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Abstract 

Perceptual decision making is a critical component of human cognition by which the 

brain processes raw sensory evidence from its environment to guide actions that best 

suit goals. However, the evidence that the environment provides is often ambiguous 

and requires the brain to evaluate it in an optimal way to maximize decision success. 

Although the extensive study has been conducted to understand how the brain 

evaluates noisy sensory evidence over time to guide perceptual decisions, it is unclear 

how different regions of the brain contribute to this evidence evaluation, and how these 

regions evaluate evidence differently demanding on the demands of a given situation. 

One area of the brain, posterior parietal cortex (PPC), has long been a target of this 

study. PPC lies at the junction of brain regions canonically associated with sensory and 

motor processes, and neurons in PPC exhibit activity that scales with incoming sensory 

evidence during formation of perceptual decisions and reflects the time of decision 

commitment across multiple sensory modalities and species. Thus far, these studies 

have largely neglected the temporal component of evidence evaluation: In situations in 

which some epochs of evidence are more relevant than others, how do the dynamics of 

neural activity accommodate the different task demands to account for the animal’s 

behavioral strategy? Also, do the distinct processing dynamics of PPC emerge locally or 

simply inherited from upstream sensory regions? 

In this dissertation, I describe three studies involving human and rat subjects performing 

auditory perceptual decision making tasks involving varying timescales of evidence 

evaluation in which different epochs of evidence are relevant for the decision. In the first 

study, I show that humans are capable of employing multiple timescales of evidence 
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evaluation for different purposes during a multi-stage change detection task, and these 

timescales are selectively recruited depending on how circumstances progress 

regardless of the subject’s expectations. In the second study, I use neuropixel probes to 

record single unit activity in the PPC of rats performing the same change detection task 

to examine a neural mechanism for how the brain can flexibly adapt timescales of 

decision making for different purposes. Finally, I describe a study in which the primary 

auditory cortex of rats is inactivated during an auditory discrimination task, with results 

suggesting that primary auditory cortex is not necessary for evaluation of evidence over 

time for auditory decisions and that this function emerges later in downstream brain 

regions. 
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Chapter 1:  

General introduction 
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What is perceptual decision making? 

Perceptual decision making is the process by which raw sensory information in the 

environment is processed by the brain to guide an animal’s actions (Gold and Shadlen, 

2007). One of the most frequently applied functions in the human brain, perceptual 

decision making allows informed responses to events and interaction with objects to serve 

goals and motivations. Often, however, the environment makes this process difficult, 

providing only noisy, ambiguous information from which the brain must extract relevant 

variables to drive actions. To meet this challenge, the brain adapts its processing of this 

information to the demands of circumstances: What does the same evidence mean for a 

decision in one moment or context as opposed to another? Also, what parts of the brain 

are responsible for which components of decision making? 

These questions have relevance to human health in addition to their academic 

worth. Decision making is often impaired in psychiatric disorders including schizophrenia, 

obsessive-compulsive disorder, Alzheimer’s disorder, and attention-deficit hyperactivity 

disorder (Bechara et al., 2001; Cáceda et al., 2014; Murphy et al., 2001; Nestadt et al., 

2016; van Wouwe et al., 2016). However, treatments for these disorders are generally 

limited to brain-wide pharmacological interventions, which can be fraught with off-target 

effects and other health complications (Geerts, 2009). Even more motivating to the 

questions posed here, impairments in flexibility in decision making and other cognitive 

behaviors is commonplace in these disorders (Bissonette et al., 2008; Cella et al., 2010; 

Mante et al., 2013; Monchi et al., 2001; Pasupathy and Miller, 2005). To develop more 

precisely targeted interventions to treat symptoms of these disorders, including decision 

making, it is critical to understand how the brain conducts these functions locally. 
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Perceptual decisions, in particular, allow a controlled, tractable substrate for studying 

decision making and behavioral flexibility. 

Mechanistic models of perceptual decision making 

Before tackling the primary topics of the present dissertation, it is worth briefly 

reviewing our understanding of perceptual decision making at large. Perceptual decision 

making research has a rich history rooted early in study of the relationship between simple 

stimulus and action, dating back to simple behavioral studies exploring operant functions 

in animals (Krebs, 1983). This line of study gives way to a more sophisticated view of 

decision making, both in terms of these simple stimulus-action relations and complex 

deliberative decisions. At its core, a decision involves inference of probabilities of 

competing hypotheses; this can be shifted by learned priors, but for our purposes, 

evidence is the key driver of this inference. Evidence, joined with other variables including 

priors, comprise the decision variable, which reflects the probability of a given hypothesis. 

This principle is central to most theory of perceptual decision making, including signal 

detection theory, which allows a simple conversion of a choice from decision variable that 

falls on one of two distributions, one representing noise and the other representing signal 

in addition to noise. Signal detection theory offers a simple means of understanding action 

of animals as a relation of the quality of evidence, a component relevant still to the tasks 

and models involved in this dissertation’s studies. 

This theoretical framework evolved to emphasize the general process of 

accumulating noisy information over time to a criterion threshold for decision commitment 

(Wald and Wolfowitz, 1950). Although signal detection theory offers a useful framework 

to study the class of decisions in which the brain pursues hypotheses based on comparing 
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evidence against a criterion, a critical additional component is collection of evidence over 

time and setting the time of decision development and events, particularly time of 

commitment.  

A separate class of decision theory, sequential sampling framework, meets this 

need by including a stopping criterion with respect to time. Sequential probability ratio 

tests (SPRTs) are one such instantiation of this mechanism (McMillen and Holmes, 2006; 

Wald and Wolfowitz, 1948). Here, any number of independent pieces of evidence 

supporting different hypotheses combine over time into a decision variable. Once a 

particular decision variable value is reached, the decision maker can commit to a 

hypothesis, thus allowing a balance between not only accurate discrimination of signal 

from noise but minimizing decision time. Finally, expanding upon SPRTs, a class of 

sequential sampling “diffusion” models consolidates the aforementioned decision 

components (individual samples of evidence, sources of noise, stopping criteria) into a 

highly flexible and widely applicable framework based on a random walk instantiation of 

decision variables dictated by evidence-dependent drift (Ratcliff and McKoon, 2008; 

Ratcliff and Rouder, 1998; Smith and Ratcliff, 2004). These drift diffusion models allow 

tuning of paramterized decision components to explain various decision making 

processes, perceptual and otherwise, as a dynamic process that evolves over time. The 

studies conducted for this dissertation strongly source this model class, particularly 

Chapter 4 in which a standard drift diffusion model is employed to better understand the 

effects of cortical perturbation on decision making. 
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Experimental support for perceptual decision models 

Pivoting toward empirical methods, experimental studies primarily conducted in 

non-human primates sought to explain how this theoretical framework could be 

instantiated in the brain’s neural functioning. Seminal studies in this line of work involved 

monkeys performing visual discrimination tasks in which subjects identified coherent 

motion of noisy stimuli and reported a binary choice between left or right, usually through 

saccade to a choice target. During task performance, electrophysiological recordings of 

single units in area MT, which are selective for motion direction, were taken to reveal a 

disparity between sensory encoding and the eventual choices of the animal. In contrast, 

cells in posterior parietal cortex and prefrontal cortex faithfully encoded animal choices 

(Britten et al., 1993; Roitman and Shadlen, 2002; Shadlen and Newsome, 1996). Not only 

did these cells predict perceptual decisions, but their spiking activity also reflected a 

gradual dynamic in which sensory evidence is integrated over time to a terminal 

magnitude. As such, these studies suggested the brain indeed contains a neural correlate 

of the decision variable that accumulation-to-bound models posited decades earlier. 

In the years since, these mechanistic principles have been observed across 

multiple species and sensory modalities, especially in the auditory and somatosensory 

domains (Hanks et al., 2015; Romo et al., 1996, 2002). Perceptual decision making study 

has expanded heavily into rodent subject use, allowing both higher throughput data 

collection and access to a greater toolbox of experimental methods while still offering 

complex behavioral possibilities (Brunton et al., 2013; Carandini and Churchland, 2013). 

However, though this expansion has rewarded our understanding of perceptual decision 

making, the question of how the brain alters its evaluation of evidence depending on 
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circumstantial demands is still relatively unexplored, especially with how a given 

population of evidence-selective cells facilitates these changes by altering its integration 

dynamics. 

One such consideration for this problem is the timescale over which evidence is 

relevant for the choice at hand. An adaptable timescale of evidence evaluation is crucial 

for optimally navigating real world decisions. For example, while a school bus driver 

should combine evidence evaluated over a longer timescale, carefully judging the 

positions and movements of other cars before making a decision on the road, a Formula 

One racer should evaluate evidence over a shorter timescale, relying more on fast 

reactions to navigate a racecourse as quickly as possible. Everyday decision making 

requires us to choose how to evaluate evidence flexibly depending on the demands of 

the task, and in many circumstances, we must determine the optimal strategy for 

comparing recent to older evidence and the extent to which older evidence should be 

discounted, as when detecting changes in the environment (Boubenec et al., 2017; Glaze 

et al., 2015; Johnson et al., 2017). 

Extensive investigation into the neural mechanisms of decision making and 

cognitive flexibility provides a strong foundation to study adaptability of evidence 

accumulation. In the domain of perceptual decisions, numerous studies have identified 

systems in the brain that track evidence for decisions over time, integrating new evidence 

with older evidence until a decision is reached (Ding and Gold, 2010; Gold and Shadlen, 

2000; Hanks et al., 2015; Kim and Shadlen, 1999; Shadlen and Newsome, 1996). This 

work has provided insight into the neural basis of evidence evaluation in situations where 

evidence is treated similarly across time. However, those studies do not address how 
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these neural processes change across the wide range of decisions in which the influence 

of evidence depends on time. Studies targeting cognitive flexibility in decision making 

have addressed some related topics, such as adjustment of decision criteria (van den 

Berg et al., 2016; Purcell and Kiani, 2016), speed-accuracy tradeoff (Hanks et al., 2014; 

Thura and Cisek, 2017), and task switching in response to environmental state changes 

(Akam et al., 2015; Izquierdo et al., 2004). However, it is unknown how the neural 

mechanisms of decision making support changes to the timescale of evidence evaluation.  

Previous studies have shown adaptability for timescales of evidence evaluation in 

a range of animal species. In humans, changes in the signal duration for a detection task 

lead to changes in timescales of evidence evaluation such that the influence of older 

information tapers off more quickly in situations with briefer signals (Ossmy et al., 2013). 

In rats, changes in “environmental volatility” (the probability the state of the environment 

changes) in tasks requiring discrimination of environmental state lead to changes in the 

timescale of evidence evaluation such that the influence of older information tapers off 

more quickly in more volatile environments (Piet et al., 2018). These studies suggest that 

adaptability for timescales of evidence evaluation is a core component of flexible decision 

making. This dissertation first explores how adaptations of the timescale of evidence 

evaluation assist in achieving optimal behavior and examines the neural mechanisms that 

support this. Second, it explores how different regions of the brain process sensory 

information differently to facilitate evaluation of evidence over time for perceptual decision 

making.  

This introduction concludes with overviews of the two major brain regions studied 

in this dissertation: PPC and primary auditory cortex (A1). The dissertation itself 
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addresses the questions outlined above through studies involving these regions. 

Therefore, it is useful to first review some of the relevant knowledge on these topics from 

anatomical, neuropathological, and mechanistic perspectives. 

Posterior parietal cortex 

Posterior parietal cortex (PPC) is an associative area of the brain receiving direct 

sensory input from primary sensory cortices (e.g. primary visual cortex) and projecting to 

motor regions, other association areas, and back to primary sensory cortex (Berlucchi 

and Vallar, 2018; Chandler et al., 1992; Mishkin, 1972; Reep et al., 1994). This anatomical 

positioning makes it a strong candidate for the interface between sensory perception and 

action selection (Cohen, 2009). At the lowest level, signals related to motor coordination 

of eye and hand motion are found in primate PPC, specifically the lateral intraparietal 

area (LIP) (Andersen et al., 1998; Battaglia-Mayer et al., 2000; Gallese et al., 1994; 

Snyder et al., 1997). In both human and non-human primates, this part of PPC receives 

direct visual inputs from extrastriate cortex, lending to its role in motion-guided saccades 

(Asanuma et al., 1985; Blatt et al., 1990; Lynch et al., 1985) This connectivity made PPC’s 

LIP a key target for studies in visual discrimination tasks that laid the foundation for future 

studies of evidence integration for perceptual decisions at large (Roitman and Shadlen, 

2002; Shadlen and Newsome, 1996). On the auditory side, this same segment of PPC 

receives sound location information from auditory cortex, also in a way that guides 

saccades (Divac et al., 1977; Hyvärinen, 1982; Pandya et al., 1969) Regarding efferent 

connections, PPC projects directly to frontal orienting fields and super colliculus 

(Andersen et al., 1985) which directly control saccade direction. Together, this series of 
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connections provides a clear mechanism for association of stimuli of multiple sensory 

modalities to actions, both in terms of optical orientation and manual manipulation. 

PPC’s role in decision making extends far beyond that of simple stimulus-action 

associations, though. As mentioned, the neural activity of PPC embodies more complex, 

deliberative processing of evidence for perceptual decision making. Spiking activity of 

monkey LIP neurons ramps up gradually leading up to saccades during motion 

discrimination tasks; as motion evidence is presented, spiking activity increases 

according to the strength of evidence until reaching a common threshold of activity shortly 

before the saccade is executed (Roitman and Shadlen, 2002; Shadlen and Newsome, 

1996). This principle extends to tasks with more than two choices (Churchland et al., 

2008), tasks in which the environment limits the exposure to the sensory stimulus and 

control the timing of the choice (Kiani et al., 2008), and tasks involving other sensory 

modalities (Hanks et al., 2015; Licata et al., 2017; Romo et al., 1996). 

In humans, studies of PPC’s role in evidence evaluation has largely been limited 

to neuroimaging, EEG, and MEG measurements (Hanks and Summerfield, 2017; Kelly 

and O’Connell, 2015). These methods do not allow both spatially and temporally defined 

measurements of neural activity to establish parallels with monkey LIP physiology, but 

these studies have nonetheless identified signatures of evidence evaluation over time in 

humans. Using regression of EEG signals recorded during visual discrimination tasks, it 

was found that the coincidence of evidence with oscillatory activity in PPC dictated the 

influence of such evidence on decisions, suggesting a functional relationship between 

parietal neural dynamics and integration of evidence driving action selection (Bitzer et al., 

2020; van Vugt et al., 2012; Wyart et al., 2012). 
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Most directly involved in this dissertation are the properties of rodent PPC, 

especially that of rats. Although the existence of PPC in rats is a point of controversy in 

itself (Whitlock et al., 2008), there is substantial anatomical evidence that indicates 

homologous parallels with PPC in primates (Chandler et al., 1992; Mcnaughton et al., 

1989; McNaughton et al., 1994; Reep et al., 1994; Whitlock et al., 2008). In contrast with 

primate PPC, however, rat PPC seems to be somewhat more regionally consolidated, 

with only three primary subdivisions: medial PPC (mPPC), lateral PPC (lPPC), and 

caudolateral PPC (PtP) (Olsen and Witter, 2016; Olsen et al., 2019; Paxinos and Watson, 

2013; but see Gilissen et al., 2021). These areas are strongly interconnected with 

somatosensory, visual, auditory, and motor cortices, as well as multiple thalamic nuclei 

(Chandler et al., 1992; Reep et al., 1994)  

Of particular interest to perceptual decision making is mPPC, which we will use 

interchangeably with PPC for most of this discussion and in later chapters. Comparably 

to area LIP in primates, neurons in rat PPC exhibit ramping activity leading up to decisions 

in an auditory discrimination task, peaking immediately before decision execution. This 

ramping activity also scaled with strength of evidence, even exhibiting negative 

modulation with evidence for the opponent choice of the given cell (Hanks et al., 2015). 

This finding is significant for three major reasons. First, it demonstrates homology in 

PPC’s evidence integration functionality between rodents and primates. Second, it 

generalizes PPC’s function across multiple sensory modalities, i.e. visual and auditory 

integration. Third, it generalizes PPC’s function across multiple motor modalities, i.e. 

saccades and whole-body orientations. Thus, PPC in rats offers a promising foundation 
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for studying how neural dynamics of evidence integration change between various forms 

of perceptual decision making, the primary aim of Chapter 2 of this dissertation. 

Complications have arisen in PPC’s role in perceptual decision making in both 

primates and rodents, though, complications that this dissertation’s work seeks partly to 

address. Despite compelling electrophysiological results suggesting that PPC integrates 

sensory evidence for perceptual decisions, some pharmacological and optogenetic 

inactivation studies have called into question PPC’s causal influence on these decisions 

(Erlich et al., 2015; Katz et al., 2016; Licata et al., 2017; Raposo et al., 2014). In contrast, 

other studies suggest that PPC may influence causal decisions conditionally, such as 

when the animal controls the time of the decisions (Hanks et al., 2006; Zhou and 

Freedman, 2019) and when compensation by other areas and recovery from 

pharmacological perturbation are less likely (Jeurissen et al., 2021). Nonetheless, it is 

unclear what role PPC occupies in these decisions, whether it be true integration of 

evidence over time or modulation of decision parameters related to the timing of 

decisions. Chapter 2 describes work conducted during this graduate work that attempts 

to address this gap in understanding 

Primary auditory cortex 

Primary auditory cortex (A1) is located bilaterally in the superior gyrus of the 

temporal lobe of primates, the first cortical recipient of auditory information originating in 

the cochlea (Purves et al., 2001). A1 inhabits a “core” of the superior gyrus along with two 

other subdivisions, all of which are surrounded by a “belt” comprising the secondary 

regions of auditory cortex (Doron et al., 2002; Kaas and Hackett, 2000; Purves et al., 

2001). It receives direct inputs from medial geniculate nucleus of thalamus (Luethke et 
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al., 1989; Mesulam and Pandya, 1973) and projects to several other areas via the belt, 

including PPC (Reep et al., 1994), striatum (LeDoux et al., 1991) and several subregions 

of prefrontal cortex (Romanski, 2007). These projections make A1 a prominent subject of 

perceptual decision making involving auditory stimuli due to its direct influence on many 

decision centers in the brain. 

Among the most well-studied features of A1’s neuronal properties is its tonotopic 

organization, wherein preferred stimulus frequencies of cells change from low to high on 

a rostral to caudal axis (Clopton et al., 1974; Ehret and Romand, 1997; Kalatsky et al., 

2005; Saenz and Langers, 2014). This property was established in non-human primates, 

and although it has been difficult to comparably establish it in humans due to the lack of 

spatial resolution in human imaging techniques, results preliminarily suggest functional 

homology through tonotopy and cytoarchitecture between human and non-human 

primate A1 (Humphries et al., 2010; Saenz and Langers, 2014). A1 also expresses an 

orthogonal dimension of periodicity, which may contribute to perceptual decisions in 

which the timing of a stimulus is informative (Barton et al., 2012; Langner et al., 2002). 

Rats have also become a frequent subject of study in research of A1. Like most 

mammals, rats have a distinct tonotopic organization comparable to other species in 

organization and function (Malmierca, 2003). In general, however, rat auditory cortex is 

heavily consolidated compared to primates, with A1 being the primary aspect of a 

temporal area 1 and additional temporal areas located posteriorly and ventrally to this 

area more in line with the auditory belt of primates (Doron et al., 2002; Rutkowski et al., 

2003) Functionally, a clear difference in rat A1 function from primate A1 pertinent to this 
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dissertation is the increase in hemispheric spatial selectivity, such that rat A1 neurons 

solely encode contralateral stimuli (Yao et al., 2013). 

A1 possesses a few striking functions that are highly relevant to perceptual 

decision making. First, A1 has a role in perceptual working memory: A1 neurons encode 

stimulus identity following stimulus presentation when the stimulus identity informs later 

choices and is necessary for tracking stimulus identity over time (Runyan et al., 2017; 

Scott and Mishkin, 2016; Wigestrand et al., 2017; Yu et al., 2021). Second, A1 contains 

information for sound localization (Benson and Teas, 1976; Heffner, 1978; Kelly and 

Glazier, 1978; Malhotra and Lomber, 2007; Phillips and Irvine, 1981), which is critical in 

many of the lateralized decision tasks used to study the evaluation of evidence in 

perceptual decisions. Third, A1 is capable of driving auditory decisions through both 

stimulation and disruptive perturbation (Chen et al., 2019; Znamenskiy and Zador, 2013) 

as well as containing choice-dependent information that does not bear directly on stimulus 

identity (Francis et al., 2018; Guo et al., 2019; Tsunada et al., 2016). Interestingly, simple 

discrimination of tones does not seem to bear on auditory cortex (Gimenez et al., 2015; 

Kelly, 1970; Kelly and Glazier, 1978), so simple spectral information is likely routed in 

ways that bypass auditory cortex. Together, these results indicate potential for A1 to 

dictate perceptual decisions not merely in terms of simple auditory perception but in terms 

of more abstract transformations of that auditory information specific to decisions. 

Aims of this dissertation 

 Using our knowledge of the neural basis of decision making outlined thus far, we 

seek here to expand knowledge of perceptual decision making by determining how the 

neural mechanisms of decisions adapt their dynamics according to task demands. First, 
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in Chapter 2, we study the extent to which the human brain adapts its dynamics of 

evidence evaluation flexibly for different purposes, specifically change point detection 

decisions and confidence judgments about those decisions. In Chapter 3, the neural 

basis of this flexibility in evidence evaluation will be explored by testing the specific 

hypothesis that neurons in PPC of rats performing the same change point detection task 

can adapt their dynamics of integration to serve a task-relevant timescale of evaluation, 

as well as the hypothesis that PPC has a causal role in setting this timescale. Finally, 

we seek to learn the extent to which the utilization of optimal evidence evaluation 

timescales depends on cortical regions that have traditionally been attributed a sensory 

role. To this end, the study in Chapter 4 involves perturbation of A1 and analysis of the 

resulting deficits in an auditory discrimination task in which rats evaluate evidence over 

time followed by identification of the mechanistic source of the deficit. 
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Results and Discussion 

The adaptive selection of behavior requires choosing appropriate actions based 

on available information. In many instances, adaptive behaviors are guided by detecting 

subtle signals in a dynamic environment. Previous studies have shown that humans, 

monkeys, and rodents are capable of quickly extracting information about the variability 

of changes in dynamic environments [2–5]; moreover, subjects can alter their timescale 

of evidence evaluation -- that is, the time period over which evidence has leverage over 

a decision -- based on the expected duration of signals in order to make judgments of 

when an actual signal occurs [1]. After individuals make a decision, the past evidence can 

be utilized for additional purposes, including the judgments of the degree of confidence 

that the selected option is correct [6–22]. To shed light on the flexibility of evidence 

evaluation, we examined if and how different timescales of evidence are utilized for 

change detection reports while subjects performed an auditory change detection task 

compared to confidence judgements in trials without detection reports.  

Auditory change detection task 

We trained subjects to perform an auditory change detection task in which they 

reported a change in the underlying rate in a sequence of auditory clicks generated by a 

stochastic Poisson process. Trials began when a subject placed their finger into a central 

port, which was followed by the onset of the auditory stimulus (Figure 1). The underlying 

rate was initially 50 Hz, and for 70% of trials, the rate increased at a random time and by 

a variable magnitude. The other 30% of trials ended without a change (catch trials). 

Subjects were required to remove their finger from the central port within 800 ms of 

change onset (hit) or withhold responding for catch trials (correct rejection;  

https://paperpile.com/c/CGhttA/9JcI+i0Cj+HD5D+YvNz
https://paperpile.com/c/CGhttA/dg48
https://paperpile.com/c/CGhttA/GSRHn+slamo+Ra4CQ+LstsM+28CU1+aZxIm+9dF1W+lR1bd+B0zrW+kZaCP+JOZTQ+cHqMb+GysGX+1vMQn+mkl4L+aFrXR+TbndF
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Figure 1. Auditory change detection task with confidence report showing the 

sequence of events for each trial: A trial began when the center port was illuminated, 

cuing subjects to insert their finger. Once the finger was inserted, a stream of auditory 

clicks began to play. The clicks were generated by a Poisson process with a generative 

baseline click rate of 50 Hz. 30% of trials were catch trials with no change in the 

generative click rate. In the other 70% of trials, the generative click rate increased by 10, 

30, or 50 Hz at a random point (red arrow in example). Subjects had to withdraw their 

finger within 800 ms of the change for the trial to qualify as a hit on change trials, or 

withhold a response for the trial to qualify as a CR on catch trials. At the end of the trial 

(after response or stimulus end), the two peripheral ports illuminated, cuing subjects to 

indicate confidence in their decision: engaging the left port reported low confidence while 

engaging the right reported high confidence. Immediately following the confidence report, 

feedback was given via an auditory tone to indicate success or failure on that trial.  

 

CR). There were two types of errors in this task: premature responses (false alarms; FA), 

which can occur in catch and non-catch trials, and failures to respond in time (misses). In 

all cases, subjects were then cued to report confidence using the two side ports. 

Confidence was assessed via a post-decision wager. Immediately following the 
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confidence report, feedback was given via an auditory tone to indicate success or failure 

on that trial. 

Task performance and confidence ratings 

All subjects were able to perform the task with high hit rates for the easiest trials 

and diminishing hit rates for medium and high difficulty trials (Figure 2A, left; see Figure 

S1 for individual subject data), suggesting that they were attending to the stimuli. During 

catch trials, subjects displayed CR rates of ~85% or above, with a ~15% FA rate across 

both trial types (Figure 2A, right). For both hits and misses, confidence scaled with trial 

difficulty, with the largest changes in click rates evoking the highest level of confidence 

during hits and the lowest level of confidence during misses (Figure 2B, left). CR and FA 

trials by definition involved no change in the underlying generative click rate and evoked 

intermediate levels of confidence compared to hits and misses (Figure 2B, right).  

Psychophysical reverse correlation 

To examine the timescale of evidence evaluation, we first conducted 

psychophysical reverse correlation (RC) analyses [15,23–25]. RC traces were 

constructed by convolving click times with causal half-Gaussian filters (σ = 0.05s) and 

aligning the result to the end of the stimulus presentation. This allowed us to reconstruct 

the average stimulus that preceded a given trial outcome and confidence rating. We 

focused our initial analyses on FA trials and their associated confidence ratings. On these 

trials, responses were  only affected by natural fluctuations in the stochastic stimulus and 

not tied to a generative change in click rate as occurs for hit trials. To  

https://paperpile.com/c/CGhttA/4hrDL+wwLZc+eNAo2+kZaCP
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Figure 2. Task performance and confidence ratings: A, Combined data from 7 

subjects showing performance as a function of the change in click rate (left) and 

proportion of FA and CR trials (right). Hit rate was calculated excluding FA trials. FA rate 

was calculated from all trial types. CR rate was calculated from trials in which no change 

in generative click rate occurred (30% of trials). B, Proportion of high confidence hits 

(black) and misses (gray) as a function of change in click rate (left) and proportion of high 

confidence FA and CRs (right). Error bars indicate +/- SEM. See Figure S1. 

 

examine overall influence on choice independent of confidence, all FA RC traces were 

averaged together. Across subjects, FA choices were characterized by an average RC 

trace  (hereafter referred to as the detection report kernel) showing a transient increase 

in click rate, which followed a time-course with a duration similar to the response window 

in which subjects were allowed to report an actual change in the generative click rate 

(Figure 3A; see Figure S2 for individual subject data). There was a sharp increase 

starting ~800 ms before the detection report that collapsed to baseline just before the 

report, indicative of sensorimotor delays limiting the influence of the time period just 

before the response. Comparing RCs from high and low confidence FA trials (Figure 3B; 

see Figure S2 for individual subject data), we found that evidence for confidence 

judgements was used during the period after which the detection report kernel returned 
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to baseline (Figure S3), consistent with previous work using a different task design that 

showed that confidence is based on continued accumulation of evidence after the 

decision but before the confidence response [26].   

We next asked whether there is an influence of evidence on confidence that 

extends earlier in time than its influence on detection reports as this would be indicative 

of evidence being evaluated at multiple timescales. Surprisingly, we found that the point 

in time when RC kernels deviated from baseline differs depending on what is reported. In 

particular, kernels began to deviate from baseline for CR confidence reports earlier in 

time than for detection reports. To quantify this for detection reports, we fit the ascending 

phase of the detection report kernel with a 2-piece linear function (see methods). Across 

subjects, the parameter estimate of the detection report kernel start point was ~0.74 

seconds (95% CI: 0.73  to 0.75 s) preceding the detection report (Figure 3A, arrow).  

In contrast, the period of influence of evidence for CR confidence reports extended 

considerably earlier in time. High confidence CRs were characterized by a lower average 

click rate preceding the end of the stimulus compared with low confidence CRs (Figure 

3C; see Figure S2 for individual subject data). This difference gradually increased until 

the end of the trial. To estimate the point in time when the difference between high and 

low confidence CR reverse correlation deviated from baseline, we fit the difference (the 

“CR confidence difference kernel”) with a 2-piece linear function (see methods). Across 

subjects, the pooled parameter estimate for when the CR confidence difference kernel 

diverged (i.e. differed from 0 Hz) was ~1.76 seconds before the end of the trial (95% CI: 

1.68 to 1.84 s), more than twice as early as  

https://paperpile.com/c/CGhttA/3gwEK
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Figure 3. FA and CR reverse correlations: Combined data from 7 subjects was used 

to calculate average click rate over time for each outcome. RC traces were constructed 

by convolving click times preceding outcomes with causal half-Gaussian filters (σ = 0.05 

s). A, Detection report kernel. RC trace (black line) is comprised of all FA trials, showing 

the average click rate preceding FAs. The start of the detection report kernel (arrow) was 

estimated by fitting the ascending phase of the kernel with a 2-piece linear function with 

3 free parameters: the baseline click rate (left of arrow), the slope of the kernel’s 

ascending phase (right of arrow), and the start of the ascending phase (arrow).  Horizontal 

dotted line denotes the 50 Hz baseline generative click rate. B, Detection report 

confidence kernels. RC traces show the average click rate preceding high (red) and low 

(blue) confidence FAs, as well as the difference in click rate between the two confidence 

kernels (high - low; green). Same conventions as in A. The shaded portion of the graph 

near time 0 shows the temporal interval analyzed in Figure S3A. C, CR confidence 

kernels. As in B, but showing RC traces preceding CRs. The divergence point between 

the two confidence kernels (arrow) was estimated by fitting the difference between the 

two kernels (high - low; CR confidence difference kernel) with a 2-piece linear function 

with 2 free parameters (see Figure S2, column 4 for fits): the divergence point from a 

baseline difference of 0 Hz (arrow) and the slope from that point onward. For all kernels, 

shaded region shows +/- SEM. N = number of trials for each trace. See Figure S2 and 

S3. 

 

 



33 
 

the estimate of the start of the detection report kernels. This suggests that during the 

course of a trial, subjects have flexibility in the timescale of evidence evaluation, with 

different timescales more strongly linked to different types of reports.   

Model-based analysis 

While psychophysical RC analyses provide useful information for comparing the 

timescales of evidence evaluation, they are not a veridical representation of how evidence 

is temporally evaluated because they reflect the influence of a number of different 

components of evidence processing [27]. Therefore, we adopted a model-based 

approach to ask whether a single timescale of evidence evaluation can explain the 

differing start points revealed by the RC analyses. In the model, evidence in the form of 

the auditory clicks was convolved with a half-Gaussian filter with its width (σ) as a free 

parameter (Figure 4A). The filter width determined the timescale of evidence evaluation, 

with a wider filter corresponding to a longer timescale. The output of the filter governed 

the average dynamics of a decision variable. Variability was included in the process by 

adding Gaussian noise to the decision variable at each timestep with the standard 

deviation of the Gaussian as a second free parameter in the model. A third free parameter 

set a decision bound that caused triggering of a detection report when the decision 

variable reached that value. To account for sensorimotor delays inherent to decision 

processes, an additional period of “non-decision time” described by a Gaussian 

distribution with mean set by a fourth free parameter was added to the bound-crossing 

time to determine the final response time.  

 We first used this model to capture the choice behavior exhibited by our subjects. 

In particular, we found the values for the four free parameters of the model that best fit 

https://paperpile.com/c/CGhttA/WlUIf
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the trial-by-trial choice responses made by our subjects (see methods). This yielded 

psychometric functions that closely approximated the behavioral data (Figure 4B). We 

then used model simulations with the best fit parameters to extract predictions for the 

detection report kernels and CR confidence difference kernels. These trials were 

classified as high or low confidence based on whether the final decision variable was 

higher or lower than a threshold set to 49 Hz. Comparing the predicted kernels to the 

actual data, we found that this single-timescale model predicted a start of the detection 

report kernel that was slightly earlier than the data (29.3 ± 6.4 ms earlier). Critically, this 

model predicted a start of the divergence of the CR confidence difference kernels that 

was substantially later than the experimental data (894.8 ± 12.6 ms later) (Figure 4C). 

We found similar results with a variety of filter shapes and non-decision time distributions 

(data not shown). We also tested whether trial-to-trial variability in decision bound could 

extend the divergence of CR confidence difference kernels closer to the experimental 

data, but we found no set of parameters capable of doing so (Figure S4). Finally, we 

extended the timescale of evidence evaluation in the model with a longer filter width to 

recapitulate the experimental divergence of the CR confidence difference kernels. In 

doing so, we found that the model predicted a start of the detection report kernel that was 

substantially earlier than the data (1082.6 ± 40.1 ms earlier). These analyses confirm our 

intuition that a neural mechanism with a single timescale of evidence evaluation cannot 

explain the result that the divergence of CR confidence difference kernels can extend 

more than twice as early relative to trial end than detection report kernels. 
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Figure 4. Model simulation of behavioral data: A, Model schematic. The model 

included four free parameters: width of half-Gaussian filter (0.96 s), decision variable 

noise term standard deviation (13 Hz), decision bound (103 Hz), and mean Gaussian 

NDT (0.17 s). Best fit parameters are in parentheses. B, Model comparison with 

psychometric data based on best fit parameters. Error bars indicate +/- SEM (as in Fig. 

2). The red line indicates model hit rate as a function of change in click rate, with additional 

interpolated delta click rates (+15 Hz, +20 Hz, +25 Hz, +35 Hz, +40 Hz, +45 Hz). Red 

stars indicate FA and CR rates for the model. C, Experimental and simulated RCs. See 

Figure S4. 

 

Our study demonstrates that, in perceptual decisions, the timescale of evaluation 

of past evidence can be flexibly adjusted for use in detection and separately for 

confidence judgments when no detection is reported. This was revealed using a change 

detection task in which perfect integration of evidence is suboptimal. With perfect 

integration, evidence accumulated early retains its influence on the decision for the full 

duration of the deliberation period, which is the optimal strategy during perceptual 

discrimination tasks based on the full stimulus. In contrast, evidence has a more transient 

influence in our change detection task [24]. By including an additional confidence report, 

this paradigm allowed us to test whether the limited temporal influence of evidence on 

decision formation was similar for confidence judgments. We found that kernels for 

judgments of confidence could be influenced by evidence fluctuations earlier in time on 

trials without a detection report. Interestingly, information within different temporal epochs 

appears to be used for confidence judgments in a way that depends on how the trial 

ended. When the subject terminated the evidence stream by reporting a detection, as in 

the case of FAs, the confidence-influencing epoch began at approximately the same time 

as the detection report kernel. However, when the trial ended due to withholding a 

detection report, as in the case of CRs, the confidence-influencing epoch extended 

several hundred milliseconds earlier than the detection report kernel. While averaging 

https://paperpile.com/c/CGhttA/wwLZc
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over many trials prevents us from quantifying which epochs of time had influence on a 

trial-to-trial basis, the magnitude of the mean psychophysical kernel nonetheless relates 

to the magnitude and frequency of evidence evaluation during a given epoch across trials. 

Model-based analyses confirmed that our results cannot be explained by a neural 

mechanism involving a single, fixed timescale of evidence evaluation. The  differences in 

the evidence evaluation period that we found between conditions, which reveal flexibility 

in the process, provide insights for the requirements of any specific mechanism 

responsible for this discrepancy. In particular, our results suggest that the mechanism, 

whatever it may be, has the capacity to either adjust the timescale of evidence weighting 

during individual deliberative decisions or access multiple distinct timescales for different 

purposes. We discuss possible representational architectures of the brain that would 

enable this below. 

It is unclear why subjects adjusted their timescales of evidence evaluation 

depending on how the trial terminated. It is optimal to utilize evidence over the last 800ms 

for detection and associated confidence because if there was a change, it could have 

only happened in this period in this task. Thus, it is suboptimal for subjects to base their 

confidence on earlier evidence, as was observed in CR trials. However, we suggest it 

may be optimal in the more general class of change detection decisions individuals 

encounter in real life. Typically, confidence in a choice based on a perceived change 

should be judged based on recent evidence that evoked the perceived change. In 

contrast, confidence that no change has occurred in a real-world situation often involves 

judgment based on a longer interval of time during which a change would have been 
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possible. Our results are consistent with a strategy that would be appropriate for that more 

general type of situation.  

Our results show that past evidence must be represented in a way that allows 

flexibility in the timescale of evidence evaluation. This extends the idea that adapting the 

timescale of evidence evaluation is necessary to optimize decision processes in changing 

environments [1,2,4,28]. In those studies, the dynamics of the environment dictate the 

optimal timescale, but only one timescale needs to be accessible for any given context or 

trial. In contrast, we find that multiple timescales of evidence are used within the same 

context. Thus, mechanisms are necessary to adjust the timescale of evaluation even as 

the evidence is being presented and used. Mid-deliberation adjustments of decision 

processes have been described extensively with regard to decision bounds. Collapsing 

decision bounds can furnish urgency onto the decision process [29–31], and changes of 

mind about decisions and confidence are best explained with altered post-commitment 

decision bounds [26]. In most of those cases, decisions were made in situations that 

involved near perfect integration of sensory evidence, so there was no opportunity to look 

for changes in the timescale of evidence evaluation at earlier periods of deliberation. Here 

we show this timescale to be an important factor that can be adjusted online during 

deliberations based on a single stream of evidence.  

Previous studies with yes-no detection tasks have suggested separate neural 

representations for stimulus present and stimulus absent choices [32,33]. While those 

tasks involved a delay between the stimulus epoch and the choice report (unlike our task), 

the separate neural representations they found could provide a substrate for distinct 

timescales of evidence evaluation. Thus, one possible neural architecture that could 

https://paperpile.com/c/CGhttA/dg48+9JcI+yfLu+HD5D
https://paperpile.com/c/CGhttA/t2jP1+1zMZ8+awLXx
https://paperpile.com/c/CGhttA/3gwEK
https://paperpile.com/c/CGhttA/MNMH6+OVwSl
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explain our results is having one population of neurons evaluating evidence over a shorter 

timescale for the detection decision and another population of neurons evaluating 

evidence in parallel over a longer timescale for confidence judgments on trials without a 

detection report. We suggest that neural mechanisms that allow flexibility in the timescale 

of evidence evaluation may be used in the service of multiple components of decision 

making behavior, rather than flexibility being a unique feature of decisions that are 

combined with confidence judgments. 

It is tempting to speculate that recurrent network models of integration that require 

a fine level of tuning to avoid leaky dynamics [34], which is usually viewed as a 

shortcoming [35], may instead be a virtue by providing flexibility in the timescale of 

evidence evaluation. Under this idea, changes in the timescales of evidence evaluation 

could be introduced through small adjustments of tuning that would result in altered 

leakiness of integration. Alternatively, flexibility in the timescale of evidence evaluation 

could be implemented at an earlier stage of sensory processing, such as through gating 

of deliberation by stimulus salience [36,37]. In this alternative schema, sensory responses 

must exceed a salience threshold to be considered for the decision process, and 

alterations of the salience threshold would influence the evidence evaluation process. 

Neither of these mechanisms alone allows use of multiple timescales of evidence 

evaluation for the same stream of evidence. Memory traces that allow recall and re-

processing of past evidence would be one mechanism to use multiple timescales of 

evidence evaluation for the same stream of evidence. Another related mechanism that 

would allow parallel access to multiple timescales for the same stream of evidence 

derives from theoretical work showing that memory traces may be encoded through 

https://paperpile.com/c/CGhttA/Pl2uQ
https://paperpile.com/c/CGhttA/s47D4
https://paperpile.com/c/CGhttA/pGdhQ+7ft9a
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neurons with heterogeneous dynamics that form a temporal basis set for previous events 

[38]. Selective readout of sets of neurons with differing timescales would allow flexible 

access that depends on task demands [39,40]. This would be readily achievable in 

networks that encode accumulated evidence with a diversity of timescales [41]. This 

mechanism could also allow adjustments of the timescale of evidence evaluation even 

after the evidence has been presented, which would enable meta-cognitive operations 

[11,42,43]. We therefore suggest that our paradigm provides a powerful approach to 

understand the neural mechanisms and representational architectures in the brain that 

could support meta-cognitive operations for decision making. 
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STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Timothy Hanks  (thanks@ucdavis.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

There were 7 subjects (2 female, 5 male) included in this study, all aged 18-34 and 

members of UC Davis. For the 7 subjects included for analysis, 3 subjects (S1, S2, S3) 

were knowledgeable about the task design and research motivations prior to data 

collection, while the remaining subjects were naive. Study procedures were approved by 

the UC Davis Institutional Review Board, and all subjects provided informed consent. 

Subjects were compensated with a $10 Amazon gift card for each 1-hour experimental 

session completed, for a total of 6-11 sessions. Each subject received full payment, 

irrespective of task performance.  

 

METHOD DETAILS 

Apparatus 

Control of the task was programmed in MATLAB (Mathworks, RRID: 

SCR_001622) and facilitated by Bpod (Sanworks, RRID: SCR_015943), which measures 

output of behavioral tasks in real time. Task stimuli were generated by the open source 

device Pulse Pal [44]. The stimulus-response apparatus consisted of 3 cone-shaped 

ports, each containing an infrared LED beam that can detect the insertion of a finger when 

mailto:thanks@ucdavis.edu
https://paperpile.com/c/CGhttA/8DNQq
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the beam is obstructed. Each port can also be illuminated by an LED light, which signals 

to the subject that the port can be used during that stage of the trial. Sounds were played 

through headphones worn by the subject. 

Change detection task 

Subjects began each trial by inserting their index finger into the illuminated center 

port of the apparatus, which initiated a train of auditory clicks randomly generated by a 

Poisson process. The initial baseline frequency of this click train was 50 Hz, and the 

stimulus persisted at this frequency for a variable time period, during which the subject 

was to keep their finger in the port. In 70% of trials, the frequency of the stimulus 

increased with a magnitude of 10, 30, or 50 Hz at a random time sampled from a truncated 

exponential distribution (minimum 0.5 s, maximum 10 s, mean 4 s). This sampling 

produced an approximately flat hazard rate, such that the instantaneous probability of a 

change at the given moment did not increase or decrease as the trial progressed. When 

a change occurred, the subject was to respond by removing their finger from the port 

within 0.8 s of the change. The stimulus ended immediately upon finger removal. In the 

remaining 30% of trials (“catch” trials), no frequency increase occurred; in these trials, the 

subject was to maintain finger insertion for the full duration of the stimulus, which ended 

at a random time from 0.5 to 10.8 s. The same exponential distribution was used as for 

the change times in the non-catch trials plus the 0.8 s response window in order to match 

the distribution of catch trial durations to that of non-catch trials. Thus, the timing of trial 

termination provided no information about catch versus non-catch trial. 

Finger removal occurring within the 0.8 s following a change was recorded as a 

“hit”. Failure to correctly respond in time to a change was recorded as a “miss”. Correctly 
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responding to catch trials required the subject to maintain finger insertion until the 

stimulus ended, which was recorded as a “correct rejection” (CR). Whereas, if a subject 

removed their finger from the port while there was no change in the generative rate of 

clicks, either on a catch or non-catch trial, the response was recorded as a “false alarm” 

(FA). 

After the auditory stimulus concluded, the peripheral ports of the apparatus 

illuminated, cuing the subject to report confidence in the decision. Subjects were given a 

choice between “low” or “high” confidence, which was reported by inserting a finger into 

either the left or right peripheral port, respectively. Subjects were instructed to report low 

confidence if the subject was “probably not successful” and high confidence if the subject 

was “probably successful” in the trial. Performance was tracked by a points system: 

Reporting high confidence on a correct decision awarded the subject with 2 points, while 

low confidence on a correct decision yielded only 1 point. Reporting high confidence on 

an incorrect decision cost the subject 3 points, while reporting low confidence on these 

trials cost the subject only 1 point. A running total of accumulated points in the 

experimental block was displayed on a monitor in front of the subject as a blue bar that 

changed size with the points total, which could not fall below 0 points. This points scheme 

encouraged subjects to report high confidence for trials in which the evidence especially 

favored their choices, because they were asymmetrically punished for erroneous high 

confidence reports. Subjects then received auditory feedback on their initial decisions, 

regardless of confidence report, indicating whether the response was correct. The center 

port then illuminated once again, allowing the subject to start a new trial. 
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If the subject removed their finger in response to a perceived change, a brief noise 

was played through the headphones to indicate the response preceded the end of the 

stimulus. This “haptic feedback” sound allowed subjects to determine whether they 

reacted to perceived changes in time so that they were registered as detection reports. 

Thus, subjects knew that trials with haptic feedback were either hits or FAs, because a 

detection report was registered, while trials without haptic feedback were either misses 

or CRs, because a detection report was not registered. This feedback allowed subjects 

to report confidence with full knowledge of the decision that had been registered. The 

feedback did not indicate the correctness of the decision. 

Supplemental instruction and post-training criteria 

Before subject data was used for analysis, subjects completed training sessions 

until reaching performance criteria. Subjects advanced past this training stage after 

completing a session in which they attained hits in 45% of non-catch trials, avoided FAs 

on at least 75% of all trials, and had fewer than 1 mean “haptic errors” (high confidence 

misses with confidence reports occurring within 0.5 s of stimulus end) per block. We 

established this criterion for identifying haptic errors because if subjects reported 

confidence this quickly, they would likely have failed to incorporate the haptic feedback 

sound, or lack thereof. Their high confidence reports would thus be informed only by 

recognition of the change and not success in responding to it. Any haptic errors that 

occurred during data collection were not excluded from our analyses, though post-training 

haptic errors were rare. During training, we occasionally provided subjects with 

supplemental instruction to allow them to better understand the haptic feedback if they 

accumulated excess haptic errors. Additionally, to better furnish analyses that required a 
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large sample size of both confidence reports, we suggested to subjects who had low rates 

of high confidence judgments during training that they choose the “high confidence” 

option more often when certain of their decisions so that they may earn more points; 

subjects still established their own criteria for which trials to assign high confidence, given 

those supplemental instructions. 

Model-based analyses 
 

To further test whether our experimental results could be explained with a 

mechanism involving a single timescale of evidence evaluation, we used a model-based 

approach. With maximum likelihood estimation methods, we fit the behavioral choice data 

with a model that had four free parameters (Figure 4A). The first stage of the model was 

to convolve the auditory clicks (sensory evidence) with a filter having a half-Gaussian 

functional form with a free parameter for its standard deviation and the filter defined out 

to 3 standard deviations. We note that we also used other functional forms including 

exponential filters, square wave filters, and trapezoid filters with similar conclusions (data 

not shown). In all cases, the result of the convolution stage delineated the evolution of a 

decision variable over time. At the second stage of the model, noise was added to the 

decision variable at each time step with the noise taken from a Gaussian distribution with 

a free parameter for its standard deviation. Thus, for any given stream of clicks, there was 

a distribution of possible decision variable values at each point in time. The model 

prescribes detection reports for any part of this distribution that reaches or exceeds a 

threshold level set by a decision bound, the third free parameter of the model. To account 

for attrition due to detection reports, the remaining probability distribution of the decision 

variable decreased by the probability of bound crossing at each time step. Finally, to 
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account for non-decision sensory and motor processing that adds delays, an additional 

non-decision time (NDT) was added to the bound crossing time to yield the full reaction 

time. The non-decision time was taken from a Gaussian distribution with a free parameter 

for its mean and its standard deviation constrained to be one-fifth of the mean. It has been 

shown in other tasks that the shape of the non-decision time distribution can be quite 

variable across tasks/subjects and is not necessarily Gaussian [45]. Our model-based 

analysis results were robust to departures from the Gaussian non-decision time 

distribution that altered its skew (data not shown).  

For any given set of parameters and sensory input, the model yields a probability 

distribution for the reaction times. Using this distribution of reaction times and the trial 

specifications, we calculated the probability of each trial outcome (hit, miss, FA, CR) for 

every trial performed by our subjects based on the stimulus that was presented. We used 

brute force grid search to find the values of the four free parameters that maximized the 

likelihood of the actual trial outcomes for every trial from the combined experimental data 

of all subjects. Thus, the exact timing of the auditory clicks for every trial was used for the 

parameter estimations. 

 To show the best fit behavior from the model, we applied the model with best fit 

parameters to both experimental stimuli and new stimuli generated in a fashion similar to 

the experimental stimuli to interpolate at intermediate stimulus strengths (Figure 4B). In 

particular, additional interpolated stimulus strengths were included at +15 Hz, +20 Hz, 

+25 Hz, +35 Hz, +40 Hz, +45 Hz to create a smooth psychometric curve. 8000 trials were 

generated for each of these new stimulus strengths, roughly the same number of trials of 

each experimental delta click rate. These interpolated values had no bearing on the fitting 

https://paperpile.com/c/CGhttA/oau6G
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procedure itself. Psychometric behavioral rates for the model were computed by taking 

the mean likelihood for a given trial type: for CR trials, the sum of CR likelihoods for all 

catch trials divided by the number of all catch trials; for FA trials, the sum of FA likelihoods 

for all trials divided by the number of all trials; for hits and misses, the sum of each trial 

type’s likelihoods normalized by the number of non-FA trials (i.e. hits and misses) and 

divided by the number of non-catch trials. 

 Next, we used model simulations to generate predicted RCs (Figure 4C). This was 

done by simulating 17,383 trials (matching the total number of experimental trials) with 

the same stimulus parameters as used for the experiments and with 30% catch trial 

probability, also matched to the experiments. In these simulations, the model was applied 

to the trials as before, but with the trial type being classified depending on if and when 

the model predicted a response. Similar to the model fitting described above, the stimulus 

was convolved with the filter whose shape was defined by the fitted parameters to 

compute the mean decision variable. Instantaneous noise in the decision variable was 

drawn at each time interval from a Gaussian distribution with standard deviation specified 

by the fitted parameters, with NDT also drawn from a distribution with the fitted 

parameters in the event of bound crossing. FA RCs were generated similarly as the 

experimental RCs. FA trials were aligned to the time of response, and stimuli were 

convolved with a causal half-Gaussian filter. In the case of CR confidence RCs, trials 

were classified as high or low confidence by thresholding the final decision variable at 49 

Hz, with high confidence CRs having a final decision variable lower than 49 Hz. Kernel 

start points were calculated as they were in analysis of the experimental data. In 

summary, the simulations used parameters fit to the behavioral choice data to make 
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predictions for the RC analyses. In addition to generating predicted RCs with model fit 

parameters, we performed simulations using a wider half-Gaussian filter (σ =0.8 s) such 

that the predicted CR confidence difference kernell approximated the experimental start 

of CR confidence difference kernel (1760.1 ± 73.6 ms vs. 1773.9 ± 43.5 ms). For this 

analysis, we decreased the bound from 103 Hz to 95.2 Hz in order to maintain FA rates 

at experimental levels.  

 We also sought to test the possibility of whether a result similar to the experimental 

RCs could be recovered by adjustments to the model that still involved a single timescale 

of evidence evaluation (Figure S4). This model recovery approach involved manipulating 

the trial-to-trial variability in bound height from 0-144 Hz2 and adjusting the bound for each 

bound variability value to yield the same FA rate as observed experimentally (12.6%). 

Simulations with each of the 25 model variants produced their own RC kernel start points 

for FA choice reports and CR confidence reports, and the values of these kernel start 

points were compared to the experimental kernel start points to determine whether the 

experimental start points could be recapitulated.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Exclusion Criteria 

Beyond the 7 subjects analyzed in this study, we excluded 2 subjects from post-training 

data collection for the inability to adequately detect changes in task stimuli at our criterion 

rate of 45% in any trial session and 2 subjects for failing to report high confidence for at 

least 10% of CRs of all trials, making the session data unviable for analysis. 

Data analysis 
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Individual trials were classified as hits, misses, CRs, and FAs. Hit rates were 

calculated as proportion of hit trials out of trials in which a change occurred (non-catch, 

non-FA trials). FA rates were calculated as proportion of FA trials out of all trials, and CR 

rates were calculated as proportion of CR trials out of all catch trials (Figure 2A). Because 

there were two confidence ratings available (high and low), average confidence for each 

response type and stimulus condition (Δ click rate) was calculated as proportion of high 

confidence reports for each response/stimulus combination (Figure 2B). Rates were 

calculated for both the combined data, which included every trial from each individual 

(Figure 2), and for each individual subject (Figure S1). 

FA and CR RCs (Figure 3) were generated by smoothing click times with a causal 

half-Gaussian filter having a standard deviation of 0.05 s and sampling every 0.01 s. Note 

that trials differed in duration. Rather than discard trials with shorter durations, each time 

bin represents a mean over a different number of trials with shorter duration trials not 

contributing to earlier time points. For the confidence-based kernels (Figure 3B-C), data 

were first separated into sets of low and high confidence trials, and these individual data 

sets were each convolved with the half-Gaussian filter. The detection report kernel 

(Figure 3A) was created by convolving the click times of all FA trials, regardless of 

confidence. We calculated difference plots for FA RCs (Figure 3B, green line) by 

subtracting the mean low confidence kernel from the mean high confidence kernel at each 

time point. RCs included all trials of the associated trial type (e.g., FA RCs included every 

FA trial recorded). 

The start point and slope of the detection report kernel’s ascending phase were 

then quantified (Figure S2). For each subject’s FA kernels, as well as FA kernels for the 
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combined data, we fit the early phase of the FA kernel, from 3 s before stimulus end to 

the peak value of the kernel, with a 2-piece linear function with three free parameters 

using MATLAB’s fit function. These parameters provided estimates for the average 

baseline click rate leading up to the FA, the average start time of the kernel, and the slope 

of the function from the start time to the peak of the kernel. The start time was the time 

point at which the function first diverged from the baseline. 

Start point and slope of CR confidence difference kernels were estimated similarly 

(Figure S2), by fitting the last 5 s of the CR confidence difference kernel to a 2-piece 

linear function with two free parameters for start point and slope. The start point was the 

first time point that diverged from a 0 Hz differential click rate, and the slope was the slope 

of the line connecting this start point to the stimulus end.  

To estimate kernel endpoint for FAs (Figure S3), we convolved the click times with 

a square-wave function encompassing the descending phase of the FA kernel. This 

allowed for a more precise estimate of the detection kernel endpoint that minimized the 

influence of clicks on later times in the kernel compared to using a causal half-Gaussian 

filter. Starting from 75% of the peak FA choice kernel, a 5 ms bin was moved by 1 ms 

toward the end of the stimulus, providing a 5 ms wide average click rate for each ms time 

point. This kernel was then fit to a 2-piece linear function as before, this time with two free 

parameters: slope and kernel endpoint. Because the subject’s choice of whether to 

respond would no longer be influenced by the stimulus after the kernel endpoint, the mean 

click rate should return to the generative click rate of 50 Hz. Therefore, the rate after the 

endpoint was set to a fixed constant of 50 Hz. The average excess click rate for high and 
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low confidence trials was calculated by subtracting the mean click rate for high and low 

confidence trials, respectively, from 50 Hz. 

DATA AND SOFTWARE AVAILABILITY 

The data that support the findings of this study and the analysis code are available from 

the Lead Contact upon request. 
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SUPPLEMENTAL FIGURES 

  

 

Figure S1. Task performance and confidence ratings: individual and pooled subject data, 

Related to Figure 2: (A) Hit rate as a function of change in click rate for each subject (colored) 

and combined data (black), calculated as a proportion of trials in which a generative change in 

click rate occurred (same conventions as Figure 2). (B ) FA and CR rates across individual and 

combined subjects. FA rates calculated as a proportion of all trials. CR rates calculated as a 

proportion of catch trials. (C ) Proportion of high confidence trials for hits (circles) and misses 

(squares) across individuals and combined subject as a function of change in click rate. Error 

bars are +/- SEM.  
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Figure S2. FA and CR reverse correlations: individual subject data, Related to Figure 3: 

Detection report kernels (1st column), detection report confidence kernels (2nd column), CR 

confidence kernels (3rd column) for each of the 7 subjects. The red shaded region represents 

the interval between the start of the CR confidence and FA kernels. The start of CR confidence 

kernels were estimated from a fit of the CR confidence kernels expressed as a difference of 

high and low confidence (4th column). The start of FA and CR confidence kernels are shown in 

the 5th column, where error bars represent 95% CI. The final column depicts the difference in 

mean click rate between high and low confidence CR trials for each subject within the intervals 

highlighted in red in column 3. Here, error bars represent the pooled standard error of the 

mean and significance calculations were determined from t tests. Conventions for columns 1-3 

are the same as Figure 3. The 7 subjects completed 2100, 1962, 2101, 3096, 3091, 2286, and 

2747 trials, respectively.   
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Figure S3. Pooled estimate of detection kernel endpoint, Related to Figure 3: (A) Kernel 

endpoint was estimated by convolving clicks with a square-wave filter (5 ms width) so that clicks 

would have minimal influence on the kernel after they occurred (black trace). The descending 

phase of the kernel was fit with a 2-piece linear function (red lines). The two free parameters 

were the point at which the kernel returned to the 50 Hz baseline (inflection point of red lines) 

and the descending slope from 75% of the peak detection report kernel height. The same 

convolution was applied to the high (red) and low (blue) confidence FA trials to visualize the 

difference between them. (B ) mean excess click rate above or below the 50 Hz baseline for high 

(left bar) and low (middle bar) FA confidence trials from kernel endpoint until stimulus end. 

Shaded region on traces and error bars are +/- SEM.   
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Figure S4. Simulated effects of bound variability on RC kernels and hit rates, Related to 

Figure 4: (A) The bound variability parameters were chosen from a range of 0-144 Hz  and 

corresponding bounds that resulted in  approximately 12.6% FA rates were used for 

simulations. This resulted in 25 sets of bound and bound variability simulation conditions. All 

other simulation parameters were set to the maximum likelihood estimations of the combined 

experimental data. (B) Increasing bound variability tended to shorten the estimated detection 

kernel but did not have an appreciable effect on the CR-confidence kernel. Thus, bound 

variability could not recapitulate the earlier start of CR confidence difference kernel in the 

experimental data (black circle).   
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Chapter 3: 

Flexible integration of evidence and causal role of posterior parietal cortex for 

perceptual decisions 
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Introduction 

In navigating and engaging environments, animals must evaluate incoming 

sensory evidence to make informed decisions according to their goals. Often, these 

decisions require collection of evidence over time until a criterion level of evidence is 

met, at which point the animal commits to a decision (Gold and Shadlen, 2007; Ratcliff 

and McKoon, 2008; Shadlen and Newsome, 1996; Wald and Wolfowitz, 1950). 

Environmental variables can create obstacles for this process. Incoming sensory noise 

can be noisy, requiring the brain to extract relevant signal to inform decisions (Green 

and Swets, 1966). Also, it is crucial for the animal to establish rules for evidence 

evaluation that maximize decision accuracy. For example, some environments may 

impose urgency upon decisions, demanding different evidence criteria and, critically, 

different timescales of evaluating a sequence of evidence.  

Abundant research has been devoted to delineating how the brain executes 

perceptual decision making mediated by a network of connected brain regions. 

Posterior parietal cortex (PPC), prefrontal cortex (PFC), and dorsomedial striatum have 

been key foci in these investigations (Brody and Hanks, 2016; Gold and Shadlen, 2007; 

Hanks and Summerfield, 2017; Yartsev et al., 2018). In the case of PPC, numerous 

studies in primate LIP have suggested a role for the region in accumulating sensory 

evidence for decisions; these studies have been augmented by research in humans and 

rodents expanding potential for PPC’s involvement in decision making across varying 

forms of evidence, both sensory and abstract, and associated motor actions (Hanks et 

al., 2015; Licata et al., 2017; Roitman and Shadlen, 2002; Shadlen and Newsome, 

1996; van Vugt et al., 2012; Wyart et al., 2012). However, while PFC and striatum have 
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gained empirical support for their causal role in specific components of decision 

execution (Erlich et al., 2015; Piet et al., 2017; Yartsev et al., 2018), PPC’s necessity in 

perceptual decision making has been challenged. Studies in both primates and rodents 

involving perturbation of PPC function resulted in minimal impairments to performance 

when the timing of the decision is controlled by the experimenter, despite PPC still 

exhibiting the striking neural characteristics described above (Erlich et al., 2015; Katz et 

al., 2016; Licata et al., 2017; Raposo et al., 2014).  

Despite this challenge, among the several functional centers for decision making 

in the brain, PPC is still prominently positioned to facilitate adaptive changes in 

evidence evaluation, particularly setting a timescale of evidence evaluation for 

perceptual decisions. In this context, we define “timescale of evidence evaluation” refers 

to the period of time over which past evidence bears on a decision from the time of the 

decision, which can be influenced by several factors including the threshold for decision 

commitment, the time constant of integration of a given quantity of evidence, and 

sensorimotor lag (i.e. non-decision time) (Berg et al., 2016; Okazawa et al., 2018; 

Ossmy et al., 2013). Many studies of PPC have featured an experimental design in 

which evidence evaluated linearly over an extended period of time and with a task 

structure prohibiting subjects from choosing when to commit to a decision. PPC may 

instead contribute an unexplored function in decisions involving an adjustment of 

evaluation timescale when it is necessary to assess how long a given period of 

evidence should be considered for a decision and when it is appropriate to commit to a 

decision.  
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Three key properties of PPC make it a well-suited candidate region for serving 

these functions. First, it is anatomically centered as an interface of sensory and motor 

networks, receiving direct input from primary sensory cortices and outputting to motor-

related structures such as the basal ganglia and motor cortex (Chandler et al., 1992; 

Cheatwood et al., 2003; McGeorge and Faull, 1989; Reep et al., 1994; Selemon and 

Goldman-Rakic, 1988). Second, neurons in PPC appear to encode the relative strength 

of evidence for perceptual decisions such that their firing rates scale with the magnitude 

of accumulated evidence before peaking at decision time, a property found in primate 

and rodent brains (Hanks et al., 2015; Roitman and Shadlen, 2002; Shadlen and 

Newsome, 1996). Third, neurons in PPC have been shown to encode time in decisions, 

both in terms of absolute elapsed time and estimation of hazard rates, and electrical 

microstimulation of monkey PPC can alter reaction times for decisions in free-response 

decisions (Hanks et al., 2006; Janssen and Shadlen, 2005; Leon and Shadlen, 2003; 

Scott et al., 2017). This combination of properties suggest PPC may track evidence for 

decisions flexibly depending on the optimal timescale of evaluation, especially when 

that timescale is shorter as in the case of change 

detection

To test PPC’s role in establishing the timescale of evidence evaluation for 

decision making, we trained rats to perform an auditory change detection task in which 

subjects evaluated sequences of auditory pulses for increases and responded to 

increases in frequency of pulses, a task previously employed in human subjects 

(Ganupuru et al., 2019; Harun et al., 2020; Johnson et al., 2017). During task 

performance, single unit electrophysiological recordings were taken from PPC with 
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Neuropixel probes (Jun et al., 2017) to determine neural dynamics of PPC cells with 

respect to incoming sensory evidence and the subject’s choice. PPC neurons adapted 

their dynamics to the task by way of contracted integration time constants as well as 

reflecting corresponding and competing modalities of choice (i.e. go vs no-go). In 

addition, we tested the necessity of PPC in auditory change detection through 

pharmacological reversible inactivation. We identified a causal role of PPC in 

determining the subject’s timescales of evidence evaluation, namely that PPC is 

necessary in setting a shorter timescale of evaluation suitable for the demands of 

change detection. Together, these results support a mechanistic role of PPC in 

modulating timescales of evidence evaluation for perceptual decision making. 

Results  

Behavioral performance 

We trained rats to perform a free-response auditory change detection task 

adapted from previous studies involving human subjects (Johnson et al., 2017). Rats 

insert their noses into the central port of an operant apparatus, which initiates a stream 

of auditory pulses (“clicks”) generated via a Poisson process. Starting at a baseline rate 

of 20 Hz, the clicks may increase in rate at a random time by a variable magnitude, to 

which subjects must respond within 0.8 s by withdrawing from the central port. A timely 

withdrawal in response to a change is a “hit,” which leads to a water reward delivered 

from a separate port on the side of the apparatus. Failure to withdraw in time results in a 

“miss,” with no reward. Withdrawal in the absence of a change is a “false alarm,” also 

denying a reward. Finally, on a subset of trials, no change in stimulus rate occurs; 
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during these “catch” trials, the rat must maintain central port fixation until the stimulus 

ends, resulting in a “correct rejection” accompanied by water reward (Figure 1A).  

 

Figure 1: Task design and subject performance. A) A trial begins when a rat subject 
engages an illuminated center port in the apparatus with their nose. Port engagement 
triggers initiation of a stream of Poisson-generated auditory pulses (“clicks”) at a 
baseline generative rate of 20 Hz. At a random point (marked by black arrow) in 70% of 
trials, the generative rate increases by a variable magnitude of 10 Hz, 23 Hz, 36 Hz, 49 
Hz. After the rate change, rats have 0.8 s to withdraw their nose from the center port in 
order to receive a water reward from either the left or right side port according to 
subject. In the remaining 30% of trials, no change occurs, and rats must maintain port 
fixation for the full random duration of the stimulus to receive the water reward. B) 
Combined hit rates and reaction times for 2 subjects as a function of change magnitude. 
Hit rate was calculated excluding false alarm trials (i.e. only including trials in which the 
rat was presented with a change). Reaction times were calculated as the time of center 
port withdrawal following a change. Error bars show 95% confidence intervals. C) 
Psychophysical reverse correlation (PRC), combined between subjects. All false alarms 
were included, which shorter latency false alarms contributing to less of the PRC earlier 
in time (i.e. from right to left). Horizontal line demarcates the 20 Hz baseline rate. 
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Like humans, rats consistently detected changes, achieving higher hit rates with higher 

change magnitudes (µ=0.54, all change trials excluding false alarms). Higher change 

magnitudes also yielded lower reaction times (µ=0.33 s, all hit trials) (Figure 1B). These 

metrics suggest rats perform the task by evaluating the strength of the presented 

sensory evidence, and greater quantities of evidence lead to faster, more accurate 

choices. Conversely, rats often withheld responses when appropriate, achieving a 

correct rejection rate of 0.43. The average false alarm rate was 0.41. 

To better gauge the strategy rats employ on this task, we conducted 

psychophysical reverse correlation (PRC) using false alarm trials to assess how rats 

evaluated evidence over time leading to choices. Briefly, baseline stimuli preceding 

false alarm responses were aligned to the time of the false alarm, averaged together, 

and plotted. This analysis allows us to determine the epoch of evidence that has 

bearing on change detection reports. Because the Poisson stimulus may vary about a 

generative mean from trial to trial, it is possible that false alarms are triggered by 

stochastic transient fluctuations in click rate. Therefore, the PRC illustrates not only the 

pattern of evidence evaluation for detection reports but the timescale over which 

evidence is evaluated on average (Ganupuru et al., 2019; Okazawa et al., 2018).  

As expected, the false alarm PRC exhibits an upward fluctuation in click rate 

leading to false alarms, indicating false alarms were generally triggered by brief 

increases in click rate (Figure 1C). The period of this upward fluctuation extended 0.38 

s prior to the rat’s choice, consistent with a short timescale of evidence evaluation. The 

PRC thus illustrates a behavioral strategy on the part of the rats of evaluating evidence 
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over brief intervals and down-weighting older evidence to detect increases in stimulus 

rate, consistent with task demands. 

Evidence-modulated neural responses in PPC 

After characterizing the rats’ dynamics of evidence evaluation at the behavioral 

level, we sought to examine their neural underpinnings. The spiking responses of 552 

neurons in PPC were recorded while rats performed the change detection task, and 

those neurons were then assessed for task-related activity. We found 57 neurons that 

were positively modulated by the stimulus, such that firing rates peaked immediately 

before and through the rat’s response on hit trials (Figure 2A). These neurons were, on 

average, also modulated by the strength of sensory evidence; greater stimulus 

magnitudes elicited greater firing rate increases preceding detection reports up to 0.26 s 

prior to the detection report (Linear regression, b=0.028 +/- 0.003, p<0.05) and between 

0.35 s and 0.83 s prior to the detection report (Linear regression, b=0.095 +/- 0.008, 

p<0.05). Although the positive modulation by click rate exhibited a gap between those 

two periods, the lack of modulation shortly before hits corroborated previous findings in 

PPC in which firing rates converge to a common peak near the decision point 

regardless of evidence strength (Hanks et al., 2014; Kiani et al., 2008). Interestingly, the 

ramp in firing rate began only within several hundred milliseconds before the choice as 

opposed to steadily progressing over a longer period of time from stimulus onset, 

possibly reflecting evidence integration with a short time constant.  

We also aligned firing rates on hit trials to the time of click rate increase. Further 

indicating modulation by evidence strength, firing rates increased to a peak level more 

steeply with greater change magnitude (Figure 2B). Following a change, the click rate 
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Figure 2: Responses of PPC neurons positively modulated by evidence. A) 
Population responses of 57 units showing significant positive modulation by evidence 
strength for same rats in Figure 1 aligned to time of hit. Firing rate traces sorted by 
change magnitude with error shading showing S.E.M. Left dotted line shows maximum 
time of change at 0.8 s, though contributing trials and resulting traces represent hits 
occurring within less than 0.8 s of change. Right dotted line shows the time of the hit. 
Starred line shows period of significant positive relationship between stimulus strength 
and neural response prior to response (Linear regression, b=X +/- X, p<0.05). B) 
Population responses of same units in panel A aligned to the time of change. Left dotted 
line shows the time of change, and right dotted line shows maximum response window. 
Starred line shows period of significant positive relationship between stimulus strength 
and neural response prior to response (Linear regression, b=0.0407 +/- 0.0034, 
p<0.05). C) Population click-triggered average for same units in panel A-B. Responses 
are averaged from each unit’s response to each pulse during the baseline period of 
each trial. Dotted line shows the average firing rate during the baseline of each trial 
contributing to the average, with plotted values representing changes from this baseline 
following a pulse. 

 

had a positive modulation on neural response out to 0.38 s (Linear regression, b=0.041 

+/- 0.003, p<0.05), roughly corresponding to the evidence evaluation timescale 

observed through reverse correlation. Together, these neural responses could explain 

C 
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both higher hit rates and faster reaction times with greater stimulus changes as 

observed in decision behavior. 

To more directly test the hypothesis that PPC neural dynamics adjust to task 

demands with shorter timescales of evidence integration, we computed a click-triggered 

average representing the average neural responses of positively modulated neurons to 

single units of evidence. The resulting average showed a transient increase in firing rate 

following clicks that waned over time. Notably, the time course of this transient increase 

roughly followed the time course of the false alarm PRC in Figure 1, extending to 0.48 s. 

This pattern of response also differs from that seen in similar analysis conducted on 

PPC neurons in an auditory Poisson discrimination task, a pattern of linear increase that 

does not attenuate toward baseline over time (Hanks et al., 2015). Notably, the average 

also fell below baseline after the initial transient increase, which may be explained by 

the fact that evidence’s influence wanes over time according to behavioral metrics 

(Figure 1C) and may actively suppress a decision trigger if sufficient time elapses from 

incidence of a stimulus. Plotting click-triggered averages for individual units in the 

population, we also observed heterogeneity in response time courses; response peaks 

ranged from 0.1 s following a stimulus pulse to over 0.8 s following stimulus pulses 

(Figure 3). Thus, PPC neurons exhibit multiple timescales of integration that are 

respectively suited for different behavioral strategies. 
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Figure 3: Individual unit click-triggered averages. Click triggered average over time 
for each unit in Figure A as a function of time from pulse. Each row represents one of 57 
positively modulated units, with color indicating normalized change in response at each 
25 ms time bin. Plotted values are normalized to the maximum value of the average for 
each unit, such that the bin with the highest average firing rate has a change in 
normalized firing rate of 1. Units are ordered ascendingly in time of maximum response 
(i.e. highest normalized value in click-triggered average). 

 

Flexibility in neural dynamics was not limited to integration timescales, however. 

Besides positively evidence-modulated neurons, we found a larger subset of neurons 

(n=156) that were negatively modulated by evidence strength (Figure 4A). These 

neurons exhibited a downshift in firing rate leading up to the change, and greater 

change magnitudes elicited a greater decrease in firing rate up to 0.70 s (Linear 

regression, b=-0.050 +/- 0.002, p<0.05). When aligned to the time of change, we 
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observed a pattern of evidence modulation that was inverted compared to the positively 

modulated neurons; stronger change magnitudes elicited earlier downshifts in firing rate 

up to and showing significant negative modulation by click rate up to 0.14 s (Linear 

regression, b=-0.021 +/- 0.001, p<0.05) (Figure 4B). This finding suggests the 

propensity for PPC neurons to adapt to task demands not only through integration 

timescales but choice modality: respond vs withhold to suit change detection as 

opposed to left vs right to suit discrimination. PPC’s neural responses have distinctly 

differentiating on a lateral dichotomy in past decision making studies because those 

studies employed tasks requiring subjects to make a lateralized choice involving some 

form of leftward or rightward movement (Churchland and Ditterich, 2012; Churchland et 

al., 2008). Because our task requires a choice between response or no response, the 

response dichotomy in PPC neurons seems to manifest along that dimension. 

We also calculated click-triggered averages for this population of negatively 

modulated neurons. Accordingly, neurons modulated negatively by sensory evidence 

exhibited a transient decrease in firing rate following clicks (Figure 4C) rather than the 

increase observed in the positively modulated subpopulation. Similarly to the click-

triggered average of positively modulated neurons, this average adhered to a 0.42 s 

timescale of modulation, which in turn adhered to behavioral timescales of evidence 

evaluation.  
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Figure 4: Responses of PPC neurons negatively modulated by evidence. A) 
Population response of 156 units showing significant negative modulation by evidence 
strength for same rats in Figure 1 aligned to time of hit. All plotting conventions identical 
to those in Figure 2A. Starred line shows period of significant negative relationship 
between stimulus strength and neural response prior to response (Linear regression, 
b=-0.021 +/- 0.0008, p<0.05). B) Population responses of same units in Panel A aligned 
to the time of change. All plotting conventions identical to those in Figure 2B. C) 
Population click-triggered average for same units in Panel A-B. Same calculation and 
plotting conventions as in Figure 2C. 

 

Adaptation of PPC neural responses across decision times 

Although these results suggest flexibility of neural dynamics between task 

regimes with varying demands, they do not alone reveal the propensity of individual 

parietal cells to adapt dynamics within a task regime with a consistent modality of 

evidence and requisite motor response. We therefore wanted to test whether changes 

C 
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in neural integration properties aligned with changes in behavior within the change 

detection task. To develop a proxy for testing changes in behavioral strategy for this 

purpose, we took advantage of the fact that rats’ evaluation timescales tended to 

contract over the course of the trial: PRCs for false alarms occurring earlier than 2 s into 

a trial) possessed a wider kernel at 0.46 s than for false alarms occurring later than 2 s 

into a trial) at 0.36 s (Figure 5A). Furthermore, the PRC for early false alarms reached 

a peak amplitude of 30.60 Hz +/- 1.49 Hz, exceeding the peak amplitude of late false 

alarm PRC (27.9 Hz +/- 1.01 Hz, 95% CI, p<0.05). At the psychophysical level, this 

disparity may represent a shorter timescale of evidence evaluation owing to a smaller 

amount of evidence required to reach a decision threshold. Therefore, it seemed 

plausible that if recorded PPC units causally influence detection choices, those cells 

would accordingly exhibit differing integration dynamics over the course of each 

decision to engender a quicker or slower decision. 

Figure 5B shows click-triggered averages for early and late periods of trials averaged 

across positively modulated cells. Although the click triggered averages exhibit similar 

timescales, they notably exhibit different amplitudes, with cells responding more 

strongly to units of evidence in later trial periods (0.08 +/- 0.02 change from baseline for 

early and 0.15 +/- 0.02 for late, 95% CI, p<0.05). This disparity is consistent with a 

mechanism in which PPC cells increase the gain of integration as decision time elapses 

to expedite a response, which would, in turn, shrink the overall timescale of evidence 

evaluation later in a trial.  
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Figure 5: Behavioral and PPC neural responses for early and late stimulus 
periods. A) False alarm psychophysical reverse correlation for same rats in Figure 1 
separated by time of false alarm. Red trace represents trials in which a false alarm 
occurred within 2 s of stimulus start and blue trace represents trials in which a false 
alarm occurred later than 2 s after stimulus start. Otherwise, plotting conventions are 
identical to those in Figure 1C. B) Population click-triggered averages for 57 positively 
modulated units from Figure 2 separated by time of pulse. Red trace represents the 
average response to baseline pulses occurring earlier than 2 s in all trials. Blue trace 
represents the average response to baseline pulses occurring later than 2 s in all trials. 
C) Click-triggered average peak amplitudes for 57 positively modulated units from 
Figure 2. Each marker represents the maximum click-triggered average value for one of 
57 units, plotted for responses to early (<2 s) pulses against late (>2 s) pulses. Dotted 
reference line marks values of equivalence between peak responses to early and late 
pulses. Error bars show S.E.M.  

 

responding more strongly to units of evidence in later trial periods (0.08 +/- 0.02 change 

from baseline for early and 0.15 +/- 0.02 for late, 95% CI, p<0.05). This disparity is 

consistent with a mechanism in which PPC cells increase the gain of integration as 

decision time elapses to expedite a response, which would, in turn, shrink the overall 

timescale of evidence evaluation later in a trial.  

We also sought to determine whether this change in integration properties was 

driven by alterations of individual cell dynamics or simply by a shift in activeness 

between subpopulations of units with different integration properties. Therefore, we 

calculated peak click-triggered average amplitudes for individual units during early and 

late periods trial periods and compared the two. Corroborating the hypothesis that 

individual cells adjust dynamics according to adjustments in behavioral dynamics, most 

units independently exhibited a higher amplitude response later in trials compared to the 

first 2 s of trials (Figure 5C). In summary, adjustments in timescale of evidence 

evaluation at the behavioral level directly align with adjustments in response properties 

of PPC cells during evidence processing. 



78 
 

Causal role of PPC in evidence evaluation in change detection 

Finally, we sought to determine whether PPC was necessary for establishing 

timescales of evidence evaluation. Though examinations of PPC neural dynamics have 

prominently posited a role for evidence integration for decision making, various studies 

involving perturbation of PPC during decision making have instead suggested a lack of 

causal contribution of PPC to decision making (Erlich et al., 2015; Katz et al., 2016; 

Licata et al., 2017). However, these studies commonly featured a decision time 

controlled by the environment rather than by the subject. Indeed, PPC seems to 

maintain a causal role when the animal and not the environment controls the time of 

decision (Hanks et al., 2006; Zhou and Freedman, 2019), as in the case of our task. 

Therefore, it is plausible that, even though PPC may not be necessary in the 

accumulation of sensory evidence for perceptual decisions over long timescales, it may 

be necessary in setting short timescales of evidence evaluation for situations in which 

the animal decides how and when to respond to incoming stimuli.   

We tested the necessity of PPC functionality in setting a particular timescale of 

evidence evaluation when the environment does not control decision time by infusing 

PPC of rat subjects with the GABA agonist muscimol. Then, we compared performance 

on the change detection task between muscimol sessions and sessions in which 

subjects were infused with vehicle saline solution. With muscimol inactivation of PPC, 

rat subjects achieved lower hit rates on average (Veh: 0.61 +/- 0.02, Mus: 0.55 +/- 0.02, 

95% CI, p<0.05) (Figure 6A), but they also accumulated fewer false alarms (Veh: 0.44 

+/- 0.02, Mus: 0.29 +/- 0.02, 95% CI, p<0.05) (Figure 6C). Reaction times on hit trials 

also increased with PPC inactivation (Veh: 0.31 s +/- 0.007 s, Mus: 0.33 s +/- 0.006 s, 
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95% CI, p<0.05) (Figure 6B), which together with the other changes in metrics 

illustrates a reduction in propensity to commit to a report. 

These patterns in metrics suggested a change in patterns of evidence evaluation 

in that rats seem to evaluate evidence more conservatively with PPC inactivation. 

Longer timescales of evidence evaluation lend themselves to lessened influence of brief 

changes in evidence strength, which would in turn reduce incidence of both accurate 

and erroneous detection reports. We tested this hypothesis by calculating and 

comparing false alarm PRCs for vehicle control and inactivation sessions. As predicted 

by psychometric results, false alarm PRCs for PPC inactivation sessions showed a 

greater width than that of vehicle sessions (0.43 s +/- 0.03 s for vehicle and 0.52 s +/- 

0.05 s for muscimol, 95% CI, p<0.05) (Figure 6D). This difference in PRC width 

demonstrates a longer average timescale of evaluation when PPC is inactive, thus 

supporting a role of PPC in establishing the timescale of evidence evaluation for 

decision making.
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Figure 6: Rat behavioral performance following muscimol inactivation of PPC. A) 
Hit rates across change magnitudes for 2 rats during task performance following PPC 
infusion of vehicle (black) or muscimol (purple). Error bars show 95% confidence 
intervals. B) Reaction times across change magnitudes for 2 rats during task 
performance following PPC infusion of vehicle (black) or muscimol (purple). Error bars 
show 95% confidence intervals. C) False alarm rates for 2 rats during task performance 
following PPC infusion of vehicle (black) or muscimol (purple). Error bars show 95% 
confidence intervals. D) False alarm psychophysical reverse correlations for 2 rats durin 
task performance following PPC infusion of vehicle (black) or muscimol (purple). Error 
bars show S.E.M. 

 

Discussion 

PPC has long been a subject of controversy in decision making neuroscience, 

and its role in evaluation of evidence has been repeatedly called into question (Brody 

A B 

C D 
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and Hanks, 2016; Hanks and Summerfield, 2017). Past studies of PPC in the context of 

decision making have largely focused on its potential role as an evidence accumulator. 

Our results posit an alternative putative function of PPC in setting the timescale of 

evidence evaluation for decision making by demonstrating both electrophysiological 

neural dynamics suitable for short timescale evidence evaluation, in contrast with 

previous results demonstrating suitability for long timescale evidence evaluation, and a 

causal role in short timescale evidence evaluation. We collected these results using a 

novel auditory change point detection task for rat subjects, also able to be performed by 

humans, that allows us to study how the brain evaluates evidence over short 

timescales. 

Our findings imply PPC neuronal activity can be tuned to task demands, which 

more clearly defines PPC’s role in a larger decision making network. These timescales 

are not observed in decisions involving linear accumulation of evidence, and the 

timescales could not emerge solely in downstream populations because they would not 

be observed in our observed units. Therefore, the short timescales we see must be 

instantiated either within the PPC population or in their afferents. The former possibility 

may be implemented, for example, through PPC’s robust interneuron population, which 

has been shown to selectively suppress sensory responses in PPC (Song et al., 2017, 

2020). This circuit property, combined with negative feedback in the form of recurrence, 

could potentially lead to short integration timescales. The latter possibility is more 

readily explained by previously observed properties of PPC’s sensory afferents, which 

showcase diverse timescales of modulation following sensory stimulation (Bernacchia et 

al., 2011; Murray et al., 2014; Scott et al., 2017). These timescales could therefore 
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simply be inherited by PPC from primary sensory regions. In either case, other nodes in 

the perceptual decision making network, such as anterior dorsal striatum, may also 

inherit these timescales, which would further position PPC as a crucial mediator of 

evidence evaluation timescales. 

The dichotomy in PPC dynamics between positively and negatively modulated 

cells demonstrates an additional dimension of flexibility beyond timescale. While most 

studies of PPC’s role in evidence evaluation involve lateralized tasks in which subjects 

choose between left and right, our task instead requires choice between responding and 

withholding a response from moment to moment. This task, a member of a larger 

category of go vs no-go tasks (Donders, 1969; Gomez et al., 2007), accordingly 

introduces different motor demands and more greatly emphasizes inhibition of 

response. The subpopulation of negatively modulated PPC neurons may contribute to 

successful change detection by suppressing aberrant responses at baseline and 

releasing inhibition on appropriate responses in change periods, in line with 

downstream motor systems of perceptual decision making as in primate saccade 

circuits (Fuchs et al., 1985; Sparks, 2002) or the indirect pathway in the basal ganglia 

(Albin et al., 1989; DeLong, 1990). As such, the behavior evoked by the demands of our 

change detection task evoke multiple forms of unique neural dynamics in PPC that can 

plausibly serve that behavior. 

We also discovered flexibility of neural responses in PPC within a single task 

modality, wherein both the neural population and individual units seem to tune their 

response properties from decision to decision and also within decisions with respect to 

an observed change in evidence integration gain over time. PPC cells altered the gain 
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of processing to individual pulses of evidence, responding more strongly to incoming 

evidence as trials progressed. Strikingly, this change in neural response property 

corresponded with changes at the behavioral level. False alarms occurring late in trials 

were associated with a shorter timescale of evidence evaluation as demonstrated by 

psychophysical reverse correlation compared to false alarms occurring earlier in trials. 

Along the orthogonal dimension of the magnitude of the evidence integration and the 

associated evidence criterion, we also see a decrease in the required amount of 

evidence required to trigger a decision in the case of these late false alarms. 

Adjustments in PPC neural dynamics therefore provide a putative explanation for the 

observed behavioral changes because stronger responses to evidence could instantiate 

a shorter evaluation timescale by allowing attainment of an evidence criterion over a 

shorter period. Previous studies have suggested neural mechanisms in PPC and 

elsewhere for expediting decision time due to sources of urgency or changes in 

environmental statistics (Hanks et al., 2014; Janssen and Shadlen, 2005; Thura and 

Cisek, 2016, 2017). Here, though, we have identified an instance of altered evaluation 

timescales that can serve a similar function in controlling decision time at the level of 

integration of incoming evidence and adjustments in the dynamics of such integration. 

Although these electrophysiological responses present a strong case for PPC’s 

involvement in the perceptual decision making process, past perturbation studies of 

PPC challenged a causal role in that process (Erlich et al., 2015; Katz et al., 2016). In 

contrast, inactivation of PPC produced marked changes in auditory change detection: 

Subjects responded less impulsively, accruing both fewer hits and false alarms, and 

evaluated evidence over longer timescales. We surmise that, without PPC functionality, 
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rats may be unable to employ the evaluation timescale they developed in training and 

default to a longer timescale. This deficit would be less likely to affect performance in a 

task where all evidence is evaluated over a long timescale with equal weighting, in turn. 

In this way, we hypothesize PPC plays a modulatory role in evidence evaluation; even if 

it does not serve as the brain’s causal accumulator of evidence, it may mediate the 

timescale of evidence integration in downstream brain regions that do serve in that 

capacity.   

Methods 

Subjects 

A total of 4 male Long-Evans rats from 1-2 years were used for this study. 2 rats 

were used for neural recordings and 2 rats were used for the inactivation experiment. 

Rats were water restricted outside of behavioral sessions but given free access to water 

thirty minutes following completion of a session for one hour. 

Apparatus 

Tasks were programmed and run in MATLAB (Mathworks) and facilitated by 

Bpod (Sanworks) to measure real-time behavioral output. Operant chambers used to 

facilitate behavioral data collection consisted of three ports made of stainless steel 

(training and inactivation data collection) or Delrin polymer (electrophysiological data 

collection). Each port contains an infrared LED beam that detects rat nose insertion 

upon obstruction of the beam, as well as an LED light that signals to rats when the port 

is active. 
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Behavior 

We trained rats to perform an auditory change detection task previously 

employed in studies involving human subjects (Ganupuru et al., 2019; Johnson et al., 

2017). In this study’s implementation, rats insert their nose into the central port of a 

behavioral apparatus cued by an LED light. Upon nose insertion, a stream of auditory 

pulses (“clicks”) is generated at a baseline rate of 20 Hz according to a Poisson 

process. At a random point in time, with a mean of 2 s and a maximum time of 4 s, the 

generative click rate increases by a variable magnitude of 10 Hz, 23 Hz, 36 Hz, or 49 

Hz. The hazard rate for change times was flat. After a change occurs, the rat has 0.8 s 

to respond by withdrawing from the port. Successful withdrawal within the allotted time 

window is recorded as a “hit,” which is rewarded with a drop of water from a port on 

either the left or right of the central port. Failure to withdraw within the allotted time is 

recorded as a “miss,” with reward withheld. Premature response in the absence of a 

change is recorded as a “false alarm,” with reward withheld. Finally, on 30% of trials, no 

change occurs, in which case the rat must maintain fixation in the central port until the 

stimulus ends to achieve a “correct rejection.” Sessions lasted 80 minutes. 

Before implantation of electrodes, rats were acclimated to a separate, electrically 

inert chamber for behavioral training. For behavioral criteria, we chose rats with at least 

a 0.4 correct rejection rate and 0.5 hit rate on >300 trials per session. 

Electrophysiological recordings 

Single unit recordings were taken with Neuropixel 1.0 probes (Jun et al., 2017; 

Steinmetz et al., 2018). Probe implants were assembled according to previous methods 
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(Juavinett et al., 2020). A silver wire is soldered to the grounding contacts on the probe, 

and the probe is glued to a 3D-printed internal mount that is affixed to a stereotax 

adapter for implantation. The internal mount is then bound to an external mount by 

epoxy that holds a headstage circuit board for data transmission. 

Probes were stereotactically implanted at -3.95 mm AP relative to Bregma, +/-2.2 

mm ML relative to bregma (probe implanted contralateral to the side of the reward port 

assigned to the subject), and 1.5 mm ventral to brain surface. Probes were lowered 

slowly, roughly 20 seconds per 0.1 mm, while simultaneously recording to ensure probe 

function and verify implantation depth. Ground wires were inserted into the cerebellum 

approximately 2 mm posterior to IA0. After implantation of probe and ground wire, both 

craniotomies were filled with sterile optical lubricant. Dental acrylic was applied to the 

external mount of the probe and the ground wire to bind the implant to the skull, and 

absolute dentin was applied over the skull to seal the wound. The headstage was taped 

to the external mount with Kapton tape and the implant was covered with self-adhesive 

wrapping. Rats were left with free access to food and water to recover for one week 

following surgery before resumption of training and recordings. 

During recording sessions, self-adhesive wrapping was removed and an 

interface cable was plugged into the headstage. The interface cable was wrapped 

around a gel toe sleeve to relieve strain from the rat moving. The cable was fed through 

a simple pully system to prevent the rat from grasping the cable while rearing, 

connecting to a PXIe acquisition module. This module interfaced with the Bpod and 

recording computer. Recordings were operated through Open Ephys 3. 
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Drug Infusions 

Rats were implanted bilaterally with guide cannulas with a length of 4mm at +/- 

2.2 mm lateral and at either 3.80 or 3.95 mm posterior to bregma. Guide cannulas were 

lowered to the brain surface then cemented in place as describe above. Dummy 

cannulas extending 0.5 mm past the tip of the guide cannula were inserted into the 

guide cannulas at the end of surgery. Following recovery from surgery and 3-4 days 

before the first infusion and data collection session, rats underwent a sham infusion in 

which rats were lightly anesthetized with 2% isoflurane and internal cannulas extending 

1.5 mm past the tip of the guide cannula were inserted into the brain for four minutes. 

Rats were allowed to recover for 30 minutes before the behavioral session began. 

Rats were infused twice a week before behavioral sessions with 0.3 µL of either 

saline solution (vehicle condition) or 1 mg/mL muscimol and saline solution (muscimol 

condition), alternatively. Volumes and concentrations were based on those of previous 

inactivation studies of this region, which were, in turn, based on autoradiographic and 

electrophysiological validation of muscimol spread dynamics (Krupa et al., 1999; Martin, 

1991). After being anesthetized with 2% isoflurane, rats were injected with either 

muscimol or vehicle through an internal cannula fitting inside the guide cannula and 

extending 1.5 mm past the tip of the guide. The internal cannula was attached to a tube 

filled with mineral oil, which was attached on the opposite end to a Hamilton syringe 

used to control the injection. After slowly injecting the fluid over a period of two minutes, 

the internal cannula was left in the brain for four minutes to allow full diffusion of fluid 

and relief of any backflow through the cannula’s shaft. This process was repeated for 
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each of the two cannulas. Like in the sham infusion, rats were left to recover for 30 

minutes before the behavioral session began. 

Behavioral data analysis 

Hit rates were calculated as the proportion of trials in which rats withdrew their 

nose within 0.8 s of change point, excluding false alarm and catch trials. False alarm 

trials included all trials in which rats withdrew their nose during stimulus baseline, 

including change and catch trials. Reaction times were calculated as the time of nose 

withdrawal after change point.  

Psychophysical reverse correlations were generated by aligning the click times of 

each false alarm trial to the time of the rat’s report. False alarm trials were used to avoid 

the confound of generative rate change associated with hit trials, which allowed us to 

study the relationship between stimulus and response by taking advantage solely of the 

stimulus’s Poisson property. For visualization, each false alarm click time vector was 

convolved with a causal half-Gaussian filter with a standard deviation of 0.03 s and 

sampling every 0.01 s. Regardless of false alarm time and thus duration of stimulus 

preceding the detection report, all false alarms were included in the PRC, with false 

alarms with shorter stimulus durations simply contributing to a smaller epoch of the 

PRC. After this smoothing, false alarm reverse correlations were averaged together. For 

calculation of early and late false alarms, false alarm trials were categorized as early if 

the false alarm occurred within 2 s of stimulus start and late if the false alarm occurred 

later than 2 s after stimulus start. 

 



89 
 

Electrophysiological data processing and analysis 

We used the Kilosort 3 spike sorting algorithm (Pachitariu et al., 2016) to identify 

single units clusters of spiking activity in our data to include for data processing. 

Following initial sorting, the Phy 2.0 cluster viewing software (Rossant, 2022) was used 

to manually curate clusters to remove units with drop-out due to drift via visualization of 

amplitude plots over the course of a session. Phy also allowed us to merge clusters that 

clearly originated from the same unit by assessing correlation of spike times between 

clusters and correlations in drift. Units that drifted out of the probe’s recording radius 

during a session were excluded from analysis to avoid distortion of trial-by-trial 

response observations. 

We further filtered single units for inclusion in analysis by identifying units with at 

least a 1 Hz firing rate during active task engagement (i.e. during stimulus presentation 

and reward collection). The remaining units were again filtered for task modulation by 

comparing firing rates during the post-change period of increased stimulus rate to the 

pre-change period of baseline stimulus rate (Wilcoxon ranked sum test, p<0.05). Units 

were sorted into two groups: those with a higher firing rate during baseline, comprising 

negatively modulated units, and those with a higher firing rate following stimulus 

change, comprising positively modulated units.  

Peri-stimulus time histograms (PSTHs) were calculated by aligning spikes to one 

of two stimulus events, time of response or time of change. Spikes were convolved with 

a causal half-Gaussian filter (0.01 s bin size, using MATLAB’s maskraster function for 

visualization). To test periods of significant correlation between stimulus strength and 

neural responses leading up to detection reports, a sliding average of spikes over 100 
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ms increments was calculated from the time of report to 1 s prior to the detection report. 

For each increment, a linear regression model was calculated using MATLAB’s fitlm 

function, and the slope, standard error of the slope, and p-value (calculated from the fit’s 

t-statistic) were ascertained. We demarcated the period of significant modulation as the 

end of the final increment during which p<0.05 for the model fit, moving from report time 

to earlier time points, also noting the sign of the slope (positive for positively modulated 

units, negative for negatively modulated units). 

Click-triggered averages were calculated by aligning neural responses to the 

time of each pulse during baseline for each trial during the recording. For pooled unit 

click-triggered averages, we combined responses of all units into a single “meta unit” 

using all baseline pulse responses from all trials. Crucially, we subtracted each trial’s 

baseline firing rate from the pulse responses for all units recorded during a given trial. 

This allowed us to neutralize time-dependent modulation and response contamination 

from other pulses in the calculated the averages. Unit-specific click-triggered averages 

(Figure 3) were calculated in the same way, but plotted values are normalized to the 

peak click-triggered response for each unit, such that all responses are divided by the 

value of the click-triggered average’s peak and bins with values below -1 being rounded 

up to -1. For comparing click-triggered averages occurring early or late in trials, we 

included responses to pulses occurring before 2 s during stimulus presentation in the 

early category and responses occurring later than 2 s in the late category. 
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Introduction 

 Perceptual decision making requires processing of raw sensory information into 

task-related decision variables to inform action selection. Often, this information must be 

integrated over long periods, such that newer decision evidence is combined with older 

evidence to most accurately evaluate environmental events to make successful 

decisions (Gold and Shadlen, 2007; Hanks and Summerfield, 2017). This function has 

been modeled as a complex “accumulation” process by which each incoming unit of 

evidence is combined with a fluctuating abstract decision variable, the value of which is 

evaluated at a variable point dependent on either the decision maker’s own criteria or 

the point at which evidence is no longer available (Ratcliff and McKoon, 2008; Ratcliff 

and Rouder, 1998). Several brain regions have been implicated in this accumulation 

process, including posterior parietal cortex (PPC) (Roitman and Shadlen, 2002; Shadlen 

and Newsome, 1996), anterior dorsal striatum (Yartsev et al., 2018), and prefrontal 

cortex (PFC) (Hanks et al., 2015; Noppeney et al., 2010). However, it is unclear the 

extent to which these regions accumulate evidence via their own intrinsic neural 

response properties as opposed to inheriting these patterns of responses from 

upstream brain regions. 

 Primary sensory regions of the brain represent the first cortical regions receiving 

sensory inputs, making them key targets of study for understanding the dynamics of 

information flow in the brain for perceptual decisions. These regions project directly to 

association areas exhibiting accumulation-like neural responses during decision 

deliberation (Chandler et al., 1992; Cheatwood et al., 2003; McGeorge and Faull, 1989; 

Selemon and Goldman-Rakic, 1985; Siegel et al., 2015). The connectivity between 
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primary auditory cortex (A1) and these regions is especially interesting because of its 

causal nature, wherein perturbation of its connections with PPC (Zhong et al., 2019) 

and striatum (Xiong et al., 2015; Znamenskiy and Zador, 2013) directly influences 

choices on various perceptual decision making tasks. A1 also possesses functions 

critical to evidence accumulation for auditory decisions, including detection of temporal 

patterns in evidence (Jaramillo and Zador, 2011; Rybalko et al., 2010), activity reflecting 

choice selectivity leading up to auditory decisions (Guo et al., 2019), and maintenance 

of stimulus representation after the end of a stimulus, in line with a short term memory 

function (Scott and Mishkin, 2016; Yu et al., 2021). Together, these properties could 

support accumulation of evidence over time in the brain for auditory decisions. Despite 

these properties, A1 is not necessary for auditory discriminations bearing on simple 

spectral features of stimuli (Gimenez et al., 2015; Heffner, 1978), suggesting that A1 

may be more involved in complex processing of sounds than purely representing 

spectral qualities of stimuli. 

 To test the hypothesis that A1 is necessary for evidence accumulation in auditory 

decision making, we reversibly inactivated A1 of rats performing an auditory 

discrimination task using the GABA agonist muscimol. We found that A1 is necessary 

for performance in the task, as A1 inactivation led to decreased accuracy in 

discrimination. We also inactivated A1 on an auditory change detection task in which 

evidence is evaluated over a shorter timescale than in the discrimination task, thus not 

requiring linear accumulation of evidence, resulting in minimal effect on performance. 

Using model-free analysis, we determined that A1 is necessary for computing the 
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sensory identity of incoming sensory information for auditory decisions but not 

necessarily accumulating that information over time. 

Results 

 We trained rats to perform an auditory discrimination task in which subjects 

poked their nose into the central port of an operant apparatus to trigger two trains of 

auditory pulses (“clicks”), each emitting from a speaker to either the left or the right 

(Figure 1). The stimulus endured for 1 s, during which the rats maintained port fixation. 

The stimulus played at a mean total rate of 40 Hz, generated through a Poisson 

process, but differed in the proportion of left and right clicks from trial to trial. At the end 

of the stimulus period, the rats poked either a left or right port to indicate the side that 

emitted more clicks. A correct response yielded a water reward. 30 minutes before each 

session, rats were infused with either the GABA agonist muscimol or a saline vehicle 

solution. Muscimol infusions were performed either bilaterally or unilaterally, with vehicle 

infused to the contralateral side in the latter case. 

 

Figure 1: Auditory discrimination task. A trial begins when a rat engages an 
illuminated central port, triggering two trains of auditory “clicks,” one on each side of the 
rat. After 1 s of stimulus presentation, the rat must engage the left or right port to report 
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its choice of which train contained more clicks. A correct choice results in a water 
reward. 

 

Rats performed the task successfully, achieving higher hit rates with greater 

lateralized click differences (Figure 2A). Bilateral muscimol inactivation reduced 

performance across most stimulus difficulties significantly, with more rightward choices 

for left trials and more leftward choices for right trials (Two-proportion z-test, p<0.05). 

Performance on all trial types trended this way. With unilateral inactivation, only right 

muscimol infusions induced significant impairments in performance, however, in the 

form of a higher proportion of leftward choices (Figure 2B-C).  

 We wanted to determine whether these impairments resulted predominantly from 

a sensory deficit or an impairment in the rat’s ability to accumulate evidence over time. 

As a model-free approach to this end, we conducted psychophysical reverse correlation 

(PRC) to assess how rats used evidence over time. Because the stimulus is Poisson, 

the exact number of clicks on each side can vary from trial to trial even though they are 

generated with a programmed mean. Rats may thus be more likely to choose a side 

when there is an excess of clicks on that side relative to the generative rate, so 

calculating the excess click rate associated with certain trials can inform us of which 

periods of stimulus had greatest leverage on the rats’ decisions. For example, if a rat 

disregards the early stimulus period, the PRC should be shallower at that period, as an 

excess click count during that period is less likely to drive the associated choice. 

Therefore, a contraction in PRC in specific areas indicates a change in how the rat is 

evaluating information over time, potentially an accumulation deficit, while a contraction 
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in PRC across the stimulus period is more consistent with sensory deficit, since all 

evidence is comparably discounted. 

 

 

 

 

Figure 2: Task performance and effects of muscimol inactivation of A1. A) 
Performance following bilateral inactivation of A1, pooled from eight subjects. Proportion 
of rightward choices as a function of the different of right and left clicks. Error bars show 
SEM and asterisks show significant difference (p<0.05) via two-proportion Z-test. 
Curves are sigmoidal functions fit to the data points for visualization. B) Same as A for 
rightward inactivation of A1. C) Same as A for leftward inactivation of A1. D) 
Psychophysical reverse correlations for vehicle sessions. Red trace shows the excess 
click rate (i.e. the difference between the actual click rate and click rate expected based 
on the generative rate) for rightward choices. Green trace shows the same for leftward 
choices. Shading shows SEM. E) Same as D for bilateral muscimol sessions. 
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 Figure 2D shows the pooled PRCs across all subjects for the vehicle condition. 

We found that, in line with the demands of the task, rats used information throughout 

the trial, with a separation of PRC traces throughout the stimulus period. However, with 

bilateral muscimol inactivation, the PRC contracted, with overlap between the stimulus 

at multiple epochs throughout the stimulus period (Figure 2E). The PRCs thus suggest 

a deficit that occurs at least primarily through sensory impairment. 

 Finally, we wanted to see if these deficits persisted in a task in which linear 

accumulation of evidence over time is not optimal for task success. We inactivated A1 

on a separate auditory change detection task, previously described in Chapters 2 and 3 

(Figure 3A). Here, rats again engaged a center port, which triggered a single train of 

clicks with a generative rate of 20 Hz. At a random point in time, the click rate increased 

by a variable magnitude, at which point the rat had 0.8 s to withdraw from the port. Rats 

achieved higher hit rates (Figure 3B) and lower reaction times (Figure 3C) with greater 

change magnitudes. Unlike in the discrimination task, performance on the change 

detection task was not significantly impaired with A1 inactivation, including the incidence 

of false alarms, responses in the absence of a change (Figure 3D). For these trials, we 

computed PRCs using the clicks leading up to the false alarm, which indicated the 

pattern of evidence that tended to trigger false alarms. We found that PRCs did not 

differ significantly between vehicle and muscimol conditions in terms of timescale (i.e. 

the period the PRC exceeded the baseline) but muscimol PRCs did have a slightly 

lower amplitude than the vehicle PRCs (Figure 3E). This difference in PRC pattern did  
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Figure 3: Change detection task performance and effects of muscimol 
inactivation of A1. A) Task schematic for change detection task. A rat engages a 
central port which triggers a single train of auditory clicks. At a random point in time, the 
click rate increases by a variable magnitude, and the rat must remove its nose within 
0.8 s. Nose removal during this period results in a “hit.” Failure to respond results in a 
“miss.” Response during the pre-change baseline period results in a “false alarm.” 
Correct responses are rewarded with water via a side port. B) Hit rate by change 
magnitude, separated by vehicle (black) and muscimol (purple). Error bars show 95% 
CI. C) Reaction time by change magnitude. Same conventions as B. D) False alarm 
rates. Same conventions as B. D) Reverse correlations for false alarm trials. Click rates 
are aligned to false alarm times, such that the traces show the patterns of evidence that 
tended to trigger false alarms. Shading shows SEM. 

 

not seem to be sufficient to drive a disparity in performance, though, suggesting that A1 

has minimal causal role in auditory change detection over short timescales compared to 

auditory discrimination over long timescales. 

Discussion 

 In this study, we tested the necessity of primary auditory cortex (A1) in 

accumulation of evidence over time in auditory decision making. We found that, in an 

auditory discrimination task performed by rats, bilateral inactivation of A1 impairs 

performance. Psychophysical reverse correlation revealed this impairment to be driven 

by a sensory deficit rather than a deficit in the rat’s ability to accumulate auditory 

evidence over time. This is in line with previous findings demonstrating A1’s role in 

sound localization (Heffner, 1978; Malhotra and Lomber, 2007); the discrimination task 

does not bear on the spectral properties of the stimuli but rather the quantity of stimuli 

with respect to the directional source. Therefore, it is reasonable to suggest the 

observed deficit may source partly from a loss of this localization function. 

Interestingly, unilateral inactivation only resulted in significant impairment with 

right A1 inactivation, possibly suggesting a lateralized role in this type of evidence 
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processing. Indeed, lateralized function in A1 has been identified in processing of 

language (Springer et al., 1999), stimulus timing (Rybalko et al., 2010), and estimation 

of stimulus change hazards (Celsis et al., 1999). Left A1 inactivation resulted in a slight 

but non-significant bias toward the right, so it is possible both sides of A1 contribute to 

auditory decisions, but rats are better able to compensate for a particular side. Rats 

exhibited a slight rightward bias, so it also may be that right A1 inactivation reduced bias 

in general, while left A1 inactivation had minimal effect because leftward choices were 

already relatively unfavored.  

In contrast with inactivation effects on discrimination performance, A1 inactivation 

on an auditory change detection task did not result in significant impairment to 

performance. In this task, rats evaluated evidence over short timescales, and the 

decision depended only on properties of a single stream of evidence. Assessment of 

reverse correlations on change detection performance did not indicate any change in 

the timescale over which rats evaluated evidence over time following A1 inactivation. 

Therefore, it is likely the lack of A1 inactivation effect on change detection performance 

highlights a different feature of A1’s function related to differences between this task 

and the detection task, such as a lack of localization component in the change detection 

task. 

Methods 

Subjects 

 A total of 11 male Long-Evans rats from 1-2 years were used for this study. 8 rats 

were used for the discrimination task experiment and 3 rats were used for the change 
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detection task experiment. Rats were water restricted outside of behavioral sessions but 

were given free access to water thirty minutes following completion of a 80 minute 

session for one hour. 

Apparatus 

 Tasks were programmed and run in MATLAB (Mathworks) and facilitated by 

Bpod (Sanworks) to measure real-time behavioral output. Operant chambers used to 

facilitate behavioral data collection consisted of three ports made of stainless steel. 

Each port contains an infrared LED beam that detects rat nose insertion upon 

obstruction of the beam, as well as an LED light that signals to rats when the port is 

active, and a lick spout protruding from the center of the port. Above each side port is a 

speaker. 

Behavior 

 We trained 11 male Long-Evans rats on the discrimination task as described 

previously (Brunton et al., 2013; Erlich et al., 2015; Hanks et al., 2015). Rats insert their 

nose into an LED-illuminated center port. This triggers two streams of auditory pulses 

(“clicks”), one emitting from a speaker from the left and one from a speaker to the right. 

The clicks played for 1.0 s, at the end of which the central LED would turn off and the 

LEDs on the two side ports would illuminate. Rats reported their choice by poking the 

side port associated with their choice, left or right. A correct choice resulted in a water 

reward. Premature withdrawal from the central port before stimulus ended resulted in 

violation trials, which were excluded from analysis. The clicks played at a mean 

generative rate of 40 Hz combined between the sides but were generated through a 
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Poisson process, such that the actual number of clicks could vary about that mean rate 

from trial to trial. On each trial, the proportion of clicks emitting from each side also 

varied, which determined the difficulty of the trial. The average generative click 

differences between the two sides were 2, 5, 12, and 33. 

 For the change detection experiment, 3 male Long-Evans rats trained on the 

change detection task described in Chapter 3. Briefly, rats inserted their noise into a 

center port in the previously described apparatus to trigger a single stream of clicks with 

a 20 Hz generative rate. At a random point in time, the click rate increased by a variable 

magnitude that determined the difficulty of the trial. At the point of change, rats had 0.8 

s to withdraw their nose from the central port to achieve a “hit.” Failure to respond in 

time resulted in a “miss.” Premature port withdrawal (i.e. while the stimulus was still at 

baseline) resulted in a “false alarm.” On 30% of trials, catch trials, rats were required to 

maintain port fixation until the stimulus ended at a random time, resulting in a “correct 

rejection.” The average increases in click rate were +10 Hz, +23 Hz, +36 Hz, and +49 

Hz. 

Reverse correlations 

 Reverse correlations are calculated as the residual of click numbers actually 

occurring in trials of a given type (left or right) relative to the expected click numbers 

given the generative rate (Brunton et al., 2013). To calculate a reverse correlation, an 

incremental click rate for each trial is calculated for each 0.05 s increment of the 

stimulus through convolution of clicks with a causal Gaussian kernel. Trials of a given 

generative click rate were grouped, and the expected generative rate for each 

increment was subtracted from the actual click rate for each trial of that group. These 



108 
 

residuals are then averaged together in a separate group based on the rat’s choice. The 

resulting average represents the periods of the stimulus that tended to influence 

decisions. Epochs during which the right and left traces overlap do not influence the 

decision on average, because the rat wat not significantly more likely to choose right 

when more rightward clicks occurred than expected during that period, and vice versa 

for a left choice. 
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Summary of this dissertation 

 I have examined three properties of perceptual decision making in the brain 

concerning how the brain uses sensory evidence over time to guide actions. First, I 

conducted a study testing the extent to which humans evaluate evidence over multiple 

timescales for perceptual decision making. Specifically, I found that humans maintain 

multiple temporal representations of the same sensory evidence that are flexibly 

recruited for different purposes, in our case, change detection decisions and confidence 

judgments about those decisions. Humans are able to evaluate evidence over a shorter 

timescale during the initial decision, then access evidence over a longer timescale 

depending on how the situation evolves. This function emerges when the subject has no 

ability to predict when stimulus presentation ends, meaning they maintain a 

representation of evidence that no longer had bearing on the decision during stimulus 

presentation. These empirical results are supported by a computational model 

demonstrating a single timescale of evidence evaluation is insufficient to explain subject 

behavior. As such, the findings rule out models of decision making in which a single 

timescale of evidence evaluation is maintained for decision making. 

 To identify neural mechanisms that could support this flexibility in evaluation 

timescale, I implanted rat posterior parietal cortex (PPC) with Neuropixel probes to 

measure the responses of PPC neurons leading up to change detection decisions. In 

contrast with previously observed responses during tasks in which evidence is 

evaluated over long timescales, PPC neurons showed transient, more ballistic 

responses to evidence leading up to decisions. Furthermore, the timescale over which 

rats evaluated evidence at the psychophysical level correlated with the timescale over 
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which the neurons integrated individual units of evidence. Finally, through reversible 

pharmacological inactivation, I identified a causal role of PPC in change detection 

decisions that seemed to originate from an influence of PPC on the timescale over 

which evidence is evaluated. Together, this study identifies a new function of PPC in 

driving decisions involving free response choices bearing on evidence evaluated over 

short timescales and provides a putative neural foundation for the behavioral 

observations I made in the human study. 

 The final project included in this dissertation tested the role of primary auditory 

cortex (A1) in accumulation of auditory evidence over time. It is unclear whether regions 

like PPC perform integration of raw sensory evidence into decision-related variables or 

if observed responses are simply inherited from upstream sensory regions. To test the 

hypothesis that A1 performs this integration function in auditory decision making, I 

reversibly inactivated A1 on both an auditory discrimination task and a detection task. I 

found that A1 is necessary for performance over the discrimination task, which involves 

evaluation of evidence over a long timescale, but not the detection task. In addition, 

deficits induced in the discrimination task via A1 inactivation are explicable through a 

primarily sensory impairment rather than an impairment in the rat’s ability to accumulate 

evidence over time toward a decision. As such, it appears that the striking neural 

responses in association areas like PPC likely emerge locally instead of through 

sensory inputs. 

 

 



115 
 

Outstanding questions 

Here, I outline several unanswered questions brought about by the results of the above 

studies and propose further lines of study that could potentially address these 

questions. 

1) Can humans evaluate evidence over multiple timescales simultaneously? We’ve 

shown that humans can retroactively access older information that was initially 

not used for decisions, suggesting humans track evidence over multiple 

timescales. The questions that follows naturally is whether the brain can maintain 

representations of the same evidence over multiple timescales in cases where 

multiple competing choices require evaluation over different timescales. For 

example, we could combine a detection task in which subjects must detect 

transient changes in a stimulus while also tracking a separate statistic of the 

stimulus that is discriminable over the entire course of the stimulus. This task 

would reveal whether the brain is restricted to one timescale of evaluation that 

may be optimal for one purpose or the other but not both. 

2) Are confidence judgments in the brain inherently founded on a timescale of 

evidence evaluation separate from initial decisions? Although it has been shown 

that several brain circuits computing and driving judgments of confidence in 

decisions can be isolated from the circuits that drive the decisions themselves 

(Kepecs et al., 2008; Kiani and Shadlen, 2009; Komura et al., 2013; Lak et al., 

2014; Rutishauser et al., 2018), it is unclear whether the dynamics of choice 

confidence, including the periods of evidence on which these judgments bear, 

differ from the dynamics of evidence integration leading to decisions. To answer 
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this question, addition of a confidence component to our change detection task 

combined with simultaneous recording of neural responses from cell populations 

implicated in initial decision formation and in confidence judgments could reveal 

the extent to which decisions and confidence judgments are informed by similar 

stimulus properties. 

3) How is the timescale of evidence integration in PPC cells modulated? PPC cells 

show propensity to adjust their temporal dynamics to suit task demands, but it is 

unclear how this is accomplished at the system level. Two broad possibilities are 

that the timescale is modulated locally or the timescales are inherited from 

upstream regions. In the former case, PPC interneurons could be tuned to 

reduce activity of evidence-integrating cells over time through negative feedback 

(Song et al., 2017, 2020). Alternatively, PPC could inherit these timescales from 

the various nodes in the greater decision making network in the brain. Recording 

from other regions implicated in evidence integration (e.g. striatum, prefrontal 

cortex) during a similar task could be key to understanding the point of 

processing in the brain at which that evidence processing is tuned to task 

demands. 

4) Can PPC neurons dynamically tune their integration timescales as conditions 

change? Although we see in the results of Chapter 3 that PPC neurons have 

flexible dynamics of evidence integration, we do not know if these dynamics can 

adapt to changing task demands within a task. For example, as the rat adapts its 

behavior based on environmental feedback for the rat’s decisions, do PPC neural 

dynamics reflect the adaptation? To test this, we can record PPC neural activity 
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during the change detection task and test whether the dynamics change when 

task statistics are altered to elicit new behavioral strategies. For example, altering 

the response window would require a different solution on the part of the rat; a 

shorter response window requires a shorter evidence evaluation timescale. 

Therefore, if the rat modifies its behavior accordingly, we can more directly test 

the hypothesis that PPC dynamics are modified during learning of new decision 

rules. 

5) Is PPC neural activation sufficient to drive decision commitment? Unlike many 

tasks used to study the role of PPC in perceptual decisions, our task involves a 

free response component, so the timing of the decision is both a critical aspect of 

task performance and presumably requires neural functions distinct from tasks in 

which the environment controls the time of the decision. Chapter 3’s results 

demonstrate PPC is necessary for establishing the timescale of evidence 

evaluation for these free response decisions, but to directly test whether PPC 

controls the time of decision commitment, we can conduct experiments in which 

PPC neurons are stimulated and the change in probability of response following 

stimulation is measured (Hanks et al., 2006). 

6) Are deficits in auditory decision making induced by A1 inactivation also driven by 

a change in accumulation timescale? Although the results of Chapter 4 suggest a 

largely sensory role for A1 in evaluation of auditory evidence over time, there 

may be a latent accumulation role that is simply dominated by the sensory deficit. 

Models of accumulation to bound involving both sensory and accumulation 

parameters have been previously applied to behavioral data using the same 
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discrimination task as in my study (Brunton et al., 2013; Erlich et al., 2015), so 

application of this model to the data presented in Chapter 4 would better 

elucidate the contributions of A1 to sensory processing and accumulation of 

evidence over time specifically to inform decisions. 
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