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Abstract

Kernel-Centric Optimizations for Deep Neural Networks on GPGPUs

by

Zhaodong Chen

Deep learning has achieved remarkable success across various domains, ranging from

computer vision to healthcare. General-Purpose Graphics Processing Unit (GPGPU)

is one of the major driving forces behind this revolution. GPGPUs offer massive par-

allel computational power, enabling the training and deployment of large-scale neural

networks within practical time and resource constraints. Their programmability also

enables adaptability to emerging network architectures.

However, entering the post-Moore’s Law era, the scaling of computational power

offered by GPGPUs struggles to meet the demands of novel neural networks. On the

other hand, existing GPGPUs face under-utilization challenges despite the computation

power shortage.

This dissertation addresses the computation power shortage by improving the uti-

lization of GPGPUs when running deep learning workloads. It presents a kernel-centric

optimization approach with a focus on mapping neural networks to a more efficient set

of kernels (parallel functions executed on GPGPUs) that ensures better utilization. This

involves optimizations from multiple levels: algorithm level aiming to leverage more

hardware-friendly formulations, operator level to harness on-chip high bandwidth on

GPGPUs, and kernel implementation level that maximizes the utilization of computa-

tional resources.
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Chapter 1

Introduction

Deep learning with Deep Neural Networks (DNNs) has witnessed ground-breaking success

across various domains, revolutionizing fields such as computer vision, natural language

processing, speech recognition, healthcare, finance, and autonomous vehicles [1, 2, 3, 4,

5, 6].

The General-Purpose Graphics Processing Unit (GPGPU) is one of the major driving

forces behind this progress [7]. It provides immense parallel processing power, enabling

the training and deployment of neural networks with billions of parameters within reason-

able time frames and resources. The programmability of GPGPU facilitates support for

novel operators introduced in evolving neural network architectures, executed in parallel

across multiple threads through functions known as ”kernels” [8].

Entering the era of large language models and post-Moore’s Law, the scaling of com-

putational power provided by GPGPUs is struggling to keep pace with the rocketing

requirements of novel deep neural networks [9]. Despite the computation shortage, exist-

ing GPGPUs suffer from low utilization of deep learning workloads. Jeon et al., 2019 [10]

reported that the average hardware utilization of GPUs in use for training jobs is only

around 52%. Additionally, Xiao et al., 2020 [11] found that in GPU clusters, only 10% of

1



Introduction Chapter 1

the GPUs achieve higher than 80% GPU utilization concerning the usage of computation

units. A recent study on Meta’s data centers in 2022 [12] also reveals a vast majority of

deep learning experimentation utilizes GPGPUs at only 30-50%.

1.1 Characterize the utilization of GPGPU

This dissertation considers a broader sense of utilization, encompassing the following

dimensions:

• Algorithm-level Utilization. The proportion of effective computation that con-

tributes to the output. Low algorithm-level utilization may result from expending

computation on outcomes close to zero or from overhead incurred by auxiliary

modules in the neural network architecture.

• Device-level Utilization. The percentage of time during which at least one ker-

nel is executing on the GPU. The primary cause of low device-level utilization is

the overhead associated with kernel launching under single-GPGPU settings and

communication delays under multi-GPGPU settings.

• Streaming Multiprocessor (SM)-level Utilization. The percentage of SM cores that

have at least one active thread block. Insufficient parallelism leading to a shortage

of thread blocks typically leads to low SM-level utilization.

• Execution Unit (EU)-level Utilization. The percentage of computation throughput

and memory bandwidth utilized. Suboptimal kernel implementations that cause

pipeline stalls usually lead to underutilization of both computation and memory

bandwidth. Additionally, insufficient data reuse can cause memory bound that

limits computation utilization.

2
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1.2 Kernel-Centric Optimization

This dissertation aims to improve the above dimensions of utilization through kernel-

centric optimization. Motivated by the fact that the utilization of programmable accel-

erators is majorly determined by the kernels running on them, the kernel-centric opti-

mization constructs a mapping from the neural network to a set of kernels that better

utilize the computational resources of the accelerators.

𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾!

𝑑
𝑉

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑀⊙
𝑄𝐾!

𝑑
𝑉

Q K

/

⊙ M

Softmax

V×

×

𝑑
/ ⊙×

__global__ void
kernel(args…) {

….
}

Algorithm

Operator

Kernel

Figure 1.1: Illustration of the kernel-centric optimization.

As illustrated in Figure 1.1, this dissertation demonstrates that the mapping can be

constructed by considering optimizations on three hierarchical levels: algorithm, opera-

tor, and kernel.

Algorithm-level Optimization. The algorithm-level optimizations aim to find the

representation of the original neural networks that have higher algorithm-level utilization.

This is usually achieved by leveraging mathematical equivalences or the resilience to

sparsity and low precision, and selecting only hardware-friendly operators. For example,

the M⊙ in Figure 1.1 represents a sparse mask applied to leverage the sparsity resilience

of the softmax function.

Besides algorithm-level utilization, it also opens up new optimization opportunities

on lower levels of utilization. For instance, an algorithm composed of operators that are

easy to parallelize could lead to higher SM-level utilization.

3
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Operator-level Optimization. Representing the algorithm as a data-flow graph,

an operator is defined by a subgraph/partition satisfying two conditions: 1) all internal

edges can be realized through on-chip faster memories (shared memory and registers) in

GPGPUs; 2) all nodes in the subgraph can be implemented under the same parallelism.

Operator-level optimization involves identifying the partition of the data-flow graph

that improves the device and EU-level utilization. For example, the ×, /, and ⊙ in Figure

1.1 are partitioned into the same operator. The kernel launching overhead regarding

the latter two operators is eliminated which improves the device-level utilization. The

intermediate data between these three operators are reused through the registers, which

alleviates memory-bound constraints, thus enhancing computation utilization.

Kernel-level Optimization. Kernel-level optimization involves creating the opti-

mal implementation of the kernel corresponding to each operator, as illustrated in Figure

1.1. Optimizations at the kernel level can effectively improve SM and EU-level uti-

lization. The former can be achieved by parallelizing the operator across a sufficient

number of thread blocks, while the latter involves leveraging data locality to cache data

for reuse, thereby improving computation utilization. Additionally, optimizations that

leverage accelerator-like features (e.g. Tensor Cores) or alleviate pipeline stalls can also

be incorporated.

While optimizations on individual levels can effectively improve the utilization of

GPGPUs on deep learning workloads, the thesis explores the codesign between optimiza-

tions at different levels both manually and with compiler techniques.

1.3 Manual Kernel-Centric Optimization

The kernel-centric optimization can be manually performed for specific neural net-

work models and scenarios. The manual algorithm-level optimization typically involves

4
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simplifying the mathematical expression of the neural networks, identifying sparsity and

low-precision resilience, and designing sparse patterns based on domain knowledge. Re-

garding operator-level optimization, the data-flow graph is manually examined to iden-

tify operators that can be partitioned together. The kernel-level optimization entails the

manual design and optimization of efficient kernels in CUDA C++. This dissertation

presents three case studies on manual kernel-centric optimizations as follows.

1.3.1 Low-precision static Sparsity with Tensor Core

Low precision and sparsity are two major techniques for improving algorithm-level

utilization when deploying neural networks on GPGPUs. However, using them simulta-

neously can result in low EU-level utilization, leading to inferior performance compared

with dense operators under low precision alone. Chapter 3 presents VecSparse to

address this issue on two most important sparse operators, sparse matrix-matrix multi-

plication (SpMM) and sampled dense-dense matrix multiplication (SDDMM), under half

precision. It improves the low EU-level utilization through codesign between algorithm

and kernel-level optimizations.

At the algorithm level, a novel GPGPU-friendly structured sparse pattern, column

vector sparse encoding, is introduced. This pattern offers higher data reuse while preserv-

ing model accuracy better than existing approaches, providing opportunities to alleviate

low computation utilization caused by the memory bound without compromising accu-

racy.

At the kernel level, dedicated kernel designs under the proposed sparsity pattern are

introduced. These designs innovatively map the sparse computations to Volta Tensor

Cores at sub-warp (Octet) granularity, addressing numerous pipeline stall reasons and

significantly improving EU-level utilization.

5
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1.3.2 Dynamic Sparsity with Sparse Tensor Core

While it has long been recognized that sparsity exists in the attention weight matrices

of the attention mechanism and could potentially enhance its algorithm-level utilization,

few approaches could effectively leverage this opportunity. This is because the dynamic

(input-dependent) and fine-grained nature of this sparsity is unfriendly to GPGPUs and

typically leads to low algorithm and EU-level utilization. Chapter 4 presents a novel

sparse attention mechanism, Dfss, that effectively accelerates the attention mechanism

with sparsity and achieves high utilization through co-design between algorithm and

EU-level optimizations.

At the algorithm level, Dfss carefully selects the position to introduce sparsity to

maximize the benefits while avoiding the introduction of auxiliary or GPU-unfriendly

operators. This ensures high algorithm-level utilization. It also innovatively leverages

the N:M fine-grained structured sparsity, originally designed for static weight pruning,

at this dynamic scenario. This pattern is proven to be more GPGPU-friendly than

patterns used by existing approaches, despite high pruning overhead caused by low EU-

level utilization.

The high pruning overhead of N:M sparsity is addressed by kernel-level optimization.

A novel SDDMM kernel, the first of its kind, is introduced that prunes and encodes

the output of a matrix multiplication into N:M sparsity without overhead. The encoded

sparse matrix can be easily decoded by succeeding SpMM with sparse tensor core.

1.3.3 Efficient Graph Neural Network Training

The graph neural network (GNN) is an emerging type of neural network model de-

signed to represent data with graph topology, which has significant applications in social

networks and recommendation systems. However, the inherent sparsity in GNNs’ ad-

6
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jacency matrix results in low utilization when deploying them on GPGPUs. Chapter 5

presents fuseGNN, a framework that combines optimizations at the algorithm, operator,

and kernel levels to enhance the efficiency of GNN training on GPGPUs.

At the algorithm level, fuseGNN introduces the novel dual aggregation strategy to

select the more efficient abstraction of the aggregation stage based on the average degree.

This improves the algorithm-level utilization at the low average degree by avoiding the

graph format transformation overhead, while improving the EU-level utilization at the

high average degree through on-chip reduction.

At the operator level, fuseGNN identifies operators that can potentially be composed

into a single kernel. This improves the device-level utilization as the kernel launching

overhead is reduced. It also opens up opportunities to improve the EU-level utilization

as intermediate results within each operator can be transferred through on-chip faster

memory to relieve the memory bottleneck.

At the kernel level, an efficient fused kernel of each operator is developed that achieves

higher EU-level utilization. Particularly, for the aggregation phase, fused kernels are de-

veloped for the two aggregation strategies presented in the algorithm-level optimization.

1.4 Compiler-based Kernel-Centric Optimization

The previous case studies present how kernel-centric optimization improves the uti-

lization of deep learning workload on GPGPUs. However, these techniques require high

engineering effort and are model-specific. Chapter 6 demonstrates the application of

kernel-centric optimization in the realm of compilers. It introduces the Epilogue Visitor

Tree (EVT) compiler, which automates kernel-centric optimization across a wide range

of NN models during training.

At the algorithm level, EVT automatically identifies more efficient mathematical

7
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equivalents for neural network models through a series of transformations on the data-

flow graph. This improves the algorithm-level utilization and reveals hidden optimization

opportunities across other levels.

At the operator level, EVT integrates a novel integer linear programming (ILP)-based

partitioner that efficiently solves the optimal and feasible partitions within complex joint

forward-backward graphs.

At the kernel level, the EVT kernel-level compiler enables the construction of fused

kernels with high-performance mainloops crafted by experts and the flexible compiler-

generated epilogues. Utilizing handcrafted mainloops ensures state-of-the-art EU-level

utilization by automatically incorporating dedicated optimizations, while integrating the

compiler-generated epilogue enhances EU-level utilization by eliminating memory ac-

cesses caused by intermediate results within each partition.

1.5 Organization

This dissertation is organized as follows. Chapter 2 introduces the preliminaries and

related work. Chapter 3, 4, 5 covers the manual kernel-centric optimizations, Chapter 6

covers the compiler-based kernel-centric optimizations. Chapter 7 concludes the thesis

and discusses future research. The dissertation comprises work published elsewhere in

conference papers:

• Chapter 3: Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. ”Effi-

cient tensor core-based gpu kernels for structured sparsity under reduced precision.”

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1-14. 2021.

• Chapter 4: Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, and

8
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Yuan Xie. ”Dynamic n: M fine-grained structured sparse attention mechanism.”

In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and

Practice of Parallel Programming, pp. 369-379. 2023.

• Chapter 5: Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guoqi Li,

Shuangchen Li, and Yuan Xie. ”fuseGNN: Accelerating graph convolutional neural

network training on GPGPU.” In Proceedings of the 39th International Conference

on Computer-Aided Design, pp. 1-9. 2020.

• Chapter 6: Zhaodong Chen, Andrew Kerr, Richard Cai, Jack Kosaian, Haicheng

Wu, Yufei Ding, and Yuan Xie. ”EVT: Accelerating Deep Learning Training with

Epilogue Visitor Tree.”. To be appeared in Proceedings of the 27th ACM Inter-

national Conference on Architectural Support for Programming Languages and
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Chapter 2

Background and Related Work

This chapter summarizes the background and related work of this dissertation. Firstly,

Section 2.1 summarizes the background on transformers [13] and graph neural networks

[14], two emerging neural network architectures accelerated in this dissertation. Section

2.2 introduces the background of general-purpose graphic processing units (GPGPUs).

Then, Section 2.3, 2.4, and 2.5 discuss existing studies on optimizations at algorithm,

operator, and kernel levels.

2.1 Neural Network Models

This section covers the background of transformers for Chapter 3, 4 and graph neural

networks for Chapter 5.

2.1.1 Transformers and Attention Mechanism

The transformers [13] have achieved state-of-the-art performance across various do-

mains such as natural language processing and computer vision. The architecture of

transformers, as illustrated in Figure 2.1 (A), consists of stacked encoder and decoder

10
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Figure 2.1: Transformer model architecture. (A) The encoder-decoder architecture of
transformers; (B) The multi-head attention mechanism.

blocks. There are also encoder-only transformers like BERT [2] and decoder-only models

like GPT-2 [15] designed for different applications.

The key strength of transformers, differentiating them from traditional neural net-

works, lies in the multi-head attention mechanism (MHA) illustrated in Figure 2.1 (B).

The MHA provides a scalable solution to capture long-range dependencies, which al-

lows building large-scale neural networks for real-world problems. The scalability comes

from its architecture which is easy to parallel on GPGPUs. Given an input sequence

X=(x1,..,xn) ∈ Rn×d, each head of the attention mechanism can be defined as

O = Softmax(QKT/
√
d)V , (2.1)
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Figure 2.2: Graph Structured Data. (a) Graph; (b) Adjacent matrix; (c) COO format;
(d) CSR format; (e) CSC format.

Table 2.1: Dataset information
Dataset #Vertex Feature Len. #Edge Avg. Degree

Cora (CR) 2, 708 1, 433 5, 429 × 2 4.0
Citeseer (CS) 3, 327 3, 703 4, 732 × 2 2.8
Pubmed (PB) 19, 717 500 44, 338 × 2 4.5
Reddit (RD) 232, 965 602 114, 615, 892 492

where Q=XWq, K =XWk, and V =XWv are query, key, and value matrices. QKT

forms a full-quadratic adjacency matrix, with edge weights being the dot-product simi-

larity between all elements in the sequence. This adjacency matrix is standardized with

1/
√
d to maintain the unit second moment and then normalized with softmax. Finally,

the row feature vectors in V are aggregated according to the normalized adjacency ma-

trix by multiplying them together. Throughout this dissertation, QKT is referred to as

the attention score matrix, and A = Softmax(QKT/
√
d) is named the attention weight

matrix.

2.1.2 Graph Neural Networks

The Graph Neural Network (GNN) is an emerging type of neural network specially

tailored for graph-structured data.

12
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Graph Structured Data. A graph G = (V , E) consists of two components: vertices

(nodes) and edges. For a graph with Nv vertices and Ne edges, each vertex vi ∈ V

possesses a feature vector xi ∈ R1×m with these feature vectors organized into a matrix

X ∈ RNv×m. The edges (vi, vj) ∈ E can be directed or undirected, and may also have a

feature eij. Table 2.1 summarizes popular datasets used by GNNs.

As illustrated in Figure 2.2 (a) & (b), edges can be represented as a sparse adja-

cency matrix A ∈ RNv×Nv , where the row and column indices of each entry identify the

target and source vertices. Three popular formats for the sparse matrix are shown in

Figure 2.2(c), (d), and (e): Coordinate list (COO), Compressed Sparse Row (CSR), and

Compressed Sparse Column (CSC).

GNN Models. The GNN models are designed under the neighborhood aggregation

strategy [16]. With h
(k−1)
v represents the input feature vector of vertex v at layer k, the

k-th layer of GNN is expressed as

h̃
(k−1)
i =MLP (k)

(
h

(k−1)
i

)
,h(k)

v =AGG(k)

({
h̃

(k−1)
u∈N (v), h̃

(k−1)
v

})
, (2.2)

where N (v) is a set of nodes adjacent to vertex v, AGG(k) is the aggregator in layer k.

The aggregator updates each feature vector with the weighted sum of its neighbors.

h(k)
v =

∑
u∈N (v)∪{v}

ẽvu ⊗ h̃
(k−1)
u , (2.3)

In Graph Convolutional Networks (GCN) [14], the weight ẽij is computed with ẽij =

eij√
(di+1)(dj+1)

, where the eij is the initial scalar edge weight provided by the dataset. In

Graph Attention Networks (GAT) [17], attention score of each neighbor is computed
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based on the dot-product similarity between the feature vectors:

ẽij = dropout

 exp

(
lReLU

(
[h̃

(k−1)
i ||h̃(k−1)

j ]a(k)

))
∑

q∈Ni
exp

(
lReLU

(
[h̃

(k−1)
i ||h̃(k−1)

q ]a(k)

))
 , (2.4)

2.2 General Purpose Graphic Processing Units

Graphic Processing Units (GPUs) are hardware initially designed to accelerate com-

puter graphics and image processing through their massive parallel processing power.

In 2007, NVIDIA introduced CUDA, the widely adopted programming model for GPU

computing, that allows GPUs to be programmed for general-purpose applications [18].

The programmability coupled with the parallel processing power of GPGPUs, quickly

makes GPGPUs the most suitable and widely adopted accelerators for deep learning [7].

Throughout this dissertation, the terms GPU and GPGPU will be used interchangeably.

2.2.1 GPU Architecture

Figure 2.3 (A) illustrates the architecture of the GPGPUs. The GPGPU is composed

of an array of streaming multiprocessors (SMs) that share the L2 cache and the off-chip

High Bandwidth Memory (HBM). The HBM is usually referred to as global memory.

Each SM has a private L1 data and instruction cache, and part of the L1 data cache can

be configured as the shared memory managed by the programmer.

The SM is further partitioned into multiple sub-cores, each core contains a set of

floating point and integer units, tensor cores, register file, and other components such as

warp scheduler, dispatch unit, and L0 instruction cache.

For instance, the NVIDIA V100 GPU consists of 84 SMs sharing a 16GB HBM2

memory and 6144KB L2 cache. Each SM has a 128KB L1 data cache, 96 KB of which
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Figure 2.3: (A) GPU architecture and memory hierarchy; (B) Thread hierarchy.

can be configured as the shared memory. The SM contains 4 sub-cores, each sub-core

has 16 FP32 Cores, 8 FP64 Cores, 16 INT32 Cores, 2 mixed-precision Tensor Cores, one

L0 instruction cache, one warp scheduler, one dispatch unit, and 64 KB register file.

2.2.2 Programming Model

The programs of GPGPUs are organized into kernels: single instruction, multiple

threads (SIMT) functions that are executed in parallel across thousands of threads. There

are two key concepts in the GPGPU programming model: thread hierarchy and memory

model. The former describes how the threads are dispatched to the SMs and sub-cores in

GPGPU architecture, while the latter defines how the threads access different memory

scopes including global memory, shared memory, and register files.

Thread Hierarchy. As illustrated in Figure 2.3 (B), the threads in a GPU kernel
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are organized as a hierarchical structure. At the top level, the kernel is composed of grids

of cooperative thread arrays (CTAs), also known as thread blocks. The total number of

CTAs is referred to as grid size. When launching the kernel, the CTAs are dispatched

to the SMs in a round-robin fashion, and a large enough grid size is required to achieve

high utilization of the SMs. The number of CTAs an SM can accommodate depends on

its resource allocation, including registers and shared memory. The number of threads in

a CTA is referred to as CTA size. Within a CTA, 32 consecutive threads are organized

into warps, and dispatched to sub-cores within each SM.

Memory Model. The global memory loads and stores issued by threads of a warp

are coalesced into 2-, 64-, or 128-byte transactions. Non-coalesced memory access from

a warp, such as strided access, results in transactions containing redundant data not re-

quested by threads, leading to memory access inefficiency. To achieve the best bandwidth

utilization, data accessed by threads in a warp should fall in aligned 128-byte memory

segments. Additionally, CUDA provides vectorized memory access, enabling each thread

to load or store up to 128-bit data per instruction. Leveraging this vectorized approach

reduces total instructions, lowers latency, and enhances overall bandwidth utilization.

The shared memory offers roughly 100× lower latency than uncached global memory.

It is explicitly allocated per CTA and can be accessed by all threads in it. The shared

memory is divided into 32 banks that can be accessed simultaneously. The banks are

organized such that successive 32-bit data are assigned to successive banks. The bank

conflict happens when the load and store from multiple threads of different data target

the same bank, which leads to a performance penalty.

Each thread can use up to 255 32-bit registers. While the register is private to each

thread, CUDA provides the warp shuffling instructions that allow threads in the same

warp to access each other’s data. Using more than 255 registers will lead to register

spilling where the excess part will be stored in local memory, a part of global memory
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Figure 2.4: Volta TCU Architecture. [19]

private to each thread. The register spilling has a significant negative impact on kernel

performance and has to be avoided.

2.2.3 Tensor Core

The Tensor Core Unit (TCU) is a specialized hardware unit designed to accelerate

the matrix multiply-accumulate (MMA) operations. It significantly improves the perfor-

mance of key operators in neural networks, such as matrix multiplication and convolution.

Volta Tensor Core. The Volta Tensor Core is the first generation tensor core

introduced to GPGPUs by NVIDIA [20] that provides 8× peak FLOPs than floating

point units. Figure 2.4 shows the Volta TCU architecture. A warp uses two TCUs at

the same time. Within each warp, consecutive 4 threads form a thread group, the thread

group id of a thread is ⌊ threadIdx%32
4

⌋. Furthermore, thread group i∈{0,1,2,3} and thread

group i+4 together form the Octet i. In this dissertation, thread group i and i+4 are

referred to as low group and high group, respectively.

Each TCU is controlled by two octets. Each thread group in the octet has its own
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Figure 2.5: Visualization of the 4 steps in mma.m8n8k4. Purple blocks: low group;
Blue blocks: high group.

buffer for storing the LHS matrix (Mat a buffer) and accumulation result (Acc buffer),

and each thread can access a four-by-four inner product unit (gray blocks). The RHS

matrix buffer (Mat b buffer) is shared by the two thread groups within each Octet. Its

source is selected by a multiplexer.

CUDA provides two levels of APIs for Volta TCU. Firstly, warp-level matrix multiply

and accumulate (WMMA) in C++ performs a dense matrix multiplication with a warp.

For instance, wmma.m8n32k16 computes a 8 × 32 × 16 GEMM with a warp. Secondly,

matrix multiply and accumulate (MMA) in PTX performs 4 dense matrix multiplications

with a warp, one for each Octet. For instance, mma.m8n8k4 completes four 8 × 8 × 4

matrix multiplications. During the compilation, the mma.m8n8k4 is further decomposed

into four HMMA instructions when lowing to SASS: HMMA.884.F32.F32.STEP{0,1,2,3}

in Figure 2.5. In each step, every thread group loads its LHS tile to its Mat a buffer and

the input accumulation values to its Acc buffer. The multiplexer for RHS tile selects the

low group in step 0&1, and high group in step 2&3.

Ampere Sparse Tensor Core. The third-generation tensor core in Ampere GPG-

PUs further supports the Sparse-Dense Matrix Multiplication (SpMM) under N:M fine-

grained structured sparsity. The N:M sparsity preserves N elements in every 1×M vector

from the original dense matrix and provides orders of magnitude more combinations than

coarse-grained block sparsity while remaining GPU-friendly. NVIDIA introduces the 1:2

and 2:4 fine-grained structured pruning of weight matrices in neural networks [21]. As
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shown in Figure 2.6, the dense weight matrix is pruned and then compressed with APIs

in cuSPARSELt library offline. During inference, the compressed weight matrix is multi-

plied with input activation with sparse-dense matrix multiplication (SpMM) accelerated

by Ampere sparse tensor core. This brings up to 1.9× speedup over the dense counter-

part. Follow-up studies [22, 23, 24, 25, 26] propose algorithms to improve the accuracy,

reduce training time, and accelerate the SpMM for N:M weight sparsity with new hard-

ware designs.

2.3 Related Work on Algorithm-level Optimizations

This section summarizes existing studies on algorithm-level optimizations.

2.3.1 Low Precision and Sparsity

Low precision and sparsity are two major methods to improve the algorithm-level

utilization by reducing the computational and memory footprint of large neural networks

[27].

The low precision reduces the number of bits that represent each operand from 32 to
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16 or even lower [28, 29]. Recent advances in GPGPU like Tensor Cores provide hardware

acceleration for low-precision computation. Coupled with the lower memory requirement,

the low precision significantly improves the efficiency of neural networks during training

and inference.

The sparsity exploits the sparsity in the neural networks. For example, the dense

weight matrices can be sparsified while maintaining comparable model quality [30, 27,

31, 32]. Existing studies [33, 34, 32, 35] have proposed different mechanisms to efficiently

approximate and predict the zero values in the output feature map of CNNs, RNNs, and

transformers to skip these computations during execution.

Fine-grained
Sparsity

1D-Vector
Sparsity

2D-Blocked-ELL
Sparsity

Irregular Regular

Figure 2.7: Different sparse structures.

Efforts have been made to construct hardware-friendly sparsity by adding structured

constraints to the pattern. As shown in Figure 2.7, apart from fine-grained sparsity,

structures like 2D-block [36] can be enforced to the sparse matrix to improve the locality

and the computation for efficiency. Chapter 3 of this dissertation also presents a 1D-

Vector sparsity that well balances the accuracy and data reuse.

2.3.2 Efficient Attention Mechanism

The high computation cost and memory footprint in the full attention mechanism

come from the attention weight matrix A, whose size grows quadratically with the se-

quence length n. To address this issue, various efficient attention mechanisms have been
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proposed [37].

Fixed Sparse Patterns. Beltagy et al., 2020 [38] and Zaheer et al., 2020 [39] apply

a set of fixed sparse attention patterns on A, like global attention and sliding window

attention. These patterns are constructed from empirical observations and designed

GPU-friendly to achieve speedup. The dynamic and fine-grained challenges are solved

through costly retraining or finetuning to constrain the distribution of dominant entries.

Dynamic Sparse Patterns. Ham et al., 2021 [40] dynamically generate fine-grained

sparse attention patterns on A with low-cost binary hashing. However, this technique

requires specialized hardware to achieve speedup, so it is unavailable on GPGPU. Kitaev

et al., 2020 [41], Tay et al., 2020 [37], and Roy et al., 2021 [42] apply various clustering

methods and only compute the attention within each cluster. Although computing full

attention in each cluster is more friendly to GPU compared with fine-grained sparsity,

the clustering methods lead to low utilization as they contain several GPU-unfriendly

operators like top-k and sorting that offset their benefits under moderate sequence length.

Low Rank / Kernel. Wang et al., 2020 [43] project A from n×n to n×k with linear

projection. Choromanski et al., 2021 [44] introduce the FAVOR+ which approximates

the softmax with the kernel method. This allows them to change the computation order

and reduce the asymptotic complexity to linear. However, the low-rank projection and

kernel construction also introduce considerable overhead. This makes these methods only

effective under long sequence length. Besides, the low-rank projection drastically changes

the attention mechanisms, tens of thousands of pre-training or finetuning steps are re-

quired to reach a comparable performance with the original full attention mechanism.

So they require tremendous engineering effort to deploy.
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2.3.3 Automatic Algorithm-level Optimization

The algorithm-level optimization can be automated by regarding the neural networks

as data-flow graphs and applying a series of transformations on the graph. Existing

deep learning compilers have adopted various graph-level transformations to improve the

efficiency of Deep Learning Systems. For instance, TVM [45] optimizes its graph-level

IR, relay, with passes like constant-folding and data layout transformation.

2.4 Related Work on Operator-level Optimizations

Most existing studies employ simple heuristics when partitioning computation graphs.

TVM[45], for instance, classifies the operators into four types: injective (element-wise),

reduction, complex out-fusible (can fuse element-wise map to output), and opaque (can-

not be fused). They define heuristic rules such as reduction can be fused with input

injective operators and complex out-fusible nodes like GEMM can fuse element-wise op-

erators to its output. However, as illustrated in Section 6.3, these heuristics would lead

to infeasible partitions with cycles or suboptimal solutions.

There are also studies on the acyclic partitioning problem beyond the Deep Learn-

ing System community [46]. The ILP-based partitioner in Chapter 6 takes inspiration

from Nosack et al., 2014 [47] which formulates the acyclic partitioning problem as ILP.

The ILP-based formulation provides great extensibility to encode new constraints and

heuristics through ILP constraints. However, the high complexity of the approach devel-

oped by Nosack et al., 2014 [47] makes it impractical to be directly used when solving

large-scale neural networks with thousands of nodes, and their lower bound obtained

from Kernighan’s solution [48] is not valid when additional constraints are involved. In

Section 6.3, a novel approach is developed that divides the large computation graph into

smaller ones so that they can be solved in a reasonable amount of time.
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2.5 Related Work on Kernel-level Optimizations

This section summarizes related kernel-level optimizations in existing studies.

2.5.1 Sparse Kernels on GPGPU

Existing sparse kernels on GPGPU focus on two key operators: Sparse Matrix-Matrix

Multiplication (SpMM) and Sampled Dense-Dense Matrix Multiplication (SDDMM).

The former multiplies a sparse matrix with a dense one. The latter multiplies two dense

matrices, while sparsity is located in the output matrix of the equation to help reduce

the required computations.

Efficient sparse kernel implementations have been proposed for different sparse pat-

terns. NVIDIA introduces the cuSPARSE library that targets 95% or higher sparsity and

provides the cusparseSpMM and cusparseSDDMM APIs. The former one supports half,

single, or higher precision, and the sparse matrix can be either fine-grained sparsity or

Blocked-ELL format. Gale et al., 2020 [49] introduce a library called Sputnik that targets

fine-grained sparsity and outperforms cuSPARSE under relatively low sparsity. Sputnik

achieves speedup over the dense baseline under > 71% sparsity with single precision.

2.5.2 Automatic Kernel Generation with Compiler

Kernel fusion is the key optimization applied in automated kernel-level optimization.

During kernel fusion, multiple operators under the producer-consumer relationship are

fused into a single one. The intermediate result can be directly cached in the register

or shared memory to reduce memory access. The performance of the fused kernel is

determined by the quality of the implementation of each operator, while the flexibility is

determined by the ability of the operator compiler to align the loop structure of different

operators.
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Template metaprogramming (TMP)-based compilers, such as AITemplate [50] and

Bolt [51], use expert-developed template libraries [52, 53, 54] like CUTLASS to achieve

optimal performance. However, these compilers lack abstractions for aligning operators

with the intricate loop structure of the core operation, they can only support fusion

patterns defined by the template library.

Loop-based compilers, such as TVM [45], Tiramisu [55], Nvfuser, and Tensor Com-

prehensions [56], represent operations as loops and apply schedules, such as loop fission,

fusion, parallel, and vectorization, to map them to GPUs. However, the performance of

the core operators generated by these compilers is inferior to the expert-designed ker-

nels.
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Chapter 3

Algorithm-Kernel Codesign: Static

Sparsity with Tensor Core

This chapter presents the kernel-centric optimization with a specific focus on the algorithm-

kernel codesign. It improves the EU-level utilization of neural networks on GPGPUs when

both sparsity and low precision are applied.

3.1 Introduction

In recent years, areas such as computer vision and natural language processing have

witnessed remarkable advancement driven by deep neural networks. However, the achieve-

ments come at the expense of the enormous memory footprint and computation cost. To

address this issue, a common strategy involves the application of low precision and spar-

sity [27, 57, 58, 59]. Low precision represents data with fewer bits to save storage and

memory bandwidth, and specialized computational units like Tensor Cores [20] have

been introduced to improve the computation throughput under low precision. On the

other hand, sparsity involves storing the tensors in the neural networks with compressed
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encoding, recording only non-zero elements and their positions. This not only reduces

the memory footprint but also significantly decreases the FLOPS by replacing dense

matrix multiplications with sparse matrix-matrix multiplication (SpMM) and sampled

dense-dense matrix multiplication (SDDMM).

However, applying sparsity together with low precision leads to inferior performance

due to the low EU-level utilization. In detail, SpMM and SDDMM under fine-grained

sparsity, despite lower FLOPS, face limitations in EU-level utilization caused by the mem-

ory bottleneck. The sparse operators have much fewer data reuse opportunities compared

with their dense counterparts. Although structured sparsity, such as 2D blocked-ELL,

offers more data reuse opportunities, their large grain size introduces challenges in main-

taining the model accuracy [60].

This chapter presents the VecSparse to address these challenges.

At the algorithm level, this chapter balances the data reuse and granularity size with

a novel structured sparse pattern named column vector sparse encoding in Section 3.3.

Inspired by the widely used compressed sparse row (CSR) encoding, the new pattern

associates each index with a short nonzero column vector. With vector length V × 1,

it provides the same data reuse rate as the V × V block sparsity in both SpMM and

SDDMM operators, while maintaining the model accuracy with its smaller grain size.

Despite the data reuse opportunities offered by the new sparse pattern, existing

floating-point unit (FPU) and tensor core unit (TCU)-based kernel implementations of

SpMM and SDDMM face new challenges in achieving high EU-level utilization. The

former’s utilization is limited by pipeline stalls such as instruction cache miss, while

the latter is constrained by shared memory bandwidth and waste of computations when

mapping small V s to TCUs.

At the kernel level, Section 3.2 presents five key guidelines for kernel-level optimiza-

tion to improve the EU-level utilization in SDDMM and SpMM kernels, summarized
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from detailed profiling of existing implementations and the best practice of CUDA pro-

gramming. A novel mapping between the warp tile and TCUs, namely TCU-based 1-D

Octet Tiling (Section 3.4 and 3.5), is introduced that satisfies all the five guidelines

simultaneously.

Section 3.6 extensively evaluates the proposed kernels on the sparse matrices from

DLMC [61] dataset using different grain sizes, problem sizes, and sparsity ratios. In

short, for SpMM, 1.71-7.19x geometric mean speedup over the Blocked-ELL SpMM

kernel from cuSPARSE and 1.34-4.51x geometric mean speedup over an FPU-based

kernel that directly extended from Sputnik [49] are achieved. For SDDMM, 1.27-3.03x

speedup over the FPU-based kernel extended from Sputnik [49] and 0.93-1.44x speedup

over the TCU-based kernel that uses the classic mapping between GEMM-like warp tile

and TCU are achieved. Compared with the cuBLASHgemm, the proposed SpMM and

SDDMM kernel achieve practical speedup under ≥70% and ≥90% sparsity with the tiny

4 × 1 grain size. Further evaluation of VecSparse on sparse transformer inference task

demonstrates 1.41x end-to-end speedup and 13.37x peak memory reduction.

3.2 Motivation

This section discusses the limitations of existing sparsity patterns and corresponding

SpMM and SDDMM kernels from the algorithm and kernel perspectives.

3.2.1 Algorithm: Limitation of Existing Sparse Patterns

As summarized in Section 2.3.1, existing sparse patterns can be classified into fine-

grained sparsity and structured sparsity.

Fine-grained Sparsity. Figure 3.1 illustrates the speedup over the dense baseline

(cuBLAS) achieved by the Sputnik [49] and cuSPARSE [62], two state-of-the-art libraries,
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Figure 3.1: Speedup over cuBLAS with fine-grained sparsity.

under single and half-precision. Although considerable speedup is achieved under single

precision 1, under half-precision, the performance of SpMM and SDDMM kernels is in-

ferior to their dense counterpart, reflecting low EU-level utilization. The performance

degradation has two major causes: memory bottleneck and ineligibility of using tensor

cores.

To reduce the memory bottleneck, dense GEMM leverages the data locality and

caches tiles of multiplicand and multiplier in shared memory, while SpMM and SDDMM

depend on the sparsity to skip the memory access related to zeros. As shown in Figure

3.2, under half-precision, the L1$ Missed Sectors of GEMM is decreased by a factor

of more than three times. This is from not only the halving of data size but also the

improved locality as shared memory can cache more elements. In contrast, to compete

1The SDDMM in cuSPARSE is faster than Sputnik [49] under cuSPARSE v11.2.2.
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Figure 3.2: Profiling Metrics of GEMM and SpMM under different precision with
problem size 2048× 1024× 256 with 90% sparsity.

with GEMM, SpMM and SDDMM can only increase their sparsity at the cost of model

accuracy, as they lack data reuse opportunities.

The dense GEMM also benefits from the accelerated computation with tensor cores.

Figure 3.2 shows that under half-precision, ”Max Compute Pipe Utilization” and ”Math

Instruction Executed” of GEMM are significantly reduced, which indicates the relief of

the computation bottleneck. The computations are offloaded to tensor cores that offer

higher computation throughput with fewer instructions. Oppositely, the SpMM and

SDDMM cannot be easily mapped to tensor cores, as the latter is only designed for

dense matrix multiply accumulation.

Structured Sparsity. Existing structured sparse patterns like Blocked-ELL are

usually composed of nonzero square blocks. With this pattern, the SpMM and SDDMM

can be converted into a batch of small dense matrix multiplications. Although the blocked

sparsity greatly improves the data locality and enables leveraging the tensor cores, its

granularity increases quadratically with the data reuse ratio. Existing studies [60] have

shown that large block size leads to accuracy degradation under the same sparsity. As a

consequence, the design space is significantly limited due to the wrestling between kernel

performance and model accuracy.

To conclude, a novel sparse pattern is required to be designed on the algorithm side
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Figure 3.3: Speedup over cuBLAS with Blocked-ELL SpMM.

that better balances the data reuse opportunities and the granularity size, while enabling

the use of tensor cores. This chapter introduces the column-vector sparse encoding in

Section 3.3, which has finer granularity under the same data reuse rate as block sparsity.

3.2.2 Kernel: Limitation of Existing Kernel Implementation

Another limitation exists in the previous kernel implementation of structured sparsity.

While the small structure sizes are desired to maintain model accuracy [60], Figure 3.3

illustrates that the Blocked-ELL-based SpMM exhibits suboptimal performance. It only

surpasses the dense matrix multiplication with the block size greater than 8.

Table 3.1: Stall Reasons in Blocked-ELL based SpMM kernel
Block Size No Instruction Wait Short Scoreboard

4 42.6% 21.0% 11.9%

Detailed profiling of Blocked-ELL SpMM kernel reveals that under small block size,

the kernel suffers from low EU-level utilization of both memory bandwidth and compu-

tation units, which is primarily caused by pipeline stalls. Table 3.1 listed the top-3 stall

reasons.
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”No Instruction” is caused by the instruction cache miss. The SASS code of SpMM

contains over 4600 lines of code, yet the 12 KB L0 instruction cache of each sub-core can

only hold 768 instructions. This leads to L0 instruction cache capacity miss.

The ”Wait” happens when a warp is stalled waiting on a fixed latency execution

dependency. The instruction statistics show the IMAD (Integer Multiply & Add) and

IADD3 (3-input Integer Add) account for 27.4% of total executed instructions. These

integer instructions compute addresses and predicates, contributing to the ”Wait” stall.

”Short Scoreboard” occurs when a warp is stalled, waiting for shared memory data

loading. With block size 4, the #shared memory load requests
#global load requests

ratio of SpMM is 0.87, compared

to 4.17 of dense matrix multiplication. This implies the data stored in shared memory is

not reused frequently, whereas the shared memory causes other overhead such as more

complex data path and synchronization overhead. Moreover, configuring part of the L1

cache into shared memory reduces implicit data reuse through L1 cache.

In summary, at the kernel level, with the analysis above and the best practices guide

for CUDA kernel design, five key guidelines can be proposed for the kernel-level opti-

mization. Guideline I and II improve the overall SM and EU-level utilization, III focuses

on the computation utilization, while IV and V influence the memory utilization.

• I. Minimize program size to prevent overflowing the instruction cache.

• II. Increase the grid size to hide the latency through thread-level parallelism (TLP).

• III. Reduce fixed latency operations through looping unrolling, computing offset

and constants at compile time, and merging floating point operations to HMMA

with TCU.

• IV. Directly load data with limited reuse opportunities to the register file, bypassing

shared memory.
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Figure 3.4: Generalized Block Sparse representation.

• V. Improve bandwidth utilization with 128B coalesced transactions and long vec-

torized memory access (LDG.128 ).

A novel TCU-based 1-D Octet Tiling in Section 3.4 and 3.5 is proposed to construct

SpMM and SDDMM kernels that satisfy all the five guidelines simultaneously.

3.3 Algorithm-level Optimization: VecSparse

The key observation behind the algorithm-level optimization is that, for both SpMM

and SDDMM, a block sparse matrix has the same data reuse regardless of the number

of columns within each block. Building upon this observation, a novel sparsity pat-

tern, namely column vector sparse encoding, is proposed that well balances the sparsity

granularity and computation efficiency.

3.3.1 Data Reuse Analysis

Figure 3.4 shows the SpMM and SDDMM under block sparsity. The nonzero blocks

are aligned in the vertical dimension. The problem size is M ×N ×K, TileK and TileN
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are the tiling sizes, which are constrained by the shared memory or register file capacity.

Regarding SpMM, each block represents an m × k matrix, where m and k are user-

defined sizes for block sparsity. Following the workflow in Sputnik [49], each tile computes

the partial sums in matrix C with TileK/k consecutive nonzero blocks from A and a

vector with width TilesN from the corresponding rows in B.

For SDDMM, each block within matrix C is an m×n matrix, with user-defined grain

size m× n. In this scenario, each tile computes the partial sum of TileN/n consecutive

nonzero blocks in matrix C by extracting TileK columns from the corresponding rows

in A and TileK rows from the corresponding columns in matrix B.

With the above settings, it is obvious that in both SpMM and SDDMM, each operand

from the LHS matrix is reused for TileN times, while each RHS operand is reused for m

times. Therefore, the number of data reuse is determined by m and TileN , independent

of the number of columns (k in SpMM and n in SDDMM) in each block.

3.3.2 Column Vector Sparse Encoding

As the data reuse is independent of the column number, the number of columns of

each block can be reduced to 1 to minimize the sparsity granularity. This results in the

column vector sparse encoding shown in Figure 3.5. The new pattern is equivalent to

0
1

2
3

4
5

10
11

6
7

8
9

N
um

be
r o

f R
ow

s

Number of Columns

Ve
ct
or
-L
en
gt
h

csrVal = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
csrRowPtr = [0, 3, 4, 6]

csrColInd = [0, 2, 6, 3, 1, 6]

Figure 3.5: Column Vector Sparse Encoding.
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replacing each nonzero scalar in the CSR sparse matrix with a nonzero column vector.

The elements within each vector are consecutive in memory, and the vectors in the same

row are sequentially arranged. With this encoding and small vector lengths such as

{2, 4, 8}, the vectors can be loaded and stored with the CUDA vector types directly with

coalesced memory access.

3.4 Kernel-level Optimization: SpMM

This section details the kernel-level optimization on SpMM under the proposed sparse

pattern. It is organized as follows. Firstly, the weaknesses of two classic baseline designs

are discussed under the five guidelines, including an FPU-based design following Sputnik

[49], and a TCU-based design following the classic GEMM-like tiling approach. Then, a

more efficient design, TCU-based 1-D Octet Tiling, is presented that satisfies all the five

guidelines simultaneously.

3.4.1 Baseline I: FPU-based 1-D Subwarp Tiling

Gale et al., 2020 [49] propose the FPU-based 1-D subwarp tiling for the SpMM

kernel under fine-grained sparsity that maximizes the memory access efficiency. It is

called “1-D subwarp tiling” because under the fine-grained setup (V=1), as illustrated

in Figure 3.6 (a), the LHS operand is a 1×TileK 1-D vector handled by a subwarp

of threads. A CTA tile contains multiple independent 1-D tiles that are assigned to

subwarps (Subwarp Size≤ 32). Each 1-D tile is further decomposed to Subwarp Size

independent (V×TileK)·( T ileK×T ileN
Subwarp Size

) thread tiles. The threads in the same subwarp first

load the LHS fragment into the shared memory corporately. Then, each thread loads the

RHS fragment corresponding to its tile and computes the MMA.

This tiling design opts for maximizing memory access efficiency. First, it satisfies the
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Figure 3.6: Decomposition of SpMM with 1-D tiling. (a) The FPU tiling extended
from Sputnik[49]; (b) TCU-based tiling.

aforementioned guideline IV as the RHS operands are directly loaded to the register file.

For guideline V, by choosing TileN = 64 and Subwarp Size= 8, each subwarp can load

a row of consecutive 64 half operands from the RHS fragment with the vector memory

operation LDG.128 in a single 128B transaction.

Despite the benefits, this design compromises guidelines I, II, and III. For guideline

I, computing each subwarp tile requires fully unrolling the loops along V , TileK, and

TileN . This results in a significant amount of instructions. The unrolling is essential

as it enables the compiler to determine the index to RHS operands at compile time,

preventing the usage of local memory for indexing.

This design also leads to conflict between guideline II and V. While guideline V

expects T ileN
Subwarp Size

=8, this ratio only produces grid size up to M×N
V×#Subwarp×T ileN

= M×N
256V

.

Yet, by compromising guideline V and having T ileN
Subwarp Size

= 2, the grid size can be

improved to M×N
64V

that is four times larger.
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Figure 3.7: Classic mapping of the warp tile to TCU.

For computation efficiency, the design violates guideline III, as each thread computes

its tile by a sequence of HMUL (FP16 Multiply) and FADD (FP32 Add) instructions.

3.4.2 Baseline II: TCU-based 1-D Warp Tiling

Guidelines I and III can be satisfied by mapping the computation to TCUs. The

TCUs merge multiple HMUL and FADD into a single HMMA instruction, reducing the

program size and fixed-latency instructions. Figure 3.6 (b) illustrates the TCU-based

1-D Warp Tiling that maps SpMM to TCUs. As TCUs are controlled by warps, the 1-D

CTA tile is decomposed into warp-level tiles with size V × 64× TileK. The 64 is chosen

as it is the smallest number that perfectly fills the 128B transaction.

Figure 3.7 illustrates how the warp tile is further decomposed to each thread in the
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traditional way. In 1 , with V ∈ {2, 4, 8}, the warp tile is mapped to wmma.m8n32k16

instruction to avoid the waste of computation. 2 and 3 show the mapping of the

multiplicand and multiplier to the thread groups. In 2 , each thread group is responsible

for a 16× 4 block. An example of thread group 0 is illustrated in 4 , where Ti represents

thread i and bj indicates the register j of the thread. In 3 , each block represents a 4×16

block and the number on it indicates the thread groups that hold a copy, the detailed

layout is shown in 5 .

Despite satisfying guidelines I and III, this design leads to conflict between guideline

IV and V. When guideline IV is satisfied, the RHS fragment in 2 is loaded directly from

global memory to registers, as shown in 4 , each thread has 4 registers in each row, which

prevents the use of LDG.128 to achieve the optimal memory efficiency. On the other

hand, to satisfy guideline V, the global memory access has to be coalesced through the

shared memory, which violates guideline IV.

Besides, TileK has to be the multiple of 16, which introduces additional overhead

during residue handling when the number of nonzero in the current row is not divisible by

TileK. At last, when V is smaller than 8, each computation step with wmma.m8n32k16

actually computes a V × 32 × 16 tile, which indicates a portion of wasted computation.

3.4.3 Solution: TCU-based 1-D Octet Tiling

Unlike the performance of the previous two designs limited by the wrestling between

kernel/compute and memory access efficiency, this section presents a new design, TCU-

based 1-D Octet Tiling, that satisfies all five guidelines simultaneously. The high-level

idea is to map the SpMM to tensor cores to achieve good kernel and compute efficiency

(guideline I, II, and III). The memory access efficiency (guideline IV and V) is achieved

by redesigning the mapping between the warp tile and the TCU on the fine-grained Octet
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Figure 3.8: TCU-based 1-D Octet Tiling for SpMM.

level.

In detail, the CTA and warp tiling in the TCU-based 1-D Warp tiling in Figure 3.6

(b) is directly used, while the new mapping of warp tile to threads is redesigned as shown

in Figure 3.8. There are two major differences from the classic mapping in Figure 3.7.

Firstly, the LHS and RHS fragments are swapped to put V in the horizontal direction.

This is motivated by four steps in Figure 2.5 where step 0&1 generates the left four

columns in the outputs while step 2&3 produces the rest. When V ≤ 4, step 2&3 can be

skipped to reduce the waste of computation.

Secondly, the warp tile is further partitioned into octets to guarantee both efficient

computation and memory access. Specifically, the warp tile is decomposed to TileK/4
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steps to be processed in serial by each warp, and each step processes a 64 × V × 4 sub-

tile (after the swapping). With guideline IV, 4 is directly loaded to the register file as

it has few reuse opportunities. For guideline V, as each column of consecutive 64 half

operands in 4 are mapped to 8 different threads and each thread holds consecutive 8 half

operands, 4 can be loaded with a single LDG.128 instruction and coalesced into four

128B coalesced global memory transactions. For 2 , as the LHS fragment in the warp tile

is reused many times, it is directly loaded into the shared memory at the beginning of

the tile, so it does not influence the memory access efficiency. Besides, the new mapping

only requires TileK being the multiple of 4, which is more friendly to residual handling.

3.4.4 Implementation Details

For an SpMM with size M ×N ×K, TileN = 64 and CTA size = 32 are set to have

as many CTAs as possible while maintaining the best memory access pattern. Therefore,

⌈M/V ⌉ × ⌈N/64⌉ CTAs are launched, each processes an V × 64 output tile.

To generate the output tile, each CTA traverses all the nonzero vectors in its row

with stride TileK and accumulates the partial sums in the register file. For each stride,

all the threads first work jointly to load the LHS fragment in Figure 3.8 1 to shared

memory. Then, each thread group loads its share in the 64 × 4 RHS fragment in Figure

3.8 4 . Next, an mma.m8n8k4 is launched to compute a 64×V ×4 matrix multiplication

( 6 × 3 = 7 ). This is repeated for TileK/4 times until the warp tile is done.

To improve the instruction level parallelism (ILP), a threadfence block() is inserted

between the TileK/4 load instructions and the TileK/4 mma.m8n8k4 instructions. This

prevents the nvcc compiler from reusing the registers that store the source operand of

each mma.m8n8k4, which increases the dependencies between mma instructions and hurt

ILP.
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Figure 3.9: Decomposition of SDDMM with 1-D tiling. (a) The FPU tiling extended
from Sputnik [49]; (b) TCU-based tiling.

When the last few nonzero vectors cannot fill the TileK width, the load and compu-

tation of each 64×V ×4 tile will be interleaved until all the nonzero vectors are processed.

This helps reduce the residual handling overhead. After all the nonzero vectors are pro-

cessed, the data is reorganized with the warp shuffle primitives and then written to global

memory with vectorized store.

3.5 Kernel-level Optimization: SDDMM

Similar to Section 3.4, this section first describes two baseline SDDMM designs. One

is extended from Sputnik [49] that opts for memory access efficiency, and the other is

based on the classic mapping between GEMM and TCU for high compute and kernel

efficiency. Then, a novel design is present that achieves high EU-level utilization by

satisfying all five guidelines.
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3.5.1 Baseline I: FPU-based 1-D Subwarp Tiling

The FPU-based 1-D subwarp tiling is illustrated in Figure 3.9 (a). Similarly, each

CTA tile contains multiple independent 1-D tiles assigned to subwarps. Each 1-D tile is

decomposed to Subwarp Size independent thread tiles with size V ×TileN× T ileK
Subwarp Size

.

Each thread loads its LHS and RHS tile into registers and computes partial sums. At

last, partial sums stored by different threads in the same subwarp are reduced with warp

shuffle.

This tiling design also has high memory access efficiency. Specifically, with TileK =

64 and Subwarp Size = 8, the rows in LHS fragment and columns in RHS fragment of the

1-D tile can be loaded with a single LDG.128 instruction in the 128B coalesced pattern.

Therefore, it satisfies guideline IV and V. However, kernel and compute efficiency are

suboptimal due to the same reasons as in the FPU-based SpMM. Moreover, each thread

holds a V ×TileN array in the register file to store the partial sums. For instance, when

V = 8 and TileN = 32, the partial sum consumes 256 registers of each thread, which

exceeds the register file capacity and causes register spilling. Even without the register

spilling, the large amount of registers reduces the occupancy.

TileN

64

64

V

16

16 0 1 2 34 5 6 716

32

16

0,1,2,3
4,5,6,7

8

0    1    2    …    14    15 

..
..

0

3

x
4

7

𝑇!,#,$,%&{𝑎!, 𝑎% 	…	𝑎%#, 𝑎%'}

𝑇(,),%%,%'{𝑎!, 𝑎% 	…	𝑎%#, 𝑎%'}

𝑇%*,&(,&),(%{𝑎!, 𝑎% 	…	𝑎%#, 𝑎%'}

𝑇%+,&!,&#,&${𝑎!, 𝑎% 	…	𝑎%#, 𝑎%'}

A 4 7..0 3..

𝑇!

𝑏!
𝑏%

𝑏%#
𝑏%'

0
1

14
15

…
.

…
.

𝑇(

𝑏!
𝑏%

𝑏%#
𝑏%'

…
.

𝑏!
𝑏%

𝑏%#
𝑏%'

…
.

𝑇%+

𝑏!
𝑏%

𝑏%#
𝑏%'

…
.

𝑇%*

B

×

32

Warp Tile1

2

3

4 5

Figure 3.10: Classic mapping of the warp tile to TCU.

41



Algorithm-Kernel Codesign: Static Sparsity with Tensor Core Chapter 3

3.5.2 Baseline II: TCU-based 1-D Warp Tiling

The TCU-based 1-D Warp Tiling for SDDMM is illustrated in Figure 3.9 (b). Each

CTA tile has only one 1-D tile, which is further decomposed to warp tiles with size

V × TileN × 64. Similarly, 64 is chosen because it is the smallest number that perfectly

fills the 128B transaction. As shown in Figure 3.10 1 , the warp tile is further processed

with T ileK×64
32×16

steps in serial, and each step is computed with a wmma.m8n32k16.

On the positive side, Similar to the SpMM kernel, it has high kernel and compution

efficiency (guideline I, II, and III) for the same reasons. Besides, it uses fewer registers

to store the partial sum. E.g., with TileK = 64, while the FPU-based implementation

has Subwarp Size copies of the partial sums, this design only has one copy.

On the negative side, it has a suboptimal memory access pattern. Figure 3.10 2 and

3 visualizes the operand layout for each wmma.m8n32k16. In 2 , each block represents

a 4 × 16 block and the numbers on it indicate the thread groups that hold a copy. 4

gives a detailed data layout for 2 . In 3 , each block represents a 16 × 4 block and the

number on it represents the thread group that holds it. 5 illustrates the data layout for

thread group 0 and 4 as an example. If guideline IV is satisfied that the LHS fragment

( 2 ) and RHS fragment ( 3 ) are directly loaded into the register file, only 16B coalesced

access can be achieved. In detail, the 16 operands in each row of the row-major 2 and

column of the column-major 3 are consecutive, and they are mapped to the 16 registers

of a thread. However, each LDG.128 can only load 8 of them. So it is 16B coalesced.

On the other hand, To satisfy guideline V, the global memory access has to be coalesced

through the shared memory, violating guideline IV.

Furthermore, the LHS fragment 2 is copied 4 times, which consumes additional

registers and reduces occupancy. Also, TileN has to be a multiple of 32, which introduces

additional overhead in residual handling. At last, redundant computations occurred when
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Figure 3.11: TCU based 1-D Octet Tiling for SDDMM.

V is smaller than 8.

3.5.3 Solution: TCU-based 1-D Octet Tiling

Based on the analysis above, a novel SDDMM kernel design is proposed that tackles

the limitations of the previous two designs. Firstly, it adopts the same warp tiling

as the TCU-based 1-D Warp Tiling in Figure 3.9 (b), which indicates good kernel and

computation efficiency (guideline I, II, and III). To achieve optimal global memory access

pattern, the mapping between the warp tile and the TCU is redesigned in the Octet

granularity, namely TCU-based 1-D Octet Tiling.

43



Algorithm-Kernel Codesign: Static Sparsity with Tensor Core Chapter 3

The new mapping is shown in Figure 3.11. There are two major differences from the

classic m8n32k16 mapping in Figure 3.10. Firstly, under the same motivation in Section

3.4.3, the LHS and RHS fragments are swapped to expose the opportunity of removing

redundant HMMA in the SASS code when V ≤ 4. Secondly, a novel warp tile partition

is applied to guarantee efficient computation and memory access patterns. Specifically,

the warp tile is decomposed to TileN/8 sub-tiles to be processed sequentially, and the

size of each sub-tile is 8 × V × 64 (after the switch). With guideline IV, the swapped

LHS and RHS fragments are partitioned and stored in the register file of different thread

groups, as shown in 2 and 3 . Each block in 2 and 3 represents a 4×8 or 8×4 matrix

held by a single thread group. Taking the thread group 0 and 4 as examples, the detailed

data layouts are illustrated in 4 and 6 . Under this setup, both 2 and 3 can be loaded

with a LDG.128 instruction and together generate eight 128B coalesced transactions. In

detail, each row vector with length 64 of the row-major 2 is partitioned to 8 sub-vectors

with length 8, and different sub-vectors are loaded by different threads in the warp. This

is the same in 3 . Besides, all the operands are only stored by a single thread group,

whereas the LHS fragment in the TCU-based 1-D Warp tiling is copied 4 times.

The loaded operands in 4 and 6 cannot be directly used for mma.m8n8k4, as the

register index of each row in 4 and column in 6 in thread group i and i+4 do not

match. However, dynamically computing the indices based on the thread group index at

runtime leads to local memory usage. To avoid this, the ”High Group Switch” is applied

that switches the content in register j and (j + 8)Mod16 in the thread group 4, 5, 6, and

7 (high group). The data layout after the High Group Switch is illustrated in 5 and

7 , respectively. After the High Group Switching, each Octet has an 8 × 8 × 16 tile to

compute. While each mma.m8n8k4 can compute an 8 × 8 × 4 tile, it takes 4 steps to

finish the computation. Notably, the upper 4 rows in 9 and the left 4 columns in 8 are

held by thread group 0 in step 1&2, but they are in thread group 4 in step 3&4. This
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Figure 3.12: Proposed TCU Architecture.

inverted pattern of source operands also inverts the pattern of the output.

On the kernel side, the above problem can be solved by either shuffling the operands

in thread group i and i+4 with the warp shuffle primitives before calling mma.m8n8k4,

or using an additional set of registers to accumulate the partial sums from the last two

steps. While the shuffle introduces additional overhead, the second solution reduces the

occupancy as additional registers are used.

From the hardware perspective, an extension of the original HMMA instruction by

adding a switch flag that directly switches the source operand in low and high groups

within the TCU, i.e. HMMA.884.F32.F32.STEP{0,1,2,3}.SWITCH. To support this

switch, as shown in Figure 3.12, a pair of multiplexers is added between the operand bus

1 and the Mat a buffer of the two thread groups. This pair switches the source of the two

Mat a buffers if the switch is set. The source of the Mat b buffer is switched by XORing

the original control signal with the SWITCH bit.
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3.5.4 Implementation Details

For an SDDMM with size AM×K ×BK×N ⊙DM×N = CM×N , where D is a binary

mask stored under the column vector sparse encoding, TileK = 64 and CTA size = 32

are set to reduce the residual processing overhead while maintaining the best memory

access pattern. TileN = 32 is heuristically picked as it well balances the data reuse ratio

and the number of CTA, but any multiple of 8 is acceptable. Therefore, ⌈M/V ⌉×⌈N/32⌉

CTAs will be launched, each processes an V × 32 output tile.

To generate the output tile, each CTA traverses the dimension K with stride 64.

Each octet holds the partial sums in its local registers. For each step, The LHS fragment

in Figure 3.11 1 is loaded. Then, the warp takes four sub-steps, each sub-step load 2

in Figure 3.11 and computes a 8 × V × 64 tile (after the switching) as aforementioned.

This kernel has a tighter budget for the registers, as each octet holds at least one set

of partial sums, and the compiler is relied on to determine the best strategy for register

reusing. When K is traversed, the partial sums in different Octets are accumulated with

warp shuffle primitives. The final result is reordered and written to global memory with

the vectorized store.

3.6 Experiments

This section compares the performance of VecSparse with cuSPARSE and the FPU

baseline extended from Sputnik [49]. Detailed profiling results on a representative bench-

mark are also discussed to justify the speedup and motivations.
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Figure 3.13: Benchmark Construction

3.6.1 Experiment Setup

Benchmark Construction. Figure 3.13 illustrates the procedure of constructing

the benchmarks from ResNet 50 under magnitude pruning in the DLMC dataset [61].

Given a M ×N sparse matrix from DLMC with sparsity S, as the column vector sparse

encoding is equivalent to replacing the nonzero scalars with vector types, the csrRowPtr

and csrColInd of the sparse matrices are used, coupled with randomly generate a nonzero

vector with length V for each indexed position. To construct the blocked-ELL format

sparse matrix, the block size is set to V × V , and the number of blocks in each row is

computed with ⌈N/V × S⌉. The column indices of the blocks are generated randomly

under uniform distribution. In this way, the Blocked-ELL format has the same sparsity

and problem size as the column vector sparse encoding.

Baseline Kernels. Both SpMM and SDDMM are compared with an FPU baseline

and a TCU baseline. The FPU baseline is obtained by extending the kernels in Sputnik

[49] following Section 3.4.1 and 3.5.1 to support the column vector sparse encoding. The

tiling sizes are tuned on a subset of benchmarks to find a configuration that brings the

highest geometric mean speedup. For the TCU baseline of SpMM, the Blocked-ELL-

based SpMM kernel in cuSAPRSE is directly used. As the SDDMM under structured
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sparsity is not supported by off-the-shelf libraries, the kernel in Section 3.5.2 is used as

the TCU baseline. Finally, the cuBLASHgemm kernel is selected as the dense baseline.

Removing HMMA instructions. While the tiling design in this chapter exposes

opportunities for removing additional HMMAs, as existing SASS assemblers like [63] do

not support this modification, it is left for future work.

3.6.2 SpMM

Figure 3.14 summarized the speedup achieved by the SpMM kernel. The distribution

of the speedup achieved on different benchmarks is illustrated with the box plot. Fur-

thermore, following Gale et al., 2020 [49], the geometric mean speedup is computed and

visualized with the solid lines in Figure 3.14. The ”fpu”, ”blocked-ELL”, and ”mma”

correspond to the FPU baseline extended from Sputnik[49], blocked-ELL based SpMM

kernel in cuSPARSE, and the implementation with TCU-based 1-D Octet Tiling, respec-

tively.
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Figure 3.14: Speedup over cuBLASHgemm with SpMM under different configurations.
The problem size is M ×N ×K. The size M and K are given in the benchmarks.

Overall Performance. Across all benchmarks, the TCU-based 1-D Octet Tiling

(mma) achieves 1.34-4.51x and 1.71-7.19x geometric mean speedup over the FPU and
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TCU baselines. Moreover, it outperforms cuBLASHgemm under > 80%, > 70%, and >

50% sparsity under the tiny 2×1, 4×1, and 8×1 grain size. This illustrates that higher

speedup can be achieved with larger vector length V , which justifies the motivation of

achieving practical speedup under moderate sparsity with column vector sparse encoding.

Table 3.2: The five guidelines in different implementations.
Kernel No Inst # CTA Wait Short Scoreboard Sectors/Req

SpMM, V=4
MMA 1.1% 2048 4.7% 4.5% 12.56
CUDA 11.0% 2048 11.6% 2.6% 4.04

Blocked-ELL 42.6% 1024 21.0% 11.9% 14.92

SpMM, V=8
MMA 1.1% 1024 6.2% 2.6% 13.22
CUDA 52.2% 1024 8.3% 2.0% 4.27

Blocked-ELL 35.1% 512 16.2% 12.1% 13.85

Utilization Analysis. To justify the above speedup, the SpMM kernels are further

profiled and compared in terms of the five guidelines on A2048×1024 × B1024×256 under

90% sparsity, the results are summarized in Table 3.2. The percentage of pipeline stalls

caused by ”No Instruction”, ”Wait”, and ”Short Scoreboard” reflect guideline I, III, and

IV, number of CTAs represents II, and Sector per Request to L1 cache reflects V. The

results that are significantly worse than others are marked with red.

Compared with the TCU-based 1-D Octet Tiling, the FPU baseline suffers more from

the ”No Instruction” and ”Wait” stalls. Examining the SASS code reveals that, under

V = 4 and V = 8, the FPU baseline has 3776 and 6968 lines of code, and executes

3,402,752 and 3,407,872 HUML+FADD instructions, respectively. On the other hand,

the proposed SpMM kernel has only 384 and 416 lines in the SASS code, with 429,504

and 215,104 executed HMMA instructions. This greatly reduces instruction cache miss

and stalls for dependency on fixed latency instructions. Besides, the ”Sectors/Req” of

the FPU baseline is only around 4. This is because when tuning its tiling size, having
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Figure 3.15: Total bytes loaded from L2 cache to L1 cache

#Subwarp = 1 to improve the grid size generally improves the overall performance, while

this comes at the cost of using shorter vector memory operation. The Blocked-ELL kernel

suffers from ”No Instruction”, ”Wait”, and ”Short Scoreboard” stalls, which accords with

the analysis in Section 3.2.

To justify the argument in Section 3.3 that the data reuse is independent of the

column number in the block sparse matrix, Figure 3.15 shows the total number of bytes

loaded from L2 cache to L1 cache under the VecSparse and blocked-ELL format, given

the same problem size and sparsity. The VecSparse loads even fewer data from L2 to L1

cache than the Blocked-ELL format, across all the sparsity levels.

3.6.3 SDDMM

The speedup achieved by the proposed SDDMM kernels is summarized in Figure

3.16. The ”fpu” denotes the FPU baseline in Section 3.5.1, ”wmma” corresponds to

the TCU baseline in Section 3.5.2. As three different methods are proposed to handle

the inverted pattern, Figure 3.16 uses ”mma (reg)”, ”mma (shfl)”, and ”mma (arch)”

to make the solution with additional accumulator buffers, shuffling the source operands,

and new TCU architecture, respectively. For the last one, a fake kernel is developed to

simulate the performance by assuming that the operands are swapped in TCUs.
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Figure 3.16: Speedup over cuBLASHgemm with SDDMM under different configura-
tions. Problem size is AM×K ·BK×N = CM×N , C is the sparse matrix under sparsity
in {0.5,0.7,0.8,0.9,0.95,0.98}. The size M and N are given in the benchmarks, K is
picked from {64, 128, 256}.

Overall Performance. The TCU-based 1-D Octet Tiling achieves considerable

speedup over the baselines across all the setups except for K = 64, V = 8. Specifically, it

achieves 1.27-3.03x and 0.93-1.44x geometric mean speedup over the FPU and TCU

baselines. Besides, speedup at > 90% sparsity is achieved under V = 8 and K = 256.

Moreover, with the modified TCU architecture, the mma (arch) consistently outperforms

the mma (reg) and mma (shlf). This demonstrates that the proposed simple architecture
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optimization effectively improves performance.

The SHFL (Warp Wide Register Shuffle) + FADD accounts for 29.5% of the total

instructions executed under V = 8 and K = 64 settings with the TCU-based 1-D Octet

tiling. The percentage is reduced to 17.2% under V = 8 and K = 256. These instructions

are primarily used for accumulating the partial sums of each Octet at the end of the kernel.

This suggests that When K is small and V is large, the overhead of this reduction is not

negligible and will offset the benefit of the dedicated tiling design. When K gets larger,

it is obvious that the Octet tiling (mma) achieves significantly better performance.

Table 3.3: The 5 guidelines in different implementations.
Kernel No Inst # CTA Wait Short Scoreboard Sectors/Req

SDDMM, V=4
MMA 0.8% 16384 10.7% 2.1% 8.83
CUDA 6.1% 16384 28.1% 2.5% 3.53

WMMA 0.3% 16384 10.6% 14.4% 8.82

SDDMM, V=8
MMA 1.0% 8192 11.0% 1.9% 9.25
CUDA 7.3% 16384 24.6% 3.1% 3.33

WMMA 0.4% 8192 9.5% 17.9% 9.26

Utilization Analysis. More detailed profiling results are summarized in Table 3.3

to justify the speedup achieved by the proposed SDDMM kernels. The setup is identical

to 3.2 except that the benchmark size is A2048×256 ×B256×1024 = C2048×1024 and C has

90% sparsity. As all three implementations of the MMAs are more or less similar in terms

of these five guidelines, only the result of mma (reg) is listed.

Similarly, the FPU baseline suffers more from ”No Instruction” and ”Wait” stalls, and

it has smaller ”Sector/req” than the other two implementations. The TCU baseline is

limited by the shared memory bandwidth. These observations accord with the arguments

in Section 3.5.

The mma (reg), mma (shfl), and mma (arch) are also compared to justify the architecture-
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level optimization. Given credit to our architecture modification, the mma (arch) uses

33% fewer registers and has 21.3% more active warps per scheduler than the mma (reg),

as it removes the need for additional registers for partial sums from the inverted pattern.

Besides, it has 10.4% fewer instructions, which is majorly contributed by the removed

SHFL instructions for operands switching.

3.6.4 Application: Sparse Transformer

The SpMM and SDDMM kernels presented in this chapter can be leveraged to develop

efficient sparse transformers. Under sequence length l and feature dimension m, the self-

attention layer takes query, key, and value Q,K,V ∈ Rl×k and computes the output

with

A = Softmax
(

(QKT ⊙C)/
√
k
)
, Attention(Q,K,V ) = AV , (3.1)

where C is an optional sparse mask that prunes most of the entries in the matrix A.

Many studies have been proposed to apply a fixed or learned sparse mask C [37]. Under

this setup, QKT ⊙C and AV can be formulated as SDDMM and SpMM, respectively.

However, without efficient GPU kernels, they could be much slower than their dense

counterpart, thus previous studies [64] apply block sparsity with large block sizes like 32

or 64. In contrast, the SDDMM and SpMM kernels proposed in this chapter are capable

of achieving speedup over the dense implementation under much smaller granularity,

offering larger design space when constructing the sparse masks.

Experimental Setup: The transformer model is trained with a fixed sparse atten-

tion mask on the byte-level text classification task in Long-Range Arena (LRA) [65], a

benchmark for transformers under long-sequence scenarios. In this task, the sequence

length is 4000. The model configuration and training parameters are set to be the same

as the original dense baseline. The 4-layer transformer model has four attention heads
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for each attention layer, and the feature dimension of each head is 64.

The sparse attention pattern is designed by adding the 8×1 vector sparsity constraints

to the pattern proposed by Gale et al., 2020 [49]. Specifically, the fixed attention masks

contain a dense band of size 256 along the diagonal and off-diagonal random attention.

The overall sparsity is 90% and the attention mask can be expressed by the column-

vector sparse encoding. A custom softmax kernel that works on column vector sparse

encoding is also implemented. The half-precision models are directly quantized from

the full-precision ones without fine-tuning. The inference throughput and peak memory

usage under batch size 8 are evaluated. The result averaged over 10 runs is reported in

Table 3.4.

Table 3.4: Sparse Transformer Results
Model Dense(float) Dense(half) Sparse(half)

Accuracy 65.12% 65.09% 65.01%
Throughput (seq / s) 74.7 182.6 258

Peak Memory 4.44 GB 2.22 GB 170.03 MB

Results & Analysis: As shown in Table 3.4, the sparse model under half precision

achieves 3.45x and 1.41x end-to-end speedup over the dense model under single and half-

precision, respectively. The peak memory usage is reduced by 26.74x and 13.37x. With

vector-wise sparsity, the accuracy degradation is only 0.11% of the dense baseline.

The speedup achieved in different parts of the attention layer is shown in Figure 3.17.

In terms of the whole layer, 1.35 − 1.78×, 1.48 − 2.09×, and 1.57 − 2.30× speedup are

achieved under 90%, 95%, and 98% sparsity, respectively. The proposed SpMM and

Softmax kernels effectively reduce the latency contributed by Softmax and AV . The

SDDMM kernel is slower than its dense counterparts when k = 64. It is because 64 is too

small, which accords with the observation in Figure 3.16. Notably, the sparsity cannot

be utilized in Softmax and AV without the SDDMM kernel, and the SDDMM achieves
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Figure 3.17: Latency of self-attention layer in various setups.

better performance than other baselines. Besides, as shown in the last figure in Figure

3.17, the SDDMM outperforms its dense counterpart when k = 256.

3.7 Discussion & Conclusion

Other Applications. While the SpMM and SDDMM kernels in this chapter are de-

fined in terms of row-major matrices, they can also be applied to column-major matrices

by mathematically transposing both LHS and RHS of the equation. In detail, the SpMM

and SDDMM can be formulated as DT = BTCT and DT = (BT )TAT ⊙ CT , where

DT , AT , and BT are column-major dense matrices. CT is a transposed sparse matrix

under column-vector sparse encoding, which can be viewed as “row vector sparse encod-

ing” that is composed of short row vectors aligned along the horizontal dimension. The

position of these short-row vectors is encoded in the compressed sparse column (CSC).

Although VecSparse only requires the sparse matrix to be composed of short column

vectors aligned along the vertical dimension, additional constraints can be added along

the horizontal dimension in need. While additional adjustments can be applied to the way

that operands are indexed, the CTA tile remains identical under different constraints, so
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the kernel designs are still applicable. Besides the case with the default setting provided

in Section 3.6.4, it can also be applied to neural network training with sparse weight.

In detail, with the activations X ∈ Rn×N in row-major, where n is the input feature

dimension and N is the batch size, the forward and backward passes can be formulated

as

1 Y = WX, 2
∂L
∂X

= W T ∂L
∂Y

, 3
∂L
∂W

=
∂L
∂Y

XT . (3.2)

1 and 2 in the above equation can be computed with the SpMM kernel, and SDDMM

kernel is applicable in 3 . As both W and W T are used, square nonzero blocks are

required that are aligned in both vertical and horizontal dimensions. Both W and W T

can be encoded with the column vector sparse encoding.

Conclusions. This chapter presents an algorithm-kernel codesign solution that ac-

celerates neural networks when sparsity and reduced precision are both present. On the

algorithm size, the column vector sparse encoding is introduced. It achieves the same

data reuse as block sparsity while delivering smaller granularity to help maintain neural

network model quality. On the kernel side, a novel mapping strategy, namely TCU-based

1-D Octet Tiling, enables the design of SpMM and SDDMM kernels that achieve both

efficient memory access and computation under tiny sparse granularity. Experiments on

the DLMC sparse matrix benchmark illustrate that the proposed kernels achieve 1.71-

7.19x geometric mean speedup over the Blocked-ELL-based SpMM kernel. Moreover,

the SpMM and SDDMM kernels achieve practical speedup over their dense counterparts,

with > 70% and > 90% sparsity under the 4×1 grain size and half-precision. Benefiting

from the proposed design, 1.41x end-to-end speedup and 13.37x peak memory reduction

are achieved on the sparse transformer inference task.
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Chapter 4

Algorithm-Kernel Codesign:

GPGPU-friendly Sparse Attention

This chapter presents another algorithm-kernel codesign example of kernel-centric opti-

mization. It improves the algorithm-level utilization of transformers on GPGPUs with

Dfss by leveraging the inherent dynamic and fine-grained sparsity within the attention

weight matrix. The GPGPU-friendly design of Dfss offers much higher algorithm and

EU-level utilization compared with existing sparse attention mechanisms.

4.1 Introduction

Transformers [13] have achieved competitive performance across various domains like

NLP [66] and Computer Vision [67]. The key feature that sets them apart from tra-

ditional neural network architectures is the attention mechanism [13], which allows the

transformers to gather information from the embeddings of elements in the input sequence

in an adaptive and learnable manner.

Nevertheless, the high computation cost and memory footprint brought by the atten-

58



Algorithm-Kernel Codesign: GPGPU-friendly Sparse Attention Chapter 4

tion mechanism make it difficult to apply transformers to latency-sensitive tasks. On the

other hand, the inherent sparsity in the attention weight matrix leads to low algorithm-

level efficiency, as only a few of the entries in the attention weight matrix are critical for

model accuracy.

However, improving the algorithm-level utilization of attention through sparsity is

challenging. Unlike traditional static weight sparsity, the sparsity in attention is dy-

namic and fine-grained. It is dynamic as the attention score matrix is computed from

input activations, so it is different for every inference sample. It is fine-grained because

any entries in it can have dominant value. Unfortunately, there is a dilemma between

dynamic and fine-grained regarding the utilization of GPGPU. On one hand, dynami-

cally pruning, encoding, and decoding the sparse attention score matrix on the fly require

regular sparse patterns to achieve high utilization on GPGPU. On the other hand, an

irregular sparse pattern is desired to catch the fine-grained distribution of dominant

entries. Previous studies [37, 38, 39, 68, 42, 41, 69] use coarse-grained block sparsity,

which allows for efficient dynamic encoding and decoding but scarifies the fine-grained

property. Thus, they require training from scratch or retraining to force the dominant

entries to follow the heuristic or learned patterns, which can be time-consuming even

for small-scale transformer models. Other approaches, such as low-bit approximation or

machine-learning-based prediction, are not GPGPU-friendly or guaranteed to be accu-

rate, leading to low utilization.

This chapter directly tackles the dilemma between “dynamic” and “fine-grained” with

an algorithm-kernel codesign approach called Dfss, which dynamically prunes the full

attention score matrix using N:M fine-grained structured sparse patterns.

At the algorithm level, the key insight is that on the dynamic side, the N:M spar-

sity, originally designed for efficient decoding of sparse matrix only, makes the dynamic

pruning and encoding easy to parallel on GPGPU. On the fine-grained side, the N:M
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sparsity preserves the largest entries in each row by preserving the local maximum of

each M entries. Dfss carefully selects the position to introduce sparsity to maximize the

benefits while avoiding the introduction of auxiliary or GPU-unfriendly operators.

At the kernel level, a new dynamic sampled dense-dense matrix multiplication (SD-

DMM) kernel is developed that multiplies the query and key matrices, dynamically prunes

it to N:M sparsity with magnitude, and encodes the compressed nonzeros and meta-

data. Moreover, the compressed sparse kernel can be consumed by succeeding kernels

for speedup and memory footprint reduction. It is the first kernel in the deep learning

software stack that prunes and encodes sparse matrices without overhead.

Compared with previous studies, Dfss achieves speedup on GPGPUs in arbitrary

sequence lengths. It only requires a few fine-tuning epochs (a few GPGPU-hours) from

pre-trained dense models like BERT-large to achieve on-par accuracy. While this chapter

focuses on 1:2 and 2:4 structured sparsity as decoding of them is supported by the sparse

tensor cores on A100 GPGPUs [21], the techniques and observations can be applied

equally to all N and Ms with the hardware support. The main contributions are as

follows:

• At the algorithm level, this chapter proposes Dfss, a dynamic N:M sparse attention

mechanism that is a drop-in replacement of the full attention mechanism and or-

thogonal to existing efficient attention mechanisms. Its effectiveness is justified by

both empirical and theoretical evidence. It is the first dynamic pruning technique

under N:M sparsity.

• At the kernel level, this chapter presents a dedicated CUDA kernel design to com-

pletely remove the pruning overhead. The pruning is implemented as an epilogue

of the dense matrix multiplication, which produces the attention score matrix. It is

the first kernel in the deep learning software stack that can be applied for dynamic

60



Algorithm-Kernel Codesign: GPGPU-friendly Sparse Attention Chapter 4

and fine-grained sparse matrices and generates compressed sparse encoding with

zero overhead.

• Dfss is evaluated on tasks across various domains and sequence lengths on A100

GPGPU. It achieves 1.38∼1.86× speedup over the full attention with no accuracy

loss.

4.2 Algorithm-level Optimization: DFSS

Dfss addresses the “dynamic” and “fine-grained” challenges with two algorithm-level

design choices: (1) location to generate the sparse pattern (2) structure of the sparse

pattern. This section first gives an overview of the Dfss method. Then, two design

choices are discussed in detail. Besides, Appendix A.1 offers a more theoretical analysis

and Appendix A.4 discusses how to combine Dfss with existing linear attention.
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4.2.1 Overview

The Dfss mechanism is simple and effective. Figure 6.1 illustrates the case under

1:2 or 2:4 sparsity. Compared with the full-quadratic attention mechanism, Dfss dy-

namically prunes attention scores without incurring storage or computation overhead

while maintaining the effectiveness of attention. More importantly, it can achieve prac-

tical speedups of attention on existing GPU hardware with customized CUDA kernels.

Listing 1 shows all the modifications to be made to use Dfss.

# Full attention mechanism

import torch.nn.functional as F

def full_attention(q,k,v):

attn_weight = torch.bmm(

q, k.transpose(1, 2))

attn_weight = F.softmax(attn_weight, -1)

return torch.bmm(attn_weight, v)

# DFSS attention mechanism

import dfss

def dfss_attention(q,k,v):

attn_weight, metadata = dspattn.sddmm(q, k)

attn_weight = F.softmax(attn_weight, -1)

return dfss.spmm(

attn_weight, metadata, v)

Listing 1: Example of using Dfss.

4.2.2 Design Choice I: Location to Generate Sparsity

The compute graph of the attention mechanism is illustrated in Figure 4.2. It can be

considered as three stages: QKT , Softmax, and AV . There are three locations where

the sparse pattern can be generated: 0 before computing QKT . 1 while computing

QKT . 2 while applying softmax.

At 0 , the dense matrix multiplication between Q and K will be replaced with

the traditional static sampled dense-dense matrix multiplication (SDDMM) which only
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Figure 4.2: Attention Stages.

computes the entries identified by the input sparse pattern. The Softmax only operates

on the nonzero values in each row. The original dense matrix multiplication between

A and V will be replaced with a sparse matrix-matrix multiplication (SpMM) which

multiplies a sparse matrix with a dense matrix. However, it is not possible to exactly

know which entry in QKT has higher magnitude before computing QKT . Therefore,

additional components that predict the location of important entries are required at

0 . These auxiliary components would reduce the algorithm-level utilization. Besides,

replacing the dense QKT with traditional SDDMM offers limited speedup even at high

sparsity. Chen et al. 2021 [53] show that it is difficult for traditional SDDMM to achieve

speedup over its dense counterpart under 80% sparsity even with some structured design.

At 1 , a dynamic SDDMM kernel is required which generates the sparse pattern based

on the magnitude of entries in QKT and produces the pruned and compressed attention

score matrix. The benefit is that the important entries can be explicitly selected from

QKT without prediction. As the softmax is a monotonically increasing function, starting

from 2 does not offer any benefits over 1 but throws away the opportunity to accelerate

Softmax.

Dfss selects 1 based on two considerations. First, 1 keeps the design simple such

that it does not introduce additional overhead or hyperparameters to tune. Second, the

dynamic SDDMM kernel developed in the next section runs faster than dense QKT

under even 50% sparsity.

63



Algorithm-Kernel Codesign: GPGPU-friendly Sparse Attention Chapter 4

4.2.3 Design Choice II: Structure of Sparsity

To achieve speedup while maintaining accuracy, structured constraints are required

on the sparse pattern that makes it satisfy two requirements. First, it should be friendly

to GPGPU while pruning, encoding, and consuming the sparse matrix, ensuring high

EU-level utilization. Second, the pattern should preserve the largest values in each row.

Sparse patterns used by previous studies do not meet these two requirements. The

unconstrained row-wise top-k sparsity violates the first requirement, as it requires com-

parisons between elements generated by different threadblocks in the GEMM kernel. So

its pruning and encoding are hard to parallel. Besides, the popular compressed sparse

row (CSR) based SpMM requires over 95% sparsity to be on par with its dense coun-

terpart [53], which is too high to preserve accuracy. The block sparsity widely used

in previous studies violates the second requirement, as it cannot guarantee the selected

block contains the largest value of all the rows it covers.

The N:M fine-grained structured sparsity (Section 2.2.3), originally designed for static

weight pruning, satisfies these two requirements. For requirement 1, it is easy to parallel

during pruning and encoding. As the N:M selection is performed locally and the address

to write nonzeros and metadata is deterministic. Speedup can be easily achieved when

it is consumed by succeeding kernels. As the row length is reduced to N/M of the orig-

inal attention score matrix, the softmax kernel achieves speedup without modification.

Powered by the NVIDIA Sparse Tensor Core, the SpMM with value matrix also achieves

1.7× speedup with N : M = 1 : 2. For requirement 2, selecting N elements in each

1 ×M vector guarantees to preserve the largest entries in each row. While this chapter

focuses on 1:2 and 2:4 sparsity in this paper as they are supported by the off-the-shelf

GPUs, other N:M ratios are also supported given the hardware support for multiplication

between an N:M sparse matrix and a dense matrix.
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Table 4.1: F1 Score w/o Finetune on SQuAD v1.1

Full 1:2 2:4

93.17 ± 0.27 92.86 ± 0.22 93.00 ± 0.16
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Figure 4.3: Dense Matrix Multiplication Tiling Design.

Empirically, the N:M sparsity can well approximate the full attention mechanism.

Given a BERT-large model fine-tuned on SQuAD v1.1 under full attention, Table 4.1

summarizes the F1 score achieved by 1:2 and 2:4 sparsity without further fine-tuning.

The accuracy loss is only around one sigma even without finetuning.

4.3 Kernel-level Optimization: Dynamic SDDMM

This section presents the design of the dynamic fine-grained SDDMM kernel. The

proposed kernel fuses dense GEMM, magnitude-based pruning under N:M sparsity, and

compression into a single kernel by developing a new dynamic pruning epilogue for CUT-

LASS [70] GEMM mainloop. The tiling is shown in Figure 4.3. The fusion of these three

stages saves two round trips between global memory and the registers. Additionally, a

dedicated design of thread and register mapping is proposed that ensures all memory

access is 128B coalesced and reduces cross-thread shuffling. These optimizations allow

for efficient implementation of dynamic SDDMM under N:M sparsity on GPGPU.
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Figure 4.4: Encoding of metadata in CUTLASS [70]. T{threadIdx}{regIdx} repre-
sents the regIdxth 16-bit register in thread threadIdx.

4.3.1 Decoding the Sparse Matrix in SpMM Kernel

The sparse matrix encoded should be easy for the succeeding SpMM kernel to de-

code. Figure 4.4 (c) shows the thread map of metadata used by two mma.sp.m16n8k16

with tf32 type or mma.sp.m16n8k32 with f16, bf16 types under the Tensor Core’s

hardware constraints. Each row has eight 4-bit metadata. The mapping is anno-

tated with T{threadIdx}{regIdx}, representing the data is held in register regIdx of

thread threadIdx. Each regIdx represents a 16-bit register. The threads satisfying

⌊(threadIdx mod 32)/2⌋mod 2 == 0 hold the first 16 rows while the second 16 rows are

stored in others. The mma.sp instruction has an argument to select between the first
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and second 16 rows.

Directly loading the metadata under this thread mapping will lead to an inefficient

memory access pattern: each thread only loads 16 bits per instruction and the shared

memory bank conflict occurs. To address this issue, CUTLASS [70] leverages the ldmatrix

instruction. As shown in Figure 4.4 (a), thread k ∈ [0, 7] loads 128-bit data, breaks it into

four 32-bit data, and distributes them to thread 4k ∼ 4k+3 with a special data path in

hardware. As shown in Figure 4.4 (b) and (c), to match the thread mapping of ldmatrix

with mma.sp, two additional transformations are required: (1) switch the sub-diagonal

entries in every 2 × 2 block (2) interleave the rows by 4 in every 32 rows. CUTLASS

eliminates these two transformations by performing their counter-transformations when

encoding the metadata offline: (1) interleave the rows by 8 in every 32 rows (2) switch the

sub-diagonal entries in every 2 × 2 block. Therefore, only a single ldmatrix is required

to load the metadata under desired thread mapping.

4.3.2 Dynamic Pruning Epilogue

The decoding process of the sparse matrix in SpMM kernel brings two constraints to

Dfss’s dynamic SDDMM Kernel. First,the two counter-transformations are performed

when encoding the metadata. Second, As the counter-transformation occurs in a range

of 32 × 16 with tf32 type and 32 × 32 with f16/bf16 types, the minimum pruning unit is

32 × 64-byte.

With these two constraints, the proposed dynamic pruning epilogue is shown in Figure

4.5. There are four major steps: 0 Prune 50% of each consecutive 8B data, generate

nonzeros and metadata; 1 counter-transformation (1): Interleave the metadata rows by

8; 2 counter-transformation (2): Switch the metadata along sub-diagonal. 3 Write

metadata and nonzeros to global memory.
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Figure 4.5: Prune dense data and generate nonzeros, metadata.

In detail, two out of four 2-byte data are selected based on their magnitude and a

unique 4-bit metadata is assigned to each combination in 0 . The corresponding metadata

of the selection pattern is enumerated in Figure 4.5 (b). Notably, with float32 data type,

each 32-bit data occupies two consecutive 2-byte slots. Therefore, it only supports the

patterns under 0x4 and 0xe. After generating the 4-bit metadata, consecutive four of

them are concatenated to a 2B metadata block. The rows of metadata are interleaved

by 8 in 1 with

dst row = ⌊row/32⌋ × 32 + (row%8) × 4 + ⌊(row%32)/8⌋. (4.1)

In 2 , the metadata blocks at the upper right and lower left of each 2 × 2 grid are
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switched. At last, in 3 , the metadata produced by 2 is written into global memory

under the interleaved column-major format with stride 4-byte. This can be realized by

interpreting two consecutive metadata as an int object and then writing it to global

memory in column-major. The nonzeros are written to global memory under row-major.
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Figure 4.6: Mapping between the threads, registers, and data, metadata.
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4.3.3 Thread and Register Mapping

In the pruning step, the warp tile is partitioned to a grid of 32× 64B blocks that are

processed by the warp one at a time.

Pruning the GEMM result. In order to reduce cross-thread data access, all the

comparisons are local to each thread during pruning. The thread and register mapping in

the 32 × 64B block to be pruned is shown in Figure 4.6 (a), T threadId{regId} indicates

the regId 32-bit / 16-bit register of thread threadId with float32 type and bfloat16 type,

respectively. Under float32 type, the larger one is selected in the adjacent two entries.

Under bfloat16 type, 2 larger ones are selected from the adjacent 4 entries.
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Figure 4.7: Interleave the columns for matrix B to reduce cross-lane data sharing
during pruning for bfloat16.

While the output mapping of mma in Ampere GPU matches Figure 4.6 (a) under

float32 type, the output mapping under bfloat16 type in Figure 4.7 (a) is inconsistent

with Figure 4.6 (b). Therefore, additional warp shuffles are required to first pass these
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4 entries to the same thread, then compare them and obtain the 2 larger ones. This

will introduce additional overhead. To solve this problem, when loading matrix B to

shared memory, the kernel interleaves the columns by simply manipulating the pointer

to the global memory at the beginning. The resulting mapping to the registers is shown

in Figure 4.7 (b) which is equivalent to Figure 4.6 (a) bfloat16. After the interleaving,

consecutive four data are naturally held by the same thread, and the larger twos are

selected from them. To reduce branch divergence, the selection is done by comparing the

sum of any two data.

Generate Metadata and Nonzeros. For both float and bfloat16 data types,

each comparison produces a 4-bit metadata. Following Section 4.3.2, consecutive four

metadata needs to be concatenated into a 16-bit metadata block through bitwise OR. As

the adjacent four metadata are owned by different threads, the kernel first puts the 4-bit

metadata of thread 4t+k to [k×4:k×4 + 3] bits in the int16 register with bit shifting

as shown in Figure 4.7 (b), where “Tthread id{register id}[bit id ]” denotes each 4-bit

metadata. Then these int16 registers are shared cross threads with warp shuffle and

produce Figure 4.6 (c). The destination thread of the warp shuffle is designed to make

the whole warp busy. Figure 4.6 (d) and (e) illustrate the result after 1 and 2 in Figure

4.5. Notably, these two steps only change the logic mapping of the metadata, and the

register allocation is not affected. So no code is required for these two steps. The last

step is writing the metadata and nonzeros to global memory following 3 in Figure 4.5.

As shown in Figure 4.6 (e), each row is held by consecutive two int16 registers of the

same thread. Thus, it can be simply reinterpreted as an =int32 object and write the

metadata to global memory in column-major. On the other hand, the nonzeros are simply

coalesced in the shared memory and then written to global memory in row-major.
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4.4 Evaluation

This section first evaluates the accuracy of Dfss on tasks across different domains.

Then, Dfss is profiled on NVIDIA A100 GPU under different sequence lengths from 256

to 4096 to show that practical speedup can be achieved in arbitrary sequence lengths.

While this chapter focuses on 1:2 and 2:4 sparsity as their speedup can be directly

evaluated on readily available hardware, other N:M combinations are left for future work.

4.4.1 Model Accuracy

To show that Dfss is effective in comprehensive scenarios, this section first evaluates

the model accuracy on tasks in different domains and sequence lengths. For models under

the “bfloat16” data type, the pre-trained model is first fine-tuned under the “float” data

type, as “float” provides a more precise gradient that helps convergence. After the fine-

tuning, all the parameters are directly cast to “bfloat16” and tested on the test dataset.

For Question Answering and Masked Language Modeling tasks, the results reported are

averaged over 8 runs under different random seeds.

Table 4.2: F1 score on BERT-large SQuAD v1.1 (Cl=95%)

Model w/o finetune w/ finetune

Transformer (float) 93.22 ± 0.15 93.17 ± 0.27
Transformer (bfloat16) 93.34 ± 0.31 93.18 ± 0.27

Dfss 1:2 (float) 92.86 ± 0.22 93.07 ± 0.17
Dfss 2:4 (bfloat16) 93.00 ± 0.16 93.28± 0.29

Question Answering. Table 4.2 summarizes the evaluation result of Dfss with

BERT-large on SQuAD v1.1 under sequence length 384. The “bert-large-uncased-whole-

word-masking” in Huggingface [71] is selected as the pre-trained model and fine-tuned

with the default configuration in Huggingface 1. The F1 scores of “1:2(float)” and

1https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering
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“2:4(bfloat16)” without fine-tuning are obtained by directly using the checkpoints from

“Transformer(float)”. The F1 scores of “Transformer (float)” and “Transformer (bfloat16)”

without fine-tuning are obtained by directly using the checkpoints from “Dfss 1:2 (float)”

and “Dfss 2:4 (bfloat16)” respectively, and running inference with the dense attention

mechanism.

With fine-tuning, the 1:2 sparsity has only 0.1 F1 score loss, which is smaller than the

standard deviation. The 2:4 sparsity even achieves a little bit of performance improve-

ment over the dense baseline. One plausible explanation is that while the 2:4 sparsity can

keep most of the important edges, it also occasionally drops a small fraction of important

edges, which acts like the attention dropout technique [72]. Besides, directly applying

Dfss to the dense transformer without fine-tuning also achieves comparable results. It

justifies that Dfss can well approximate the dense attention mechanism.

Table 4.3: Perplexity on roBERTa-large (Cl=95%)

Model
Wikitext-2

w/o finetune w/ finetune

Transformer (float) 2.85 ± 0.09 2.83± 0.09
Transformer (bfloat16) 2.85 ± 0.05 2.85 ± 0.07

Dfss 1:2 (float) 2.88 ± 0.06 2.88 ± 0.07
Dfss 2:4 (bfloat16) 2.88 ± 0.07 2.84 ± 0.04

Model
Wikitext-103

w/o finetune w/ finetune

Transformer (float) 2.63 ± 0.03 2.62 ± 0.04
Transformer (bfloat16) 2.62 ± 0.08 2.63 ± 0.05

Dfss 1:2 (float) 2.64 ± 0.06 2.64 ± 0.06
Dfss 2:4 (bfloat16) 2.63 ± 0.03 2.61± 0.04

Masked Language Modeling. Dfss is also evaluated on the masked modeling

task on Wikitext-2 and Wikitext-103 under sequence length 512. Similar to the question-

answering tasks, the “roberta-large” is chosen as the pre-trained model and fine-tuned
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Table 4.4: Accuracy of different transformer models on LRA benchmark. Dfss is
trained following Tay et al. 2021[73] to reuse the results from this paper.

Model
ListOps Text Retrieval Image

Avg
(n=2048) (n=2048) (n=4000) (n=1024)

Transformer (float) 35.91 65.05 61.72 42.15 51.21
Transformer (bfloat16) 35.92 65.03 61.73 42.17 51.21

Local Attention[74] 15.82 52.98 53.39 41.46 40.91
Sparse Trans.[75] 17.07 63.58 59.59 44.24 46.12
Longformer[39] 35.63 62.85 56.89 42.22 49.40
Linformer[43] 35.70 53.94 52.27 38.56 45.12
Reformer[41] 37.27 56.10 53.40 38.07 46.21

Sinkhorn Trans.[68] 33.67 61.20 53.83 41.23 47.48
Synthesizer[37] 36.99 61.68 54.67 41.61 48.74

BigBird[38] 36.05 64.02 59.29 40.83 50.05
Linear Trans.[76] 16.13 65.90 53.09 42.34 44.37

Performer[44] 18.01 65.40 53.82 42.77 45.00
Dfss 1:2 (float) 36.85 64.95 61.83 42.02 51.41

Dfss 2:4 (bfloat16) 37.19 64.91 62.26 42.31 51.67

under the default configuration in Huggingface 2. The results are summarized in Table

4.3. Similarly, the perplexities achieved by Dfss are on par with the dense transformer.

Long Range Arena. For sequence lengths longer than 512, Dfss is evaluated

on four tasks from the Long Range Arena [73], including ListOps, Text Classification,

Document Retrieval, and Image Classification under sequence lengths 2048, 2048, 4096,

and 1024, respectively. Pathfinder (1K) task is omitted as the results of which cannot

be reproduced, which was also reported in Lu et al., 2021 [77]. For a fair comparison

with other efficient transformers, the model is trained from scratch under the default

configurations. The results are summarized in Table 4.4. Dfss achieves comparable

accuracy on all four benchmarks for long sequences.

2https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
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4.4.2 Speedup

This section demonstrates the speedup achieved by Dfss across different sequence

lengths and compares it with existing studies.

Table 4.5: Kernel execution time under N:M=2:4 (millisecond)

Sequence
Length

cuDNN
GEMM

cuDNN GEMM+
cuSPARSELt

Our
SDDMM

512 0.086 1.285 0.081
1024 0.291 4.611 0.284
2048 1.107 15.219 1.073
4096 4.338 N/A 4.221

Kernel Speedup. Table 4.5 compares the proposed dynamic SDDMM kernel with

the state-of-the-art library, cuSPARSELt, which provides APIs for pruning and encoding

input matrices into 2:4 sparsity. The batch size, number of heads, and embedding size

are 8, 16, and 64, respectively. The proposed kernel accelerates the GEMM + pruning +

encoding by 14.18 ∼ 16.24× compared with the cuSPARSELt. It is even 1.02 ∼ 1.06×

faster than the dense GEMM in cuDNN. This demonstrates that the dynamic SDDMM

kernel completely eliminates the pruning and encoding overhead.

End-to-end Speedup. Figure 4.8 compares the end-to-end speedup achieved by

Dfss with previous studies. The evaluation takes the 4-layer dense transformer model

of Text Classification task in Long Range Arena [73]. The dimension of each head is

64. Different combinations of numbers of heads (4, 8), sequence length (512, 1024, 2048,

4096), and hidden dimension of the feed-forward layer (256, 512, 1024) are explored. For

models in previous studies, in case their implementations are not efficient, the PyTorch

JIT script is applied.

Dfss achieves 1.11 ∼ 1.52× and 1.08 ∼ 1.47× end-to-end speedup over the dense

transformer, it is the only method that delivers end-to-end speedup under all config-

urations. Under sequence length ≤ 2048, Dfss achieves higher speedup than most of
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Figure 4.8: End-to-end inference speedup of different efficient transformers over dense
transformer.

the baselines. Although Sinkhorn transformer [68] has a higher speedup than Dfss at

sequence length 2048, as shown in Table 4.4, its accuracy is less satisfying. This result

justifies that Dfss delivers good speedup under short and moderate sequence lengths.

Additionally, Dfss has no hyperparameters and only requires a lightweight fine-tuning

process, making it a promising solution for accelerating transformers’ inference when a

pre-trained model is available.

Attention Speedup Breakdown. As Dfss focuses on the attention mechanism

and is orthogonal to techniques that accelerate the other parts of transformer models

(e.g. static pruning, quantization), Figure 5.8 further shows the speedup achieved on the

attention mechanism declared in Equation (2.1), including QKT , Softmax, AV , and
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Figure 4.9: Latency breakdown of different attention mechanisms. For each configura-
tion, the latency is normalized to the Transformer with the full attention mechanism
and cut off the axis at 2 for clarity.

overhead introduced by the technique. The latency is normalized to the Transformer

with the full attention mechanism under each configuration, and the y-axis is cut off at

2 for clarity.

Dfss achieves 1.38∼1.86x speedup over the transformer with full attention. It achieves

speedup in all three stages with no overhead. In detail, the slight speedup in QKT is

because the dynamic SDDMM writes only nonzeros and metadata to global memory,

which is only 9/16 of the dense output size. As Softmax only operates on the nonzeros,

the number of entries in each row is reduced by half. This brings at least 2× speedup to
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the softmax kernel. Moreover, the halved row length allows the softmax kernel to switch

from threadblock reduction to warp reduction in certain cases, which further boosts the

performance. The AV is accelerated with CUTLASS SpMM kernel under N:M spar-

sity, which brings up to 1.7× speedup. Oppositely, although other approaches achieve

higher speedup in QK, Softmax, and AV , their speedup is offset by the huge overhead,

especially under sequence length ≤ 2048.

4.5 Conclusion and Discussion

This chapter presents Dfss, a novel sparse attention mechanism that dynamically

prunes and encodes the attention weight matrix based on the magnitude. This com-

pact design not only improves the utilization of GPGPUs but also simplifies fine-tuning

and preserves accuracy as the dominant attention weights are accurately captured. The

dynamic pruning and encoding overhead is eliminated through the algorithm-kernel code-

sign.

At the algorithm level, this chapter innovatively leverages the N:M fine-grained struc-

tured sparsity, originally designed for static weight pruning, to the attention weight ma-

trix. Compared with sparse patterns of existing studies, N:M sparsity is much easier to

parallel when pruning and encoding the sparse matrices at the moderate sparsity ratio.

With the benefits brought by the N:M sparsity, at the kernel level, this chapter

develops a dynamic sampled dense-dense matrix multiplication kernel (SDDMM), the

first of its kind, that multiplies the query and key matrices, prunes the result, and

encodes the compressed sparse matrix without any overhead.

Dfss is also orthogonal to many existing efficient attention mechanisms and can

potentially be applied jointly for further speedup. Additional discussions about Dfss

are covered in Appendix A.4.
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Chapter 5

Algorithm-Operator-Kernel

Codesign: Efficient GNN Training

This chapter presents an example of kernel-centric optimization on Graph Neural Net-

works (GNNs). It improves the device and EU-level utilization of GPGPUs when training

GNNs through the codesign across algorithm, operator, and kernel levels.

5.1 Introduction

In recent years, graph convolutional neural networks (GNN) that operate on graph-

structured data have achieved convincing performance on tasks like node and graph

classification [14, 78, 79]. Similar to other computation-intensive workloads [80, 81,

82], GNNs are usually trained on the GPGPUs that have high programmability and

rich computation resources. Therefore, developing an efficient framework for GNNs on

GPGPU is important.

Unlike existing studies that abstract GNN with two phases (Combination and ag-

gregation), this chapter abstracts it as three distinct phases based on the computation
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pattern: Combination, Graph Processing, and Aggregation. Combination is usually a

single- or multi-layer perceptron that updates feature vectors of each vertex. Graph

Processing processes the graph to be used in Aggregation. Different from the other

two phases, its computation pattern is similar to traditional graph analysis algorithms,

such as computing degrees, updating or generating edge weights, and converting graphs

between different sparse representations. Aggregation updates each feature vector by

aggregating its neighbor feature vectors with some aggregators like max and sum [83].

While Combination phase is well-supported by sgemm (Single precision General Ma-

trix Multiply) kernels in cuBLAS [84], the other two phases implemented with current

APIs in PyTorch or TensorFlow lead to low utilization on GPGPUs. Profiling results

show that the device-level utilization is limited by the kernel launching time, which could

take up to 85% of the whole execution time due to the complex execution flow. The EU-

level utilization is constrained by the memory bandwidth and high memory footprint.

Besides, due to the large variance in graph structures such as average degree, there is no

one-size-fits-all solution for all graphs. For instance, existing studies apply the Gather-

ApplyEdge-Reduce (GAR) abstraction to the Aggregation phase to reduce memory traffic

caused by the atomic reduction. However, this chapter observes that on graphs with low

average degree, execution time saved by using GAR abstraction in Aggregation is offset

by the format conversion overhead. Moreover, existing studies lack efficient support for

more complicated GNN algorithms such as the Graph Attention Network [17], where the

gradient flows through the edge weight.

This chapter proposes fuseGNN, a highly optimized extension of PyTorch for GNNs

on GPGPUs through kernel-centric optimization with Algorithm-Operator-Kernel Code-

sign. The key contributions are summarized below.

• Algorithm Level. Dual aggregation strategy that applies GAS to graphs with a
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low average degree and GAR to those with a high average degree.

• Operator Level. In the graph analysis and aggregation phases, operators that

can potentially be combined into the same partition are identified.

• Kernel Level. Dedicated CUDA kernels are developed for each partition identified

in the operator-level optimization. Various optimization strategies are applied to

improve EU-level utilization.

Evaluation results with fuseGNN on multiple benchmarks and compare it with

the state-of-the-art frameworks including PyG [85], DGL [86], and neuGraph [87]. It

achieves up to 5.3× end-to-end training speedup over PyG, and the memory footprint is

reduced by nearly 500× on Reddit dataset. fuseGNN makes it possible to train GAT

on the entire Reddit with a single NVIDIA V100 GPU. The code is publicly available at

https://github.com/apuaaChen/gcnLib.

5.2 Motivation

This section discusses the motivations inspiring the design of fuseGNN. Existing im-

plementations of GNNs on GPGPU suffer from low device/EU-level utilization and high

memory footprint, which can potentially be significantly improved with the algorithm,

operator, and kernel-level codesign.

5.2.1 Low Device-level Utilization

The low device-level utilization is caused by the high kernel launching overhead. As

shown in Figure 5.1, when the dimension is small (e.g. 16), the GPU is idled for more

than 85% of execution time, indicating low device-level utilization. The reason behind

that is the suboptimal partition of the GNN’s complex data flow graph leads to a handful
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Figure 5.1: Execution time breakdown on V100 GPU. The results are collected on a
single-layer GCN [14] on Cora (CR), Citeseer (CS), and Pubmed (PB). The detailed
information on these datasets is summarized in Table 2.1. The input feature dimension
is the native feature length of each dataset, and the output dimension is chosen from
{16, 64, 256} to cover various situations

of small kernels. The launching time of these kernels on the host (CPU) is even longer

than the execution time on the GPUs.

5.2.2 Low EU and Algorithm-level Utilization

The Aggregation phase acts as the performance bottleneck of GNN training. Existing

frameworks take either ”Gather-ApplyEgde-Scatter” (GAS) and ”Gather-ApplyEdge-

Reduce” (GAR) abstractions for the Aggregation phase, yet the performance of both

abstractions is limited by the EU-level utilization.

Memory Bottleneck of GAS. GAS used by PyTorch Geometric (PyG) takes an

unsorted COO format graph. It splits the Aggregation into three distinct operators:

indexSelect, elementwise, and scatterAdd. The indexSelect stacks the neighbor feature

vectors of each vertex into an extended embedding with size #edges×hidden dimension.

The elementwise applies elementwise operations such as scaling and biasing to the ex-

tended embedding, and the scatterAdd reduces each row of the extended embedding into

the output embedding.

The GAS abstraction suffers from the memory bottleneck, the data movement statis-
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Table 5.1: Data movement statistics of GCN’s forward pass on the Pubmed dataset
(88,676 edges, 19,717 vertices), with hidden dimension 256 ( *: atomic transaction)

Operator L2 $ Load L2 $ Store HBM Load HBM Store

indexSelect 90.7 MB 86.6 MB 58.2 MB 86.3 MB
elementwise 87.7 MB 86.6 MB 87.1 MB 86.2 MB
scatterAdd 87.9 MB 90.77* MB 142.1 MB 58.3 MB

tics of which are summarized in Table 5.1. While the embedding of Pubmed dataset

only consumes 20.2 MB, all three operators exhibit more than 3 times more traffic at the

L2 cache in both load and store, due to the size of the extended embedding. Besides,

comparing the L2 cache load/store and HBM load/store reveals that the operators have

low locality, leading to high memory bandwidth requirements.

Transposing Overhead of GAR. NeuGraph [87] and Deep Graph Library (DGL)

[86] choose GAR model, which takes a CSR format graph in the forward pass. As the

neighbor of each vertex is ordered, the scatterAdd in GAS can be replaced with a reduce

operator that accumulates the embeddings in on-chip faster memory to reduce bandwidth

requirement.

Despite lower memory traffic, GAR introduces additional overhead when transposing

the adjacency matrix during the backward pass. The CSR adjacency matrix has to be

reformatted into CSC format during the transpose, which is GPU-unfriendly and leads

to low algorithm-level utilization, significantly impacting on the end-to-end performance.

5.2.3 High Memory Footprint

The huge extended embedding in the Aggregation phase also leads to a high memory

footprint. For instance, Reddit has 114,615,892 directed edges, which will consume over

58.7 GB when feature vector length is 128.
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5.2.4 Solution: Kernel-Centric Optimization

The Kernel-centric optimization with codesign across the algorithm, operator, and

kernel levels is a potential solution for all the limitations above.

Algorithm Level. At the algorithm level, instead of using a homogeneous abstrac-

tion, a dual aggregation strategy that automatically switches between GAS and GAR

abstraction can potentially lead to better EU and algorithm-level utilization. Compared

with GAS, GAR has lower store traffic with the cost of transposing overhead, and the

store traffic reduction equals the average degree of each vertex. With this observation,

when the average degree of a graph is too small to compensate for the transposing over-

head, GAS is selected. Otherwise, GAR is chosen as a more suitable abstraction

Operator Level. With a better partitioning of the data flow graph into fewer

operators, the device and EU-level utilization can both be improved. For the former,

the kernel launching overhead is reduced along with the total number of operators. For

the latter, the internal edge within each operator creates potential opportunities to pass

intermediate results through faster memories such as registers to reduce global memory

traffic.

Kernel Level. At the kernel level, a dedicated CUDA kernel for each operator is

required to realize the opportunities created by the operator-level optimizations. Besides,

due to the diversity of GNN embedding sizes, the kernels require sound logic for different

hidden dimensions and residual handling.

5.3 Overview

With the motivations in the previous section, this section provides a brief overview of

the fuseGNN design. Different from the two-phase abstraction (Combination-Aggregation)

of GNNs used by previous studies, a three-phase abstraction: Combination-Graph Pro-
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Figure 5.2: Design Overview of fuseGNN.

cessing-Aggregation is used, as shown in Figure 5.2. This abstraction is motivated by

the distinct execution pattern in Graph Processing compared with the other two phases,

such as edge weight computation and graph format transformations.

Input Graph Format. Compared with CSC and CSR, unsorted COO format has

the lowest cost to construct or modify. So fuseGNN takes unsorted COO format graphs

as input.

Design of Graph Processing. With the dual aggregation strategy, for graphs with

a high average degree, the graph processing stage converts the input unordered COO

graphs into CSR and CSC formats. Then, the edge weights are computed with the fused

CUDA kernels created by the operator-kernel codesign. These fused kernels have lower

kernel launching overhead that can be diminished by overlapping with other kernels.

They also better data locality by caching intermediate results in registers to alleviate the

memory bottleneck.

Design of Aggregation. With the algorithm-level optimization, the more suitable

abstraction is selected between GAR and GAS, based on the average degree of the incom-

ing graph. Dedicated fused kernels are created for both GAR and GAS in forward and

backward passes. With the operator-kernel codesign, these fused kernels take the input

embedding and adjacency matrix and directly generate the output embedding, without
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Figure 5.3: GAS Abstraction. (a) Forward; (b) Backward.

exposing the intermediate results.

5.4 Algorithm-level Optimization: Dual Aggregation

Models

This section details the dual aggregation models and the underlying GAS/GAR ab-

stractions.

5.4.1 Gather-ApplyEgde-Scatter

GAS takes an unsorted COO format graph and traverses all the edges within the

edge list. As shown in Figure 5.3 (a), for edge (vt, vs) where vt is the target vertex and

vs is the source vertex, the feature vector of vs is selected from the input feature matrix.

After applying the edge weight, the result is scattered to the corresponding row vt of

the output feature matrix. The backward pass is illustrated in Figure 5.3 (b). For each
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Figure 5.4: GAR Abstraction. (a) Forward; (b) Backward.

edge (vt, vs), the gradient on output feature vector of vt is taken. It goes through the

backward pass of the ApplyEdge function, and scattered to the gradient matrix of input

feature matrix. The Grad ApplyEdge function will also generate the gradient of other

operands in ApplyEdge, e.g., edge weight, if necessary.

5.4.2 Gather-ApplyEdge-Reduce

In forward pass, GAR works on the CSR format graphs where the rows indicate target

vertex. Hence, all the edges with the same target vertex are contiguous in the edge list.

For each target vertex vt, all its incoming edges are traversed. Figure 5.4 (a) illustrates

the forward pass of GAR model when vt has two incoming edges. For each incoming

edge (vt, vsi), the procedure is similar to GAS model. The only difference is that instead

of scattering the result to output feature matrix, the output of ApplyEdge is reduced in
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an on-chip buffer (registers or user-managed data cache). After all the incoming edges

are reduced, the content of the buffer is written to the output feature matrix in global

memory.

In backward pass, CSC format of the graph is required, so that all the edges with the

same source vertex are contiguous in the edge list. As illustrated in Figure 5.4 (b), all

the outgoing edges are traversed. For each edge (vti , vs), the gradient of vti is selected, it

goes through the Grad ApplyEdge function, and the result is reduced to on-chip buffer.

Grad ApplyEdge function generates the gradient of other operands in ApplyEdge just like

GAS. At last, the content in the buffer is written to gradient matrix of input features.

5.4.3 Selection Guideline

With the motivation in Section 5.2, the GAS and GAR abstractions complement each

other under graphs with different average degrees.

GAS. GAS works on unsorted COO graphs in both forward and backward passes.

This eliminates the graph format transformation overhead, and also saves global memory

as only the COO format of the imput graph is required. Its disadvantage comes from

the high global memory store traffic proportional to the number of edges under the lower

bandwidth with atomic reduction. This disadvantage is only severe when the graph has

a high average degree.

GAR. GAR addresses the disadvantage of GAS by performing the reduction in each

SM, avoiding atomic transactions. It reduces the global memory store by the times equal

to the average degree of the graph. Its disadvantage comes from its different requirements

of graph format in forward and backward passes, which introduce transposing overhead

with low algorithm-level utilization, and extra global memory footprint to store the graph

in both CSR and CSC.
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Selection between GAS and GAR. The average degree of the input graph can be

easily calculated by dividing the edge list length by the number of rows in the embedding

matrix. GAS is selected for graphs with low average degree, while GAR is preferred on

high average degree graphs.

5.5 Operator-level Optimization

As different GNN models have distinct algorithms for Graph Processing and Aggrega-

tion phases, different operator-level optimizations are required. This section takes GAT

[88] as an example.

5.5.1 Graph Processing

The Graph Processing of GAT is shown in Equation (2.4). With a(k) ∈ R2m×1 and

embedding matrix H̃(k−1) ∈ RNv×m, a(k) can be firstly reshaped to an m × 2 matrix.

Then, ã(k) = H̃(k−1) × a(k) is computed with dense matrix-matrix multiplication.

Next, the attention coefficient, leaky ReLU, exp, and the reduction that calculates

the denominator in Equation (2.4) are partitioned into the same operator, as they are

elementwise operators under the producer-consumer relationship. This optimization cre-

ates potential opportunities to alleviate memory bottlenecks by caching the intermediate

results between these operators through registers and reducing kernel launching overhead.

Similarly, the succeeding division and dropout are partitioned into the same operator.

5.5.2 Aggregation

In the forward pass, The Gather, ApplyEdge, Scatter under GAS abstraction and

Gather, ApplyEdge, Reduce under the GAR abstraction are partitioned into the same
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operator. This saves two round trips that load and store the intermediate embedding

between these operators.

In the backward pass, the Gather, ApplyEdge, Scatter/Reduce operators are parti-

tioned to the same operator similar to the forward pass. As the gradients of the edge

weights are required in GAT, the aforementioned operator also includes the computations

related to the gradients of edge weight.

∂L

∂AT
= Hout ×HT

in,
∂L

∂Hin

= AT ×Hout. (5.1)

As shown in the equation above, the feature vectors of Hout can potentially be cached

and reused for both ∂L
∂AT and ∂L

∂Hin
.

5.6 Kernel-level Optimization

This section presents the detailed design of the CUDA kernels used in fuseGNN

along with the key optimization strategies. It will focus on the optimizations used to

construct the operator in the Aggregation phase.

Regarding the graph processing, it is more straightforward involving creating fused

element-wise operators. Compared with the naive implementation with PyTorch that has

more than a dozen kernels and Ne inner products, our new implementation only takes a

much smaller sgemm kernel and two dedicated fused kernels.

5.6.1 Parallel Reductions

Two kinds of parallel reductions are used in Aggregation kernels to perform reductions

of features and gradients in shared memory.

Group Reduce: For an m× r vector v, each consecutive m entries form a group, so
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assume that 𝒂 (𝑘) ∈ R2𝑚×1 and feature vectors �
𝒉(𝑘−1)𝒊 ∈ R1×𝑚 are

concatenated at the first dimension to form �𝑯 (𝑘−1) ∈ R𝑁𝑣×𝑚 .
We first reshape 𝒂 (𝑘) to𝑚×2 and compute 𝒂 (𝑘) = �𝑯 (𝑘−1) ×𝒂 (𝑘)

with dense matrix-matrix multiplication. Then, we launch a single
kernel, in which each thread handles a single edge. It first computes
the attention coefficient with

[�𝒉(𝑘−1)𝒊 | |�𝒉(𝑘−1)𝒋 ]𝒂 (𝑘) = 𝒂 (𝑘) [𝑖] [0] + 𝒂 (𝑘) [ 𝑗] [1], (5)

and store the result in a register. In this way, the original 𝑁𝑒 inner
products can be reduced to𝑁𝑣 . Then, leaky ReLU and exp are applied
to the attention coefficient, and the result is not only written to
DRAM as the fraction of each edge but also accumulated with
atomicAdd to calculate the denominator of Equation (4). At last,
a second kernel is launched, each thread still handles an edge by
dividing the fraction and denominator and applying dropout.

Compared with the naive implementation with PyTorch that
has more than a dozen kernels and 𝑁𝑒 inner products, our new
implementation only takes a much smaller sgemm kernel and two
dedicated fused kernels.

5.2 Parallel Reductions
We first introduce two kinds of parallel reductions that will be used
in our Aggregation kernels to perform reductions of features and
gradients in shared memory.

Group Reduce: Let’s consider an𝑚 × 𝑟 vector 𝒗. Each consecu-

Group reduce

Figure 5: Group Reduce
tive𝑚 entries form a group, so there are totally 𝑟 groups. Our target
is to reduce the corresponding entries of each group into the first
one:

∀𝑖 < 𝑚, 𝒗 [𝑖] =
𝑟−1∑
𝑗=0

𝑣 [𝑖 +𝑚𝑗] (6)

Figure 5 shows how group reduceworks.When 𝑟 is even, we perform
parallel reduction to havlve the number of groups. Otherwise, we
reduce the last group to the first one, until there is only one left.

Block-wide Reduce: Given vector 𝒗 ∈ R𝑟 , block-wide reduce
calculates

∑𝑟
𝑖=1 𝒗 [𝑖]. We follow the implementation in Harris, Mark

(2017) [4] in which multiple optimization strategies including loop
unrolling, divergent avoiding are applied.

5.3 fused-GAS Forward and Backward Kernels
Fused-GAS partitions the workload to thread blocks in edge-centric
way. For thread block size𝑇 and feature length𝑚, each thread block
handles the gather-applyEdge-scatter of𝑚𝑎𝑥 (⌊𝑇 /𝑚⌋, 1) consecu-
tive edges.

Forward Pass. Algorithm 1 shows the forward pass of fused-
GAS model. It takes an 𝑁𝑣 ×𝑚 input feature matrix 𝑯𝒊𝒏 and a COO
format graph. We set 𝑇 = 256 to maintain high occupancy.
Algorithm 1: fused-GAS Forward Kernel
Data: Input & output features: 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 ∈ R𝑁𝑣×𝑚 ;
COO Row & Col. Index: 𝑡𝑎𝑟𝐼𝑛𝑑, 𝑠𝑟𝑐𝐼𝑛𝑑 ∈ N𝑁𝑒 ;
Edge weight.: 𝒘𝒆 ∈ R𝑁𝑒 ; feature dim.:𝑚 ∈ N;
Block size𝑇 ∈ N.

1 begin
2 𝑡𝐼𝐷 = thread ID, 𝑏𝐼𝐷 = thread block ID.
3 if𝑚 < 𝑇 then
4 𝑠𝑡𝑟𝑖𝑑𝑒 = ⌊𝑇 /𝑚⌋, 𝑓 𝐼𝑑 = 𝑡𝐼𝐷%𝑚
5 𝐵 = ⌊ (𝑁𝑒 + 𝑠𝑡𝑟𝑖𝑑𝑒 − 1)/𝑠𝑡𝑟𝑖𝑑𝑒 ⌋
6 if 𝑡𝐼𝐷 <𝑚 × 𝑠𝑡𝑟𝑖𝑑𝑒 then
7 for 𝑒𝐼𝑑 = 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒 + ⌊𝑡𝐼𝐷/𝑚⌋ to 𝑁𝑒
8 step 𝐵 × 𝑠𝑡𝑟𝑖𝑑𝑒 do
9 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑 ] ] [𝑓 𝐼𝑑 ],

10 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑 ] ] [𝑓 𝐼𝑑 ] × 𝒘𝒆 [𝑒𝐼𝑑 ]}

11 else
12 𝑒𝐼𝑑 = 𝑏𝐼𝑑 , 𝑤 = 𝒘𝒆 [𝑒𝐼𝑑 ].
13 for 𝑓 𝐼𝑑 = 𝑡𝐼𝐷 to𝑚 step𝑇 do
14 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑 ] ] [𝑓 𝐼𝑑 ],
15 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑 ] ] [𝑓 𝐼𝑑 ] × 𝑤}

If feature dimension𝑚 is smaller than block size 𝑇 , as shown
in line 3-10 in Algorithm 1, each thread block will handle 𝑠𝑡𝑟𝑖𝑑𝑒 =
⌊𝑇 /𝑚⌋ edges simultaneously. The consecutive entries in feature
vector of each edge are handled by consecutive threads. Figure 6
(A) shows a toy example in which 𝑇 = 16,𝑚 = 5. The thread block
works on 3 edges: 𝑖 , 𝑖 + 1, and 𝑖 + 2. Each of the first 15 threads loads
the corresponding entry of source feature and multiplies it with
the edge weight, then accumulates the result of multiplication to
the address that store the target feature vector with atomicAdd.

Otherwise, as shown in line 11-15 in Algorithm 1, each thread
block only handles a single edge. At beginning, we load the scalar
edge weight and store it in a register for reuse. Each iteration of the
for loop at line 13 processes 𝑇 consecutive entries of the feature
vectors: it loads the source feature entry in, multiplies it with the
edge weight in the register, and writes it to output target feature
vector with atomicAdd. This process is illustrated in Figure 6 (B).
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Figure 6: Forward kernel of fused-GAS module. (A): when
feature length 𝒎 < 𝑻 ; (B)when feature length 𝒎 ≥ 𝑻 .

Backward Pass. When the gradient for edge weight is not re-
quired, we can directly use the forward kernel for backward pass
by replacing input 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 with 𝑮𝒐𝒖𝒕 , 𝑮𝒊𝒏 and switching the
𝑠𝑟𝑐𝐼𝑛𝑑 and 𝑡𝑎𝑟𝐼𝑛𝑑 . Otherwise, we use the kernel in Algorithm 2.

2020-04-28 02:18. Page 5 of 1–9.

Figure 5.5: Group Reduce

there are total r groups. The target is to reduce the corresponding entries of each group

into the first one: ∀i < m, v[i]+ =
∑r−1

j=1 v[i + mj]. Figure 5.5 shows how group reduce

works. When r is even, parallel reduction is performed to halve the number of groups.

Otherwise, the last group is reduced to the first one, until there is only one left.

Block-wide Reduce: Given vector v ∈ Rr, block-wide reduce calculates
∑r

i=1 v[i].

Following the implementation in Harris, Mark, 2017 [89], multiple optimization strategies

including loop unrolling, and divergent avoiding are applied.

5.6.2 fused-GAS Forward and Backward Kernels

Fused-GAS partitions the workload to thread blocks in edge-centric way. For thread

block size T and feature length m, each thread block handles the GAS of max(⌊T/m⌋, 1)

edges.

Forward Pass. Algorithm 1 shows the forward pass of fused-GAS model. It takes an

Nv ×m input feature matrix Hin and a COO format graph. T is set to 256 to maintain

high occupancy.

If feature dimension m is smaller than block size T , as shown in line 3-10 in Algorithm

1, each thread block will handle stride = ⌊T/m⌋ edges simultaneously. The consecutive
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Algorithm 1: fused-GAS Forward Kernel

Data: Input & output features: Hin,Hout ∈ RNv×m;
COO Row & Col. Index: tarInd, srcInd ∈ NNe ;
Edge weight.: we ∈ RNe ; feature dim.: m ∈ N;
Block size T ∈ N.

1 begin
2 tID = thread ID, bID = thread block ID.
3 if m < T then
4 stride = ⌊T/m⌋, fId = tID%m
5 B = ⌊(Ne + stride− 1)/stride⌋
6 if tID < m× stride then
7 for eId = bID × stride+ ⌊tID/m⌋ to Ne

8 step B × stride do
9 atomicAdd{&Hout[tarInd[eId]][fId],

10 Hin[srcInd[eId]][fId]×we[eId]}

11 else
12 eId = bId, w = we[eId].
13 for fId = tID to m step T do
14 atomicAdd{&Hout[tarInd[eId]][fId],
15 Hin[srcInd[eId]][fId]× w}

entries in feature vector of each edge are handled by consecutive threads. Figure 5.6 (a)

shows a toy example in which T = 16, m = 5. The thread block works on 3 edges: i, i+1,

and i + 2. Each of the first 15 threads loads the corresponding entry of source feature

and multiplies it with the edge weight, then accumulates the result of multiplication to

the address that stores the target feature vector with atomicAdd.

Otherwise, as shown in line 11-15 in Algorithm 1, each thread block only handles a

single edge. At the beginning, the scalar edge weight is loaded into a register for reuse.

Each iteration of the for loop at line 13 processes T consecutive entries of the feature

vectors: it loads the source feature entry in, multiplies it with the edge weight in the

register, and writes it to output target feature vector with atomicAdd. This process is

illustrated in Figure 5.6 (b).

Backward Pass. When the gradient for edge weight is not required, the forward

kernel can be directly used for the backward pass by replacing input Hin,Hout with
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Figure 5.6: Forward kernel of fused-GAS module. (a): when feature length m < T ;
(b) when feature length m ≥ T .

Gout,Gin and switching the srcInd and tarInd. Otherwise, the kernel in Algorithm 2

is used. Line 9-14 and 24-26 calculate the gradient matrix of input features. They are

the same as line 6-9 and 13-14 in Algorithm 1 with changed inputs and different looping

way. Line 15-21 and line 27-31 calculates the gradient of each scalar edge weight with

three steps:1) save the gradient contributed by each entry in a buffer in shared memory

(line 15 & 27); 2) do reduction to generate the gradient of edge weight (line 17 & 29);3)

write the result to DRAM (line 20 & 31).

As ⌊T/m⌋ edges are handled simultaneously when m < T , the gradients are stored in

an interleaved fashion (line 15 in Algorithm 2) as shown in Figure 5.7. Then the gradient

of each edge weight is calculated with group reduce under group size ⌊T/m⌋ and number

of group m. The major benefit brought by the interleaved fashion is that in step 2) and

3), all the active threads are consecutive, therefore warp divergence is avoided (different
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Algorithm 2: fused-GAS Backward Kernel

Data: Output & input gradient: Gin,Gout ∈ RNv×m; Input feature: Hin ∈ RNv×m; COO
Row & Col. Index: tarInd, srcInd ∈ NNe ; Edge weight.: we ∈ RNe ; Edge weight
gradient: ge ∈ RNe feature dim.: m ∈ N; Block size T ∈ N.

1 begin
2 shared buffer [T − 1 : 0], tID = thread ID, bID = thread block ID, buffer [tID] = 0
3 if m < T then
4 stride = ⌊T/m⌋
5 B = ⌊(Ne + stride− 1)/stride⌋, step = stride×B
6 Ns = ⌊(Ne − bID × stride+ step− 1)/step⌋
7 fId= tID%m, gId=⌊tID/m⌋, eId=bID×stride+gId
8 for i = bID × stride to Ns × step+ bID × stride
9 step step do

10 syncthreads()
11 if tID < stride×m && eId < Ne then
12 g = Gout[tarInd[eId]][fId]
13 atomicAdd{&Gin[srcInd[eId]][fId], g × w }
14 buffer [gId+ fId× stride] = g ×Hin[srcInd[eId]][fId]

15 syncthreads()
16 group reduce(buffer, m, stride)
17 syncthreads()
18 if tID < stride && i+ tID < Ne then
19 ge[i+ tID] =buffer [tID]

20 buffer [tID] = 0, eId+ = stride

21 else
22 eId = bId, w = we[eId]
23 for fId = tID to m step T do
24 g = Gout[tarInd[eId]][fId]
25 atomicAdd{&Gin[srcInd[eId]][fId], g × w }
26 buffer [tID]+ = g ×Hin[srcInd[eId]][fId]

27 syncthreads()
28 block-wide reduce(buffer)
29 if tID == 0 then
30 ge[eId] =buffer [0]

threads of the same warp take different branch) [90] to the most extent. When m ≥ T ,

as the thread block only handles a single edge, the gradient contributed by each entry

consecutively (line 27 in Algorithm 2) is stored and reduced with block-wide reduction

(line 29 in Algorithm 2).
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Figure 5.7: Illustration of line 15 & 17 in Algorithm 2

5.6.3 fused-GAR Forward and Backward Kernels

Fused-GAR kernel partitions the workload to thread blocks in the vertex-centric way.

Each thread block will handle all the edges with the same target vertex in forward pass

and all the edges with the same source vertex in backward pass.

Algorithm 3: fused-GAR Forward Kernel

Data: Input & output features: Hin,Hout ∈ RNv×m;
CSR Row Ptr & Col. Index: tarP tr ∈ NNv+1, srcInd ∈ NNe ;
Edge weight.: we ∈ RNe , Self-loop weight: wsl ∈ RNv ;
feature dim.: m ∈ N; Block size T ∈ N; Grid size: B ∈ N.

1 begin
2 tID = thread ID, bID = thread block ID.
3 start = tarP tr[bID], stop = tarP tr[bID + 1]
4 if m < T then
5 shared buffer [T − 1 : 0]
6 stride = ⌊T/m⌋, fId = tID%m, buffer [tID] = 0
7 for eId = start+ ⌊tID/m⌋ to stop step stride do
8 buffer [tID]+=Hin[srcInd[eId]][fId]×we[eId]

9 group reduce(buffer, min(m, stop− start), m)
10 if tID < m then
11 Hout[bID][fId] = Hin[bID][fId]×wsl+buffer [tID]

12 else
13 w = wsl[bId]
14 for fId = tID to m step T do
15 buffer= Hin[bID][fId]× w
16 for eId = start to stop step 1 do
17 buffer+ = Hin[srcInd[eId]][fId]×we[eId]

18 Hout[bID][fId] =buffer

Forward Pass. First of all, the thread block identifies the index to the first and
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last edge it handles based on tarP tr (line 3). Similar to the fused-GAS forward kernel,

⌊T/m⌋ edges can be processed simultaneously when m < T (line 4-11).

As all the edges share the same target vertex, they can be reduced on-chip: consecu-

tive m threads form a thread group, and the edges are partitioned evenly to the thread

groups. Each thread group processes the edges assigned to it in sequence (loop at line

7). After all the partial results are stored in the buffer in shared memory, group reduce

(line 9) is applied to the buffer under group size m and number of group ⌊T/m⌋ to get

the final output feature vector. When m ≥ T , as all the threads work on the same edge

in each iteration, a single register is used for each thread to do reduction (line 12-18).

Backward Pass. Similar to fused-GAS, the forward kernel can be used for back-

ward when gradient on edge weights are not required. Otherwise, the same strategy in

fused-GAS backward kernel is applied. Specifically, to generate gradient on edge weight,

when m < T , the gradient contributed by each entry is stored in shared memory in an

interleaved fashion and reduced with group reduce. Otherwise, the gradient are stored

consecutively and reduced with block-wide reduction. The gradient on input feature

vectors is calculated in the symmetric way of forward pass.

Besides, fuseGNN fully exploit the data reuse opportunities. In backward pass, as

all the edges share the same source vertex, the feature vector of which will be used to

generate the gradient of all the edge weight. So it is cached at the beginning in registers

when m < T or shared memory otherwise. Besides, the gradient of the target vertex is

required for both input feature gradient and edge weight gradient, so it is cached in a

register for reuse.

96



Algorithm-Operator-Kernel Codesign: Efficient GNN Training Chapter 5

5.6.4 Discussion on Kernel Design

Optimization Strategies. First of all, as consecutive threads work on consecutive

entries in feature vectors, and each thread block handles consecutive edges, the ker-

nels can achieve good global memory transaction coalescing and high atomic transaction

bandwidth as they are in the same cache line [91]. Second, the global memory trans-

actions are further reduced with extensive data reuse. For instance, as the three stages

of Aggregation are fused in the single kernel, the data that will be used multiple times

are cached with shared memory or registers. Moreover, giving the credit to interleaved

fashion in Figure 5.7, reduction strategies, as well as the looping strategy in backward

kernels (e.g. line 9 in Algorithm 2), the active threads are always kept consecutive to

avoid warp divergence to the most extent. Last but not least, multiple edges can be

handled concurrently so that our kernels can maintain high occupancy even with short

feature vectors.

Flexibility vs. Performance. Although fused kernels have much lower latency and

memory footprint, their re-usability are limited. As a result, it is impractical to produce

libraries consisting of already-fused kernels [92]. Previous studies solve this problem by

following “Make the Common Case Fast” idea. The “common case” in them refers to

Aggregation phase in which ApplyEdge is element-wise operation and gradient on edge

weight is not required. For example, models like GCN [14], GIN [16], SGC [93], and

GraphSAGE [94] (except for LSTM aggregator) directly use a scalar edge weight. For

these common cases, neuGraph provides the Fused-Gather kernel while DGL exploits

SpMM in cuSPARSE library [62]. Other uncommon cases are still implemented with

simple and re-usable kernels like PyG.

While “Make the Common Case Fast” strategy is also exploited in fuseGNN, the

“common case” in our work is relaxed to Aggregation phase in which ApplyEdge is
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element-wise operation, because gradient on edge weight is supported. Therefore, re-

cent models with complex attention mechanism like GAT [17] and AGNN [88] treated as

uncommon case in previous studies are included into “common case” in fuseGNN.

Besides, unlike DGL that uses APIs in closed source library cuSPARSE, fused ker-

nels in Aggregation phase are developed in neighborhood aggregation fashion [85] so that

they can be used as templates when developing new Aggregation kernels.

5.7 Evaluation

This section evaluates the performance of fuseGNN and compares it with state-

of-the-art studies on a single NVIDIA V100 GPU [95]. The benchmarks are denoted

as “Model-Dataset-Hidden”. For “Model”, GCN [14] and GAT [17] are picked to cover

GNNs with simple and complex Graph Processing. “Dataset” includes Cora, Pubmed,

and Reddit to cover various scale and average degree. “Hidden” (output dimension of

Combination phase) is chosen from {16, 64, 128, 256, 512}. Both transductive learning

and inductive learning are evaluated, where the Graph Processing phase is executed at

each iteration or the result is cached in global memory in the first execution and reused

in later iterations, respectively.

5.7.1 Latency

To demonstrate the efficiency of fuseGNN in GNN training, this section first eval-

uate the it latency on several benchmarks.

GAS v.s. GAR. Figure 5.8 summarizes the relative end-to-end speedup over PyG

[85] achieved under different configurations. It shows that the speedup provided by

fuseGNN is consistent and significant. On small graphs like Cora, fused GAS could

achieve higher speedup compared with fused GAR abstraction. Figure 5.9 compares the
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Figure 5.8: Speedup of fused GAR and fused GAS over PyG under different configurations.

latency of fused GAR and fused GAS on Reddit. It shows that fused GAR module is

more effective than fused GAS on graphs with high average degree like Reddit.

To further justify this, Figure 5.10 shows the execution time of aggregation and graph

format conversion on different benchmarks. First, on graphs with short feature vector and

low average degree, fused GAS has lower Aggregation latency, this is because its kernel

is simpler than fused GAR so that fewer registers are used and higher occupancy can

be achieved. On graphs with long feature vectors and high average degree, fused GAR

achieves lower Aggregation latency which outweighs the additional overhead of format

conversion.

With all these observations, empirically, one should select fused-GAR for graphs with

high average degree and fused-GAS for others. While a dedicated performance models

can be built in future studies, as fused-GAS and fused-GAR share the same interface,

the user can just try both of them and pick the better one.
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Figure 5.9: Latency of fused GAR and fused GAS on Reddit.

Dataset Hidden Model Aggregation Format

GAR 0.0234 0.346

GAS 0.006154 0

GAR 0.051 0.346

GAS 0.014469 0

GAR 0.150251 0.346

GAS 0.049193 0

GAR 0.073504 0.4468

GAS 0.027105 0

GAR 0.130449 0.4468

GAS 0.115778 0

GAR 0.423064 0.4468

GAS 0.553721 0

GAR 29.06 289.8377

GAS 72.48 0

GAR 69.655 289.8377

GAS 201.98 0

GAR 324.36 289.8377

GAS 941.03 0
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Figure 5.10: Latency of Aggregation and format conversion

Comparison to DGL [86]. The benchmark is composed of single layer GCN and

GAT on Cora, Pubmed, and Reddit under dimension 16, 64, and 512. The results are

summarized in Table 5.2. For fuseGNN, the lower one in the latency of GAR and GAS

is taken.

On small datasets like Cora and Pubmed, fuseGNN implementation consistently

achieves much lower latency. The major speedup comes from kernel-fusion applied to

Graph Processing phase. For example, in Cora-GAT, 52 kernels are invoked in DGL,

while fused-GAS only launches 24 kernels.
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Table 5.2: Comparison of Training Latency (in millisecond) between DGL and fuseGNN.

Dataset Model
hidden=16 hidden=64 hidden=512

DGL fuseGNN DGL fuseGNN DGL fuseGNN

Cora
GCN 2.35 1.05 2.37 1.09 2.51 1.10
GAT 7.46 1.65 7.59 1.68 8.07 1.70

Pubmed
GCN 2.69 1.07 2.79 1.11 3.61 3.00
GAT 7.75 1.72 7.85 1.72 10.43 3.74

Reddit
GCN 22.5 29.2 58.9 71.9 452.9 690.4
GAT OOM 120.0 OOM 314.3 OOM 825.3

On GCN-Reddit where Aggregation phase becomes the major bottleneck, DGL has

lower latency due to two major reasons. First, unlike fuseGNN, DGL does the COO

to CSR/CSC conversion offline, so that this overhead is not included in their latency.

Second, DGL directly exploits the CSR SpMM kernels in cuSPARSE library [62] that

is optimized by more experienced experts of NVIDIA in SASS. However, compared with

the closed source cuSPARSE library, kernels in fuseGNN can be easily modified to

support new GNN algorithms.

On GAT-Reddit, as gradient on edge weight is not support by the SpMM implementa-

tion, DGL suffers from OOM with hidden=16. Oppositely, fuseGNN can even support

hidden=512.

Table 5.3: Comparison on GCN-Reddit-16
Kernel Latency Active Warps Occupancy DRAM Bandwidth

fused-GAR 13.6 ms 63.13 / SM 98.6% 327.1 GB/s
fused-Gather [87] 23.5 ms 30.28 / SM 47.3% 196.1 GB/s

Comparison to NeuGraph [87]. As the authors haven’t yet released their code,

it is hard to have a thorough comparison across multiple benchmarks. However, first,

the backward kernel for fused-Gather is not provided, so the high volume memory stor-

age footprint and data movement remain unsolved for models like GAT. Second, their

fused-Gather kernel is also less effective compared with fused-GAR kernel under certain
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Figure 5.11: Peak global memory usage of the first layer of GCN/GAT with output
dimension 128. The red line marks 16 GB.

Table 5.4: Data Movement ( *: atomic transactions)

Kernel L2 $ Read L2 $ Write HBM Read HBM Write

GCN-Pubmed-256
fused-GAS 92.5 MiB 90.78* MiB 107.8 MiB 57.0 MiB
fused-GAR 107.6 MiB 19.3 MiB 61.6 MiB 20.9 MiB

GCN-Reddit-128
PyG(theoretical) 178 GiB 118 + 58* GiB 222 GiB 161 GiB

fused-GAS 59.4 GiB 58.7* GiB 100.9 GiB 50.2 GiB
fused-GAR 55.5 GiB 113.8 MiB 47.1 GiB 116.4 MiB

scenarios.

A fused-Gather kernel is implemented based on their description and compared with

fuseGNN on benchmark GCN-Reddit-16. As shown in Table 5.3, when dimension is 16,

fused-GAR kernel processes 8 edges simultaneously to fully exploit the thread block size

128. On the other hand, the fused-Gather kernel doesn’t involve such design, so only 16

threads in each thread block are activated. As a result, it has much fewer active warps

per SM which leads to lower thread-level parallelism and low global memory Bandwidth

[96]. Besides, fused-GAR reduces the number of steps to process n edges from O(n) to

O(⌈n/r⌉ + log r), r = ⌊T/m⌋ where T is thread block size and m is the dimension.
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5.7.2 Memory

This section evaluates the global memory footprint and data movement reduction

with fuseGNN over existing studies.

Peak Memory Usage. Figure 5.11 compares the peak Memory Usage of different

frameworks with hidden dimension 128. fuseGNN reduces the storage footprint by

several orders. In particular, the peak memory usage is reduced by 95× and 26× on

GAT-Reddit-128 compared with PyG and DGL, respectively. This makes it possible to

fit all these models in a single V100 GPU.

Data Movement. Table 5.4 summarizes the data movement in fused-GAS/GAS

forward kernels under the same benchmark in Table 5.1. On GCN-Pubmed-256, the fused-

GAS kernel reduces non-atomic L2 transactions (read and write) by 4.75× and global

memory transactions by 3.14×. On the other hand, the non-atomic L2 and global memory

transaction of fused-GAR are reduced by 3.46× and 6.28×, and the atomic transactions

are eliminated. First, transaction related to the intermediate extended feature vectors

are eliminated. Second, while the L2 cache hit rate of element-wise kernel is around 0%,

the proposed kernels have around 30%, as a larger portion of the input feature matrix

can be cached compared with the huge extended feature matrix. On GCN-Reddit-128,

fused-GAR can reduce the L2 cache write transaction by more than 1, 500×.

Workload Imbalance. In GNN, each edge introduces the same cost, so there is

no workload imbalance problem in GAS abstraction. On the other hand, the imbalance

degree would lead to imbalance workload on each thread block in GAR abstraction.

However, As the number of thread block in fused-GAR equals to the number of vertices

(from thousands to hundreds of thousands or even higher) while there are only 84 SMs

per GPU, the workload imbalance of thread blocks can be compensated by assigning

different amount of blocks to each SM, so that the resources of GPU are fully-utilized

103



Algorithm-Operator-Kernel Codesign: Efficient GNN Training Chapter 5

[97]. For instance, on GCN-Reddit-128, the achieved occupancy per SM of fused-GAR

is 93.4%, which shows that the workload imbalance of thread blocks doesn’t affect the

occupancy of GPU cores.

5.8 Conclusions

This chapter presents a highly optimized extension library of PyTorch for GNN train-

ing on GPGPU. With kernel-centric optimization, its dual aggregation strategy along

with the fused CUDA kernels significantly improves the training throughput and re-

duces global memory footprint. fuseGNN makes it possible to training GNN on larger

graphs with the same hardware. The designs can be easily extended to multi-GPU or

CPU+GPU scenarios, in which the graph is partitioned and assigned to each GPGPU.
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Chapter 6

Kernel-Centric Optimization:

Compiler Perspective

This chapter demonstrates the application of kernel-centric optimization in the realm

of compiler. It introduces the Epilogue Visitor Tree (EVT) compiler, which automates

kernel-centric optimization across a wide range of NN models to accelerate training work-

loads.

6.1 Introduction

The rapid evolution of deep learning has led to a surge in the complexity and quantity

of deep learning models. These models, often implemented through deep learning frame-

works like PyTorch [98] that target flexible programming, face suboptimal performance as

they cannot efficiently utilize the resources provided by hardware like GPGPUs. Manual

optimization of these models demands a high degree of engineering effort and exper-

tise, and even experts may overlook hidden optimization opportunities within intricate

models.
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Deep learning (DL) compilers play a critical role in addressing this challenge. A typ-

ical DL compiler optimizes the user-defined model through three major steps [99], which

align with kernel-centric optimization: algorithm-level optimizations through graph trans-

formations, operator-level optimization with partition, and kernel-level optimization. In

detail, during the algorithm-level optimization, the input model is first traced into the

data-flow graph, with nodes representing operators and edges denoting dataflow. The

graph transformations simplify the graph by folding constants or eliminating common

sub-expressions. Subsequently, during the operator-level optimization, the partitioner

divides the graph into individual partitions, and each partition is further optimized by

kernel-level optimization, such as replacement by a fused kernel generated by the kernel-

level compiler [100].

While considerable progress [45, 101, 98] has been made in optimizing models for

inference efficiency, three key limitations remain in optimizing the training workload.

Algorithm-level Limitation.The training workload has a larger and more complex

operator set. If mismanaged, these operators would significantly restrict potential op-

timizations such as kernel fusion. The training workload has intricate and non-fusible

operators such as loss functions and gradient operators. Operators like batch normal-

ization also exhibit more intricate behaviors during training. Moreover, a substantial

number of reductions emerge in the training graph, which are challenging to fuse and

sometimes not beneficial.

Operator-level Limitation. Partitioner in existing compilers cannot find feasible

and optimal partitions in the training graph. Unlike the inference graph that contains

a stream of operators and can be partitioned with simple heuristics, the training com-

putation graph has additional edges passing saved activations to backward operators for

gradient computation. Heuristically partitioning them can easily lead to an infeasible

result that contains cycles. While arbitrarily separating the forward and backward graph
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Figure 6.1: Overview of the EVT System Design.

obscures opportunities for fusing operators from both forward and backward parts.

Kernel-level Limitation. Existing kernel-level compilers cannot generate fused

kernels that deliver state-of-the-art performance while accommodating diverse fusion

patterns. Loop-based compilers, like TVM [45], represent operators as nested loops.

They face challenges in abstracting dedicated optimizations and leveraging the accel-

erator features and datapaths in modern GPUs for core operators like matrix multi-

plication (GEMM) and convolutions. On the other hand, template metaprogramming

(TMP)-based compilers [51, 50] that leverage expert-developed template libraries lack

the flexibility to support diverse fusion patterns in the training graphs.

6.1.1 The EVT Approach

This chapter present Epilogue Visitor Tree (EVT), a novel compiler designed to ad-

dress all the aforementioned limitations. For the algorithm-level limitation, EVT facili-
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tates graph transformations tailored for training workload. To tackle the operator-level

limitation, EVT is also associated with an Integer Linear Programming (ILP)-based par-

titioner that can find the optimal and feasible partitions for subsequent operator-level

optimizations. The name ”Epilogue Visitor Tree” comes from the novel abstraction de-

signed to address the kernel-level limitation. The key idea is leveraging the template

libraries designed by GPU experts for core operators like GEMM to ensure state-of-the-

art performance while presenting a flexible abstraction under which the operators to

be fused can be easily assembled and integrated into the core operator. The detailed

explanation is as follows:

• Epilogue: Create fused kernels with epilogue fusion.

• Visitor: The key abstraction proposed to provide the fusion pattern flexibility.

It decouples operators in the epilogue so they can be developed and optimized

individually, and assembled into the epilogue at compile time.

• Tree: Tree structure is used to assemble the epilogue in our operator compiler for

best performance.

As shown in Figure 6.1, EVT directly takes models from frameworks like PyTorch

[98] and converts them into a joint forward-backward graph, with training samples and

model parameters as inputs and gradients as outputs.

EVT’s pass manager then schedules a series of graph transformations directly on the

joint forward-backward data-flow graph. In addition to standard transformations such as

constant propagation that simplify the graph, EVT’s graph compiler introduces three cru-

cial passes to address the algorithm-level limitation and create more fusion opportunities

for the kernel-level compiler: loss elimination, decomposition, and reduction elimination.

The first one unlocks the opportunity to fuse the loss function and its backward pass by
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recognizing the loss value doesn’t participate in the backward computation. The second

pass breaks complicated non-fusible operators like batch norm fw/bw into fusible oper-

ators. The last one alleviates the reduction fusion issue by identifying cases where the

reduction result is equivalent to a series of fusible operators.

Next, the ILP-based partitioner models the partitioning as an ILP problem to find the

feasible global optimal solution. As the acyclic partitioning problem is NP-Hard [102],

several simplification techniques are proposed to reduce the complexity, and large-scale

neural networks with millions of decision variables can be solved in minutes.

Subsequently, partitions are dispatched to a suitable operator compiler to create the

fused kernels. Particularly, partitions containing core operators are offloaded to EVT

kernel-level compiler for better performance.

Finally, EVT returns a deployable model to the user, which is compatible with other

optimization techniques such as CUDA graph to perform further orthogonal optimiza-

tions. EVT can be used as a backend for torch.compile that optimizes a model with a

single line of code.

6.2 Algorithm-level Optimizations

This section first discusses the major optimizations exploited and then provides a

running example to illustrate how these optimizations simplify the computation graph

and expose new fusion opportunities.

6.2.1 Optimizations

Loss Elimination. Despite it sounding counter-intuitive, this chapter found that

the loss value can be eliminated as a dead node from the joint forward-backward graph

for two reasons: the backward pass can be performed without computing the loss value,
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and the loss value is not required for every iteration.

For the first reason, the loss value does not participate in the computation of the

backward pass. For example, in the widely used softmax cross-entropy loss function, the

gradient of logits X under target Y can be simplified to

∂L

∂X
= − 1

n
OneHot(Y ) +

1

n
Softmax(X). (6.1)

With this equation, the gradient can be directly computed with higher numerical stability

without the loss value.

For the second reason, the loss value is required only when the users need to observe

it to assess the training process. However, the training process can take millions of

iterations, and it is not necessary to check the loss of each iteration. Therefore, the loss

can be computed only when it is required, and the accelerated version is used for the

remaining iterations.

With this domain knowledge, loss elimination can be proposed that eliminates the

loss value as a dead node. However, existing DNN frameworks like PyTorch still use the

loss value to trigger the backpropagation, so it is achieved by simply replacing the loss

value with a constant scalar tensor.

Decomposition. The deep learning frameworks contain many non-fusible operations

like logSoftmax, addmm, designed to simplify programming and leverage existing fused

kernels. However, these operations also become the major obstacle for kernel fusion, as

each of them may require special rules to handle. To tackle this issue, decomposition

rules are registered for these operations, breaking them down into basic fusible operations

like element-wise operations and reductions through pattern matching and rewriting.

Table 6.1 provides examples of these decomposition rules. The decomposition of Batch

Normalization (BN) [103] is inspired by Jung et al., 2019 [104]. Unlike the original
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Table 6.1: Decomposition Examples in EVT
Pattern Decomposition

logSoftmax(X) log(Softmax(X))
nllLossBp(X, Y ) − 1

n
OneHot(Y )

logSoftmaxBp(dY,X) dY − logSoftmax(X)
∑

dY

dropout(X, p) X⊙(rand like(X)>p)
1−p

dropoutBp(dY,M, p) dY⊙M
1−p

reluBP (dY,X) dY ⊙ (X >= 0)
addmm(X,W, b) mm(X,W ) + b

BN(X,α, β)[104]

µ =
∑

X/n, m2 =
∑

X2/n

σ =
√

m2 − µ2

γ
σ
(X − µ) + β

BNBp(dY,X, µ, σ, γ)[104]

dβ =
∑

dY , X̂ = X−µ
σ

dγ =
∑

(dY ⊙ X̂)

dX = γ
σ
(dY − dβ

n
) − dγγX̂

nσ

paper that requires manual implementation of these fused kernels, the EVT kenel-level

compiler, discussed later, can automatically generate them and achieve state-of-the-art

performance.

Besides these registered decomposition rules, a simple interface is provided for users

to register custom rules by declaring the pattern and replacement as normal Python

functions, as illustrated by the example below:

def pattern(bias, x, weight):

return torch.ops.aten.addmm(bias, x, weight)

def replacement(bias, x, weight):

mm = torch.ops.aten.mm(x, weight)

return torch.ops.aten.add(mm, bias)

Reduction Elimination. Operator compilers generating fused kernels usually face

challenges in fusing reductions with their consumers, restricting fusion opportunities.

This limitation comes from the need for special parallelization that partitions all ele-

ments to be reduced to the same threadblock, which is typically incompatible with other
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operations.

In certain scenarios, a reduction operation can be transformed into a sequence of

fusible element-wise operators when it involves operators with a constant reduction value.

For instance, with integers y0≤i≤m ∈ [0, n) and a scalar α

n−1∑
j=0

αOneHot(


y0

...

ym

):,j = α


1

...

1

 . (6.2)

EVT introduces reduction elimination that automatically identifies these opportunities

and rewrites the graph to unlock additional fusion opportunities. A major challenge is

that operations with constant reduction values may not always be the direct input to

the reduction. There could be a sequence of associable arithmetic operations (+,−,×,÷)

between them. Following existing approaches in algebraic reassociation of expression,

EVT addresses this challenge with 3 steps:

• Extract the subgraph generating the reduction, containing only operators associable

with the reduction. When encountering a non-associable node, replace it with a

placeholder and annotate it if it has constant reduction value.

• Perform expression reassociation following Briggs et al., 1994 [105], assigning rank

-1 to reduction nodes such that they have the lowest rank. After reassociation, the

reductions always take a placeholder as input. If the placeholder has a constant

reduction value, fold it to a static tensor.

• Conduct constant propagation, if the subgraph contains no reduction nodes, sub-

stitute it back to the original graph.

Other Graph Simplifications. In addition to the specialized optimizations dis-
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Figure 6.2: Optimization of Softmax Cross-Entropy Loss.

cussed earlier, EVT also included a set of standard graph transformations to further sim-

plify the data-flow graph. These include conventional techniques such as constant propa-

gation with expression reassociation, common factor extraction, common sub-expression

elimination, and dead code elimination.

6.2.2 Example

To illustrate how aforementioned optimizations simplify the computation graph and

uncover new fusion opportunities, softmax cross entropy and its backward operations are

used as a running example, which can be simplified to a single fused softmax that not

only enhances numerical stability but also improves the overall performance.
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The softmax cross entropy is a standard loss function widely adopted by the deep

learning community. It can be a performance bottleneck in many cases. For instance,

profiling shows that when training Graph Convolutional Neural Networks (GCNs) [106]

on ogbn-mag dataset, the loss and its backward pass contribute over 13% of the total iter-

ation time. This inefficiency comes from that large reduction along the batch dimension,

which is unfriendly to mixed precision training due to numerical stability concerns.

Figure 6.2 illustrates the traced data-flow graph. It contains four non-fusible nodes.

After decomposition with patterns in Table 6.1, these non-fusible nodes are broken down

into fundamental fusible nodes. Then, loss elimination eliminates the nllLoss as a dead

node. While the
∑

node, decomposed from logSoftmax BP, initially hinders fusion with

the decomposed ops from nllLossBP, our reduction elimination pass folds it to basic

element-wise operations. Finally, the other graph simplification passes clean up the

computation graph, eventually enabling it to be fused by the kernel-level compiler. As

the optimized computation graph has no reductions, and all the intermediate results are

stored in registers with full precision, it has much better numerical stability compared

with the original version.

6.3 Operator-level Optimization

With the optimized graph in place, the next step is dividing it into disjoint partitions

for fusion. This section first uses a simple example in Figure 6.3 to demonstrate heuristics

used by existing studies may fail to find feasible and optimal partitions.

Example. Figure 6.3 shows the joint forward-backward graph of two layers. The

element-wise operators are colored green, mms stand for matrix multiplications that can

fuse element-wise operators to its output. For feasibility, {mm2, tanh, dtanh} is valid

under TVM[45]’s rule, yet it is infeasible due to the cycle. In terms of optimum, while
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mm1 relu tanhmm2 mm3

mm4mm5mm6

>0

× dtanh

…

…

…

…

Forward Pass

Backward Pass

Figure 6.3: Illustrative Example for Partition.

{mm1, relu} and {mm5”, > 0, ×} forms a valid partition, it is suboptimal as partition

{mm1, relu, > 0} and {mm5, ×} saves more memory access with the output of ”> 0”

stored under bitmask.

EVT’s Approach. EVT presents a novel algorithm that formulates partitioning as

an integer linear programming problem that offers three key benefits:

• Feasibility: The requirements including acyclic are encoded as ILP constraints.

• Optimum: The objective function maximizes saved memory access through fusion

in each partition.

• Extendability: Additional requirements and heuristics can be easily encoded as

constraints.

This section is organized as follows. It first discusses the ILP formulation following

Nossack et al., 2014 [47], then presents the novel techniques to reduce its solving time.

6.3.1 Integer Linear Programming Formulation

Let D = (V,A) represents the topological sorted data-flow graph with node set

V = {v1, ..., vn} and edge set A ⊆ {(vi, vj)|vi, vj ∈ V }. The objective is to find dis-

joint partitions {V1, ..., Vk} of D under certain constraints and heuristics, such that each
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partition can be fused into a single kernel. The benefit is the sum of memory access

caused by the internal edges within each partition. Therefore, each edge is assigned an

edge weight cij ∈ N+ describing the size of the tensor passed long it. Following Nossack

et al., 2014 [47], four types of decision variables are defined:

• xis ∈ {0, 1}: xis = 1 when node vi ∈ V in cluster Vs.

• zijs ∈ {0, 1}: zijs = 1 indicates both nodes vi, vj ̸=i ∈ V belong to cluster Vs.

• yst ∈ {0, 1}: yst = 1 identifies there is an edge between the nodes of cluster Vs and

Vt̸=s.

• πs ∈ Z: auxiliary variable used to formulate the Miller-Tucker-Zemlin(MTZ) sub-

tour elimination constraints that ensure acyclic partitioning [107].

The ILP problem can be formulated as follows. The object function (6.3a) maximizes the

sum of edge weights internal to each partition. Constraint (6.3b) ensures that each node

is exclusively partitioned to a partition. Constraints (6.3c) and (6.3d) encode additional

constraints and heuristics. Constraints (6.3e) and (6.3f) connect the decision variables x,

y, and z. Constraint (6.3g) formulates the acyclic constraint. Constraint (6.3h) reduces

the symmetry of the solutions. At last, Constraints (6.3i) and (6.3j) are the bounds of

each decision variable.
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max
∑

1≤s≤n

∑
1≤i≤j≤n

(cij + cji) · zijs (6.3a)

s.t.
n∑

s=1

xis = 1,∀1 ≤ i ≤ n (6.3b)

xis + xjs ≤ 1,∀1 ≤ s ≤ n, vi cannot fuse with vj (6.3c)

n∑
s=1

zijs = 1, vi must fuse with vj (6.3d)

zijs ≤ xis, zijs ≤ xjs,∀1 ≤ i < j ≤ n, 1 ≤ s ≤ n (6.3e)

xis + xjt − 1 ≤ yst,∀(vi, vj) ∈ A, 1 ≤ s ̸= t ≤ n (6.3f)

πs − πt + n · yst ≤ n− 1∀1 ≤ s ̸= t ≤ n (6.3g)

n∑
i=1

xis ≤
n∑

i=1

xi,s−1∀2 ≤ s ≤ n (6.3h)

xis, zijs, yst ∈ {0, 1}∀1 ≤ i < j ≤ n, 1 ≤ s ̸= t ≤ n (6.3i)

πs ∈ Z,∀1 ≤ s ≤ n (6.3j)

6.3.2 Reduce the Complexity

While Equation (6.3) offers feasibility, optimum, and high extendability, solving it

directly is impractical. The four types of variables introduce O(n3) decision variables, and

the branch and bound method further takes exponential time in the worst case to find the

optimal solution. To address this challenge, inspired by the fact that neural networks are

constructed by stacking similar layers, EVT divides D to disjoint components and solve

Equation (6.3) separately in each component. Additionally, EVT caches the solutions to

avoid solving the same ILP problem twice for components with similar structures. The
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Algorithm 4: Dividing Node Set
Input: Computation Directed Acyclic Graph D = (V,A).
A list of edges Ane ⊂ A such that ∀(vi, vj) ∈ Ane, vj cannot be fused into vi.
A list of nodes pairs Anv, (vi, vj) ∈ Anv indicates vi and vj cannot be fused
Output: Disjoint components {C1, ..., Cm}.

1 Create the directed graph D̄ = (V,A/Ane)
2 Construct a dict R that maps each node vi ∈ V to all the nodes it can reach through directed

edges in D.
3 for vi ∈ V do
4 Unfusible Set Si = {}
5 for vj ∈ R[vi] & (vi, vj) ∈ Anv do
6 Si = Si ∪ {vj} ∪R[vj ]

7 for vk ∈ Si do
8 remove edge (vi, vk) from D̄ if exists

9 {C1, ..., Cm} = weakly connected components(D̄)

mm1 relu tanhmm2 mm3

mm4mm5mm6

>0

× dtanh

…

…

…

…

Component 1 Component 2

Component 3

Figure 6.4: Motivating examples for Dividing Node Set.

major challenge is ensuring that the combined solution from each component remains

both feasible and optimal. The two-step solution is presented to address this challenge:

• Divide node set V to disjoint components {C1, ..., Cm} without hurting optimum.

• Reconstruct the edges in each component that ensures the feasibility of the solution

and solve Equation (6.3).

Dividing Node Set. The node set is divided with Algorithm 4. The insight is

that in the optimal solution, nodes belong to the same partition only if they are weakly

connected by fusible edges. Thus, all non-fusible edges can be cut to divide D into weakly

connected components. Figure 6.4 shows that this approach divides D into multiple small
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Algorithm 5: Reconstructing Edges and Solving ILP of Each Component

Input: Computation Graph D = (V,A). D̄ = (V, Ā) and components {C1, ..., Cm} from
Algorithm 4.

Output: Partitions {V1, ..., Vk}, Bool indicator is optimal
1 Create graph D̃ = (V,A+ ĀT ).
2 Partitions = {}, is optimal = true
3 for Ci ∈ {C1, ..., Cm} do

4 Get the directed graph D̃\Ci that excludes nodes in Ci.

5 Get the one-hop ancestors Na
i and descendants Nd

i

Na
i = {vj |vj /∈ Ci,∃vk ∈ Ci, (vj , vk) ∈ A} Nd

i = {vj |vj /∈ Ci,∃vk ∈ Ci, (vk, vj) ∈ A}.
6 Extract the subgraph Di containing V ′

i = Ci ∪Na
i ∪Nd

i :
Di = {V ′

i , A
′
i = {(vi, vj)|(vi, vj) ∈ A, vi, vj ∈ V ′

i }}
7 for vd ∈ Na

i do
8 for vs ∈ Nd

i ̸= vd do

9 if has path(D̃\Ci, vd, vs) then
10 if not ∃ path vs → vd in D including nodes from at least two components then
11 add edge(Di, (vd, vs))
12 if !has path(D\Ci, vd, vs) then
13 is optimal = false

14 Solve Equation (6.3) with additional constraint that each node in Na
i and N b

i form a
partition with size 1.

15 for n ∈ [1, |Ci|] do
16 Vn = {vn|xnk == 1}
17 if Vn ̸= ∅ then
18 Partitions.append(Vn)

components with few nodes while leaving the partition of component 1 to the ILP solver.

Two types of edges are identified as non-fusible in Algorithm 4. The first (line 1)

includes edges directly connecting two non-fusible nodes, such as the incoming edges

to mms. The second type (line 2-8) involves edges that, if fused, would create cycles.

A necessary condition from Theorem 3.3 in Nossack et al., 2014 [47] is leveraged: if a

directed path from vi to vj exists in D and vi, vj belong to different partitions, then all

nodes that can be reached from node vj cannot be in the same partition with vi. In

Figure 6.4, the edge between ”tanh” and ”dtanh” is cut based on this rule, as ”tanh”

cannot be fused with ”mm3” while ”mm3” can reach ”tanh”.

Reconstructing Edges and Solving ILP. With Algorithm 5, for each component,
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mm1 relu mm2

mm5mm6

>0

× dtanh

Component 1

Ancestor

Descendant

Figure 6.5: Example of Reconstructing Edges for Feasibility.

the edges are constructed to ensure feasibility before solving the ILP. Theorem 6.3.1

below guarantees its solutions are always feasible, and they are optimal under an easily

verifiable condition, which always holds during our evaluation of various DL models.

Theorem 6.3.1 Algorithm 5 returns the global optimal and feasible solution when is optimal

is true. Otherwise, it returns a feasible solution. (Proof: See Appendix B.1).

Figure 6.5 uses component 1 from Figure 6.4 as an illustrative example. A node is a

descendant if it has an incoming edge from the component (e.g. ”mm2”), and it is an

ancestor if it has an outgoing edge to the component (e.g. ”dtanh”). The edges can be

constructed in 3 steps:

• Identify all the ancestors and descendants of the current component (line 5,6).

• Modify D by replacing any edges that can be fused with bidirectional edges (line

4, 10).

• Add edges from any descendants to any ancestors if a path exists in the modified

graph between them(line 11), e.g. the edge mm2→dtanh in Figure 6.5.

The intuition is that the solutions from Figure 6.5 are feasible and optimal if the

acyclic constraint is neither loosened nor tightened. In other words, a cycle exists in
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Figure 6.6: Adding edges from descendants to ancestors.

Figure 6.4 involving nodes in component 1 is a sufficient and necessary condition for a

cycle exists in Figure 6.5.

Ancestors and descendants serve as auxiliary nodes. If a fusion in component 1

creates a cycle involving nodes outside the component, the cycle must contain pairs of

descendants and ancestors. The partitioner then uses these as boundaries to break the

cycle into paths within and outside the component. The condition becomes: a path exists

in Figure 6.4 between any pair of descendants and ancestors is a sufficient and necessary

condition for a path to exist in Figure 6.5 with the same source and target.

Internal paths from ancestors to descendants are ensured sufficient and necessary by

preserving all internal edges. However, external paths from descendants to ancestors can

be influenced by fusion in other components. In detail, while fusion does not remove

paths, it creates new ones equivalent to changing fused edges to bidirectional. For exam-

ple, fusing vp and vq in Figure 6.6 (B) creates a path from vd → (vp, vq) → va equivalent

to adding the red arrow. To ensure feasibility, edges from any descendant to any ancestor
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in Figure 6.5 are added when a path could exist between them. Figure 6.6 illustrates four

different scenarios. Figure 6.6 (A,B) shows scenarios when the edge should be added. In

(A), there is a natural path vd → va. In (B), vp and vq belong to the same component

and could be fused, which creates the path vd → (vp, vq) → va. Oppositely, Figure 6.6

(D,E) shows cases when the edge is not needed. In (D), vp and vq belong to different

components, so they cannot be fused. In (E), although vp and vq belong to the same com-

ponent, fusing them is infeasible as it creates a cycle (vp, vq) ↔ vk. While this method

ensures the condition is necessary, it can also be sufficient (optimal) if whenever a path

exists in the modified graph, there is always a path that exists in the original graph. Line

12-13 checks this condition and returns indicator is optimal.

Caching the Solutions. The ILP solutions are stored in a database so that they can

be retrieved for components with isomorphic structures. Particularly, keys are created

with the Weisfeiler Lehman graph hashing [108] so that isomorphic components will have

identical hash.

6.4 Kernel-level Optimization

This section first explains the key abstraction under our operator compiler, ”Epilogue

Visitor”. This abstraction allows fusing operators under the producer-consumer relation-

ship by directly leveraging expert-designed implementations for the producer part and

ensuring optimal performance while assembling the consumer part at compile time to

accommodate to different fusion patterns. Under the abstraction, the EVT kernel-level

compiler is presented, which automatically generates fused kernels with state-of-the-art

performance while supporting diverse patterns.
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parallel_for …
for …

T accum[TM][TN] = {0}
// Mainloop
parallel_for …

for …
accum[…] += A[…] * B[…]

// Epilogue
parallel_for …

for …
fn(accum[…], *args)

T accum[M][N] = {0}
// Producer
for (int m=0; m<M; ++m)

for (int n=0; n<N; ++n)
for (int k=0; k<K; ++k)

accum[m][n]+=A[m][k]*B[k][n]

// Consumer
for (int m=0; m<M; ++m)

for (int n=0; n<N; ++n)
fn(accum[m][n], *args)

template <…>
class Mainloop {

void operator()(&accum, A, B) {
parallel_for …

for …
accum[…] += A[…] * B[…]

}};  

template <…>
class Epilogue {

void operator()(const &accum) {
parallel_for …

for …
fn(accum[…], *args)

}};

template <
class Mainloop, class Epilogue 

>
class Kernel {

void operator()(A, B, args) {
Mainloop mainloop;
Epilogue epilogue;
parallel_for …

for …
T accum[TM][TN] = {0}
mainloop(accum, A, B)
epilogue(accum, *args)

};
}

(A)

(C)

(B)

(D)

Figure 6.7: Mainloop-Epilogue Abstraction

6.4.1 Epilogue Visitor Abstraction

The Epilogue Visitor abstraction originates from the Mainloop-Epilogue abstraction

widely adopted by existing template libraries and TMP-based compilers [54].

Mainloop-Epilogue Abstraction and Its Limitation. As shown in Figure 6.7(A),

the Mainloop-Epilogue abstraction fuses operators under the producer-consumer relation-

ship. It requires the consumer to have the same set of spatial loops as the producer so

that they can be fused by injecting the statement of the consumer into the end of the

producer’s spatial loops. Subsequently, As shown in Figure 6.7(B), the loops are restruc-

tured to achieve optimal performance through techniques such as tiling, parallelization,

and software pipelining. The Mainloop-Epilogue abstraction takes the producer as the

123



Kernel-Centric Optimization: Compiler Perspective Chapter 6

// Consumer
for (int m=0; m<M; ++m)

for (int n=0; n<N; ++n)
fn(accum[m][n], *args)

𝐿! 𝐿"
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𝐶"
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𝑆"
// Consumer
for (int m=0; m<M; ++m)

for (int n=0; n<N; ++n)
𝑙! = 𝐿![m][n]

				𝑙" = 𝐿"[m][n]
𝑐! = 𝐶!(𝑙!, 𝑙")
𝑆![m][n] = 𝑐!
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Figure 6.8: Epilogue Visitor Tree Abstraction

mainloop and the consumer as the epilogue. As shown in Figure 6.7(C), different main-

loops and epilogues are developed separately as different C++ classes, and a universal

kernel template in Figure 6.7 (D) takes the mainloop and epilogue as template argu-

ments. This modular approach allows assembling different mainloop-epilogue pairs at

compilation time and supports |mainloop| × |epilogue| patterns.

However, the ”Epilogue” of the Mainloop-Epilogue abstraction is not scalable as the

number of consumer operators grows rapidly. It is impractical to implement all potential

epilogues manually, optimizing and verifying intricate epilogues also poses significant

challenges.

Epilogue Visitor Abstraction. The EVT abstraction preserves the mainloops and

further modularizes the epilogue to address its scalability issue. As shown in Figure 6.8

(A,B), the consumer is modeled as a computation graph instead of a single operator,

the key insight is that the rapid growth of potential consumer operators occurs on the
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edge set instead of the node set, i.e. different consumers have different combinations

of the same set of basic operators. This insight motivates the design to manage a library

of high-performance implementation of basic operators decoupled from each other, and

develop a compiler to assemble them at compile time for different consumers. The detailed

explanation is as follows.

Supported Patterns. EVT supports any consumers that can be written as a per-

fectly nested loop, where all the statements are in the spatial loops of the producer

(Figure 6.8 (A)). This structural constraint has proven to be key in simplifying transfor-

mations and has been widely adopted by many state-of-the-art compilers like the linalg

dialect of MLIR [109]. This requirement is loose enough to capture most scenarios in

neural networks, including element-wise load/store, broadcast, reduction (atomic), and

element-wise computations.

Decouple Epilogue Operators with Visitor. Figure 6.8 shows the perfectly

nested loop representation of the epilogue, where the original function can be decomposed

into a series of load, store, and compute operators. Figure 6.8(B) visualizes it as a graph.

Notably, the store is modeled as a transparent node that forwards its input. To decouple

the implementation of each node, the ”visitor” is introduced to rewrite the graph to

Figure 6.8(C), where all nodes become leaves. Two types of visitors are introduced.

The tree visitor in Figure 6.8 (D) handles non-leave nodes with output degree 1. The

topological visitor in Figure 6.8 (E) takes other general cases. It sorts the inputs by

topological order and creates an edge list describing the dependency between them. At

runtime, the topological visitor holds intermediate results from each input node with a

temporary register buffer.
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for (int m=0; m<M; ++m)
for (int n=0; n<N; ++n)
𝑙! = 𝐿![m][n]

parallel_for (int 𝑡"=0; m<M/𝑇#; ++ 𝑡")
parallel_for (int 𝑡$=0; n<N/𝑇%; ++ 𝑡$)

/* begin_epilogue */
for (int s=0; s<𝑇#/8; ++s) {

/* begin_step */
𝐿&'( 8 𝑇% ={0}
parallel_copy(𝐿&'(, 𝐿![…][…])
parallel_for (int 𝑟)=0; 𝑟)<𝑊&;++𝑟))

for (int r=0; r<8/𝑊&; ++r) {
/* begin_row */
parallel_for(int 𝑐)=0; 𝑐)<𝑊*;++𝑐))

for (int c=0; c<𝑇%/𝑊*/𝑉; ++c) {
/* visit */
vector_for(int v=0; v<𝑉; ++v)
𝑙! = 𝐿&'([…][…]

}
/* end_row */

}
/* end_step */

}
/* end_epilogue */

for (int m=0; m<M; ++m)
for (int n=0; n<N; ++n)
𝑆![0][n] += 𝑐!

parallel_for (int 𝑡"=0; m<M/𝑇#; ++ 𝑡")
parallel_for (int 𝑡$=0; n<N/𝑇%; ++ 𝑡$)

/* begin_epilogue */
𝑆&'([𝑊&] 𝑇% ={0}
for (int s=0; s<𝑇#/8; ++s) {

/* begin_step */
parallel_for (int 𝑟)=0; 𝑟)<𝑊&;++𝑟))

for (int r=0; r<8/𝑊&; ++r) {
/* begin_row */
parallel_for(int 𝑐)=0; 𝑐)<𝑊*;++𝑐))

for (int c=0; c<𝑇%/𝑊*/𝑉; ++c) {
/* visit */
vector_for(int v=0; v<𝑉; ++v)
𝑆&'([…] +_= 𝑐!

}
/* end_row */

}
/* end_step */

}
/* end_epilogue */
parallel_then_atomic_reduce(S!, 𝑆&'()

(A) Element-wise Load (B) Per-column Reduction

template <…>
class ElementWiseLoadImpl: ImplBase {

void begin_step(…){…}
T visit(…) {…}

};

template <…>
class PerRowReduceImpl: ImplBase {

void begin_epilogue(…){…}
T visit(…) {…}
void end_epilogue(…){…}

};

Figure 6.9: Implementation of Epilogue Operators

Implementation of Epilogue Operators. Figure 6.9 illustrates how the decoupled

operators can be optimized and implemented separately. The original loop structure of all

the operators is reconstructed into the same nested loops for optimal performance, with

parallel for tied to GPU thread hierarchies and vector for vectorized. For convenience,

the code blocks at the start of the sequential loops are named as begin xxx, and those at

the end as end xxx. The code block of the innermost sequential loop is called visit.
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Graph IR

Optimization & Lowering
Shape/Type Propagation

Layout Node Elimination

Get Implementation

Get Visitors

C++ Emitter

Frontend

Partition
def example_epilogue(accum, alpha, C):

F = alpha * accum + (beta * C + aux)
E = relu(F + 1) + bias
D = E + F
return D, F

Python Function

Lowered 
Graph IR

template <…>
class Epilogue {
void operator()(const &accum) {
parallel_for …
for …

fn(accum[…], *args)
}};

Epilogue Template

Figure 6.10: Overview of the EVT Operator Compiler

While all operators can be implemented by only filling the visit code block because

of the perfectly nested loop constraint, better performance can be achieved by leveraging

other blocks. For instance, in Figure 6.9 (A), the element-wise load can be optimized

by first copying a matrix fraction into registers at begin step and then accessing them in

visit. This ensures coalesced memory access and minimized address/predicate arithmetic.

In Figure 6.9 (B), the per-column reduction can be accelerated by initiating a temporary

buffer at begin epilogue to store partial results accumulated during visit, then perform the

parallel reduction in end epilogue before atomically reducing the result to global memory.

Finally, as shown at the bottom of Figure 6.9, each operator can be implemented as a

template class providing member functions defining the non-empty code blocks. These

functions will be called by the visitors at runtime.

6.4.2 EVT Kernel-level Compiler

With the Epilogue Visitor abstraction, a novel kernel-level compiler is presented:

Epilogue Visitor Tree (EVT). The ”Tree” comes from the fact that the transformed

graph in Figure 6.8 (C) becomes a tree whose root is the last visitor. The overview of
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the compiler is shown in Figure 6.10.

The core of the compiler is a graph intermediate representation (IR) shown in Figure

6.11. It models the epilogue as a graph, where each node represents an operator. The

nodes are classified into four types: load, compute, store, and layout. Each node also has

four fields: name, shape, stride, and data type. The shape and stride are tuples following

the cute library of CUTLASS 1. For instance, shape (m,n) and stride (n, 1) represent a

m× n matrix stored in the row-major layout. The index to the storage of the tensors in

memory can be computed via inner product between shape and stride.

To support different input formats, the IR is constructed with minimum information

and constraints by frontends. Then, the optimization and lowering schedules passes that

fill in missing information and canonicalize the IR to meet the epilogue visitor abstraction.

The C++ emitter then traverses the IR and emits the template class for the epilogue.

This design allows adding new frontends for other compilation workflows easily while

reusing the rest of the logic.

Frontend. EVT supports diverse user inputs from partitions generated by the pre-

vious section to Python functions. An example of the Python frontend is shown below,

which defines the epilogue in Figure 6.11 (A).

def example_epilogue(accum, bias):

add = reshape(accum, new_shape=(128, 4, 64) + bias

permute_1 = permute(add, indices=(2,1,0))

reduce = sum(permute_1, dim=[0, 1])

out = relu(add) * permute(permute_1, indices=(2,1,0))

return reduce, out

tensors = {

"accum": Tensor(torch.float32, shape=(128, 256)),

"bias": Tensor(torch.float16, shape=(4, 64)),

"reduce": Tensor(torch.float32, shape=(128,)),

"out": Tensor(torch.float16, shape=(128, 4, 64))}

epilogue = python_ast.trace(example_epilogue, tensors)

1https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/01_layout.md
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Figure 6.11: Example of EVT transformations.

Shape Type Propagation. This pass takes two stages. The first stage visits the

nodes in topological order to fill in missing strides, shapes, and data types. The second

stage, in reversed topological order, updates the shape and stride to remove implicit

broadcast. For example, the shape and stride of bias are updated from (4,64):(64,1) to

(128,4,64):(0,64,1), with the first dimension broadcasted.

Layout Node Elimination. This pass aims to canonicalize the IR by removing

layout nodes. In the context of the epilogue visitor abstraction, all operators must align

with the spacial loops of the producer, which can be translated to all the nodes having

the same shape with the accum node with our IR. However, as shown in Figure 6.11
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(B), layout nodes alter shapes and violate this requirement. EVT removes layout nodes

by propagating them away from the accum through swapping with its neighbors. These

layout nodes will eventually merge into a load or store node by updating their shape

and stride. The result is shown in Figure 6.11 (D), all the operators now share the same

shape.

Get Implementation and Visitor. This pass lowers the canonical IR to specific

implementations. While the proposed IR only has four types of nodes for simplicity, each

type can have multiple underlying implementations for different strides. For instance,

the reduce has stride (1, 0) that reduces the matrix into a column vector, while the out

has stride (256, 1) that stores the matrix to memory in row-major. This pass infers the

implementation of each node based on its stride and injects the visitors for each non-leaf

node based on its output degree. The result is shown in Figure 6.11 (D).

C++ Emitter. The proposed compiler provides a high-performance operator library

including popular epilogue operators. The C++ Emitter emits the template class of

the epilogue by simply traversing the IR in Figure 6.11 (D) and emitting each node in

post-order. Notably, for operators not covered by our library, with our epilogue visitor

abstraction, they can be implemented easily or generated by compiler techniques.

6.4.3 Additional Features

This section summarizes additional features EVT provides to improve flexibility and

performance.

Dynamic Shapes. The epilogue operators take the shape and stride as runtime

parameters so that the same kernel compiled can support inputs with dynamic shapes.

Performance. EVT is compatible with the StreamK[110] for better workload bal-

ance. It also introduces the ping-pong buffer to the epilogue on Ampere GPU, enabling

130



Kernel-Centric Optimization: Compiler Perspective Chapter 6

overlapping the computation and memory access in the epilogue.

Mainloop Fusion. While EVT focuses on epilogue fusion, it also offers the capability

of fusing permutations of mainloop arguments for particular producers, such as matrix

multiplication. In detail, CUTLASS indices the multiplicand and multiplier in matrix

multiplication using the strides provided through its runtime arguments. EVT leverages

this feature and recomputes the stride of permuted inputs, which ensures the multiplicand

and multiplier are accessed correctly without actually permuting their data in memory.

6.5 Evaluation

This section evaluates the performance of EVT on five real-world NN architectures

and compares it with existing compilers. Section 6.5.2 evaluates the end-to-end training

performance. Section 6.5.3 provides additional evaluations on representative layers of

each architecture to explain the rationale behind EVT’s speedup. Besides, it also enables

comparison with inference compilers such as TVM [45].

6.5.1 Experiment Setup

Benchmarks. Five models are selected including BERT-Large [111], VIT [112],

ResNet-50 [113], XML-CNN [114], and GCN [106] to cover diverse architectures and do-

mains. Details on the rationale behind benchmark selection are available in supplemental

material.

Platform. Single NVIDIA A100 GPU (40 GB) with CUDA 12.1 and NGC docker

nvcr.io/nvidia/pytorch:23.07-py3.

Baselines. In the end-to-end benchmark, EVT is compared with Torch Inductor [98]

and NVFuser. The former integrates various state-of-the-art compiler techniques from

Triton [101] to CUTLASS[54]. The mode is set to max-autotune for optimal performance.
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Figure 6.12: End-to-end Training Speedup over the PyTorch Implementation.

The NVFuser is an operator compiler for GPU that just-in-time compiles fast and flexible

GPU-specific code. In layer-wise benchmarks, EVT is compared with Triton[101] and

TVM [45]. For TVM, GEMM and convolutions are tuned by autotvm to leverage Tensor

Cores, while others are generated through Ansor [115]. The CUDA Graph and AMP are

applied to all methods for fair comparison.

6.5.2 End-to-End Benchmarks

The end-to-end training speedup for the five benchmarks is summarized in Figure 6.12

with results normalized to the naive PyTorch Implementation. EVT achieves 1.23∼3.10×

end-to-end training speedup across all benchmarks, outperforming existing compilers.

6.5.3 Layer-Wise Benchmarks

This section evaluates EVT on representative layers from the five models. For each

benchmark, the computation graph is visualized from Triton, TVM, and our EVT. Op-

erators fused are grouped with boxes, with orange indicating heavy ops (e.g. GEMM,

Softmax) and green indicating light ones (element-wise / reductions). The normalized

latency over the PyTorch is also shown, which is divided into heavy and light ops. The
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speedups are also annotated for convenience.

0

1

PyTorch Triton TVM EVT

m Matmul

b Batched Matmul

S Softmax Elementwise Placeholder

Triton TVM EVT(Ours)

m

+

r

p

m

+

r

p

m

+

r

p

b

r

/

+

s

d

r

b

p

r

m

+

r

p

m

+

r

p

m

+

r

p

b

r

/

+

s

d

r

b

p

r

m

+

r

p

m

+

r

p

m

+

r

p

b

r

/

+

s

d

r

b

p

r

Reshape/Permute

Normalized Latency

1.54x0.85x
1.16x

Figure 6.13: The Self-Attention Layer. (Bert, VIT)

Self-Attention Layer. Accelerating the self-attention layer requires the compiler

to 1) efficiently handle different permutations and reshapes of the same tensor, and

2) generate high-performance fused kernels. EVT handles 1) through the cute-based

IR design and passes in Section 6.4.2 and guarantees 2) through the Epilogue Visitor

abstraction. In contrast, fused kernels generated by Triton are less efficient than ours,

while TVM does not handle 1) efficiently.
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Figure 6.14: The Multilayer Perceptron (MLP). (Bert, VIT)

MLP. Optimizing the MLP requires the compiler to find the feasible and optimal

partition of the computation graph. In Figure 6.14, EVT identifies the optimal cut be-

tween ̸= and × decomposed from the ReLU backward through the partitioner in Section

6.3, while Triton and TVM generate suboptimal partitions.
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Figure 6.15: The Conv-BN-ReLU Layer. (ResNet)

Conv-BN-ReLU. The major challenge of BN under the channel-last layout is the

strided access to the reduction dimension, so optimizing this layer requires compilers

to 1) decompose the batch norm operator to create new fusion opportunities, and 2)

generate high-performance kernels under the channel-last layout. EVT addresses this

by decomposing BN to reduction and element-wise, and the reduction is fused to the

preceding convolution efficiently. In contrast, Triton’s fused BN-ReLU is less performant

due to the layout, and TVM fails to fuse the reductions.
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Figure 6.16: The Binary Cross-Entropy Loss. (XML-CNN)

Binary Cross-Entropy Loss. Accelerating BCE loss involves 1) identifying fusion

opportunities on the fence of the forward and backward pass and 2) generating high-

performance fused GEMM with diverse epilogue operators, including broadcast, various

element-wise operators, and reductions. EVT accomplishes 1) through its loss elimination

pass and achieves 2) through the Epilogue Visitor abstraction. In contrast, Triton failed

to cross the boundary between forward and backward graphs, while TVM creates less

performant kernels.
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Figure 6.17: Softmax Cross-Entropy Loss. (GCN)

Softmax Cross-Entropy Loss. This graph shares similar optimization require-

ments with BCE loss. With the graph-level optimizations and operator compiler, EVT

fuses the entire graph into a single kernel that offers 2.81× speedup over cuDNN. Op-

positely, Triton failed to identify fusion opportunities between forward and backward

graphs, while TVM creates less efficient kernels.

6.6 Conclusion & Discussion

EVT enables generating fused kernels with state-of-the-art performance while ac-

commodating diverse fusion patterns. Along with the algorithm-level optimizations and

partitioner that fully unleash its potential, EVT optimizes the deep learning training

workload automatically and achieves state-of-the-art performance.

Impact on Multi-GPU/Node Training. While this chapter majorly focuses on a

single GPU in this paper, EVT can be easily leveraged to accelerate the multi-GPU/node
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training. Particularly, a recent trend is fusing GEMMs with succeeding communication

kernels that allow overlapping between computation and communication at the tile gran-

ularity [116, 117]. While this technique originally required manually implementing these

fused kernels by experts, with EVT, the communication operator can be implemented as

a special type of store node while reusing the rest of the EVT infrastructure.
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Conclusion

This dissertation presents how the utilization of GPGPU when executing deep learning

workloads can be effectively improved through kernel-centric optimization.

7.1 Summary of Contributions

The above four chapters demonstrate that the kernel-centric optimization is not only

about implementing high-performance kernels alone, but also about codesigns with upper

stacks from algorithm design to operator definitions.

With codesign between algorithm and kernel levels, the vecSparse in Chapter 3

achieves 1.41× end-to-end speedup and 13.37× peak memory reduction on the sparse

transformer inference task. The new sparse pattern designed on the algorithm level

provides higher data reuse opportunities with linear granularity scaling, as opposed to

the quadratic scaling seen in previous studies. The TCU-based 1-D Octet tiling strategy

proposed in kernel-level optimization addresses numerous pipeline stall reasons, which are

responsible for the low EU-level utilization of kernels regarding the new sparse pattern.

Compared with existing implementations, the new kernel design achieves 1.71×-7.19×
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speedup.

Also benefitting from algorithm and kernel-level codesign, the Dfss in Chapter 4

achieves 1.38 ∼ 1.86× speedup over the dense attention mechanism. The algorithm de-

sign, which focuses on the use of N:M sparsity and the position to introduce it, ensures

that Dfss only contains GPGPU-friendly operators. The kernel design significantly im-

proves the EU-level utilization when pruning and encoding the N:M sparsity, eliminating

all the pruning overhead. This enables Dfss to achieve speedup at arbitrary sequence

lengths and allows for easy combination with existing efficient transformers.

With the codesign approach encompassing algorithm, operator, and kernel levels,

fuseGNN in Chapter 5 achieves 5.3× end-to-end speedup over state-of-the-art frame-

works when training GNNs, accompanied by the reduction in global memory footprint

by several orders of magnitude on large datasets. This advancement is attributed to

the dual aggregation strategy proposed at the algorithm level, potential fusible operators

identified at the operator level, and the dedicated kernels designed at the kernel level. All

these optimizations together improves the utilization of GPGPU when training GNNs.

Finally, the EVT in Chapter 6 brings kernel-centric optimization to the realm of

deep learning compilers. It delivers 1.23 ∼ 3.10× speedup across five real-world neural

network models with diverse architectures. By translating algorithm-level optimizations

to graph transformations, operator-level optimizations into the data flow graph parti-

tioning, and kernel-level optimization into a novel compiler that composes fused kernels

with handcrafted mainloops and compiler-generated epilogue under the epilogue visitor

tree abstraction, EVT automates kernel-centric optimization on a wider range of neural

network models with minimal engineering effort and expertise.
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7.2 Future Research

This dissertation only scratched the surface of kernel-centric optimizations of deep

learning on GPGPUs. Future studies can be conducted on the following aspects.

7.2.1 Multi-device/node Training

While the approaches presented in this dissertation primarily focus on single GPGPU

scenarios, the rapid advancements in large language models in recent years have brought

forth new challenges when training across multiple devices or nodes, where device-level

utilization is limited by the communication overhead of passing activations and gradients

between different GPGPUs.

At the algorithm level, novel training algorithms can be designed that are easier to

parallel, such as asynchronous parameter updates between different GPGPUs, would

enable more overlapping between communication and computation.

At the kernel level, beyond the partitioning of the data flow graph into fusible opera-

tors, exploration of novel partitioning strategies can optimize the data flow graph across

multiple devices, with a specific focus on minimizing inter-GPGPU communication over-

head.

At the kernel level, dedicated kernel designs can be proposed that enable the fine-

grained overlapping between computation and communication at tile levels, which could

significantly reduce communication overhead, leading to improved device-level utilization.

7.2.2 Combination of MLIR and EVT

The integration of EVT in Chapter 6 into the MLIR ecosystem is another promis-

ing direction. Currently, EVT’s kernel-level compiler addresses the scaling issue of epi-

logue fusion in existing template-based compilers, yet the process remains somehow semi-
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automatic, requiring expert implementation of visitor nodes. Additionally, the compiler’s

standalone design makes it challenging to reuse, extend, connect with existing compilers,

or compile and debug efficiently.

These issues can be addressed by leveraging the MLIR ecosystem. By designing EVT

as a formal series of dialects, corresponding transformations, and lowering rules, the

resulting compiler could leverage the high-quality compiler infrastructure offered MLIR,

which makes it reusable and extensible. For example, an MLIR-based EVT could take

the Linalg dialect as input, allowing it to be connected by existing MLIR-based compilers.

Then, the fusion can be performed that aligns the spatial loops of the epilogue to the

mainloops. Subsequently, tensors could be lowered to a Cute-inspired dialect based

on affine maps, coupled with loop transformations that apply various transformations

to automatically generate a high-performance epilogue, ultimately connecting with the

handcrafted mainloop.
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Supplemental Materials for DFSS

A.1 Theoretical Results

This section provides more theoretical and empirical evidence that justifies Dfss as a

good replacement of the full attention. It first derives the theoretical value of 1) quality

of the approximation with different sparse patterns 2) speedup can be achieved under

certain sparsity. Then, the quality of different methods is compared under the same

speedup.

A.1.1 Attention Lottery Ticket

The lottery ticket hypothesis [118] can be extended to the attention mechanism. The

last step AV in the attention mechanism can be viewed as the aggregation in the graph

neural network. Following the Generalized Attention Mechanism [38], it can be described

with a weighted directed graph G = (A,X). A is the adjacent matrix and Au,v > 0

indicates that element xu attends to xv. Inspired by the Graph Lottery Tickets [119],

the Attention Lottery Ticket can be formulated as follows.

Attention Lottery Ticket (ALT). Given a fully connected d graph G = {A,X}
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constructed from the full quadratic attention mechanism [13], the associated sub-graph

can be defined as Gs = {m ⊙ A,X}, where m is a binary mask. If a Gs has the

performance matching the original full quadratic attention mechanism, then we define

the sparse attention mechanism with Gs as an attention lottery ticket.

Zaheer et al. 2020[38] have proved the existence of lottery tickets by showing 1)

sparse attention mechanisms are universal approximators of sequence to sequence func-

tions when being used as the encoder 2) sparse encoder-decoder transformers are Turing

Complete. So the remaining problem is how to identify the winning tickets Gs at runtime.

A.1.2 Quality of the Lottery Ticket

A popular strategy that empirically works well is selecting the top-k neighborhood

in G based on the magnitude of edge weight, which can be refered as Top-k Sparsity.

Intuitively, this strategy is based on the hypothesis that the edges with larger edge weight

are more important. It has been widely adopted in existing studies [118, 119, 40, 120] and

demonstrated its ability to preserve model accuracy at a high sparsity ratio. Following

this trend of work, Quality of Attention Lottery Ticket can be defined as follows:

Definition A.1.1 (Lp-Quality of Attention Lottery Ticket) The quality of atten-

tion lottery ticket Gs = {m ⊙ A,X} under density s = 1
n2

∑n
j=1

∑n
i=1mj,i is defined

as

Qp =
1

n

n∑
j=1

∑n
i=1 (m⊙A)pj,i∑n

i=1 A
p
j,i

. (A.1)

The above definition computes the expectation of normalized Lp norm in each row

of the attention score matrix. The p is a task-dependent factor that indicates how the

accuracy depends on the edges with higher magnitude. In this section, the Lp-Quality
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of tickets yield by three types of sparse patterns are compared: Top-K, fixed, and our

dynamic 1:2 and 2:4 sparse pattern. Particularly, the proposition below can be proved:

Proposition A.1.2 Under the assumption that the entries in QKT/
√
d follow i.i.d.

N (µ, σ), the following equations holds

Qp
topk|s ≈

1 + erf
(

pσ√
2
− erfinv(1 − 2s)

)
2

,

Qp
fix|s = s, Qp

2:4 ≥ Qp
1:2 =

1 + erf
(
pσ
2

)
2

(A.2)

(Proof: Appendix A.6)

It is obvious that the Qp
topk achieves the upper bound of Qp under s. Besides, the pσ

is always positive, leading to Qp
2:4 ≥ Qp

1:2 > Qp
fix|s=0.5 = 1/2.

A.1.3 Efficiency of the Lottery Ticket

A lottery ticket with high quality does not necessarily mean that it is also efficient

to execute for actual speedup on GPGPUs. In this section, the efficiency of the three

sparse patterns is discussed.

Top-K Sparsity. Zhao et al. 2019[121] explicitly select k neighbors in each row of

A based on their magnitude. However, as shown in their Table 4, the explicit sparse

transformer has lower inference throughput despite k ≪ n. On one hand, the top-k

operator is difficult to parallel and introduces high overhead. On the other hand, even

if an oracle top-k sparsity mask m were provided with zero overhead, it would still

be difficult for the explicit Top-K sparse attention to beat its dense counterpart. A

theoretical upper bound for density s is provided in Proposition A.1.3 below.

Proposition A.1.3 Given embedding size d and the maximum tiling size T supported

by GPU, the upper bound of the speedup achieved by Top-K Sparsity under density s is
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(Proof: Appendix A.7)

Speedup <
4d + 3T

2d + T + (d + 2T + dT )s
. (A.3)

As typical values for the dimension d and tiling size T are d = 64, T = 128, s < 4.5% is

a necessary and insufficient condition to have Speedup > 1. Notably, this is not a strict

upper bound as the overhead of identifying top-k entries is not taken into consideration.

Therefore, the strict upper bound should be even smaller.

Fixed Sparsity. As the fixed sparse pattern are designed or learned before inference,

they can be designed to be GPU-friendly and have the same tiling size as the dense matrix

multiplication. Therefore, the upper bound of the speedup under density s can be derived

with the same strategy in Proposition A.1.3:

Speedup =
n2
(
2d
T

+ 1
)

+ 2n2 + nd
(
2n
T

+ 1
)

sn2
(
2d
T

+ 1
)

+ 2n2s + nd
(

(1+s)n
T

+ 1
)

n≫d
=

4d + 3T

(1 + 3s)d + 3sT
.

(A.4)

Dynamic 1:2 / 2:4 Sparsity. Similarly, the theoretical speedup with 1:2 and 2:4

sparsity can be derived as follows:

Speedup=
n2
(
2d
T

+ 1
)

+ 2n2 + nd
(
2n
T

+ 1
)

n2
(
2d
T

+ 1
2
+ 1

16

)
+n2+nd

(
n
T

+ n
2T

+ n
16T

+1
)

n≫d
=

64d + 48T

57d + 25T
.

(A.5)
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A.1.4 Quality of the Lottery Tickets under the same Efficiency

With the theoretical conclusions above, the quality of the lottery ticket can be com-

pared between dynamic 1:2 and 2:4 sparsity and the other two methods under the same

efficiency.

Comparison with Top-K Sparsity. The Top-K sparsity achieves the same effi-

ciency with Dfss at

s <
(4d + 3T )(57d + 25T )

(64d + 48T )(d + 2T + dT )
− 2d + T

(d + 2T + dT )
. (A.6)

With typical values T = 128, d = 64, s < 0.02. It can be substituted it to Proposition

A.1.2 and get Qp
topk < Qp

1:2 when pσ < 7. On the other hand, when pσ > 7, although

the Top-K sparsity produces tickets with higher quality, Qp
1:2|pσ=7 ≈ 0.9999996 is already

very close to 1.

Comparison with Fixed Sparsity. The fixed sparsity achieves the same efficiency

with Dfss when

s =
(4d + 3T )(64d + 48T )

(57d + 25T )(3d + 3T )
− d

3d + 3T
. (A.7)

With typical values T = 128, d = 64, s ≈ 0.63. In addition, the theoretical values of

σ ≈ 1 and p ≥ 1. The p ≥ 1 is based on the observation that the edges with higher

magnitude are more influential. Therefore, pσ ≥ 1 and Qp
1:2 ≥ 0.76 > 0.63 = Qp

fix|s=0.63.

To conclude, compared with both top-k sparsity and fixed sparsity, Dfss can always

yield lottery tickets with higher quality under the same efficiency. To support this con-

clusion, further empirical studies are provided in Appendix A.2. Besides, Dfss is a good

complementary to the kernel-based transformers like Performer [44]. More discussions

about it are included in Appendix A.3.
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Figure A.1: Theoretical and actual speedup achieved by different sparse patterns on
A100 GPU.

A.2 Empirical Results

This section provides more empirical evidence to support conclusions in Appendix

A.1. It first compares the theoretical speedup of different sparsity predicted in Equation

(A.3), (A.4), and (A.5) and the actual speedup measured on A100 GPU in Figure A.1.

First of all, the Top-K sparsity is well bounded by the theoretical value, and Dfss

achieves better speedup than the Top-K sparsity when the density s > 0.02. This is

because gathering top-k elements in each row of the attention weight matrix and sorting

them to compressed row format introduce huge overhead.

Second, the speedup achieved by the fixed sparsity is well predicted by the theoretical

value. The speedup it achieved is lower than Dfss when density s ≥ 0.63, which accords

with the theoretical conclusion. Notably, the speedup of fixed sparsity here simply trun-

cates the number of columns of the attention weight matrix based on the density. The

actual speedup will be even lower when more fine-grained pattern is involved.

Dfss delivers speedup a little bit higher than the theoretical value. This is because
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Figure A.2: Qp under different density s and sparsity strategies. Box plot: Empirical
results from BERT-large on SQuAD v1.1; Solid line: Theoretical results from Propo-
sition A.1.2.

the softmax kernel has different implementations under different sequence length. When

the sequence length is moderate, as mentioned in Appendix A.7, the data loaded from

the attention score matrix can be explicitly cached in fast memory like registers or shared

memory for reuse. When sequence length too long for the fast memory to cache, it has

to be implicitly reused through lower-level cache or even global memory. The second

implementation is slower than the first one as lower-level cache has longer access latency

and lower throughput. As Dfss reduces the sequence length by half, it can use the

implementation for moderate sequence length while the full attention is handled by the

long sequence version.

149



Supplemental Materials for DFSS Chapter A

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Qp = 6.5

90.5

91.0

91.5

92.0

92.5

93.0
F1

 S
co

re
 o

n 
BE

RT
-la

rg
e 

SQ
uA

D 
v1

.1 (a)

Top-k Sparsity
Fixed Sparsity
1:2 Sparsity
2:4 Sparsity

0.65 0.70 0.75 0.80 0.85 0.90 0.95
||A (m A)||2F

||A||2F

90.5

91.0

91.5

92.0

92.5

93.0

(b)

Top-k Sparsity
Fixed Sparsity
1:2 Sparsity
2:4 Sparsity

Figure A.3: Qp under different density s and sparsity strategies. Box plot: Empirical
results from BERT-large on SQuAD v1.1; Solid line: Theoretical results from Propo-
sition A.1.2.

Figure A.2 shows the theoretical value (solid line) and empirical value (box plot) of

Qp over attention matrix A in BERT-Large on SQuAD v1.1. The p is sweeped through

several typical values, as it is a task-dependent value that is hard to obtain.

Compared with the top-k sparsity, when p < 7, 1:2 and 2:4 sparsity always achieve

better performance than the top-k sparsity when s < 0.05. Besides, when p = 7, the

Qp
1:2 and Qp

2:4 are very close to 1. These observations accord with the conclusion that 1:2

and 2:4 sparsity can obtain tickets with better quality than Top-K sparsity at the same

efficiency.

Compared with the fixed sparsity, Qp
1:2 and Qp

2:4 are also similar or better than Qp
fix

across different ps. This supports the conclusion that Dfss achieves better performance

than the fixed sparsity patterns under the same efficiency.

To show that Qp is a good metric to compare the performance of different sparse pat-

terns, Figure A.3 shows the Qp and F1 score on BERT-large SQuAD v1.1. As mentioned

before, p is a task-specific value used to model tasks with different degree of dependency

on the largest few elements. In order to identify the p for target task, the value of p is

tuned until the data points from Top-K sparsity and Fixed sparsity form a monotonically
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increasing line. It demonstrates that p = 6.5 is a good choice. This large p accords the

observation that the Top-K sparsity works well even under 5.4% density. After anchoring

the p, the data points from 1:2 and 2:4 sparsity are put into the plot to verify if the line

is still monotonically increasing. Figure A.3 shows that the data points from 1:2/2:4

sparsity perfectly fills in the monotonically increasing line. Oppositely, The traditional

F-norm based metric cannot explain why the 1:2 sparsity has better F1-score than some

Fixed Sparsity even though it has lower score. This demonstrates that Qp is a better

metric than existing metrices.

A.3 Comparison with Performer

This section adds more discussions on how Dfss compared with kernel-based trans-

former, i.e. Performer [44]. As Definition A.1.1 is designed to characterize how well the

sparse pattern could reserve the important edges in A, it is not suitable for kernel-based

attention mechanisms that do not involve sparsity. For example, an approximation of A

with high positive approximation error can have QP ≥ 1 under Definition A.1.1. There-

fore, this section instead compares the mean squared error (MSE) following Choromanski

et al. 2021[44]. Given the query and two adjacent key vectors q, k, and k′ ∈ N (0, Id),

the softmax kernel between them is denoted as SM(q,k) = exp(qTk/
√
d). And the

softmax approximated by dynamic 1:2 sparsity ŜM1:2(q,k) is defined as

ŜM1:2(q,k) =

 exp
(

qTk√
d

)
if qTk > qTk′

0 else
. (A.8)
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Then, its MSE can be computed as follows

MSE(ŜM1:2(q,k)) =∫
qTk<qTk′

exp

(
2qTk√

d

)
2π−d/2exp

(
−||k′||22

2

)
dk′.

(A.9)

Because qTk′ =
∑d

i=1 qik
′
i is the weighted sum of i.i.d variables following N (0, 1), x =

qTk′ ∼ N (0, ||q||22). It can be substituted into Equation (A.9) and get

MSE(ŜM1:2(q,k))

= SM2(q,k)
1 − erf

( √
d

||q||2
√
2
ln (SM(q,k))

)
2

.

(A.10)

With Lemma 2 and Theorem 2 in Choromanski et al. 2021[44], the MSE of their positive

softmax kernel with orthogonal random features has an upper bound as follows

MSE
(
ŜM ort+

m (q,k))
)

≤ 1

m
exp

(
2qTk√

d

)[
exp

(
||q + k||2√

d

)
−1 −

(
1 − 1

m

)
2

d + 2

]
=

SM2(q,k)

m

[
exp

(
||q||22+||k||22√

d

)
SM2(q,k)−1−

2
(
1− 1

m

)
d + 2

] (A.11)

First of all, when SM(q,k) → 0, both MSE(ŜM1:2(q,k)) and MSE
(
ŜM ort+

m (q,k))
)

converge to 0. However, for large SM(q,k)s that are potentially be critical for the model

accuracy, the exp
(

||q||22+||k||22√
d

)
SM2(q,k) term in the positive softmax kernel in Performer

could greatly increases the MSE. Oppositely, the 1− erf
( √

d
||q||2

√
2
ln (SM(q,k))

)
term in

Dfss reduces the MSE. To conclude, while both the positive softmax kernel and ours has

low MSE error when approximating small edge weights, Dfss can better approximate

the edges with high magnitude.

From the empirical perspective, as shown in Table 4.2 and 4.3, Dfss can achieve good
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accuracy even without finetuning. Whereas the Performer still requires tens of thousands

steps of finetuning (e.g. Figure 5 in Choromanski et al. 2021[44]). Table 4.4 also reveals

that Performer has poor accuracy on certain tasks like byte-level document retrieval,

while Dfss consistently achieves accuracy on par with the dense transformer. All these

observations suggest that Dfss can better approximate the full attention mechanism

than Performer.

In terms of speedup, Figure 5.8 illustrates that the Performer can only achieve good

speedup at long sequence length. The similar phenomenon is also observed in multiple

online forums 1. Certainly, the PyTorch JIT script does not yield the optimal implemen-

tation of the computation graph, but it reveals that tremendous engineering efforts are

required for Performer to achieve good speedup under moderate sequence length.

Following Section A.1.3, the theoretical speedup achieved by Dfss and the Performer

are also compared as follows.

T
(1)
n×m =

Qn×d

4
√
d

Pd×m, T
(2)
n×1 =

1

2
√
d

d∑
i=1

[Qn×d ⊙Qn×d]:,i

T
(3)
n×1 = maxi[T

(1)
n×m]:i,

ϕ(Qn×m) =
1√
m
exp

(
T

(1)
n×m − T

(2)
n×1 − T

(3)
n×1 + ϵ

)
T

(4)
n×m =

Kn×d

4
√
d

Pd×m, T
(5)
n×1 =

1

2
√
d

d∑
i=1

[Kn×d ⊙Kn×d]:,i

T
(6)
n×1 = maxi[T

(4)
n×m]:i,

ϕ(Kn×m) =
1√
m
exp

(
T

(4)
n×m − T

(5)
n×1 − T

(6)
n×1 + ϵ

)
T

(7)
m×1 =

n∑
i=1

[ϕ(K)n×m]i,:, T
(8)
n×1 = 1/

(
ϕ(Q)n×m × T

(7)
m×1

)
T

(9)
m×d = ϕ(K)Tn×m × Vn×d, T

(10)
n×d = ϕ(Q)n×m × T

(9)
m×d ⊙ T

(8)
n×1.

(A.12)

1https://github.com/huggingface/transformers/issues/7675

153



Supplemental Materials for DFSS Chapter A

The computation steps of Performer are listed in Equation (A.12) where each equation

denotes a sub computation graph that can potentially be fused. Notably, this is more

complex than the original mathematical expression to handle the numerical instability

of exp. The total memory access can be computed with

Speedup={2

[
nm

(
2d

T
+ 1

)
+n(d+1)+n(m + 1)+n(m + 3)

]
+m(n + 1)+n(

m

T
+ m + 1)+md

(
2n

T
+ 1

)
+nd

(
2m

T
+ 1

)
+ n}

/

[
n2

(
2d

T
+ 1

)
+ 2n2 + nd

(
2n

T
+ 1

)]
.

(A.13)

With Theorem 4 in Choromanski et al. 2021[44], m = dln(d). The m = 266, d = 64, and

T = 128 can be substituted into Equation (A.13) and get Speedup > 1 when n > 672.

On the other hand, the performer achieves the same speedup with ours with n > 1002.

To conclude, Dfss is a good complementary to performer. With delicately optimized

computation graph, performer can achieve good speedup and relatively good accuracy

under long sequence scenario. In contrary, Dfss has better speedup and accuracy under

moderate and short sequence length. Besides, Dfss delivers lower approximation error

on important edges so it is more friendly to finetuning.

A.4 Combination with the Existing Efficient Trans-

formers

Existing efficient transformers usually sparsify the full attention mechanism to densely

connected clusters [68, 42, 41, 38] or approximate it with low-rank projection [43]. As

Dfss is a good approximation of the full attention mechanism and brings wall time

speedup at arbtrary sequence length, it can potentially be combined with the existing
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Figure A.4: Combination of our method with Nystromformer [69]. The two red
matrices are stored under 1:2/2:4 structured sparsity.

efficient transformers.

This section first demonstrates the combination of our method with Xiong et al.

2021[69]. Xiong et al. 2021[69] propose a Nystrom-based self-attention mechanism that

approximate standard self-attention with O(n) complexity. The Nystromformer is illus-

trated in Figure A.4. It shows that the computation circled in Figure A.4 is identical

to the standard attention mechanism, so it can be further accelerated with Dfss. More

importantly, the two matrix multipliation involved are the two of the three largest m×n

matrices. It will be very beneficial to reduce their complexity.

The accuracy on Image (1K) on LRA [73] is reported in Table A.1. A standard

Nystromformer is first trained from scratch for 35,000 iterations following Xiong et al.

2021[69]. Then, it is fine-tuned for 3,500 iterations (1/10 of the training process) under

standard Nystromformer, Nystromformer + Dfss 1:2, and Nystromformer + Dfss 2:4. It

is obvious that by combining Dfss and Nystromformer, higher accuracy can be achieved

on LRA with lightweight finetuning.

Then a complexity analysis of the combination following Xiong et al. 2021[69] is
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Table A.1: Accuracy on Image (1K) on LRA [73] under the combination of Dfss and
Nystromformer [69].

Pretraining Finetuning

Nystromformer (float) 41.17 41.52
Nystromformer (bfloat16) - 41.59

Nystromformer + Dfss 1:2 (float) - 41.91
Nystromformer + Dfss 2:4 (bfloat16) - 42.54

as follows. The landmark selection with segement-means takes O(n), iterative approxi-

mation of the pseudoinverse takes O(m3). The matrix multiplication complexity of the

standard Nystromformer takes O(nm2+mndv+m3+nmdv). After applying our method,

it can be reduced to O(nm
2

2
+ nmdv

2
+m3 +nmdv). The memory footprint can be reduced

from O(mdq+nm+m2+nm+ndv) to O(mdq+nm+m2+ndv). Given n ≫ m > dv ≈ dp,

this could be a significant improvement that allows us to use more landmarks m to better

approximate the full attention mechanism.

Besides Nystromformer, this section also illustrates two possible combinations with

BigBird [38] and Linformer [43] that can be explored in future work.
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Figure A.5: Combination of our method with BigBird [38] and Linformer [43]

As shown in Figure A.5 (A), Zaheer et al. 2020[38] use block sparsity with block size

64 and compute a full attention within each block. The 1:2 or 2:4 sparsity can be applied
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within each block to bring further speedup.

Figure A.5 (B) gives another example on how to combine Dfss with Linformer [43].

Linformer uses low-rank approximation on the attention mechanism as follows:

O = softmax

(
Q (EK)T√

d

)
FV , (A.14)

where E,F ∈ Rn×k are linear projection matrices and k ≪ n. E and F can be first

pruned along with other weight matrices to have 1:2 or 2:4 sparsity offline following

Mishra et al. 2021[24]. Then, EK and FV are computed with Sparse Matrix-Matrix

multiplication. Next, Q is multiplied with (EK)T and the result is pruned to 50%

structured fine-grained sparsity on the fly. After applying softmax to the nonzeros, it is

multiplied with FV .

A.5 Visualize Attention Distribution

To illustrate that Dfss can well capture the fine-grained sparsity in attention, this

section visualizes the attention weight matrices in BERT-large on SQuAD v1.1 in Figure

A.6.
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Figure A.6: Visualization of attention weight in dense transformer and Dfss

In detail, the inference of the same input sample in BERT-large model pretrained

under dense, 1:2, and 2:4 settings is launched, then the attention weight matrix is col-

lected in the first layer. It is obvious that the pattern in dense transformer and Dfss

are quite similar. The magnitude of nonzero values in Dfss are a little bit higher than

dense attention. This is because the softmax normalizes the values in each row with the
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exponential sum of each entry. After removing 50% smaller entries, the magnitude of

remaining entries would be relatively higher. Nevertheless, this does not influence the

model accuracy, as the forthcoming normalization layers will take care of it.

A.6 Proof of Proposition A.1.2

Proof: Under the assumption that the entries in QKT/
√
d follow i.i.d. N (µ, σ),

we denote xi,j = eµ+σzi,j , where z ∼ i.i.d. N (0, 1). Then it can be substituted into the

definition of the softmax and get

Au,v =
xu,v∑n
i=1 xu,i

. (A.15)

The above equation is then substituted into the definition of Lp-Quality and get

Qp =
1

n

n∑
j=1

∑n
i=1 (m⊙A)pj,i∑n

i=1A
p
j,i

=
1

n

n∑
j=1

1
n

∑n
i=1mj,ix

p
j,i

1
n

∑n
i=1 x

p
j,i

(A.16)

With n → ∞, the denominator can be approximated with

1

n

n∑
i=1

xp
j,i ≈

∫ ∞

−∞

epµ+pσz

√
2π

exp

(
−z2

2

)
dz = exp

(
pµ +

p2σ2

2

)
(A.17)

Top-K Sparsity. When the sequence is long enough such that n → ∞, the numer-

ator can be approximated with

1

n

n∑
i=1

mj,ix
p
j,i ≈

∫ ∞

√
2erfinv(1−2s)

epµ+pσz

√
2π

exp

(
−z2

2

)
dz

= exp

(
pµ +

p2σ2

2

) 1 + erf
(

pσ√
2
− erfinv(1 − 2s)

)
2

(A.18)
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Therefore, the Lp-Quality of Top-K sparsity is

Qp
topk ≈

1 + erf
(

pσ√
2
− erfinv(1 − 2s)

)
2

. (A.19)

Fixed Sparsity. Without any assumption on the distribution of important edges

in A, applying a fixed pattern is equivalent with uniformly sampling with probability s,

leading to

1

n

n∑
i=1

mj,ix
p
j,i ≈ exp

(
pµ +

p2σ2

2

)
s. (A.20)

Therefore, the Lp-Quality of the fixed sparsity is

Qp
fix ≈ s. (A.21)

2-to-1 Sparsity: This sparsity pattern select the larger one in every two elements.

The adjacent two elements are denoted with

X = eµ+σZ1 , Y = eµ+σZ2 ;Z1, Z2 ∼ N (0, 1), (A.22)

Z1 and Z2 are independent. Then it can be proved that

1

n

n∑
i=1

mj,ix
p
j,i ≈

1

2
E [max(Xp, Y p)] =

1

2

[∫∫
z1≥z2

epµ+pσz1
1

2π
exp

(
−z

2
1+z22

2

)
dz1dz2

+

∫∫
z1<z2

epµ+pσz2
1

2π
exp

(
−z

2
1+z22

2

)
dz1dz2

] (A.23)

By denoting

x =
z1 − z2√

2
, y =

z1 + z2√
2

, (A.24)
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It leads to ∫∫
z1≥z2

epµ+pσz1
1

2π
exp

(
−z21 + z22

2

)
dz1dz2

=

∫ ∞
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0

e
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2
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2
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2
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2
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(A.25)

With the conclusion above, we have

1

n

n∑
i=1

mj,ix
p
j,i = exp

(
pµ +

p2σ2

2

)
1 + erf

(
pσ
2

)
2

. (A.26)

The LP -Quality of 1:2 sparsity can be computed with

Qp
1:2 =

1 + erf
(
pσ
2

)
2

. (A.27)

2:4 Sparsity: This sparsity pattern select the largest two elements in consecutive

four elements. While it is more challenging to find an explicit expression for Qp
4−to−2, a

trivial lower bound can be found with

1

n

n∑
i=1

mj,ix
p
j,i ≈

1

4
E [max(Xp+Y p,Xp+Up,Xp+V p,Y p+Up,Y p+V p,Up+V p)]

≥ 1

4
(E[max(Xp, Y p)] + E[max(Up, V p)])

=
1

2
E[max(Xp, Y p)],

(A.28)
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where

X = eµ+σZ1 , Y = eµ+σZ2 , U = eµ+σZ3 ,

V = eµ+σZ4 ;Z1, Z2, Z3, Z4 ∼ N (0, 1),

(A.29)

Z1, ..., Z4 are independent. Therefore, the lower-bound of Qp
2:4 is

Qp
2:4 ≥

1 + erf
(
pσ
2

)
2

. (A.30)

A.7 Proof of Proposition A.1.3

Proof: First of all, thanks to the Tensor Core in latest GPUs, the latency of matrix

multiplication operations, both sparse and dense, are bounded by the memory access.

Therefore, instead of counting the number of MACs (multiply-accumulate operations),

the amount of memory access is a better metric to estimate the latency.

𝑨

𝑽

n

d

n

n

T

T

r

r

n

d

n

k

1

T

r

r…

𝑨

𝑽
(A) (B)

Figure A.7: Tiling Matrix-Matrix Multiply

Tiling is a basic optimization applied to optimize matrix matrix multiply on GPU. As
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shown in Figure A.7 (A), the original n× n output is partitioned to independent blocks

with size T × T . When computing each block, operands with size T × r and r × T are

loaded from A and V T to the fast memory, respectively. Then, these two operand are

multiplied and accumulated to the partial sum stored in the registers. After applying the

top-k, as shown in Figure A.7 (B), the k elements in each row of A correspond to different

rows in A. Therefore, the output can only be partitioned to independent vectors with

size 1× T . During the computation, operands with size 1× r and r× T are loaded from

A and V T to the fast memory, respectively. Then, the loaded operands are multiplied

and accumulated to the partial sum stored in the registers. With the tiling strategy

mentioned above, the table below summarizes the amount of memory access in different

attentions.

Table A.2: Amount of Memory Access in Different Operations in Attention. s = k/n:
density of the sparse attention; T : tiling size.

QKT Softmax AV

Full Attention n2
(
2d
T

+ 1
)

2n2 nd
(
2n
T

+ 1
)

Explicit Top-k Attention n2
(
2d
T

+ 1
)

2n2s nd
(
sn + sn

T
+ 1
)

For QKT , as it requires to compute all of it before getting the top-k elements, it

is a dense matrix matrix multiplication for both full and explicit top-k attention. The

Softmax needs to read the n×n QKT in, normalizes it, and write the result A back. As

the intermediate values can be stored in registers, it only requires to count reading QKT

in and writing A out. Therefore, its memory access is 2n2 for full attention and 2n2s for

explicit top-k attention. For AV in full attention, the output size is nd. As each output

element is generated from the inner product between two vectors with length n, the total

data read equals nd × 2n. However, with the tiling in Figure A.7 (A), each operand

is reused for T times. Therefore, the total memory access for AV in full attention is

nd(2n
T

+ 1). For AV in explicit top-k attention, as shown in Figure A.7 (B), each left-
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hand-side data is reused for T times while each right-hand-side data is used only for once.

Therefore, its memory access equals to nd( sn
T

+ sn + 1). The theoretical speedup can be

computed with

Speedup ≤
n2
(
2d
T

+ 1
)

+ 2n2 + nd
(
2n
T

+ 1
)

n2
(
2d
T

+ 1
)

+ 2n2s + nd
(
sn + sn

T
+ 1
)

n≫d
≈ 4d + 3T

2d + T + (d + 2T + dT )s

(A.31)
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B.1 Proofs

Theorem 4.1. Algorithm 5 returns the global optimal and feasible solution when

is optimal is true. Otherwise it returns a feasible solution.

Proof: The proof is organized as follows. For clarity, the notations used during the

proof are provided. Then, it proves the feasibility of the solution. At last, it proves the

optimum of the solution when is optimal is true.

Notations. A path from node vi to vj in graph G is denoted as vi
G
=⇒ vj, and a

direct edge from vi to vj in graph G as vi
G−→ vj.

Proof of Feasibility. A sufficient condition for the feasibility of the solution is that

for each component Ci, consider all feasible partitions {V1, ..., Vk}, such that ∪s=1,...,kVs =

V/Ci, and Vs ∩ Vt = ∅, ∀s, t = 1, ...k, s ̸= t, and there is no cycle in Ci ∪ {V1, ..., Vk}, if

partition {Vk+1, ..., Vn} in Ci results in a cycle in the whole graph D, then it also creates

a cycle in Di. In this way, all infeasible partitions in D can be detected by Di.

Given the condition that a cycle is created because of partition {Vk+1, ..., Vn} in Ci,

the cycle must contain at least one partition in {Vk+1, ..., Vn}. Otherwise, the original
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{V1, ..., Vk} is infeasible. The partitions on the cycle is denoted as V c = {Vp, ..., Vq},

leading to |V c| >= 1. Regarding any two partitions V c
i , V

c
j ∈ V c on the cycle, such that

all the partitions between them are not in V c (When |V c| = 1, the two partition are the

same one), there are two cases.

Case 1: there are no other partitions between these two partitions in the cycle:

V c
i

D−→ V c
j . In this case, the path does not go through any nodes outside of Ci, thus there

must be a path V c
i

Di−→ V c
j in the subgraph.

Case 2: there are at least one partition between these two partitions in the cycle.

Without loss of generality, it can be assumed that the path is V c
i

D−→ Vd
D
=⇒ Va

D−→ V c
j ,

where Vd, Va /∈ V c. It is required to prove that there must be a path V c
i

Di==⇒ V c
j in the

subgraph.

Case 2.1: Vd = Va := V∗. In this case, V c
i

D−→ V∗
D−→ V c

j . There must ∃vd, va ∈ V∗,

such that V c
i

D−→ vd, va
D−→ V c

j . As Na
i contains all the one-hop ancestors of Ci and Nd

i

contains all the one-hop descendants of Ci, va ∈ Na
i and vd ∈ Nd

i .

Case 2.1.1: vd = va. V c
i

Di−→ vd
Di−→ V c

j exists as these nodes and edges are included

when constructing Di.

Case 2.1.2: vd ̸= va. According to Algorithm 5, there is an edge vd
Di−→ va added to

graph Di when it satisfies two conditions:

• vd
D̃\Ci
===⇒ va exists in graph D̃\Ci.

• There is no path va
D
=⇒ vd exists that contains nodes from two components.

In this case, for the first condition, as both va and vd are in the same partition V∗, there

must be a bidirectional path between them in graph D̃: vd
D̃⇐⇒ va. Moreover, as there

are no partitions from V c between the Vd and Va on the cycle, it is safe to conclude that

vd
D̃\Ci⇐==⇒ va exists. The second condition can be proved by contradiction. Assuming

that va
D
=⇒ vd exists and it contains nodes from at least two components, it suggests that
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there exists a vt /∈ V∗, such that path vd
D
=⇒ vt

D
=⇒ va exists in the original graph D. With

partition V∗, this creates a cycle V∗
D
=⇒ vt

D
=⇒ V∗, which is contradict to the requirement

that there is no cycle in Ci ∪ {V1, ..., Vk}. To conclude, under this case there is an edge

vd
Di−→ va in the subgraph Di. And the path V c

i
Di−→ vd

Di−→ va
Di−→ V c

j exists, which proves

V c
i

Di==⇒ exists.

Case 2.2: Vd ̸= Va. In this case, path V c
i

D−→ Vd
D
=⇒ Va

V c
j−→ exists. Similar to Case 2.1,

there ∃vd ∈ Vd, va ∈ Va, such that V c
i

Di−→ vd and va
Di−→ V c

j , and va ∈ Na
i and vd ∈ Nd

i .

Similar to Case 2.1.2, the following proves there is an edge vd
Di−→ va in graph Di.

For the first condition, because of Vd
D
=⇒ Va, there must ∃v′d ∈ Vd, v

′
a ∈ Va, such that

v′d
D
=⇒ v′a. As there is no partition from V c between Vd and Va, v′d

D̃\Ci
===⇒ v′a. On the

other hand, as v′d and vd are fused in the same partition, there exists a bidirectional path

vd
D̃⇐⇒ v′d. And because the path is internal to partition Vd, it’s equivalent to vd

D̃\Ci⇐==⇒ v′d.

In symmetry, va
D̃\Ci⇐==⇒ v′a. By combining these paths, vd

D̃\Ci
===⇒ v′d

D̃\Ci
===⇒ v′a

D̃\Ci
===⇒ va,

and the first condition holds. The second conditional can also be proved by contradiction.

Assuming that va
D
=⇒ vd exists (it always contains nodes from at least two components as

va and vd are from different components), as va and vd are fused int Va and Vd, Va
D
=⇒ Vd.

However, in this case, Vd
D
=⇒ Va, this results in a cycle Va

D
=⇒ Vd

D
=⇒ Va and leads to

contradiction.

With the two conditions hold, it can be concluded that edge vd
Di−→ va exists in Di,

which can be combined with V c
i

Di−→ vd and va
Di−→ V c

j to create path V c
i

Di−→ vd
Di−→ va

Di−→

V c
j .

With the discussion on all the cases above, it is proved that for any path V c
i

D
=⇒ V c

j

on the cycle, there is always a path V c
i

Di==⇒ V c
j in the simplified graph Di. Therefore,

if a cycle exists in the whole graph D, the paths can be replaced to find a cycle in

the simplified graph Di. This proves the feasibility of the solutions obtained from the
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simplified graphs.

Proof of Optimum. When the is optimal is true, line 7-15 in Algorithm 5 are

equivalent to adding edge vd
Di−→ va when vd

D
=⇒ va exists. To prove that optimal solution

can be found given the condition, it is required to prove that given a cycle in Di, there

must be a cycle in D as well. Without lost of generality, the cycle found in Di can be

denoted as V c
p

Di==⇒ V c
p+1

Di==⇒ ...
Di==⇒ V c

q+1. As fusion does not remove paths, for each pair

of V c
s

Di==⇒ V c
s+1, there is always a path in D. This proves that optimum can be ensured

when is optimal is true.

B.2 Benchmarks

This section elaborates the choice of benchmarks in detail.

BERT-large [111] for language modeling and VIT [112] for computer vision is con-

structed using stacked self-attention layers, which have become an indispensable building

block in modern neural networks. These two benchmarks cover multiple mainloops in-

cluding GEMM, Batched GEMM, Softmax, and LayerNorm operations. Their epilogue

consists of various element-wise operations, activation functions, reductions, reshapes,

and permutations that are challenging to fuse.

ResNet-50 [113] is one of the most popular backbone networks used in computer

vision tasks. In addition to GEMM, ResNet-50 includes special heavy operations like

Conv2dFprop and Conv2dDgrad. Additionally, the ”Conv-BN-ReLU” pattern of ResNet-

50 makes it challenging to be fused due to the complexity of BN operation.

XML-CNN [114] is a representative example of extreme classification tasks, where

the label space contains millions of categories. Its performance is critical for applications

such as language modeling and recommendation systems. Due to the enormous number

of categories, XML-CNN presents new challenges in optimizing the loss function, which
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uses binary cross-entropy loss, its gradient kernel, as well as surrounding element-wise

functions and reductions.

GCN [106] for node classification is selected as an example of graph neural networks

(GNN) used to model graph-structured data, such as protein and social networks. GCN

introduces a new mainloop operation, SpMM, for its aggregation stage. Additionally, the

large batch size of whole graph training can pose challenges for U-turn optimization.
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pp. 8024–8035, Curran Associates, Inc., 2019.

[99] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang, and
D. Qian, The deep learning compiler: A comprehensive survey, IEEE
Transactions on Parallel and Distributed Systems 32 (2020), no. 3 708–727.

[100] G. Wang, Y. Lin, and W. Yi, Kernel fusion: An effective method for better power
efficiency on multithreaded gpu, in 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and
Social Computing, pp. 344–350, IEEE, 2010.

[101] P. Tillet, H.-T. Kung, and D. Cox, Triton: an intermediate language and compiler
for tiled neural network computations, in Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages,
pp. 10–19, 2019.

178
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