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In this paper the prediction problem is considered for linear regression models with elliptical 
errors when the Bayes prior is non-informative. We show that the Bayes prediction density under 
the elliptical errors assumption is exactly the same as that obtained with normally distributed 
errors. Thus, assuming that the errors have a normal distribution, when the true distribution is 
elliptical, will not lead to incorrect predictive inferences if the error variance structure is correctly 
specified. This extends the results of Zellner (1976). Finally, based on Monte Carlo numerical 
integration procedures, computations are provided in a model with multiplicative heteroscedastic- 
ity. 

Lately there has been much theoretical and applied interest in linear models 
with non-normal disturbances as several authors have explored the conse- 
quences of non-normality and heavy-tailed error distributions. In the context 
of one heavy-tailed error distribution, the multivariate-t distribution, Zellmer 
(1976) provides a Bayes an 
Walsh (1984) consider the issue of 
Prucha (1985) point out the import 
dence and uncorrelatedness in non-normal situations. 

*We CMould like to act dowledge our appreciation to Professor 
ous referees for many valuable comments that helped us to g 
draft. 

Zellner snd two 
the results in the 

76/88/$3.50@ 1988, Elsevier Scie 
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based on the assumption of spherical errors is considered in awid (1981) and 
Jammalamadaka, Tiwari and Chib (1987). 

The purpose of this paper is to show that the assumption of rrors 
in linear regression models with limited prior information in eters 
has no new consequences for prediction if the error variance structure is 
correctly specified. For example, correctly assuming that the errors are spheri- 
cal but m&specifying the error distribution as normal, when t e true distribu- 
tion is a multivariate t, does not lead to incorrect predictive inferences. In 
Zellner (1976) it is shown that hen prior information is of the non-informa- 
tive type, the joint posterior of the regression coefficient vector, and TV, the 
error precision, differs depending on the error distribution assumed, although 
the marginal posterior of /3 is unaffected. The latter feature, &u:n carries over 
in more general settings, is essentially the key as to why the predictive 
distribution is invariant to a wide class of error distribut&s. This means that 
in the study of robustness, perturbations from the assumed model can have 
very diaerent consequL:nces for estimation as opposed to prediction. 

The plan of this paper is as follows. Section 2 contains the Bayes prediction 
densities for the linear regression model with elliptical errors. In section 3, we 
show that the resulting prediction density and the predictive moments can be 
computed numerically using procedures that are described in Ceweke (1987a, 
b). We base our computational analysis on a model with multiplicative 
heteroscedasticity. 

el 

Consider the linear regression model with non-random regressors and 
elliptical errors, 

Y = (2 1) . 
where y E R”, tz Rk, u - N(O, (7 2A)-1), T 2A is the precision matrix, r 2 > 0, 
Z is a positive random variable with distribution G independent of U, and 
#( l ) is a positive function. Model (2.1) implies that conditionally on 2, 

YIZ ,(*i2A)-'#( Z)“), 

while the unconditional distribution of yI 

(2 2) . 
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From (2.3) several distributions including the &-contaminate 
multivariate exponential can be generated [cf. Muirhead (1983, 
2 is &i-squared with v degrees of freedom distributed independently of 
and \t(Z) = (Z/v)-‘i’, v > 0, then y has the elliptical multivariate-t distribul 
tion with density given by [cf. Press J9f.42, p. I%)] 

, r2, A) = c(~~)““‘~AI~/” 

5 (24) 
. 

where 

e=r( F)/( r( +,nq. 
The case v = 1 results in the multivariate Cauchy distribution If A = 
identity matrix of order n, we obtain the homoscedastic (or spherical) 

yes prediction problem in the context of model (2.1) can be 
described as follows. Suppose that the vector of observations y is partitioned 
a; y = ( y{, yi)‘, where yi : n, x 1 is observed and interc: t centers on predic- . 

: n2 x 1, an unobserved set of future observations, assuming that 
5 Xi)’ is known. The Bayes prediction density is defined as 

fB( Y2iY1) = (2 9 . 

provided both the integrals are finite, 8 is the parameter that indexes the pdf 
) is the pdf of prior to observing y,. The ayes prediction 

density above is an estimate of ), the conditional pdf of y25 given y1 

so that the resulting function i 
The definition in (2.5) is used to compute the 

the elliptical regression error model. Observe 
random vectors y, and y2 are uncorrelate 
dent unless 2 is a degenerat 

uppose that the matrix 

k 
5 
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First we note the key result that the margina! post 
is unaffected by a change in the error distribution fr 

tical, which extends the result of Zellner (1 
7 *, q) be (2.6), then the marginal posterior 

any Z, is 

1 

( n, - k)sf( q) ( 

where 

SW = SSwMn1- kh 

SWh) = (Y1- ,(s))‘n,W( Y1- 

where A, = A,(q) is the n, x n matrix corresponding to yr. This is exactly 
the marginal posterior density obtained in the case where the errors are 
multivariate normal wit precision matrix ?*A, [cf. Learner (1978)j. Conse- 
quently the posterior of given yr9 y2 and 2 is equal to the posterior of fi 
given y1 and y2, i.e., 

Iv19 Y2,~%9iY,9 Y2 and (B? Y19 Y2W (I39 Y,9 Y2)9 

where 4 stands for equal in distribution. ence, the posterior of y2 given y1 
and Z is equal to the posterior of y2 giv 

Y2lYl9 zgY21Y13 

which is stated in the next 

ositim 1. Let 72( 
under model (2. 

a ( r *) - '1T( q). Then the Bayes prediction density 
any 5 

(2 Q . 

P s point, that the invariance of the Dredictive disrribution is connected to the invariance of 
ewe the differential error distribution 
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where 

s >=k- 

Using the updating results in Chib, Jammalamadaka and ‘Fiwari (1987), it is 
p&k to also express this density as a mixture of multivariate-t densities, a 
representation that is useful under some circumstances. If we let 

1 9 

where 

J&): n, X 4, 

and define 

fi2.,w = 

w : n, X n2, 

redtiction density o 
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density of q, given yl. This posterior density is 

where 

m( y&j) = lA,(q)ll/*l I -“‘*[SSE,(q)] -(n1-k)‘2a 

What is interesting about the MVt pdf in (2.8) is that the random-variable Z 
plays no role in the final answer, and that the prediction density is identical to 

er the assumption of multivariate norm31 -ors, This shows 
limited prior information on the parameters, the assumption 

of normality is robust to deviation in the direction of elliptical distributions as 
far as prediction is concerned. 

B on this result, the prediction density with spherical errors (i.e., when 
A= can be obtained as a special case. Let the ordinary least squares 
estimates of and (~~)-l, respectively, based on yl, be given by 

with 

and sf = SSE,/n, - k, 

Then by setting A = in (2.9) we get the following result: 

Corollary 1 [Jammalamadaka, Tiwari and Chib (1987)]. Let the prior pdf of 
> 0. Then the Bayes prediction density 

uen yl, for any Z is # 
ari 
)- 

This is the prediction density in Zellner (1971) under the assumption of 
multivariate normal errors with independent components. 

eter estimation 
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ssume, along the lines of aria (1966), Lancaster (1968) an 
arvey (1976), that the va error term is proportio 

unknown power of one of the covariatrs, say the ith, and write 

var(qi(u2, y)) =c+= (T”>-“xz, X,i>O, YE R1, 

and let i 2 2, since the first covariate in 
specification tile distribution of the vector 
density 

t-1,2 ,... n,, n, + I,..., n, 

is usually a constant.2 Under this 
y in model (2.1) is el~~tica~ 

fCYl 9T29Y), 

X(Y- ( N Y Y- )) 0 dG Z , (3.1) 

( y ) = r biag( xiy, xzi’, . . . , Xii’ ) is the precision matrix of the error 
vector e. Notice tha.t y = 0 reproduces the spherical case discussed in Corol- 
lary 1. 

Suppose that a priori 18, log r2 and y re independent and uniformly 
distributed, which implies that the prior of ( r2, y) is given by 

hen the error distribution is heteroscedastic multivariate normal, this is also 
Jeffreys’ invariant prior of (8, r2, y). See Surekha and 3iffiths (1984, p. 91), 
where the above prior is adopted. 

We define: 

(y) = diag(x,Y,..., x;:), 

‘Notice that xl, > i) and thus this regression specification cannot be obtained from a joint 
normal distribution for tht; dependent and independent variables or from my other joint 
distribution involving doubly-infinite ranges. e owe this point to Arnold Zellner. 
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and 

S?(Y) = SSE&(y)/(n, - k). 

The next result follows from 

Cordmy 2. 2 -I J2,YPb 1 ’ Let the observations y have density as in 
( 3. I ). Suppose y2 is unobserved. Then the Bayes prediction density for y2 is given 

bY 

J a0 fB(Y2!Y19Y?dYdY)dY 

f”(Y2lYA= --O” ? (3 3) . 

where f B( Y2lYl9 Y) = 1cI,,( I(Y), P,(Y) + X2( 
s f ( y ), nI - k), and m( y1 ] y )//m( y1 1 y ) d y is the marginal posterior density of 
y, given yl, with 

1 -‘/‘[SE,(y)] -(n1-k)‘2. 

This density can be analyzed numerically. Although the integral can be 
approximated by Laplace’s method as discussed in Tiemey and Kadane 
(1986), we employ a direct numerical integration procedure to produce the 
prediction density and predictive moments. 

Suppose we let y2 : I x 1, and consider a model similar to the y3ne in 
Surekha and GriEths (1984), in which the data-generating process containing 

lanatory variable is assumed 

yr = PO + PlXt + “r, 

with &, = I, & = 10, X, - U(l, lo), uniform on the interval [l, lo]. Since olur 
results show that the prediction function with elliptical errors is identical to 
that with multivariate normal errors, t E, are random draws from a normal 

tion with mean zero and variance uf = (72)-zx:,(: 2)-1 = 4, y = 1. A 
size of n, = 20 is used.3 The function f B( Y21yl, y ) in (3.3) is numeri- 

cally integrated with respect to (wrt) the posterior of y given y,, using Monte 
Carlo integration with importance sam ling [see, e.g., Geweke (1987a)]. The 

ction is critical in obtaining accurate estimates of 
B( y2 ]yr, y ) in (3.3), the ideal importance function 

is, of course, the posterior pdf of y given yr. Since it is dficult in our case to 

jThe actual data set is available from the authors. The analtlysis was also carried out with sample 
size nl = 10 and nl = 
those results. 

30. Since the results were similar, we decided to save space and not report 
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” -1.8 4.9 0.0 1.0 1.9 2 8 

Y 

Fig. 1. ~r(yl,y~): -, f(y): --- , fli y) = &(C 524252,2.302607,18). [The norm&zing constant of 
q( ylvl), i.e., /m( yI 1 y)dy, is found by Monte Carlo integration. The importance function found 
adequate is the uniform density on [ - 6,6] which was used to produce 1000 random draws of y.] 

sample from &is posterior pdf, we have used an importance function, f(y), 
that mimics (n( y ]yJ. For large sampIe n( y lyi) will tend to be approximately 
-aT1(PML, ]var(PMr_)]-i), where PML is the maximum likelihood estimate of y 
and var(pML, is the variance of the L estimate (computed in the us_ual way 
from the observed Fisher informati matrix). A possible choice for f( y ) js a 
\1/i( pML, [var(P,,)]-i, Y) pdf with d.f. v chosen to ensure that the tails of f(y) 
are no sharper than those of II( y (y,). The adequacy of this choice is illustrated 
in fig. I. 

Given that the Student-t density f(y) = ~,(0.524252,2.302607,18) is an 
adequate importance function, N values of y, say ~(‘1, i = 1,2,. . 

generated randomly, where N is a suitably large number. The 
estimate of (3.3) at the point y2 is 

Similarly, adapting the ideas in 
predictive moments can be foun 
evaluation of the expectation h( y2) with respect to 
equivalent to finding a certain expectzs:ion with respec 
given yi. In particular, 
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Table 1 

Central moments, skewness and kurtosis of the predictive distributiona 

n1 ccl P2 cl3 P4 Sk K 

20 52.76888 24.61801 0.62324 2077.4587 0.00510 3.4279 

aThe moments are calculated using S = 100 antithetic replications of y2, for each value of y. 
Sk is a measure of skewness (Sk = p3/u3) and K is a measure of kurtosis (K = p4/a4). 

where 

Clearly for a given value of y, say yti), it is easy to generate random draws 
from fB(y2Jy1, y”‘)). Suppose for each y fi), S antithetic y2 values, denoted 
yz(ili), j= l,..., S, are thus drawn. Then the Monte Carlo estimate of g(y(‘)) 
iS 

S 
gi = yp’p, . 

j-l 

onte Carlo estimate of the U-IS of (3.5) is 

E[h(YAYJ = 
i=l 

[m( Y1lY(i))/f(Yq -’ 

(3 6) . 

which can be programmed. Notice that, since E( y21y1, y) and var( y21yl, y) are 
given by simple expressions, the unconditional mean and variance can be 
obtained by numerically Wgrating over r( y lyr) for, e.g., E( y21y1) = 

owever, (3.6) is a more general procedure that can be 
used even when the latter approach fs infeasible or complicated. Based on (3.q) 
and (3.6), the prediction density and predictive moments are provided below. 
n addition, ‘true’ prediction density. The true prediction 

de;,G;y ir; f( 

= (I, 5.21737) tl 
for our chosen parameter values and simulated 

the density of a Nr(53.27366,0.047917) distribution. 
xamination of table I confirms the visual impression from fig. 2 that the 

a normal density with the same 
t, therefore, appears that sym- 

est probability density prediction intervals are 
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Fig. 2. jB(Y21Ylk -9 

is used. Over the 2000 

4 
pdi:Bayes and true:n,=20 

d-- r 

d 
" 36.0 44.0 52.0 60.0 68.0 

Y2 

true: ---. [The number of replications is M = 2000; antithetic sampling 
replications, the minimum value of y = - 1.8775 and the maximum 

is 2.9260.1 

adequate for this roblem. Whether the same phenomenon arises in other 
experiments with heteroscedasticity can be investigated along the lines devel- 
oped in the paper. Of course, the ideas in this paper can be used quite 
generally in a variety of other contexts that are described by the elliptical error 
structure used here. 
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