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Abstract 

Previous research has revealed differences in what is learned 
when people acquire concepts through inference and 
supervised classification. Following these findings, we 
hypothesized that another difference is representational 
flexibility in novel category contrasts. An experiment tested 
the flexibility of category representations across inference and 
classification tasks by (1) having people make novel contrasts 
with categories learned earlier in the experiment and  (2) 
recording eye movements as participants acquired knowledge 
of four categories. Significant differences in the attention 
patterns were observed in the eye movement data. Differences 
in attention were coupled with an advantage for inference 
learners in making novel category contrasts. 

Keywords: Categories, Concepts, Learning, Inference, Eye 
movements, Eye tracking, Task demands 

Introduction 

Two assumptions have guided the study of concept learning 

ever since Hull (1920). The first is that category learning 

amounts to learning a common label for sets of objects. This 

assumption is explicit in the ubiquitous supervised 

classification task, in which people receive feedback when 

classifying visually presented stimuli. This paradigm has 

been used to determine, for example, whether prototype 

models are superior to exemplar models (Smith & Minda, 

1998, or vice versa, Zaki, Nosofsky, Stanton, & Cohen, 

2003). Over the years, researchers have taught people to 

group objects into (usually two) sets and have examined the 

resulting representations. 

A second assumption has been that information about a 

category learned in one context, should not transfer well to 

another. Consider the goal of distinguishing roses from 

raspberry bushes. If the most diagnostic feature is the 

presence of berries, then people will learn that the berry 

feature should receive the most attention weight (since both 

plants have thorns) (Nosofsky, 1984; Rehder & Hoffman, 

2005a; Shepard et al. 1961). However, when one later has to 

distinguish raspberry from cranberry bushes, thorns 

suddenly become diagnostic, because while both have red 

berries, only the raspberry bush has thorns.  

The problem is that optimizing attention for one category 

contrast (raspberry vs. rose) is not always optimal for 

another (raspberry vs. cranberry). The consequence of 

ignoring irrelevant dimensions for one set of category 

contrasts means that the learner has to re-attend (and learn 

about) those dimensions when familiar categories are 

contrasted in novel ways. That is, the learner has to relearn 

about raspberries. In this manner, the heralded powers of 

selective attention assumed by present theories are predicted 

to harm performance when previously irrelevant dimensions 

become relevant. 

The mechanisms of attention allocation in many 

computational models of category learning (Kruschke, 

1992; Erickson & Kruschke, 1998; Kruschke & Johansen, 

1999) suggest that people learn to attend to only that 

information needed to distinguish the two categories being 

acquired. The problem we raise is that after learning one 

classification in which, say, cue A is most diagnostic, 

people should have trouble learning a second classification 

in which B is the good cue, because prior classifications 

have taught people to ignore it (Kruschke, Kappenman, & 

Hetrick, 2005). We ask two questions in this study. First, 

how rigid are learners’ representations across different 

learning tasks? Second, can attention provide an explanatory 

variable for differences in what is learned between tasks? 

We speculate that flexible category representations are 

necessary for everyday classification, since particular 

category contrasts are not always known ahead of time by 

the categorizer. Previous research points to inference as 

being a likely candidate for producing flexible 

representations. To the extent that inference but not 

classification produces flexible category representations, it 

may reflect a more ecologically valid task for studying the 

kinds of concepts that people use everyday. 

Inference and Classification 

Other tasks, where the goal is not to classify, but to learn 

about the properties of categories, may yield a flexible 

representation that can handle novel contrasts. Research that 

has expanded the array of concept acquisition tasks 

(Markman & Ross, 2003) led us to consider a task that may 

produce flexible conceptual representations. Whereas 

classification involves predicting the category label from 

features, feature inference learning involves predicting a 

missing feature from other features and the category label. 

So rather than determining that a plant is a raspberry bush, 
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Figure 1. Example stimulus, with queried 

dimension marked by a dashed line. 

 

the inference task asks learners to determine whether a 

raspberry bush has thorns, or some other property.  

Comparisons of the feature inference task with supervised 

classification are of current interest, with evidence that 

inference produces different representations. It has been 

found that inference produces: increased sensitivity to 

within-category correlations of features (e.g., berries go 

with thorns, a leaf type and stem) (Chin-Parker & Ross, 

2002), increased sensitivity to nondiagnostic, prototypical 

features (Anderson, Ross, & Chin-Parker, 2002; Chin-

Parker & Ross 2004; Sakamoto & Love, 2006; Yamauchi & 

Markman, 2000a; b), more prototypical-feature inferences, 

and faster learning of linearly separable categories 

(Yamauchi & Markman, 1998). Thus, in spite inference and 

classification tasks being formally identical (Anderson, 

1991), it is possible that the resulting flexiblity of category 

representations can also differ.  

The above-cited evidence suggests that whereas 

classification learning may foster attention to the diagnostic 

dimensions that serve to distinguish between categories, 

inference learning may focus categorizers on within-

category information. Our hypothesis is that because the 

within-category information acquired by inference learners 

is not tied to any particular set of contrast categories, such 

knowledge yields a more general and flexible 

representation. As a consequence, with respect to novel 

contrasts, inference learners may be at an advantage over 

classification learners.  

Experiment 

Across two training phases participants learned about 

categories A, B, C, and D in Table 1 via inference or 

classification. Eye tracking was used throughout to monitor 

participants’ attention to the three feature dimensions and 

the category label. A test phase examined classification 

performance and attention profiles as people made novel 

category contrasts. From prior research we expected 

classification subjects to learn to ignore the irrelevant 

dimensions during training; this attention optimization 

should lead to a difficulty in making novel classifications. In 

contrast, prior research has demonstrated a tendency for 

inference learners to acquire within-category information, 

suggesting a general motivation to learn about all the 

dimensions in the inference task. Such motivation can 

potentially produce flexible category representations—that 

is—ones that support novel contrasts. Measuring eye 

movements during training will help explain differences in 

concept flexibility between groups. 

In contrast to previous studies comparing inference and 

classification, a change was introduced to our inference 

training procedure: One of the dimensions, the contrast 

dimension 3, was never queried (inference subjects were not 

aware of this at the start of the study). This change was 

made to better equate the two tasks; allowing inference 

participants to ignore task-irrelevant dimensions just like 

classification learners could. This allowed a test of whether 

inference learners are in fact generally motivated to learn 

about category features, or whether the demands of the task, 

i.e., querying the features, is what draws learners’ attention.  

Method 

Participants Twenty-four New York University students 

participated for course credit. They were assigned to 

standard classification or to an inference task. They were 

also assigned to one of six ways of distributing dimensions 

to screen locations. 

Materials Subjects learned categories of “ceremonial 

symbols.” The features of the symbols were 2 degrees of 

visual angle in diameter. An example is shown in Figure 1. 

The top left of each symbol contained the category label. 

The other locations contained features.  

The eye tracker was an SMI Eyelink I, 250 Hz. We 

programmed a gaze-contingent window of 4 x 4 degrees of 

visual angle to center on subjects’ gaze, when gaze was 

directed near a feature it was visible, but if their gaze was 

away from a feature, it became jumbled. Gaze-contingence 

ensured that subjects could only extract feature information 

when fixating it.  

Classification Task 1: A versus B Table 1 presents a three-

dimensional structure with categories A, B, C, and D. 

Subjects were trained on these categories using different 

contrasts. First, categorizers learned to contrast As versus 

Bs. To classify As and Bs, they needed to use dimension 1, 

in which feature-value 1 predicted category A and 0 

Table 1: Category structure. 

 Dimension 

Category 1 2 3 

A 1 1 1 

A 1 0 1 

B 0 1 1 

B 0 0 1 

C 1 1 0 

C 0 1 0 

D 1 0 0 

D 0 0 0 
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Figure 2. Proportion correct by block. 

 

predicted category B. Dimension 2 was irrelevant, with 1s 

and 0s occuring in each category equally. Dimension 3 

contained a 1 for all category A and B members (i.e., it had 

perfect category validity), so it too was irrelevant for 

discriminating As  and Bs. 

Before each trial, we presented a drift correction, in which 

the subject fixated the point in the center to display the 

stimulus. There was no response deadline for classifying. 

The stimulus with the correct category label would remain 

for 4 s after a response. Training continued for five blocks. 

Classification Task 2: C versus D Subjects next learned a 

second contrast, between Cs and Ds. As Table 1 shows, this 

contrast required use of dimension 2, with 1s predicting Cs, 

and 0s Ds. Dimensions 1 and 3 were irrelevant. Thus, the 

task was identical to the A versus B task, but with the 

relevant dimension switched. (Note that the additional block 

in Task 1 was to allow learners to acclimate to the 

procedure.) 

Inference Task 1: Category A and B The inference 

condition was similar to the classification condition, but 

instead of classifying, inference learners predicted missing 

features. Figure 1 provides an example inference trial, 

where the bottom left of the stimulus, contains a feature 

option; the subject must decide which feature belongs there. 

The relative positions of features indicated which button to 

press for each option. The left button selected the feature on 

the left, and the right button selected the feature on the right.  

Inference learning on categories A and B lasted for five 

blocks. Every exemplar was presented with two dimensions 

queried twice. Exemplars were presented in random order, 

for a total of 16 trials per block. 

Inference Task 2: Category C and D Inference learning 

continued with the second set of categories in Table 1, for 

four blocks. 

Perfect performance was attainable on only one of the two 

queried dimensions in either A-B (dimension 1) and C-D 

(dimension 2) training. 

Switch Task After the first two tasks, both classification 

and inference subjects were presented with classification 

trials involving contrasts between categories that were 

unpaired during training. For example, they would be 

presented with a member of category A or C and asked to 

classify it into the correct category. Other novel contrasts 

involved category B versus C, B versus D, and A versus D. 

Importantly, correct responding on these novel contrasts 

required the contrast dimension 3 which had been 

previously irrelevant during training. Dimensions 1 and 2 

yield a maximum accuracy of only 75% accuracy and thus 

alone cannot be used to attain perfect performance on these 

classification trials. 

Additional instructions were provided to the inference 

group since the switch classification task was different than 

their inference task from previous trials.  

Feedback was provided. Subjects completed two blocks 

of 16, switch-contrast trials. Each block was constructed by 

randomly sampling with replacement from the 16 unique 

switch trials. 

Results and Discussion 

Learning AB (blocks 1-5) and CD training performance (6-

9) are shown in Figure 2. The figure shows average 

classification performance for the classification group and 

relevant cue inference performance. Both classification and 

inference groups improved over training blocks, but 

classification training was easier than inference training, 

with a higher proportion correct over blocks. The inference 

learners performed above chance levels in predicting the 

valid cue, t(11) = 4.46, p < .01, but were marginally lower 

than the classification group, t(22) = 1.81, p < .10 on the last 

AB training block. The CD training blocks were similar. 

Fixations A crucial question was whether inference learners 

fixated the non-queried dimension during learning. If 

inference is a more natural learning task than classification, 

it should motivate a general interest in learning about the 

category dimensions; fixations should be distributed to all 

dimensions, regardless of whether those dimensions are 

queried. However, if it is the attentional demands of the 

inference task that drive learning about dimensions (and not 

a general interest in the category dimensions), then fixations 

should shift away from the non-queried dimension, since it 

is no longer immediately relevant for the task. The latter 

result would suggest that differences in what is learned via 

inference and classification are from different attentional 

requirements, and not motivational factors. Eye fixations 

will be used to distinguish between these two possibilities. 

Figure 3 shows proportion of fixations to category label 

and dimensions over AB and CD blocks, as a function of 

task. Replicating our earlier work, at the beginning of 

learning, the average classification learner (top) fixated 

dimensions about equally. We also observed the expected 

shift in fixations from irrelevant to relevant dimensions, 

until irrelevant dimensions were fixated rarely or not at all. 

At the onset of CD training in block six, there is uneven 

attention distribution resulting from the learned fixation 

patterns from AB training, so that in the first trial of CD 

training, classification learners were not fixating the contrast 
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Figure 3. Fixations by task, block, and location. 

Figure 4. Fixations to contrast dimension by 

trial, first block of A-B and first block of C-D. 

dimension or the CD relevant dimension. A second attention 

optimization obtained for classification subjects. 

We next examined whether the inference condition 

yielded any kind of attention optimization. Recall that the 

contrast dimension was never queried. If inference 

motivates a general interest in the category features, we 

should observe continued fixations to the contrast 

dimension, in spite of it now being task-irrelevant. 

However, Figure 3 (bottom) shows that throughout learning, 

inference learners largely ignored the contrast dimension. 

Although attention to dimensions 1 and 2 remained high 

throughout learning, even in the first learning block 

inference learners largely ignored the contrast dimension. In 

fact, in the first block of learning, the amount of time 

fixating the contrast dimension was already significantly 

less than that of fixating the other two dimensions and the 

category label (all ps < .01). Apparently, inference learners 

do in fact optimize their attention away from task-irrelevant 

cues. 

Attention optimization in the inference task contradicts 

the idea that inference motivates a general interest in the 

category features beyond what is strictly necessary. Rather, 

the results of Figure 3 support the idea that what 

distinguishes classification from inference is the attentional 

demand it places on the learner. Learners fixate dimensions 

because the task requires it and not because of motivational 

factors. Any motivation there may have been to learn about 

all of the category features extinguished quickly (also see 

Rehder, Colner, & Hoffman, 2009). 

Switch-trial performance Eye fixation data have ruled out 

that inference motivates general interest in category 

features. By not querying the contrast dimension in the 

inference condition, we allowed inference learners the 

opportunity to optimize their attention, just as the 

classification learners could. In fact, inference learners 

optimized their attention to just those queried dimensions, 

ignoring the never-queried contrast dimension. As a result 

of this manipulation, the inference learners may now 

struggle to include the contrast dimension, since they largely 

ignored it during training. On the other hand, although the 

inference learners never directed their attention to the 

contrast dimension, because it was not part of the task, they 

never had to learn to direct their attention away from that 

dimension either. Rather, the task focused their attention 

more on the two queried cues, and inference subject learned 

which dimensions were task-relevant. It is this fact that may 

still allow inference learning to nevertheless produce 

flexible attention allocation. By not learning to ignore the 

contrast dimension, inference learners may be free to use it 

during the switch trials. 

Blocks 10 and 11 of Figure 2 show proportion correct for 

switch-classification. In spite of not deploying significant 

fixations to the contrast dimension during training, the 

inference condition nevertheless showed an advantage 

during the switch trials. In the first block of switch trials, the 

inference group (M = 0.93, SD = 0.09) outperformed the 

classification group (M = 0.83, SD = 0.16), t (22) = 1.95, p = 

.064. Likewise, during the second block of switch trials, the 

inference group (M = 0.99, SD = 0.02) outperformed the 

classification group (M = 0.89, SD = 0.15), t (22) = 2.26, p < 

.05. Spending a large amount of time fixating a dimension 

during learning does not seem necessary for using that 

dimension later in a flexible way. Whatever inference 

subjects learned (or didn’t learn) during training allowed 

them to perform well during switch trials. 

The eye movement results from training showed that 

classification and inference learners both largely ignored the 

contrast dimension. It makes sense then that classification 

learners should fail to use the contrast dimension during the 

switch trials, but what allowed inference learners to have 

more flexible category representations than the 

classification group? Figure 4 shows learners’ attention 

1867



allocation to the contrast dimension as a function of trial for 

the first block of AB (trials 1-16) and CD training (trials 81-

96). The figure shows that at the trial level, the largest 

attentional difference between the two conditions was that 

the classification learners allocated more attention to the 

contrast dimension early in learning. In the first 16 trials of 

AB training, the classification condition allocated about 

twice as much fixation time to the contrast dimension (M = 

0.16, SD = 0.07) than the inference condition (M = 0.09, SD 

= 0.06), F(1, 18) = 4.87, MSE = 0.073, p < .05, 
2

p  = 0.21, 

and was slower to ignore the contrast dimension, as 

indicated by a trial by task interaction, F(15, 270) = 2.06, 

MSE = 0.008, 
2

p  = 0.10, p < .05.  

A similar pattern obtained in CD training. The 

classification condition allocated more fixations (M = 0.08, 

SD = 0.05) to the contrast dimension than the inference 

condition (M = 0.04, SD = 0.04), F(1, 18) = 2.92, MSE = 

.034, 
2

p  = 0.14, p  = .104, and was slower to ignore the 

contrast dimension, F(15, 270) = 2.67, MSE = 0.008, p < 

.01. (More accurately, this interaction reflects an inverted u-

shaped pattern, in which the classification condition first 

increased fixations and then decreased fixations to the 

contrast dimension.) The different patterns of attention 

reflect different reasons the two groups probably ignored the 

contrast dimension. Inference learners ignored it because the 

task directed their attention to those dimensions being 

queried. Since the contrast dimension was never queried, 

their attention was never allocated to it. Classification 

learners were in a different position. From their perspective, 

any or all dimensions could have been important for getting 

the answer right, so they had to learn to ignore the contrast 

dimension, as they gradually discovered that the contrast 

dimension didn’t help them classify As from Bs or Cs from 

Ds. We suspect that this is why there is an initial increase in 

fixations to the contrast dimension in the first CD block, 

because classification learners attended to it, and then 

learned that it was useless in classifying Cs and Ds. 

Classification learners’ fixation results reflected a learned 

inattention to the contrast dimension, which probably 

caused their difficulty in attending to the contrast dimension 

during the switch trials. 

General Discussion 

We began with the observation that real-life categorizers 

can make novel category contrasts and that information 

learned about one set of categories transfers to another 

without difficulty. This observation seemed to be at odds 

with the robust finding that people in classification 

experiments tend to optimize their attention to the fewest 

necessary dimensions. Such optimization would necessarily 

force learners to reallocate attention when previously 

irrelevant dimensions at once become relevant. 

To resolve the contradiction that people can make novel 

category contrasts on one hand and but also tend to optimize 

attention on the other, we looked to other types of learning 

tasks they may produce classification performance that is 

less optimal (in a specific context) but more flexible overall. 

Inference training seemed like the best candidate. There 

were two reasons for this. The first was based on evidence 

that inference yields a special type of processing in humans; 

although the exact source of this special processing was 

until now not entirely clear, classification learning has been 

found to cause humans to attend to diagnostic information 

and inference learning can cause learners to focus on within-

category correlations and prototypical features. We 

imagined that such differences may reflect that inference is 

a more typical learning task than classifying, and it isn’t 

hard to imagine how familiarity in the learning task can lead 

to greater ease and flexibility in using the acquired 

information.  

Our second hypothesis for how inference learning could 

yield flexible category representations was based on 

differences in attentional demands of inference and 

classification. Whereas most classification tasks allow 

learners to ignore some of the irrelevant dimensions, in the 

typical inference learning experiment, all of the dimensions 

are queried several times throughout training. Focusing 

people’s attention on all of the dimensions in this way may 

cause people to look at all dimensions on every trial, in 

order to prepare for future queries. In fact, the eye tracking 

results from this study (and also in Rehder, Colner, & 

Hoffman, 2009) show that never querying one of the 

dimensions allows the inference learner to optimize their 

attention to only those task-relevant dimensions, i.e., those 

dimensions that are sometimes queried. 

As it turned out, our initial hypotheses about inference 

learning were not exactly right. Our data showed that 

inference subjects very quickly ignored the never-queried 

dimension. Significant differences in fixations to the 

contrast dimension were found within the first learning 

block. Apparently, attending to the contrast dimension 

during training was not necessary for creating flexible 

category representations. Rather, what gave subjects the 

advantage in switch-classification trials is that they never 

had to learn to ignore the contrast dimension, as the 

classification subjects did, as evidence by the much larger 

drop in attention to the contrast dimension from the 

beginning to the end of training in the classification 

condition. In other words, classification subjects were 

harmed in their task by their learned attention profiles, but 

the inference subjects were not. 

Such a finding is in fact consistent with theories of 

attention and category learning. Several models, for 

example, RASHNL Kruschke and Johansen (1999), and 

EXIT Kruschke (2001), which are based on Macintosh’s 

(1975) theory of learned attention, propose that attention 

weights are learned for a given set of inputs. In these 

models, if feature inputs are irrelevant, or if for other 

reasons the features increase the number of classification 

errors committed, the attention system will direct attention 

away from those features in favor of others. These attention 

mechanisms help the models explain a large array of 

blocking and highlighting phenomena in addition to 

benchmark category learning data. They also explain why it 
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is that our classification subjects failed to redirect attention 

to the contrast dimension during the switch trials.  

Beyond supporting certain theories of categorization and 

attention, our results underscore an important difference 

between the attention profiles acquired through trial and 

error learning and those that arise out of task goals. It seems 

that ignoring features as a result of discovering that they are 

statistically irrelevant over numerous trials is qualitatively 

different than cues that are never queried, and are thus 

irrelevant for the task. Thus, how the learner acquires an 

attention profile is as important as the attention profile itself.  

Conclusion We conclude that much of the observed 

difference in learning between inference and classification is 

likely because of differences in how attention is directed 

towards certain features by the demands of the task. Before 

we do, however, we would first emphasize that we do not 

think this is a trivial discovery.  

With regards to the larger question of how it is that people 

build up flexible representations to learn novel category 

contrasts, it is clear that inference training does a much 

better job at this than classification training does. Thus 

based on our findings and the previous studies comparing 

learning tasks, we think it would be a mistake to generalize 

too broadly about category representations or about how 

people allocate attention when classifying based on the 

classification task alone. If a significant proportion of 

people’s experience with categories involves inference and 

or experience, e.g., communication and problem solving, as 

we think it probably does, then it is critical that we 

understand better how tasks interact with what is learned. 

Finally, in the service of this goal, we believe that methods 

such as eye tracking, that allow researchers to access 

information processing online will continue to prove 

invaluable.  
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