravington,	
Skaug,	&	Anderson,	2016).	Kinship	assignment	in	our	simulations	was	
known	without	error,	so	each	comparison	was	assigned	as	a	positive	
if	 the	 two	 individuals	 being	 compared	were	 a	 half-	sibling	 pair,	 and	
negative	if	not.	Because	half-	siblings	are	genetically	indistinguishable	
from	aunt/niece	(uncle/nephew,	etc.)	pairs,	we	included	one	scenario	
(Table 1:	Scenario	1.2)	where	we	allowed	such	comparisons	to	con-
taminate	the	pool	of	half-	siblings	and	evaluated	the	degree	to	which	
these	false	positives	affected	parameter	estimates.

The	second	matrix	was	composed	of	parent-	offspring	(PO)	com-
parisons,	 which	 were	 only	 relevant	 to	 the	 scenario	 that	 included	
sampling	of	adults.	For	each	birth	year	represented	in	the	dataset,	
individuals	that	were	alive	in	that	year	were	split	into	potential	off-
spring	 or	 parents	 based	 on	 whether	 they	 were	 born	 in	 that	 year	
(potential	 offspring),	 reproductively	 mature	 at	 the	 time	 (potential	
parent),	or	neither,	 in	which	case	 they	were	 left	out	of	 the	matrix	
corresponding	to	that	year.	Each	comparison	was	assigned	as	a	posi-
tive	if	they	were	related	as	parent-	offspring	or	negative	if	not.

Once	the	appropriate	half-	sibling	and	parent-	offspring	compar-
isons	were	 defined,	 all	matrices	were	 collated	 and	 grouped	 by	 (1)	
type	of	relationship	(HS	or	PO),	(2)	birth	year	of	younger	individual	
in	each	comparison	 (a.k.a.	yj;	 see	Section	2.4.1),	 (3)	 reference	year	
gap	(a.k.a.	(yj–t0);	see	Section	2.4.2),	and	(4)	birth	year	gap	(a.k.a.	δ; 
see	Section	2.4.1),	as	applicable.	The	number	of	observed	kin	pairs	
(Y)	was	then	modeled	as	a	random	variable,	with	the	probability	of	
success	defined	by	Equations	(1–9)	below,	and	n	equal	to	the	total	

number	of	 comparisons	 in	each	group	 (see	Appendix	S1:	S1.1	and	
Table S2	 for	more	details	 on	 the	pairwise	 comparison	matrix,	 and	
Appendix	S1:	S1.2	for	more	details	on	kinship	types	that	can	cause	
issues	for	half-	sibling	CKMR	e.g.,	aunt/niece	pairs).

2.4  |  Estimation models

Kinship	 probabilities	 for	 each	 pairwise	 comparison	 in	 CKMR	 are	
derived	 from	 the	 expected	 reproductive	 output	 of	 individual	 ani-
mals	 (defined	 by	 covariates	 such	 as	 age	 and	 sex)	 relative	 to	 the	
total	 reproductive	 output	 of	 the	 population	 in	 the	 birth	 year	 of	
the	 younger	 individual	 in	 each	 pairwise	 comparison	 (Bravington,	
Skaug,	&	Anderson,	2016).	The	specific	equations	we	used	to	define	
kinship	 probabilities	 in	 our	CKMR	models	 varied	with	 the	 scenar-
ios	we	tested,	with	each	scenario	comparing	a	“naïve”	model	to	an	
“adapted”	model,	where	the	naïve	model	 ignored	one	key	dynamic	
of	 the	simulated	population	and	the	adapted	model	accounted	for	
it.	 Our	 equations	 are	 based	 on	 the	 general	 equations	 defined	 in	
Bravington,	Skaug,	and	Anderson	(2016).

2.4.1  |  Base-	case	CKMR	model

Let P{Ki,j = MHSP}	 be	 the	 probability	 that	 individuals	 i	 and	 j	 are	 a	
maternal	half-	sibling	pair	(i.e.	they	share	a	mother	but	not	a	father).	
Probabilities	for	Ki,j	depend	on	the	likelihood	that	the	same	individ-
ual	that	birthed	the	older	offspring	(i)	survived	and	gave	birth	to	the	
younger	offspring	( j).	If	we	assume	that	all	animals	of	reproductive	
age	in	the	population	during	i	and	j's	birth	years	are	equally	likely	to	
have	birthed	each	of	them,	then	the	probability	of	kinship	(K)	can	be	
defined	as

where,

�	is	the	annual	survival	probability	for	adults,
δ	is	the	number	of	years	between	the	birth	years	of	individuals	
i	and	j	(i.e.	yj–yi)	during	which	any	potential	parent	of	i	may	have	
died	a.k.a.	the	“birth	year	gap”,
yj	is	the	birth	year	of	individual	j	(the	younger	sibling),
R(yi ,yj)	reflects	the	total	number	of	pairwise	comparisons	between	
individuals	born	in	years	yi	and	yj,	and.
N♀(yj)	is	the	total	number	of	mature	females	in	year	yj.

Now,	 let	P{Ki,j = MPOP}	 refer	 to	 the	probability	 that	 individuals	 i 
and	 j	are	related	as	a	maternal	parent-	offspring	pair	 (MPOP).	 In	this	
case,	survival	only	enters	the	equation	for	MPOPs	if	sampling	is	non-	
lethal	(as	it	was	in	our	simulations)	and	if	the	potential	parent	was	sam-
pled	before	the	potential	offspring	was	born.	If,	on	the	contrary,	the	
potential	mother	i	was	captured	in	or	after	the	offspring	j's	birth	year	
and	was	reproductively	mature	at	that	time,	then	we	know	that	she	

(1)P
{
Ki,j = MHSP

}
∼ Binomial

(
��

N♀(yj)

,R(yi ,yj)

)
,
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was	alive	in	the	year	the	offspring	was	born	and,	assuming	constant	
fecundity	across	the	population,	is	equally	likely	to	have	birthed	 j	as	
any	other	potential	mother.	Assuming	 the	pool	of	potential	parents	
was	filtered	to	only	include	individuals	that	were	mature	and	were	not	
known	to	have	died	before	j's	birth	year,	the	probability	of	kinship	is

where ci	refers	to	the	year	in	which	the	potential	parent	was	captured.	
For	each	offspring	birth	year	(yj),	it	is	crucial	to	ensure	that	individuals	
who	were	not	reproductively	mature	are	not	included	as	potential	par-
ents	for	that	year.	This	restriction	can	be	added	directly	to	the	model	
(Bravington,	 Skaug,	&	Anderson,	2016;	Conn	et	 al.,	2020)	 or	 imple-
mented	during	the	construction	of	the	pairwise	comparison	matrix,	as	
was	done	here.

Given	 that	 sampling	 was	 non-	lethal	 for	 the	 parent,	 then	 the	
mother	 i's	 survival	 to	 the	year	of	 j's	 birth	 is	 conflated	with	detec-
tion	probability	(when	ci < yj).	In	circumstances	where	the	individual	
recapture	 rate	of	 adults	 is	 non-	negligible,	 an	 additional	 parameter	
defining	the	adult	detection	probability	will	be	required	to	disentan-
gle	the	state	(ϕ)	and	observation	(detection	probability)	processes.	
However,	 if	 sampling	 is	 sparse	 such	 that	 individual	 recaptures	 are	
exceedingly	rare,	the	cost	of	estimating	an	extra	parameter	for	de-
tection	probability	likely	outweighs	the	benefits.

Equations	(1	and	2)	define	our	base-	case	CKMR	model.	Though	
the	probabilities	presented	here	focus	on	maternal	kinship,	the	same	
probabilities	 apply	 to	males	 and	paternal	 kinship	 (see	Equations 8 
and	9	 below).	While	 all	models	 presented	 here	 incorporate	HSPs,	
POPs	were	only	included	in	the	likelihood	for	the	sampling	scheme	
in	which	adults	were	sampled	with	all	other	age	classes;	otherwise,	
the	likelihood	included	HS	kinship	probabilities	only.

2.4.2  |  Population	growth	model

To	account	for	population	growth/decline	in	our	CKMR	model,	we	
defined	a	simple	exponential	growth	model	to	describe	the	popula-
tion	dynamics,	where

As	such,	the	kinship	probabilities	become:

and

Here,	�	defines	the	annual	population	growth	rate	and	t0	refers	
to	the	initial	model	year,	also	called	the	“reference	year”	(Bravington,	
Skaug,	&	Anderson,	2016).	The	reference	year	typically	refers	to	the	
earliest	 instance	of	yj	 in	 the	pairwise	comparison	matrix	but	could	
refer	to	any	modeled	year.

To	 assess	 the	 capacity	 of	 CKMR	 to	 generate	 year-	specific	
abundance	estimates,	we	fit	the	same	CKMR	model	to	each	data-
set	four	times.	In	each	instance,	we	set	the	reference	year	(t0)	to	
the	earliest	instance	of	yj	and	estimated	N(t0),	Then,	we	derived	N(t) 
10 years	prior	to	the	reference	year	(before	data	were	collected),	
in	the	reference	year	(t0),	5 years	prior	to	the	last	year	of	the	sim-
ulation,	and	the	last	year	of	the	simulation	(i.e.,	present).	We	also	
tested	 two	different	methods	 for	generating	year-	specific	 abun-
dance	estimates:	one	where	t0	was	fixed	to	the	first	year	of	data	
(first	 instance	of	yj)	and	N(t)	was	calculated	as	a	derived	quantity	
(Table 2	–	our	primary	approach),	and	one	where	t0	was	directly	
set	to	the	year	of	interest	(i.e.,	N	was	directly	estimated	in	year	t; 
see	Appendix	S1:	S1.3	for	more	discussion	on	CKMR	with	a	chang-
ing	population).

2.4.3  |  Intermittent	breeding	model

If	a	population	–	or	subset	of	a	population	–	systematically	breeds	
on	 a	 non-	annual	 schedule,	 then	 CKMR	 estimates	 will	 be	 biased	
unless	 this	 behavior	 is	 accounted	 for	 in	 the	 model	 (Waples	 &	
Feutry,	2021).	We	accounted	for	 intermittent	breeding	dynamics	
in	our	CKMR	model	via	the	inclusion	of	parameters	a	and	Ψ,	where	
a	refers	to	the	number	of	years	between	breeding	(e.g.,	2	for	bien-
nial	 breeders),	 and	Ψ	 is	 the	 proportion	 of	 individuals	 that	 breed	
every	a	 years	 (similar	 to	 Patterson,	Hillary,	 Feutry,	 et	 al.,	2022).	
This	implies	that	(1–Ψ )	individuals	breed	annually.	We	assume	that	
the	proportion	of	on-	cycle	breeders	that	breed	in	a	given	year	is	
1/a.	Thus,	the	effective	number	of	female	breeders	in	a	given	year	
(Ñ♀(t))	is	given	by

Accounting	 for	 interannual	 population	 dynamics	 (Equation 3),	
the	full	probability	of	maternal	half-	sibling	kinship	for	a	population	
that	reproduces	on	a	multiennial	schedule	becomes

(2)P
�
Ki,j = MPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♀(yj)

,R(ci ,yj) ci <yj

1

N♀(yj)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
,

(3)N(t) = N(t0)�
t .

(4)P
�
Ki,j = MHSP

�
∼ Binomial

⎛
⎜⎜⎝

��

N♀(t0)�
(yj−t0)

,R(yi ,yj)

⎞
⎟⎟⎠

(5)P
�
Ki,j = MPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♀(t0)𝜆
(yj−t0)

,R(ci ,yj) ci <yj

1

N♀(t0)𝜆
(yj−t0)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
.

(6)
a + � -a�

a
N♀(t).

(7)P
�
Ki,j = MHSP

�
∼ Binomial

⎛⎜⎜⎜⎜⎝

a��(1−�)

(a+�−a�)N♀(t0)�
(yj−t0)

,R(yi ,yj) � not evenly divisible by a

a��

(a+�−a�)N♀(t0)�
(yj−t0)

,R(yi ,yj) � evenly divisible by a

⎞⎟⎟⎟⎟⎠
.
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If	 100%	 of	 females	 breed	 on	 a	 biennial	 cycle	 (i.e.	 a = 2	 and	
Ψ = 1),	 then	 the	probability	of	 finding	half-	siblings	 that	are	sepa-
rated	by	an	odd	number	of	birth	years	is	0.	It	is	the	presence	of	δ 
intervals	 that	are	not	evenly	divisible	by	a	 that	provide	 informa-
tion	on	the	parameter	Ψ	 (see	Appendix	S1:	S1.4	for	derivation	of	
Equations 6	and	7).

When	a	consistent	pattern	is	observed	in	the	year	gaps	that	sep-
arate	HSPs,	one	may	be	tempted	to	remove	off-	cycle	comparisons	
from	the	pairwise	comparison	matrix	–	since	they	have	no	chance	
of	revealing	a	positive	comparison	–	and	fit	a	model	that	is	naïve	to	
intermittent	breeding	(e.g.,	Equation 4)	to	the	on-	cycle	comparisons	
only.	We	thus	evaluated	two	different	types	of	“naïve”	model:	one	
where	we	retained	off-	cycle	comparisons	 in	the	pairwise	compari-
son	matrix	(the	“naïve”	model),	and	one	where	we	removed	off-	cycle	
comparisons	(the	“naïve	–	filtered”	model).

In	 our	 simulations,	 intermittent	 breeding	 dynamics	 were	 only	
present	for	females,	and	all	males	in	the	population	were	available	
for	breeding	each	year;	as	such,	Equation	(7)	only	applied	to	mater-
nal	comparisons,	while	kinship	probabilities	for	paternal	half-	sibling	
pairs	(PHSPs)	continued	to	be	defined	as:

which	 is	 the	 same	 as	 the	 maternal	 kinship	 probability	 defined	 in	
Equation	(4).

Because	 the	 parent	 is	 directly	 sampled	 in	 PO	CKMR,	 there	 is	
no	need	 to	explicitly	account	 for	breeding	periodicity	 in	 the	 likeli-
hood;	therefore,	we	continued	to	use	Equation	(5)	for	maternal	PO	
comparisons	when	applicable.	Similarly,	kinship	probabilities	for	pa-
ternal	parent-	offspring	pairs	(PPOPs)	mirrored	those	for	MPOPs	in	
Equation	(5):

For	all	multiennial	 simulations,	we	simulated	a	population	with	
an	approximately	stable	growth	rate,	set	the	reference	year	 (t0)	 to	
the	earliest	instance	of	yj,	and	estimated	N(t)	in	the	present	(i.e.,	most	
recent	year	of	sampling),	as	we	expect	this	to	be	a	common	approach	
in	real-	life	applications	of	CKMR.

2.4.4  |  Estimation	framework

We	adopted	a	Bayesian	approach	to	CKMR	parameter	estimation,	
which	allows	for	the	incorporation	of	auxiliary	data	and/or	expert	
knowledge	as	priors	on	model	parameters	(Kéry	&	Schaub,	2012).	
For	the	scenarios	tested	here,	survival	and	other	parameters	were	
assigned	 reasonably	 diffuse	 priors	 to	 reflect	 data-	limited	 situa-
tions	(Table 2).	Though	it	 is	possible	to	estimate	sex-	specific	sur-
vival	 (ϕ)	and	population	growth	rates	 (λ),	 these	parameters	were	
shared	between	males	and	females	 in	our	models.	The	posterior	
distributions	 for	 parameters	 were	 approximated	 using	 Markov	
Chain	 Monte	 Carlo	 (MCMC)	 sampling,	 implemented	 using	 the	
software	JAGS	(Plummer,	2003),	and	applied	in	the	R	environment	
(Denwood,	2016;	R	Core	Team,	2021).	We	ran	two	Markov	chains	
with	a	thinning	rate	of	20,	drawing	40,000	samples	from	the	pos-
terior	 distribution	 following	 a	 burn-	in	 of	 50,000	 samples.	 These	
settings	 were	 empirically	 derived	 by	 assessing	 autocorrelation	
among	successive	draws	and	convergence	among	the	chains.	We	
assessed	 the	 convergence	of	 the	 final	Markov	 chains	with	 trace	
plots	and	the	Gelman-	Rubin	statistic	(Gelman	&	Rubin,	1992)	and	

(8)P
�
Ki,j = PHSP

�
∼ Binomial

⎛
⎜⎜⎝

��

N♂(t0)�
(yj−t0)

,R(yi ,yj)

⎞
⎟⎟⎠
,

(9)P
�
Ki,j = PPOP

�
∼ Binomial

⎛
⎜⎜⎜⎜⎝

𝜙(yj−ci)

N♂(t0)𝜆
(yj−t0)

,R(ci ,yj) ci <yj

1

N♂(t0)𝜆
(yj−t0)

,R(ci ,yj) ci ≥yj

⎞
⎟⎟⎟⎟⎠
.

TA B L E  2 Model	parameters	and	priors.

Parameter Definition Prior

Ns(t0) Sex-	specific	abundance	in	year	0 Ns(t0) ~ Normal	(μ,	σ)
μ ~ Uniform	(1,	10,000)
σ ~ Uniform	(1,	10,000)

Φ Annual	survival Uniform	(0.5,	0.95):	default
Uniform	(0.5,	0.99):	for	small	population	simulations	and	application	to	Bimini	data

λ Annual	finite	population	growth	
rate

Uniform	(0.95,	1.05):	default
Uniform	(0.80,	1.20):	for	severe	decline	scenario
Uniform	(0.70,	1.30):	for	small	population	simulations	and	application	to	Bimini	data

ψ Proportion	of	individuals	that	
breed	every	a	years

Uniform	(0,	1)

a Years	between	breeding Fixed

Derived quantities Definition Equation

Ns(t) Sex-	specific	abundance	in	year	t Ns(t0) ∗�
(yj−t0)	(Equation 3)

N♀b(t) Abundance	of	breeding	females	
in	year	t	(in	multiennial	
simulations)

a+� − a�

a
N♀(t)	(Equation 6)

Note: Ns	is	a	general	term	that	encompasses	both	N♀,	N♂	when	the	sex-	specific	parameters	were	treated	the	same.
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removed	 from	 further	 analysis	 any	 simulation	 replicate	 with	 an	
Rhat	 value	>1.01,	 although	 these	 instances	were	 rare	 (~1.5%	 of	
simulations).

2.5  |  Application to lemon sharks

2.5.1  |  Bimini	lemon	shark	dataset

A	 long-	term	genetic	dataset	 from	 lemon	sharks	 in	Bimini,	Bahamas,	
was	used	to	illustrate	the	application	of	our	multiennial	CKMR	model	
(Equation 7)	to	a	dataset	derived	entirely	from	juvenile	tissue	samples	
(Feldheim	et	al.,	2014).	Lemon	sharks	are	large	viviparous	(live-	bearing)	
elasmobranchs	that	reach	sexual	maturity	at	approximately	12 years	of	
age	(Brown	&	Gruber,	1988)	with	a	lifespan	exceeding	30 years	(Brooks	
et	al.,	2016).	Female	lemon	sharks	at	Bimini	are	regionally	philopatric	
and	return	to	Bimini	to	pup	on	a	biennial	schedule,	while	the	males	with	
which	they	mate	likely	reproduce	over	a	much	larger	area	(Feldheim	
et	al.,	2002).	Juveniles	use	the	shallow	waters	surrounding	Bimini	as	a	
nursery	and	remain	in	the	area	until	2–3 years	of	age	or	until	they	reach	
90 cm	in	length	(Morrissey	&	Gruber,	1993)	and	generally	do	not	move	
between	the	North	and	South	Islands	(Gruber	et	al.,	2001).	The	Bimini	
nursery	contributes	to	a	larger	Western	Atlantic	population	that	is	clas-
sified	as	Vulnerable	on	the	IUCN	Red	List	(Carlson	et	al.,	2021;	Hansell	
et	al.,	2018,	2021).	The	Bimini	nursery	has	been	 intensively	studied	
since	1995,	with	an	estimated	99%	of	newborn	sharks	sampled	at	the	
Bimini	North	Island	each	year	(DiBattista	et	al.,	2011).	The	ability	to	
heavily	sample	multiple	litters	has	allowed	for	reliable	reconstruction	
of	maternal	 genotypes,	while	paternal	 genotype	 reconstruction	has	
often	relied	on	relatively	few	newborns,	resulting	in	high	confidence	in	
maternal	kinship	assignment	and	lower	confidence	in	paternal	kinship	
(Feldheim	et	al.,	2002,	2004,	2014).

Given	the	disparities	in	kinship	assignment	and	breeding	range,	
we	focused	our	CKMR	model	on	maternal	comparisons	to	estimate	
abundance	and	survival	of	adult	females.	We	used	samples	collected	
from	the	North	Island,	a	small	isolated	nursery	for	lemon	sharks	aged	
0–3 years	old	(Chapman	et	al.,	2009),	from	1993	to	2015.	Most	in-
dividuals	in	our	dataset	were	sampled	as	YOY	(92%)	and	easily	iden-
tified	by	the	presence	of	umbilical	scars,	so	their	ages	were	known.	
We	estimated	abundance	of	total	females	in	our	CKMR	model	using	
Equation	 (7)	and	derived	the	number	of	effective	female	breeders	
in	each	year	using	Equation	(6).	Thus,	our	scope	of	inference	for	pa-
rameter	estimation	encompassed	the	adult	females	that	visited	the	
North	Island	nursery	to	give	birth	during	each	modeled	year,	a	num-
ber	that	is	likely	very	small	(White	et	al.,	2014).	We	excluded	sampled	
individuals	without	a	known	birth	year	from	analysis	as	well	as	same-	
cohort	comparisons	(Bravington,	Skaug,	&	Anderson,	2016),	and	any	
individuals	for	which	maternal	kinship	assignment	was	uncertain.

There	were	many	full	sibling	pairs	 in	the	dataset	 (1515	individ-
uals	contributing	to	1129	pairs),	but	very	few	cross-	cohort	full	sib-
lings	(only	4%	of	full	sibling	pairs).	Including	more	than	one	individual	
from	each	litter	in	a	CKMR	analysis	can	result	in	non-	independence	
among	pairwise	comparisons	and	unreliable	estimates	of	variance,	

especially	 in	small	populations	where	sampling	effort	may	be	high	
relative	to	the	population	size	(i.e.,	non-	sparse	sampling;	Bravington,	
Skaug,	 &	 Anderson,	2016;	 Bravington	 et	 al.,	2019).	 However,	 be-
cause	 Bimini	 lemon	 sharks	 were	 exhaustively	 sampled	 with	 rela-
tively	 few	 instances	of	 cross-	cohort	 full	 siblings,	we	hypothesized	
that	the	retention	of	littermates	might	provide	valuable	data	to	the	
CKMR	model	 in	 this	 instance,	 even	 if	 it	 reduced	 the	 reliability	 of	
variance	estimates.	Therefore,	we	fit	our	multiennial	CKMR	model	
(Equation 7)	to	two	sets	of	data:	one	where	we	included	full	 litter-
mates	in	the	analysis	(though	we	still	removed	all	within-	cohort	com-
parisons	 from	the	pairwise	comparison	matrix)	 and	one	where	we	
only	retained	one	individual	per	mother/sire	breeding	pair,	similar	to	
our	approach	with	the	larger	simulated	populations.

Finally,	recognizing	that	the	Bimini	lemon	shark	dataset	is	unique	
in	how	thoroughly	the	population	was	sampled,	we	also	examined	
whether	 the	model	 performed	 similarly	with	 a	 sparser	 dataset	 by	
randomly	downsampling	and	reducing	the	number	of	samples	from	
each	year	to	30%	of	the	full	dataset.	To	account	for	random	varia-
tion	surrounding	which	samples	were	retained,	we	iterated	over	the	
downsampling	process	50	 times,	 fit	a	CKMR	model	 to	each	set	of	
samples,	and	reported	the	average	of	the	median	and	95%	highest	
posterior	density	intervals	(HPDI)	of	the	50	posterior	distributions.

2.5.2  |  Bimini	lemon	shark	simulations

Preliminary	application	of	our	multiennial	CKMR	model	(Equation 7)	
to	the	real	Bimini	dataset	suggested	the	population	likely	experienced	
alternating	periods	of	growth	and	decline	during	the	modeled	period.	
Our	demographic	model	(Equation 3)	assumes	the	population	is	grow-
ing	exponentially,	and	we	suspected	that	this	may	result	in	an	averag-
ing	effect	and	imprecise	parameter	estimates	over	our	multi-	decadal	
time	series	of	data,	especially	if	an	inconsistent	trend	was	present.	To	
test	this	hypothesis	and	further	examine	the	effects	of	applying	our	
model	to	a	small	population,	we	refined	our	DGM	to	produce	a	popu-
lation	of	similar	size	and	with	similar	dynamics	as	Bimini	lemon	sharks	
(DiBattista	et	al.,	2011;	Feldheim	et	al.,	2002;	White	et	al.,	2014)	and	
then	sampled	90%	of	the	YOY	from	that	population	over	20 years	to	
achieve	a	dataset	that	resembled	the	real	dataset.

We	fit	 the	first	CKMR	model	after	4 years	of	sampling.	Then,	to	
replicate	the	type	of	 real-	time	estimates	 that	could	be	produced	by	
integrating	 CKMR	 into	 long-	term	monitoring	 efforts,	 we	 iteratively	
added	1	year	of	samples	to	the	dataset	until	reaching	the	end	of	the	
time	series,	fitting	three	CKMR	models	each	time	a	year	of	samples	
was	added:	one	that	included	all	samples	that	had	been	collected	up	to	
the	most	recent	year	of	sampling,	one	that	subset	for	samples	within	
a	5-	year	window	of	the	most	recent	year	of	sampling,	and	one	that	
subset	 for	samples	within	a	3-	year	window.	 In	each	case,	 the	refer-
ence	year	(t0)	was	set	to	the	birth	year	of	the	second	oldest	individual	
in	the	dataset	being	used	(i.e.,	the	first	instance	of	yj),	and	abundance	
(N♀(t))	was	derived	for	the	most	recent	year	of	sampling	from	estimates	
of	N♀(t0)	following	Equation	(3).	Abundance	trend	was	then	tracked	in	
two	ways:	via	a	time	series	of	female	abundance,	and	estimation	of	λ 
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over	 the	window	of	 included	 samples.	Finally,	we	applied	 the	 same	
approach	to	the	real	genetic	dataset	to	estimate	the	total	number	of	
adult	females,	then	derived	the	number	of	year-	specific	female	breed-
ers	using	Equation	(6),	and	compared	our	estimates	of	yearly	female	
breeders	to	estimates	that	have	been	independently	obtained	for	the	
population	using	a	reconstructed	pedigree	(DiBattista	et	al.,	2011).

3  |  RESULTS

3.1  |  Model validation

When	the	assumptions	of	 the	base-	case	model	 (Equations 1	and	
2)	were	met,	CKMR	produced	unbiased	 estimates	 of	 abundance	
under	 all	 sampling	 schemes	 and	 intensities	 (Figure 2a),	 with	 in-
creasing	 precision	 as	 sampling	 intensity	 increased	 (Figure 2b).	
The	model	 produced	 unbiased	 estimates	 of	 abundance	whether	
the	likelihood	included	HSPs	only	(as	in	the	“sample	juveniles”	and	
“target	YOY”	scenarios)	or	jointly	considered	HSPs	and	POPs	(as	in	
the	“sample	all	ages”	scenario),	though	we	note	improved	precision	
for	the	latter.	At	very	low	sampling	intensities	(0.5%	of	the	target	
population	 sampled),	 fewer	 than	25	HSPs	were	 identified	 for	 all	
sampling	 schemes	 (Figure 2c)	 and	 fewer	 than	5	parent-	offspring	

pairs	 (POPs)	 were	 identified	 for	 the	 sampling	 scheme	 that	 in-
cluded	all	 ages	 (Figure 2d).	 In	 contrast,	when	2%	of	 the	popula-
tion	was	sampled,	over	200	HSPs	were	identified	on	average	for	
all	 sampling	schemes,	while	10–40	POPs	were	 identified	 for	 the	
scenario	 in	 which	 all	 age	 classes	were	 sampled.	 Including	 aunt/
niece	(uncle/nephew,	etc.)	pairs	as	HSPs	had	a	minimal	effect	on	
abundance	estimation,	as	such	instances	were	rare	in	our	dataset	
(Appendix	S1:	S1.2	and	Figure S1);	similarly,	while	same-	cohort	full	
siblings	were	common,	instances	of	cross-	cohort	full	siblings	were	
rare	 (Appendix	 S1: Figure S2).	 These	 results	 demonstrate	 that	 a	
simple	base-	case	CKMR	model	can	produce	unbiased	abundance	
estimates	 across	 a	 range	 of	 potential	 sampling	 scenarios	 when	
population	 dynamics	 align	 with	 the	 model's	 assumptions	 while	
suggesting	 that	 false	 positive	 HSPs	 arising	 from	 misidentified	
aunt/niece	(uncle/nephew,	etc.)	pairs	are	likely	to	be	rare	for	ran-
domly	sampled	long-	lived	promiscuous	species.

3.2  |  Population growth

When	we	 simulated	a	population	with	a	 trend	 that	was	growing	or	
declining	in	size	and	compared	year-	specific	truths	to	the	abundance	
estimates	generated	by	our	base-	case	CKMR	model	 that	was	naïve	

F I G U R E  2 Base	CKMR	model	performance	and	kin	pairs	detected	for	three	different	sampling	schemes	at	four	different	sampling	
intensities	over	500	iterations.	(a)	Relative	bias	of	abundance	estimates	of	adult	females	(Nf,	or	N♀)	and	males	(Nm,	or	N♂)	as	a	percentage	of	
the	truth	(i.e.	relative	bias × 100).	Bias	was	calculated	from	the	median	of	each	of	500	posterior	distributions.	(b)	CV	on	abundance	estimates	
with	log-	scaled	y	axis	for	visualization.	(c)	Number	of	half-	sibling	pairs	detected	by	sampling	scheme	and	sampling	intensity.	For	each	
iteration,	the	number	of	half-	sibling	pairs	for	each	sex	was	calculated	and	averaged.	(d)	Number	of	parent-	offspring	pairs	detected	for	the	
“sample	all	ages”	sampling	scheme.
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to	 a	 population	 trend	 (Figure 3a–c,	 orange),	 the	 disparity	 between	
the	quantities	grew	the	further	the	estimation	year	(year t)	was	pro-
jected	into	the	past.	These	disparities	were	rectified	by	adapting	our	
CKMR	model	to	include	a	population	growth	model	(Equation 3)	and	
deriving	N(t)	from	estimates	of	N(t0)	and	λ	(Figure 3a–c,	blue;	Table 2).	
Uncertainty	 accrued	 as	 N(t)	 was	 projected	 further	 from	 the	 mode	
of	the	data	(Figure 3d),	even	with	a	stable	population	(Appendix	S1: 
Figure S3a).	When	we	varied	N(t0)	to	generate	year-	specific	abundance	
estimates	rather	than	deriving	N(t),	the	model	showed	similar,	though	
not	identical,	trends	(Appendix	S1:	S1.3	and	Figure S4),	suggesting	that	
the	two	approaches	are	functionally	equivalent	in	most	cases.

Estimates	 of	 λ	 were	 highly	 correlated	 with	 abundance	 when	
more	 than	 four	 cohorts	were	 represented	 in	 the	dataset	 (Table 3; 
Appendix	S1:	S1.3)	and	were	mostly	unbiased	for	scenarios	that	in-
volved	 a	 population	 that	 was	 monotonically	 increasing,	 declining,	
or	stable	(Figure 3e);	however,	the	model	tended	to	underestimate	
λ	when	the	population	began	a	severe	decline	during	the	modeled	

time	period	 (“severe	 decline”	 scenario).	 Estimates	 of	ϕ	were	 unbi-
ased	 regardless	 of	 population	 trend	 but	 varied	 with	 the	 number	
of	age	classes	sampled	 (Appendix	S1: Figure S3b)	and	were	highly	
correlated	with	abundance	 in	 the	scenario	 that	only	 included	 four	
cohorts	(target	YOY;	Table 3).	Combined,	these	results	suggest	that	
a	CKMR	model	that	is	adapted	for	population	growth	can	give	un-
biased	year-	specific	abundance	estimates	across	a	range	of	scenar-
ios,	while	estimates	of	population	trend	should	be	interpreted	with	
caution	 (see	also	Sections	3.5	and	4.4	below	for	considerations	to	
improve	trend	estimation).

3.3  |  Intermittent breeding

When	 a	 CKMR	model	 that	 is	 fully	 naïve	 to	 intermittent	 breeding	
(Figure 4,	orange)	was	applied	to	data	from	populations	with	females	
that	bred	on	a	consistent	multiennial	schedule,	estimates	of	female	
(Figure 4a)	and	male	(Figure 4b)	abundance	were	positively	biased.	
Males	did	not	breed	on	a	multiennial	 schedule,	but	 they	did	share	
the	survival	parameter	(ϕ)	with	females,	and	this	parameter	was	also	
overestimated	with	the	naïve	model	(Figure 4c).

When	 the	 pairwise	 comparison	matrix	was	 filtered	 to	 remove	
off-	cycle	 comparisons	 before	 fitting	 a	 model	 that	 was	 otherwise	
naïve	to	intermittent	breeding	(Figure 4,	white),	estimates	of	abun-
dance	 and	 survival	 were	 unbiased	 for	 models	 that	 only	 included	
HSPs	 (“sample	 juveniles”	 and	 “target	 YOY”	 scenarios),	 but	 only	 if	

F I G U R E  3 Performance	of	CKMR	models	when	confronted	with	a	changing	population	(a–c)	Relative	bias	of	CKMR	abundance	estimates	
for	mature	females	(N♀(t))	when	applied	to	populations	experiencing	variable	degrees	of	population	growth	or	decline.	Plots	are	split	by	
sampling	scheme	(column),	population	growth	pattern	(row	facet),	and	the	year	to	which	abundance	estimates	were	targeted	(year t).	The	
dashed	vertical	blue	line	represents	0%	relative	bias.	Scenarios	assessed	had	population	growth	as	(a)	slightly	increasing	(+1%	per	year),	
(b)	slightly	declining	(−1%	per	year),	or	(c)	severely	declining	(−5	to	10%	per	year	over	the	final	10 years).	Two	different	models	were	fit	to	
500	simulated	populations	for	each	scenario:	a	naïve	model	without	a	parameter	for	population	growth	(red)	and	an	adapted	model	that	
included	the	parameter	λ	to	account	for	population	growth	(blue).	Plots	were	truncated	at	±100%	for	visualization	because	there	were	long	
tails	of	positive	bias	for	the	10-	year	past	scenarios.	Note	that	for	the	target	YOY	sampling	scenario,	t0	(the	first	instance	of	yj	in	the	dataset)	
occurred	3 years	in	the	past,	making	this	the	only	scenario	where	an	“estimation	year”	of	t0	occurred	more	recently	than	when	the	estimation	
year	was	“present-	5”.	(d)	Summary	of	age	distribution	of	samples	for	all	three	sampling	scenarios.	The	dashed	vertical	line	represents	t0,	
which	varied	depending	on	the	ages	sampled.	(e)	Relative	bias	of	λ	estimates	over	the	modeled	time	period.

TA B L E  3 Mean	cross-	correlation	values	between	female	
abundance	at	t0	(N♀(t0)

)	and	survival	(ϕ)	or	population	growth	rate	(λ)	
from	population	growth	simulations	(Table 1,	Scenario	2.1–2.4).

Parameter ϕ λ t0 Sampling scheme

N♀(t0) 0.77 −0.13 88 Target	YOY

N♀(t0) 0.34 −0.76 77 Sample	all	juveniles

N♀(t0) 0.28 −0.80 77 Sample	all	ages
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100%	of	females	bred	on	the	same	schedule.	When	off-	cycle	breed-
ing	was	 introduced	 (biennial*	 scenario),	 estimates	of	 female	 abun-
dance	were	positively	biased.	When	the	model	also	included	kinship	
probabilities	 for	parent-	offspring	pairs	 (“sample	all	ages”	scenario),	
estimates	of	female	abundance,	male	abundance,	and	survival	were	
all	 positively	 biased	with	 the	 “naïve-	filtered”	model,	 reflecting	 the	
fact	 that	 the	 two	kinship	probabilities	 refer	 to	different	quantities	
(see	Section	4.2	and	Appendix	S1:	S1.5).

Parameter	 estimates	were	 generally	 unbiased	with	 the	model	
that	was	adapted	 for	 intermittent	breeding	 (Equation 7; Figure 4,	
blue),	 including	the	scenario	with	100%	annual	breeders,	 in	which	
case	 the	 naïve	 and	 adapted	 models	 performed	 identically	 (the	
“naïve	–	filtered”	approach	was	not	tested	in	this	scenario	because	
with	 annual	 breeding	 there	were	no	off-	cycle	 comparisons	 to	 re-
move).	When	we	compared	estimates	of	ψ	to	the	realized	proportion	
of	HSPs	that	came	from	on-	cycle	females	(the	‘true	ψ ’	in	the	simu-
lated	data),	estimates	of	ψ	were	mostly	unbiased	when	all	females	
bred	 on	 a	 multiennial	 cycle,	 with	 or	 without	 stochastic	 off-	cycle	
breeding	 (Figure S5),	 though	 we	 note	 that	 when	 the	 multiennial	
model	was	applied	to	a	population	that	bred	annually,	ψ	had	a	non-	
unique	solution	(but	estimates	of	other	parameters	were	unbiased;	
see	Appendix	S1:	S1.5	for	further	discussion	about	considerations	
surrounding	 intermittent	 breeding).	 Taken	 together,	 these	 results	
demonstrate	 that	our	model	 that	 accounts	 for	multiennial	 breed-
ing	can	accommodate	variable	or	unknown	breeding	schedules	and	

produce	unbiased	estimates	of	abundance	and	survival	for	popula-
tions	that	breed	annually,	biennially,	or	triennially,	with	or	without	
instances	of	off-	cycle	breeding.

3.4  |  Aging uncertainty

When	ages	were	misassigned	to	samples,	older	individuals	were	far	
more	likely	to	be	assigned	to	the	wrong	cohort	(Figure 5a).	The	prob-
ability	of	age	misassignment	roughly	corresponded	to	the	slope	of	
the	von	Bertalanffy	growth	curve,	with	the	probability	of	age	mis-
assignment	being	greatest	as	the	curve	approached	 its	asymptote.	
Consequently,	when	sampling	was	targeted	to	YOY,	individuals	were	
far	more	likely	to	be	assigned	to	the	correct	cohort	(Figure 5a,	right).

When	multiple	 age	 classes	were	 represented	 in	 the	 data,	 bias	
accrued	in	estimates	of	female	abundance	(Figure 5b)	and	survival	
(Figure 5c)	as	the	CV	surrounding	age	assignment	increased,	regard-
less	 of	 whether	 we	 simulated	 a	 population	 that	 bred	 annually	 or	
biennially.	Targeted	sampling	of	YOY	showed	a	different	trend:	the	
probability	of	misassigning	an	age-	0	individual	to	the	wrong	cohort	
was	very	low,	so	increasing	the	CV	on	length-	based	age	assignment	
did	not	affect	the	bias	of	parameter	estimates.	These	results	confirm	
that	reliable	aging	 is	a	key	component	of	CKMR	and	that	targeted	
sampling	of	age	classes	that	can	be	reliably	aged	can	improve	estima-
tion	when	accurate	aging	for	other	age	classes	is	challenging.

F I G U R E  4 Relative	bias	of	parameter	estimates	when	naïve	and	adapted	CKMR	models	were	fit	to	samples	from	a	population	that	bred	
intermittently.	The	“naïve”	model	references	a	model	that	included	off-	cycle	comparisons,	while	the	“naïve	–	filtered”	model	excluded	off-	
cycle	comparisons.	The	reference	year	(t0)	was	set	to	the	earliest	instance	of	yj	and	abundance	was	derived	in	the	present	via	Equation	(3)	
and	compared	to	the	true	abundance	in	that	year.	For	the	“naïve	–	filtered”	scenario,	the	quantity	estimated	by	the	model	was	the	effective	
female	breeders	in	year	t	(Ñ♀(t)),	while	the	“naïve”	and	“adapted”	models	estimated	total	females	(N♀(t)).	We	derived	the	total	N♀(t)	for	the	
“naïve–filtered”	scenario	by	multiplying	Ñ♀(t)	by	the	breeding	cycle	(2	for	biennial	breeders	and	3	for	triennial	breeders).	We	did	not	fit	the	
“naive-	filtered”	model	to	the	annual	population	simulation	because	there	was	no	trend	in	the	data	that	would	justify	removing	a	subset	of	
comparisons	based	on	the	expected	breeding	cycle.	On	the	x	axis,	“biennial*”	refers	to	a	situation	where	10%	of	biennial	female	breeders	
bred	off-	cycle	and	10%	of	on-	cycle	females	failed	to	breed	each	year.	(a)	Relative	bias	of	abundance	estimates	for	adult	females	(Nf,	or	N♀(t)).	
(b)	Relative	bias	of	abundance	estimates	for	adult	males	(Nm,	or	N♂(t)).	(c)	Relative	bias	of	survival	(ϕ)	estimates.
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3.5  |  Application to lemon sharks

3.5.1  |  Bimini	lemon	shark	simulations

When	we	simulated	a	small	population	that	resembled	the	popula-
tion	 of	 lemon	 sharks	 at	 Bimini,	 Bahamas,	 and	 then	 heavily	 sam-
pled	 that	 population	 and	 used	 all	 samples	 for	 the	 construction	
of	 the	 pairwise	 comparison	matrix,	 results	 varied	 depending	 on	
which	window	of	data	was	used	(Figure 6a–c).	When	mortality	was	

reduced	in	the	90-	year	simulation	and	the	population	was	growing	
(years	70–79),	year-	specific	estimates	of	female	abundance,	abun-
dance	trend	(λ),	and	survival	 (ϕ)	were	mostly	unbiased	for	the	5-	
year	window,	and	the	scenario	that	included	all	available	samples	
(Figure 6a–c).	As	mortality	increased	and	the	population	stabilized	
(years	80–84),	bias	began	to	accrue	for	the	scenario	that	included	
all	available	samples.	Bias	continued	to	rise	for	this	scenario	when	
mortality	was	 increased	again	 to	produce	a	declining	population	
(years	 85–90).	 In	 contrast,	 results	 from	 the	 5-	year	 window	 of	

F I G U R E  5 Effect	of	aging	error	on	CKMR	parameter	estimates.	(a)	Amount	of	error	introduced	per	age	for	one	of	the	500	iterations	that	
were	run	to	test	the	effects	of	age	misassignment	on	CKMR	parameter	estimates.	The	iteration	represented	here	was	chosen	randomly	
and	assumed	to	be	generally	representative	of	all	500	iterations.	(b)	Relative	bias	of	abundance	estimates	for	females	(Nf,	or	N♀(t))	when	
uncertainty	was	introduced	to	length-	based	age	assignments.	(c)	Relative	bias	of	survival	(ϕ)	estimates	when	uncertainty	was	introduced	
to	length-	based	age	assignments.	There	was	no	intentional	model	misspecification	in	these	simulations;	rather,	annual	models	were	fit	to	
populations	that	bred	annually	(light	blue),	while	multiennial	models	were	fit	to	populations	that	bred	biennially	(dark	blue),	thereby	isolating	
the	effects	of	aging	error	on	the	resulting	bias.
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samples	were	unbiased	whenever	the	sample	window	spanned	a	
period	 that	 included	 a	 consistent	 population	 trend:	 each	 time	 a	
shift	 in	 population	 trend	occurred	 (years	80	 and	85),	 the	5-	year	
window	of	samples	produced	biased	parameter	estimates	for	the	
following	year,	but	that	bias	was	reduced	as	the	population	trend	

stabilized.	 The	 3-	year	 window	 of	 samples	 produced	 parameter	
estimates	 that	 were	 both	 biased	 and	 imprecise,	 suggesting	 that	
more	 than	 three	 cohorts	 are	needed	 to	produce	 reliable	param-
eter	estimates	with	HS	CKMR	for	a	population	that	breeds	bien-
nially.	 All	 sample	 windows	 estimated	 abundance	 at	 an	 absolute	

F I G U R E  6 Time	series	of	CKMR	parameter	estimates	for	simulated	(a–c)	and	real	(d)	female	lemon	sharks	at	Bimini,	Bahamas	using	all	
samples	collected	before	the	estimation	year	(green;	solid	trendline),	all	samples	collected	in	a	5-	year	window	prior	to	the	estimation	year	
(orange;	dotted	trendline)	and	all	samples	collected	in	a	3-	year	window	prior	to	the	estimation	year	(purple;	dashed	trendline).	(a–c)	Relative	
bias	from	100	distinct	population	simulations	and	model	fits.	(a)	Relative	bias	of	abundance	estimates	for	adult	females	(Nf,	or	N♀(t))	in	each	
year	of	the	time	series.	(b)	Relative	bias	of	λ	estimates	relative	to	the	observed	population	growth	rate	in	the	associated	year.	(c)	Relative	bias	
of	estimated	survival	(ϕ)	relative	to	the	observed	survival	rate	in	the	associated	year.	(d)	Abundance	estimates	for	breeding	females	(Nfb,	or	
Ñ♀(t))	in	the	North	Bimini	Lagoon	using	real	genetic	data,	derived	from	estimates	of	total	N♀(t)	using	Equation	(6).	Points	represent	the	median	
of	the	posterior	distribution,	and	error	bars	reflect	the	95%	highest	posterior	density	interval	(HPDI).	The	trend	is	visualized	using	a	loess	
regression.	The	black	line	labeled	as	“pedigree	abundance”	is	a	time	series	of	abundance	estimates	for	Nfb	that	was	independently	derived	
for	the	population	by	Dibattista	et	al.	(2011).
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scale	within	an	order	of	magnitude	of	the	real	population	size	(see	
Appendix	S1: Figure S6	for	an	illustrative	example).

When	we	 retained	 just	one	 full	 sibling	 from	each	mother/fa-
ther	 pairing,	 parameter	 estimates	 showed	 similar	 tendencies	 as	
when	the	full	dataset	was	used,	with	the	exception	that	estimates	
of	 λ	 were	 less	 biased	 for	 the	 3-	year	 window	 (see	 Appendix	 S1: 
S1.6	and	Figure S7a–c).	Combined,	these	results	demonstrate	that	
CKMR	can	reliably	estimate	abundance	within	an	order	of	magni-
tude	for	a	small	population	that	is	heavily	sampled,	while	inference	
of	 trends—whether	 through	 a	 time	 series	 of	 female	 abundance	
or	 estimation	 of	 λ—varies	 depending	 on	 the	window	of	 samples	
included.

3.5.2  |  Bimini	lemon	shark	data

Application	 of	 our	 multiennial	 CKMR	 model	 to	 real	 data	 from	
Bimini	 lemon	 sharks	 showed	 a	 parabolic	 abundance	 trend	 and	
very	 low	 abundance	 regardless	 of	whether	we	 retained	 full	 sib-
lings	(Figure 6d,	Table 4)	or	filtered	them	(Appendix	S1: Figure S7d 
and	 Table S3),	 and	 whether	 the	 datasets	 were	 downsampled	
(Appendix	S1: Tables S4,	S5	and	Figure S8)	or	not.	These	 trends	
were	consistent	regardless	of	which	window	of	samples	was	used,	
though	 the	 timing	 of	 peak	 abundance	 varied	 (see	 Appendix	 S1: 
S1.6	 for	 more	 discussion).	 Estimates	 of	 yearly	 female	 breeders	
(N♀b(t))	were	close	to,	but	slightly	higher	than,	estimates	indepen-
dently	obtained	by	DiBattista	et	al.	(2011)	using	a	pedigree-	based	
approach.

Estimates	 of	 adult	 survival	 (ɸ)	 were	 generally	 high	 for	 the	
full	 (Appendix	 S1: Figure S9)	 and	 downsampled	 (Appendix	 S1: 
Figure S8)	 datasets,	 but	 varied	 with	 the	 sample	 window	 and	
showed	more	variability	when	the	dataset	was	both	filtered	for	full	
siblings	and	downsampled	(Appendix	S1: Figure S8b).	The	3-	year	
window	of	samples	gave	rise	to	survival	estimates	that	were	highly	
correlated	with	estimates	of	abundance	(Table 5)	and	did	not	vary	
across	years	 (Appendix	S1: Figure S9),	 again	 suggesting	 that	 the	
3-	year	window	 is	 too	 short	 a	 time	period	 for	 reliable	estimation	
of	survival	rates	for	populations	that	breed	biennially.	Overall,	re-
gardless	of	how	the	data	were	subset,	our	results	align	with	other	
studies	 that	 suggest	 low	abundance	 (DiBattista	et	al.,	2011)	 and	
high	survival	rates	(White	et	al.,	2014)	of	adult	females	at	Bimini;	
however,	 we	 also	 note	 that	 estimation	 of	 abundance	 trend	 and	
survival	 were	 correlated	 with	 the	 number	 of	 cohorts	 included	
in	 the	 analysis	 and	 the	 mortality	 regimes	 that	 the	 population	
experienced.

4  |  DISCUSSION

Obtaining	unbiased	estimates	of	abundance	is	a	central	challenge	
for	effective	conservation	and	management	of	many	 threatened	
and	exploited	populations	and	is	especially	pertinent	for	popula-
tions	 of	 low-	density	 and	 highly	 mobile	 species	 where	 effective	

sampling	 of	 adults	 is	 impractical.	Our	 simulation	 results	 broadly	
concur	 with	 recent	 work	 supporting	 CKMR	 as	 a	 promising	 ap-
proach	to	estimate	abundance	and	survival	in	data-	limited	circum-
stances,	but	emphasize	 the	critical	need	 to	adapt	CKMR	models	
adequately	to	accommodate	population	dynamics	and	life	history	
traits	 that	 violate	 the	 assumptions	of	 a	 simple	base-	case	model.	
Further,	 although	 we	 confirm	 the	 sensitivity	 of	 CKMR	 to	 aging	
error,	we	also	 find	 that	bias	 in	parameter	estimates	can	be	miti-
gated	by	sampling	as	few	as	four	cohorts	that	can	be	reliably	aged,	
providing	options	for	applying	the	method	when	accurate	aging	is	
difficult	or	when	 long-	term	sampling	 is	 impractical.	Our	applica-
tion	to	lemon	sharks	in	Bimini,	Bahamas	demonstrates	that	CKMR	
is	 a	 flexible	 framework	 that	 can	be	used	 to	 estimate	 abundance	
and	survival	of	breeding	adults	when	only	 juveniles	are	available	
for	 sampling.	 Taken	 together,	 the	 results	 of	 our	 application	 of	
CKMR	 to	 simulated	 and	 real	 populations	 with	 different	 popula-
tion	sizes,	trends,	and	breeding	schedules	support	the	recognition	
of	CKMR's	immense	potential	for	monitoring	populations	of	low-	
density	and	highly	mobile	species,	while	also	highlighting	several	
promising	avenues	for	future	research.

4.1  |  Accounting for population growth/decline

A	simple	base-	case	CKMR	model	(e.g.,	Equations 1	and	2)	estimates	
adult	abundance	over	the	modeled	period	by	assuming	that	popu-
lation	dynamics	are	stable	and	consistent	over	 time.	 In	cases	with	
sex-	specific	 or	 transient	 population	 dynamics,	 or	 if	 estimates	 of	
underlying	 population	 parameters	 are	 desired,	 population	 dynam-
ics	can	be	modeled	with	CKMR	using	latent	variables.	Year-	specific	
abundance	estimates	 can	also	be	obtained	by	modeling	each	year	
independently,	but	this	approach	requires	a	particularly	rich	dataset	
(e.g.,	heavily	sampled	salmonids;	Ruzzante	et	al.,	2019,	Marcy-	Quay	
et	al.,	2020).	As	such,	most	data-	limited	situations	will	likely	benefit	
from	leveraging	all	available	data	for	a	single	abundance	estimate.	In	
such	 cases,	 specifying	 an	 exponential	 growth	model	where	popu-
lation	 dynamics	 are	 broadly	 captured	 in	 a	 parameter	 like	 λ	 allows	
data	 to	 be	 shared	 across	 cohorts	 to	 produce	 a	 single	 estimate	 of	
abundance	 for	 a	 specified	 reference	year	 (t0).	 Then,	 abundance	 in	
any	modeled	year	(N(t))	can	be	derived	from	estimates	of	N(t0)	and	λ. 
In	practical	applications	of	CKMR,	knowledge	of	a	species'	life	his-
tory	 in	combination	with	Leslie	matrix	simulations	can	help	 inform	
a	prior	 on	λ	 to	 improve	 the	precision	of	 parameter	 estimates.	 If	 a	
fishery-	independent	index	or	fishery-	dependent	CPUE	index	(from	a	
fishery	whose	operations	have	been	relatively	constant)	exists	over	
the	modeled	period,	 then	 trend	data	could	also	be	 integrated	 into	
the	model	via	specification	of	the	prior	on	λ.

Including	too	many	age	classes	in	the	data	may	hinder	inference	
of	 abundance	 trends	 if	 a	 population's	 trajectory	 shifts	 during	 the	
modeled	time	period,	as	estimates	of	λ	will	represent	an	average	of	
those	 trajectories.	One	way	 to	mitigate	 this	 averaging	effect	 is	 to	
subset	the	dataset	for	smaller	time	windows	over	which	averaging	λ 
has	a	less	pronounced	effect.	This	approach	sacrifices	precision	and	
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may	not	be	possible	in	many	data-	limited	situations;	even	in	a	data-	
rich	scenario,	the	time	window	must	be	thoughtfully	calibrated,	as	
using	too	small	a	window	provides	limited	data	to	the	exponent	on	
ϕ,	resulting	in	a	high	degree	of	correlation	between	ϕ	and	N	(e.g.,	the	
target	YOY	scenario	in	Table 3	and	the	3-	year	window	in	Table 5).	In	
contrast,	our	results	suggest	that	using	too	large	a	window	will	result	
in	an	abundance	trend	that	lags	behind	the	real	trend	if	the	real	trend	
shifts	during	the	modeled	period.	For	our	Bimini	lemon	shark	simu-
lations,	a	5-	year	window	produced	a	reasonable	balance	of	precision	
and	accuracy	for	parameter	estimates	and	also	for	reconstructing	an	
abundance	 trend	 for	 a	 population	 that	 experienced	multiple	mor-
tality	regimes	during	the	modeled	period.	In	application	to	real	data	
sets,	one	would	not	know	the	accuracy	associated	with	a	given	win-
dow	size,	but	the	pattern	of	lag	in	estimated	population	trends	as	the	
window	length	is	expanded	may	give	some	indication	of	where	shifts	
in	 the	trajectory	have	occurred.	Alternatively,	one	could	test	 for	a	
quadratic	trend	by	adding	another	parameter	in	the	model	for	λ	and	
then	use	model	selection	to	determine	the	model	that	best	captures	
the	true	population	trend.	Expanding	CKMR	to	estimate	population	
trends	in	a	reliable	and	robust	way	is	a	ripe	area	for	future	research.

4.2  |  Intermittent breeding dynamics

When	intermittent	breeding	coincides	with	a	population	that	is	most	
easily	sampled	during	the	juvenile	life	stage	(e.g.,	when	adults	are	not	
directly	observed),	our	results	indicate	that	abundance	estimates	de-
rived	from	a	naïve	half-	sibling	CKMR	model	will	be	biased	if	all	pairwise	
comparisons	are	included	in	the	model.	In	contrast,	in	circumstances	
where	all	individuals	breed	on	the	same	schedule	such	that	there	is	no	
possibility	of	off-	cycle	breeding,	then	filtering	the	pairwise	comparison	
matrix	to	remove	off-	cycle	comparisons	and	fitting	a	half-	sibling	model	
that	is	otherwise	naïve	to	intermittent	breeding	(e.g.,	Equation 4)	can	
give	 unbiased	 parameter	 estimates	 (Figure 4,	 white).	 Importantly,	
when	 off-	cycle	 comparisons	 are	 removed,	 the	 non-	breeding	 adults	

essentially	become	 invisible	 to	half-	sibling	CKMR	 (similar	 to	 infertile	
adults;	see	section	3.2	of	Bravington,	Skaug,	&	Anderson,	2016).	As	
such,	a	naïve	HS	model	that	 is	 filtered	to	remove	off-	cycle	compari-
sons	gives	estimates	of	the	number	of	effective	female	breeders	(Ñ♀)	in	
year	t	(Appendix	S1:	S1.4),	a	number	that	may	be	substantially	different	
than	the	total	number	of	adult	females	(N♀)	in	populations	that	breed	
intermittently.	Without	modification	to	the	kinship	probabilities,	this	
difference	precludes	the	use	of	POPs	in	the	same	model	because	PO	
CKMR	gives	estimates	of	N♀	(note	the	bias	for	the	“sample	all	ages”	sce-
nario	in	Figure 4).	In	addition,	our	simulations	suggest	that	if	off-	cycle	
breeding	produces	HSPs	that	are	separated	by	a	birth	year	gap	that	
does	not	align	with	the	expected	breeding	cycle	(e.g.,	when	the	birth	
year	gap	is	odd	for	a	population	that	breeds	on	a	biennial	schedule),	
then	parameter	estimates	will	be	biased	with	a	naïve	model,	whether	
off-	cycle	comparisons	are	retained	in	the	pairwise	comparison	matrix	
or	not.	Overall,	applying	a	model	that	is	naïve	to	intermittent	breeding	
to	a	population	that	breeds	on	a	bi-		or	triennial	schedule	can	produce	
unbiased	parameter	estimates	 if	off-	cycle	comparisons	are	removed,	
but	only	in	limited	situations	(e.g.,	when	there	is	no	off-	cycle	breeding).

The	multiennial	CKMR	model	presented	here	accommodates	in-
termittent	breeding	via	the	inclusion	of	the	parameters	Ψ	and	a,	which	
assigns	a	non-	zero	probability	 to	off-	cycle	comparisons	without	as-
suming	the	probability	is	the	same	as	on-	cycle	comparisons,	resulting	
in	estimates	of	N♀	rather	than	Ñ♀	(see	Appendix	S1:	S1.4	and	S1.5	for	
further	discussion).	While	the	parameter	Ψ	can	be	estimated,	a	must	
be	fixed	to	the	expected	breeding	cycle.	 If	 the	breeding	cycle	for	a	
population	 is	unknown,	and	 if	adults	are	not	available	for	sampling,	
then	 it	may	be	possible	 to	estimate	a	 from	the	distribution	of	birth	
year	 gaps	 among	 identified	 half-	siblings	 (Waples	 &	 Feutry,	 2021).	
As	a	cursory	example,	if	most	HSPs	were	born	in	year	gaps	that	are	
divisible	by	2,	 then	 fixing	a	 to	2	would	be	 logical.	However,	 in	 real	
populations,	reproductive	periodicity	may	be	challenging	to	infer	from	
the	distribution	of	kin	pairs,	as	environmental	conditions	may	cause	
individuals	 to	 fail	 to	 breed	 one	 year	 and	 then	 breed	 off-	cycle	 the	
next	(Cubaynes	et	al.,	2011;	Morbey	&	Shuter,	2013;	Öst	et	al.,	2018; 

TA B L E  5 Cross-	correlation	among	parameters	following	application	of	CKMR	to	Bimini	lemon	sharks.

Parameter N♀(t0) ɸ λ ψ Time window

N♀(t0) 1.00 0.13 −0.84 −0.08 All	available	samples

ɸ 0.13 1.00 0.32 −0.10 All	available	samples

λ −0.84 0.32 1.00 0.02 All	available	samples

ψ −0.08 −0.10 0.02 1.00 All	available	samples

N♀(t0) 1.00 0.29 −0.73 −0.18 5-	year	window

ɸ 0.29 1.00 0.19 −0.11 5-	year	window

λ −0.73 0.19 1.00 0.09 5-	year	window

ψ −0.18 −0.11 0.09 1.00 5-	year	window

N♀(t0) 1.00 0.83 −0.43 −0.54 3-	year	window

ɸ 0.83 1.00 −0.01 −0.46 3-	year	window

λ −0.43 −0.01 1.00 0.21 3-	year	window

ψ −0.54 −0.46 0.21 1.00 3-	year	window

Note:	Reported	values	represent	the	average	cross-	correlation	values	over	all	years	(1997–2015).
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Rivalan	 et	 al.,	 2005;	 Skjæraasen	 et	 al.,	 2020).	 In	 our	 lemon	 shark	
dataset,	 for	 example,	 30%	of	 adult	mothers	 bred	 off-	cycle	 at	 least	
once	before	 returning	 to	 a	biennial	 cycle.	With	elasmobranchs	 and	
other	species	that	are	difficult	to	age,	aging	error	will	further	obscure	
the	 inference	 of	 breeding	 schedule	 based	 on	 offspring	 birth	 years.	
Stochastic	off-	cycle	breeding	was	not	a	problem	for	our	multiennial	
model	as	long	as	there	were	no	systemic	differences	in	lifetime	fecun-
dity	(Bravington,	Skaug,	&	Anderson,	2016;	see	Appendix	S1:	S1.6	and	
Figure S10).	Future	work	that	adapts	CKMR	to	estimate	Ψ	and	a	across	
a	range	of	scenarios,	including	populations	with	mixed	mating	sched-
ules	(Driggers	&	Hoffmayer,	2009;	Higgs	et	al.,	2020;	Walker,	2007),	
would	further	expand	the	potential	of	CKMR	to	illuminate	aspects	of	
population	breeding	dynamics.

4.3  |  Aging error

Close-	kin	mark-	recapture	depends	heavily	on	accurate	cohort	as-
signment,	which	can	be	very	challenging	for	many	species,	includ-
ing	 elasmobranchs.	 Our	 results	 confirm	 that	 age	 misassignment	
can	substantially	bias	CKMR	parameter	estimates.	A	hierarchical	
model	that	accounts	for	aging	error	may	help	alleviate	this	issue,	
but	such	a	model	would	require	some	estimate	of	the	probability	
of	age	misassignment	(Hirst	et	al.,	2004;	Schwarz	&	Runge,	2009)	
and	 selectivity	 (Francis,	2016;	Henríquez	 et	 al.,	2016),	 and	 such	
data	 may	 not	 be	 available	 in	 data-	limited	 situations.	 Estimating	
the	 probability	 of	 age	 misassignment	 is	 not	 a	 trivial	 task,	 even	
for	 species	 with	 well-	established	 aging	 methods	 (e.g.,	 teleosts,	
O'Sullivan,	 2007)	 and	 substantial	 upfront	 effort	 may	 be	 re-
quired	to	estimate	the	degree	of	error	present.	For	example,	pat-
terns	 of	DNA	methylation	 can	 be	 used	 to	 estimate	 age	 (Jarman	
et	al.,	2015)	and	these	data	can	be	obtained	from	the	same	tissue	
samples	 used	 for	 kinship	 assignment	 in	CKMR.	However,	 epige-
netic	 clocks	 are	 taxa-	specific,	 and	 the	 discovery	 of	 informative	
biomarkers	 requires	 calibration	 using	 representative	 samples	 of	
known	 ages,	which	may	be	 arduous	 to	 obtain	 in	 their	 own	 right	
(Beal	et	al.,	2022;	Polanowski	et	al.,	2014).	It	is	wise,	therefore,	to	
consider	how	samples	will	be	aged	and	how	much	error	 there	 is	
likely	to	be	prior	to	embarking	on	a	large-	scale	CKMR	study.

In	cases	where	only	YOY	can	be	reliably	aged,	our	results	show	
that	CKMR	can	generate	reliable	abundance	estimates	from	targeted	
sampling	of	as	few	as	four	cohorts	of	YOY,	even	for	a	population	that	
breeds	bi-		or	 triennially,	 though	estimates	of	 survival	will	 improve	
as	more	cohorts	are	added.	 If	mature	 individuals	are	also	available	
to	sample—for	example,	when	visiting	a	nursery	site	to	breed—then	
sampling	 potential	 parents	 as	 well	 as	 YOY	 can	 enable	 the	 use	 of	
POPs	in	the	 likelihood	and	improve	the	precision	of	parameter	es-
timates.	Aging	error	in	this	case	would	be	less	critical	for	adults	as	
long	as	maturity	can	be	confirmed	in	the	year	of	sampling,	though	
care	must	be	taken	to	ensure	that	potential	parents	and	offspring	are	
sampled	independently,	as	parameter	estimates	will	be	biased	if	the	
probability	of	sampling	a	parent	is	correlated	with	the	probability	of	
sampling	its	offspring	(Bravington,	Skaug,	&	Anderson,	2016).

4.4  |  Population dynamics and abundance of lemon 
sharks in Bimini

Our	application	of	CKMR	to	Bimini	lemon	sharks	highlights	the	flex-
ibility	and	potential	of	CKMR	for	long-	term	monitoring	of	populations	
of	low-	density	highly	mobile	species	with	geographically	distinct	life	
histories.	 Estimates	 of	 abundance	 from	CKMR	 suggest	 that	 a	 very	
small	number	of	female	lemon	sharks	give	birth	at	the	North	Bimini	
Lagoon	 during	 each	 biennial	 breeding	 cycle	 (Figure 6d,	 Table 4).	
These	results	align	with	a	previous	study	that	reconstructed	a	pedi-
gree	for	the	population	and	identified	the	number	of	adults	that	suc-
cessfully	bred	on	the	North	Island	each	year	between	1995	and	2007	
(DiBattista	et	al.,	2011).	 In	both	cases,	 the	number	of	 females	 that	
gave	birth	at	the	North	Island	during	this	time	period	was	estimated	
to	be	very	small	(<50	per	year),	with	an	increasing	abundance	trend	
through	~2006.	 At	 some	 point	 after	 or	 around	 2006,	 results	 from	
CKMR	suggest	 that	 the	number	of	 females	using	Bimini	 for	breed-
ing	began	to	decline.	 Intense	dredging	and	mangrove	deforestation	
took	place	around	the	North	Bimini	Island	in	March	2001	in	prepa-
ration	for	the	development	of	a	mega-	resort	(Jennings	et	al.,	2008).	
Although	the	number	of	breeding	females	at	the	North	Island	coun-
terintuitively	increased	immediately	after	the	disturbance	(DiBattista	
et	al.,	2011),	there	was	a	transient	drop	in	the	survival	rates	of	age	0	
and	age	1	individuals,	though	the	degree	to	which	juvenile	mortality	
was	affected	is	debated	(DiBattista	et	al.,	2011;	Jennings	et	al.,	2008).	
These	cohorts	would	have	reached	maturity	and	begun	returning	to	
Bimini	for	reproduction	around	2011,	which	may	explain	the	decreas-
ing	 trend	 around	 that	 time	 (Figure 6d).	 All	 sampling	 windows	 and	
methods	of	downsampling	showed	a	parabolic	abundance	trend	over	
the	time	series,	 though	the	stationary	point	 (where	population	size	
was	stable)	varied	depending	on	the	window.

Although	our	results	closely	resemble	those	reported	in	DiBattista	
et	al.	(2011),	we	note	that	our	abundance	estimates	from	CKMR	were	
slightly	higher.	The	degree	to	which	our	results	differed	depended	on	
whether	we	included	full	siblings	in	the	analysis	and	whether	we	used	
the	 full	 dataset	 or	 a	 downsampled	 dataset	 (see	Appendix	 S1:	 S1.6	
for	more	 discussion	 on	CKMR	with	 small	 populations).	 Abundance	
estimates	were	generally	 similar	 (<50	breeding	 females)	 across	 the	
datasets	we	tested,	except	for	a	 few	 instances	when	sampling	was	
constrained	to	a	3-	year	window.	When	a	population	breeds	bienni-
ally,	sampling	3 years	only	includes	one year	gap	with	possible	positive	
comparisons	(years	1	and	3),	which	provides	very	limited	information	
to	the	exponent	on	ɸ	and	impedes	its	estimation	(see	Appendix	S1: 
Figure S9),	as	well	 as	 the	estimation	of	other	parameters	 (note	 the	
high	correlation	with	abundance	in	Table 5).

Though	all	three	windows	of	samples	we	tested	(3-	year,	5-	year,	
all	 available)	 suggest	 the	population	of	breeding	 females	at	Bimini	
is	 small,	 the	 5-	year	window	 produced	 the	 least	 biased	 parameter	
estimates	in	simulation,	and	application	to	the	real	data	resulted	in	
estimates	that	aligned	more	closely	with	the	estimates	of	Dibattista	
et	al.	(2011)	than	when	all	samples	were	used.	More	complex	mod-
els	(e.g.,	that	allow	for	quadratic	abundance	trends)	would	likely	im-
prove	the	performance	of	models	that	leverage	long	time	series	of	
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data;	in	the	absence	of	such	a	model,	calibrating	the	time	window	of	
samples	to	correspond	to	likely	abundance	trends	can	help	alleviate	
the	averaging	effect	of	 assuming	exponential	 growth/decline	over	
long	time	periods.

Adapting	CKMR	to	produce	more	reliable	parameter	estimates	for	
small	populations	will	require	additional	work	(Bravington,	Skaug,	&	
Anderson,	2016);	however,	when	dealing	with	abundance	estimates	
that	are	small	enough	to	cause	such	issues,	the	practical	implications	
of	this	known	bias	are	likely	minimal.	Discarding	estimates	from	the	
3-	year	window	 of	 samples,	 our	model	 that	 retained	 full	 siblings	 in	
the	 dataset	 estimated	 a	maximum	of	 47	 females	 visited	 the	North	
Island	across	all	18 years	of	abundance	estimation	(Table 4,	Figure 6d).	
Removing	full	siblings	from	the	dataset	produced	slightly	higher	val-
ues	(Appendix	S1: Figure S7	and	Table S3)	and,	excluding	the	3-	year	
window	 of	 samples,	 even	 downsampling	 the	 dataset	 resulted	 in	 a	
maximum	estimate	of	70	females	(Appendix	S1: Tables S4,	S5)	.	These	
quantities	are	small	enough	that	any	additional	mortality	would	likely	
threaten	the	sustainability	of	this	portion	of	the	population.

4.5  |  Implications for sampling design

We	have	 shown	 that	 the	 application	of	 half-	sibling	CKMR	 to	 long-	
lived	 species	 can	 generate	 reliable	 estimates	 of	 abundance—on	 its	
own,	or	 in	conjunction	with	parent-	offspring	CKMR—from	a	limited	
number	of	cohorts	when	aging	is	reliable;	however,	estimates	of	sur-
vival	(ɸ)	were	more	reliable	when	more	cohorts	were	included	in	the	
dataset	across	our	simulations.	A	dataset	that	spans	enough	cohorts	
to	reliably	estimate	parameters	beyond	abundance	can	be	obtained	
by	 intensely	 sampling	multiple	 age	 classes	 over	 a	 small	 number	 of	
years,	or	by	long-	term	sampling	of	nursery	areas.	The	former	would	
require	reliable	aging	of	all	sampled	age	classes	to	avoid	biased	pa-
rameter	estimates,	especially	for	models	that	incorporate	half-	sibling	
kinship	probabilities	where	estimates	of	survival	and	abundance	both	
depend	 on	 the	 birth	 year	 of	 sampled	 individuals.	 The	 latter—long-	
term	sampling	of	nursery	areas—represents	a	promising	method	for	
monitoring	 low-	density	highly	mobile	populations,	 especially	 in	 cir-
cumstances	where	aging	error	is	likely	for	older	age	classes.

We	are	not	the	first	to	suggest	that	CKMR	benefits	from	focus-
ing	sampling	efforts	on	individuals	that	can	be	reliably	aged	(Trenkel	
et	al.,	2022).	Our	results	expand	on	this	idea	by	demonstrating	that	
CKMR	can	produce	robust	abundance	estimates	from	as	few	as	four	
cohorts,	 though	estimates	of	survival	will	be	 less	reliable	as	fewer	
age	 classes	 are	 included.	 In	 cases	 where	 sampling	 of	 juveniles	 is	
focused	on	nursery	areas,	sufficient	biological	knowledge	to	deter-
mine	the	scope	of	 inference	for	CKMR	will	be	required.	 If	 the	tar-
get	population	uses	multiple	nursery	areas,	then	sampling	multiple	
nurseries	can	allow	the	model	to	estimate	demographic	connectiv-
ity	(Patterson,	Hillary,	Kyne,	et	al.,	2022).	If	sex-	specific	population	
dynamics	are	present,	as	with	Bimini	 lemon	sharks,	 the	associated	
CKMR	model	should	account	for	this	and	estimate	parameters	sep-
arately	for	each	sex	or	focus	solely	on	the	sex	for	which	the	scope	
of	inference	is	well-	understood,	as	we	did	with	Bimini	lemon	sharks.

One	 of	 the	more	 exciting	 aspects	 of	 CKMR	 is	 its	 potential	 to	
generate	 rapid	 estimates	 of	 adult	 abundance	 without	 sampling	 a	
single	adult	(see	Patterson,	Hillary,	Kyne,	et	al.,	2022	for	an	applied	
example).	 Our	 results	 confirm	 that	 a	 sampling	 program	 that	 can	
procure	as	few	as	four	or	five	reliably	aged	cohorts	can	be	used	in	
combination	with	half-	sibling	CKMR	to	produce	robust	estimates	of	
present-	day	abundance	as	well	as	reasonable	estimates	of	survival.	
In	circumstances	where	a	genotyping	panel,	workflow	for	assigning	
kinship,	and	appropriate	CKMR	model	are	already	developed	for	a	
population,	 contemporary	 abundance	estimates	 could	 conceivably	
be	obtained	within	weeks	of	sampling.	As	such,	CKMR	can	offer	a	
rapid	 and	 cost-	effective	method	 for	 population	monitoring	 in	 real	
time	following	an	initial	investment	in	the	laboratory	and	analytical	
workflows.

5  |  CONCLUSION AND FUTURE 
DIREC TIONS

Close-	kin	mark-	recapture	 is	a	powerful	tool	for	estimating	the	pop-
ulation	abundance	of	species	that	have	been	historically	difficult	 to	
assess.	Reliable	application	of	the	method	requires	careful	considera-
tion	of	the	relevant	population	dynamics	matched	to	an	appropriate	
sampling	scheme.	Here,	we	have	identified	a	set	of	factors	that	must	
be	 considered	 for	 robust	 application	 of	 CKMR,	 proposed	methods	
for	accounting	for	them,	and	highlighted	areas	in	need	of	further	re-
search.	Specifically,	we	found	that	a	half-	sibling-	focused	CKMR	model	
can	produce	robust	abundance	estimates	from	as	few	as	four	or	five	
cohorts,	while	 reliable	estimates	of	 survival	will	 likely	 require	more	
data.	Monotonic	abundance	trends	can	be	dependably	inferred	by	in-
corporating	a	simple	exponential	growth	model;	however,	more	com-
plex	trends	will	require	further	model	development	or,	at	a	minimum,	
deployment	of	a	sliding	window	of	samples,	which	prevents	long-	term	
averaging	of	λ	and	obfuscation	of	transient	dynamics.

When	 ages	 are	 prone	 to	misassignment,	 focusing	 sampling	 ef-
forts	on	individuals	with	known	ages	(e.g.,	YOY),	or	subsampling	for	
these	individuals	if	the	dataset	is	sufficiently	rich,	can	alleviate	bias	
in	parameter	estimates,	particularly	abundance.	Long-	term	monitor-
ing	of	highly	mobile	species	can	be	enhanced	by	CKMR	via	sampling	
of	nursery	areas	when	one	or	both	sexes	are	philopatric	and	can	pro-
vide	estimates	of	present-	day	abundance	and	abundance	trends	for	
adults	that	visit	the	nursery	area	without	directly	sampling	a	single	
adult.	Overall,	 this	 study	highlights	 the	 sensitivity	of	 simple	base-	
case	CKMR	models	to	assumptions	about	population	dynamics	and	
sampling,	 while	 also	 demonstrating	 that	 the	 CKMR	 framework	 is	
easily	adaptable	to	accommodate	these	factors,	making	it	a	promis-
ing	tool	for	integration	into	long-	term	monitoring	programs.
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