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ABSTRACT It is known that organisms have developed various mechanisms to cope
with cadmium (Cd) stress, while we still lack a system-level understanding of the func-
tional isomorphy among them. In the present study, a cross-kingdom comparison was
conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas rein-
hardtii, through toxicological tests, comparative transcriptomics, as well as conventional
functional genomics. An equivalent level of Cd stress was determined via inhibition
tests. Through transcriptome comparison, the three organisms exhibited differential
gene expression under the same Cd stress relative to the corresponding no-treatment
control. Results from functional enrichment analysis of differentially expressed genes
(DEGs) showed that four metabolic pathways responsible for combating Cd stress were
commonly regulated in the three organisms, including antioxidant reactions, sulfur me-
tabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43
DEGs from the four pathways were further examined using quantitative PCR and
resulted in a relatively comparable dynamic of gene expression patterns with transcrip-
tome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding
proteins resulted in the detection of 12 groups of homologous proteins in the three
species. A class of potential metal transporters were subjected to cross-transformation
to test their functional complementation. An ABC transporter gene in E. coli, possibly
homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in
enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules
against Cd toxicity were commonly regulated among distantly related microbial species,
which will be helpful for utilizing them in modifying microbial traits for bioremediation.

IMPORTANCE Research is establishing a systems biology view of biological response
to Cd stress. It is meaningful to explore whether there is regulatory isomorphy
among distantly related organisms. A transcriptomic comparison was done among
model microbes, leading to the identification of a conserved cellular model pinpoint-
ing the generic strategies utilized by microbes for combating Cd stress. A novel E.
coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on sys-
tems understanding of the cellular response to metals provides the basis for devel-
oping bioengineering remediation technology.

KEYWORDS cross-kingdom, comparative transcriptomics, cadmium resistance,
Chlamydomonas reinhardtii, Escherichia coli, Saccharomyces cerevisiae

Soil heavy metal pollution poses a significant threat to the quality of farmland soil
and underground water, as well as food safety and human health. The exploration

of metal resistance mechanisms has attracted unprecedented attention in recent years
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owing to their importance in bioremediation practices (1, 2). Numerous studies have
detected heavy metal-resistant mechanisms of specific organisms with remediation
potentials, and what is more, modifying them using bioengineering technology (3, 4).
However, a systemic understanding of metal stress responses across distantly related
organisms is also of great interest, as these shared traits may be more easily applied in
bioengineering strains, and can finally be used in a wider range in bioremediation.

Cadmium (Cd) is one of the most ubiquitous metallic pollutants worldwide. System-
level exploration of cellular responses to Cd stress has been reported for both prokary-
otic and eukaryotic organisms, while most of the exploration of cellular responses was
done for specific species (5–8). For example, after exposure to Cd, genes encoding pro-
teins involved in the synthesis of phenols and metallothioneins in the fungus Paxillus
involutus were upregulated, resulting in the incremental production of cysteine-enriched
compounds (9). Pleurotus ostreatus responded to Cd stress by modulating cell processes,
including cell wall remodeling, Cys-enriched compound synthesis, reactive oxygen spe-
cies (ROS) response, and metal transport in a systematic manner (5). Likewise, a compara-
tive transcriptomic study showed that a low-Cd wheat variety mobilized a wide spec-
trum of cellular activities such as enriched ion binding, antioxidant defense mechanisms,
sulfotransferase activity, and cysteine (Cys) biosynthetic process to reduce Cd concentra-
tion (10). Existing research has deepened our understanding on systems-level Cd
responses in specific organisms, while it is also critical to explore the conserved mecha-
nisms that have been selected by nature during evolution, as these conserved modules
may play an important role in facilitating stress tolerance (11).

Comparative genomics or transcriptomic analysis allows us to search for conserved
and specific genetic elements among different species (12, 13), especially for comparing
among distantly related species (14, 15). Several heavy metal-responding mechanisms
have been identified through transcriptomic comparisons (5–8). For instance, based on a
comparative transcriptomic study, Song et al. (6) found that activation of redox homeo-
stasis and oxidation-related metabolic processes were the primary response to Cd stress
in switchgrass roots, and the hsp (heat shock protein) gene was able to improve plant
tolerance against Cd significantly. Between- and within-species comparisons of transcrip-
tomic profiles of Arabidopsis and Thlaspi caerulescens showed that lignin, glutathione
(GSH), and sulfate metabolism were involved in Cd accumulation (16). A comparative
transcriptomic analysis between two pak choi (Brassica rapa L. subsp. chinensis) cultivars
demonstrated that plasma membrane and tonoplast-localized transport genes were
related to Cd accumulation (17). Comparative analysis of high-Cd-accumulating Solanum
nigrum and low-Cd-accumulating Solanum torvum indicated that Fe deficiency transport-
ers might play a role in the differential uptake of Cd (18).

Due to tremendous differences in gene expression and the unevenness of annotation
information among cross-kingdom organisms that can be referenced, only a limited
number of studies targeted comparing distantly related species. Ferrari et al. found that
genes related to biological rhythm were conservatively expressed by comparing the di-
urnal transcriptional programs of nine members of Archaeplastida, including eukaryotic
algae, terrestrial plants, and Cyanobacteria (14). Coexpression modules were found to be
shared by three distantly related metazoan phyla, human, worm, and fly, revealing an-
cient and conserved features in animal development (19). Moreover, a cross-phylum
comparative transcriptomic analysis of 10 species discovered conserved early and late
phases of development in vertebrates (20). These studies intimated the existence of a
universal gene regulation mode and indicated the feature of older phylostrata genes
presenting stronger conservation (14). To date, conserved genetic modules for Cd stress
response among distantly related species have not been well studied.

Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii are com-
monly used as model organisms for metal resistance research in the kingdoms of bac-
teria, fungi, and protozoa (algae), respectively (21–25). Some specific Cd response path-
ways and genes of these three organisms have been clearly described in previous
studies. In E. coli, Cd efflux genes like znt, czc, and cad systems were found to be
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responsible for Cd detoxification (24, 26–28). Biosynthesis of GSH, antioxidant enzymes,
and transporters were induced in S. cerevisiae to cope with Cd stress (29, 30). C. rein-
hardtii is able to mobilize photosystem remodeling, chlorophyll biosynthesis, S-adeno-
sylmethionine (SAM) synthesis, iron uptake, and phytochelatin-Cd (PC-Cd) complex
sequestration to alleviate Cd toxicity (31–33). For biological Cd stress response, shared
Cd-responding genetic modules cannot be inferred from existing studies due to the
lack of a uniform experimental regime.

This study was undertaken to assess the gene expression variation in E. coli, S. cere-
visiae, and C. reinhardtii under equivalent levels of Cd stress and the conserved genetic
modules among them using a comparative transcriptomic method. The selective com-
mon modules were cross-transformed among the three organisms to verify their func-
tional complementation in Cd resistance. Findings from this study may advance a sys-
tems biology understanding of microbial Cd responses, and the detected shared
pathways among the tested species can be utilized in modifying microbial traits for
bioremediation.

RESULTS
Phenotypic response of the tested species to Cd stress. Logarithmic growth phase

of the three strains was determined by monitoring their growth rates. E. coli BL21 pre-
sented rapid growth in the first 3 h postinoculation; therefore, 2.5 h postinoculation
was selected as the sampling time point (Fig. 1A). After 2.5 h of 100 mM, 200 mM,
400 mM, 600 mM, or 800 mM Cd treatment in liquid LB medium, the growth inhibition
rate was 2.0%, 2.2%, 19.5%, 35.5%, and 45.3%, respectively. As a result, cells of E. coli
BL21 treated by being cultured with 600 mM Cd for 2.5 h were used for subsequent
transcriptome sequencing (Fig. 1D). Growth of S. cerevisiae AH109 reached logarithmic
phase 6 h after inoculation, and 6 h was selected as the Cd treatment time (Fig. 1B).
Growth of S. cerevisiae AH109 was inhibited by 13.6%, 17.6%, 26.5%, 30.7%, and 38.7%
upon exposure to 25 mM, 50 mM, 100 mM, 200 mM, and 400 mM Cd, respectively. Thus,
400 mM Cd was used as Cd treatment concentration for S. cerevisiae AH109 (Fig. 1E). C.
reinhardtii FACHB-479 presented a higher sensitivity to Cd than E. coli BL21 and S. cere-
visiae AH109. The C. reinhardtii FACHB-479 strain started logarithmic growth phase 1 h
postinoculation. After 4 mM, 8 mM, 12 mM, 16 mM, or 20 mM Cd treatment, the growth
of C. reinhardtii FACHB-479 was inhibited by 17.8%, 26.7%, 33.1%, 36.4%, and 54.1%,
respectively. Thus, 12 mM Cd treatment was selected for C. reinhardtii FACHB-479
(Fig. 1C and F).

Transcriptome sequencing and annotation. Approximately 104.60 million of 150-
bp paired-end reads were generated for E. coli BL21, 363.09 million reads for S. cerevi-
siae AH109, and 403.76 million reads for C. reinhardtii FACHB-479. After quality trim-
ming, the Q30 of the retained high-quality reads of E. coli BL21, S. cerevisiae AH109,
and C. reinhardtii FACHB-479 were 95.06, 96.38, and 94.46, respectively (see Table S1 in
the supplemental material). Data from each sample were subsequently merged and
mapped to the reference genome sequences, resulting in overall 99%, 96% and 95%
total mapped reads. Among the mapped reads, 98.40%, 91.54%, and 95.39% of these
reads were uniquely mapped, including 4,141, 5,774, and 14,435 identified unigenes
for E. coli BL21, S. cerevisiae AH109, and C. reinhardtii FACHB-479, respectively (see
Fig. S1 in the supplemental material). Using the cutoff of the absolute value of log2

fold change (FC) of $1 and adjusted P value (p adjust) of ,0.05, a total of 541, 80, and
5126 DEGs were detected in E. coli BL21, S. cerevisiae AH109, and C. reinhardtii FACHB-
479, respectively (Fig. S1). The genes were considered upregulated if the transcript
level in Cd-treated cells was higher than the level in the control cells; conversely, genes
were considered downregulated if the transcript level in the Cd treatment was lower
than the value for the control cells.

Gene sequences of the three organisms were searched against the Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), NR, Swiss-Prot, and COG
databases, resulting in 3,559 (82.02%), 2,764 (63.7%), 4,321 (99.59%), 4,028 (92.83%),
and 4,001 (92.21%) annotated unigenes found in E. coli BL21, respectively; 6,685
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(93.81%), 3,643 (51.12%), 2,281 (32.00%), 4,987 (69.98%), and 2,706 (37.97%) annotated
unigenes in S. cerevisiae AH109, respectively; and 8,637 (48.14%), 6,337 (35.32%),
11,190 (62.36%), 17,662 (98.43%), and 8,001 (44.61%) annotated unigenes, respectively,
in C. reinhardtii FACHB-479.

Functional enrichment analysis. GO enrichment analysis was performed for all the
DEGs in the three organisms, and GO terms that commonly enriched in all the three

FIG 1 Growth patterns of the three tested species under Cd stress. (A to C) Growth curves of Escherichia coli BL21, Saccharomyces cerevisiae AH109, and
Chlamydomonas reinhardtii FACHB-479, respectively, for determination of the logarithmic growth phase. (D to F) Dose-response curves using cell density as an
indicator of the tested species (E. coli BL21, S. cerevisiae AH109, and C. reinhardtii FACHB-479) against a specific Cd concentration gradient. Arrows represent the
points selected for subsequent transcriptome experiments. Bars with different letters are significantly different at P # 0.05 (one-way ANNOVA).
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organisms were selected (Fig. S2). It turned out that GO related to ion transport, pro-
tein metabolism, and organelles were significantly enriched in the three organisms
(Fig. S2). For further functional analysis, significantly responsive genes were selected at
the threshold of the absolute value of log2 FC of$1 and p adjust of ,0.05 with expres-
sion values greater than 100 in either treatment. As a result, 320, 38, and 545 DEGs in
E. coli BL21, S. cerevisiae AH109, and C. reinhardtii FACHB-479 were sorted out for fur-
ther analyses. Significantly responsive genes were divided into several categories
based on annotation results with online and local databases.

In E. coli BL21, pathways of metal ion transport (35 genes, 10.9%; the ratio repre-
sents the number of the genes in this pathway to the total number of DEGs with
expression values greater than 100), sulfur metabolism (10 genes, 3.1%), reactive oxy-
gen species (ROS) response (9 genes, 2.8%), cell wall remodeling (3 genes, 0.9%), pro-
tein biosynthesis (33 genes, 10.3%), sugar transport (21 genes, 6.54%), flagellum as-
sembly (15 genes, 4.7%), biofilm formation (6 genes, 1.9%), and energy metabolism (30
genes, 9.4%) were involved in the Cd response. Of the DEGs, almost all the genes
involved in the first five pathways were upregulated, and the majority of the genes
involved in the last four pathways were downregulated (Fig. 2A). Among the metal
transporters, 4 genes were involved in Zn uptake (homologous gene of zinT and
znuABC), and 21 genes were related to iron uptake. A Cu efflux system CusABCF (four
genes), a cation efflux system AcrAB-TolC (three functional genes, one regulatory
gene), and a ZntA homologous protein were involved in Cd detoxification. Under Cd
stress, sulfur assimilation was mobilized: genes involved in sulfur import (two genes),
sulfate and sulfite reduction (four genes), GSH biosynthesis (one gene), and cysteine/
methionine (Cys/Met) dissociation (two genes) were upregulated (Fig. 2A).

In S. cerevisiae AH109, sulfur metabolism (9 genes, 23.7%), ROS response (11 genes,
28.9%), cell wall remodeling (4 genes, 10.5%), metal ion transport (3 genes, 7.9%), and
energy production and conversion (7 genes, 18.4%) were differentially expressed in
response to Cd stress. Of these genes, genes involved in the first three pathways were up-
regulated due to Cd exposure, which was same as that in E. coli BL21, including several
antioxidant enzymes such as thioredoxin (Trx), glutathione peroxidase (Gpx), peroxire-
doxin (Prx), and antioxidant such as aldo-keto reductase and HSP. Genes involved in sulfur
metabolism in S. cerevisiae AH109 mainly function in sulfate reduction (one gene), Cys/
Met biosynthesis and transport (seven genes), and GSH biosynthesis (one gene). Genes
encoding metal transporter and energy metabolism-related protein presented a different
regulation pattern from E. coli BL21, for among three transporters participating in Zn
(Zrt1), Fe (Fit1), and Na import, only the Na transport protein was activated. Several genes
involved in energy production and conversion were upregulated in S. cerevisiae AH109
under Cd stress (Fig. 3A).

Gene regulation under Cd stress was more complex in C. reinhardtii FACHB-479 than
in E. coli BL21 and S. cerevisiae AH109 (Fig. 4A). Thirty-one genes encoding Trx (7 genes),
superoxide dismutase (SOD, 2 genes), glutaredoxin (Grx, 2 genes), Prx (4 genes), HSP (10
genes), which are involved in ROS response, and about two-thirds of these genes were
upregulated. Of these genes, all the HSP-encoding genes were upregulated, while the
Prx-encoding genes were downregulated. Sixteen genes involved in intracellular sulfur
metabolism were upregulated under Cd exposure, including genes encoding proteins
participated in H2S (2 genes), Cys (2 genes), Met (10 genes), and GSH (3 genes) biosynthe-
sis. Sixteen genes encoding metal transporters were downregulated, which were classi-
fied into the following: (i) Zn uptake transporter Zip (1 gene); (ii) Fe importers (1 gene)
and the vacuolar sequestration transporters (2 genes), FTR1 and VIT1 (34); (iii) Ca import-
ers (5 genes); and (iv) Cu efflux transporter (1 gene, copA). Two Cd transport proteins
related to Cd (CHLRE_05g248300v5, homologous to nmarp) and GSH-Cd vacuolar seques-
tration (CHLRE_02g097800v5, homologous to abcC1) (35) were downregulated. Cell wall
remodeling that was always found participated in Cd absorption, together with other
related genes (three genes) were upregulated in C. reinhardtii FACHB-479, which was con-
sistent with the other two organisms. Most of the flagellar assembly-related genes (7/11)
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were downregulated, which was consistent with E. coli BL21. Thirty-two DEGs involved in
the ubiquitin-proteasome system, a main pathway for protein degradation, were found
upregulated. In coping with Cd stress, C. reinhardtii FACHB-479 cells simultaneously
reduced nitrogen utilization (12 genes) and its related protein biosynthesis (64 genes)
(Fig. 4).

Homolog protein families associated with Cd across the three organisms. A cross-
kingdom protein homolog comparison among all the DEGs was conducted. Twelve
groups of homologous proteins were obtained, including the categories of metal ion

FIG 2 Typical differentially expressed genes (DEGs) and expression pattern in Escherichia coli BL21 under Cd stress. (A) A heatmap showing typical DEGs in
E. coli BL21 under Cd stress. (B) qPCR verification of gene expression levels. qRT-PCR, quantitative reverse transcription-PCR. (C) Consistency analysis
between RNA-seq and qPCR results. DEGs were selected according to the thresholds of the absolute value of log2 FC $ 1, p adjust , 0.05, and expression
values greater than 100 in either Cd or control treatment.
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transmembrane transporter, ABC transporter, sulfite reductase, phosphoglycerate de-
hydrogenase, aldo/keto reductase, HSP, metallopeptidase, iron-sulfur cluster assembly,
fumarate reductase/succinate dehydrogenase, elongation factor, peptidyl-prolyl cis-
trans isomerase, and ATP-dependent RNA helicase (Table 1).

Validation of selected DEGs by qPCR. The expression patterns for 43 (15 for E.
coli BL21, 14 for S. cerevisiae AH109, and 14 for C. reinhardtii FACHB-479) DEGs identi-
fied by transcriptome sequencing (RNA-seq) were validated by quantitative PCR
(qPCR) (Fig. 2B, 3B, and 4B). Although different algorithms were used in quantifying
their expression levels, relatively comparable dynamics of gene expression patterns
were observed by both approaches (Fig. 2B, 2C, 3B, 3C, 4B and 4C). Additionally, for
each of the three organisms, RNA-seq data had a linear relationship with correlation
coefficients of 0.985, 0.635, and 0.964 for E. coli BL21, S. cerevisiae AH109, and C.
reinhardtii FACHB-479, respectively, indicating that the expression data obtained by
RNA-seq were credible (Fig. 2C, 3C, and 4C). The qPCR-validated DEGs in E. coli BL21
were mainly involved in metal transport (B21_RS09935 and B21_RS17315), ferric iron
import (B21_RS02785 and B21_RS22395), sulfur metabolism (B21_RS17320, B21_RS13610,
B21_RS13605, B21_RS13600, and B21_RS07750), stress response (B21_RS19915),

FIG 3 Typical differentially expressed genes (DEGs) and expression pattern in Saccharomyces cerevisiae AH109 under Cd stress. (A) A heatmap showing
typical DEGs in S. cerevisiae AH109 under Cd stress. (B) qPCR verification of gene expression levels. (C) Consistency analysis between RNA-seq and qPCR
results. DEGs are selected according to the thresholds of the absolute value of log2 FC $ 1, p adjust , 0.05, and expression values greater than 100 in
either Cd or control treatment.
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sugar import (B21_RS20540, B21_RS20565, and B21_RS21625), cell wall remodeling
(B21_RS05900), and energy production and conversion (B21_RS21615) (Fig. 2A). In
S. cerevisiae AH109, 11 selected DEGs (YLR303W, YIR017C, YKL001C, YLL061W,
YDR502C, YLR180W, YPL274W, YLL060C, YGR055W, YFR030W, and YPR167C) encoded
proteins for sulfur metabolism, one (YFL057C) encoded a protein for the ROS response,

FIG 4 Typical differentially expressed genes (DEGs) and expression pattern in Chlamydomonas reinhardtii FACHB-479 under Cd stress. (A) A heatmap
showing typical DEGs in C. reinhardtii FACHB-479 under Cd stress. (B) qPCR verification of gene expression levels. (C) Consistency analysis between RNA-seq
and qPCR results. DEGs are selected according to the thresholds of the absolute value of log2 FC $ 1, p adjust , 0.05, and expression values greater than
100 in either Cd or control treatment.
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one (YGL255W) encoded a protein for zinc import, and one (YER091C) encoded a protein
for methylation (Fig. 3A). The qPCR-validated DEGs in C. reinhardtii FACHB-479 were
mainly involved in ROS response (CHLRE_10g428950v5 and CHLRE_07g321800v5),
sulfur metabolism (CHLRE_03g180750v5, CHLRE_03g204250v5, CHLRE_06g250200v5,
CHLRE_01g029000v5, CHLRE_14g630871v5, and CHLRE_12g525650v5), metal trans-
port (CHLRE_07g351950v5, CHLRE_02g145100v5, and CHLRE_05g248300v5), copper
oxidation (CHLRE_01g031500v5), septum formation (CHLRE_17g720350v5), and ABC
transporter (CHLRE_12g530900v5) (Fig. 4A).

An E. coli ycf1 orthologous gene confers enhanced Cd tolerance in yeast. To
assess functional conservation of orthologous genes from different kingdoms associ-
ated with Cd stress, an ycf1 homologous gene B21_RS13195 of E. coli BL21, which
showed a similarity of 34.44% to the ycf1 gene of yeast (Table 1 and Fig. 5), was
selected and overexpressed in competent cells of S. cerevisiae AH109. Drop assay
results showed that heterologous expression of the E. coli B21_RS13195 presented pos-
itive outcomes in Cd resistance (Fig. 5) with the transformant showing obviously better
growth at 80 mM Cd than the control cells.

We also tried the overexpression of YDR135C (a YCF1 homologous gene in S. cerevi-
siae AH109) and CHLRE_13g604150v5 (a candidate ABC transporter in C. reinhardtii
FACHB-479) in the E. coli BL21. Although the cDNAs of the two genes were successfully
cloned, transformation of CHLRE_13g604150v5 in E. coli BL21 cells did not present
obvious enhanced Cd tolerance (Fig. S3), neither did the construction of YDR135C
transformant successfully.

DISCUSSION

A cross-kingdom comparative transcriptomic analysis was conducted for E. coli, S.
cerevisiae. and C. reinhardtii in the present study to detect conserved pathways and
genes for Cd stress response. Inhibition tests were conducted to determine the con-
centrations of Cd treatment for the three organisms which is critically important for a
meaningful comparison. A total of 104.60 million paired-end reads were generated for
the three organisms, resulting in overall 99%, 96%, and 95% total mapped reads after
quality trimming. DEG analysis revealed that four comodulated pathways were associ-
ated with Cd stress, including ROS response, sulfur metabolism, cell wall remodeling,
and metal ion transport among the tested species. In vivo expression patterns of 43
DEGs from the four pathways demonstrated a relatively comparable dynamic of gene
expression patterns observed by both RNA sequencing and qPCR. Cross-kingdom

FIG 5 An E. coli ycf1 orthologous gene conferred Cd tolerance in yeast. (A) Protein sequence alignment of homologous proteins classified as metal
transporters in E. coli and S. cerevisiae. MRP, multidrug resistance-associated protein. (B) Drop assay for functional verification of Cd resistance in S.
cerevisiae AH109 with B21_RS13195 overexpressed. Cells harboring empty PCEV vector and normal AH109 cells were used as negative controls in panel B.
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protein sequence alignment led to the identification of 12 homologous protein clus-
ters mainly functioning in ion transporter, ABC transporter, and sulfite reductase. In
addition, an ycf1-like gene in E. coli was successfully expressed with enhanced Cd toler-
ance in yeast cells.

Microbial Cd resistance is a global cellular response.What makes a heavy metal-
resistant microbe heavy metal resistant (36)? A conventional view of microbial metal
resistance has long been established, which is mainly based on the exploration of dedi-
cated metal resistance genes or gene clusters. Several Cd resistance determinants such
as cadA in plasmid pI258 of Staphylococcus aureus (37), czcA in plasmid pMOL30 of
Alcaligenes eutrophus (38), nccA carried by plasmid pTOM9 of Alcaligenes xylosoxidans
(39), and ycf1 in S. cerevisiae (40) have been found, and a series of homologous genes
were also detected in other species (41–44). Characterization of these functional genes
provided us a classical view of microbial Cd resistance, but it was restricted to looking
only for specific genetic determinants (45, 46).

As a systems biology tool, transcriptomic analysis has greatly advanced our under-
standing on global response of gene regulation to environmental stress, including
heavy metals (6, 47, 48). Through transcriptomic analysis, it was demonstrated that re-
active oxygen generation, sulfur metabolites, DNA repair, and transport systems are
involved in Cd stress response of Ganoderma lucidum (49). A Cu-resistant bacterium
Cupriavidus gilardii CR3 also mobilized a spectrum of cellular activities, including sulfur
metabolism, iron-sulfur cluster, and cell secretion systems for mediating Cu resistance
(7). A transcriptomic analysis of tall fescue (Festuca arundinacea) showed that several
metal transporters, GSH, and transcriptional factors were simultaneously induced by
Cd (50). In our recent study, we also found that ROS response, cell wall remodeling,
metal transport, and Cys synthesis were involved in the Cd stress response in P. ostrea-
tus (5), and glycolysis/gluconeogenesis, pentose phosphate pathway and glycine me-
tabolism were substantially induced by Cd treatment in Purpureocillium lilacinum strain
YZ1 (51). With the information above, it is possible to establish an overview of global
cellular responses to Cd stress systematically.

Here in this study, we further found that while classical metal transport genes were
actively induced in the three tested species under Cd stress, a wider spectrum of cellu-
lar processes were actually involved. Top DEGs of all three species fell within the main
categories of metal transport, sulfur metabolism, ROS response, and energy and pro-
tein synthesis. In fact, these cellular functions were reported in various organisms rang-
ing from prokaryotes to plants to defend against Cd stress (see Table S2 in the supple-
mental material). Besides metal transporter genes, it seems that the top DEGs found in
the current study respond universally against other stresses, such as heat, UV, and
drought, from prokaryotic to eukaryotic organisms. A comparative transcriptomic anal-
ysis showed that heat and cold stress induced cell wall metabolism and HSP genes
associated with the ROS response and that glutathione S-transferase-encoding genes
are involved in the sulfur metabolism pathway of Isaria cateniannulata (52). ROS and
redox changes may also be triggered as universal responses in Cyanobacteria toward
heat, salt, hyperosmotic environment, and changes in light intensity (53). It is also well-
known that energy metabolism, cell wall response, sulfate transport, and ROS response
were commonly involved in salt, heat, and UV-B stresses of plants, such as Spinacia
oleracea, Lycium ruthenicum, and Lotus japonicas (54–60). Taken together, it is now
generally accepted that microbial Cd stress response includes not only dedicated/com-
mon metal transporters but also a wider spectrum of cellular processes that mostly are
systems-level housekeeping.

Isomorphy of microbial Cd stress response. Comparative transcriptomics done in
this study indicated an apparent isomorphy in microbial Cd stress responses. Forty-
three selected DEGs that were verified through qPCR led to the formulation of a big
picture of the shared pathways across the three species (Fig. 6). It is now well estab-
lished that cellular processes are organized as a metabolic network at the systems
level, which can be reflected by significant coexpression modules (61, 62). From our
results, four significant coexpression modules were detected across the three microbial
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species, including cell wall remodeling, ROS response, sulfur metabolism, and metal
transport (Fig. 6).

DEGs associated with cell wall remodeling may play a role in covalent Cd binding as
found in this study and elsewhere (5, 58, 63, 64), probably through the modification of
cell wall chemistry. Besides cell wall protection, transmembrane Cd importers were
found actively involved in Cd stress response. Interestingly, Zn importer genes were
universally induced by Cd stress in the three species (Table 1), including zinT and
znuABC in E. coli (65), zrt1 in yeast (66), and zip genes in C. reinhardtii (67). Considering
that Cd is chemically similar to Zn, and both of them belong to the IIB transition ele-
ments, it is probably common in microbial species that Cd is imported via the Zn chan-
nels. It was reported that with ZnuABC as companions, ZinT plays an apparent role in
Cd import (26), and ZRT1 participates in Cd uptake in S. cerevisiae (68). Deletion or inac-
tivation of zrt1 in wild-type yeast led to a substantial decrease in Cd uptake (69, 70).
Though evidence for C. reinhardtii is still not available, the role of zip in Cd uptake in
other plants has been well characterized (71, 72).

Intracellular Cd can induce an oxidative stress cascade, for all known tested species,
including the ones used in this study (73, 74). Due to the high affinity between Cd and
sulfur (24), intracellular Cd can easily bind to thiol-rich GSH (75, 76), resulting in GSH
depletion (30). Additionally, Cd competition for S22 in Fe-S cluster accelerates the
Fenton reaction (77). In the current study, Cd exposure results in the induction of anti-
oxidation reaction, as it was demonstrated by the significant upregulation of GSH

FIG 6 Schematic diagram summarizing the mechanisms involved in Cd stress response shared by the three organisms based on the comparative
transcriptomic results. APS, adenosine 59-phosphosulfate; APSK, ATP sulfurylase kinase; PAPSR, phosphoadenosine phosphosulfate reductase.
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synthesis pathway in all three organisms (Fig. 2 to 4). At the same time, we demon-
strated upregulation of some thiol enzymes (Trx, Grx, Gpx, TsA, and Msr), non-thiol-
enzymes (SOD and catalase) and antioxidants (HSP, proline, and aldo/keto reductase)
in all three species that can scavenge ROS (Fig. 6) (47, 78–80).

Under Cd stress, some genes related to sulfate and S-adenosylmethionine/S-methyl-
methionine (SAM/SMM) uptake, sulfur assimilation, and sulfur-containing amino acid
synthesis were upregulated in all three species (Fig. 6). The production of H2S, Cys, and
GSH may effectively chelate Cd and were involved in reducing Cd toxicity (81–84).
Exactly, in our study, the genes encoding glutathione transferase (GST) that were re-
sponsible for conjugation of Cd with GSH (85) were significantly enriched in S. cerevi-
siae (YLL060C) and C. reinhardtii (CHLRE_16g682725v5, CHLRE_12g559800v5, and
CHLRE_16g688550v5) (Fig. 6). Additionally, genes involved in metal efflux and seques-
tration such as ycf1, nramp (86), vit (34), cusABCF and acrABC (87, 88) homologs were
enriched in our study (Fig. 6), which may function in Cd detoxification.

Important Cd-responding genes across the three species. Twelve groups of com-
mon response orthology proteins in the three species were obtained by comparative
transcriptomic analysis (Table 1). It was found that besides metal transporters, more
proteins associated with basic metabolism of substance synthesis/energy were
involved. Of these proteins, hydroxypyruvate reductase, phosphoglycerate dehydro-
genase, elongation factor, and RNA helices peptidyl-prolyl cis-trans isomerase are
well-known proteins for amino acid (Cys) and protein synthesis (89–91). Fumarate re-
ductase, succinate dehydrogenase flavoprotein, and iron-sulfur cluster are the basic
components of the respiratory chain for energy metabolism (92). Actually, substance
synthesis and energy metabolism have been found to participate in Cd response in a
number of other organisms (5, 93–95). Generally, it can now be concluded that mi-
crobial Cd response involves global systems activities, which include not only dedi-
cated functional modules particularly metal transport but also many other basic met-
abolic pathways.

Experimental validation of orthology of one of the above-mentioned proteins was
performed tentatively by expressing a novel ycf1-like gene of E. coli BL21 in yeast.
Yeast Ycf1 is a well-characterized Cd-GSH-importing transporter on vacuole membrane
(23), while the function of E. coli ycf1 homolog encoded by B21_RS13195 remains
unknown. Gene B21_RS13195 was substantially induced by Cd stress in the compara-
tive transcriptomic study, and sequence analysis indicated that it might be a trans-
porter gene and shared a high amino acid sequence similarity to yeast Ycf1. Together
with the experimental results of its overexpression in yeast (Fig. 5), E. coli B21_RS13195
seems to be a novel Cd resistance transporter gene that homologous to yeast ycf1.
Previous studies showed that Ycf1 could sequester GSH-Cd composition into vacuoles
and improved Cd resistance of S. cerevisiae (23). As discussed, modern omics tools pos-
sess great potential in discovering novel genes, which could also contribute to knowl-
edge on prokaryotic Cd resistance (96–98). In a recent study, comparative genomics of
Cd-resistant strains through evolution in the laboratory also led to the discovery of two
novel Cd resistance genes in E. coli, htpX encoding an integral membrane heat shock
protein and gor encoding glutathione reductase (99). Either the B21_RS13195 gene or
the htpX/gor gene is not closely related to known genetic determinants for Cd resist-
ance like cad or czc, which necessitates the use of systems biology tools. We also tried
to express ycf1 and CHLRE_13g604150v5 (a candidate ABC transporter in C. reinhardtii)
in the E. coli strain, yet it was not successful. It may mainly be due to the simplicity of
prokaryotic cells that cannot support the complex regulation processes of eukaryotic
genes (see Fig. S3 in the supplemental material). Phylogenetic analysis of eukaryotic
metal transporters showed that higher organisms tend to develop a more complex sys-
tem for metal homeostasis (8). Yeast Ycf1 is a typical Cd efflux ATPase, whose function
may rely on the presence of other proteins, such as copper chaperone for copper zinc
superoxide dismutase 1 (CCS1) that may be absent in E. coli (100). In addition, success-
ful expression of eukaryotic genes in prokaryotic cells is still challenging and may
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require different recognition sites for RNA polymerase and a wide spectrum of post-
translational machineries (101, 102), though prokaryotic gene resources have been
commonly used in genetic engineering of eukaryotic organisms (4, 103, 104). Taken to-
gether, the results indicate that comparative transcriptomics possess a great potential
in the discovery of novel genes, resulting in a novel ycf1-like gene discovered in E. coli
and exhibiting a high level of Cd resistance in the yeast host cells. Cross-expression of
the detected orthologous genes deserves a further study, which is necessary for under-
standing the evolutionary relationship of the shared pathways/functional modules for
microbial Cd stress response.

MATERIALS ANDMETHODS
Strains and inhibition test. Escherichia coli strain BL21 (Invitrogen, USA), Saccharomyces cerevisiae

strain AH109 (Clontech, USA) and Chlamydomonas reinhardtii strain FACHB-479 (GDMCC, China) were
used in this study. Cultures of the three strains were started by activating frozen stocks and streaking
onto an agar plate under required conditions. For strain activation, a single colony was chosen, streaked,
and cultured at the optimum condition. The procedure was repeated until the strain recovered normal
growth. Then, a single colony of E. coli BL21 from a Luria-Bertani (LB) agar plate was inoculated into 5 ml
liquid LB medium and incubated with shaking overnight at a speed of 180 rpm at 37°C in dark. The cell
suspension was diluted for initiating the growth curve test. The density of the suspension was measured
every 30 min. S. cerevisiae AH109 was inoculated into liquid yeast extract-peptone-dextrose (YPD) me-
dium at 28°C and shaked at 180 rpm in dark. C. reinhardtii FACHB-479 was inoculated in liquid Bristol’s
medium with a 16-h/8-h day/night cycle at 25°C. The density (optical density at 600 nm [OD600]) of the
algae suspension was measured once a day.

A Cd treatment and a no-Cd exposure control were used in the current study for each species. The
concentrations used in the Cd treatment were determined by inoculating the isolates in liquid medium
with various concentrations of Cd. The concentration of Cd that resulted in a 30% to 40% reduction of
the logarithmic growth rate compared to that of the control was chosen as the Cd treatment concentra-
tion for subsequent experiments, since at this level of inhibition we assumed that cellular Cd stress
would be induced. E. coli BL21 was treated with Cd concentrations of 100, 200, 400, 600, or 800 mM. S.
cerevisiae AH109 was treated with Cd concentrations of 25, 50, 100, 200, or 400 mM. C. reinhardtii
FACHB-479 was treated with 4, 8, 12, 16, or 20 mM Cd treatment concentration.

Transcriptomic sequencing. Cells of C. reinhardtii FACHB-479, S. cerevisiae AH109, and E. coli BL21
were collected by centrifugation after incubation, with three replicates for each treatment. Total RNA
was extracted from samples using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manufac-
turer’s instructions. RNA samples were immediately purified using RNeasy MinElute Cleanup kit (Qiagen,
MD, USA). The quantity of the isolated RNA was examined using a ND 1000 nanodrop spectrophotome-
ter (Thermo Scientific, Waltham, MA, USA) and verified through agarose gel electrophoresis. The integ-
rity of total RNA was assessed using Agilent 2100 (Agilent Technologies, Santa Clara, CA, USA). RNA in-
tegrity numbers (RINs) from 1 to 10 were assigned to each sample to indicate its integrity or quality. In
total, 2-mg RNA samples with a concentration greater than 100 ng/ml and RINs ranging from 7 to 10
were used for RNA library preparation, with the TruSeq Stranded mRNA Library Prep kit (Illumina, San
Diego, CA). Results showed that all sample RINs were above 8.5, which qualified for cDNA library prepa-
ration. The cDNA library was constructed using the extracted mRNA with the Truseq RNA sample prep
kit (Illumina, San Diego, CA, USA). Sequencing was conducted using the Illumina HiSeq 4000 platform
(Illumina, San Diego, CA, USA) provided by Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China.

Reference mapping and RNA-seq analysis. Eighteen sequence assemblages containing 403.76,
363.09, and 104.60 million raw reads for E. coli BL21, S. cerevisiae AH109, and C. reinhardtii FACHB-479,
respectively, were generated by Illumina sequencing. Adapters were trimmed off using SeqPrep (omicX,
Le-Petit-Quevilly, France), and raw data were subsequently passed through quality trimming by using
Sickle (omicX, Le-Petit-Quevilly, France). Reads with incorrectly called bases toward the 39 end and 59
end were trimmed off. Phred score (Q30), GC content, and sequence duplication level of the clean data
were calculated. The high-quality clean data obtained were used in reference mapping.

The reference genomes for C. reinhardtii FACHB-479 (105), S. cerevisiae AH109, and E. coli BL21 were
downloaded from National Center for Biotechnology Information (NCBI) with the identity (ID) of 147, 15,
and 167, respectively. To ensure the accuracy of our analysis, no more than five mismatches were
allowed in the alignment. The alignment data were utilized to calculate the distribution of reads on the
reference genes and to perform the coverage analysis. Outputs of the sequence alignment containing
the aligned reads and mapping information were used for the downstream analyses. Data analysis was
performed on the online platform of Majorbio I-Sanger Cloud Platform (Majorbio, Shanghai, China).

Differential gene expression analysis. Transcripts per million (TPM) were used to describe the
expression level of genes obtained from genome mapping. Differentially expressed genes (DEGs) were
obtained by comparing the control and Cd treatment groups. Genes were described as up- or downre-
gulated in Cd treatment groups. The absolute value of log2 fold change (FC) $1 and p adjust , 0.05
were selected as stringent thresholds to choose prominent differential gene activity.

Functional annotation. The identified DEGs were annotated to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and then subjected to enrichment analysis at the
threshold of corrected P , 0.05. The protein functional category for DEGs was assigned by blasting
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against UniprotKB/Swiss-Prot (swissprot) database. Selective DEGs with expression value greater than
100 were subsequently subjected to heatmap creation, qPCR validation, and common response gene/
pathway analysis.

The protein sequences of annotated genes from the three species were merged as a local sequence.
Cross-kingdom comparison of homologous protein was conducted using blastp against the local data-
base (106). Only the matches having an expectation value (E value) of #0.001 and identity of $30%
were considered homologous proteins (29, 107).

Validation of selected DEGs by qPCR. Forty-three genes (15 for E. coli BL21, 14 for S. cerevisiae
AH109, and 14 for C. reinhardtii FACHB-479) derived from significantly differentially expressed genes
(log2 fold change [FC]$1 and p adjust, 0.05) were associated with ion transport and sulfur metabolism
pathways were selected for quantitative determination of their in vivo expression under Cd stress.
Forward and reverse primers for amplifying the genes selected were designed using the web-based
primer design tool Primer-BLAST on NCBI. Where possible, primers were designed to possess an opti-
mum annealing temperature of 60°C, a GC content of 40% to 60%, an amplicon length of 150 to 200 bp,
and a primer length of 20 to 24 bp. Candidate primers were compared against the reference genomes
of the three organisms predicted coding DNA sequences (CDS) to select the gene-specific primers (see
Table S3 in the supplemental material).

DNase-treated RNA (2 mg) was used to synthesize first-strand cDNA using PrimeScript reverse tran-
scription (RT) reagent kit with gDNA Eraser (TaKaRa Biomedical Technology Co., Ltd., Beijing, China). The
cDNA was diluted 20 times, and a 2.4-ml aliquot was used in a 15-ml quantitative PCR (qPCR) reaction mix:
7.5 ml of SYBR green qPCR Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China), 0.6 ml of 10mM forward/
reverse primer (Thermo Fisher Scientific Inc., MA, USA), and 3.9 ml of nanopure water. Real-time qPCR
amplification and detection were conducted using CFX Connect real-time PCR system (Bio-Rad
Laboratories, Inc, CA, USA) and the following protocol: a single cycle of 10 min at 95°C, followed by 40
cycles, with 1 cycle consisting of 15 s at 95°C and 30 s at 60 or 61°C. Relative gene expression was meas-
ured using the control group as the calibrator. No reverse transcriptase and no-template negative controls
were included in every PCR amplification. Each sample was represented by two independent total RNA iso-
lations converted into two separate cDNAs. Each cDNA sample was included using three technical repli-
cates for PCRs. The target gene expression was normalized to that of the internal reference genes of each
of the three organisms using the 22DDCT method (the comparative threshold cycle [CT] method) (108).

Overexpression of an E. coli Cd transporter gene in S. cerevisiae. Through homologous protein
screening among the three organisms, a group of potential Cd transporter genes were found possessing
conservative sequence. We tested the overexpression and Cd resistance function of the E. coli BL21 copy
in the yeast S. cerevisiae AH109, as well as S. cerevisiae AH109 and C. reinhardtii FACHB-479 copy in E. coli
BL21 using a drop assay. Primers for full-length CDS amplification were designed (Table S4). The cloned
genes were subsequently ligated to expression vector after adding restriction sites (Table S4). For yeast
cell transformation, combined plasmids were introduced to competent cells of S. cerevisiae AH109 using
a lithium acetate-based method (109), and a drop assay was conducted to examine the Cd sensitivity of
the transformants. Vector pCEV-G1-Km under the PGK1 promoter (110) was used for S. cerevisiae AH109,
and positive transformants were selected on solid YPD medium supplied with 300 mg/ml Geneticin
(G418). The selected positive clones were transferred to liquid YPD medium with 300 mg/ml G418. Cells
in suspension were subsequently collected by centrifugation and serially diluted (OD600 of 1.0, 1021,
1022, 1023, and 1024) with sterilized water. Five microliters of each dilution was spread onto the YPD
plates containing 300 mg/ml G418 and 80 mM CdCl2 at 28°C for 5 days. Cells harboring empty pCEV-G1-
Km and inoculated on YPD plates without Cd incubation were used as the negative control. Vector PET-
28a (Novagen, Germany) was used for E. coli transformation, and positive clones were selected on solid
LB plates with 50 mg/ml kanamycin. Drop assay with a serially diluted positive cell (OD600 of 1.0, 10

21,
1022, 1023, and 1024) was performed on LB plates with 50 mg/ml kanamycin, 600 mM Cd, and 200 mM
isopropyl-b-D-thiogalactopyranoside (IPTG). The colonies harboring empty pET-28a were used as a nega-
tive control. Cadmium concentrations used for drop assay for yeast and E. coli were screened and
selected when the growth of transformants and control were clearly distinguished. Results of at least
three biological replicates were averaged for all experiments.

Statistical analysis. All comparisons were subjected to one-way analysis of variance (ANOVA) using
SPSS 16.0 software (version 16.0, IBM, New York, NY, USA). Means separation was conducted by using
Duncon’s multiple range test, with P# 0.05 considered significant. Figures were generated by R ver. 3. 6.1.

Data availability. RNA-Seq raw data were deposited in SRA (Sequence Read Archive) with BioProject
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