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COGN IT IVE NEUROSC I ENCE

Human REM sleep recalibrates neural activity in support
of memory formation
Janna D. Lendner1,2, Niels Niethard3, Bryce A. Mander4, Frank J. van Schalkwijk1,
Sigrid Schuh-Hofer5,6, Hannah Schmidt5, Robert T. Knight7,8, Jan Born3,9,10, Matthew P. Walker7,8,
Jack J. Lin11,12, Randolph F. Helfrich1,6*

The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of
neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans eluci-
dating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory.
We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and
scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid
eyemovement (REM) sleep tomediate sleep-dependent recalibration of neural population dynamics. The extent
of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modu-
lation of hippocampal—neocortical activity, favoring remembering rather than forgetting. The findings de-
scribe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance
long-term memory.
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INTRODUCTION
Contemporary theories of sleep function proposed that the over-
night regulation of excitability constitutes a physiologic mechanism
underlying neural network plasticity, facilitating memory consoli-
dation during sleep (1–4). In vivo animal studies have revealed
that wakefulness and learning lead to a progressive excitability in-
crease (2, 5, 6). It has been proposed that sleep renormalizes excit-
ability and eliminates synapses [termed “down-scaling” or
“pruning” (5, 7–9)]. Thus, sleep may restore the optimal neurobio-
logical milieu for learning and strengthen memory representations
(2, 10). That such mechanisms take place in the human brain
remains largely speculative. Specifically, the concept of a cellular
or network-level process in the human brain, involving the recali-
bration of neural activity during sleep, has remained untested. In
addition, the potential benefits of such a mechanism for memory
retention remain unexplored. One reason for this paucity of knowl-
edge, relative to animal models (11, 12), is the lack of electrophysi-
ological markers that link cellular properties, such as excitability, to
whole-brain network dynamics, amenable to electroencephalogra-
phy (EEG).

To date, the majority of the evidence for sleep-dependent cellu-
lar and network homeostasis suggests that slow oscillations (SOs;
<1.25 Hz) during NREM (nonrapid eye movement) sleep may
mediate the regulation of neural excitability (2, 10). Considerably
less evidence exists regarding a similar role for REM sleep, with
limited data in rodents suggesting that theta activity (4 to 10 Hz)
may offer similar functional benefits (8, 13). Theta oscillations
during REM sleep are prominent only in rodents, whereas human
REM sleep is characterized by desynchronized EEG activity without
prominent oscillations (14). This leads to the currently unexamined
possibility that traditional oscillation-based analyses might insuffi-
ciently capture functionally measurable processes of overnight re-
calibration of neural activity in human REM sleep.

Several computational models indicate that desynchronized,
non-oscillatory brain activity (also termed aperiodic activity for
the lack of a defining temporal scale) correlates with population ex-
citation-to-inhibition balance [as defined by the activity ratio
between excitatory and inhibitory neurons; E-I ratio; (15, 16)];
thus, constituting a promising proxy EEG marker of neural excit-
ability (15–17). Aperiodic activity is typically quantified by the spec-
tral slope x of the 1/fx decay function of the electrophysiological
power spectrum [or power spectral density (PSD) function] in
log-log space. Thus, increased aperiodic neural activity encompass-
es a flattening of the PSD and an increase in the spectral slope, while
decreased aperiodic activity is reflected in a steepening of the PSD
and a decreased slope. While direct experimental evidence for this
hypothesis remains scarce, aperiodic activity provides a possible
theoretical framework to link the sleep-dependent regulation of
neural activity in humans to overnight memory consolidation.
Here, we assessed neural excitability at the population level using
two different approaches. First, we examined calcium activity of py-
ramidal cells and the ratio of activity between excitatory pyramidal
cells and interneurons, using two-photon imaging. While calcium
activity is an indicator of calcium entry in the cells upon neural
firing (18), calcium activity does not directly quantify firing, excita-
tion, or inhibition; hence, we approximated excitability at the
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population level by means of pyramidal cell activity and their activ-
ity ratio with interneurons. Second, we used the EEG spectral slope
to quantify aperiodic activity. Subsequently, we directly tested the
relationship between these meso- and macroscale surrogate
markers of neural excitability.

Since theoretical accounts suggested that synaptic downscaling
could benefit sleep-dependent memory consolidation (1, 2, 19),
the key hypothesis was that aperiodic activity, quantified by the
spectral slope as a EEG-based proxy of neural excitability (20), in-
creases during the day and decreases after sleep; thus, constituting a
down-regulation of a putative EEG-based metric of population ex-
citability. Conversely, sleep loss should abate a sleep-dependent reg-
ulation. We hypothesized that human REM sleep, which previously
has been shown to exhibit the strongest spectral slope reduction (14,
21, 22), might mediate the overnight modulation of aperiodic activ-
ity. If down-regulation of aperiodic activity is functionally relevant,
then the degree of its modulation should predict individual’s
memory retention.

RESULTS
Two definitions of population excitability and E-I (excitatory-inhib-
itory) ratio are used, depending on the spatial scale. At the cellular/
mesoscale level in rodent experiments, we evaluated the activity of
pyramidal neurons, which we referred to as “excitability,” along with
their ratio of activity with interneurons, termed “E-I ratio”; thereby
approximating the E-I definition used in computational models (15,
16, 20). Subsequently, we examined whether the observed neuronal
activity was reflected in the dynamics of aperiodic brain activity re-
corded from the rodent scalp EEG, quantified by the spectral slope.
At the network level in human recordings, we then investigated
whether the dynamics of aperiodic brain activity could serve as a
surrogate marker of overnight excitability recalibration.

To test the relationship between population dynamics and ape-
riodic activity, we first analyzed a previously published dataset that
included simultaneous cortical in vivo two-photon calcium imaging
and scalp electrophysiology during rodent sleep (21). We tested
whether aperiodic EEG activity captures mesoscale neural excitabil-
ity (as defined by pyramidal cell calcium activity) and the activity
ratio between excitatory pyramidal cells and inhibitory interneu-
rons (E-I ratio) of the underlying neural population (study 1; N =
8 animals, 1486 cells). We further included a control study with si-
multaneous hippocampal and scalp recordings in sleeping rodents
to assess regional specificity (study S1; N = 5 animals; fig. S1).

Next, we acquired both invasive and noninvasive electrophysio-
logical recordings in humans to test whether an overnight regula-
tion of aperiodic activity supported memory consolidation, by
combining an episodic memory task (23, 24) with resting state
scalp EEG recordings before, during, and after habitual sleep
(study 2; N = 40 participants), as well as after sleep deprivation
(study 3;N = 12 participants). Furthermore, we examined aperiodic
activity in overnight sleep recordings in simultaneous scalp and in-
tracranial EEG recordings (study 4; N = 15 participants; 498 bipolar
contacts) in patients with pharmacoresistant epilepsy that under-
went invasive monitoring.

Aperiodic activity reflects neural population activity
in rodents
Computational models posit aperiodic activity captures population
activity of excitatory and inhibitory interneurons (15, 20), but these
assumptions lack empirical evidence. To determine whether aperi-
odic EEG activity captures population dynamics during sleep, we
combined scalp electrophysiology with in vivo two-photon
calcium imaging in mouse cortex (Fig. 1A; 14 recordings in eight
animals) of pyramidal cells (N = 1242) and interneurons [parvalbu-
min-positive (PV+) interneurons, N = 132 cells; and somatostatin-
positive (SOM+) interneurons, N = 112 cells]. Excitability was
defined as the overall calcium activity in pyramidal cells (quantified
as active frames, see below). Cell type–specific activity was strongly
modulated by different sleep stages. Overall pyramidal cell calcium
activity was lower during sleep than wakefulness {Fig. 1B; Pyr: P =
0.0150, t40 = −2.51, 95% confidence interval (CI95) = [−5 × 10−3 −6
× 10−4]; PV+: P = 0.0330, t19 = 2.30, CI95 = [8 × 10−4 1.9 × 10−2];
SOM+: P < 0.0001, t19 = −7.93, CI95 = [−10−2 −7 × 10−3]; linear
mixed effect (LME) models}. Layer 2/3 pyramidal cell activity was
lowest during REM sleep. A similar pattern was evident for SOM+

interneurons, while PV+ interneurons exhibited an activity increase
during REM sleep. At the mesoscale, these findings may reflect an
excitability decrease during REM sleep (Fig. 1B).

Spectral parametrization of simultaneously recorded frontal
EEG activity revealed a sleep-stage–specific modulation of aperiodic
background activity (Fig. 1C and fig. S1; P < 0.0001, F1.74,12.15 =
23.46; repeated measures analysis of variance (RM-ANOVA), aver-
aged across sessions; wake: −2.84 ± 0.05; NREM: −3.35 ± 0.04;
REM: −2.97 ± 0.10; mean ± SEM), which largely captured hippo-
campal contributions (fig. S1). We extracted calcium transients
(active frames) from the continuous fluorescence signal (Fig. 1D)
to determine whether the cell-specific calcium activity predicted
aperiodic EEG activity. Putative excitatory (pyramidal) cell activity
and inhibitory (interneuron) activity were strongly correlated
(Spearman rho = 0.76, P < 0.0001). Moreover, their relationship
was systematically biased toward interneuron activity in states of
high overall activity (Fig. 1, E and F); thus, confirming and extend-
ing previous electrophysiological findings (25, 26). Specifically, an
increase in pyramidal cell calcium activity was counterbalanced by a
net increase in inhibitory interneuron activity (Fig. 1E, regression
slope 1.22 ± 0.05, mean ± SEM; P = 0.0041, t7 = 4.18, d = 1.48;
two-tailed t test against 1). In addition, this same relationship was
also evident when overall activity was contrasted against the popu-
lation E-I ratio (defined as the difference between the average pyra-
midal cell and interneuron activity; balanced at 0, bounded at ±1;
Fig. 1F, regression slope −0.35 ± 0.05; mean ± SEM; P < 0.0001,
t7 = −22.16, d = 2.10; two-tailed t test against 0).

To directly test the relationship of population dynamics and ape-
riodic EEG activity (illustrated in Fig. 1G), we first discretized the
calcium activity into four quartiles relative to either the current ex-
citatory pyramidal cell activity (Fig. 1H) or the momentary balance
between pyramidal cell and interneuron activities (Fig. 1I) and as-
sessed EEG aperiodic activity as a function of the quartiles (Q;
ranging from 1 to 4 = low to high).

In line with the model predictions (15, 16), the spectral slope in-
creased (flattening of the PSD) as a function of pyramidal cell activ-
ity (Fig. 1H, right; P < 0.0001; t54 = 5.67, CI95 = [0.12 0.25], LME;
slope Q1 = −2.94 ± 0.04; Q4 = −2.39 ± 0.14; mean ± SEM). More-
over, the spectral slope decreased (steepened) when the E-I ratio
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Fig. 1. Aperiodic activity tracks population dynamics in vivo. (A) Experimental setup [schematic; (72)]. Representative in vivo two-photon calcium image of pan-
neuronally expressed GCaMP6f (green) and cre-dependent tdTomato (red) in layer 2/3. (B) Calcium activity varied between sleep stages. Left, pyramidal cells (Pyr); center,
parvalbumin-positive (PV+) interneurons; right, somatostatin interneurons (SOM+). (C) Left: EEG power spectra (inset: aperiodic component (log-log); frontal electrode).
Right: PSD slope (cf. fig. S1). (D) Fluorescence traces from exemplary pyramidal cells. Tick marks highlight active frames. (E) Left: Relationship of excitatory (Pyr) and
inhibitory (PV+/SOM+) activity. The black line indicates the diagonal (balanced regime). Linear regression (red) highlights a biased relationship with a net increase of
inhibitory drive during high excitation. Right: Statistical quantification. (F) Left: Relationship of calcium activity and excitation to inhibition ratio (E-I; balanced at 0,
bounded at ±1; red line: linear regression; black line: balanced regime). Right: Statistical quantification. (G) PV+ mouse example (~1 hour) demonstrating the relationship
(top-to-bottom) of the PSD slope (red), average activity (black: PV+; grey: Pyr), E-I (green), and the hypnogram. The raster highlights all interneurons (black, PV+) and
pyramidal cells (grey). Note the relationship of the PSD slope and E-I (pronounced during REM sleep; gray shaded). (H) EEG activity relative to active frames quartiles (low
to high). Left: PSDs, first and fourth quartiles (cross-over at 30 Hz; inset). Right: Spectral slope as a function of Pyr activity quartiles. (I) EEG activity relative to E-I quartiles
(low to high). Left: PSDs, first and fourth quartiles (cross-over at 27 Hz; inset). Right: Spectral slope as a function of E-I quartiles. (J) Composite slope representation as a
function of pyramidal cell activity and E-I. A flattening of the PSD slope (dark red) is evident during high Pyr activity (top row). Aperiodic activity is mainly correlatedwith E-
I during low excitatory activity (bottom row). a.u., arbitrary units.
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shifted toward increased pyramidal cell activity (Fig. 1I, right; P =
0.0002, t54 = −3.96, CI95 = [−0.24 −0.08], LME; slope Q1 = −2.53 ±
0.17; Q4 = −2.96 ± 0.04; mean ± SEM). While the spectral slope also
covaried with the activity (putative E-I) ratio between pyramidal
cells and interneurons (cf. Fig. 1I), this relationship was pronounced
when pyramidal cell activity was low (Fig. 1J, bottom row, Q1 versus
Q4: Cohen’s d = 0.88) as compared to when activity was high (top
row Q1 versus Q4: d = 0.04). The observed pattern remained highly
comparable when only a single state (e.g., wakefulness) was consid-
ered: The spectral slope increased (flattened) when pyramidal cell
calcium activity was high (P < 0.0001; t54 = 7.35, CI95 = [0.15
0.27], LME; slope Q1 = −2.86 ± 0.04; Q4 = −2.22 ± 0.13; mean ±
SEM). The spectral slope decreased (steepened) when pyramidal
cell activity was higher than interneuron activity (E-I quartiles; P
< 0.0001, t54 = −6.30, CI95 = [−0.26 −0.13], LME; slope Q1 =
−2.32 ± 0.14; Q4 = −2.86 ± 0.05; mean ± SEM). Again, the spectral
slope covaried with the population E-I ratio, and this relationship
was pronounced when pyramidal cell activity was low (Q1 versus
Q4: Cohen’s d = 1.62) as compared to when activity was high
(top row Q1 versus Q4: d = −0.11).

This observation is the direct result of the mutual dependence
and recurrent interactions between excitatory pyramidal cells and
inhibitory interneurons in neural circuits (cf. Fig. 1, E and F),
while the model assumed a linear independent summation (15).
In addition to the robust relationship across the entire night,

aperiodic activity also tracked mesoscale properties on the time
scale of single REM sleep epochs (fig. S2). Collectively, this set of
findings indicates that the EEG aperiodic activity as quantified by
the spectral slope indexes excitability dynamics at the mesoscale
using calcium imaging (Fig. 1J).

Aperiodic activity is modulated during sleep in humans
We next sought to test whether a modulation of aperiodic activity
similarly occurred during human sleep. Here, we used resting state
scalp EEG (19-channel, 10–20 layout) recordings in three cognitive
states (cognitive engagement during backward counting, rest eyes
closed, and fixation) before and after a night of habitual sleep (N
= 40; fig. S3). Spectral analysis revealed a broadband power decrease
after sleep in all frequencies above 11 Hz and across the majority of
EEG sensors (Fig. 2A; averaged across all conditions, cluster test; P =
0.0020, d = 0.86). This broadband modulation was driven by
changes of non-oscillatory aperiodic brain activity (fig. S3, A and
B). The spectral slope was more negative after habitual sleep, with
the peak effect over frontal EEG sensors (inset Fig. 2A; cluster test; P
= 0.0180, d = 0.32; electrode Fz: PM: −2.76 ± 0.03, AM: −3.04 ±
0.03; mean ± SEM). These findings demonstrate that aperiodic ac-
tivity undergoes an overnight modulation.

Fig. 2. Overnight modulation of aperiodic activity predicts memory retention and is attenuated by sleep deprivation. (A) Grand average EEG PSDs (semi-log)
before (blue, PM) and after (red, AM) habitual sleep (N = 40; averaged across all cluster electrodes and three conditions: cognitive engagement, eyes closed, and central
fixation; see also fig. S3) indicate a broadband power decrease (11 to 50 Hz) after sleep (inset top right; colormap indicates t values; large black dots indicate significant
electrodes in the cluster). Inset lower left: The spectral slope decreased over frontal sensors (visualized at Fz; colormap reflects t-values). (B) Episodic word pair task.
Participants learned 120 word-nonsense word associations. After encoding (left), participants were trained to criterion (center) before sleep and then performed recog-
nition test before and after sleep (right). (C) Cluster-corrected correlation analysis revealed a significant association between slope modulation and memory retention:
Participants who showed a stronger slope decrease from PM to AM exhibited better memory retention (slope averaged across all significant electrodes in cluster; color-
map indicates correlation coefficients). (D) Eyes open resting state recordings in the AM (red, habitual sleep; orange, sleep deprivation) reveal a broadband power increase
after sleep deprivation (N = 12; within-subject design; cluster test: cluster 2 to 6Hz, P = 0.04; cluster 19 to 47 Hz, P = 0.0040; visualized at Cz) over central sensors (inset;
large black dots indicate significant cluster; colormap reflects t value). (E) This broadband power modulation was the result of an increase of the spectral slope after sleep
deprivation (P = 0.023; averaged over all cluster channels). (F) Comparison to presleep eyes open recordings (PM, blue) replicates the broadband down-regulation [cf. (A)
and (B)], while (G) sleep deprivation attenuates this effect (common electrode Cz in studies 2 and 3) and increased low-frequency activity.
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Overnight modulation of aperiodic activity predicts
successful memory retention in humans
Having established an overnight modulation of aperiodic activity
across sleep in humans, we next investigated whether this modula-
tion was functional (rather than epiphenomenal), specifically exam-
ining whether such modulation predicted overnight memory
retention. Participants performed a validated sleep-dependent epi-
sodic memory test [Fig. 2B; 36 subjects completed behavioral
testing; (23)]. After encoding, participants were trained to criterion
before initial recognition testing in the evening (PM) (23, 24). After
8 hours of sleep starting at their habitual bedtime, they performed
the second recognition test the next morning (AM). Participants
who exhibited a stronger modulation of aperiodic activity (decrease
of the spectral slope; slope modulation = AM minus PM) demon-
strated better memory retention (Fig. 2C; cluster test; P = 0.0011;
mean rho = −0.36; fig. S3D). This effect was not confounded by
electromyogram (EMG) activity or age (fig. S3, B to D; Spearman
partial correlation at Fz: EMG: rho = −0.45, P = 0.0069; age: rho
= −0.46, P = 0.0050) and was most pronounced for the frequency
range above 20 Hz (fig. S3, E to G). Collectively, this set of findings
demonstrated that down-regulation of aperiodic brain activity
across the night predicts the overnight consolidation of episodic
memory that determines the next-day retention.

Sleep deprivation attenuates overnight regulation of
aperiodic activity in humans
Having characterized the spatiotemporal extent of the overnight
regulation, we next assessed the causal role for sleep in the modu-
lation of aperiodic activity across the night in an independent
cohort that was sleep deprived (N = 12; eyes open, central fixation;
64 channel, equidistant layout, centered on electrode Cz). Sleep
deprivation resulted in a broadband power increase over central
sensors compared to posthabitual sleep (inset Fig. 2D; cluster test;
P = 0.0030, d = 0.81), evident as a flattening of the spectral slope
(Fig. 2E; P = 0.023, d = 0.90; cluster test; posthabitual sleep: −3.03
± 0.23; sleep deprivation: −2.71 ± 0.23). Statistical comparison to
presleep resting states (PM; cf. Fig. 1A; between-subject design) re-
vealed a broadband power decrease after sleep, directly replicating
the results from study 2 (Fig. 2F; cluster test; P = 0.0070, d = 0.81;
cluster-corrected unpaired t tests). Sleep deprivation attenuated the
modulation of aperiodic activity (Fig. 2G; d = 0.27 instead of d =
0.81; cf. Fig. 2F) and led to an increase of low frequency activity
[cluster test; 1 to 9 Hz; P = 0.0160, d = 1.23, a finding in line with
observations of enhanced slow waves after prolonged wakefulness
(27)]. Together, these findings establish that sleep deprivation at-
tenuates the down-regulation of aperiodic brain activity.

REM sleep predicts modulation of aperiodic activity
Next, we tested the hypothesis that REM sleep mediates the ob-
served down-regulation of aperiodic activity in humans. Previously,
REM sleep theta oscillations have been associated with reorganizing
neural excitability (as defined by the overall firing rate) in rodents
(8). However, theta oscillations are less prevalent during human
REM sleep (figs. S1 and S4, A and B), which is characterized by de-
synchronized EEG activity. Therefore, we tested whether a non-os-
cillatory mechanism during REM predicted the modulation from
one NREM epoch to the next one. Consistent with previous findings
in humans [(14, 22); cf. fig. S1], the spectral slope was more negative
during REM sleep (Fig. 3A; one-way ANOVA: F2.9,75.3 = 61.78, P <

0.0001; wake: −3.18 ± 0.15; NREM: −3.41 ± 0.07; REM: −4.41 ±
0.15; electrode Fz) compared to NREM (post hoc paired t test: t39
= 8.20, P < 0.0001, d = 1.30) and wakefulness (t39 = 11.58, P < 0.0001,
d = 1.83). This observation confirms that REM sleep is associated
with the most profound reduction of aperiodic activity during
human sleep (14), particularly over frontal EEG sensors. Note
that this observation reflects a dissociation between human (REM
slope < NREM slope) and rodent REM sleep (NREM slope < REM
slope). However, this apparent discrepancy mainly reflects a techni-
cal issue given the strong hippocampal contribution to the frontal
scalp EEG in rodents (fig. S1), while hippocampal dynamics were
highly comparable across both species.

When contrasting the first and last NREM segments of the night,
a broadband spectral power modulation was evident (Fig. 3B; P <
0.001, d = 0.80; cluster-corrected permutation test based on
paired t tests) with a similar spatial extent as the effect across the
night (cf. Fig. 2A and fig. S4C) and encompassed the canonical
delta band (<4 Hz). The broadband modulation was the result of
a steepening of the spectral slope (t39 = 2.40; P = 0.0214, d = 0.38;
paired two-tailed t test). When directly contrasting the first and last
REM episodes of the night, modulations were band-limited
(Fig. 3C; cluster test; cluster 1 to 23 Hz, P = 0.0090, d = 0.55;
cluster 28 to 40 Hz, P = 0.0380, d = 0.39) and were not driven by
a change in aperiodic activity (t39 = −0.65, P = 0.2574, d = −0.10;
paired two-tailed t test).

To determine whether REM sleep mediates the modulation of
aperiodic activity in subsequent NREM epochs, time-normalized
triplets of NREM-REM-NREM sleep were extracted [Fig. 3D and
fig. S5 for a complementary time normalization strategy analogous
to (8)]. State-specific oscillatory patterns (Fig. 3D, middle) were
only apparent after subtraction of aperiodic activity from broad-
band power spectra (Fig. 3D, top). Aperiodic activity, quantified
as the spectral activity slope, was strongly modulated over the
course of the triplet (Fig. 3D, bottom, cluster test; P = 0.001, d
= 0.97).

Consistent with a modulatory influence of REM sleep on NREM,
a more negative spectral slope (i.e., a stronger down-regulation of
aperiodic activity) was observed in NREM epochs after a REM
episode compared to before (Fig. 3E; paired two-tailed t test; t39 =
4.04, P = 0.0002, d = 0.64). This effect was most pronounced in the
first third of the respective NREM epoch (fig. S5G). On an individ-
ual level, a more negative spectral slope in REM sleep predicted a
stronger modulation across the triplet (Fig. 3F; cluster test; P =
0.001, mean rho = 0.44; peak correlation at Fz rho = 0.65). This re-
lationship between REM slope and NREM slope modulation re-
mained unchanged after accounting for theta power (partial
correlation: rho = 0.59, P < 0.0001) and was also apparent when
the REM slope was correlated against the individual difference
between first and last NREM segments of the night (Fig. 3G;
cluster test; P = 0.0470, mean rho = 0.36; cf. Fig. 3B). Moreover,
this effect was not confounded by SO power (fig. S4D; Spearman
partial correlation; rho = 0.37, P = 0.0189) or REM theta power
(partial correlation; rho = 0.34, P = 0.0349).

We also tested whether slow wave activity (duration, amplitude,
and quantity) predicted the down-regulation of aperiodic activity
across the night but did not find consistent evidence for this (fig.
S6). The overnight NREM slope modulation reliably predicted in-
dividual memory performance (Fig. 3H; cluster test; P = 0.049,
mean rho = −0.34) and became even more robust after accounting
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for theta power (partial correlation; rho = −0.49, P = 0.0025). Col-
lectively, these observations indicate that REM, in concert with
NREM sleep, predicts a sleep-dependent reduction of aperiodic ac-
tivity that predicted memory retention.

Distinct aperiodic activity regimes govern REM sleep inMTL
and PFC in humans
Regional population activity was assessed in intracranial recordings
(N = 15 participants, 498 bipolar contacts) in two key nodes of the
human memory network, the prefrontal cortex (PFC) and the

medial temporal lobe (MTL). Contemporary theoretical frame-
works posit that long-term memory consolidation is associated
with human PFC plasticity (1, 28). Hence, we tested whether the
modulation of aperiodic activity differentially affects PFC and
MTL. Analogous to previous work (8, 9), a set of parameters was
obtained in the MTL and PFC (Fig. 4A).

Across the night (comparison of the first and last third of the
entire aggregated NREM sleep; Fig. 4B), the count of SOs (one-
way RM-ANOVA across all thirds; F1.6,22.2 = 8.01, P = 0.0041, d =
0.90), spindles (F1.7,24.4 = 8.76, P = 0.0020, d = 1.10), and the slope

Fig. 3. Aperiodic activity during REM sleep mediates overnight broadband spectral modulation and memory retention. (A) Grand average power spectra for
different sleep stages (semi-log; Fz). Inset: State-specific dissociation of the spectral slope. (B) Spectral modulation across NREM sleep demonstrates a brain-wide
(top), broadband power reduction (bottom left), which was captured by a decrease of the spectral slope (bottom right). Summary statistics averaged across all electrodes
in the cluster (black dots; colormap reflects t values). (C) Spectral modulation across REM sleep shows awidespread (top), frequency-specific (bottom left) effect, which left
the spectral slope unchanged [same conventions as in (B)]. (D) Top: Time-normalized triplet (cf. fig. S5) of adjacent NREM-REM-NREM segments (Cz, young adults to
attenuate the spindle slowing-related spectral smearing). Middle: Spectral residuals after subtraction of aperiodic activity revealed state-specific oscillatory signatures
(NREM: spindles ~14 Hz; REM: theta at ~6 Hz). Bottom: Spectral slope over time across all subjects (at cluster peak; electrodes F3, Fz, and F4). Note a decrement during REM
sleep followed by a net decrease in the subsequent NREM segment. Inset: Topographical depiction of slope differences between NREM and REM sleep. (E) Spectral slopes
across the triplets (averaged over F3, Fz, and F4). (F) The spectral slope during REM sleep predicted the difference from NREM-pre to NREM-post (topography depicts
spatial extent; large black dots indicate the significant cluster, colormap reflects correlation coefficients), i.e., the steeper the slope during REM, the larger the down-
modulation between the adjacent NREM segments. (G) A similar pattern was observed over frontal sensors, when the average REM slope was correlated against the
difference between first and last NREM segment of the night [cf. (B); same conventions as in (F)]. (H) A large REM sleep–dependent down-regulation of the slope across
NREM sleep predicted better memory performance [same conventions as in (F); cf. Fig. 1D).
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Fig. 4. Aperiodic activity changes overnight and functionally dissociates MTL and PFC. (A) Top: Single-subject triplet (Fz). Middle: Waveform shapes of frontal SOs
(red), spindles (blue), MTL ripples (green), and their rate modulation across the triplet. Bottom: Average spectral slopes (MTL and PFC) across the triplet reveal a disso-
ciation, with a flattening of the spectral slope in MTL during REM and a steepening in PFC. (B) Different sleep signatures. ∆ indicates difference of last NREM minus first
NREM third of the night, highlighting significant reductions in SO and spindle counts as well as PFC spectral slope. (C) Simultaneous electrode coverage (N = 15) in MTL
and PFC. OneMTL channel per participant was selected (the lowest number of epileptic discharges outside of seizure onset zone). (D) Row 1: Spectral slope time-resolved
across the NREM-REM-NREM triplets (∆slope indexes modulation relative to the mean). We observed a reduction (steepening) of the spectral slope in NREM-post as
compared to NREM-pre in PFC but not MTL. Row 2: Average high-frequency power (HFB; 120 to 200 Hz) shows no modulation in PFC and only little modulation
across the triplet in MTL. Row 3: Population activity (multidimensional distance; MDD) highlights a dispersion of population dynamics during REM, with a net decrease
in PFC. (E) MTL: Rank correlations between REM slope and different sleep signatures (∆ indicates last third to first). A more negative REM slope in the MTL was associated
with an increase in (i) MTL ripples, (ii) a MTL slope steepening, (iii) increased HFB, and (iv) more active periods. (F) The same analysis for the PFC showed a REM-mediated
modulation of (i) SOs, (ii) PFC slope, and (iii) spindles [P values are reported from the Spearman correlation (pseudo-population (pp) and an LME model]. In addition, a
significant relationship between REM slope and regionally specific spindle expression was evident (iv).
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(F1.8,25.6, P = 0.0160, d = 0.57; all other markers P > 0.5) showed
statistically significant decreases in the PFC. Subsequently,
NREM-REM-NREM triplets for all subjects were extracted sepa-
rately for MTL and PFC (Fig. 4C and fig. S7). A state- and
region-specific modulation of the spectral slope was observed
(Fig. 4D) with a prominent functional dissociation between the
MTL and PFC [Fig. 4D; two-way RM-ANOVA; region of interest
(ROI): F1,14 = 9.38, P = 0.0084; state: F1.2,17.1 = 0.64, P = 0.4672; in-
teraction: F1.2,17.7 = 21.95, P = 0.0001]. This analysis revealed a
steepening of the PFC power spectrum during REM sleep (cf.
Fig. 3D; paired two-tailed t test; t14 = 3.44, P = 0.0039, d = 0.89)
as well as a net decrease in aperiodic activity in NREM sleep after
a REM episode (replication of Fig. 3E; t14 = 2.26, P = 0.0403, d =
0.58). Critically, the pattern was reversed in the MTL (increase of
the spectral slope during REM; t14 = −4.68, P = 0.0004, d = 1.21),
and no REM-mediated modulation was observed (t14 = −0.16, P =
0.8772, d = 0.04). Moreover, these results from human hippocam-
pus mirrored the pattern that was observed in rodent hippocampus.
In contrast, frontal scalp EEG activity differed between both species
likely reflects the contribution of hippocampal activity to scalp EEG
in rodents (fig. S1).

In sum, these results reveal a double dissociation between the
PFC and MTL REM sleep with lower aperiodic activity (steeper
spectral slope) observed during neocortical REM sleep, possibly
providing the optimal neurophysiological milieu to enable neuro-
plasticity in support of long-term memory retention (29).

Furthermore, our findings indicate that REM sleep resulted in a
decrease in the spectral slope during subsequent NREM sleep, in
line with our observations on the scalp level (cf. Fig. 3, D and E).
In contrast to the neocortical reduction of the aperiodic activity
during REM sleep, a switch to a higher rate of aperiodic activity
(flattening of the spectral slope) was evident in the MTL, where
no REM-mediated down-regulation of aperiodic activity in adjacent
NREM epochs was observed.

Next, we analyzed high-frequency band (HFB) activity, a surro-
gate marker of multi-unit firing and dendritic synaptic potentials
(30). Mean HFB activity only changed in MTL but not PFC over
the course of the triplet (MTL: F1.3,18.9 = 15.94, P = 0.0003; PFC:
F1.5,21.7 = 0.39, P = 0.6279) with no overnight modulation (both P
values > 0.5) in both regions. However, we found a dispersion of
activity patterns across all recording sites (Fig. 4D, last row). Popu-
lation vector analysis revealed a regionally specific modulation of
the multidimensional distance across the triplet (two-way RM-
ANOVA; ROI: F1,14 = 42.07, P < 0.0001, state: F1.2,16.6 = 3.77, P =
0.0634; interaction: F1.5,21.3 = 1.84, P = 0.1878), which reflects a
more heterogeneous and less synchronized population response.
We again observed a modulation of population activity in NREM
following REM sleep in PFC (t14 = 2.50, P = 0.0253, d = 0.65) but
not in the MTL (t14 = 1.24, P = 0.2354, d = 0.32). To further quantify
the REM-mediated modulation, we separately correlated the overall
REM spectral slope (analogous to Fig. 3, F and G) with different
sleep signatures. Collectively, this set of findings supports the hy-
pothesis that REM-mediated aperiodic downmodulation preferen-
tially occurs in the neocortex, a key node for human long-term
memory retention (1).

Steeper spectral slopes (indexing decreased aperiodic activity)
during REM sleep predicted increased overnight hippocampal
ripple activity (Spearman rho = 0.75, P = 0.0018), HFB activity
(rho = −0.70, P = 0.0046), and active periods (rho = −0.64, P =

0.0129; see Materials and Methods). This was observable on the in-
dividual subject level (Fig. 4E) and predicted the steepening of the
spectral slope across the full night (Fig. 4E; rho = 0.68, P = 0.0073;
replicating Fig. 3G). The same relationship between REM slope and
the overnight steepening of the spectral slope was observed in PFC
(Fig. 4F; rho = 0.12, Ppseudo-population = 0.0277, Plme < 0.0001; t345 =
6.72; CI95 = [0.06 0.11]). In addition, the expression of spindles
changed as a function of the REM slope (rho = 0.11, Ppseudo-population
= 0.0380, Plme = 0.0599; t345 = −1.89; CI95 = [−0.009 0.0002]), while
the relationship to prefrontal SOs was less consistent (rho = −0.19,
Ppseudo-population = 0.0004, Plme = 0.1012; t345 = 1.64; CI95 = [−0.001
0.012]; fig. S8). The modulation of the spindle count by the REM
slope exhibited an opposite pattern between medial and lateral
frontal cortex, with a decrease in medial and an increase in lateral
prefrontal regions (Fig. 4F; Plme = 0.0157; t345 = 2.43; CI95 = [5 ×
10−5 5 × 10−4]). Last, we tested whether brief oscillatory beta/
gamma bursts might explain the observed effect on the spectral
slope, but we did not find any evidence for this consideration
(fig. S9).

Together, these results reveal that aperiodic activity during REM
sleep predicts the overnight modulation of aperiodic activity, an
EEG-based proxy of excitability during sleep. Critically, the post-
REM modulation of successive NREM sleep was confined to the
neocortex, indicating that REM-mediated aperiodic down-regula-
tion preferentially affects neocortical regions to support long-term
memory retention.

DISCUSSION
Together, our results across five independent studies demonstrate
that REM sleep mediates an overnight down-regulation of aperiodic
activity as quantified by the spectral slope. This REM sleep mecha-
nism provided functional benefits, such that it predicted the success
of subsequent overnight long-term memory retention, suggesting a
possible mechanistic pathway that contributes to the recognized
role of sleep in cementing human memories.

These results reveal that aperiodic activity during sleep indexes
mesoscale population activity and reflects an inherent characteristic
of the functional organization of the sleeping brain. Aperiodic ac-
tivity operates in concert with sleep oscillations [and provides non-
redundant information to SOs; cf. fig. S6; (1, 2, 31)] to mediate
overnight memory consolidation. Our present simultaneous two-
photon calcium imaging and electrophysiology experiments in
rodents and humans provide evidence for the idea that aperiodic
activity tracks mesoscale population dynamics as quantified by
calcium activity. An important feature of aperiodic activity is that
it can be estimated from the scalp or intracranial EEG for every
state including wakefulness, providing an electrophysiological
marker enabling a direct comparison of activity across different
neural and behavioral states. Sleep deprivation, as a perturbation
approach of the assumed physiologic modulation, resulted in an at-
tenuated down-regulation of aperiodic activity. Moreover, aperiodic
activity in REM sleep led to a pronounced functional and anatom-
ical dissociation between two key brain regions of the memory
network, the MTL and neocortex. Specifically, the MTL switched
from a stable state of low aperiodic activity during NREM sleep to
a transient state of increased aperiodic activity (flattening of the
PSD) during REM sleep, while the neocortex transitioned from
high aperiodic activity during NREM to a state of decreased
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aperiodic activity (steeper slope) during REM sleep. In addition,
aperiodic activity during REM sleep correlated with the overnight
modulation of oscillatory NREM sleep signatures in a spatially spe-
cific manner, with aperiodic activity in the MTL indexing the mod-
ulation of hippocampal ripples, while neocortical aperiodic activity
predicted spindle modulation. These findings indicate an important
interaction between sleep stages, such that the expression of NREM
sleep oscillations is governed by the preceding REM sleep episode.

Aperiodic activity tracks population dynamics during sleep
How does the sleeping brain regulate neural homeostasis to meet
the demands of optimal function, including that required for infor-
mation processing and memory retention? A possible hypothesis is
that new synapses might be formed, existing connections strength-
ened and overall neural firing increased during wakefulness and
learning (5, 6, 32). This activity increase might be particularly pro-
nounced during early development (33) and for highly active cells
(9). Sleep has been proposed to counteract this progressive activity
build-up to maintain healthy neural functioning, with sleep depri-
vation attenuating such a modulation and impairing cognitive pro-
cesses and memory formation (5, 34, 35).

On the cellular level, sleep reduces neural firing (5) and pro-
motes synapse elimination (6, 32). Electrophysiological recordings
suggested that synaptic activity is strongly attenuated during “down-
states,”which may manifest as SOs in meso- and macroscale record-
ings (36, 37). Hence, the seminal synaptic homeostasis hypothesis
posits that SO-mediated postsynaptic depression might restore the
optimal neural milieu for learning and memory (2, 10), but it
remains poorly understood how the regulation as observed on the
cellular level relates to macroscale EEG activity as recorded from the
human brain.

Computational models have proposed a missing link between
cellular and macroscale signals (15, 16). The present studies tested
the predictions of these models that aperiodic activity indexes
neural E/I balance and hence might be modulated during sleep.
We observed that the spectral slope, as a measure of aperiodic ac-
tivity, captured in vivo mesoscale dynamics. Specifically, higher
calcium activity, which indexes neural population activity (18), pre-
dicted increased aperiodic activity (a flattening of the EEG spectral
slope; Fig. 1H), while lower calcium activity decreased aperiodic ac-
tivity (steepening of the EEG spectral slope). The spectral slope also
indexed the momentary ratio between pyramidal and interneuron
activity (Fig. 1I); this dependence was mainly observed when
calcium activity was low. In contrast to the model predictions, a
surplus of pyramidal cell activity (fourth E/I quartile; Fig. 1J) was
accompanied by a steepening of the spectral slope. This deviation
from the model predictions might be explained by the absence of
recurrent connections between excitatory and inhibitory cells in
the original model by Gao et al. (15), which constitutes a hallmark
of neocortical circuits in vivo (Fig. 1, E and F). Moreover, all calcium
recordings were obtained from cortical layers 2/3 cell soma; hence,
future experiments have to determine whether these results gener-
alize to the synaptic level or other cortical layers (38). Likewise, the
contribution of dendritic potentials needs to be considered in future
experiments. Since the current findings were obtained using
calcium activity as a surrogate of neural activity (18), the present
results need to be extended using direct electrophysiological unit
recordings. Collectively, this set of findings demonstrates that the
spectral slope, as an index of aperiodic brain activity, captures

neural excitability at the mesoscale (defined as overall pyramidal
calcium activity) and only indirectly the underlying balance
between excitatory pyramidal cell and inhibitory interneuron activ-
ity. To date, the relative contributions of synaptic currents and
neural firing to generation of the EEG remains incompletely under-
stood (39). Future computational models accounting for recurrent
connections might be able to separate the relative contributions of
neural firing and momentary E/I ratio. In the same vein, future
studies need to determine how other factors, such as cerebral
blood, cerebrospinal, or interstitial fluid flow, glymphatic flow, or
the effects of neuro-modulatory systems, affect aperiodic activity.

While sleep decreased aperiodic activity (steeper slope), sleep
deprivation attenuated increased aperiodic activity (flatter slope).
The strongest decrease of neocortical aperiodic activity (and cortical
pyramidal cell activity in rodents; Fig. 1B) was observed during
REM sleep. This observation raises the intriguing question of
whether REM sleep mediates the overnight recalibration of EEG-
based markers of neural excitability in humans.

REM sleep recalibrates neural activity dynamics
during sleep
While SOs during NREM sleep have typically been linked to neural
quiescence (40), mounting evidence suggests that such NREM sleep
consequences are nuanced and that NREM sleep also reflects a brain
state of considerable activity (1, 9, 41). For example, NREM sleep
may increase synaptic efficiency (42), especially for small synaptic
boutons (2), and neural firing (9) (pronounced for low firing
neurons) at the cellular level (1). At the population level, the cardi-
nal oscillations of NREM sleep actively coordinate the hippocam-
pal-neocortical dialogue to enable information reactivation,
transfer, and consolidation (1, 43). NREM sleep oscillations, includ-
ing sharp-wave ripples, which are typically nested in SOs or spindles
(44–46), have been suggested to mediate neuroplasticity through re-
petitive replay of firing sequences (43, 47) and the memory-specific
up-regulation of synapse formation (48); thus, reflecting a potential
state of increased net excitation, in addition to co-occurring benefits
of synaptic downscaling (2, 10).

In contrast, emerging evidence in animal models indicates a role
for a neuronal inhibitory state in REM sleep (37). At a cellular level,
REM sleep promotes global synapse elimination (11, 12). Moreover,
two-photon calcium imaging (21) (cf. Fig. 1) and in vivo electro-
physiology studies (8, 9) report a global reduction of neural firing
with an increase of interneuron activity during REM sleep. This is in
accord with macroscale findings that demonstrated a reduction of
aperiodic activity, possibly reflecting decreased population excit-
ability in scalp EEG recordings (14). The present results provide
direct in vivo evidence corroborating this proposal in human
cortex, showing that REM-mediated activity modulates neural dy-
namics of the brain during this sleep state (8, 9, 29, 49). This mod-
ulation was both region– (MTL versus PFC; Fig. 4 and figs. S1 and
S7) and species- (human versus rodent; fig. S1)–specific. In both
species, we observed a flattening of spectral slope during REM
sleep in the hippocampus, highlighting that hippocampal brain
state–dependent dynamics might be evolutionary conserved (50).
In contrast, the strongest REM-mediated aperiodic modulation
was observed in human frontal cortex. This effect was not evident
in rodents, where frontal EEG activity also encompasses the contri-
bution of hippocampal activity (fig. S1), which directly accounts for
the apparent inconsistency between both species. Moreover,
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previous work in rodent (51), cat (52), and human (41) visual cortex
observed that NREM sleep potentiates neural excitability (51, 52)
and increases E/I balance in V1 (defined by magnetic resonance
spectroscopy as the glutamate to γ-aminobutyric acid ratio) (41)
to possibly promote neural plasticity. Critically, no sleep-mediated
downscaling was observed in visual cortex (51, 52). These observa-
tions are in line with the present findings where the most pro-
nounced and behaviorally relevant modulation of aperiodic
activity occurred over frontocentral areas (Figs. 2C and 3I), while
the aperiodic modulation over occipital sensors was negligible
(Fig. 3, D, F, and G).

REM sleep–mediated recalibration of aperiodic activity
predicts memory retention
Is the change in aperiodic activity during REM sleep epiphenome-
nal or functional, specifically regarding sleep-dependent overnight
memory processing (7)? At the cellular level, consolidation of mne-
monic representations requires a selective, activity-dependent elim-
ination of synapses (10). As this down-scaling occurs primarily in
sleep, prolonged wakefulness is proposed to result in synapse satu-
ration leading to impaired memory function (5, 53).

Consistent with this proposition, when interneurons in hippo-
campus are optogenetically inactivated during REM sleep in
rodents, memory formation is impaired (54). Conversely, REM
sleep deprivation in rodents reduced synaptic plasticity (55). This
set of findings suggests a role for REM sleep in adjusting neural ac-
tivity overnight in support of memory retention. This recalibration
had a functional benefit predicting successful next day memory re-
tention. This association with memory enhancement was specific to
the PFC, in line with the idea that neocortical areas house long-term
mnemonic storage (28). This effect was not confounded by the si-
multaneously influence of slow wave activity on behavior (fig. S6),
suggesting that aperiodic and slow wave activity constitute comple-
mentary mechanisms.

Collectively, our study provides compelling evidence that aperi-
odic electrical brain activity within the human and rodent brain
serves as a reliable indicator of neural population dynamics.
Hence, aperiodic activity represents an essential and previously un-
recognized functional characteristic of the sleeping brain. These
findings shed light on the pivotal role of human REM sleep in re-
calibrating neural dynamics at the population level. Our results il-
lustrate that the recalibration of population-based excitability
markers facilitated by REM sleep not only supports but also poten-
tially stems from experience-dependent plasticity throughout the
waking hours. In sum, REM-mediated recalibration of neural
dynamic might be critical for the overnight consolidation of mem-
ories into stable engrams within the brain.

MATERIALS AND METHODS
Participants
Study 1: Two different strains of transgenic mice, PV-Cre mice
(RRID:IMSR_JAX:008069; n = 4) and SOM-Cre mice (RRID:
IMSR_JAX:013044; n = 4) were used. All mice were housed in
groups of up to five animals under temperature-controlled and hu-
midity-controlled conditions (22° ± 2°C; 45 to 65%) and a 12-hour/
12-hour light/dark cycle. All recordings started during the first hour
of the light phase, and only male mice older than 8 weeks were re-
corded. Procedures and data were the same as described previously

(21, 56). All experiments were approved by the local institutions in
charge of animal welfare (CIN4/11. Regierungspräsidium Tübing-
en, State of Baden-Wuerttemberg, Germany).

Study S1: The recordings were performed in five male Long
Evans rats (Janvier, Le Genest-Saint-Isle, France, 280 to 340 g, 14
to 18 weeks old). Animals were kept on a 12-hour/12-hour light/
dark cycle with lights off at 19:00 hours. Water and food were avail-
able ad libitum. All experiments were approved by the local institu-
tions in charge of animal welfare (MPV3/13, Regierungspräsidium
Tübingen, State of Baden-Wuerttemberg, Germany). Procedures
and data were the same as described previously (57, 58).

Study 2: Fourteen younger (20.6 ± 2.2 years; mean ± SD) and 26
healthy older adults (73.0 ± 5.4 years; mean ± SD) participated in
the study. Neurobehavioral correlations were highly comparable
(see fig. S3). All participants provided written informed consent ac-
cording to the local ethics committee (Berkeley Committee for Pro-
tection of Human Subjects Protocol Number 2010-01-595) and the
Sixth Declaration of Helsinki. Here, we report a subset of partici-
pants from a larger cohort that also completed three resting state
recordings in addition to overnight sleep recordings, which were
unavailable for remainder of the participants (23, 24).

Study 3: Twelve young healthy controls (mean age: 23.2 ± 1.1
years; seven men, five women) participated in the study. All partic-
ipants provided written informed consent according to the local
ethics committee at the University of Mannheim (protocol
number 2010-311 N-MA) and the Sixth Declaration of Helsinki.
The resting state data were acquired in the context of a larger
study investigating the effects of sleep deprivation on habituation
but have not been reported previously (59).

Study 4: We obtained intracranial recordings from 15 pharma-
coresistant epilepsy patients (35.0 ± 11.1 years; mean ± SD; nine
females) who underwent presurgical monitoring with implanted
depth electrodes (Ad-Tech), which were placed stereo-tactically to
localize the seizure onset zone. All patients were recruited from the
University of California Irvine Medical Center, USA. Electrode
placement was exclusively dictated by clinical considerations, and
all patients provided written informed consent to participate in
the study. Patients selection was based on magnetic resonance
imaging (MRI)–confirmed electrode placement in the MTL and
PFC from a larger cohort of 21 subjects (14, 45). We only included
patients where one seizure free night was available and a sufficient
amount of REM sleep was recorded (see inclusion criteria below;
two subjects did not exhibit simultaneous MTL and PFC coverage;
four subjects did not exhibit sufficient REM sleep). The study was
not preregistered. All procedures were approved by the Institutional
Review Board at the University of California, Irvine (protocol
number: 2014-1522) and conducted in accordance with the Sixth
Declaration of Helsinki.

Experimental design and procedure
Study 1: All animals were anesthetized with ketamine (0.1 mg/g)
and xylazine (0.008 mg/g) with a supplement of isoflurane. For
topical anesthesia, lidocaine was applied. Afterward, the animals
were mounted on a stereotaxic frame. Body temperature was con-
tinuously monitored and maintained at 37°C. A custom-made
headpost was glued to the skull and subsequently cemented with
dental acrylic (Kulzer Palapress). Virus injection and the implanta-
tion of the imaging window followed headpost implantation. To this
end, a craniotomy above the sensorimotor cortex (1.1 mm caudal
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and 1 to 1.3 mm lateral from the bregma) with a size of 1.2 × 2 mm
was made. Afterward, two viruses (AAV2/1-syn-GCaMP6f 2.96 ×
1012 genomes/ml and AAV2/1-Flex- tdTomato 1.48 × 1011

genomes/ml) were injected into multiple sites of the area of crani-
otomy (10 to 20 nl per site; 3 to 5 min per injection). The injection
depth was between 130 and 300 mm. Virus injection was followed
by the implantation of the imaging window (1 × 1.5 mm). The space
between the skull and the imaging window was filled with agarose
(1.5 to 2%), and then the imaging window was cemented with
dental acrylic. EEG electrodes were implanted on the cortical
surface of the contralateral hemisphere relative to the imaging
window (−2.5 mm, lateral +2.5 mm from bregma). The reference
electrodes were implanted on the brain surface 1 mm relative to
lambda. Two wire electrodes were implanted into the neck muscle
for EMG recordings (Science Products). After the surgery, all
animals were brought back to their home cage and were single-
housed for the rest of the experiments. They had at least 10 days
of recovery from surgery before imaging sessions started. After han-
dling the animals 10 min/day for 1 week, the animal was habituated
to the head fixation. Habituation consisted of four sessions per day
for 1 week with increasing fixation durations (30 s, 3 min, 10 min,
and 30 min) interleaved by 10-min rest intervals. Habituation was
conducted until 24 hours before the first imaging session during the
early light phase.

Study S1: Animals were anesthetized with an intraperitoneal in-
jection of fentanyl (0.005 mg/kg of body weight), midazolam (2.0
mg/kg), and medetomidine (0.15 mg/kg). They were placed into a
stereotaxic frame and were supplemented with isoflurane (0.5%) if
necessary. The scalp was exposed and five holes were drilled into the
skull. Three EEG screw electrodes were implanted: one frontal elec-
trode [anteroposterior (AP): +2.6 mm, mediolateral (ML): −1.5
mm, with reference to bregma], one parietal electrode (AP: −2.0
mm, ML: −2.5 mm), and one occipital reference electrode (AP:
−10.0 mm, ML: 0.0 mm). In addition, a platinum electrode was im-
planted into the right dorsal hippocampus [AP: −3.1 mm, ML: +3.0
mm, dorsoventral (DV): −3.6 mm]. Electrode positions were con-
firmed by histological analysis. One stainless steel wire electrodewas
implanted in the neck muscle for EMG recordings. Electrodes were
connected to an electrode pedestal (PlasticsOne, USA) and fixed
with cold polymerizing dental resin, and the wound was sutured.
Rats had at least 5 days for recovery.

Study 2: All participants were trained on the episodic word-pair
task in the evening and performed a short recognition test after 10
min. Then, participants were offered an 8-hour sleep opportunity,
starting at their habitual bedtime (table S1). Resting state recordings
were obtained directly before and after sleep. Polysomnography was
collected continuously. Participants performed a long version of the
recognition test approximately 2 hours after awakening. Subse-
quently, we obtained structural MRI scans from all participants.
Two older adults did not complete behavioral testing, and two
young adults failed to achieve criterion at encoding. Thus, these
four subjects were excluded from behavioral analyses but were in-
cluded in all electrophysiological analyses.

Study 3: In the 3 days before the experiment, sleep was moni-
tored using an Actiwatch Device (Philips Respironics, Amsterdam).
Participants were randomly assigned to either start in the sleep dep-
rivation or habitual sleep group. In the experimental night, partic-
ipants were either allowed to sleep and monitored using the

Actiwatch device or kept awake and engaged by an experimenter.
Recordings were obtained in the late AM or around noon.

Study 4: We recorded a full night of sleep for every participant.
Recordings typically started around 8:00 to 10:00 p.m. and lasted for
~10 to 12 hours (table S2). Only nights that were seizure-free were
included in the analysis. Polysomnography was collected
continuously.

Behavioral task
Study 2: We used a previously established sleep-dependent episodic
memory task (Fig. 2B), where subjects had to learn word-nonsense
word pairs (23). Briefly, words were 3 to 8 letters in length and
drawn from a normative set of English words, while nonsense
words were 6 to 14 letters in length and derived from groups of
common phonemes. During encoding, subjects learned 120
word-nonsense pairs. Each pair was presented for 5 s. Participants
performed the criterion training immediately after encoding. The
word was presented along with the previously learned nonsense
word and two new nonsense words. Subjects had to choose the cor-
rectly associated nonsense words and received feedback afterward.
Incorrect trials were repeated after a variable interval and were pre-
sented with two additional new nonsense words to avoid repetition
of incorrect nonsense words. Criterion training continued until
correct responses were observed for all trials.

During recognition, a probe word or a new (foil) probe word was
presented along with four options: (i) the originally paired nonsense
word, (ii) a previously displayed nonsense word, which was linked
to a different probe (lure), (iii) a new nonsense word, or (iv) an
option to indicate that the probe is new. During the recognition
test after a short delay (10 min), 30 probe and 15 foil trials were pre-
sented. At the long delay (10 hours), 90 probe and 45 foil trials were
tested. All probe words were presented only once during recogni-
tion testing, either during short or long delay testing.

Sleep monitoring and EEG data acquisition
Study 1: Sleep stages were identified on the basis of EEG and EMG
recordings during the imaging sessions. EEG and EMG signals were
amplified, filtered (EEG: 0.01 to 300 Hz; EMG: 30 to 300 Hz), and
sampled at a rate of 1000 Hz (Grass Technologies amplifier, model
15A54). On the basis of EEG/EMG signals for succeeding 10-s
epochs, the brain state of the mouse was classified into wake,
slow-wave sleep, and REM sleep stages. Sleep stages were deter-
mined with the software SleepSign for animals (Kissei Comtech).

Study S1: Rats were habituated to the recording box [dark gray
polyvinyl chloride (PVC), 30 cm by 30 cm, height: 40 cm] for 2 days,
12 hours/day. On the third day, animals were recorded for 12 hours,
during the light phase, starting at 7:00 hours. The animal’s behavior
was continuously tracked using a video camera mounted on the re-
cording box. EEG, local field potential (LFP), and EMG signals were
continuously recorded and digitalized using a CED Power 1401
converter and Spike2 software (Cambridge Electronic Design).
During the recordings, the electrodes were connected through a
swiveling commutator to an amplifier (Model 15A54, Grass Tech-
nologies). The screw electrode in the occipital skull served as refer-
ence for all EEG, LFP, and EMG recordings. Filtering was for the
EEG between 0.1 and 300 Hz; for LFP signals, a high-pass filter of
0.1 Hz was applied; and for the EMG between 30 and 300 Hz, signals
were sampled at 1 kHz.
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Study 2: Polysomnography sleep monitoring was recorded on a
Grass Technologies Comet XL system (Astro-Med), including 19-
channel EEG placed using the standard 10-20 system as well as elec-
tromyography (EMG). Electrooculogram (EOG) was recorded the
right and left outer canthi. EEG recordings were referenced to bilat-
eral linked mastoids and digitized at 400 Hz. Sleep scoring was per-
formed according to standard criteria by Rechtschaffen and Kales in
30-s epochs (60). NREM sleep was defined as NREM stages 2 to 4.
First and last NREM and REM epochs were defined as the first and
last 5 min of the respective stages in the hypnogram.

Study 3: Resting state EEG recordings were obtained using a 64-
channel BrainAmp amplifier (Brain Products GmbH) EEG system
with equidistant Ag-AgCl electrode positions (EasyCap, Herrsch-
ing, Germany). The central electrode of this layout corresponded
to electrode Cz (10–20 layout) and was therefore used for between
group comparisons.

Study 4: We recorded from all available intracranial electrodes.
To facilitate sleep staging based on established criteria, we also re-
corded scalp EEG, which typically included recordings from elec-
trodes Fz, Cz, C3, C4, and Oz according to the international 10-
20 system. EOG was recorded from four electrodes, which were
placed around the right and left outer canthi. All electrophysiolog-
ical data were acquired using a 256-channel Nihon Kohden record-
ing system (model JE120A), analog-filtered at 0.01 Hz, and digitally
sampled at 5000 Hz. All available artifact-free scalp electrodes were
low-pass–filtered at 50 Hz, demeaned and detrended, down-
sampled to 400 Hz, and referenced against the average of all clean
scalp electrodes. EOGs were typically bipolar referenced to obtain
one signal per eye. A surrogate EMG signal was derived from elec-
trodes in immediate proximity to neck or skeletal muscles, by high-
pass filtering either the ECG or EEG channels above 40 Hz. Sleep
staging was carried out according to Rechtschaffen and Kales guide-
lines by trained personnel in 30-s segments (60) as reported previ-
ously (23, 24). Same conventions as in study 1 were used.

Two-photon calcium imaging data acquisition
Study 1: In vivo imaging was performed using a two-photon micro-
scope based on the MOM system (Sutter) controlled by ScanImage
software (61). The light source was a pulsed Ti:sapphire laser (l =
980 nm; Chameleon; Coherent). Red and green fluorescence
photons were collected with an objective lens (Nikon; 16×; 0.80 nu-
merical aperture), separated by a 565-nm dichroic mirror (Chroma;
565dcxr) and barrier filters (green: ET525/70 m-2p; red: ET605/70
m- 2p), and measured using photomultiplier tubes (Hamamatsu
Photonics; H10770PA-40). Imaging frames were visually inspected
to exclude cross-talk between green and red channels. The imaging
frame consisted of 1024 × 256 pixels, and the frame rate was 5.92 Hz
(169 ms per frame). Images were collected in layer 2/3 at a depth of
150 to 250 mm.

CT and MRI data acquisition
Study 4: We obtained anonymized postoperative computed tomog-
raphy (CT) scans and presurgical MRI scans, which were routinely
acquired during clinical care. MRI scans were typically 1 mm
isotropic.

Quantification and statistical analysis
Behavioral data analysis
Study 2: Memory recognition was calculated by subtracting both the
false alarm rate (proportion of foil words, which subjects reported
as previously encountered) and the lure rate (proportion of words
that were paired with a familiar but incorrect nonsense word) from
the hit rate (correctly paired word-nonsense word pairs). Memory
retention was subsequently calculated as the difference between rec-
ognition at long minus short delays.

Two-photon data
Preprocessing and data analysis
Image analysis: Lateral motion was corrected in two steps. A cross-
correlation–based image alignment (Turboreg) was performed, fol-
lowed by a line-by-line correction using an algorithm based on a
hidden Markov model (62). ROIs containing individual neurons
were drawn manually, and the pixel values within each ROI were
summed to estimate the fluorescence of this neuron. PV+ and
SOM+ were manually detected by red fluorescence signal expressed
by AAV2/1-Flex-tdtomato. The individual cell traces were calculat-
ed as the average pixel intensity within the ROIs for each frame. The
cell traces were transformed into the percent signal change (ΔF/F),
in which the baseline for each cell was defined as the 20th percentile
value of all frames within a ±3-min interval. We then extracted
active frames (“calcium spikes”), which were defined as frames
with ΔF/F signals two SDs above the mean in a sliding time
window of ±3 min.

To confirm that the neuropil signal did not affect our results and
to compensate for background noise, we performed a standard neu-
ropil subtraction for each cell’s fluorescence trace. The neuropil
signal was estimated for each ROI as the average pixel value
within two pixels around the ROI (excluding adjacent cells). The
true signal was estimated as F(t) = FinROI − r × FaroundROI,
where r = 0.7.
Immunohistochemistry
After finishing the experiments, mice were deeply anesthetized [ke-
tamine (0.3 mg/g) and xylazine (0.024 mg/g), i.p.] and with 4%
paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline
(PBS) intracardially perfused. Then, the brains were postfixed in
4% PFA at 4°C overnight and rinsed three times with 0.1 M PBS.
Coronal slices (thickness, 65 mm) were blocked in 10% normal
goat serum (NGS; Jackson ImmnunoResearch) and 0.3% Triton
X-100 (Sigma-Aldrich) in 0.1 M PBS for 1.5 hours at room temper-
ature. Slices were incubated with anti-PV rabbit primary antibody
(1:1000; #24428, Immunostar, RRID: AB_572259) or anti-SOM
rabbit primary antibody (1:1000; #T-4547, Peninsula Laboratories,
RRID: AB_518618) in carrier solution (2% NGS and 0.3% Triton X-
100 in PBS) for 48 hours at 4°C. Following 4× 10-min rinses with 0.1
M PBS, the slices were incubated in goat anti-rabbit immunoglob-
ulin G antibodies conjugated either with Alexa Fluor 405 (for PV+

staining, AB_221605) or Alexa Fluor 633 (for SOM+ staining,
AB2535732; both from Thermo Fisher Scientific; 1:1000) in
carrier solution for 3 hours at room temperature on the shaker.
Images were acquired on a confocal microscope (LSM 710, Carl
Zeiss). Overall, the fraction of cells only expressing Alexa Fluor
but not tdtomato and GCamp6f for PV+ and SOM+ was each
below 2%.
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EEG data
Preprocessing
Study 1: EEG data from a frontal and parietal electrodewere import-
ed into MATLAB analyzed using the FieldTrip toolbox. Raw re-
cordings were demeaned, detrended, and epoched into 10-s
segments. Epochs containing artifacts were labeled semi-automati-
cally when a threshold of 6 SD was exceeded in the concurrently
acquired EMG signal. Data were referenced to a bipolar pair
(frontal-parietal) for selected analyses (e.g., fig. S1).

Study S1: EEG data from a frontal and parietal electrode as well
as a hippocampal electrode were imported into MATLAB analyzed
using the FieldTrip toolbox. Raw recordings were demeaned, de-
trended, and epoched into 10-s segments. Data were referenced to
a bipolar pair (frontal-parietal) for selected analyses (e.g., fig. S1).

Study 2/3—Resting state: EEG data were imported into
MATLAB and analyzed using the FieldTrip toolbox. Raw record-
ings were demeaned, detrended, high-pass–filtered at 1 Hz,
common average referenced, and epoched into 3-s-long segments
with 50% overlap. Artifact detection was done semi-automatically
for EOG, jump, and muscle artifacts and visually confirmed (63).

Study 2—Sleep: EEG data were imported into FieldTrip, then
demeaned, detrended, common average referenced, and epoched
into non-overlapping 30-s segments. Artifact detection was done
manually in 5-s segments (24).

Study 4: Scalp EEG was demeaned, detrended, and locally refer-
enced against the mean of all available artifact-free scalp electrodes.
We applied a 50-Hz low-pass filter and down-sampled the data to
500 Hz. All scalp EEG analyses were done on electrode Fz. In a
subset of subjects, Fz was not available and Cz was used instead
of Fz. Intracranial EEG: In every subject, we selected all available
electrodes in the MTL, which were then demeaned, detrended,
notch-filtered at 60 Hz and its harmonics, bipolar referenced to
its immediate lateral neighboring electrode, and lastly down-
sampled to 500 Hz. We retained all MTL channels but discarded
noisy PFC channels. We adopted a previously introduced approach
where we first detected interictal epileptic discharges (IEDs) using
automated detectors (see below), which were then excluded from
further analysis. Last, we selected one MTL electrode per participant
with the lowest number of overall detections. For PFC analyses, all
available contacts in these regions were included, and the same pre-
processing steps were applied. Then, all resulting traces were man-
ually inspected, and noisy, epileptic, and artifact-contaminated PFC
channels were excluded.
Extraction of REM epochs and time normalization procedure
Study 1: Sleep data were manually staged. REM epochs were detect-
ed on the basis of the emergence of a prominent theta rhythm (4 to
10 Hz) and reduction of EMG activity. Given that a NREM-REM-
NREM triplet analysis was not feasible (see fig. S2), we selected N
continuous REM epoch that spanned at least three 10-s epochs and
included ±N adjacent epochs (termed pre-REM, mostly NREM and
post-REM, mostly wake). This ensured that an equal amount of data
was included to assess the relationship of population dynamics and
aperiodic activity. The values within every epoch were then averaged
into one composite value for calcium and EEG activity.

Study3/4: REM epochs were detected on the basis of the manu-
ally staged hypnogram according to established Rechtschaffen and
Kales guidelines (60). We first detected all REM epochs and then
selected artifact-free epochs that spanned at least three consecutive
epochs (90 s) and required that the majority of adjacent periods

within a time window ±9 min were staged as NREM sleep (9 min
were chosen to match the 9 min of resting state data reported in
Fig. 2A as well as to match the average, artifact- and interruption-
free duration of individual NREM epochs: study 3: 10 ± 13.9 min;
study 4: 7 ± 16.7 min; median ± SD). Subsequently, the identified
REM epochs were extracted as continuous time-domain signals and
then epoched into 100 overlapping epochs and subjected to multi-
taper spectral analysis as outlined below. Similarly, the adjacent
NREM data were epoched into 10-s-long segments with 70%
overlap. The spectral estimates were then concatenated to form
the final time-normalized triplet in the frequency domain. For stat-
istical testing, we omitted the transition states and selected one third
of the time-normalized epoch (beginning, center, and end of the
triplet, respectively) for subsequent testing. We also repeated the
entire analysis on more liberal criteria (fig. S5; inclusion of brief
epochs of NREM1 or microarousals as well as episodes that were
staging was uncertain) as outlined by Watson et al. (9). Here, the
preceding and following NREM epochs were also time-normalized
(in contrast to taking a fixed window) into 100 overlapping epochs
and subjected to multitaper spectral analysis. In addition, we ex-
tracted time-normalized NREM epochs where continuous NREM
epochs were equally epoched into 100 overlapping segments (figs.
S5G and S7C).
Spectral analysis
Scalp EEG (studies 1, S1, and 2 to 4): Resting state spectral estimates
were obtained through multitaper spectral analyses (64, 65), based
on discrete prolate slepian sequences. Spectral estimates were ob-
tained between 1 and 50 Hz in 1-Hz steps. We adapted the
number of tapers to obtain a frequency smoothing of ±2 Hz. For
studies 1 and S1, we used an upper cutoff of 35 Hz given a broad
hardware notch filter artifact from 40 to 60 Hz.

Intracranial EEG (study 4): Spectral estimates were by means of
multitaper spectral analyses based on discrete prolate spheroidal se-
quences in 153 logarithmically spaced bins between 0.25 and 181 Hz
(64). We adjusted the temporal and spectral smoothing to approx-
imately match a ±2-Hz frequency smoothing.
Estimation of aperiodic background activity
Aperiodic activity was estimated from three parameters of the elec-
trophysiological power spectrum: spectral slope x (the negative ex-
ponent of the 1/fx decay function), y intercept, and the population
time constant (the frequency where a bend/“knee” occurs in the 1/f
spectrum). Note that the slope and y intercept provided redundant
information (correlated at rho = −0.98, P < 0.0001; Spearman cor-
relation), thus, analyses focused on the spectral slope.

FOOOF fitting: To obtain estimates of aperiodic background ac-
tivity, we first used the FOOOF algorithm (66). EEG spectra were
fitted in the range from 1 to 45 Hz. Aperiodic background activity
was defined by its slope parameter χ, the y intercept c, and a constant
k (reflecting the knee parameter).

aperiodic fit ¼ 10c� 1
ðkþ f

1
XÞ

The relationship of the knee parameter and the knee frequency is
given by

knee frequency ¼ k
1
χ
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If a knee parameter could not be determined, then we refitted the
spectrum in the fixed mode, which is equivalent to a linear fit where
k = 0.

Polynomial fitting: To estimate the spectral slope in different fre-
quency bands, we also used first-degree polynomial fitting (14),
thus yielding an instantaneous spectral exponent (slope, χ) and
offset (y-axis intercept, c), for a given fitting range. EEG spectra
were fitted using variable endpoints (from 1 to 5 to 45 Hz, 5-Hz
steps), variable starting points (to 45 Hz, from 5 to 40 Hz, 5-Hz
steps), a fixed bandwidth with varying center frequencies (5 to 45
Hz; ± 5 Hz), or in comparable ranges (e.g., 20 to 45 Hz; correlation
to FOOOF estimates rho = 0.99, P < 0.0001; Spearman correlation).
Typically, we report the spectral slope as obtained from the FOOOF
model when fitted up to 45 Hz. In several instances, this approach
was complemented by first-degree polynomial fitting to avoid high-
frequency artifacts (e.g., in studies 1 and S1 from ~40 Hz; hence, we
restricted the fitting up to 35 Hz), the presence of a variable spectral
knee (bend of the power spectrum) or to highlight a specific fre-
quency range in intracranial EEG, where the spectrum was estimat-
ed up to 180 Hz; hence, rendering a direct comparison of FOOOF
iEEG and EEG estimates impractical. After the initial principled ap-
proach, we empirically determined the range with the highest cor-
relation to behavior (fig. S3E; 25 to 45 Hz) and consequently used
this range for all subsequent analyses.
Event detection
SOs: Event detection was performed for every channel separately
based on previously established algorithms (24, 44). We first filtered
the continuous signal between 0.16 and 1.25 Hz and detected all the
zero crossings. Then, events were selected on the basis of time (0.8-
to 2-s duration) and amplitude (75% percentile) criteria. Last, we
extracted 5-s-long segments (±2.5 s centered on the trough) from
the raw signal and discarded all events that occurred during an IED.

Sleep spindles: On the basis of established algorithms (24, 44),
we filtered the signal between 12 and 16 Hz and extracted the ana-
lytical amplitude after applying a Hilbert transform. We smoothed
the amplitude with a 200-ms moving average. Then, the amplitude
was thresholded at the 75% percentile (amplitude criterion), and
only events that exceeded the threshold for 0.5 to 3 s (time criterion)
were accepted. Events were defined as sleep spindle peak-locked 5-
s-long epochs (±2.5 s centered on the spindle peak).

Ripples: The signal was first filtered in the range from 80 to 120
Hz, and the analytical amplitude was extracted from a Hilbert trans-
form in accordance with previously reported detection algorithms
(44, 45). The analytical signal was smoothed with a 100-ms window
and z-scored. Candidate events were identified as epochs exceeding
a z-score of 2 for at least 25 ms and a maximum of 200 ms and had to
be spaced by at least 500 ms. We determined the instantaneous
ripple frequency by detecting all peaks within the identified
segment. The identified events were time-locked to the ripple
trough in a time window of ±0.5 s. Overlapping epochs were
merged. Epochs that contained IEDs or sharp transients were
discarded.

Beta/Gamma burst detection: For fig. S9, we detected individual
bursts in the range from 25 to 45 Hz, where the spectral slope was
estimated, using the procedure outlined here (67). Briefly, we seg-
mented the continuous LFP signal into 30-s trials and obtained
single-trial spectral estimates between 1 and 50 Hz in 0.5-Hz steps
with a frequency smoothing of 4 Hz. Oscillatory bursts were iden-
tified per trial by thresholding (mean ± 2 SD) the average, z-

normalized spectral power for the frequency band of interest (25–
45 Hz) relative to the mean, and SD over a reference period of 10
trials (current trial plus subsequent nine). Only bursts with a
minimum duration of three oscillatory cycles of the mean frequency
of interest were considered. A two-dimensional Gaussian was sub-
sequently fitted to the time-frequency map. Burst duration was de-
termined by the time wherein the average power for the frequency
band of interest exceeded half of the local maximum as determined
by the local Gaussian fit. Burst frequency was determined by the
peak in the Gaussian fit. Oscillatory bursts that coincided with in-
terictal epileptiform discharges (±1 s) relative to the burst peak were
omitted. Subsequently, we obtained a burst rate per 30-s segment
for every participant and channel separately. On the individual
subject and channel levels, we calculated the correlation coefficient
between the PSD slope and the burst rate across the entire night. We
used a random block-swap procedure (1000 times; random break-
point and block swap of the slope vector) to obtain a surrogate dis-
tribution. Subsequently, we normalized the observed correlation
coefficient relative to the surrogate distribution to obtain a z-value.

IED detection: We detected IEDs using automated algorithms
on all channels located in the MTL. All cutoffs were chosen in ac-
cordance with recently published findings (44, 68) and were con-
firmed by a neurologist who visually verified the detected events.
The continuous signal was filtered front and backward between
25 and 80 Hz, and the analytical amplitude was extracted from
the Hilbert transform and then z-scored. Events were detected
when this signal was 3 SD above the mean for more than 20 ms
and less than 100 ms.

HFB, population activity, and active periods analysis: The HFB
activity is typically defined from 70 to 180 Hz (30). To avoid con-
founding true HFB activity with ripple-band activity (upper cutoff,
~120 Hz), we defined HFB activity as the average power in this fre-
quency range from 120 to 180 Hz. The multitaper spectral estimates
where averaged into a single trace per electrode. The dynamics of
the population activity were expressed as a population vector (69).
At every time point, HFB activity was represented as a point P in a
n-dimensional coordinate system where n reflects the number of
electrodes. The population vector was then constructed by taking
the Euclidean distance d between adjacent time points within in a
given ROI, hence providing a single time course per ROI.

MDD ¼ dðPn
t ; P

n
tþ1Þ

Active periods were defined as epochs where the smoothed (100-
ms window) HFB signal exceeded a z-score of 1 for at least 50
ms (8).

Functional connectivity was calculated by means of the absolute
of the imaginary coherency (70) to control for spurious coupling
arising from volume conduction effects. Before connectivity analy-
sis, time-domain data was re-referenced to pairs that did not share a
common reference (hippocampal contacts to occipital bone/scalp
electrode versus a bipolar scalp pair, e.g., Fz-Cz). To avoid biased
connectivity estimates, 1-s segments were randomly subsampled
and stratified across different states (wake, NREM, and REM) to
equate the trial numbers before connectivity analysis.

Statistical analysis
Unless stated otherwise, we used cluster-based permutation tests
(71) to correct for multiple comparisons as implemented in

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Lendner et al., Sci. Adv. 9, eadj1895 (2023) 25 August 2023 14 of 16



FieldTrip (Monte Carlo method; 1000 iterations). Clusters were
formed in time/frequency (e.g., Fig. 2) or space (e.g., Fig. 3) by
thresholding two-tailed, dependent t tests or linear correlations at
P < 0.05. Correlation values were transformed into t values using
the following formula

t ¼
r�

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

A permutation distribution was then created by randomly shuf-
fling condition labels (paired t tests) or subject labels (correlation).
The permutation P value was obtained by comparing the cluster sta-
tistic to the random permutation distribution. The clusters were
considered significant at P < 0.05 (two-sided).

Effect sizes were quantified by means of Cohen’s d or the corre-
lation coefficient rho. To obtain effect sizes for cluster tests, we cal-
culated the effect size separately for all channel, frequency, and/or
time points and averaged across all data points in the cluster. Re-
peated-measures ANOVAs were Greenhouse-Geisser–corrected.
For rodent data (Fig. 1) and for intracranial EEG (Fig. 4), we
either averaged multiple observation per participant into one com-
posite metric, which was then subjected to regular t tests, ANOVAs,
or correlations analyses, or we used LME models with subjects as
random intercepts. P values were calculated on the pseudo-popula-
tion and confirmed using LME models with subjects as random
intercepts.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Tables S1 and S2
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