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Environmental Selection, Dispersal, and
Organism Interactions Shape Community
Assembly in High-Throughput
Enrichment Culturing

N. B. Justice,a A. Sczesnak,b T. C. Hazen,c,d A. P. Arkina,b

Lawrence Berkeley National Laboratory, Berkeley, California, USAa; University of California at Berkeley, Berkeley,
California, USAb; University of Tennessee, Knoxville, Tennessee, USAc; Oak Ridge National Laboratory, Oak
Ridge, Tennessee, USAd

ABSTRACT A central goal of microbial ecology is to identify and quantify the forces
that lead to observed population distributions and dynamics. However, these forces,
which include environmental selection, dispersal, and organism interactions, are of-
ten difficult to assess in natural environments. Here, we present a method that links
microbial community structures with selective and stochastic forces through highly
replicated subsampling and enrichment of a single environmental inoculum. Specifi-
cally, groundwater from a well-studied natural aquifer was serially diluted and inocu-
lated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final
community structures were evaluated with 16S rRNA gene amplicon sequencing. We
analyzed the frequency and abundance of individual operational taxonomic units
(OTUs) to understand how probabilistic immigration, relative fitness differences, en-
vironmental factors, and organismal interactions contributed to divergent distribu-
tions of community structures. We further used a most probable number (MPN)
method to estimate the natural condition-dependent cultivable abundance of each
of the nearly 400 OTU cultivated in our study and infer the relative fitness of each.
Additionally, we infer condition-specific organism interactions and discuss how this
high-replicate culturing approach is essential in dissecting the interplay between
overlapping ecological forces and taxon-specific attributes that underpin microbial
community assembly.

IMPORTANCE Through highly replicated culturing, in which inocula are subsampled
from a single environmental sample, we empirically determine how selective forces,
interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial
communities. These methods offer a novel approach to untangle not only interspe-
cific interactions but also taxon-specific fitness differences that manifest across dif-
ferent cultivation conditions and lead to the selection and enrichment of specific or-
ganisms. Additionally, we provide a method for estimating the number of cultivable
units of each OTU in the original sample through the MPN approach.

KEYWORDS 16S RNA, community assembly, enrichment culturing, microbial ecology

Microbial communities are central players in Earth’s biogeochemical cycles (1),
human health (2), biotechnological processes, such as wastewater treatment (3),

and the production of foods (4). Underpinning the structure, function, and evolution of
all these communities are the ecological forces of dispersal, drift, selection, and speciation
(5, 6). Even on short timescales, in which one can ignore evolutionary mechanisms of
diversification, drift, selection, and dispersal interact to turn over populations of organisms
in both predictable and unpredictable ways. Unpredictable changes in community struc-
ture are rooted in random dispersal and drift, while predictable changes are caused by

Received 4 June 2017 Accepted 25 July 2017

Accepted manuscript posted online 4
August 2017

Citation Justice NB, Sczesnak A, Hazen TC,
Arkin AP. 2017. Environmental selection,
dispersal, and organism interactions shape
community assembly in high-throughput
enrichment culturing. Appl Environ Microbiol
83:e01253-17. https://doi.org/10.1128/AEM
.01253-17.

Editor Harold L. Drake, University of Bayreuth

This is a work of the U.S. Government and is
not subject to copyright protection in the
United States. Foreign copyrights may apply.

Address correspondence to A. P. Arkin,
aparkin@lbl.gov.

MICROBIAL ECOLOGY

crossm

October 2017 Volume 83 Issue 20 e01253-17 aem.asm.org 1Applied and Environmental Microbiology

http://orcid.org/0000-0002-2536-9993
http://orcid.org/0000-0002-4999-2931
https://doi.org/10.1128/AEM.01253-17
https://doi.org/10.1128/AEM.01253-17
mailto:aparkin@lbl.gov
http://crossmark.crossref.org/dialog/?doi=10.1128/AEM.01253-17&domain=pdf&date_stamp=2017-8-4
http://aem.asm.org


deterministic fitness differences and environmental selection (6). Capturing the influ-
ence of these processes is central to predicting and controlling microbial community
structure and function.

Although selective processes can lead to more predictable community compo-
sitions (7), the processes themselves are complex and numerous and can stem from
biotic sources, abiotic sources, or feedback loops between biotic and abiotic factors
(8). Despite there being numerous examples of biotic relationships (e.g., competi-
tive interactions) among microorganisms (9), there is less work exploring how biotic
relationships change as a function of the environment in which they are found (6).
Moreover, assessment of the impact of selective forces in microbial community struc-
ture is hampered by the complexity of natural systems, including the extraordinary
diversity of organisms, the numerous uncontrolled (or unmeasured) environmental and
historical factors, and large and variegated scales of distance and time. The reduction
of these complexities through the use of well-defined experimental platforms (e.g.,
microcosms) offers a tremendous advantage (10–12). In comparison to studies done in
situ, laboratory microcosms allow us to directly evaluate community responses to
known and controlled variables while minimizing the influence of unmeasured factors,
like resource heterogeneity and historical differences across sites. Furthermore, micro-
cosms allow the preservation of compositional and functional diversity of the seed
community (10), and as such, assembly rules garnered from controlled laboratory
experiments can be used to better understand the factors that structure microbial
communities in the field (13).

In microcosm experiments inoculated with complex and undefined multispecies
consortia, there are a number of experiments offering conflicting views regarding the
importance of selective forces, and the attendant increase in reproducibility, in the
assembly of microbial communities. In some systems, highly reproducible communities
formed even from different inocula incubated under similar conditions, which is evidence
of niche-based processes and strong selective forces (14–16). On the other hand, some
systems exhibit divergent community structures, accounted for by distribution of rare
taxa in the inoculum (17), different source communities (18), and stochastic coloniza-
tion processes (19). Although the results from each of these experiments depend on
their own unique source inocula and selective conditions, they highlight the need for
a more unified understanding of how both predictable processes (e.g., selection) and
unpredictable processes (e.g., random colonization and stochastic drift) interact to
shape microbial community assembly.

Here, we leverage the large multiplexing capabilities of Illumina 16S rRNA amplicon
sequencing with a highly replicated enrichment experiment in order to examine how
selective forces shape community assembly in the presence of random dispersal.
Specifically, we aimed to answer the following: (i) how much do community structures
vary as a function of probabilistic recruitment from a single regional species pool? (ii)
How do abiotic selective factors, such as homogenizing environment (e.g., shaking) and
terminal electron-accepting conditions, influence and structure these communities? (iii)
How do various taxonomic groups respond to these differentiated selective processes?
(iv) Can we detect species interactions, and how do they change as a function of environ-
mental factors? To these ends, we systematically manipulated bacterial diversity by
subsampling a single “regional” species pool at several dilutions in order to create many
“local” communities that varied in their membership. We carried these experiments out
in both an unstructured aerobic environment as well as a structured nitrate-reducing
environment to ascertain how these commonly employed cultivation conditions shape
community assembly by altering the cultivability, competitive fitness, and interspecific
interactions of community members.

RESULTS
Initial sample characterization and estimates of cultivable populations. The

initial inoculum was estimated to contain �37,000 cells/ml based on acridine orange
direct count (AODC). Based on this initial cell count, the enrichments that received the
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most concentrated inoculum thus received �3,700 cells · ml�1, and those enrichments
receiving the most dilute inoculum started with an average of only �0.37 cells · ml�1.
Following cultivation, all wells that received the two most concentrated inocula (10�1

and 10�2 final inoculum density) showed population growth as measured by optical
density at 600 nm (OD600) (see Table S1 in the supplemental material). Anaerobic
experiments with initial inoculum densities of 10�3, 10�4, and 10�5, had 69, 12, and 1
positive-growth wells, respectively. Similarly, the aerobic experiments had 79, 13, and
4 positive-growth wells from those same inocula. Using these data, the original sample
was calculated to be between 1,400 and 2,200 cultivable cells per milliliter at the 95%
confidence level, with 1,700 cells · ml�1 being most probable for aerobic cultivation
conditions. Under the anaerobic conditions, the most probable number of initial
cultivable cells is estimated to be between 1,000 and 1,600 cultivable cells per milliliter,
with 1,400 cells · ml�1 being most probable. Thus, approximately 4% of the total cells
counted by the AODC method appear to be cultivable under these conditions (3.8%
under nitrate-reducing conditions and 4.6% under aerobic conditions).

In addition to optical density measurements, DNA was extracted from each well and
the 16S rRNA gene amplified and sequenced. Across all 960 cultivated communities,
OD600 and sequencing data were in agreement in regard to detectable growth in 893
cases (93.0%). There were 23 samples with positive growth by sequencing that did not
exceed the OD600 thresholds and 44 samples with growth by optical density that did
not exceed read count thresholds. The numbers of positive-growth wells by both
methods for each experiment and dilution are shown in Table S1.

Probabilistic immigration and environmental conditions shape microbial com-
munity structure. As expected, based on 16S rRNA gene amplicon sequencing data,
enrichment cultures started with the highest inoculum concentrations had the highest
operational taxonomic unit (OTU) richness. The communities receiving the most con-
centrated inoculum had statistically similar numbers of OTUs under nitrate-reducing
and aerobic conditions (t test, P � 0.10), with the nitrate-reducing communities
averaging 26.5 OTUs (n � 94; standard deviation [SD], 11.27 OTUs) and the aerobic
communities averaging 29.2 (n � 96; SD, 10.53 OTUs). OTU richness declined in
experiments that received less concentrated inocula (Fig. 1). In the 10�2 dilutions, the
aerobic communities tended to have higher species richness than the nitrate-reducing
communities (t test, P � 2.09e�06), with nitrate-reducing cultures having on average

FIG 1 For each experiment and dilution, the mean number of OTUs assigned. Error bars represent
standard deviations. Statistical significance between means was tested using Student’s t test for the first
three dilutions (10�1 to 10�3). Significance (P � 0.05) is marked with an asterisk. ND, no data acquired
for that set of samples.
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9.3 OTUs (n � 96; SD, 5.7 OTUs) and the aerobically cultivated communities with 13.5
OTUs (n � 96; SD, 6.4 OTUs). Aerobic communities that received the most diluted
inoculum had on average only 2.3 OTUs (n � 3; SD, 2.31 OTUs), and only a single OTU
in a single sample was detected in the nitrate-reducing communities begun with the
most dilute inoculum. In addition to species richness, we quantified how evenly
communities were structured with Pielou’s index. At all dilutions, the anaerobic com-
munities showed significantly reduced evenness (Fig. S2), despite being seeded from
the same populations that seeded the aerobic communities. These results indicate that
the anaerobic cultivation conditions favor the outgrowth of a smaller number of taxa,
results consistent with stronger selective forces under the anaerobic conditions.

Overall, there were 399 unique OTUs identified across all cultures. Of these, 197
OTUs were found only in nitrate-reducing cultures, 99 OTUs only in aerobic cultures,
and 103 OTUs in both aerobic and nitrate-reducing samples (Fig. 2). Some families, like
the Pseudomonadaceae, had fewer OTUs unique to anaerobic samples (n � 8) than
OTUs unique to aerobic samples (n � 40). Other families, like the Paenibacillaceae, had
a larger number of OTUs uniquely identified in anaerobic samples (n � 44) than
identified in aerobic samples (n � 4).

Many cultures started from more dilute inocula were dominated by a single OTU
(“New.ReferenceOTU30,” Pseudomonas sp.; Fig. 3). The abundance of this OTU in
cultures started from more dilute inocula is indicative of its higher cultivable abun-
dance in the initial sample, precluding it from being removed by successive dilutions.
Most OTUs (69.3% in anaerobic samples and 64.4% in aerobic samples) were identified
only in communities started from the two most concentrated inocula, reflecting their
low cultivable abundance in the groundwater inoculum and resultant extinction upon
dilution. Conversely, only 13.3% of the OTUs in anaerobic samples were limited to
communities cultivated from more dilute inocula (NO3-10�3 through NO3-10�5), and
only 3.9% of aerobically identified OTUs were limited to those communities from the
more dilute inocula (O2-10�3 through O2-10�5).

We quantified the dispersion of community structures in each dilution and under
each condition in order to examine how probabilistic processes and environmental
selection interact and contribute to stabilizing or destabilizing the range of community
structure outcomes. Stochastic recruitment drives variation among replicate commu-

FIG 2 Number of OTUs found uniquely in anaerobic enrichments or aerobic enrichments, as well as OTUs
identified in both.
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nities of a condition and dilution, and we expect that communities formed from fewer
taxa, either because of selective filtering or removal by dilution, will tend to be more
similar to each other. Among communities formed from the most concentrated inocula,
the aerobically cultivated communities were typically more similar to each other than
the nitrate-reducing communities (Fig. 4). The dominance of one or several of a small
subset of organisms in the anaerobic communities drives the divergence in community
structure outcomes (Fig. 3). Conversely, in the communities formed from the next
inoculum dilutions (NO3-10�2 and O2-10�2), the nitrate-reducing communities are
actually more similar to each other than the aerobic communities are (Fig. 4). At this
dilution, the selective pressures of the nitrate-reducing conditions prevented a number
of OTU populations from growing as they did in the aerobic cultures. By the third
dilution (10�3), most communities under either condition are very similar to each other
(i.e., the median of the distances are low); however, there is a larger range of commu-
nity dispersions. These data reflect that fact that most communities at these dilutions
are dominated by a single OTU, precluding significant dissimilarities between them.

Environmental selection shapes cultivable fraction of inoculum. For each OTU,
we used the frequency at which the OTU was identified (i.e., the number of wells in
which it was found) at multiple dilution levels under each condition to estimate the
most probable number of cultivable units in the original inoculum sample. Since
cultivability is condition dependent, we compared how these numbers varied between
aerobic and anaerobic samples (Fig. 5). Notably, members of the Pseudomonadaceae,

FIG 3 Relative abundance of OTUs from (y axes) across all communities (x axes) in the first four dilutions of aerobic enrichments and first three dilutions of
anaerobic nitrate-reducing enrichments. Only the most abundant 11 OTU are shown for clarity.
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Comamonadaceae, and Micrococcaceae tended to be more cultivable in aerobic cul-
tures, while OTUs assigned to the Paenibacillaceae and Bacillaceae tended to be more
frequently found in the anaerobic cultures. Members of the Oxalobacteraceae, on the
other hand, could be more cultivable under either aerobic or anaerobic conditions.

Most probable number (MPN) calculations are built upon several key assumptions,
including that each OTU is randomly mixed, and different OTUs do not repel each other
(20), assumptions that are unlikely to hold for natural bacterial communities. We
calculated rarity values for each MPN as a means of assessing the extent to which these
assumptions hold. Rarity values assess the probability that our observed detections for
each OTU were likely to have occurred given the calculated MPN, and they are
calculated by dividing the likelihood of the observed outcome by the largest likelihood
of any outcome at that same MPN (21). We found that 38.6% and 32.8% of OTUs from
aerobic and anaerobic cultures, respectively, had distribution frequencies categorized
as unlikely or extremely unlikely (rarity values, �0.05). Of those MPN estimations with
unlikely or extremely unlikely distributions, nearly all had a lower-than-expected num-
ber of positive observations from high-inoculum cultures and a concomitant higher-
than-expected number of positive observations in low-inoculum cultures (Fig. S3).
Explanations for this behavior include competitive mechanisms in high-inoculum cul-
tures preventing growth and detection of these OTUs, or clumps of colocalized OTUs
in the initial inoculum being broken up upon dilution, leading to a higher-than-
expected number of observations in low-dilution cultures (22).

Identifying organism relative fitness. We sought to classify OTUs as strong or weak
competitors under each condition by comparing measured organism abundance with
predicted organism abundance in a null model of community assembly in which all
organisms have identical growth properties (no net positive or negative growth
differences, and no interaction between OTUs). Using the estimated initial cultivable
abundances of each OTU, we simulated the seeding and cultivation of 10,000 replicate
communities from the lowest dilution inoculum into the aerobic and anaerobic envi-
ronments. We focused on the lowest dilution cultures, since these cultures represent
the greatest inclusion of taxa and thus overall highest expected frequency of compe-

FIG 4 Analysis of group dispersions calculated by measuring each community’s distance from a median
point in multivariate space using Bray-Curtis dissimilarity. Higher median values indicate more within-
group variation, and lower values indicate more homogeneous communities.
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tition. We then compared these estimated average abundances to the measured
average abundance of each OTU and identified OTUs whose measured relative abun-
dances were higher or lower than the predicted abundances at a 99% confidence level
(Fig. 6). In essence, we are using only the frequency at which each OTU is identified to
create expectations of how abundant taxa are during inoculation. We then compare
these expected values to observed postcultivation average abundances. Most organ-
isms tended to be poor competitors, including the most abundant OTU in our exper-
iment, Pseudomonadaceae New.ReferenceOTU30. Using its estimated cultivable units
per milliliter, the model predicts that this OTU should be an average of 19.5% of the

FIG 5 Most probable number estimates of cultivable units per ml for each OTU, colored by family, under both anaerobic
and aerobic conditions. Line of perfect concordance shown to clarify OTUs that are more cultivable under aerobic versus
anaerobic conditions.

FIG 6 Each OTU’s final average percent abundance plotted against initial estimated percent abundance for the nitrate-
reducing (left) and anaerobic (right) enrichments begun with the most concentrated inoculum. Red and blue lines indicate the
upper and lower boundaries, respectively, of the 99% confidence interval of expected average abundance in 10,000
communities simulated in the null model of community assembly. Note the log scale. The right-most point in both graphs
represents the Pseudomonas OTU New.ReferenceOTU30.
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NO3-10�1 communities and 32.4% of the O2-10�1 communities. The measured average
relative abundances, however, were only 9.4% and 12.1%, respectively, reflecting the
poor relative fitness of this taxon (Fig. 6). Put more simply, this OTU is expected to be
very abundant in the neutral model of cultivation because it was estimated to be very
abundant in the inoculum (i.e., was found in many cultures). At the end of cultivation,
however, its relative abundance is lower than that expectation.

Some OTUs, such as those belonging to the Neisseriaceae and Aeromonadaceae,
tended to be strong competitors under both aerobic and nitrate-reducing conditions
(Fig. 7). Others, like the Pseudomonadaceae and Paenibacillaceae, tended to have strong
competitors under only one condition (the Paenibacillaceae under anaerobic conditions
and the Pseudomonadaceae under aerobic conditions). On the other hand, the Oxalo-
bacteraceae had only a few, if any, strong competitors under either aerobic conditions
or nitrate-reducing conditions. In some cases, rare taxa dominate cultures, including
OTUs 581021 and 922761 (family Enterobacteriaceae), which are both predicted to be
less than 0.008% of the cultivable inoculum and yet come to represent 33.2 and 62.1%
of the anaerobic cultures in which they are found, respectively (Table S2). In the aerobic
cultures, a single taxon of Aeromonadaceae (778059), representing only 0.002% of the
initial cultivable inoculum, came to represent 66.0% of a single community.

As it makes the unrealistic assumption of no fitness differences between taxa, the
null model simulation of community assembly did not predict true final organism
abundances (Fig. 6). The true average abundances for the vast majority of taxa fell
below the 99% confidence threshold of their expected abundances. Nearly all of these
were predicted to be low-abundance taxa in the inoculum (i.e., �1%) that were driven
to even lower relative abundances during cultivation. In addition to extraction and
amplification biases, fitness differences and competition likely contribute to the lower-
than-predicted abundances for many of these OTUs.

Predicting organism interactions. Given the probabilistic nature of how we
seeded each replicate, we sought to identify pairs of taxa that may be interacting by
observing if they were found more or less frequently together than one would expect
by chance. For each condition and dilution, the total number of pairwise comparisons,
the number of significant positive and negative associations, and the median strength
of the associations for each condition and dilution are shown in Table 1. Overall, we
identified 115 putative interactions (56 negative and 59 positive) among 34 OTU in the

FIG 7 OTUs binned as having high, low, or nonsignificant relative fitness advantages in the anaerobic
nitrate-reducing (left) and aerobic (right) communities at the lowest dilution.
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nitrate-reducing samples and 34 putative interactions (23 positive and 11 negative)
among 15 OTU in the aerobic samples (Fig. 8). There was very little overlap between
interaction predictions across conditions, with only 14 OTU and 5 predicted interactions
shared in the aerobic and anaerobic communities. Of those five shared interactions, all
were positive associations among pairs of closely related OTUs.

TABLE 1 Summary table of pairwise cooccurrence analyses for each environment and dilution

Dilution
No. of
samples

No. of
species

Total no. of species
pair combinations

No. of analyzed
combinationsa

No. of positive
interactionsb

No. of negative
interactionsb

Median
powerc FDR (%)d

NO3-10�1 94 230 26,335 802 58 47 6.2 1.53
NO3-10�2 96 124 7,626 317 12 9 7.5 3.02
NO3-10�3 54 91 4,095 37 1 0 8.2 7.40
NO3-10�4 0 0 NAe NA NA NA NA NA
NO3-10�5 1 1 NA NA NA NA NA NA
O2-10�1 96 164 13,366 1,303 8 8 9.75 16.29
O2-10�2 96 109 5,886 564 15 3 9.85 6.27
O2-10�3 79 65 2,080 74 2 0 7.7 7.40
O2-10�4 22 37 666 12 0 0 NA NA
O2-10�5 3 6 NA NA NA NA NA NA
aAnalyzed combinations represent only those species pairs expected to have 1 or more cooccurrences.
bSignificance at the threshold of a P value of �0.001.
cCalculated as |observed interactions � expected interactions|.
dFDR, false-discovery rate.
eNA, not applicable.

FIG 8 Networks depicting positive and negative associations between pairs of taxa in anaerobic
nitrate-reducing communities (A) and aerobic communities (B). Graphs were made by the union of
interaction graphs at each dilution for aerobic and anaerobic samples, respectively. Positive associations
are shown in blue and negative associations in red. OTUs predicted to be strong competitors (Fig. 6 and
7) are indicated with a bold outline. The size of the node for each OTU scales with the estimated number
of cultivable units of that OTU in the initial inoculum (Fig. 5).

Selection and Interaction Constrain Random Enrichments Applied and Environmental Microbiology

October 2017 Volume 83 Issue 20 e01253-17 aem.asm.org 9

http://aem.asm.org


In the anaerobic samples, OTUs of the Pseudomonadaceae were positively associ-
ated with members of the Oxalobacteraceae and negatively associated with members
of the Bacillaceae and Paenibacillaceae. Oxalobacteraceae, on the other hand, were
positively associated with the Paenibacillaceae and negatively associated with members
of the Neisseriaceae and Bacillaceae. The Bacillaceae had no positive connections to
other families and were negatively associated with members of the Pseudomonadaceae,
Oxalobacteraceae, and Paenibacillaceae. In aerobic samples, some positive associations
between the Pseudomonadaceae and Oxalobacteraceae were identified, and the Neis-
seriaceae share negative associations with members of both the Oxalobacteraceae and
Pseudomonadaceae families.

DISCUSSION

We utilized multiple dilutions in a highly replicated enrichment experiment to
understand how probabilistic recruitment and selection shape community assembly.
We show that probabilistic subsampling can produce a range of community structure
outcomes constrained by environmental selection.

Divergence among replicate communities formed from a single inoculum dilution
and under a single selective pressure is rooted in varied recruitment. Together with this
probabilistic process, selective forces act by winnowing down the types and sizes of
populations that will thrive. This effect, for example, is seen when comparing commu-
nities in the anaerobic versus aerobic enrichments of the first dilutions (NO3-10�1 and
O2-10�1). The anaerobic cultivations, despite being seeded with the same numbers and
populations of cells as the aerobic enrichments, favored the outgrowth and dominance
of a smaller number of taxa, as indicated by Pielou’s evenness index (Fig. S2). In other
words, the NO3-10�1 communities are more varied because fewer organisms are fit and
emerge as “winners,” creating distinct sets of reproducible outcomes. The communities
under the O2-10�1 condition are more cohesive because many organisms are fit.

As with strong selective pressures, dilution can create variance in community
structures by bottlenecking the number of cultivable organisms. For example, the
communities of the O2-10�1 enrichments tend to be more similar to each other
than the communities of the O2-10�2 enrichments. Additionally, the O2-10�1

enrichments are more evenly structured than the communities of the O2-10�2

enrichments, which are often dominated by a single organism. These findings are
consistent with stochastic recruitment creating fewer “winning” organisms and
ultimately more divergent community structures in the O2-10�2 enrichments.
Continuing to inoculate with more and more dilute inocula, however, ultimately
reduces variance in community structure outcomes, because a single OTU comes to
dominate. Under aerobic conditions, this organism’s relative cultivable abundance
means it dominated the 10�3 dilutions, while the overall reduced cultivability of
other organisms in the stark selective pressures of the anaerobic environment led
to this OTU’s dominance in the 10�2 dilutions.

Strong selective pressures are also evident when examining how different phylo-
genetic groups are enriched under the different cultivation conditions. For example, the
majority of Paenibacillaceae OTUs were unique to anaerobic samples (Fig. 2). Overall,
the dominant detected families, including the Pseudomonadaceae, Bacillaceae, Paeni-
bacillaceae, Comamonadaceae, and Neisseriaceae, are commonly found in the ground
waters of the Oak Ridge field site and represent frequently identified heterotrophic
members of bacterial soil and groundwater communities (23, 24).

An organism’s initial abundance in any given local community, indeed, the chance
it arrives in that community at all, is a function of its abundance in the inoculum. In
agreement with that expectation, species richness declined with increasing dilution of
the inoculum, as did the number of wells with positive detectable growth (Table S1).
Similar dilution-to-extinction approaches have been used previously to examine the
link between biodiversity and ecosystem functioning (25–27). Here, however, the high
replication at each dilution allows us to extrapolate the abundance of each OTU in the
initial inoculum by examining the number of communities in which each OTU is found
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at each dilution. We estimate, using an MPN technique, the absolute cultivable abun-
dance of each taxon in the inoculum, data unobtainable from 16S rRNA amplicon
sequencing of the inoculum alone. We estimated that the most abundant Pseudomonas
OTU (New.ReferenceOTU30), for instance, had approximately 840 cultivable units per
ml under anaerobic conditions and 2,590 cultivable units per ml under aerobic condi-
tions (Table S2). Although MPN techniques are commonly used for estimation of
bacterial abundance in a wide variety of applications (28), the application of 16S rRNA
amplicon sequencing to the approach is, to our knowledge, novel, and offers the
advantage of estimating the cultivability of a large number of taxa simultaneously.
Many taxa had extremely small cultivable populations in the inoculum. In fact, 66.8% of
OTUs cultivable under aerobic conditions and 78.3% of those cultivable under anaer-
obic conditions are estimated to have less than one cultivable unit per milliliter. These
results reflect the diversity and high number of low-abundance species in the inoculum,
consistent with previous results (23). Importantly, these results also highlight the need
for careful consideration of experimental design, volume of inoculum used, and mi-
crobial density and diversity in the inoculum when evaluating reproducibility across
any enrichment experiment. It is worth noting that having the 16S rRNA amplicon
sequencing of the inoculum would add an exciting dimension to this analysis, including
the extent to which detected taxa in the inoculum were cultivable and how well
cultivable abundances align with OTU abundances. However, insufficient biomass for
adequate extraction and sequencing was obtained from the inoculum, and these data
were not collected. We further want to highlight that although the inoculum was
submitted to two different selective regimes, they share a cultivation medium, R2A,
which may select against large fractions of the inoculum community (e.g., approxi-
mately 4% of the cells counted by microscopy were cultivated). The use of other
cultivation media would not only offer opportunities to recover different fractions of
the inoculum but could also be used to dissect how specific selective factors impact the
fitness of different populations.

We assessed how the relative fitness of individual OTUs differed across environmen-
tal conditions by predicting the relative abundance of each OTU in a null model of
community assembly devoid of fitness differences, and we compared this to actual
measured relative abundance (Fig. 6). In this way, we were able to identify OTUs as
having either high, low, or no competitive fitness advantage in both the NO3-10�1 and
O2-10�1 communities (Fig. 7). Again, we see some family-level differences in compet-
itive abilities as a function of the enrichment conditions. For example, some OTUs of
Pseudomonadaceae were strong competitors in aerobic environments, yet none were
identified as strongly competitive under nitrate-reducing conditions. This is somewhat
surprising, as members of the Pseudomonadaceae are frequent nitrate reducers (29, 30)
and had many representatives capable of growth under anaerobic nitrate-reducing
conditions (Fig. 2). The dominance of these Pseudomonadaceae in predominantly
aerobic samples may be a reflection of an aerobic or facultatively aerobic ecological
strategy in the natural environment of the Field Research Center (FRC) groundwater. On
the other hand, representatives of the Paenibacillaceae are likely better adapted to
conditions of low oxygen concentrations, as evidenced by their higher relative fitness
under only anaerobic conditions (Fig. 7). Furthermore, despite their overall preference
for anaerobic conditions, some Bacillaceae were strong competitors even in aerobic
environments (Fig. 7), reflecting the broad metabolic versatility of these organisms (31).
In both aerobic and anaerobic environments, some of the most competitive taxa
belonged to members of the Neisseriaceae, especially the genus Chromobacterium
(Table S2).

In addition to revealing how abiotic factors and probabilistic immigration shape
community assembly, we sought to identify the roles of organism interactions in
structuring communities. To that end, pairs of taxa were identified as potentially
interacting if they were found more or less frequently together than expected by
random chance. Given that every local environment is initially identical, cooccurrence
patterns are not linked to initial abiotic conditions and “habitat-filtering,” a common
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problem for studies done in situ (32). Overall, we observed a larger number of interactions
in the anaerobic samples than in the aerobic samples (Table 1 and Fig. 8), although the
reasons for this remain unclear. In general, negative interactions could be explained by
antibiotic production or resource competition. Paenibacillaceae, Pseudomonadaceae,
Bacillaceae, Neisseriaceae, and Oxalobacteraceae all harbor species capable of producing
antibiotics (33, 34). The higher number of negative interactions in the anaerobic
samples may be linked to the regulation of antibiotic production by oxygen availability,
as has been shown in species of Pseudomonas (35). Alternatively, anaerobic negative
interactions might be linked to accumulations of by-products of fermentative metab-
olisms that inhibit competing organisms. Finally, negative interactions could be linked
to the structured (i.e., unshaken) environment of the anaerobic cultures, with physical
proximity possibly being an important factor. Members of the family Neisseriaceae and
Oxalobacteraceae were unique in that they showed negative interaction patterns in
both aerobic and anaerobic samples, even though no individual OTUs and interacting
pairs were preserved in the two interaction networks.

Positive interactions can be more difficult to interpret, as in some cases, cooc-
curring OTUs may be ultimately caused by sequence variation among copies of the
16S rRNA gene cooccurring within cells (36). For this reason, we focus predomi-
nately on associations across broader phylogenetic distances. Intriguingly, mem-
bers of the Oxalobacteraceae were positively associated with members of the
Pseudomonadaceae and the Paenibacillaceae in anaerobic samples and with the
Pseudomonadaceae alone in aerobic samples. Associations between Oxalobacter-
aceae and Pseudomonadaceae have been reported previously in human-associated
samples (37). One possibility is that the Oxalobacteraceae are supported by CO2

released from the oxidation of organic carbon in the medium, as these organisms
exhibit capnophilic physiologies (38).

Nonrandom positive cooccurrences might also be caused by colocalization on
the same particle in the environment and subsequent coseeding in each enrich-
ment community. These types of positive cooccurrences would be of particular
interest since these organisms are more likely to be in close association in their
natural environments. However, the poor overlap in positive cooccurrences be-
tween aerobic and anaerobic communities suggests that this may not be the case.
Some positive interactions may also be a case of being the common target of
another organism. In this case, negative interactions stemming from a broad-
spectrum “killer” (e.g., members of the Bacillaceae) may eliminate multiple taxa
from certain communities, leading to increased incidence of cooccurrence of those
taxa in communities where the killer strain is not found.

Conclusion. Here, we show that the combination of random dispersal with abiotic
and biotic selections gives rise to numerous and variegated communities. We examine
how random variation in community outcome is strongly throttled by selective pres-
sures and dissect how those selective pressures alter the structure of the cultivable
inoculum, as well as the competitive hierarchy of specific taxa. Ultimately, this approach
offers a method to simultaneously explore the “niche” parameters of many coexisting
populations, identify organism interactions, and explore processes of community as-
sembly for ecological or biotechnological applications.

MATERIALS AND METHODS
Sampling and cell counting. Groundwater was collected from an uncontaminated well (FW301:

N35.94106884 and W84.33618124) at the Oak Ridge Field Research Site on 5 May 2015. The well is
considered uncontaminated because, unlike many other wells at the Oak Ridge Field Research Site, it
does not sample groundwater from the radioactive and hazardous contaminant plume emanating from
the former waste disposal ponds (23). Prior to the collection of samples, approximately 10 liters of
groundwater was pumped until pH, conductivity, and oxidation-reduction (redox) values were stabilized.
Following this purge, approximately 50 ml was pumped from the midscreen level into a sterilized serum
vial, minimizing residual headspace. The vial was sealed and shipped overnight at 4°C to the laboratory
for cultivation. An additional �40 ml of water sample was taken immediately following the first,
preserved with 4% formaldehyde, and stored at 4°C for cell counting. Initial inoculum cell counts were
determined using the acridine orange direct count (AODC) method (39). A 20-ml volume was filtered
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through a 0.2-�m-pore-size black polycarbonate membrane (Whatman International Ltd., Piscataway,
NJ), supported by a vacuum filtration sampling manifold (Millipore Corp., Billerica, MA). Filtered cells were
stained with 25 mg/ml acridine orange for 2 min in the dark. Unbound stain was rinsed through the
membrane with 10 ml of filter-sterilized 1� phosphate-buffered saline (PBS; Sigma-Aldrich Corp., St.
Louis, MO). The rinsed membrane was mounted onto a slide and cells were imaged with a fluorescein
isothiocyanate (FITC) filter on a Zeiss Axioskop (Carl Zeiss, Inc., Germany).

Inoculation and culturing. Five milliliters of the groundwater sample was diluted serially four times
into a 4 mM phosphate-buffered saline solution (pH 7.4) at a 1:10 ratio. For aerobic experiments, 100 �l
of the original undiluted sample and the four serially diluted samples (1:10, 1:100, 1:1,000, and 1:10,000)
were each inoculated into deep-well 96-well plates, with each well containing 900 �l of autoclaved R2A
medium (HiMedia, Mumbai, India). Thus, each dilution was inoculated into 96 replicates. Plates were
sealed with breathable plate seals and placed on a 30°C shaking incubator for 24 h (Infors HT,
Switzerland) at 750 rpm. All experiments are designated by the incubation condition (e.g., O2) and the
dilution with respect to original sample (e.g., 10�1, 10�2, etc.), giving five sets of incubations: O2-10�1,
O2-10�2, O2-10�3, O2-10�4, and O2-10�5. Anaerobic experiments were inoculated from the same dilutions
but into R2A that had been supplemented with 20 mM sodium nitrate (Sigma-Aldrich, St. Louis, MO,
USA). The anaerobic experiments were immediately transferred into an anaerobic glove bag (Coy, Grass
Lake, MI, USA) containing a N2:H2:CO2 atmosphere (85:10:5) and cultivated, unshaken, at 30°C for �96 h.
The aerobic and anaerobic experiments were both cultivated until visible growth had occurred in some
wells, and the anaerobic experiments thus necessitated a longer incubation. These experiments are
referred to as NO3-10�1, NO3-10�2, NO3-10�3, NO3-10�4, and NO3-10�5. In addition to plates inoculated
with the groundwater, two additional plates were inoculated with 100 �l of PBS solution and served as
a negative control for growth under both aerobic and anaerobic conditions.

DNA extraction and PCR. Two-hundred microliter aliquots of culture were extracted using the
Wizard SV 96 Genomic DNA purification system (Promega, Madison, WI, USA), as per the manufacturer’s
specifications. In addition to the samples, we extracted 36 no-inoculum control samples and 24
extraction blanks. The extraction blanks are DNA extractions carried out solely on the extraction reagents
themselves and thus serve as a control for contaminating DNA both in the extraction and the down-
stream PCR. DNA was quantified with the Quant-iT double-stranded DNA (dsDNA) assay kit (Life
Technologies, Eugene, OR, USA). Samples were normalized so that �5 ng of each sample was input into
each 20-�l PCR. Some samples, especially extraction blanks, received less than 5 ng, as they were limited
by the concentrations of extracted DNA. Primers used in the PCRs amplified the V3-V4 hypervariable
regions of the 16S gene (341F [5=-CCTACGGGAGGCAGCAG] and 806R [5=-GGACTACHVGGGTWTCTAAT]).
Both forward and reverse primers contained TruSeq Illumina adapters, barcodes, phasing, and linker
sequences and are similar to previously described designs (40, 41), with the exception that the barcodes
here were included so as to be part of a sequencing read instead of a separate indexing read. Each PCR
mixture contained 4 �l of 5� Phusion high-fidelity (HF) buffer, 0.2 �l of Phusion high-fidelity DNA
polymerase, 200 �M dinucleoside triphosphates (dNTPs), 3% dimethyl sulfoxide (DMSO), and each
primer at a concentration of 0.05 �M. All PCR reagents were obtained from NEB (Ipswich, MA, USA),
except for primers, which were synthesized and PAGE purified by IDT (Coralville, IA, USA). The thermal
cycling conditions were as follows: an initial denaturation at 98°C for 30 s, followed by 30 cycles at 98°C
for 10 s, 50°C for 30 s, and 72°C for 30 s, with a final extension at 72°C for 7 min. Following PCR, samples
from the same experiment and dilution (i.e., plate) were pooled and purified with Zymo Clean and
Concentrator kits (Irvine, CA, USA) and quantified with quantitative PCR (qPCR; Kapa Biosystems,
Wilmington, MA, USA). Each of the 11 pooled PCR products (each representing 96 samples) was then
normalized and combined.

Sequencing and OTU calling. The single aliquot of all combined PCRs was diluted and denatured
according to the MiSeq reagent kit preparation guide (Illumina, San Diego, CA, USA). A sample
concentration of 6 pM was loaded and sequenced on a 600-cycle (2 � 300 paired ends) MiSeq kit without
PhiX. Paired-end reads overlapped and were merged with PEAR (42) under default parameters (minimum
overlap of 10 bases and P � 0.01). Merged reads were quality filtered with custom scripts in which each
read was matched to both forward and reverse barcodes allowing for zero mismatches and kept only if
the maximum expected errors in the whole read were �2 (https://github.com/polyatail/arkin). Additional
trimming removed reads that did not contain both forward and reverse primer sequences or were less
than 420 bp. Finally, the remaining reads were trimmed of chimeric sequences using UCHIME against the
Greengenes database (43), resulting in 9,026,027 high-quality reads across all samples. Reads were
clustered with QIIME 1.9.0, using the pick_open_references.py script and a 97% clustering threshold (44).
Taxonomic calls were made against the Greengenes database version 13_5 (45), with a minimum cluster
size of 2.

Data processing and analysis. OTU tables from QIIME were imported into R with Ruby scripts that
assigned each well to the corresponding experiment (i.e., condition and dilution). As not all wells had
positive growth but were extracted and sequenced anyway, it was vital to separate reads accumulated
from either barcode sequencing errors or reagent contamination from true-positive detected OTUs. We
controlled for these potential sources of error by sequencing and analyzing no-inoculum cultures and
extraction-only blanks. First, R scripts were used to identify all OTUs that were found in the no-inoculum
controls and the extraction blank samples. OTUs that represented more than 0.1% of summed reads in
the no-inoculum controls and the extraction blank samples were called contaminants and excluded from
the analysis. Next, in any given sample, any OTU with fewer reads than the summed read count of all
contaminant OTUs in that sample was excluded from the analysis. Overall, contaminant reads were high
(e.g., �0.5%) only in samples with few sequencing reads (�500) and with no detected growth by OD600
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(�0.055 absorbance). Finally, any sample with fewer than 500 total reads was excluded from the analysis.
The median and mean read counts of samples kept in the analysis were 9,177 and 14,529, respectively.
The read count data for each sample are depicted in Fig. S1.

The variance in community structures within samples and dilutions was calculated using the
“betadispers” function in the R package vegan (46). The multivariate analyses of group dispersions were
done by calculating each community’s distance from a median point in multivariate space using
Bray-Curtis dissimilarity.

We used the MPN technique to calculate the cultivable abundance of every taxon in the inoculum.
This widely employed technique provides the most probable number of cultivable units of an organism
in an inoculum sample given a distribution of positive and negative outgrowths at several dilutions (24).
The cultivable abundance is thus a function of both the number of cells of that organism in the inoculum
as well as their ability to replicate under the prescribed cultivation condition. First, we calculated an
overall estimated number of cultivable cells using OD600 data (24). To obtain the OTU-specific cultivable
units per ml, we used the same technique coded into the statistical package R on the sequencing data
of our cultivations. Data from the last two anaerobic dilutions were excluded in the MPN calculations,
given that there were no samples with detectable OTUs in the NO3-10�4 dilution and only a single
sample with a single OTU in the NO3-10�5 dilution. Rarity values for each OTU’s MPN-estimated cultivable
abundance were calculated by dividing the likelihood of the observed outcome by the largest likelihood
of any outcome at that same estimated inoculum concentration (21). All data, including raw reads, and
processed and demultiplexed reads, as well as code for calculating most probable number and rarity
values for each OTU were calculated in R with scripts available at http://genomics.lbl.gov/supplemental/
enrichments.

Null model analysis. In order to determine which OTUs were the strongest competitors and which
were the weakest competitors, we compared, across replicates, the average relative abundance of each
OTU with its average expected abundance. Expected abundances are derived by simulating the assembly
of many communities using the cultivable units per ml for each OTU estimated from MPN analyses. The
communities are assembled in a null model in which no organism interactions or fitness differences were
allowed. As such, this model is not meant to accurately predict outcomes, only to serve as a metric
against which to measure and compare the strength of nonrandom forces (i.e., relative fitness in light of
environmental selection). For each dilution and experimental condition, 10,000 communities were
simulated. In each simulation, the number of seeded cells for a given OTU was randomly sampled from
a Poisson distribution, with a mean value equal to the expected number of cells for that OTU under the
condition/dilution. To account for potential error in the MPN-estimated cell abundances, both the mean
number of cells for each OTU and the total number of cells (sum of all OTU abundances) were allowed
to vary 2-fold. A 99% confidence interval was calculated for the percent relative abundance of each OTU
in all simulated communities for the condition/dilution.

Predicting organism interactions. OTU cooccurrence patterns were examined for each dilution
under each experimental condition using the R package cooccur (47). Briefly, we identified, within all
replicates of a condition and dilution, the number of times two taxa occur in the same cultivation well
(i.e., replicate) and the number of times they occur apart. The model provides the probability that
cooccurrences would occur more or less often than the observed cooccurrences assuming random and
independent distribution of OTUs. Only OTUs with a relative abundance greater than 0.1% were counted
in order to focus on only the most abundant taxa as well as to reduce false-positive associations from
artifacts of OTU sequencing and clustering. Significant positive and negative associations (� � 0.001)
were visualized as networks in Cytoscape by taking the union of all aerobic and nitrate-reducing
experiments, respectively (48).

Accession number(s). Raw data can be downloaded from the Sequence Read Archive under project
accession no. PRJNA387349.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.01253-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.1 MB.
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