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Toward a self-consistent and unitary reaction network for big-

bang nucleosynthesis

Mark W. Paris1,a, Lowell S. Brown1, Gerald M. Hale1, Anna C. Hayes-Sterbenz1, Gerard

Jungman1, Toshihiko Kawano1, George M. Fuller2, Evan B. Grohs2, and Satoshi Kunieda3

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
3Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibaraki 319-1195, Japan

Abstract. Unitarity, the mathematical expression of the conservation of probability in

multichannel reactions, is an essential ingredient in the development of accurate nuclear

reaction networks appropriate for nucleosynthesis in a variety of environments. We de-

scribe our ongoing program to develop a “unitary reaction network” for the big-bang

nucleosynthesis environment and look at an example of the need and power of unitary

parametrizations of nuclear scattering and reaction data. Recent attention has been fo-

cused on the possible role of the 9B compound nuclear system in the resonant destruction

of 7Li during primordial nucleosynthesis. We have studied reactions in the 9B com-

pound system with a multichannel, two-body unitary R-matrix code (EDA) using the

known elastic and reaction data, in a four-channel treatment. The data include elastic
6Li(3He,3He)6Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross

sections for energies from 0.7 to 5.0 MeV for 6Li(3He,p)8Be* and from 0.4 to 5.0 MeV

for the 6Li(3He,d)7Be reaction. Capture data have been added to the previous analysis

with integrated cross section measurements from 0.7 to 0.825MeV for 6Li(3He,γ)9B. The

resulting resonance parameters are compared with tabulated values from TUNL Nuclear

Data Group analyses. Previously unidentified resonances are noted and the relevance of

this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized.

1 INTRODUCTION

The light nuclear reaction program, anchored at Los Alamos National Laboratory and bringing to-

gether researchers from various disciplines, employs a dual approach in gaining a detailed under-

standing of the structure and reactions of light nuclei (A � 20). This work is accomplished in the

service of end-users in both applied and fundamental disciplines such as nuclear security and nuclear

astrophysics. We apply dual, complementary methods of phenomenological (R matrix) and ab ini-

tio (quantum Monte Carlo – QMC) techniques to constrain and describe data sets of light nuclear

scattering and reaction observables.

Motivations for revisiting the status and consistency of nuclear reaction networks in big-bang nu-

cleosynthesis (BBN) are manifold. Beyond addressing whether nuclear physics can further constrain
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the “lithium problem” discussed below, we are interested in developing BBN as a tool for precision

cosmology. A primary objective in this endeavor is to implement the ‘theoretical minimum’ of incor-

porating the conservation of probability – unitarity – into the nuclear reaction network. This objective

has yet to be attempted in a comprehensive fashion. In the traditional approach, when the observed

integrated cross section is available, it is fit with a smooth curve and transformed to a Maxwellian-

averaged reactivity, proportional to 〈σv〉. We have found that cross sections determined in this way

(and by less well established methods, such as the narrow resonance approximation) can lead to in-

correct normalizations by significant factors. In addition to establishing consistent, comprehensive

parametrizations of the nuclear reaction network, we are motivated to revisit BBN as a tool of preci-

sion cosmology as new observational techniques of primordial elements (for example, recent observa-

tion of primordial deuterium abundance[1]) have achieved a precision at the two-percent level. At the

same time, the Planck mission[2] and new 30m-class of radio telescopes[3] will challenge existing

methods of primordial abundance calculations, which are based largely on the original methods of

Wagoner[4]. A parallel objective in our current work is to couple the unitary reaction network (URN)

to a full Boltzmann neutrino transport code. Such a code would be useful, we think, to the com-

munity to test such theories as active-sterile ν mixing and massive particle out-of-equilibrium decays

associated with beyond-standard model unstable particles[5].

We are mainly concerned in this presentation with the phenomenological R matrix approach, we

stress the importance and essential character of unitary parametrization of the compound nuclear sys-

tem corresponding to multichannel scattering and reaction observables. This parametrized approach

to gaining a simultaneous understanding of multichannel data, such as integrated and differential cross

section (σ(E) and dσ
dΩ
, respectively) and polarization observables (Ai(θ), Ci, j, K

j′

i
, Σ(γ), . . . ) allows the

extraction of the elements of the transition matrix T f i for the process channel i→ channel f . Given an

explicit expression for the T matrix, we have a complete description of the compound nuclear system

– including for example its resonance structure. As a constraint, unitarity is highly restrictive and may

be used to determine the consistency of data sets within and across experiments, as we will show in

Sec.2.1.

After we review the R matrix formalism, we consider the impact of several analyses of compound

nuclear systems. As a specific instance of the impact of our work on the field of nuclear data, we will

consider the case of the 17O compound system, which has been analyzed by Hale[6] via the R matrix

code EDA. We demonstrate that unitarity provides a constraint on the absolute and relative scales of the

normalizations of different experiments’ measurements of the integrated cross section. A example of

our ongoing work in the field of nuclear astrophysics is the “7Li problem” in big-bang nucleosynthesis.

Calculations of the abundance of 7Li[7] overestimate the value extracted from observations of low-

metallicity halo dwarf stars[8], where the stellar dynamics are supposed to be sufficiently understood

to isolate the primordial 7Li component. The discrepancy with this (and another[9]) observation by a

factor of 2.2 ↔ 4.2 corresponds to a deviation of 4.5σ ↔ 5.5σ, a result that has only become more

severe with time. It is essential to determine the nature of this discrepancy as BBN probes conditions

of the very early universe and our understanding of physical laws relevant in an extreme environment.

Recent attention has focused on the role of reactions that destroy A = 7 nuclei at early times

� 1 s in the big-bang environment[10, 11]. The authors of Ref.[10], citing the TUNL-Nuclear Data

Group (NDG) evaluation tables[12], (See Table 1.) conjecture that the putative 5/2+ resonance near

16.7 MeV may enhance the destruction of 7Be through reactions such as 7Be(d,p)αα and 7Be(d,γ)9B

if the resonance parameters are within given ranges. These studies employ the Wigner limit for the

reduced width[13] to determine an upper bound on the contribution of resonances, particularly 9B, to

a resonant enhancement in reactions that destroy mass-7 nuclides, 7Li in particular. Because there is

a paucity of data in the region near the d−7Be threshold which the assumed 5
2

+ 9B resonance inhabits,
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Ex(MeV ± keV) Jπ;T Γcm(keV) Decay

16.024 ± 25 T =
(
1
2

)
180 ± 16

16.71 ± 100 ( 5
2

+
); ( 1

2
)

17.076 ± 4 1
2

−
; 3
2

22 ± 5 (γ,3He)

17.190 ± 25 120 ± 40 p, d, 3He

17.54 ± 100 ( 7
2

+
);( 1

2
)

17.637 ± 10 71 ± 8 p, d, 3He, α

we wondered if the existing data may indicate the presence of such a resonance if a multichannel,

unitary R-matrix evaluation is pursued.

Our motivation for the present study of the 9B compound system is two-fold. The continuing light

nuclear reaction program at Los Alamos National Laboratory, T-2 Theoretical Division provides light

nuclear data for an array of end users, including the ENDF and ENSDF communities. Moreover, we

are interested in updating the evaluation of the 9B compound system to address the key question out-

lined above for BBN: does a resonance near the d−7Be threshold cause an increase in the destruction

of mass-7 nuclides in the early universe and possibly explain the 7Li overprediction problem?

We consider in the next section, Sec.4, some work on the effective field theory (EFT) description

of light nuclei. Here, we study a simplemodel EFT of interacting neutrons, deuterons, tritons, helions,

and an 5He* degree-of-freedom corresponding to the compound nuclear system relevant to the dt →

nα reaction, which is of great importance to fusion processes driven by fusion. We compare the EFT

to the zero-channel radii limit of a two-channel Rmatrix approach and demonstrate the interesting fact

that these different descriptions are identical. A fit of the observed data of high fidelity is obtained in

these approaches with three parameters.

2 The R-matrix approach

The R-matrix approach[14–16] is a unitary, multichannel parametrization that has proven useful for

an array of nuclear reaction phenomenology, particularly for light nuclei[17]. We give only a brief

description here and refer to the literature for a more complete description[18, 19].

We consider formal unitarity and the Rmatrix formalism in this section and apply it to the analysis

of the compound nuclear systems: 9B, 13C, 14C and 17O.

2.1 Unitarity as a constraint

Confining our attention to two-body channels, the unitarity of the S matrix is given by

δ f i = S
†

f n
S ni, (1)

and the definition of the T matrix is

S f i = δ f i + 2iρ f T f i, (2)

where

ρn = δ(E − En) (3)

CNR*13
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Table 1. The TUNL-NDG/ENSDF resonances in the 9B compound nuclear system[12] near the d−7Be

threshold at 16.49 MeV.



is the density of states near the scattering (or reaction) energy E. Substitution of Eq.(2) into Eq.(1)

gives the unitary constraint of the T matrix

T f i − T
†

f i
= 2i

∑
n

T
†

f n
ρnTni. (4)

It may be worthwhile to note that although the well known optical theorem[20]

σT =
4π

k
Im f (0) (5)

follows from Eq.(4), this relation is not equivalent to the unitarity constraint. In fact, Eq.(4) provides

a constraint between observables of angular distribution, which don’t appear in the optical theorem,

which relates the total cross section to the forward scattering amplitude.

The unitarity constraint does not uniquely determine the T f i, but it is highly restrictive – even in

the case of elastic scattering. Assuming parity and time-reversal invariance, apropos to the strong

interactions, we have

ImT−111 = −ρ1, (6)

where channel ‘1’ is the channel corresponding to the lowest lying threshold, and we are assuming

that we are working at energies below the next threshold. This is just the famous result that the S

matrix lies on the unitary circle, expressed in the language of the unitary constraint on the T matrix.

The fact that the unitarity constraint is highly restrictive can be seen by recognizing that neither

scale nor phase transformations of a set of unitary amplitudes preserve the unitarity constraint, Eq.(4).

That is, given a set of amplitudes Ti j that satisfy Eq.(4), the transformations

Ti j → αi jTi j, Ti j → eθi jTi j, (7)

(or any combintation of these) no nontrivial set of αi j ∈ R and θi j ∈ R preserve Eq.(4). This is clearly

a consequence of the fact that the unitarity constraint relates quantities which are linear in the matrix

elements Ti j on the ‘left-hand’ side of Eq.(4) to those which are quadratic on the ‘right-hand’ side.

This observation has an important effect when analyzing multichannel scattering and reaction data.

Clearly the normalization of, for example, the integrated elastic cross section (or any reaction cross

section) is determined by the unitarity constraint since the integrated cross section is related to the

square of the corresponding amplitude.

2.2 The R matrix formalism

We consider only 2 → 2 body scattering and reaction processes for light nuclear systems. In R-

matrix theory, configuration space is partitioned into an interior, strongly interacting region and an

exterior, Coulomb or non-polarizing interaction region by giving a channel radius ac for each two-

body channel. The boundary of separation of these regions is the channel surface, S =
∑
c Sc.

The R matrix is computed as the projection on channel surface functions

(rc|c) =
�√
2μcac

δ(rc − ac)

rc

[
(φ

μ1
s1 ⊗ φ

μ2
s2 )

μ
s ⊗ Y

m
� (r̂c)

]M
J

(8)

of the Green’s operator, GB = (H +LB − E)
−1

Rc′c = (c
′|(H +LB − E)

−1|c) =
∑
λ

(c′|λ)(λ|c)

Eλ − E
, (9)
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where LB is the Bloch operator

LB =
∑
c

|c)(c|

(
∂

∂rc
rc − Bc

)
, (10)

which accounts for the presence of a boundary condition, B on the channel surface. The Bloch opera-

tor ensures that the operator H +LB is a compact, Hermitian operator (for real values of the boundary

condition as is the case in the Wigner-Eisenbud R matrix formulation[16]) having a real, discrete

spectrum. The R-matrix parameters Eλ and γλc = (c |λ) describe the spectrum and residues of the

resolvent operator; they are treated as parameters adjusted to fit the observed data. Both hadronic and

electromagnetic (ie. γ−9B) channels can be handled in this approach. The transition matrix, T the

square of which gives the observables (cross section, etc.) of the theory, is given in matrix notation

(bold type) as

T = ρ1/2O−1RLO
−1ρ1/2 − FO−1, (11)

where RL = (R
−1−L+B)−1, L = ρO′O−1, and F = Im O, whereO is the diagonal matrix of outgoing

(Coulomb) wave functions in the exterior region.

The R-matrix approach is implemented in the EDA (Energy Dependent Analysis) code developed

by Hale and collaborators[17]. The available two-body scattering and reaction data is described by

minimization of the χ2 function with respect to variation of the R-matrix parameters Eλ and γλc,

truncated to a finite number of terms in Eq.(9).

3 Analysis and results

We present preliminary results for multichannel unitary analyses of several compound nuclear sys-

tems.

The R-matrix configuration for each analysis, constructed for input into the EDA code, is given in

terms of the included channel partitions (pairs), the LS terms for each partition, and the channel radii

and boundary conditions Bc for each channel.

3.1 9B four-channel analysis

We have included in the analysis the hadronic channels: d−7Be partition with threshold of 16.5 MeV

with up to D-waves, 3He−6Li at 16.6 MeV up to P-waves, and p−8Be∗ at 16.7 MeV up to P-waves.

The channel radii were constrained to lie in the range between 5.5 fm and 7.5 fm for the particle

channels. The electromagnetic γ−9B channels included were E
3/2

1
, M

5/2

1
, M

3/2

1
, M

1/2

1
, E

5/2

1
, and E

1/2

1

with a channel radius of 50.0 fm. The large value of the channel radius in the electromagnetic channels

provides a better description of the data than for smaller values and can be heuristically understood

by considering that the photon cannot be localized.

The 9B analysis is based upon data gathered from the literature and stored in the EXFOR/CSISRS

database[21]. We include elastic differential cross section data for the 6Li−3He channel given in

the range of 3He lab energy 1.30 MeV< E(3He)<1.97 MeV[22]; integrated cross section data for
6Li(3He,p)8Be∗[23] where the final state channel is an average of the excited-states of the quasi-two-

body final state of p−8Be∗ given in the range 0.66 MeV < E(3He)< 5.00MeV; integrated cross section

for the 6Li(3He,d)7Be[24] in the range 0.42 MeV < E(3He)< 4.94 MeV; and capture data from the
6Li−3He initial state in the energy range 0.7 MeV<E(3He)< 0.825 MeV[25].

CNR*13

00003-p.5



Ex(MeV) Jπ Γ(keV) ReE0(MeV) E(3He)(MeV) Strength

16.4754 1/2− 768.46 −.1369 −0.2054 0.06 weak

17.1132 1/2− 0.14 0.5109 0.7664 1.00 strong

17.2012 5/2− 871.63 0.5989 0.8984 0.40 weak

17.2809 3/2− 147.78 0.6785 1.0178 0.77 strong

17.6754 5/2+ 33.33 1.0631 1.5947 0.98 strong

17.8462 7/2+ 2036.21 1.2339 1.8509 0.15 weak

17.8577 3/2− 42.52 1.2454 1.8681 0.97 strong

18.0582 3/2+ 767.11 1.4459 2.1689 0.54 weak

18.4229 1/2+ 5446.32 1.8206 2.7309 0.03 weak

18.6872 1/2− 10278.41 2.0749 3.1124 0.15 weak

19.6192 3/2− 1478.22 3.0069 4.5104 0.52 weak

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

d
/d

 [
b
/s

r]

E(3He) [MeV]

79

120

Figure 1. Comparison of elastic 6Li(3He,3He)6Li differential cross section scattering data from [22] plotted

against the R-matrix fit (solid curve) for center-of-mass differential cross section vs. 3He lab energy.

Using about 40 parameters, the results of the χ2 minimization result in a T matrix which gives the

solid curves appearing in Figs.1–4, plotted along with the data obtained from references cited in the

paragraphs above. The fit quality is fair, with χ2/datum of 1.91, 0.55, 2.38, and 0.37 for Figs.1–4,

respectively. The fit to the capture data in Fig.4 has been folded with a Gaussian acceptance function

whose width is 5 keV to match the quoted energy resolution in Ref.[25].

The present R-matrix parametrization gives the resonance structure presented in Table 2. The

resonance poles of the T matrix are determined by diagonalization of the complex “energy-level”

matrix

Eλ′λ(E) = Eλδλ′λ −
∑
c

γcλ′ [Lc(E) − Bc]γcλ, (12)

EPJ Web of Conferences
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Table 2. The resonance structure determined in the present 4-channel fit to data as described in the text. The

table displays the pole location along with Jπ and pole-strength information, as described in the text.
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 0.14

 0.16

 0.18

 0.2

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

 [
b
]

E(3He) [MeV]

Figure 2. Comparison of the integrated cross section data for the reaction 6Li(3He,p)8Be* from [23] with the

R-matrix fit (solid curve) vs. 3He lab energy.

where Lc(E) = rc(∂O/∂rc)O
−1

∣∣∣
rc=ac

, O is the outgoing Coulomb wave function, and Bc is the boundary

condition given at the channel radius, ac. Details are given in Ref.[26].

The first column of Table 2 gives the real part of the pole position, E0 = Er − iΓ/2, where E0 is

one of the eigenvalues of the energy-level matrix, Eq.(12) relative to the ground state of 9B. The spin-

parity is given in the second column. The width Γ is the center-of-mass width in keV. The column

labeled E(3He) is the corresponding lab energy. The ‘Strength’ function is the ratio of the sum of

the channel widths (defined in Ref.[26]) divided by the total width, Γ−1
∑
c Γc. Resonances labeled

‘strong’ are clearly seen in at least one of the figures.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

 [
b
]

E(3He) [MeV]

Figure 3. Comparison of the integrated cross section data for 6Li(3He,d)7Be from [24] with the R-matrix fit vs.
3He lab energy.
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 1

 1.2

 1.4

 1.6

 0.64  0.66  0.68  0.7  0.72  0.74  0.76  0.78  0.8  0.82  0.84  0.86

 [
b
]

E(3He) [MeV]

Figure 4. Comparison of capture data 6Li(3He,γ)9B from [25] with the R-matrix fit vs. 3He lab energy.

The resonance structure shown in Table 2 differs significantly from that in Table 1. In particular,

near the 3He−6Li and d−7Be thresholds, the TUNL-NDG table lists a resonance of unknown Jπ at

16.024 MeV above the 9B ground state, the state considered a possible candidate in Ref.[10] for

resonant destruction of 7Be. The current analysis has a 1/2− weak subthreshold resonance with a

width of several hundred keV, much too large to satisfy the desired parameters of Ref.[10] of a width

of 10’s of keV.

Possible reasons for the discrepancy include the fact that the current analysis is the first, to our

knowledge, that includes much of the available data in the region below E(3He)< 3.0 MeV in a

two-body unitary analysis. Several deductions about the resonance structure in the TUNL/ENSDF

tables rely on associated production of 9B experiments and single-level R-matrix parametrizations[12].

While more data, particularly polarization observables, would constrain the current fit with greater

confidence, the present analysis appears to be the most comprehensive available that accounts for the

available data in a two-body unitary way.

The resonance structure supposed in Refs.[10] and [11] for the 9B compound system are not

supported by the current analysis. These works require a narrow resonance, a few 10’s of keV in

width within 100 keV of the 3He−6Li (that is, 200 keV within the d−7Be) threshold in order to

explain the overproduction of 7Li in BBN reaction network codes[7].

The current study does not conclusively eliminate the possibility of the mechanism of resonant

enhancement of mass-7 destruction. The 9B compound system was identified originally by Cyburt

and Pospelov[10] as playing a potential role in the destruction of 7Be precisely because there is not

much data in the region near the d−7Be threshold. Our analysis is performed on essentially the same

data that the existent TUNL-NDG analyses[12] were performed, with the smallest energy probed

about 400–500 keV above the 3He−6Li threshold. It might, therefore, be suspected that the present

data set would give no indication of such a low-lying resonance. Our experience with R matrix

analysis indicates, however, that a resonance of 10’s of keV in width would likely – but not certainly

– have contributions ‘in the tail’ to the observables considered in the present study, particularly in the
6Li(3He,d)7Be integrated cross section of Fig.3.
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Figure 5. (Left) Total cross section, n−12C for energies 0 < En < 6.5 MeV. (Right) Inelastic integrated scattering

cross section, 12C(n, n1)
12C∗ for energies 4.8 < En < 6.5 MeV.
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Figure 6. Total cross section, n−13C for energies 4.8 < En < 5 MeV.
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Channel ac (fm) lmax 

n+16O 4.3 4 
α+13C 5.4 5 

Reaction Energies 
(MeV) 

# data 
points 

Data types 

16O(n,n)16O En = 0 – 7   2718 σT, σ(θ), Pn(θ) 
16O(n,α)13C En = 2.35 – 5     850 σint, σ(θ), An(θ) 
13C(α,n)16O Eα = 0 – 5.4     874 σint�
13C(α,α)13C Eα = 2 – 5.7    1296 σ(θ) 
total   5738 8 

Figure 7. R matrix analysis configuration (top) and observed data (bottom) included in the analysis of the 17O

system.

3.2 13,14C system analyses

We present preliminary results for low energy fits to the compound systems 13,14C in Figs. 5 and 6. The

independent analysis of the 13C and 14C systems supersedes the previous analysis of natural carbon,

which is important in an array of applied contexts, including nuclear criticality safety. New data has

been added to the 13C system analysis, including the inelastic scattering cross section (n, n1)[27].

3.3 17O system analysis

As an example of the importance of unitarity in parametrizations of light nuclear systems, we consider

the analysis of the 17O system. The configuration for the Rmatrix analysis is given in the table in Fig.7.

The table shows that this is a two-channel analysis, n+16O and α−13C, with unpolarized and polarized

elastic n+16O data and unpolarized α+13C elastic and reaction data.

Current attention is focused on discrepancies in the integrated cross sections measured earlier, in

Ref.[28] and more recently by Ref.[29], shown in Fig.8.

As these figures and Fig.9 demonstrate, the data of Ref.[29] is lower by an overall factor of about

2/3 from that of Ref.[28] as well as some differences in the shape of the integrated cross section. Two

independent multichannel R matrix analyses, one using the LANL-EDA code and the other, that of

Ref.[30], have demonstrated that it is not possible to obtain a high fidelity fit of the integrated cross

section of Ref.[29] without allowing the experimentally determined normalization to change. More

recently, the (α, n) reaction was measured at low energies in Karlsruhe[31] and this data appears to

agree substantially with that of Ref.[28]. The authors of Ref.[31] point out that the neutron efficiency

for the Bochum measurement[29] is extrapolated from lower neutron-energy measurements of 252Cf

fission neutron spectra. They conclude: “Therefore, systematic deviations cannot be excluded for the

data of Harissopulos et al. [29], in contrast to the present work, where the neutron efficiency was

experimentally verified over a range of well-defined energies.” Guided by these observations and the

fact that two independent multichannel analyses of the integrated reaction cross section and elastic

scattering data preclude high fidelity fits to the data of Ref.[29], we might be tempted to conclude that

the older data of Ref.[28] is preferred. The matter, however, remains open.
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Figure 8. Discrepancy of integrated cross section measurements in Refs.[28] and [29]. Figure from Ref.[30].
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Figure 9. Comparison of various data sets, including those of Refs.[28] (diamond) and [29] (left-triangle), in

terms of the astrophysical S factor. Figure from Ref.[31] whose data (circles) appear to agree in scale with those

of Ref.[28].

4 Effective field theory of dt → nα

In this section, we examine the reaction

d + t → n + α (13)

from an effective field theory point of view. We employ modern techniques of many-body, non-

relativistic quantum field theory to describe this reaction, and also make use of the contemporary

ideas of effective field theory. In the modern effective field theory approach, stable nuclei (which are

treated as particles) and resonant nuclear states (which are treated as unstable particles) are described

by individual fields. The fields that correspond to asymptotic states produce particles when they act on

the vacuum (no-particle) state. But fields that correspond to resonances have no corresponding single-

particle states. For the reaction that we consider in this paper, we shall assume that only a single

intermediate resonant state, corresponding to a spin 3/2+ 5He
∗
, is needed. Our degrees-of-freedom
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n

α

Figure 10. Graphical representation of the dt → nα transition amplitude. The thick directed line is the interacting
5He∗ Green’s function in the presence of the Coulomb field, G

(C)
∗ (W). Solid, directed lines are non-zero spin

particles, and the dashed line is the spin-zero α-particle. Shaded boxes are gnα and gdt couplings. The dt shaded

box includes the Coulomb wave function factor ψ
(C)
pdt
(0). Hash marks on the external lines indicate that they

correspond to on-shell asymptotic particles, not propagators.

= +

Figure 11. Diagrammatic structure of the momentum space algebraic equation for the interacting 5He∗ Green’s

function. The thick, directed line represents the interacting Green’s function with all its self-energy corrections.

The double line stands for the wrong-sign free-particle propagator. The shaded region immediately to the right

of the free propagator represents the nα and dt self energies contained in Σ(W).

will have fields for this unstable intermediate resonance as well as those for deuteron, triton, alpha,

and neutron particles.

Here we are concerned with reactions in the low-energy limit, but with a resonant intermediate

state, the 5He∗ state. This introduces three parameters: two constants gdt and gnα for the coupling of

the dt and nα fields to the unstable 5He∗ field, and the resonant energy of this unstable field.

A traditional method to compute coupled channel nuclear reactions is to use R-matrix theory. This

theory entails nuclear channel radii as well as excited state energies and channel couplings. The zero

channel radii limit of a two-channel, single-level R-matrix theory is the result:

S dt→nα =
8

9
4πmdt mnα p

5
nα

g2
dt

4π

g2nα

4π

2π

b0

∣∣∣G(C)∗ (W)
∣∣∣2 , (14)

which is identical to the EFT result.

Figure 10 represents the dt → nα fusion amplitude, the order (as also in all subsequent graphs)

from right to left follows the usual convention for quantum transition amplitudes. The absolute square

of this amplitude, multiplied by appropriate phase-space factors, is the fusion cross section. The 5He∗

propagator obeys the algebraic equation represented in Fig. 11, with the self-energy function denoted

by the shaded region on the far right described in Fig. 12. The free-particle propagator appears with

the wrong minus sign and is discussed in Ref.[32] and the subsequent companion paper, Ref.[33].

Figure 12 represents the nα self-energy function. The contribution of these self-energy functions

appears in the absolute square of the inverse 5He∗ Green’s function.
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Figure 12. Self energy of the 5He∗ Green’s function, including the instantaneous Coulomb interaction. The first

graph stands for the nα self-energy function. The infinite set of terms (as indicated by the final ellipsis) include

all the corrections to the dt self-energy function due to instantaneous Coulomb exchanges between the charged d

and t particles.
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Figure 13. Dimensionless version of the astrophysical factor S dt→nα for the dt reaction compared with the

experimental data as a function of the deuteron center-of-mass energy E. The solid (blue) curve is the best fit of

the simple effective field theory result (14). It has a χ2 per degree of freedom of 0.784. The dashed (red) curve

is based on the cross section of Bosch and Hale [34] . The multilevel, multichannel R-matrix analysis of the 5He

system on which the Bosch and Hale cross sections are based includes data for nα and dt elastic scattering, in

addition to those for the associated inelastic reactions, at energies equivalent to a laboratory deuteron energy up

to 11 MeV. It fits the 2665 experimental data points included using 117 free parameters with a χ2 per degree of

freedom of 1.56. The (magenta) squares are the data of Arnold et al. [35]; the (olive) diamonds are the data of

Jarmie et al. [36] renormalized by a factor of 1.017; the (green) triangles are the relative data of Brown et al. [37]

renormalized by a factor of 1.025. The necessity of these renormalizations of the experimental data is discussed

in the text. The (blue) circles are the older data of Argo et al. [38] which we show for completeness but which

we do not use in our fit.

A fit of this result to the data reduced to construct S dt→nα is presented in Fig. 13. The fit to the dt

fusion cross section with our formula gives the parameter values

E∗ = −154 ± 8 keV ,

g2
dt

4π
= 199 ± 8 fm3 MeV2 ,

g2nα

4π
= 16.4 ± 1.0 fm7 MeV2 . (15)
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Our result, which entails only three parameters, fits the data very well. To achieve this, it is

necessary to start with a free-particle Lagrangian for the unstable 5He∗ field with the “wrong” sign.

This would not be acceptable if the theory were taken to be more fundamental with an extended

region of validity rather than a effective theory whose applicability is only to the low-energy regime.

It is easy to show that the simple theory with two initial spin zero particles which interact via an

intermediate (“s-channel”) field (the simple scalar-particle analog of our theory) produces an effective

range formula with a negative effective range parameter [33]. A positive effective range parameter

is achieved in this theory if the intermediate field has a wrong-sign free-particle Lagrangian. Thus

the restricted validity of this simple effective field theory should be acceptable just as is that of the

effective range theory.

5 Summary, findings and future work

We have provided an overview of the light nuclear reaction program at Los Alamos, highlighting the

phenomenological component of this work. We studied several ongoing analyses for varied applica-

tions including the possible resonant enhancement of the destruction of mass-7 (7Be, in particular) in

BBN scenarios. The near threshold, narrow state anticipated in Refs.[10] and [11] appear not to be

supported by our multichannel, two-body unitary R-matrix analysis. We have reviewed the R-matrix

method implemented in the Los Alamos reaction code for light nuclei, EDA and have discussed the

data included from four channels: elastic 3He−6Li, 6Li(3He,p)8Be∗, 6Li(3He,d)7Be and 6Li(3He,γ)9B.

Our analysis determines a resonance structure significantly different from that published in the

TUNL-NDG/ENSDF compilation[12], as can be seen by comparing the results from the present anal-

ysis in Table 2 with the table, Table 1 for the TUNL-NDG/ENSDF analysis. Our immediate objective

is to incorporate the 8Be∗ final states for each excited state (rather than average their contribution as

we have done in the present analysis). This will allow the extension of the present analysis to higher

energies and the incorporation of polarization data[39, 40] that we have neglected.

Our findings for the role of a putative resonance in 9B near the d−7Be threshold as envisioned in

Refs.[10] and [11] is that their particular mechanism of resonant enhancement of mass-7 destruction

is an unlikely explanation to the 7Li problem in BBN, though low-energy data would allow a more

conclusive statement of this finding or its converse.

This work was carried out under the auspices of the National Nuclear Security Administration of

the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-

06NA25396 and with support from the Institute for Geophysics, Planetary Physics, and Signatures

at Los Alamos National Laboratory under a University Collaborative subcontract #257842 with the

University of California at San Diego.
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