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Abstract

Although AI has made large strides in recent years, state-
of-the-art models still largely lack core components of social
cognition which emerge early on in infant development. The
Baby Intuitions Benchmark was explicitly designed to com-
pare these ”commonsense psychology” abilities in humans and
machines. Recurrent neural network-based models previously
applied to this dataset have been shown to not capture the
desired knowledge. We here apply a different class of deep
learning-based model, namely a video transformer, and show
that it quantitatively more closely matches infant intuitions.
However, qualitative error analyses show that model is prone to
exploiting particularities of the training data for its decisions.
Keywords: intuitive psychology; machine learning; action un-
derstanding

Introduction

The foundations of “commonsense psychology” emerge early
on in a human’s development: Even pre-verbal infants
have expectations about agents’ goals, preferences and ac-
tions (Stojnić, Gandhi, Yasuda, Lake, & Dillon, 2023). Al-
though deep learning (DL) has made tremendous progress
in recent years, this core component of human cognition is
still lacking in many state-of-the-art DL models (Lake, Ull-
man, Tenenbaum, & Gershman, 2017). When tested on the
Baby Intuitions Benchmark (BIB), a dataset designed to com-
pare the social cognitive abilities of infants and machines, be-
havioral cloning (BC) and video prediction models based on
recurrent neural networks (RNNs) failed to show infant-like
reasoning (Gandhi, Stojnic, Lake, & Dillon, 2021). We here
evaluate a different class of DL model, namely a video trans-
former (VT), on the BIB dataset.

Recent years have seen the rise of transformers in various
areas of AI, including tasks adjacent to social cognition, such
as trajectory prediction for cars or pedestrians (Yuan, Weng,
Ou, & Kitani, 2021; L. L. Li et al., 2020; Chen, Wang, & Sun,
2021; Sui, Zhou, Zhao, Chen, & Ni, 2021; Giuliari, Hasan,
Cristani, & Galasso, 2021; Yu, Ma, Ren, Zhao, & Yi, 2020)
and spatial goal navigation (Du, Yu, & Zheng, 2021; Chaplot,
Pathak, & Malik, 2021; Fukushima, Ota, Kanezaki, Sasaki,
& Yoshiyasu, 2022). As the transformer attention mecha-
nism is based on computing pairwise interactions (C. Li &
Liu, 2022), this family of models constitutes a promising
approach for capturing the relations between, e.g., agents
and goals in the BIB dataset. However, transformer-based
video prediction models require many costly pairwise com-
putations. They are usually trained and evaluated on datasets

like Kinetics-400 (Kay et al., 2017) or UCF101 (Soomro, Za-
mir, & Shah, 2012), where video clip lengths range from 7
to 10 seconds – much shorter than those used in BIB, which
may be up to 2 minutes long. We therefore implement some
modifications to allow a VT to process BIB episodes, and
evaluate the resulting model. We find that the VT quanti-
tatively more closely matches infant intuitions about agent’s
goal preferences and efficient actions than previously tested
DL baselines. However, qualitative error analyses show that
the model fails to generalize systematically on some of the
test tasks when agent or environment dynamics differ slightly
from background training observations.

Baby Intuitions Benchmark

BIB is a dataset designed to test whether machine learning
systems can discern the goals, preferences, and actions of
others (Gandhi et al., 2021). It consists of videos in the
style of Heider and Simmel’s animations (Heider & Simmel,
1944), where agents, represented by simple shapes, carry out
actions in a 2D grid world. BIB follows the violation-of-
expectation (VoE) paradigm, i.e., each video has a familiar-
ization and a test phase. The familiarization phase consists
of eight successive trials during which an agent consistently
displays a certain behavior, allowing the observer to form an
expectation of future actions. The test phase includes an ex-
pected outcome (perceptually similar to the previous trials,
but involves a violation of expectation), and an unexpected
outcome (perceptually less similar, but conceptually more
plausible). BIB contains six types of test tasks, outlined in
Table 1. It also contains background training episodes with
four types of training tasks, which share the same structure as
the test set. However, Gandhi et al. designed the BIB dataset
such that only expected trials are provided in the background
training episodes, and only isolated tasks are trained. There-
fore, the systematic combination of acquired knowledge is
needed to generalize to the test tasks. For examples and more
details on BIB, see Gandhi et al.

Because BIB adopts its tasks and paradigm from develop-
mental cognitive science and provides sufficient data to train
DL-based models, it allows for the direct comparison of hu-
man and machine performance (Gandhi et al., 2021). A criti-
cal first step in this direction was taken by Stojnić et al., who
collected infants’ responses on a representative selection of
BIB episodes and compared them with three state-of-the-art
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Table 1: Overview of BIB tasks.

Familiarization trials Test trial Expected outcome Unexpected outcome

Preference
Identical to a familiarization trial,
but object positions are switched

Agent moves to preferred
object at new location

Agent moves to nonpreferred
object at familiar location

Multi-agent

Agent consistently chooses
one of two goal objects
and moves to it efficiently

New agent appears New agent moves to object not
preferred by familiar agent

Familiar agent moves to
previously not preferred object

Inaccessible goal Preferred goal becomes inaccessible Agent moves to other goal Agent moves to other goal,
even though both are accessible

Efficient agent
Agent moves efficiently around
a barrier towards goal Barrier is removed Agent moves efficiently Agent moves inefficiently

Inefficient agent
One agent moves efficiently,
one moves inefficiently Both agents move inefficiently Previously inefficient

agent moves inefficiently
Previously efficient agent
moves inefficiently

Instrumental action
Agent removes a green barrier (inserts
key into lock), then moves to goal Green barrier gone or inconsequential Agent moves directly to goal Agent still moves to key

DL models from two classes: Behavioral cloning (BC) and
video modeling. Recently, Zhi-Xuan et al. proposed a prin-
cipled alternative to DL approaches, based on a hierarchi-
cally Bayesian Theory of Mind (HBToM). Results from both
works serve as comparisons in this paper. Note, however, that
HBToM requires access to symbolic states and is specifically
engineered to solve BIB-like social cognition tasks, whereas
the data-driven baselines and VT model have weaker induc-
tive biases in this regard.

Methods

Our model consists of a convolutional neural network (CNN)
encoder, a transformer component, a CNN decoder, and a lin-
ear output layer. A schematic visualization is shown in Fig-
ure 1. The CNN encoder (Figure 1 A) has two convolutional
layers and two max-pooling layers. For each 3⇥84⇥84 in-
put image, it produces a 30⇥ 21⇥ 21 representation, which
we concatenate with x- and y-position encodings, yielding
32⇥21⇥21 patches. As attending over every pixel would be
computationally prohibitive, the CNN encoder was designed
to reduce the frame’s resolution by extracting higher-level
features, while retaining a sufficient level of spatial detail.

After encoding all the frames of an episode in this way, we
extract the top-n patches per frame that display the highest
change compared to the previous frame (Figure 1 B). This
is done for each frame of the familiarization trials. The rea-
son we only use n patches is that attending over every patch,
frame, and trial would be extremely computationally expen-
sive. N was set to 3, as using a higher number would have
exceeded the memory resources in our training setup, even
with our very small batch size. However, it is unlikely that
a choice of n > 3 would have led to substantially better per-
formance, as BIB trials are mostly static. The only move-
ments stem from the agent and, in instrumental-action tasks,
the green barrier. Therefore, there are seldom more than three
patches that exhibit a change from one frame to the next.

The extracted patches are fed into the first of three blocks
of the transformer component. Each block has 5 layers with 8
heads of input dimension 32 and hidden dimension 256. The
number of heads and layers was chosen to strike a balance
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Figure 1: Schematic visualization of the VT architecture.
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between performance and computational complexity. The
first block (Figure 1 C) performs cross-attention over the test
trial’s encoded first frame and previous familiarization trials,
effectively “priming” the model by calculating the influence
of previous observations on the current input. The results of
attending over each trial are averaged and passed through a
self-attention block (Figure 1 D). We then extract n patches
for each frame in the test trial (Figure 1 E) in the same way as
we did for the familiarization trial frames. The patches serve
as input to third attention block (Figure 1 F), which attends
over past steps in the test trial. In a final step, the outputs
of the transformer component are passed through an output
layer (Figure 1 G), which produces a 1⇥ 21⇥ 21 prediction
of the agent’s next position, and a CNN decoder (Figure 1 H),
which produces a 3⇥84⇥84 prediction of the next frame.

Given the model’s two prediction targets, our loss function
consisted of the sum of two terms. The first term was the bi-
nary cross-entropy (BCE) loss between the prediction of the
agent’s next step and the actual agent position. To address the
imbalance between the “agent” and “no-agent” class, we em-
ployed a weighted version of the BCE loss, which is widely
used in instance segmentation (Jadon, 2020). The second
term was the mean squared error (MSE) between the predic-
tion of the next frame and the actual next frame, upweighted
by a constant factor so that both loss terms were scaled evenly.
This second term was introduced because transformers may
disregard agent identities unless incentivized otherwise (Yuan
et al., 2021). For tasks like preference, which relies on the
preservation of agent shapes and colors, we therefore found it
improved performance to include an auxiliary reconstruction
loss. During evaluation, only the main BCE loss was used.

As in Gandhi et al., the videos’ frame rate was downsam-
pled by a factor of 5. We used a maximum sequence length
of 90. Frame rates of longer sequences were interpolated to
fit the maximum length. Of the BIB background episodes, we
used 80% for training, 15% for testing, and 5% for validation.
Models were trained using the Adamax optimizer for a total
of 6 epochs, after which point we saw no further improve-
ment on background training tasks. The batch size was set
to 6 because of the VT’s high memory requirements, result-
ing in a total number of 7.373 training updates. We tested the
models on the validation set in five evenly spaced intervals
per epoch and saved the model with the lowest validation loss
to avoid overfitting. The total number of trainable parameters
in the VT is 772.162. For comparison, the two publicly avail-
able baseline BC methods by Gandhi et al. contain 925.666
and 986.306 trainable parameters, respectively. On a 16-Core
AMD EPYC 7282 server with six GeForce RTX 2080 GPUs,
training time was around 3 hours per epoch. Our code is avail-
able at https://github.com/zero-k1/BIB-VT.

Our model shares some commonalities with the BIB base-
line DL models, but also differs in several aspects. Both the
VT and baseline models use CNNs to encode frames and av-
erage embeddings across familiarisation trials to obtain con-
text vectors. However, we use attention mechanisms to ob-

Table 2: Mean squared error (MSE) of the frame prediction
and weighted binary cross-entropy loss (BCE) of the agent
prediction on the test split of the BIB background training
tasks, averaged over the five trained VT models.

Training task MSE BCE

Single object 7.05⇥10�4 1.58⇥10�2

Preference 7.07⇥10�4 1.38⇥10�2

Multi-agent 5.94⇥10�4 1.32⇥10�2

Instrumental actions 1.42⇥10�3 1.33⇥10�2

tain these embeddings, whereas the baselines used RNNs or
multilayered perceptrons (MLPs). In contrast with the BC
baselines, we also do not pre-train our CNN encoder sepa-
rately, and we do not add the agent’s actions as inputs – only
the video frames. Finally, we predict both the next frame and
the agent’s position, while Gandhi et al.’s video modeling ap-
proach predicted only the next frame, and their BC approach
predicted only the agent’s next action.

Results

In total, we trained five models on the BIB background train-
ing tasks, each with a different random weight initialization.
We report the models’ average performance on the test set of
the background training tasks in Table 2 and the performance
on BIB evaluation tasks in Table 3. The baseline DL mod-
els previously tested on BIB used the prediction error of the
frame with the highest loss as their metric of ”surprise”, as
this provided better results compared to the mean error over
entire trials (Gandhi et al., 2021). In our case, the mean error
yielded a higher performance on most tasks, which is why we
here report both metrics. However, binary VoE accuracies in-
clude no information about the magnitude of the difference in
surprisal scores between expected and unexpected trials. We
therefore also show z-scored means of both the models’ av-
erage prediction error and infants’ looking times, as reported
by Stojnić et al., in Figure 2.

Goal-directed

Preference In contrast to the DL-based baselines, the VT
seems, at least to some degree, to associate agents with cer-
tain goal preferences in the preference task (see Figure 2). To
investigate which parts of the familiarization trials the model
relied on most, we performed a form of occlusion analysis.
We used only one trial as the familiarization input (perfor-
mance was almost identical when using one vs. the full eight
trials), and dropped each of the patches fed into the first trans-
former block in turn. For each patch, we recorded the z-
scored difference in prediction error between the expected
and unexpected outcome. An example result is shown in Fig-
ure 3. Models tended to either rely on the agent’s last or first
step. Averaged over all models and episodes, the patch with
the largest impact on the final prediction was part of the last
two frames of the familiarization trial in 52.6% of cases.
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Table 4: VoE Accuracy on BIB evaluation tasks. VoE Accuracy denotes whether model error is higher on expected trials than
unexpected trials. VT (Mean) uses the avg. error over all test trial frames as the “surprise” metric, whereas VT (Max) uses the
error for the frame with the highest loss. For the VT models, we report the average accuracy and standard deviation over five
models trained on the same data, but with different random initialization. Baselines and Video Transformers are data-driven
computer vision models, whereas hierarchically Bayesian Theory of Mind (HBToM) uses a principled Bayesian solution that
requires access to symbolic states. Chance level accuracy is 50%.

Baselines Video Transformer (ours)

Task HBToM BC-MLP BC-RNN Video-RNN VT (Mean) VT (Max)

Goal-directed
Preference 99.7 26.3 48.3 47.6 82.1 ± 0.0 80.8 ± 0.0
Multi-agent 99.2 48.7 48.2 50.3 49.1 ± 0.0 49.2 ± 0.0
Inaccessible goal 99.7 76.9 81.6 74.0 89.8 ± 0.0 85.5 ± 0.0

Efficiency
Efficient agent 95.8 96.0 95.3 99.5 98.3 ± 0.0 98.4 ± 0.0
Inefficient agent 96.6 73.8 56.5 50.1 29.5 ± 0.1 34.1 ± 0.1

Instrumental actions
Instrumental action 98.5 67.0 77.9 79.9 92.6 ± 0.0 84.7 ± 0.0

Figure 2: Z-scored means of the models’ average surprisal scores and infants’ looking times to the expected and unexpected
outcomes in the BIB test episodes.
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Figure 3: Z-scored impact of
omitting a patch from the pref-
erence familiarization trial.

Figure 4: Inaccessible goal
task. Predicted agent posi-
tions marked blue.

(a) (b) (c)

Figure 5: 5a: Unexpected multi-agent outcome (familiar
agent). 5b: Expected outcome (new agent). 5c: Prediction
for expected outcome.

Multi-Agent Similar to the other DL models, the VT does
not acquire the desired knowledge from the multi-agent back-
ground training tasks, which feature both agents moving to-
wards the same single goal across trials. Note that the infants
tested on BIB were in fact more surprised at the supposedly
”expected” trials (see Figure 2). Stojnić et al. hypothesize
that this may be because of the increased novelty of the new
agent. A closer look at the frame predictions produced by the
VTs hints at some confusion regarding the agents’ identity:
In some cases, the model reconstructs the familiar agent in
the unexpected trial, rather than the new agent present in the
input (see Figure 5 for an example). Averaged over all models
and episodes, this was the case 27.9% of the time.

Inaccessible In the inaccessible-goal task, the VT model
achieves a higher accuracy than previous DL models. It ex-
hibits a stronger deviation in surprise than the infants, who
were indifferent on this task (see Figure 2). Stojnić et al. posit
that infants may have considered the new barrier in the ex-
pected outcome as indicative of a new environment and not
carried over any goal preference expectations from the fa-
miliarization trials. Although the VT has a lower prediction
loss on the expected outcome in most cases, it is more “split”
than in the single-object case (see Figure 4 for an example
prediction). Averaged over all models and episodes, the en-
tropy of the models’ prediction on the test trial’s last frame
was 1.10 for the expected, and 1.47 for the unexpected out-
come. For comparison, the average entropy for the last frame
of the single-object background training task was only 0.58.

Efficiency

Similar to previous models, the VT’s VoE accuracy on the
Efficient agent tasks are nearly perfect – the model strongly
expects agents to move towards their goal efficiently. This is

Figure 6: Avg. difference in the VT layers’ activations when
processing the episodes’ unexpected vs. expected familiar-
ization trials, featuring an efficient or an inefficient agent, re-
spectively.

in accordance with infant’s intuitions (see Figure 2). On the
inefficient-agent task, the VT tends to be more “surprised” at
the previously inefficient model moving inefficiently than at
the previously efficient agent doing so. Although not neces-
sarily a desired outcome, this is actually more in line with the
intuitions of the infants tested on BIB, who attributed ratio-
nal action both to previously efficient and inefficient agents
in a new environment (see Figure 2). When we compare the
impact of the familiarization trials featuring the efficient vs.
inefficient agent on the VT model (see Figure 6), we see that
a similar mechanism is at work: The lowest levels, which at-
tend over past familiarization trials, show differences in acti-
vation. However, these differences all but disappear through-
out the higher layers. This leads to the inefficient agent being
treated in the same way as the efficient one, which explains
the mean surprise score being almost the same in both cases.
The slightly larger error for the inefficient agent most likely
stems from the fact that inefficient agents are not seen during
training, leading to higher prediction uncertainty.

Instrumental Actions

Compared with the other DL models, the VT performs sim-
ilar on episodes with no barrier, and better on episodes with
inconsequential or blocking barriers. Again, infants were in-
different on this task (see Figure 2). Stojnić et al. note that
they may have failed to recognize the instrumental actions
because they were causally opaque. Although the VT is cor-
rect in most cases in terms of VoE accuracy, it, too, seems to
not have quite understood the causal mechanism. A look at
the frame predictions shows that the model usually expects
the disappearance of the key on the first step, even though
the agent has not collected and inserted it. Averaged over
all models and episodes, the VT at least partly predicts the
key’s position as the agent’s first step in 47% of cases, even
though the key is mostly far away from the agent. This is
most likely because the key is always right next to the agent
in the background instrumental-action tasks, and thus consti-
tutes its first step. The VT also often predicts the disappear-
ance of the green barrier towards the end of the episode, even
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(a) Predicted last frame
and agent trajectory
(yellow).

(b) Z-scored impact of
each test trial patch on fi-
nal MSE error.

Figure 7: Prediction on an instrumental-action task.

though the key was not inserted. This is most likely because
the green barrier has always disappeared by the time the agent
reaches the goal in the background tasks. Occlusion analyses
support this hypothesis: The parts of the test trial that most
contribute to the z-scored MSE prediction error on expected
instrumental-action outcomes were usually the agent’s first
and last steps (see Figure 7 for an example).

Decoding experiment

Inspired by probing analyses of pre-trained language mod-
els (Clark, Khandelwal, Levy, & Manning, 2019), we trained
linear regression models to predict the current position of the
agent, goal, and sub-goals (keys and locks), based on the ac-
tivations in each layer of each VT block. Each linear model
had an input dimension of 256 (8 attention heads per layer,
each with dimension 32) and output dimension 4 (one for
each prediction target). The models were trained with the
Adam optimizer (Kingma & Ba, 2015) set to default parame-
ters, using the same epoch number and batch size as the main
experiments described in the Methods section. We used the
background training set for optimization and display the re-
sults for the background validation set in Figure 8.

In general, we see errors decrease in the deeper layers of
the attention blocks, indicating more focused attention heads.
The heads in the first block, which attends over familiariza-
tion trials, do not display a large degree of specialization
regarding the analysed categories. However, at least in the
higher layers, the agent, key, and lock categories have a com-
paratively lower decoding error than the goal category. Note
that the agent’s position often corresponds with the key and
lock position for long stretches of instrumental action trials,
as the agent waits for the green barrier to disappear after hav-
ing inserted the key into the lock. The second block, which
self-attends over the test trial’s first frame, has the lowest de-
coding error across categories and a particularly low error for
the agent’s current position. The third block shows a clear
separation between categories, with locks and keys display-
ing a much lower decoding error than goals and agents. This
is presumably because the third attention block autoregres-
sively predicts the agent’s next step, which, as mentioned, of-
ten coincides with the key and lock position while the agent
is waiting in place for the barrier to disappear.

In summary, the VT seems to have learned to implicitly

Figure 8: Weighted BCE loss of linear probes trained on de-
coding the current position of goals, agents, and sub-goals
from attention head activations in each layer. Error bars indi-
cate standard deviation across the five trained VT models.

keep track of relevant semantic categories, such as agents,
goals, and subgoals, which are usually modelled as explicit
variables in Bayesian approaches.

Discussion and Conclusion

In conclusion, the VT model tested in this paper outperforms
previous DL-based baselines on the preference, inaccessible-
goal, and instrumental-actions BIB tasks in terms of VoE ac-
curacy. Its surprisal scores are also more in line with infants’
expectations than previous DL models, in that it tends to rep-
resent agents’ actions as directed towards goals, rather than
locations, and defaults to expecting rational actions. This
suggests that the transformer’s attention mechanism can be
helpful in acquiring intuitions about agents’ goals, prefer-
ences, and actions, purely from predicting the next step in
videos. However, a qualitative analysis of the VT’s errors
also demonstrated the pitfalls of this approach: Models may
exploit the particularities of a training dataset in an unin-
tended way (Gardner et al., 2020; Geirhos et al., 2020), e.g.
by associating the disappearance of the green barrier in the
instrumental-actions task with the agent’s first and last step
rather than the key mechanism. This may be mitigated with
a more realistic data setting, where models can gain expe-
rience with diverse agents and disambiguate causes and ef-
fects of instrumental mechanisms interactively, in a manner
closer to human infants. The findings also support the benefit
of investigating hybrid architectures that incorporate methods
which explicitly model human intuitions, such as HBToM, to
take advantage of both the flexibility of DL-based approaches
and the data efficiency and robustness of principled Bayesian
models.
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