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ABSTRACT OF THE DISSERTATION

Leveraging Community Structure and Behavior for Smart Infrastructure

By

Praveen Venkateswaran

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Nalini Venkatasubramanian, Chair

Modern community infrastructures are increasingly instrumented with Internet of Things

(IoT) sensors and actuators, which enable many essential infrastructure monitoring applica-

tions. These applications are now ubiquitous across domains such as smart transportation,

power grid, ambient environment sensing, smart buildings, among others, and provide im-

portant real-time information about the infrastructure and enable the accurate detection of

critical events. A typical infrastructure monitoring framework involves data collection from

distributed deployments of sensors, transmission over communication networks, and analysis

using analytical models at edge and cloud servers to generate meaningful and actionable

information.

However, communities exhibit heterogeneity in their structure and behavioral patterns.

Structural heterogeneity can manifest through differences in topography, infrastructure scale

and layout, community demographics, and available monitoring resources, while behavioral

diversity can occur due to differences in weather phenomena, spatio-temporal patterns like

vehicular movement, and other infrastructure activities. Current monitoring approaches are

limited by this heterogeneity, and only work for specific communities and applications.

In this thesis, we propose solutions to leverage this heterogeneity to build effective, effi-

cient, and adaptive infrastructure monitoring applications that can be deployed and shared

xiii



across communities. Our proposed techniques leverage the unique structural and behavioral

characteristics of communities, while also balancing monitoring requirements of applications

with infrastructure resource availability. We explore our approach within the context of sev-

eral real-world infrastructure monitoring applications and address three research problems

across sensor deployment, operation of monitoring applications, and the generalization of

monitoring solutions across communities.

First, we propose an impact-driven approach to IoT sensor placement that leverages com-

munity characteristics to determine vulnerable regions and measures the potential impact

of events which is used to prioritize deployment locations. Second, we design an operational

monitoring framework that handles heterogeneity in devices, communication networks, and

analytical models and develop an adaptive decision making approach to determine the opti-

mal choices for monitoring while balancing performance, resource consumption and current

community conditions. Finally, we present an approach that enables training robust infras-

tructure monitoring models from multiple data sources in a distributed and bias-agnostic

manner, that can then generalize or be reused across communities without a loss in perfor-

mance. Together, the proposed techniques provide a comprehensive approach for infrastruc-

ture monitoring that can exploit and adapt to structural and behavioral characteristics of

communities. We validate our approach using prototype implementations on several real-

world infrastructure testbeds.

xiv



Chapter 1

Introduction

In this chapter, we introduce the use of the Internet of Things (IoT) in smart communities

and present a discussion of the major characteristics of IoT-driven community infrastructure

monitoring frameworks. Distributed deployments of IoT devices in community infrastruc-

ture, ranging from buildings, roads, power grids, etc., can provide near real-time monitoring

capabilities and timely detection of events within the infrastructure. Enabling community

infrastructure monitoring requires the collection and delivery of data from deployments of

heterogeneous devices over a diverse set of communication networks, followed by their anal-

ysis using complex analytical models to obtain meaningful and actionable information. We

present key challenges across these different components within an IoT-driven infrastructure

monitoring framework. We further illustrate them through a driving use-case of drinking

and storm water infrastructure monitoring, and describe the efforts in this thesis towards

addressing these challenges. In particular, we strive to leverage the diverse characteristics of

community structure and behavior to develop solutions for the deployment, operation, and

generalization of infrastructure monitoring frameworks.
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Figure 1.1: Growth of IoT devices in communities as a proportion of total number of global
connected devices

1.1 Internet of Things for Community Infrastructure

The Internet of Things (IoT) refers to the billions of physical devices and everyday objects

around the world that are now connected to the internet while collecting and sharing data

and information. With the addition of sensing, computation and networking capabilities,

these objects are capable of communicating with each other and other cloud and edge services

across the Internet. The past decade has seen the arrival of cheap components and sensors

(e.g., Raspberry Pi in 2012) and the ubiquity of wireless networks across the world. This,

coupled with the increased accessibility to compute and analytics resources on public or

private cloud and edge servers, has resulted in a significant growth of IoT device presence in

communities (Figure 1.1).

The resulting economies of scale from this growth has improved the affordability of IoT de-
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ployments and has made IoT-driven monitoring available to even lower-income and resource-

poor communities and populations. A recent market report by IoT Analytics [81] shown in

Figure 1.1, projects an 85% growth in the number of IoT devices in the next 4 years, and

also projects that the number of IoT devices around the world would outnumber the number

of non-IoT devices by nearly 8.8 billion devices (69%) by 2025. This growth in IoT is also

reflected in the market size (Figure 1.2), where the global IoT market was $457 billion in

2020, a growth of nearly 200% from 2016.

The Internet of Things is now seeing significant use by community agencies and stakeholders

to implement their vision of smart communities and smart cities (Figure 1.2). IoT devices

and sensors are being deployed and utilized by different monitoring applications to enhance

the quality and performance of services, reduce costs and resource consumption, and to en-

sure real-time event detection and incident response, among other uses, by collecting and

analyzing the data streams. There are many monitoring applications across different com-

munity infrastructure that are currently being used, such as personal healthcare monitoring,

smart street lighting, occupancy and intruder detection in buildings, traffic monitoring, etc.

IoT is also seeing increased use for monitoring large-scale community infrastructure such as

the power grid and water distribution networks. Each of these applications exhibit diversity

and heterogeneity in their monitoring scope (e.g., individuals vs. buildings), objectives, as

well as their requirements for sensing, communication, and analytics. Additionally, commu-

nities themselves exhibit heterogeneity that can impact the functioning and performance of

these monitoring applications. For example, weather patterns like precipitation and temper-

ature, structural factors like infrastructure scale and coverage, can differ both within and

across communities, thereby requiring applications to adapt to these different conditions.

This inherent heterogeneity in communities and infrastructures, coupled with the diversity

in monitoring application requirements presents a multitude of unique challenges. In this

thesis, we address these challenges by leveraging the heterogeneity to support and develop

3



Figure 1.2: Growth of global IoT market spend and importance of smart communities

effective, efficient, and adaptive infrastructure monitoring solutions.

1.2 Community Infrastructure Monitoring

The functioning of communities revolves around their built infrastructure. Given the im-

portance of some community infrastructure like the power grid, water distribution networks,

and traffic systems, among others, the ability to deploy monitoring applications that provide

information about the infrastructure is critical to maintain their health and smooth function-

ing. This emphasis on infrastructure monitoring using IoT can be seen in Figure 1.3, which

shows the most popular uses of IoT for smart communities. A vast majority of use-cases

involve monitoring of different kinds of community infrastructure, thereby also showing the

immense potential of leveraging IoT for building smart infrastructure monitoring solutions.

Effective infrastructure monitoring allows community agencies and stakeholders to obtain

comprehensive continuous information about the state of the entire system, thereby allow-

ing them to accurately detect events in a timely manner, or even proactively predict them

well in advance. These events can range in their effect, complexity, importance, and their

impact on the community infrastructure. For instance, detecting the presence of a person in

4



Figure 1.3: Importance of Infrastructure Monitoring Applications in Smart Communities

a building is significantly different compared to detecting air pollution or water contamina-

tion. The ability, or the inability, to accurately detect events in a timely manner can impact

the effectiveness of infrastructure monitoring solutions. Missing infrastructure events or even

a delay in detecting them can cause a significant adverse impact on the community. For in-

stance, in Flint, Michigan, a failure to detect the presence of lead in drinking water resulted

in a huge crisis that impacted thousands of residents for more than half a decade [25]. Simi-

larly, the lack of sufficient monitoring solutions led to the delayed detection of transmission

line failure at a power substation in North Gila, Arizona [148]. This incident resulted in

widespread power blackouts across Arizona, Orange County, and San Diego leading to loss

of power for over 2 million homes. This caused cascading issues in other industries like gro-

cery stores, gas stations, and even hospitals, thereby creating significant adverse impacts on

numerous communities. On the flip side, developing a comprehensive end-to-end monitoring

framework can improve the robustness of community infrastructure to different events, and

empower agencies and stakeholders to provide effective and efficient service to the citizens

of the community. For example, in Alabama, following Hurricane Ida in September 2021,
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Figure 1.4: Community Infrastructure Monitoring Workflow

the use of smart grid monitoring technology enabled rapid fault detection across the entire

grid. It automatically identified more than 500 faults quickly after the event, which helped

direct agency crews to outages and reduce by 137 miles the distance that they needed to

patrol. This further helped save 2.5 million customer minutes of interruption and reduced

the duration of outages by 1.3 million minutes [29].

Irrespective of the type of community infrastructure, every comprehensive monitoring frame-

work requires several different layers. While the specifics of these layers may differ across

different infrastructure or monitoring applications, they together form an end-to-end mon-

itoring workflow that is essential for an effective monitoring framework. Figure 1.4 depicts

these different layers and the relationship between them. At the lowest layer, we have the
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community infrastructure itself, where events of different kinds (e.g., fire, traffic accidents,

person detection) in the community are detected by a distributed network of deployed sen-

sors. The data streams from these sensors are transmitted over a variety of communication

network links, which can be both wired or wireless (e.g., WiFi, bluetooth) and have varying

connectivity strengths and available bandwidth. A set of edge and/or cloud servers receive

the data streams, where each server has specific resources allocated towards data storage,

computation capabilities, and available analytical models (e.g., image classifiers). The data

streams are passed as input to different analytical models to obtain actionable information

that is subsequently accessed by different stakeholders or users in the community, to provide

them with comprehensive monitoring information about the community infrastructure.

While the above figure depicts the common layers of an infrastructure monitoring frame-

work, the specific features within each layer can be quite different depending on the type

of infrastructure as well as the monitoring requirements. For instance, the type of sensors,

network links and analytical models needed for contamination detection in water networks

will be different from those needed for occupancy monitoring in a smart building. Moreover,

an additional challenge is that this variance is also exhibited across communities and com-

munity spaces as well. Communities can differ in terms of their (i) structure – topography,

types of infrastructure, population demographics, access to capital to instrument IoT sen-

sors, compute resource availability, etc. and (ii) behavior – weather and climate patterns,

pedestrian and vehicular movement, event correlations, unique events like festivals, which

influence the spatio-temporal patterns that generate events. This diversity and heterogeneity

in community structure and behavior present several challenges that need to be addressed

and leveraged if we are to build a comprehensive infrastructure monitoring framework across

these different layers.
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1.3 Key Challenges

Today’s modern communities have the ability to deploy large-scale IoT sensors and dis-

tributed storage and compute servers at the cloud and edge that can leverage sensing, net-

working, compute, and community characteristics to enable real-time adaptive monitoring.

Such real-time monitoring frameworks have to detect events in the community in a timely

and proactive manner, and support the seamless recovery of community infrastructure when

adverse events occur. An effective monitoring framework can provide real-time information

and event detection, reduce resource costs, minimize disruption to the community due to ad-

verse events, while also adapting to changing community conditions. However, there does not

yet exist a comprehensive monitoring framework that achieves all these different objectives

simultaneously. The development and implementation of such an adaptive infrastructure

monitoring framework has been hindered by the following challenges.

Diversity in Community Structure and Behavior

Numerous communities and community spaces can be found across the globe and their num-

ber is ever-increasing. These communities exhibit tremendous diversity along many axes.

These can include structural and geosocial differences like population scale and demography,

topographical differences, level of urbanization and infrastructure development, economic

health and ease of access to monitoring resources, among others. For example, the moni-

toring requirements, scale of operations, and level of monetary capital of a large city like

Los Angeles would be very different to those of a small, relatively unpopulated town in

Idaho. Moreover, even among communities with similar structure, the inherent behavior

and spatio-temporal characteristics can often vary. These behavioral patterns can include

weather phenomena, vehicular and pedestrian movement, temporal occurrence and correla-

tions of events, among others. For instance, an industrial region would exhibit movement
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and activity across all hours of the day, while a residential area would predominantly show di-

urnal patterns. This challenge of diversity in community structure and behavior has resulted

in existing infrastructure monitoring efforts to focus on specific communities and applica-

tions, and there has been no significant effort towards building cross-community monitoring

frameworks. While this diversity presents a challenge, it also provides a rich opportunity for

collecting diverse information of data and events which, if leveraged, can result in monitoring

frameworks that can adapt to numerous events and scenarios observed across communities.

Heterogeneity in Devices and Analytical Models

The popularity of the Internet of Things (IoT) has resulted in an explosion in the quantity

and heterogeneity of devices available in the market today (Figure 1.2). These can range from

simple acoustic sensors such as those to measure temperature, PM 2.5, humidity, sound, etc.,

to more sophisticated devices like cameras and smartphones. There also exist specialized

sensors for community infrastructure like SCADA systems for water networks and smart

grid sensors. This also results in heterogeneity in the types of data streams from these

sensors (e.g., time-series, images, geospatial), where these streams can be used by a variety of

monitoring applications depending on their objectives. Heterogeneity can exist even among

sensors of the same type. They can vary in cost, size, sensing modality, effective range,

networking capabilities (some can use multiple types of networks like bluetooth, wifi, etc.)

and additional features like ruggedness, data generation patterns (e.g., streaming, periodic),

among others. Heterogeneity can also be observed in the analytical models used to analyze

the data streams from these devices which can range from simple rule-based heuristics to

complex machine learning models. These models can vary in terms of their input features,

performance, architecture, and even resource requirements like power, compute, and data

storage. The performance of sensors, networks, and analytical models are closely tied to

a given community environment, and hence understanding the effectiveness of each option,
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and adapting the choice of sensing, communication, and analytics in real-time to changing

conditions is essential for a good infrastructure monitoring framework.

Application Diversity and Real-time Adaptation

Existing efforts for community infrastructure monitoring typically focus on one applica-

tion. However, as sensing and computing capabilities develop, communities increasingly

wish to simultaneously deploy multiple monitoring applications like pollution monitoring,

smart transportation, surveillance for safety, and smart buildings, to name a few. These

applications are diverse in their objectives, sensing and analytics requirements, as well as

their importance to each community. Rather than running these diverse applications in-

dependently, which can result in redundancy of resource consumption and data collection,

a smart infrastructure monitoring framework can identify and leverage any commonality

between them. This can be done for (a) data sharing – where the same sensors can be

used by multiple applications (e.g.) using traffic cameras for both accident detection and

pedestrian surveillance, (b) analytical models – where strong correlations between events,

multiple infrastructure features or measurements can be leveraged for better performance

(e.g.) correlation between air pollution and high vehicular traffic, (c) prioritization – critical

applications like fire detection should always have priority for resources over more routine ap-

plications like rainfall monitoring. It is also important for an effective monitoring framework

to be able to adapt to changes in the community in real-time by intelligently identifying and

switching between different sensing, communication, and analytics options, while balancing

monitoring performance with the judicious use of resources.
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Distributed Training and Reusability of Monitoring Models

Since infrastructures in different communities can observe a diverse range of events, being

able to train monitoring models on data shared by these different communities can improve

the robustness of the models to more events. Additionally, analytical models that can be

deployed or reused in multiple communities without a loss in performance provide signifi-

cant benefits. This generalizability would allow communities to save on the cost, time, and

effort needed for instrumentation and data collection, where instead they could just obtain

models from other communities. Moreover, community efforts towards infrastructure mon-

itoring can often be limited by access to resources such as the amount of available capital,

instrumentation, available compute resources and data that are needed to train effective

analytical models. This results in communities with access to different levels of resources

having starkly different monitoring capabilities both in terms of the quality and extent of

monitoring, demonstrating the benefits of reusable or generalizable models.

However, centralized training of models requires transmission of large amounts of data plac-

ing a strain on networks and data storage requirements. Communities are also unwilling

to share data due to privacy policies and security concerns, thus requiring solutions for the

distributed training of analytical models without any data transmission or sharing. In addi-

tion, data collected from community infrastructure often contains data biases arising from

community-centric patterns that can erroneously influence a model. This would result in a

loss in performance if these models are shared with other communities that do not exhibit

these biases. Hence, developing an infrastructure framework that enables distributed train-

ing and sharing of models in a privacy-aware and bias agnostic manner, is a challenging but

powerful solution that can significantly benefit all communities and improve their monitoring

capabilities.
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1.4 Driving Use Case - Drinking and Storm Water In-

frastructures

Community water networks are critical infrastructure responsible for the supply, distribution,

and storage of water resources. In addition to the various societal water needs, the presence

of resilient water infrastructure is important to service continuity of other lifeline industries

and domains such as power, sanitation, agriculture, healthcare and manufacturing, among

others. As a driving use-case in this thesis, we look at two major types of water networks

- drinking water distribution, and stormwater networks. Today, with widespread urban

development and population growth, these water infrastructure networks have grown in

scale and complexity, and in many places are aging and thus increasingly vulnerable to

adverse events [8]. The global demand for water is expected to increase by 20% − 30% by

2050 [21] which will further strain our limited water resources and services. Furthermore,

60% of water across these networks is estimated to be wasted due to infrastructure failures

and poor management techniques [172]. Communities are now experiencing an increase in

water related outages and interruptions, and hence it is imperative to design and implement

effective monitoring solutions to quickly detect adverse events and ensure the health of these

different types of water infrastructure.

Drinking water distribution networks (WDNs) in communities consist of large networks of

pipelines with many different components (junctions, pumps, valves, tanks, and reservoirs).

The vast majority of these networks are typically underground. There are predominantly two

types of adverse events that are observed in WDNs - (i) physical damage to infrastructure

(e.g., pipe breaks or leaks) and (ii) water contamination events. Pipe breaks result from

stress caused by factors such as corrosion, pipe displacements, extreme weather, etc, and

disrupt water service to the community. Contamination events arise from the introduction

of harmful contaminants like human waste, pesticides and chemicals into the water that
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can then be consumed by the community resulting in public health consequences and long-

lasting psychological impacts. These contaminants can enter pipelines through malicious

activity or even from pipe breaks through backflows [155]. The impact of physical damages

to the infrastructure and compromises to the quality of supplied water can be devastating to

society and cause huge economic and public health issues such as massive flooding, outbreak

of waterborne epidemics, shortages of clean drinking water, damage to property, etc [146].

Stormwater networks comprise of large and predominantly above-ground drains whose pur-

pose is to collect water from precipitation, snow and ice melt, and surface runoff, and convey

it to nearby streams, rivers, or other water bodies. With increased urbanization, there

are more impervious surfaces (e.g., roads, buildings, etc.) that prevent rainfall from infil-

trating into the ground. Hence, these networks are critical to prevent urban flooding and

to transport runoff away from commercial and residential areas into nearby water bodies.

Stormwater harvesting techniques are also important to build self-sustaining communities.

However, if contaminants are present in stormwater runoff, flushing it into water bodies

can destroy marine ecological systems and can also impact safe harvesting of stormwater.

Garbage and human/animal waste deposited on roads, lawns, etc., can flow with rainwater

into the drains, and other harmful chemical contaminants like Zinc, Copper, Lead, etc., are

often illegally dumped into the storm drains by nearby industries, thereby impacting the

quality of stormwater runoff [173].

Current status of water infrastructure monitoring: Today, monitoring drinking and

storm water networks involves a large amount of manual effort to obtain water samples for

contaminant detection (i.e., grab sampling), and deploying operators with acoustic instru-

ments to identify pipe breaks underground. The instrumentation of IoT sensors in both types

of networks is lacking, and sparse at best. WDNs have instrumented water meters primarily

for billing, SCADA systems when available are deployed at pump stations above ground, and

automated water quality monitoring is mainly present at storage and treatment plants. The
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vast networks of pipelines or storm drains are not actively monitored, since instrumenting

the entire network is prohibitively expensive to deploy/maintain, thus requiring intelligent

deployment approaches. Additionally, some infrastructure locations have very intermittent

network connectivity, impacting data transmission. However, the availability of affordable

IoT sensors with a range of sensing modalities, coupled with powerful analytical models and

compute resources presents a rich opportunity to develop effective IoT-driven monitoring

solutions for water infrastructure networks.

Monitoring challenges in water infrastructure: The aforementioned challenges (Sec-

tion 1.3) are critical to address for water infrastructure monitoring. These challenges are

further exacerbated in water networks due to inaccessible locations (e.g., underground pipes)

and need for ruggedized instrumentation. In addition, the flow of water in these networks are

driven by time-varying demands (WDNs) or precipitation (stormwater), resulting in complex

interdependencies which are especially pronounced in the presence of adverse events (e.g.)

mixing of contaminants. Knowledge of these physical phenomena must be incorporated by

monitoring frameworks to ensure effective solutions.

1.5 Thesis Contributions and Organization

This thesis aims to address some of the above challenges (Section 1.3) through cross-layer and

cross-community approaches to develop a comprehensive infrastructure monitoring frame-

work. We develop solutions that exploit the characteristics of community structure and

behavior and optimize the deployment, operation, and generalization of infrastructure mon-

itoring solutions within and across communities. This heterogeneity-aware approach limits

the adverse impact of events on the community, avoids burdening resource-constrained de-

vices and servers, adapts to changing community conditions, and supports heterogeneous

monitoring components (e.g., devices, networks, analytical models). We demonstrate the ef-
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fectiveness of our techniques across different infrastructure monitoring settings and testbeds.

The following is the overall organization and research contributions of this thesis:

• Chapter 2 surveys related work across the deployment, operation and generalization

of infrastructure monitoring solutions.

• Chapter 3 introduces our overall approach in greater detail. We introduce a cross-layer

framework for infrastructure monitoring and describe key challenges and the research

problems addressed in this thesis.

• Chapter 4 describes our impact-driven approach to IoT sensor deployment for com-

munity infrastructure monitoring. Our approach leverages in-situ and mobile sensing

devices, to determine deployment locations that rapidly identify and localize adverse

events to minimize their impact on the community. Our key contributions include a

two-phase approach to first model the vulnerability of a community based on its struc-

ture and event characteristics, and its subsequent use to determine event impact and

optimal sensor placement locations. Our sensor placement approach can adaptively

adjust sensing resolutions on-demand within the infrastructure, determine required

sensing capabilities based on the event characteristics, and respond to varying event

severities.

• Chapter 5 introduces our operational decision making framework, titled REAM, that

meets the monitoring requirements of applications by adaptively selecting the opti-

mal workflow of devices, communication networks, and analytical models based on

the community infrastructure state. Our key contributions include a methodology

for community stakeholders to flexibly define workflows of monitoring components, a

learning-based approach to select the optimal workflow by balancing the application

monitoring requirements with the resource availability on edge/cloud servers, and novel

techniques to adaptively switch workflows when infrastructure conditions change.
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• Chapter 6 explores the generalization of monitoring solutions from one community

or location to another while maintaining performance. Our key contributions include

a methodology to perform distributed training of analytical models using data from

multiple communities in a privacy-aware manner, novel algorithms to ensure the gener-

alizability of these models without being influenced by community-centric data biases,

and a methodology to combine distributed training with generalization to build mon-

itoring solutions that can be shared across communities.

• Chapter 7 concludes the thesis with the contributions made and the lessons learned,

and presents future research directions to further improve community infrastructure

monitoring.
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Chapter 2

Related Work

In this chapter, we survey relevant work to provide an appropriate background for this

thesis. We start with an overview of existing IoT system architecture designs to enable smart

community infrastructure across different domains. We then discuss how IoT sensors (both

in-situ and mobile) are placed or deployed for different infrastructure monitoring applications

and also present a detailed overview on sensor placement in water infrastructure. Next, we

explore solutions that have been proposed to improve the different operational components of

an end-to-end infrastructure monitoring framework – (i.e.) managing the collection of sensor

data, its transmission over different communication networks, and the subsequent analysis

using analytical models to obtain actionable information. We finally review research done on

distributed training of analytical models through data from multiple sources using federated

learning techniques and survey prior work on handling data biases during model training to

ensure that they can generalize and hence be shared across locations.
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2.1 IoT Architectures for Smart Communities

IoT-enabled smart community and smart infrastructure projects have been deployed world-

wide. There is an increased push by community agencies and stakeholders to use IoT tech-

nologies in applications across multiple domains. In this section, we review several of these

projects across varying community-scales – ranging from personal wearable devices to large

infrastructure.

At the personal level, healthcare monitoring using wearable devices has many popular ap-

plications driven by IoT systems [169, 61, 58]. People want real-time access to their health

conditions like blood sugar levels, heart and pulse rates, etc, and these applications take raw

sensor signals, analyze them, and provide personal health feedback. There has also been

work on expanding IoT-driven architectures for healthcare to entire communities, in par-

ticular utilizing device and network usage data for monitoring the localization and spread

of infection. This has become especially significant during the ongoing COVID pandemic

[53, 151]. Safe Community Awareness and Alerting Network (SCALE) [14] is an affordable

personal and home safety project developed at UC Irvine. Multi-sensor boxes are placed

at residents’ homes to provide safety-related sensing capabilities including motion, explosive

gas, and personal fall detection, and applications have been developed to trigger preventive

actions.

Moving up in scale, TIPPERS is a smart-building management system designed by Mehrotra

et al. [97] that utilizes sensors (e.g., cameras, acoustic, RFID, etc.) in addition to wireless

network traffic to support several smart-building applications such as occupancy monitoring,

dynamic HVAC control, waste management, and emergency evacuations, among others.

Additionally, they present a policy-driven operational framework that preserves the privacy

of individuals at different layers of abstraction. Efforts have also been made at developing

smart IoT-driven solutions for college campuses and small communities [36], often to ensure
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the well-being and safety of residents. Tsai et al. [152] develop a monitoring framework using

a collection of edge servers and smart streetlamps with devices like cameras and acoustic

sensors on-board. The framework services multiple applications like illegal parking detection

and pedestrian counting, and they also developed solutions for the efficient processing and

storage of video streams from these streetlamps.

Initiatives to develop IoT architectures for large cities and infrastructures have gained pop-

ularity in recent years. Cenedese et al. [28] designed a real-world urban IoT system named

Padova Smart City deployed in Padova, Italy. They focus on air quality and traffic applica-

tions and leverage both cloud and edge for analyzing the collected data. They also provide

examples of the impact of spatio-temporal patterns on events in the community. Zhang et

al. [180] developed VideoStorm, a traffic analytics framework for Seattle, USA. Here, video

streams from traffic cameras across the city were collected on cloud servers, and analyzed

using neural networks for applications like accident detection, license plate recognition, etc.

The Community Seismic Network (CSN) [37, 74] is a participatory IoT system created by

the California Institute of Technology (CalTech) to help with early alerting of earthquakes

in Southern California using cheap accelerometers attached to residents’ personal comput-

ers and devices. The accelerometers detect changes in acceleration and report changes to a

service running on the cloud.

The above research efforts explore the potential of IoT-enabled architectures and solutions

for smart communities and infrastructure. They also identify and present several challenges

towards developing a comprehensive infrastructure monitoring framework (e.g., multiple

diverse applications, monitoring effectiveness vs. resource-efficiency, adapting to changing

conditions, etc.) that we address in this thesis.
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2.2 Enabling Community Infrastructure Monitoring

A comprehensive IoT-driven infrastructure monitoring framework must be capable of sup-

porting multiple applications with different objectives while leveraging distributed hetero-

geneous sensors, diverse communication networks, limited compute resources at the edge

and cloud, and analytical models of varying complexity. The primary objectives of such

monitoring frameworks is to provide continuous and comprehensive information about the

infrastructure, to detect events in a timely manner, and to even proactively predict them. We

categorize infrastructure monitoring frameworks into three phases – deployment, operation,

and generalization across communities. In this section, we present an overview of existing

work that has typically addressed each of these phases in isolation, hence falling short of a

comprehensive end-to-end solution. We also highlight several open challenges across these

phases that we address in this thesis.

2.2.1 Deployment: Sensor Placement for Data Collection

Sensor placement or deployment is fundamentally critical for any smart infrastructure moni-

toring solution. IoT sensors detect physical phenomena, generate formatted data, and deliver

them (actively or passively) to edge and cloud servers where they are subsequently analyzed.

Different community infrastructure systems present different deployment challenges (e.g.,

crowded smart buildings vs. underground water networks) and also require diverse monitor-

ing applications. To support these applications, prior efforts traditionally relied on in-situ

or static sensors that were installed and remained in place. However, with the rise of mobile

edge devices, an increasing number of monitoring efforts are attempting to leverage the mo-

bility advantages and develop hybrid (in-situ + mobile) sensor placement solutions. Inspired

by Zhu et al. [185], Table 2.1 presents a comparison between in-situ and mobile IoT sensors

for different aspects of infrastructure monitoring. We first survey efforts using these different
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In-Situ sensors Mobile sensors

Infrastructure
dependency

Leverage existing infras-
tructure to enable real-time
monitoring

Low dependency – constant addi-
tion and removal of devices ; abil-
ity to traverse regions with low
accessibility

Coverage Typically have large range Lower ranges ; make up with mo-
bility

Performance Stable, predictable, control-
lable since deployed in place

Dynamic with low predictability,
uncertainty due to probabilistic
movement

Flexibility Low; typically cannot
change functionality

High; capable for on-demand de-
ployment

Costs High deployment and main-
tenance costs but low oper-
ational cost

High operational costs (human
labour to provide mobility) , of-
ten lower device costs

Table 2.1: Comparison betweeen in-situ and mobile sensors for infrastructure monitoring

types of sensors and then present an overview of sensor placement approaches that have been

proposed in the literature.

In-Situ sensors

In-situ sensing is useful in community infrastructure that requires monitoring coverage of a

region using a large number of devices to provide continuous monitoring of specific metrics or

events. These in-situ sensors, when deployed, utilize nearby infrastructure for power supply

and network access (wired or wireless). Depending on the infrastructure and the monitoring

application, these devices may be ruggedized to maintain performance in harsh environmen-

tal conditions. There have been several efforts to deploy in-situ sensors for infrastructure

monitoring. The Array of Things (AoT) [125] is a collaborative effort led by the Univer-

sity of Chicago that instruments multi-purpose environmental sensing devices on buildings,

streetlamps, etc, to provide real-time, location based data about the ambient environment

(air quality, noise) using a cloud platform. Farmbeats [158] is a smart agriculture project
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from Microsoft Research that instruments in-situ chemical sensors (e.g., pH, moisture, etc.)

and cameras on large farms to assist with precision agriculture, monitoring temperature and

humidity in food storage, and monitoring animal shelters. They setup a solar powered IoT

base station on the farm that uses wireless connectivity for data collection and analysis.

In addition, there have also been several efforts towards instrumenting water distribution

networks (WDNs) with in-situ sensors to measure network parameters like pressure, flow

rate, turbidity, etc, in order to detect and localize events in a timely manner. For example,

PIPENET [140] in Boston deployed a network of in-situ sensors connected wirelessly to mon-

itor water transmission piplines by collecting hydraulic and acoustic data and WATERWISE

[174] was a system deployed in Singapore to enable real-time monitoring of WDNs. Water-

Box [69] was a small-scale testbed that was developed to test system control algorithms in

a fail-safe environment.

Mobile sensors

The use of mobile sensing devices for monitoring has gained significant popularity and are

being used by infrastructure monitoring applications across several domains. The flexibil-

ity (on-demand deployment) as well as the ability to reach otherwise inaccessible locations

present significant advantages over in-situ sensors. Ambicity [168, 167] is a crowdsensing

project from Inria which uses the microphones on participants’ smartphones to perform

noise and air pollution sensing while they move around the city of Paris. Based on the

collected data, the associated cloud service creates real-time noise and air pollution maps.

Mosaic [41] is a mobile sensing project from Zhejiang University that uses sensors mounted

on city buses to create city-scale fine-grained maps for PM 2.5 (particulate matter, an air

pollution indicator). Rahman et al. [120] developed BreathEasy, that used multimodal

sensors embedded in consumer mobile devices for non-invasive, low-effort respiratory assess-

ment. Drones are also being used as mobile sensing devices for applications such as wildfire
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detection, traffic monitoring, and smart agriculture [9, 71, 158]. These efforts showcase the

advantages of using mobile sensors to collect data across vast areas with low costs. In water

networks, to tackle the issue of inaccessible locations and underground pipelines, the use

of mobile sensors has been gaining popularity in water infrastructure as well. Systems like

SmartBall [48] and PipeProbe [79] drop mobile sensors into the network which traverse and

monitor pipes by moving with the water flow. These mobile sensors flow along with the water

through the pipes and have acoustic and chemical sensors on board to detect events during

traversal. They typically are deployed and collected through water network infrastructures

like hydrants or manhole covers, and data is accessed post-collection and transmitted using

wireless networks above-ground.

Sensor placement approaches

While utilizing in-situ and mobile IoT sensors can help with real-time monitoring and event

detection, community agencies and stakeholders are often limited by budget and operational

costs, and hence require strategies for intelligent placement of a limited number of sensors to

ensure effective infrastructure monitoring. Most approaches for sensor placement assume a

typical setting, where the objective is to maximize the coverage and event detection likelihood

given a budget. Such approaches [40, 62] assume that every sensor has a sensing range

around it, and an effective deployment uses the least number of sensors (or till the budget is

exhausted) required for total coverage of the infrastructure while minimizing the overlap of

sensing ranges. Other efforts to combine deployment of in-situ and mobile sensors optimize

placement using Lyapunov functions [186], Probabilistic Graphical Models (PGM) [95], and

other structural-quality heuristics like inter-node distance, network connectivity, etc., as

summarized in [178].

Sensor placement approaches for water networks typically convert the infrastructure into

a graph, where nodes represent junctions and links represent piplines. Typical heuristics
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aim to optimize factors such as event detection time, likelihood of detection, etc. These

include graph theoretic approaches [78, 70] that utilize shortest path and set cover variants

as well as optimization methods using mixed integer programming [19, 18] that typically

work for small networks. Challenges such as the Battle of Water Sensor Networks (BWSN)

[107] have resulted in more efficient approximation methods for placement [76] that scale

to larger networks. Typical leak detection techniques use network coverage as the prime

objective to design placement heuristics. Deterministic methods like Branch-and-Bound can

guarantee optimal solutions [132] for limited scale. Techniques utilizing genetic algorithms

can scale [115], but have long runtimes and are hard to tune, and several approximate

solution alternatives have been proposed [117, 113]. Existing work on combining mobile and

in-situ sensor deployments in water networks typically assume the prior placement of static

infastructure - either static sensors [112, 106, 122] that cover a predetermined portion of the

network, or sink nodes/beacons [143, 43] in the junctions that communicate with the mobile

sensors, with the objective of determining the number of mobile sensors needed and their

release locations to cover the network. However, we argue that it is essential to consider the

deployment of both types of sensors simultaneously since the placement of one type directly

affects the performance of the other. Also, these prior approaches assume that all events are

uniform and do not distinguish between them. We address these open deployment challenges

in this thesis.

2.2.2 Operation: Decision Making for Infrastructure Monitoring

The next steps in infrastructure monitoring, once sensors have been deployed, is to trans-

mit their data streams over different networks (wired, wireless) to edge and cloud servers

where they are passed as input to analytical models (Figure 1.4). Hence, an infrastructure

monitoring framework operates pipelines of sensors, network links, and analytical models

that together deliver actionable information. Each component of this pipeline can consist
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of multiple options (e.g., using a camera vs. acoustic sensor, or Bluetooth vs. WiFi) and

hence, each monitoring application could be serviced by multiple possible pipelines. Each

pipeline of sensors, networks, and analytical models provide a certain benefit to the appli-

cation (e.g., accuracy) while incurring resource costs like power consumption. In addition,

the benefit provided by a pipeline also depends on community conditions. For instance, the

performance of a camera could be impacted by rain obscuring its lens. Hence, a good mon-

itoring framework needs an adaptive decision-making solution for these operational choices,

in order to achieve high monitoring performance while judiciously using limited resources

to support multiple applications. In this section, we present an overview of existing work,

where research has typically focused on optimizing different parts of this monitoring pipeline.

URMILA, developed by Shekhar et al. [134] is a middleware solution to manage resources

across the cloud, fog and edge to ensure that SLO violations are minimized for latency-

sensitive IoT applications, particularly those that are utilized in mobile environments. They

propose approaches to predict network latency and energy consumption of applications, and

select the most suitable server to execute each application. Alhassoun et al. [5] propose

SAFER, an energy-aware perpetual home IoT system where battery-operated and wall-

powered IoT devices co-execute to ensure the safety of occupants. They use a semantic

approach that extracts activities-of-daily-living (ADL) from device data to drive energy-

optimized sensor activations. Vaisenberg et al. [156] leveraged Partially Observable Markov

Decision Processes (POMDP) to control surveillance cameras to record events in resource-

constrained smart spaces. They used PTZ cameras in a smart building which had resource

constraints, and proposed an approach using POMDP that could predict future states in

which the events are likely to occur, based on partially-observed past states, thereby allowing

them to proactively activate and deactivate the cameras to maintain good performance while

conserving resources. Nesa et al. [103] analyze network topology in terms of relative distances

and link qualities between sensors, as well as the remaining battery life of the sensors and

develop a sensor ranking algorithm. Based on this ranking, a subset of sensors are activated
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to conserve overall energy consumption. A similar objective using network topology was

achieved by Du et al. [44] for water distribution networks (WDNs), wherein they used a

dynamic programming approach instead.

DeepDecision [121] is a framework by Ran et al. for mobile video analytics, that leverages

deep learning models on both mobile edge devices and cloud servers to make offloading de-

cisions. They perform extensive measurements to understand the tradeoffs between video

quality, network conditions, battery consumption, processing delay, and model accuracy, and

use this to choose where, and which deep learning model to run under variable network con-

ditions. Another approach that also uses resource profiling for video analytics is VideoStorm

by Zhang et al. [180] who profile the tradeoff between video quality vs. resource consump-

tion, and consider the unique requirements of different applications in terms of latency and

quality to take decisions on the different analytics to run on the same video stream. Benson

et al. propose FireDeX [15], a middleware to manage prioritized delivery of critical data

from IoT sensors. Their approach accurately estimates end-to-end performance metrics (e.g.

delays, success rates) across different network links and selects the best path to transmit

important data. This leverages their earlier work [17] that presented an approach to gather

network-awareness via a resource-aware adaptive probing mechanism and dynamically redi-

recting IoT data flows. They leverage these network-cognizant decision making approaches

for emergency response applications.

Decision making approaches with Markov Decision Processes (MDPs) and Reinforcement

Learning (RL) have also been proposed for different smart community applications. In these

situations, an agent is trained to learn an optimal policy, which maps community states to

optimal actions that must be taken. Pettet et al. [116] use MDPs for dynamic resource

allocation in emergency response systems, where the goal is to optimize ambulance locations

to minimize response times to emergency calls while considering constraints on the number

of available ambulances and the locations where they can be stationed (i.e., variant of the
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sensor placement problem). Han et al. [56] used RL to develop a middleware for event

identification in community water networks. The agent’s goal is to select optimal locations

for grab-sampling given existing observations to balance the tradeoff between human effort

(large number of locations) vs. missing events (low number of locations). Mao et al. [93]

used RL to develop a task packing framework that handles resource demands from multiple

applications on cloud servers. The agent learns to optimize objectives like application latency

using cluster assignments by looking at past historical demands. Similarly, Gai et al. [49]

leveraged RL to allocate analytics workload among edge servers, where the agent considers

both energy costs and analytics response time as metrics to optimize for. Chen et al. [32]

adopted RL algorithms to migrate edge analytics between servers for better energy efficiency

or service quality. Their Q-learning based algorithm was evaluated on a testbed with two

edge servers and four mobile devices.

2.2.3 Generalization: Sharing Solutions Across Communities

The ability to share data and models across communities can provide significant benefits.

Data sharing enables the training of more robust models that can detect a wide and diverse

set of events, while model sharing can enable communities to reuse solutions instead of

needing significant monetary and time investment to develop their own. Sharing can also

help bridge the gap in infrastructure monitoring quality between resource-poor and resource-

rich communities. However, model sharing can be limited by data biases, which can be

present in a community’s data due to local patterns like the weather that do not have

a causal relationship with the observed events. Reliance on these biases can negatively

impact the performance of models when deployed in new communities where they are not

present, and hence solutions to train generalizable models that ignore biases is powerful. Data

sharing to train robust models, on the other hand, is also challenging due to increasingly

stringent privacy policies and security concerns, wherein communities and users are unwilling
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to share sensitive data. To address this, distributed model training approaches like federated

learning [96] are gaining importance to leverage the benefits of diverse data collections from

distributed sources. In this section, we present an overview of prior research work on training

generalizable models as well as federated learning approaches.

Generalization of machine learning models

Prior work on machine learning generalization have predominantly looked at problems in

computer vision. There have not been any significant efforts made to train generalizable

models for smart community applications where data biases and spurious correlations are

often present. Some initial work has been proposed in the space of domain adaptation

for smart community applications [176, 111, 183, 89] where models trained on one data

distribution are quickly retrained for new distributions. However, they assume that the new

test data distribution is already known, unlike the harder problem of generalization where

the model is expected to identify the causal features and perform well on any unseen test

distribution. Hence, training generalizable models for community infrastructure monitoring

is an open challenge that we have addressed in this thesis.

There are various approaches that have been proposed to improve the generalization of

machine learning models for computer vision applications. Causal model discovery [109,

59] aims to find an underlying causal graph to obtain an invariant feature set that is a

causal predictor of the target. Arjovsky et al. [7] propose Invariant Risk Minimization that

estimates an invariant model optimizer across different distributions. Data augmentation

techniques are also popular and aim to make the model more robust by training using

instances obtained from neighbouring domains hallucinated from the training domains, and

thus make the network ready for these neighbouring domains. Shankar et al. [133] augment

data using instances perturbed along directions of domain change and use a second classifier

to capture this. Volpi et al. [170] apply this to single domain data, while Carlucci et al.

28



[27] apply augmentation to images during training by simultaneously solving an auxiliary

unsupervised jigsaw puzzle alongside.

Decomposition based approaches represent the parameters of the network as the sum of a

common parameter and domain-specific parameters during training [39]. Khosla et al. [72]

applied decomposition to domain generalization by retaining only the common parameter for

inference. Li et al. [83] extended this work to Convolutional Neural Networks (CNNs) where

each layer of the network was decomposed into common and specific low-rank components.

Piratla et al. [118] recently proposed a more efficient approach that decomposes only the

last layer, imposes loss on both the common and domain-specific parameters, and constrains

the two parts to be orthogonal. Another approach is to pose the generalization problem as a

meta-learning task, whereby we update parameters using meta-train loss but simultaneously

minimizing meta-test loss [82]. Prior work on meta-learning has been studied either in the

context of few-shot supervised learning methods which adapt using small amounts of labeled

data from the new domain [131, 123, 47], distribution shifts in only test domains [42, 181],

or only considering label shifts [90, 141].

Other approaches include adversarially learning representations that are invariant with re-

spect to domain-specific features using perturbations [4, 153] as well as domain erasure

methods which estimate features that have the same distribution across different domains

using techniques like data-reconstruction, projection, MMD, etc [50, 52, 84]. There have also

been some prior work for other applications like visual question answering [145], business

process predictions [164] and medical diagnosis using human annotated spurious features

[139].
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Federated learning

As described in Section 1.1, IoT data generation for different community applications has

exploded in recent times. Training analytical models in a centralized manner by collecting

and transmitting data from different sources to a single server is challenging due to the

strain on network bandwidth and high storage requirements. Additionally, there has also

been a rise in privacy and security concerns such as the leakage of confidential personal

data [184] and ransomware attacks on community infrastructure like water networks and

the smart grid [177] resulting in agencies and stakeholders being unwilling to share their

data. Federated learning (FL) has emerged as a paradigm to address these concerns, where

distributed devices or edge servers can collaboratively train a shared global model without

the need for data transmission or sharing.

There have been several efforts to utilize federated learning for smart community applica-

tions. Liu et al. [91] use FL to predict traffic flows by training models directly at the edge

(i.e.) on-board vehicles, using attributes such as road geometry and the weather. They show

that distributed training by leveraging data from many vehicles helps provide better traffic

prediction outcomes. Similarly, Samarakoon et al. [129] propose an FL-based approach to

achieve ultra-reliable low latency communications in vehicles. Lyapunov optimization is used

to calculate the joint power and resource allocations to enable low latency communication

for vehicular users. Federated learning has also been leveraged by several efforts to train

accurate models for medical diagnosis using sensor data, while preserving patient privacy

[126, 24, 135]. Nishio et al. [104] and Xu et al. [175] propose approaches to use FL on

resource-constrained edge devices, to improve efficiency by considering the varying levels of

computation capabilities in different IoT devices.

The majority of existing work on using federated learning for smart community applications

leverage the FedAvg algorithm proposed by McMahan et al. [96]. It trains a global central-
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ized model by periodically averaging the weights of local models. Improvements on FedAvg

have looked at reducing the communication costs such as FedMA [171], CMFL [92], and

ASO-Fed [33]. However, FedAvg has been shown to perform poorly, or in some cases even

diverge empirically in settings where the data is non-identically distributed (i.e., non-iid)

across devices. However, the presence of non-iid data is common in smart community ap-

plications, since sensors and devices can (i) have differing numbers of data samples due to

sampling rate, device runtime, etc. and (ii) have differing data distributions due to differ-

ences in geographical issues, weather patterns, etc. To address this issue, several approaches

have been proposed including FedProx [83] by Li et al. where a proximal term is added to

the client loss functions, thereby limiting the impact of local updates by keeping them close

to the global model. Agnostic Federated Learning (AFL) [100] proposed by Mohri et al. is

another improvement which optimizes the central model for any new distribution that is a

mixture of the local client distributions. Karimireddy et al. propose SCAFFOLD [68] which

uses control variates (variance reduction) to correct for any distribution drift or changes in

the local clients. However, none of these approaches consider the presence of data biases or

spurious correlations in the training data on local devices. Hence, developing a generalizable

federated training approach for effective community infrastructure monitoring is critical, and

is an important contribution of this thesis.
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Chapter 3

Approach Overview

In this chapter, we present our overall approach to understand and address challenges in

developing IoT-driven infrastructure monitoring solutions for communities. We detail a

cross-layer approach to infrastructure monitoring and discuss our past projects like SCALE

and AquaSCALE, that were developed for enabling and improving the resilience of differ-

ent monitoring layers during adverse events in the community. We then identify major

research challenges to move forward towards developing comprehensive infrastructure mon-

itoring frameworks that leverage community structure and behavior and which can be de-

ployed across communities. We finally present an overview of our solution approaches to

address these problems and highlight our cross-layer and cross-community contributions in

this thesis.
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3.1 Infrastructure Monitoring

There have been numerous initiatives like the SmartAmerica Challenge [30], to encourage in-

dustry, academia, and government agencies to develop solutions that leverage IoT and related

technologies for infrastructure monitoring. Their vision for a comprehensive infrastructure

monitoring framework involves effective monitoring, while being able to handle multiple in-

frastructures and monitoring applications, across different communities. The fundamental

flow of data and information in such a framework is depicted in Figure 3.1, where data is

generated by sensors at the lowest layer and is transmitted through communication networks

and analyzed by models to finally service application objectives. Following these initiatives,

our group at the University of California, Irvine (UCI) has collaborated with several in-

dustry and government partners to develop solutions to optimize different components of

this monitoring workflow. A vast majority of our work thus far has focused on developing

solutions to improve the resilience of infrastructure monitoring when different components

of the monitoring workflow fail due to adverse events.

The SCALE project [14] was created to address challenges related to improving the resilience

of monitoring frameworks. Reliable delivery of data from devices to edge and cloud servers is

critical for infrastructure monitoring, to ensure that no events are missed. However, network

outages can happen due to various reasons including large scale events like earthquakes. To

address this, we developed several approaches to enable reliable data delivery and exchange

under various network failures. We proposed GeoCRON [16] as a solution to achieve reli-

able data delivery during geo-correlated infrastructure failures, by exploiting geographically

redundant network routes to avoid failures. It uses information of the underlying routing

infrastructure to establish multiple geo-diverse routes in the network overlay and sends mul-

tiple copies of the data along these routes to improve the chances of successful data delivery

during network failures. We further developed a middleware for resilient IoT data exchange

(RIDE) [17] that used Software-Defined Networking (SDN) to redirect data flows between
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Figure 3.1: Flow of information in infrastructure monitoring and our cross-layer and cross-
community contributions in this thesis

edge and cloud servers during network failures or congestion.

Following the success of SCALE, two projects – AquaSCALE [56, 57] and SWADE [166, 159],

were proposed to develop infrastructure monitoring solutions specifically for water networks.

AquaSCALE focused on drinking water distribution networks (WDNs) and proposed so-

lutions to leverage IoT-driven infrastructure measurements along with human inputs (e.g.)

social media, to explore three key resilience problems – (i) identification and isolation of con-

current pipe failures, (ii) state estimation of WDNs under extreme events like earthquakes,

and (iii) contaminant source identification using human-in-the-loop based sensing. SWADE

is an ongoing project that goes beyond drinking water networks and also looks stormwa-

ter and wastewater infrastructures. Currently, each of these water infrastructure systems
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Figure 3.2: Key questions addressed across deployment, operation, and generalization of
infrastructure monitoring frameworks

operates independently despite common objectives and overlapping information. Hence, de-

veloping and sharing monitoring solutions across these different types of infrastructure that

can aggregate data and structural information to leverage commonalities can greatly improve

planning and operational procedures.

The work in this thesis augments and builds upon these earlier efforts and Figure 3.1 depicts

our cross-layer and cross-community contributions. We address challenges not only across all

the layers of an infrastructure monitoring framework but also challenges arising from the need

to extend and share single-community solutions across communities. The approaches devel-

oped in this thesis present a significant step forward towards comprehensive infrastructure

monitoring across communities. Specifically, we look to answer three key questions across

the deployment, operation, and generalization of infrastructure monitoring frameworks as

depicted in Figure 3.2. We address community infrastructure monitoring challenges pertain-

ing to effective sensor deployment, efficient monitoring operation, and the generalization of

monitoring solutions across communities. In the rest of this chapter, we discuss challenges

that need to be addressed to answer these questions and present an overview of our solution

approaches.
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Figure 3.3: Diversity in structure and behavior across three communities

3.2 Research Challenges

3.2.1 Diversity in Community Structure and Behavior

A major challenge towards developing a comprehensive infrastructure monitoring framework

is to handle the inherent diversity present among communities. We classify this diversity

into two aspects - structural and behavioral, and we use the example of three different

communities (A, B, C) in Figure 3.3 to illustrate some of this diversity. Each row in the

figure corresponds to four images taken at different times of the year at the same location

in the corresponding community.

Structural differences between community infrastructure can manifest in terms of the under-

lying physical topography, the layout and locations of infrastructure, population demograph-

ics impacted by events, scale of operation as well as available resources (capital, instrumen-

tation, data), among others. To illustrate this, consider an example use-case application of

traffic monitoring (pedestrian and vehicular) across the three communities in Figure 3.3. We

observe that A represents a busy intersection, while B depicts a small road, and C shows a
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pedestrian sidewalk. These three different community settings present significantly different

flows of pedestrians and vehicles, where we can expect the largest number of vehicles in A,

followed by B, and no vehicles in C, while the number of pedestrians would typically be

largest in C. Due to these differences, the sensor instrumentation for monitoring would also

differ across these communities in terms of the number of cameras required, their degree

of coverage, and the extent of monitoring needed. This example shows how structural dif-

ferences across communities can impact monitoring requirements even if the application or

type of infrastructure is the same.

Behavioral differences can occur due to differences in weather phenomena, temporal patterns,

correlated occurrences of events, unique community events like festivals, etc. From Figure

3.3, we see that weather events like snow and rain, can impact the behavior of traffic and

pedestrians. For instance, the number of pedestrians could reduce, and the speed of traffic

movement could also change. The weather could also impact the quality of images that are

obtained from the camera, thereby affecting the performance of analytical models relying

on these images. This degradation in image clarity can also happen due to day/night time

differences (like in community C), where the temporal changes also cause a difference in the

number of pedestrians observed in the images, showing that these behavioral differences not

only impact infrastructure monitoring across communities, but also within a community.

Existing infrastructure monitoring efforts focus on individual applications in specific com-

munities. If we are to develop a more comprehensive monitoring framework that can be

deployed across communities for different applications, we must address and leverage this

diversity in community structure and behavior.
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3.2.2 Operational Heterogeneity

The presence of heterogeneity across the different layers of a monitoring workflow (Figure

3.1) can create challenges during operation or at run-time. Effective workflows depend on

the kinds of applications, analytical models, network links, devices and data types that are

being supported, and each of these components often exhibit heterogeneity that can impact

the operation of infrastructure monitoring.

The heterogeneity in the types of IoT sensors or devices is well documented, ranging from

analog sensors like acoustic, temperature, air quality, etc, to more complex devices like

cameras and mobile phones. Each of these devices provides specific measurements or data

features (e.g., cameras provide images), thereby limiting their use to specific monitoring

applications. Even within specific types of devices, like cameras, we can observe heterogeneity

in terms of the sensing range, effectiveness, monetary costs, as well as resource consumption

between different devices of the same type. This subsequently results in heterogeneity in

the data being collected, not just in terms of the type of data (e.g., images vs. time-series),

but also in terms of data generation (e.g., bursting, periodic, streaming), data quantity and

quality which can all affect the effectiveness of a monitoring workflow.

The network links on which data from sensors are transmitted can also present heteroge-

neous characteristics. While wireless networks are extremely popular for smart community

applications, there are numerous kinds, including WiFi, Bluetooth, Cellular, ZigBee, LoRa,

etc. Each of these networks provide different benefits and shortcomings for criteria like band-

width, data rates, power consumption, and network availability, which must all be considered

in conjunction with the monitoring application objectives, when determining the network

links to utilize. Similarly, monitoring models that are trained to analyze the data from the

sensors for different applications also exhibit heterogeneity. Machine learning has emerged

as a powerful tool to leverage the vast quantities of available data to identify patterns within
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infrastructure systems that could be used to identify or predict events. But there are nu-

merous types of models that can be trained which vary in their architecture, objective (e.g.,

classification vs. regression), performance accuracy, and resource consumption (e.g., power,

memory). The optimal model choice is dependent on individual application objectives as

well as the resource availability on the servers where the model will be deployed. Finally, this

heterogeneity builds up to the types of monitoring applications that infrastructures require.

With the increased awareness of the importance of infrastructure monitoring, numerous ap-

plications like pollution monitoring, traffic surveillance, intruder detection, failure detection,

water quality monitoring, etc. are required for different types of infrastructure. Each of

these differ in their objectives, data requirements, sensitivity to network or device failures,

among others.

We believe that the design of a comprehensive infrastructure monitoring framework must

appropriately address the different kinds of heterogeneity described above in a real-time

adaptive manner.

3.2.3 Distributed Training and Generalization

The diversity in community structure and behavior can result in the occurrence of events of

different types across communities. Training analytical models on data shared by different

communities can improve their robustness and capability to detect a wider range of diverse

events (e.g., contamination, accidents, intruders). However, centralized training requires

significant costs associated with data transmission and storage, and can place a strain on the

communication networks that need to service other applications as well, thus necessitating

distributed training approaches. Moreover, communities are often unwilling to share sensitive

data due to privacy and security concerns, which can be addressed with distributed training.

Additionally, communities often have access to differing levels of resources (e.g., monetary
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capital, compute, sensing), that often result in resource-rich communities being able to

train more effective monitoring models for their infrastructure as compared to resource-poor

communities, where this difference could be offset by training models that can generalize

or be shared between communities. However, data biases often exist in local community

data which can influence the analytical models, and result in poor performance if shared

with a new community where these biases are not present. Hence, distributed training and

improving model generalization by handling data biases are important challenges that must

be addressed to enable cross-community sharing.

Traditional approaches to training analytical models require transmission of vast quantities

of data to a central server where the models are trained. Constant transmission can take

up most of the network bandwidth, reducing the availability for other applications and can

result in performance issues due to dropped packets. Centralized approaches also need sig-

nificant storage resources to hold the large amounts of sensor data that are generated from

different infrastructure, and can quickly run out of space. This also results in all the data

being stored at a single location, which becomes a critical point of failure or malicious ac-

tivity since monitoring community infrastructure often requires the collection of personal

and confidential data. For instance, smart building monitoring frameworks like TIPPERS

[97], collect WiFi usage data of occupants, while larger agencies like Orange County Public

Works (OCPW) have vast amounts of data and sensitive information about water distri-

bution networks servicing millions of people. If people’s personal data or confidential and

critical infrastructure information were to fall in the wrong hands, it could cause significant

adverse impact to individuals and the community at large. Additionally, the number of

cyber-attacks on community infrastructure have increased in recent years. A recent attack

targeted the Oldsmar Water Treatment System in Florida [150], where the hacker accessed

their internal systems to contaminate the water treatment by increasing the levels of sodium

hydroxide from 100 to 11, 000 ppm which could have caused severe health issues if consumed.

There have also been attacks to sabotage power grids, that could have resulted in widespread
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power outages [149].

The goal of every monitoring model is to capture the underlying causal relationship between

different features or data variables and the target event. For example, a model for detecting

air pollution needs to learn the causal relationship between PM2.5 measurements (particu-

late matter) and whether or not air pollution exists. However, the inherent characteristics

of a specific location or community can often inject spurious biases or correlations between

features and the event. These spurious correlations can occur due to sensor locations, sam-

pling issues, and other community-centric characteristics like weather patterns and so on.

These correlations have no causal relationship with the event outside of the collected data

(i.e.) correlation not implying causation, but because the model relies on all the correla-

tions present in the data during training, it learns and relies on these spurious relationships.

This results in the model performing poorly when given any new data, from either the same

community or when deployed in another community, that does not contain these data biases.

Addressing these challenges requires solutions that can train generalizable models in a dis-

tributed manner such that they can also be deployed or shared across communities without

any significant loss in performance.

3.3 Solution Approaches

In order to address these different challenges towards achieving a comprehensive infrastruc-

ture monitoring framework, we develop cross-layer and cross-community solutions as shown

in Figure 3.1. This section provides a brief overview of our approaches to address three chal-

lenges – effective sensor deployment, efficient monitoring operation, and distributed model

generalization. Further details of our approaches are provided in subsequent chapters.
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3.3.1 Sensor Deployments to Minimize Community Impact

The goal of any distributed deployment of sensors is to provide sufficient information about

the infrastructure so as to quickly capture events, particularly adverse ones, thereby miti-

gating their potential impact on the community. Traditionally, sensor placement approaches

have focused on heuristics like coverage, and distance between sensors. However, given

the diversity in community structure and behavior that we discussed in the previous sec-

tion, such approaches may result in deployments that are too slow to detect high impact or

harmful events, since they assume that (i) all locations in the infrastructure have the same

importance, and (ii) all events are equal, both of which are often untrue.

Defining the impact of any event in community infrastructure requires several pieces of

information that we look at with an example of water pipe failures: (a) infrastructure layout

and properties – pipe failures in a central junction servicing large areas is more impactful

than one at the edge of the network, (b) event characteristics – several large pipe bursts are

more impactful than a small leak, and (c) community structure – a pipe burst in an urban

centre is more impactful on the community than one in the middle of a wasteland.

Hence, determining the optimal locations to place a limited number of sensors should utilize

knowledge of the community, infrastructure, and the events that need to be captured. We

propose an impact-driven approach for sensor placement, where we first quantify the notion

of event impact on a given community by looking at the above three aspects, and leverage

this knowledge to determine optimal sensor locations that will ensure the quick identification

of any high impact events so as to minimize their impact on the community. Details of our

approach will be presented in Chapter 4.
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3.3.2 Resource Efficient Adaptive Monitoring

In this effort, we address the operational challenges of infrastructure monitoring frameworks

that arise due to the various forms of heterogeneity across the different layers that was de-

scribed in the previous section. We observed that heterogeneity in monitoring can arise

from devices, data, communication networks, and analytical models which all have to work

together in harmony to provide effective monitoring solutions. Our goal is to develop an

operational framework that can handle this heterogeneity and provide a way for users and

stakeholders to deploy multiple monitoring applications with a variety of sensing, analyt-

ics and communication options, such that our framework continuously selects the optimal

monitoring pipeline for each application in real-time to achieve the application objectives.

The optimal choice of sensors, analytical models and network links can constantly vary

depending the community conditions (e.g., day vs night, raining vs. sunny) and hence a

one-size-fits-all approach to determining monitoring pipelines will prove ineffective. More-

over, with the need to service multiple applications, it is critical to develop solutions that

judiciously use the limited available resources like power, computation, storage, etc. We

leverage reinforcement learning to train agents to learn different patterns in a community to

then identify the best possible monitoring pipeline or workflow to use at any given time for

the current conditions.

Our key idea is to balance the monitoring effectiveness of a pipeline and its associated costs

while meeting both the application requirements and the resource availability. We do this

by first enabling community stakeholders to define multiple monitoring pipelines consisting

of sensors, network links, and analytical models for each application, and then collecting

information about the community states that can influence an application like the weather.

This is used to train the reinforcement learning agents to adaptively identify (in near real-

time) the best operational decisions to take given the current community state information,
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available resources, and the effectiveness and costs of the monitoring pipelines. We present

further details of this resource efficient adaptive monitoring framework in Chapter 5.

3.3.3 Distributed Training of Generalizable Monitoring Models

In this effort, we aim to achieve our vision of training generalizable monitoring models that

are robust and which can be deployed or shared across communities without any loss in

performance, while addressing the associated challenges of (i) distributed training, and (ii)

data biases or spurious correlations.

We achieve distributed training and also overcome the privacy concerns associated with

sharing sensitive infrastructure data to train models by leveraging the federated learning

paradigm. Federated learning, in contrast to centralized training where raw data is shared

to a central server to train a model, trains models in a distributed manner. Each community

or location instantiates its own local model that trains securely on local data, and periodi-

cally all the local models from the different communities share their model parameters (and

not any data) with a central model that aggregates these parameters and transmits back the

new aggregated model. Over time, this approach results in all the local models converging,

essentially reflecting them being trained on all the local datasets across the different com-

munities, but without any sharing of local data, thereby improving their robustness while

also preserving data privacy.

However, while federated learning addresses the need for distributed training, this approach

does not handle biases or spurious correlations in the data. We present an approach that

improves upon the standard federated learning paradigm by training models to identify

and ignore biases in the data in a distributed manner. We develop a set of masks, one

for each input data feature, that leverages feature stability to identify biased and causal

features. While training each local model, we update its local masks based on this stability
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to emphasize causal features and suppress biases. During the aggregation of local models,

we also aggregate these masks, and over time this allows the global model to identify and

ignore biases across all the local datasets and therefore results in models that can generalize.

We present further details of our approach in Chapter 6.
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Chapter 4

Impact Driven Placement for

Adaptive Monitoring

We begin our efforts towards developing a comprehensive infrastructure monitoring frame-

work from the first layer – the deployment or placement of sensors. Sensor deployments are

typically distributed over the community infrastructure and can consist of heterogeneous

devices that can be in-situ (static) or mobile. The effectiveness of a distributed placement

of sensors lies in its ability to quickly detect a wide range of events in the infrastructure.

However, as we described previously, there is significant heterogeneity in the structure of

communities (e.g., scale, topography, location of critical infrastructure) as well as event

characteristics (e.g., event type, locations, intensity), which present additional challenges

that need to be addressed.

In this chapter, we combine the benefits of in-situ and mobile sensing with various geoso-

cial factors to develop a cost-effective hybrid sensor placement approach that minimizes the

impact of adverse events on the community infrastructure. Our focus in this chapter is

on water distribution networks (WDNs), but our approach can be easily extended to other
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types of infrastructure as well. Our sensor placement approach can adaptively adjust sens-

ing resolutions on-demand within the infrastructure, determine required sensing capabilities

based on the event characteristics, and respond to varying event severities. We propose a

two-phase planning and deployment approach that first integrates network structure, event,

and community information with simulation based analytics to determine locations to install

in-situ sensors and mobile sensor insertion infrastructure. We then incorporate network flow

information to determine mobile sensor deployment locations and volume to quickly localize

detected events to minimize their impact. Our results indicate that the proposed approach

results in a placement of sensors that can quickly detect high priority events thereby mini-

mizing any adverse impact on the community.
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4.1 Chapter Overview

Water distribution networks (WDNs) constitute one of the most critical urban infrastruc-

tures and are an important community lifeline. The monitoring of water networks is essential

to ensure the availability of sufficient quantity and quality of water. Today’s water networks

are often decades old, and their growing scale and complexity make them increasingly vulner-

able to adverse events [8]. Large pipe failures or leaks and the introduction of contaminants

are the most common events affecting the quantity and quality of water in WDNs. Like

many other community infrastructures, water distribution networks consist of multiple in-

terconnected components, where such adverse events can cause significant disruption to water

services. Pipe leaks or failures can result from stress caused by factors such as corrosion, pipe

displacements, extreme weather, disaster events, etc. Approximately 14%−−18% of treated

drinking water in the U.S. is lost because of leaks or breaks in faulty pipelines [101, 88].

The quality of water in these networks can also be compromised via contaminant introduc-

tion and propagation (e.g., nitrates, metals, pesticides) through the pipes. Oftentimes, pipe

breaks result in contaminants entering the pipelines through backflows [155]. The impact of

physical damages to the infrastructure and compromises to the quality of supplied water can

be devastating to society and cause huge economic and public health issues such as massive

flooding, outbreak of waterborne epidemics, shortages of clean drinking water, damage to

property, etc. Having an effective deployment of sensors in place to monitor water networks

is thus essential to localize and resolve these adverse events, in particular, those that disrupt

and impact the community at large.

There have been several efforts towards instrumenting water distribution networks with sen-

sors to detect and localize events in a timely manner. Some systems like PIPENET [140],

WaterWise [174], WaterBox [69], and AquaSCALE [57], install in-situ or static sensors to

measure network parameters like pressure, flow rate, turbidity, etc to detect the occurrence of

events. Figure 4.1(a) shows the WaterWise multi-sensor probe that holds several commercial-

48



off-the-shelf sensors for hydraulics and is inserted into the flow on pressured pipes. Static

sensors provide continuous monitoring with one time installation and continuous commu-

nication costs. High-end static sensors provide deterministic performance, larger sensing

ranges, and good accuracy. However, they are expensive and the instrumentation of civic

water infrastructures at large would require significant investments (millions of dollars).

On the other hand, systems like SmartBall [48] and PipeProbe [79] drop mobile sensors into

the network which traverse and monitor pipes by moving with the water flow. Figure 4.1(b)

shows the deployment of a SmartBall into a water pipe. Mobile sensors detect events by

traversing near them while flowing through the pipes and incur operational costs during

their deployment. Operating mobile sensors typically incurs lower cost than trenching and

installing static sensors to retrofit existing pipe networks. Mobile sensors also allow for

adaptive sensing on-demand as sensors can be deployed at different locations, at different

times, and with different sensing capabilities based on the need. However, they do not

provide continuous monitoring and have low sensing ranges. They also require a larger

number of sensors since they have probabilistic movement through network junctions, and

also need infrastructure support for their insertion into the network.

We argue that an intelligent sensor placement methodology is important for rapid and cost

effective identification of events throughout infrastructure networks. In contrast to current

placement approaches that are coverage based and treat all events uniformly, our approach

is based on identifying the needs of the community and the impact of every event. There

are three key observations that drive our impact-driven approach to instrumenting water

networks:

1. First, while detecting all events is important, not all events are equally impactful.

For instance, a pipe break affecting a hospital is more critical to identify rapidly as

compared to one that is affecting a household.
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Figure 4.1: (a) WaterWiSe in-situ probe (b) SmartBall mobile deployment

2. Second, infrastructure events affecting the same community may have have different

severity and hence cannot be treated uniformly. For example, simultaneous large pipe

breaks would cause more damage to a community compared to a small pipe leak.

3. Third, diverse communities may be vulnerable to different extents to events based

on their location, structure, demographics, built infrastructure, urbanization, etc.

In this chapter, we propose to leverage the advantages provided by static sensors (contin-

uous monitoring, sensing range, accuracy) and those by mobile sensors (adaptive sensing,

on-demand monitoring, low cost) to develop a hybrid (i.e. in-situ and mobile) sensor place-

ment approach to provide adaptive monitoring of water networks. Our goal is to first plan

and augment the placement of in-situ sensors with mobile sensor insertion infrastructure

to quickly detect adverse events in the infrastructure and then determine locations from

which to deploy mobile sensors to localize these events. Since the impact of events on the
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community are tied to their severity and the time taken to localize them, our planning and

deployment methodology needs to be able to quickly detect and localize high impact events.

There has been work on combining in-situ and mobile sensing in smart cities for pollution

monitoring [95], community data collection [186], public safety [87] etc. However, achieving

this in water networks presents several challenges. First, most of the network infrastructure

is below ground, making it hard to deploy and operate sensors and involves other engineering

efforts like developing mobile sensor insertion infrastructure. Second, the movement of mobile

sensors is constrained by the direction and speed of the water flow that change over time.

Finally, communication is a challenge in underground networks where wireless networks

suffer from attenuation while wired approaches require much cost and effort.

Key Contributions of This Chapter:

• Methodology to model community vulnerability to determine the impact of events,

that takes into account various geophysical, societal, demographical and topological

factors (Section 4.2).

• Hybrid architecture that leverages the strengths of both in-situ and mobile sensors

and combines it with the community geosocial factors to provide real-time adaptive

monitoring of underground water distribution networks (Section 4.3).

• Approaches to model the components of the infrastructure, the occurrence and prop-

agation of events, and their resulting impact on the community (Section 4.4).

• Algorithms to (a) perform network planning to determine the placement of static sen-

sors and mobile sensor insertion infrastructure and (b) determine mobile sensor de-

ployment locations with the goal of reducing costs and ensuring low community impact

while maintaining event detection and localization accuracy (Section 4.5).

• Extensive evaluation of the performance of our proposed approach on three real-world
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water networks from Maryland, Colorado, and Richmond, and comparisons with ex-

isting approaches in detecting dynamic events resulting in the loss of water qual-

ity/quantity (Section 4.6).

4.2 Community Impact of Events: A GeoSocial Ap-

proach

In this section, we further develop the notion of community impact due to adverse events in

water networks. We argue that a comprehensive approach to sensor placement or deployment

must consider a range of socioeconomic and geospatial factors and discuss how this differs

from prior approaches to instrument water infrastructure. Specifically, we discuss the various

geophysical, infrastructural, economic and societal factors that should be considered while

modeling the impact of pipe failures or contamination events. We categorize these factors

as follows:

• Terrain and Topography: Terrain is a major factor in determining the direction

and speed of water flow. For instance, the flow of water would be faster down a slope

than along a flat terrain. Also, the flow of water from events at a higher elevation can

affect regions that are downstream. Hence, modeling the terrain elevation and gradient

is important to determine the regions of the community that would get affected in the

occurrence of a pipe failure or contamination event.

• Event Characteristics and Network Structure: The extent of impact of an event

on the community is tightly coupled with the characteristics of the event. For instance,

modeling the outflow of water when there is a pipe failure is essential to determine the

extent of flooding of the community, while determining the levels of water consumption

from different junctions would help quantify the impact if a contaminant was present.
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The impact of an event would also depend on the topology of the water network

(e.g.) a pipe failure upstream at a central distribution hub would have more impact

on the community than a failure at an end node in the network. Similarly, modeling

the network structure, presence of hydraulic infrastructure like pumps, and the pipe

lengths are important to determine the concentration levels and the propagation of a

contaminant through the water network.

• Population Scale and Demographics: The societal impact of a pipe break or

contamination event is closely related to the scale of population that it affects. Adverse

events in a population center would cause a larger disruption to the community than in

a region of low population density. It is also important to understand the demographics

of the region while modeling impact, since an event affecting an old-age home or a

school could have a high adverse impact. Another factor is system redundancy. If no

or little redundancy (alternative water supplies or conduits) exists, then the impact on

the affected population would be higher.

• Economic Impact: The outflow of water from leaks and the consumption of contam-

inated water can also disrupt other lifelines and services and cause significant damage

to property or the health of people in the community. Modeling the monetary costs

associated with recovery and reconstruction activities can be used to model the im-

pact of an event (e.g.) disruption of services can affect local businesses, thus causing

secondary losses to the community.

• Cascading Effects: There is a potential for pipe breaks or contamination events to

cascade. During pipe breaks, the seepage of water into nearby infrastructure can result

in additional damage that could be exponentially more than the damage from flooding

alone. An example of this type of cascading failure was observed during Hurricane

Harvey this year[1] when a chemical plant in Crosby, Texas lost electrical power from

backup generators because of flooding which eventually caused several explosions and
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ensuing fires. Similarly, the consumption of contaminated water can result in the

spread of severe health issues in the community, thereby potentially impacting the

workforce resulting in reduced productivity for other industries.

In addition to modeling the geospatial aspects of failure, sensor placement methods must

capture temporal metrics, (i.e.) detection time of events, while modeling impact and conse-

quently response to failures. Our goal is to design sensor placement techniques that ensure

adequate coverage of high impact regions (spatial aspect) with low detection times (temporal

aspect). In the remainder of this chapter, we aim to answer the following questions:

• How do we define and quantify the spatio-temporal factors of impact accurately and

meaningfully?

• How can we use these factors to model the vulnerability of a community?

• How do we use the notion of impact on a community to drive sensor placement in order

to minimize the adverse impact of pipeline failures and contamination events?

4.3 Hybrid Adaptive Monitoring Architecture

In this section, we present our hybrid (in-situ plus mobile) architecture for the adaptive

monitoring of water networks as shown in Figure 4.2. The physical infrastructure consists

of the water distribution network, the surrounding community structure and the sensor

deployments. In-situ or static sensors are installed on the pipes in contact with the water

flow. Mobile sensors on the other hand, are inserted into, and extracted from the water

flow through points that we denote as Insertion/Extraction (I/E) points. These could be

manhole covers, fire hydrants or other specialized infrastructure. While the measurements
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from static sensors are uploaded as continuous data streams, the data from mobile sensors

are uploaded once they are extracted at an (I/E) point.

Our system architecture has two phases. The first phase involves network planning where

we leverage network information, community structure (terrain, population, locations of key

infrastructure), and event propagation models in order to model the impact of different

events occurring at various locations in the network on the surrounding community. We

then use these impact models to drive our planning algorithm to determine the locations for

urban planners and water agencies to install static sensors and mobile sensor (I/E) points.

The static sensors continuously monitor the water network and whenever they detect the

occurrence of a pipe failure or contamination event, they determine a region of interest,

which constitutes a subset of junctions and pipes where the sensors believe that an event has

occurred. In the second phase, we determine the Insertion/Extraction points from which

to deploy mobile sensors to quickly cover the region of interest so as to ensure the minimal

impact of events on the surrounding community.

The adaptive monitoring capabilities of our hybrid architecture results from (a) the ability

to dynamically adjust the sensing resolution of different areas of the network on-demand

through the deployment of mobile sensors, (b) being able to pick and choose the exact

sensing capabilities (sensing rate, types of sensors) of the mobile sensors required to localize

each event based on the input provided by the static sensor deployment, and (c) catering to

the severity of different events by incorporating information from static sensors to determine

the number of mobile sensors required to provide adequate coverage and measurements from

the region of interest.
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Figure 4.2: Hybrid Adaptive Monitoring Architecture

4.4 Modeling Impact in Water Infrastructure

In this section, we describe our methodology for modeling the various components of the

proposed hybrid infrastructure, the occurrence and propagation of contamination and failure

events, the community structure and the associated impact of these events.
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4.4.1 Modeling Infrastructure Components

Since the propagation of different events is dependent on the network flow, an event may

manifest itself at only a subset of junctions in the network. There is also a time delay associ-

ated with the manifestation that increases with distance from the event source. Therefore, it

is important to model the water network and the sensing capabilities of both types of sensors

to ensure the continuous monitoring of the network and the timely detection and localization

of events. We use a hydraulic simulator EPANET [127] developed by the United States En-

vironmental Protection Agency, which simulates the hydraulic behavior within pressurized

water distribution pipe networks, to model the sensing capabilities of the sensors.

Modeling the Water Network: A water distribution network can be represented as a

graph, where the vertices represent nodes and junctions, while the edges represent links

(pipes, valves, and pumps). We denote the set of potential locations for the occurrence

of event E in the network as E = {e1, e2, ..., en}, where ej refers to an event occurring at

location j. We also define the set of potential static sensor locations and mobile sensor

Insertion/Extraction points as Sstat = {sstat1 , sstat2 , ..., sstatn } and Smob = {smob1 , smob2 , ..., smobn }

respectively, where sstati , smobi refer to a static sensor and an (I/E) point at location i re-

spectively. There could be locations deep underground where installing in-situ sensors is not

possible but could be reached by mobile sensors deployed from existing (I/E) infrastructure.

Similarly, there could be places where installing specialized (I/E) infrastructure is infeasible

due to network access or cost, where in-situ deployments are more useful. Figure 4.3 shows

a sample water network with five nodes that we use as a running example to illustrate our

modeling approach.

Modeling In-Situ Sensors: In our hybrid architecture, the static sensors are responsible

for detecting the occurrence of any event and determine a region of interest by continuously

monitoring the network. An event would cause static sensors to return measurements de-
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Figure 4.3: Running example of water network with its (a) elevation map and (b) key
infrastructure information

Figure 4.4: Running example matrices for event detection and sensing capabilities of (a)
static sensors and (b) mobile sensors, (c) Determining event propagation

pending on their ability to detect the event. The combination of these measurements can

be used to identify junctions possibly affected by the event and hence track its propagation.

Our goal is to then determine the potential event locations ej ∈ E that can be detected by

each static sensor location sstati ∈ Sstat and the corresponding time taken to do so. To do

this, we introduce an event at each potential location (E) in EPANET. We then determine

the sensor locations that can detect each event by monitoring the values of the requisite

hydraulic variables for the event (pressure change for failures and contaminant concentra-

tion for contamination events). We build a detection capability matrix Mdc, where the rows

represent the potential static sensor locations and the columns represent the event locations.
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The entries of the matrix are binary valued (0 or 1) depending on whether the static sensor is

capable of detecting the event [114]. We denote the observed values of the hydraulic variable

under normal conditions as vi and as v̂i once the event is introduced. We also set a detection

threshold ε for each event. Then the values ofMdc for a particular event are computed as:

Mdc[s
stat
i , ej] =


1, if vi − v̂i ≥ ε

0, otherwise

(4.1)

We then store the corresponding time taken for the static sensors to detect an event in a

detection time matrix Mdt as:

Mdt[s
stat
i , ej] =


η(sstati )ej , if Mdc[s

stat
i , ej] = 1

∞, otherwise

(4.2)

where η(sstati )ej is the time taken for a static sensor sstati to detect an event at ej measured

in seconds. The values of Mdt are set to infinity for the locations where a static sensor is

incapable of detecting the event.

Example 4.1. The detection capability and detection time matrices in Fig. 4.4(a) show the

capability of static sensors to detect failures in the sample network. For instance, a static

sensor at junction 1 can detect a leak at junction 2 with a delay of 12 seconds.

Modeling Mobile Sensors: Once the static sensors determine a region of interest, the

mobile sensors are then deployed in order to localize the event. Since the mobile sensors flow

along with the water, at each junction that connects multiple pipes, a mobile sensor may

flow into any one of the outlet pipes. Thus, sensors released at the same time and location

can take a number of possible traversal paths. We account for this uncertainty by adopting

a probabilistic approach to model the flow of mobile sensors in the network [143].
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At each junction, we assign the probability of the sensor flowing through an outlet pipe

connecting junction i and j as pij=fij/Ti, where fij is the flow rate through the outlet pipe

and Ti is the total flow rate out of junction i. We maintain this junction-to-junction transition

probability information in a matrix (M) which reflects the probability that a mobile sensor

at junction i would reach junction j in a single step. This also implies that the probability

of a mobile sensor from junction i reaching junction k after two steps can be computed as

pik=pij+pjk for all intermediate junctions j, which translates to computing M2. We repeat

this for n steps until there are no more transitions (i.e., all the probabilities are 0) and create

a traversal probability matrix as:

T =
n∑
k=1

Mk, such that Mk = 0 (4.3)

where 0 denotes the zero matrix and each entry of T denotes the probability of a mobile

sensor traversing from one junction to another in any number of steps. Our goal is to then

translate these probabilities into finding the number of mobile sensors required to traverse

a junction with a minimum coverage probability pc. This can be modeled as a binomial

distribution b(n, p), where p is the probability that a mobile sensor will traverse to a junction,

(1−p) the probability that it will not, and n the number of mobile sensors deployed. Hence,

the probability that no mobile sensors will traverse to a junction can be represented as

(1− p)n. We define A as the event in which at least one mobile sensor traverses to a given

junction. Our goal is to then determine n such that:

P (A) = P (1− A′) = 1− (1− p)n ≥ pc (4.4)

where P (A) is the probability of event A occurring (i.e.) at least one mobile sensor traverses

to a given junction. From the above equation, we can obtain:

n ≥
⌈
ln(1− pc)
ln(1− p)

⌉
(4.5)
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We see from Equation 4.5 that for low traversal probabilities, a larger number of mobile

sensors need to be deployed. We then use Equation 4.5 to build a traversal capability matrix

Mtc where the rows denote the potential mobile sensor (I/E) points (Smob) and the columns

denote the event locations (E). The entries ofMtc represent the minimum number of mobile

sensors required to traverse to each event location with probability pc where:

Mtc[s
mob
i , ej] =


neiej , if T [smobi , ej] > 0

∞, otherwise

(4.6)

We also build the corresponding traversal time matrix Mtt using the network flow rate

information as the time taken for the mobile sensor to traverse from one junction to another:

Mtt[s
mob
i , ej] =


θ(smobi , ej), if Mtc[s

mob
i , ej] 6=∞

∞, otherwise

(4.7)

where θ(smobi , ej) is the time taken for a mobile sensor to traverse from mobile sensor location

smobi to event location ej denoted by the sum of the time taken to traverse each intermediate

pipe which we compute using the flow rates and pipe lengths.

Example 4.2. Figure 4.4(b) shows the traversal capability and traversal time matrices for

mobile sensors in detecting contamination events in the sample network. We see that travers-

ing from junction 1 to junction 2 requires at least 7 mobile sensors to achieve a 95% coverage

probability and they take 44 seconds to reach junction 2.
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4.4.2 Modeling Events - Water Quality and Quantity

The occurrence of different events in the network can result in multiple hydraulic variables

being affected. It is therefore important to accurately model the events to determine the

manner of propagation of each event. Since different events can affect different parts of

the community, we partition the community into smaller regions using a delaunay trian-

gulator, Triangle [136]. Triangular grids allow for localized grid refinement and can easily

conform to terrains with irregular shapes [12]. We denote the set of triangular regions as

∆ = {41,42, ...,4n}. We use EPANET to model the occurrence and propagation of con-

tamination and failure events.

Contamination Events

In contamination events, a dissolved contaminant travels down the network with the same

average velocity as the carrier fluid while at the same time reacting (either growing or

decaying) at some given rate. Hence, contamination events can be detected by monitoring

the chemical concentration levels in the water. We assume that at junctions, the mixing of

fluid is complete and instantaneous.

Definition 4.1. The propagation of contaminants in the water network can be formulated

as:

∂Ci
∂t

= −ui
∂Ci
∂x

+ r(Ci) (4.8)

where Ci is the concentration in pipe i as a function of distance x and time t, ui is the flow

velocity in pipe i and r is the rate of reaction as a function of concentration [127].

Contamination levels. The degree of contamination at each junction is an important

factor to consider while measuring the impact of a contamination event on the community.
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People consuming water from a contaminated junction within a region would be adversely

affected. We measure this using EPANET by injecting a contaminant at each potential event

location ej ∈ E and simulating its spread throughout the network using Equation 4.8. We

then build a contaminant level matrix Mcl where the rows and columns correspond to the

contamination event locations (E) and the triangular regions (∆) respectively. We compute

the entries of Mcl as:

Mcl[ej,4k] =


0, 4k does not consume from ej

C(ej)4k
, otherwise

(4.9)

where C(ej)4k
denotes the concentration levels at 4k due to the contaminant intrusion at

ej.

Failure Events

Physical infrastructure failures, such as pipe leaks/breaks, cause a disturbance in the water

flow resulting in a pressure wave that moves through the network with high velocity [98].

Past work has shown that the the velocity of water exiting from the leak orifice is faster

than within the pipe causing a pressure drop, implying that pipe bursts can be identified by

detecting changes in hydraulic pressure [113, 161].

Definition 4.2. The outflow rate of water from a leak is defined as:

Q = Ec × pβ (4.10)

where Q is the outflow rate from the leak, Ec is the effective leak area of the orifice, p is the

pressure head at the leak and β is a constant [80].

Flood levels. One of the main factors influencing the impact of pipe failures on the com-
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munity is the flooding resulting from water outflow and seepage from leaks. We capture this

by simulating the outflow of water from a leak as well as its propagation along the surround-

ing terrain using a hydrodynamic flood simulation algorithm BreZo [130]. We simulate leak

events in EPANET by introducing emitters. We then compute the outflow rate for each leak

event ej ∈ E using Equation (4.10) and provide this as input to the BreZo simulator in ad-

dition to the triangular regions (∆) and the leak location (ej). The BreZo simulator returns

the regions affected by flooding and the corresponding flood levels. We use this information

to build a flood level matrix Mfl consisting of the leak event locations as the rows and the

triangular regions as the columns. The entries of Mfl are computed as:

Mfl[ej,4k] =


0, leak at ej does not impact 4k

H(ej)4k
, otherwise

(4.11)

where H(ej)4k
denotes the maximum flood level at 4k due to a leak at ej.

Example 4.3. For the sample network, we measure the effects of failure and contamination

events introduced at each junction for four triangular regions denoted by 4 in Figure 4.3(a).

The resulting flood and contamination level matrices are shown in Figure 4.4(c).

4.4.3 Modeling Community Structure and Event Impact

Estimating the impact of any event in the network on the community requires developing a

model of the community structure. We then extract the following community information

from each of the triangular community regions (∆) :

1. Critical Infrastructure: We use mapping services to identify the presence of critical

infrastructure such as healthcare, transportation, government facilities, education, etc

within the boundaries of each region and assign relative importance scores to each of
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these categories. We then compute the critical infrastructure score 4inf
k , of region 4k,

as the sum of the scores of the infrastructure located in 4k.

2. Population Information: We obtain the population density information of each of

the triangular regions using census data and denote it as 4pop
k .

3. Elevation Information: We build elevation maps for each of the triangular regions

as the average elevation of its vertices and denote it as 4ele
k .

4. Demand: We determine the average consumption of water by each triangular region

4k by averaging the total supply through each of the network junctions in 4k, and

denote this by 4dem
k .

Example 4.4. Figure 4.3(a) shows the triangular grids and the terrain information used to

obtain 4ele
k while Figure 4.3(b) shows the presence of critical infrastructure around the water

network to compute 4inf
k .

Measuring the impact of an event on the community (IE) is dependent on the type of event

that occurs in the network. Here, we present our methodology for measuring the impact of

both pipe failures and contamination events.

Impact of Pipe Failures. A large pipe failure can cause flooding in the surrounding area,

thus affecting the population present as well as the functioning of critical infrastructure. We

thus compute the impact of a leak event at location j on region 4k as:

I leakej
=Mfl[e

leak
j ,4k] ∗ (4pop

k +4inf
k ) (4.12)

whereMfl[e
leak
j ,4k] is the level of flooding caused by the leak event, 4pop

k is the population

density, and 4inf
k is the critical infrastructure score of the region.

Impact of Contamination Events. The impact of a contamination event would depend

on the amount of contaminated water consumed as well as the number of people consuming
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the water. We estimate the impact of a contamination event at location j on region 4k as:

Icontej
=Mcl[e

cont
j ,4k] ∗ (4pop

k +4dem
k ) (4.13)

whereMcl[e
leak
j ,4k] is the contamination levels caused by the event, 4pop

k is the population

density, and 4dem
k is the consumption demand of the region.

4.5 Network Planning and Deployment Algorithms

As described in Section 4.3, given a water network, our proposed architecture determines the

placement of static sensors and Insertion/Extraction points to quickly identify the regions

of interest and then identifies the deployment locations of mobile sensors to provide rapid

localization of events. In this section, we present our network planning and deployment

algorithms. The goal of our planning algorithm is to simultaneously determine locations to

place both static sensors and mobile sensor Insertion/Extraction points while providing high

utility and incurring low costs. We define a sensor placement P to consist of a set of static

sensor locations and mobile sensor (I/E) points (i.e.) P ⊆ (Sstat
⋃
Smob). The utility of a

placement can be measured in terms of the impact caused by events in the network due to

the delay in their detection and localization. A sensor placement that provides high utility

is thus one that 1) quickly detects and localizes high impact events, 2) results in low overall

impact on the community, and 3) incurs low costs.

We denote Cstati , Cmobi as the set of event locations (E) that can be detected by a static sensor

placed at, or traversed to by mobile sensors deployed from location i respectively. We also

define costs : costm as the cost ratio of static and mobile sensors and Ccov as the set of event

locations detectable by the deployment. We acknowledge that modeling the various costs

involved is complex and dependent on the event type and severity, and use sensor cost ratios

to determine the relative utility provided by in-situ and mobile sensors. The objective of
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our planning algorithm is to then identify a minimum cost placement set P = (Pstat∪Pmob)

that covers the set of all detectable events such that its overall utility is maximized. This is

equivalent to the weighted set cover problem.

Definition 4.3. (Weighted Set Cover) Let L be a finite set of elements and C={C1, C2, ..., Cn}

be a set of subsets of L with weights W = {w1, w2, ..., wn}. The goal is to find a set Cs ⊆ C

such that all the elements are covered by Cs (i.e.)
⋃
Ck =

⋃
Ci,∀Ck ∈ Cs,∀Cj ∈ C, and the

sum of weights in Cs is minimized (i.e.) min(
∑
wk, ∀Ck ∈ Cs).

Using this definition, if C is the collection of event locations covered by each sensor, and W

the corresponding costs of static and mobile sensors, finding a set cover Cs is a solution to the

WSC problem and hence shows the equivalence. The weighted set cover problem is NP-hard

[75] thus implying that finding a solution for the planning problem is also computationally

complex. We present our approximate Hybrid Impact Driven (HID) placement algorithm as

described in Algorithm 1:

• For a given budget B and set of event locations E , we iterate over the set of poten-

tial sensor locations and determine the utility of placing a static sensor or an Inser-

tion/Extraction point at each location.

• For a static sensor sstati , we compute its utility for event ej as a function of the impact

caused in the time taken for the sensor to detect the event:

U stat
ej

(sstati ) = Iej/Mdt[s
stat
i , ej] (4.14)

• The utility for an (I/E) point smobi depends on the impact caused in the time taken

for the existing static sensors to determine the region of interest and for the mobile

sensors to traverse to the event location:

Umob
ej

(smobi ) = Iej/(δdt[ej] +Mtt[s
mob
i , ej]) (4.15)
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where δdt[ej] is the shortest time taken for the placed static sensors to detect ej.

• We then compute the total utility as a function of the cost incurred to achieve the

above utilities. This is

U stat(sstati )=

|E|∑
j=1

U stat
ej

(sstati )/costs (4.16)

for static sensors, and

Umob(smobi )=

|E|∑
j=1

Umob
ej

(smobi )/(Mtc[s
mob
i , ej] ∗ costm) (4.17)

for mobile sensor Insertion/Extraction points, where Mtc[s
mob
i , ej] is the minimum

number of mobile sensors needed to be deployed from smobi .

• At the end of each iteration, we choose the sensor type and location pairing with the

largest utility and add it to the placement set. We do this until either the budget is

exhausted or the network has been covered.

The algorithm is guaranteed to complete since every detectable event location has at least

one static sensor location that covers it. The worst case running time of the algorithm,

O((|Sstat|+|Smob|)|E|2), occurs when at each iteration, only one new event location is covered.

This would result in long runtimes for large scale water networks. We however use the concept

of submodularity to significantly reduce the number of utility computations in each iteration,

thus reducing the runtime [102].

Definition 4.4. (Submodularity) Let C be a finite set and f be a set function. For all

subsets Cs ⊆ Cr ⊆ C, and elements ci ∈ C \ Cr, f is submodular whenever f(Cs ∪ ci)−f(Cs) ≥

f(Cr ∪ ci)−f(Cr).

Theorem 4.1. The utility functions U stat, Umob are submodular.
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Algorithm 1 HID Placement Algorithm

1: Input: Sstat,Smob, E ,Mdc,Mdt,Mtc,Mtt,B, costs, costm,
Pstat,Pmob, Cstat, Cmob, Ccov

2: Output: P = (Pstat ∪ Pmob)
3: Initial Conditions: Pstat = ∅,Pmob = ∅, Ccov = ∅,
4: while Ccov 6= |E| and B > 0 do
5: for i = 1→ |Sstat ∪ Smob| do
6: if sstati /∈ Pstat then
7: for j = 1→ |E| do
8: U stat

ej (sstati )=Iej/Mdt[s
stat
i , ej ]

9: Ustat(sstati )=
∑|E|

j=1 U
stat
ej (sstati )/costs

10: if smobi /∈ Pmob then
11: for j = 1→ |E| do
12: Umob

ej (smobi )=Iej/(δdt[ej ] +Mtt[s
mob
i , ej ])

13: Umob(smobi )=
∑|E|

j=1 U
mob
ej (smobi )/(Mtc[s

mob
i , ej ] ∗ costm)

14: U(si)=max(Ustat(sstati ),Umob(smobi ))

15: Umax(sv)={U(si) : max(U(si)), ∀i : 1→ |S|}
16: if Umax(sv) = Ustat(sv) then
17: B ← B − costs
18: Ccov ← Ccov ∪ Cstatv

19: Pstat ← Pstat ∪ sv
20: else
21: B ← B − (Mtc[s

mob
v , E ] ∗ costm)

22: Pmob ← Pmob ∪ sv

Proof. We see from the formulation of the event utility functions U stat,Umob that they depend

on the impact caused by the event and the time taken to detect and localize it. Since, the

impact formulation derived from Section 4.4.3 is independent of the sensor deployment, the

submodularity of the event utility functions depends on the detection timeMdt and traversal

time Mtt.

For the static event utility function U stat, consider two placement sets Pstat ⊆ Qstat ⊆ Sstat.

Given an event ej ∈ E that can be detected by a static sensor installed at location i such

that sstati ∈ Sstat \ Pstat. Depending on the time taken for sstati to detect ej, there are three

cases:
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Case 1

Mdt[s
stat
i , ej] ≥ min(Mdt[Pstat, ej]) (4.18)

This implies,

min(Mdt[Pstat ∪{si}, ej]) = min(Mdt[Pstat, ej]) (4.19)

min(Mdt[Qstat ∪{si}, ej]) = min(Mdt[Qstat, ej]) (4.20)

And hence,

U stat(Pstat ∪ {sstati })− U stat(Pstat) = U stat(Qstat ∪ {sstati })−U stat(Qstat) = 0 (4.21)

Case 2

min(Mdt[Qstat, ej]) ≤ Mdt[s
stat
i , ej] < min(Mdt[Pstat, ej]) (4.22)

This implies,

U stat(Qstat ∪ {sstati }) = U stat(Qstat) (4.23)

And hence,

U stat(Pstat ∪ {sstati })− U stat(Pstat) ≥ U stat(Qstat ∪ {sstati })− U stat(Qstat) (4.24)

Case 3

Mdt[s
stat
i , ej] < min(Mdt[Qstat, ej]) (4.25)
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Here,

U stat(Pstat ∪ {sstati }) ≥ U stat(Qstat ∪ {sstati }) (4.26)

U stat(Pstat) ≤ U stat(Qstat) (4.27)

due to the non-decreasing property of U stat. Hence, we get,

U stat(Pstat ∪ {sstati })− U stat(Pstat) ≥ U stat(Qstat ∪ {sstati })− U stat(Qstat) (4.28)

From Equations 4.21, 4.24, and 4.28 we prove that U stat is submodular. Similarly we can

prove that Umob is also submodular.

Using this greedy approach in the HID placement algorithm gives an approximation ratio of

(1−1/e) similar to the weighted set cover problem [102]. Hence, in a given iteration of the

algorithm if U(s1) ≥ U(s2) ≥ U(s3) ≥ ...,≥ U(sn), then s1 would be added to the placement.

Then in the next iteration, if U(s2) ≥ U(s3), we can conclude that U(s2) ≥ U(si),∀i ≥ 3,

thus reducing the number of evaluations needed at each step of the algorithm.

Once the locations of static sensors and mobile sensor Insertion/Extraction points have been

determined, we need to identify the mobile sensor deployment locations. This depends on

the direction and velocity of water flow in the network as well as the junctions that need to

be localized. Given the junctions within the regions of interest R, our objective is to identify

the subset of (I/E) points determined by our planning algorithm at which mobile sensors

need to be deployed (i.e.) D ⊆ Pmob. We summarize our deployment algorithm as shown in

Algorithm 2 below:

• For every junction ej in the region of interest R, we identify the (I/E) points in
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Algorithm 2 Mobile Sensor Deployment Algorithm

1: Input: R,Mtt,Mtc,Pmob
2: Output: D ⊆ Pmob
3: for all ej ∈ R do
4: d = ∅, dt = ∅
5: for i = 1→ |Pmob| do
6: if Mtc[Pmobi , ej ] > 0 andMtt[Pmobi , ej ] < dt then
7: dt =Mtt[Pmobi , ej ]
8: d = Pmobj

9: D ← D ∪ d

the placement set Pmob, from which mobile sensors can traverse to ej (i.e.) where

Mtc[Pmobi , ej] > 0.

• We then determine the (I/E) point with the shortest traversal time and add it to the

deployment set D.

• We repeat this till the entire region of interest has been localized.

More complex models for mobile sensor deployment are possible that exploit existing control

systems in the network such as pumps and valves to change the direction and speed of water

flow that could result in fewer (I/E) points needed to ensure the reachability and coverage

of mobile sensors. However, this requires detecting the state of the systems and estimating

their levels of functionality in the aftermath of the event. Our proposed approach, though

more conservative, results in deployment solutions unaffected by effects of the event on these

systems.

4.6 Experiments

In this section, we evaluate our proposed hybrid adaptive monitoring architecture for both

failure and contamination events. We compare the performance of our approach to exist-

ing sensor deployment approaches using water networks of varying scale and validate our
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Network Length Demand #Pipes #Junctions
(km) ×103 (m3/day)

WSSC 32.46 1.57 316 299
Richmond 75.61 15.12 948 865

WCR 383.59 82.95 1985 1782

Table 4.1: Summary of real-world water distribution network infrastructure

Figure 4.5: Infrastructure network layouts of WSSC, WCR and Richmond

approach under multiple event scenarios.

4.6.1 Experimental Setup

Water Networks. We evaluate our proposed architecture using three real-world water

networks of varying scale - (1) a subzone of the Washington Suburban Sanitary Commis-
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Figure 4.6: WSSC network and subset of sensor deployment for failure and contamination
events

sion’s (WSSC) water service area in Montgomery County, Maryland, (2) a model for the

Wolf-Cordera Ranch (WCR) in Colorado Springs, Colorado, and (3) the Richmond water

distribution system, part of the Yorkshire water supply area in the U.K. The data for (1)

was obtained from WSSC while for (2) and (3) from [105]. Figure 4.5 shows the layout of

the water distribution infrastructure for all three networks, and a detailed summary of the

network structure is shown in Table 4.1. In addition, Figure 4.6 shows the layout of the

WSSC network and its surrounding community and shows the placement of in-situ sensors

and mobile sensor (I/E) points determined by our proposed HID placement algorithm for a

subset of the network.

Comparison Approaches. We compare our proposed Hybrid Impact Driven planning and

deployment approach (HID) [165] to three existing sensor placement approaches in water

networks - Static Coverage Driven (SCD) [113], Hybrid Coverage Driven (HCD) [112], and

Static Impact Driven (SID) [161]. Here, static and hybrid refer to the sensor types being
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Approach Failure (in-situ/mobile) Contamination (in-situ/mobile)
WSSC Richmond WCR WSSC Richmond WCR

SCD 61/0 241/0 402/0 83/0 270/0 430/0
SID 89/0 310/0 489/0 110/0 367/0 512/0

HCD 11/54 104/126 147/261 41/54 141/144 154/288
HID 20/62 89/240 122/343 27/73 112/261 186/313

Table 4.2: Number of sensors deployed (in-situ/mobile) by each approach for failure and
contamination events.

used in the approach. The SCD approach iteratively selects static sensor locations based

on the number of event locations covered and their ability to distinguish between pairs of

events. The HCD approach uses a cross entropy based methodology to select a percentage

of junctions to install static sensors followed by determining mobile sensor release points.

The SID approach iteratively determines locations to install static sensors based on their

achieved impact mitigation of the event on the community

Table 4.2 shows the number of in-situ sensors and mobile sensors in the deployments deter-

mined by each approach. We observe that sensor deployments for pipe failure detection use

fewer sensors to detect and localize failure events since the event propagation (movement

of pressure wave) is faster as compared to the contaminant flow which is restricted by the

flow velocity of the water in the network. We also see that the hybrid approaches result in

the deployment of far fewer in-situ sensors thus reducing the costs incurred. However, the

deployments resulting from impact driven approaches use more sensors than their coverage

driven counterparts since they attempt to quickly localize high impact events resulting in

more sensors being deployed to cover vulnerable regions.

Event Scenarios. We compare the performance of the sensor deployments resulting from

each of the approaches for the following event scenarios.

1. Geo-correlated events: We simulate the cascading effects of failure and contamination

events by introducing them in spatially clustered locations ranging from 5% to 50% of
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the network’s junctions where the number of events in each cluster is uniform.

2. Critical events: We then introduce failure and contamination events in the top 5% to

30% junctions ordered by impact.

4.6.2 Evaluating Effectiveness of Hybrid Sensor Deployments

We compare the effectiveness of the sensor deployments resulting from each approach using

three metrics - (a) Detection and localization times, (b) Impact caused, (c) Cost effectiveness.

In order to determine the impact of failure and contamination events as described in Section

4.4.3, we obtain community structure information by building the terrain elevation map

(4ele) using elevation data from [94], obtain population density information (4pop) from

census data [23], mine the coordinates of critical infrastructure (4inf ) in the area using the

OpenStreetMap service [55], and determine the demand of water at each junction (4dem)

from the network model.

Evaluating Detection and Localization Times: For each introduced failure or contam-

ination event in the above event scenarios, we determine the shortest time taken to detect

and localize the event by the sensors deployed by each approach. We then compare the

average of these shortest times for all the introduced events. Figure 4.9(a) shows the com-

parison of the average detection times by each of the approaches for geo-correlated failure

and contamination events. We see that in general, the detection and localization of fail-

ure events (98 − 398 sec) is faster than contamination events (1010 − 7035 sec). Also, the

detection and localization time of contamination events increases with the size of the net-

work, while that of failure events remains consistent. This happens because the high speed

pressure wave resulting from pipe failures can be detected quickly even in larger networks

as compared to the slower moving contaminant flow. We observe that the coverage driven

approaches (SCD,HCD) take a longer time on average to detect and localize events as com-
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pared to impact driven approaches (SID,HID) since their coverage based objective results in

sparser sensor deployments. We also observe that the proposed hybrid HID approach takes

approximately 9% longer to detect and localize events as compared to the in-situ based SID

approach.

Extent of Impact Caused: We then compare the approaches based on the impact caused

to the community by the failure and contamination event scenarios before their deployments

can detect and localize the events. For each introduced event, we determine its impact

(Section 4.4.3) caused as a function of the shortest time taken for each approach’s sensor

deployment to detect and localize it. We then compute the average normalized impact caused

over all the introduced events (Figure 4.9(b)). We see that for geo-correlated events, the

impact driven approaches (SID,HID) result in much lower impacts on average since they

prioritize the quick detection of high impact events and the coverage of critical regions. We

observe that the proposed HID approach results in upto nearly 30% lesser impact than the

SID approach due to the faster localization of events using mobile sensors and upto nearly

79% lesser impact than the coverage based approaches.

Sensor type cost ratio: Here, we determine the influence of the cost ratio between mobile

and static sensors on their proportion in the sensor deployment resulting from the proposed

HID approach by varying the cost ratio of mobile to static sensors from 1:1 to 1:10. Figure

4.7 shows the proportion of static and mobile sensors for the WSSC network for (a) failure

and (b) contamination events. We see that there is a stabilization in the proportions at a

1:5 cost ratio for the WSSC network. We observe that this ratio increases with an increase

in the size of the network.

Comparison of coverage and cost of deployment: We then use the 1:5 cost ratio to

compare the costs of the deployments resulting from each of the four approaches. We vary

the number of sensors from 10% to 100% of the total number of sensors in each deployment

and compare the costs incurred and the coverage of the network achieved at each step for
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Figure 4.7: Proportion of in-situ and mobile sensors in proposed hybrid approach deployment
with varying mobile:static sensor cost ratios for the WSSC network

the WSSC network. Figure 4.8 shows that approaches using only in-situ sensors (SID,SCD)

incur much larger costs than the hybrid approaches (HID,HCD). We also observe that the

coverage driven approaches achieve higher network coverage using lesser number of sensors.

Cost effectiveness of deployments: We evaluate the normalized cost effectiveness of the

deployments as a function of the total impact caused and the total cost incurred. We observe

from Figure 4.9(c) that for geo-correlated events, the proposed HID approach proves to be

the most cost effective by upto nearly 52% over the SID approach and upto nearly 68% over

the coverage based approaches. This would improve as the cost ratio between mobile and

static sensors increases.

Performance under Critical Events: Due to space constraints, we present the results of

the comparison of the four approaches for the critical events scenario in the appendix. We

observe that the hybrid driven approaches detect critical events much faster than coverage

based approaches and result in lower impacts of events. We also see that the proposed HID

approach remains the most cost effective by upto nearly 40% over the SID approach.
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Figure 4.8: Progression of sensor deployment costs and achieved event coverage with increas-
ing number of sensors by the approaches for the WSSC network

4.7 Chapter Summary and Discussion

In this chapter, we present a novel approach to sensor placement for event detection in

community infrastructure with a focus on water distribution networks. Our approach is

based on the notion of impact of events on the community. We presented a methodology to

characterize and quantify the various geosocial factors influencing the impact of an event,

and to incorporate this definition of impact into the sensor placement decision making pro-

cess. We developed an impact-driven architecture for sensor placement to quickly detect

and localize adverse events like pipe breaks and contamination. Our proposed architecture

leverages in-situ and mobile sensing to provide a cost-effective solution that minimizes the

impact of infrastructure events on the community. We presented a two-phase approach that

incorporates information about the network, impact of events, and the community to deter-

mine locations to install sensing infrastructure and to deploy mobile sensors and evaluate

its effectiveness using real-world water networks of varying scale. Our results show that this

hybrid sensor placement approach ensures the quick detection of adverse events, thereby

reducing their impact on the community. Another significant advantage of our approach is

the flexibility provided by the adaptive monitoring capabilities of the combined in-situ and

mobile sensor deployment.
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(a) Average detection and localization times of the deployments for geo-correlated events

(b) Average normalized impact caused by geo-correlated events in the time taken for the deploy-
ments to detect and localize them

(c) Normalized Cost Effectiveness of the sensor deployments for geo-correlated events

Figure 4.9: Comparison of Approaches for Geo-correlated events
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(a) Average detection and localization times of the deployments for critical events

(b) Average normalized impact caused by critical events in the time taken for the deployments to
detect and localize them

(c) Normalized Cost Effectiveness of the sensor deployments for critical events

Figure 4.10: Comparison of Approaches for Critical events
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Chapter 5

Operational Framework for Resource

Efficient Adaptive Monitoring

Once sensors are deployed, their data streams need to be transmitted to edge and cloud

servers over communication networks for analysis using analytical models. However, these

servers often have limited amount of resources using which they need to support multiple in-

frastructure monitoring applications. Moreover, the heterogeneity in devices, network links,

and analytical models often results in multiple choices of monitoring pipelines or workflows

that can be leveraged by a single application, each with their own benefits and incurred

resource costs. Since community infrastructures are complex and in a state of continuous

flux, developing a one-size-fits-all monitoring framework that works for all infrastructures

and communities is infeasible. In this chapter, we discuss how this heterogeneity can be

leveraged to provide adaptive monitoring in a resource-efficient manner.

Specifically, we develop an operational framework, named REAM, that determines the opti-

mal choice of monitoring pipeline (sensors, network links, and analytical models) to execute

at any given time, depending on the existing community structure and behavior. REAM
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adapts to changing community and infrastructure conditions, and balances the monitoring

requirements of each application (e.g.) accuracy, while judiciously utilizing the limited re-

sources available at edge and cloud servers. We evaluate REAM on real-world infrastructure

testbeds and our results indicate that the monitoring pipelines chosen by REAM’s opera-

tional decision making maintain high monitoring performance while incurring significantly

low resource consumption costs.

83



5.1 Chapter Overview

Infrastructure monitoring applications using IoT are ubiquitous across many domains like

transportation, environmental sensing, power grid, water distribution networks, buildings,

among others [142, 179]. These infrastructure can cover diverse geographical areas – class-

rooms, buildings, road intersections, city districts, etc. – and can be instrumented with

varying density and heterogeneity of sensors. The monitoring applications often generate

vast quantities of data, and while the collected data can be sent to cloud data centers or

servers for analysis, this often leads to high operational costs, slow response times, and

service interruptions, as these cloud servers are often far away from the community infras-

tructure being monitored [60]. Moreover, monitoring applications that are time-sensitive

and critical (e.g., flood, fire detection), can suffer from significant performance degradation

that can have a large negative impact on the community. An alternate solution is to leverage

edge servers which can be network gateways or dedicated workstations, that are in closer

proximity to the infrastructure [10] for less expensive, more responsive, and quicker analysis

results. In addition, as we described earlier, many community agencies have privacy and

security policies that prevent them from solely using a public cloud provider, and instead

require solutions that can be deployed on servers located on-premise. Therefore designing an

edge or hybrid cloud driven operational framework is important for monitoring applications

run by these public works agencies.

Figure 5.1 illustrates a sample road intersection instrumented with various sensors. In this

infrastructure, cameras, motion sensors, moisture sensors and traffic lights are connected to

the edge server and power source via wired connections. Other sensors such as turbidity and

pH are battery powered and wirelessly connected. Remote services like weather forecasts and

social media reports can also be used at the edge to provide external information about the

community. System administrators or community stakeholders may choose to concurrently

execute different monitoring applications and hence activate different sensors and analytics

84



Camera

pH
Turbidity

Motion
Moisture

Weather

Forecast

Social

Network

g

Serv

Data

Center

Internet

Figure 5.1: Sample use case of a community infrastructure instrumented with multiple sen-
sors and actuators, an edge server, and other environmental contextual information.

at any given moment. Moreover, the quality of network links over which the sensor data

and analytics results are sent can impact the effectiveness of the monitoring applications

due to factors such as loss of data packets, low bandwidth availability, etc. Given that the

applications, sensors, analytics, networks, and edge servers are all highly heterogeneous as

described in Section 3.2, effective choices of sensors, network links, and analytical models

in conjunction with efficient resource allocation is key to the success of an infrastructure

monitoring framework.

The objectives of monitoring applications could be met using approaches that use different

sets of sensors and analytic operators, each of which would require a certain amount of

compute, networking and other resources, and would provide a certain quality of results

for the application [38, 41]. For example, a pedestrian detection application could: (1) use

video feeds from a surveillance camera and an object detection algorithm, or (2) set up a

motion sensor to activate above a certain threshold. The first approach is fine-grained and

provides more accurate results while incurring much larger costs in terms of compute and

networking resources for continuous monitoring than the second approach which is more

coarse-grained. Since the events driving most monitoring applications are not continuous
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and can occur sporadically, the costs of utilizing resource-heavy sensors and analytics for

continuous monitoring can quickly add up.

We propose a Resource Efficient Adaptive Monitoring (REAM) framework [162, 160]

to dynamically select the sensors, network links, and analytical models to execute at any

given time depending on the current state of the infrastructure. The framework also takes

into account application priorities while ensuring low compute, networking and energy costs.

Realizing REAM is no easy task due to the following challenges:

• Interoperability: Most community spaces are progressively deployed with high het-

erogeneity in the instrumented devices (and thereby data types), reliable communica-

tion networks, and available analytical models. REAM needs a communication model

to ensure efficient and reliable data and information exchange between these different

types of IoT devices and edge/cloud servers.

• Flexibility: The objective of each monitoring application can be met with different

pipelines or workflows of sensors, network links, and analytics, each of which would

require a certain amount of compute, networking, and other resources, and provide

a certain quality of results [38, 41]. REAM therefore should leverage the different

options of sensors, networks, and analytics, while meeting the quality requirements of

each monitoring application.

• Adaptability: Community spaces are complex and dynamic, while events in different

infrastructure can take place under different contexts due to differences in location,

demographics, structure, etc. It is, therefore, extremely challenging to develop accurate

rules or models for each individual space. It is also important for the framework to be

able to make online decisions with noisy inputs and to work well under diverse network

conditions and resource availability. Making adaptation decisions, therefore, is a key

objective of our REAM framework.
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To achieve interoperability, we adopt the publish-subscribe data exchange model to facilitate

efficient information exchange. This provides a robust methodology for control and data flows

within the REAM architecture, where sensors, and edge/cloud servers can communicate with

one another allowing for community stakeholders to easily deploy and manage REAM in a

distributed environment. We also partnered with Real Time Innovations [64] and use their

software to implement publish-subscribe based data exchange in our REAM deployments.

Secondly, in addition to sensing and analytics, we also incorporate network quality awareness

in REAM’s decision making for better flexibility. Most real-world deployments have hetero-

geneous modes of connectivity such as WiFi, Bluetooth, etc., which offer varying levels of

Quality-of-Service (QoS). Moreover, the quality of connectivity is not constant and can vary

based on the network utilization and data transmission of other devices and applications.

Incorporating network quality awareness is an important step towards a practical and more

realistic approach to real-world deployments which we demonstrate through experimental

evaluations. Most prior efforts to monitor community infrastructure with IoT assume each

application only comes with a predetermined workflow of sensors, network links, and analyt-

ics [179, 138]. However, it is important to note that under certain contexts, coarse-grained

approaches can provide sufficient quality results and can also be used to trigger fine-grained

approaches. For instance, in the pedestrian detection example described above, the num-

ber of instances of pedestrians crossing an intersection on a quiet street during night time

would be low. Hence, the coarse-grained motion sensor based approach could be used to de-

tect the potential presence of pedestrians and to then trigger the fine-grained camera based

approach if a pedestrian was detected. This adaptive approach would be able to achieve

sufficient quality of results while incurring lower costs than if the fine-grained approach was

run continuously. Infrastructure monitoring applications could attain sufficiently accurate

results while incurring low costs by intelligently deciding between using different monitoring

workflows at different times based on the state of the community space and other contex-

tual information. This decision making framework can be implemented in different ways,
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including simple heuristics, rule-based approaches and learning driven models. We ensure

flexibility by enabling stakeholders to define their own workflows or monitoring pipelines,

which also addresses situations where any component has to be added or removed.

For high adaptability, we leverage Reinforcement Learning (RL) [144] to develop a decision

making algorithm for the most appropriate adaptation decisions at any given moment. Our

RL-based algorithm employs agents to directly learn from experience by interacting with

the diverse and dynamic community environments. We demonstrate how our design choices

enable seamless integration of the RL agents with the publish-subscribe data exchange, as

well as how the incorporation of network quality awareness is critical for improved decision

making in real-world community spaces. We extensively evaluate REAM on real world

testbeds and demonstrate its effectiveness across diverse applications and deployments, in

addition to evaluating its scalability for large-scale deployments.

Specifically, we make the following contributions:

• Design a novel REAM framework that jointly considers IoT sensors, analytics oper-

ators, and network links at the edge when monitoring community spaces. (Section

5.2)

• Formulate a decision making problem for the REAM framework to make adapta-

tion decisions under the constraints of resource availability and network quality. We

then present our RL-based algorithm and show case two real monitoring applications:

stormwater contamination monitoring and pedestrian counting, while many other mon-

itoring applications are possible. (Section 5.3)

• Evaluate our REAM framework on two real-world testbeds in Orange County, USA

and NTHU, Taiwan and compare it to baseline approaches, when assuming the net-

work loss is negligible. We show that REAM can achieve > 90% monitoring accuracy

while incurring ∼ 50% lower resource consumption costs compared to existing static

88



monitoring approaches. (Section 5.4)

• Conduct detailed simulations to validate the network-quality awareness of our frame-

work under different network loss rates as well as its scalability to larger-scale deploy-

ments. We demonstrate that REAM can achieve up to 42% improvement in accuracy

over static approaches by being cognizant of and adapting to differing network qual-

ity conditions. We also show that REAM can provide near real-time service for a

multitude of monitoring applications, and incurs only a minimal increase in runtime

(< 0.002 seconds), for even large scale deployments with over 1000 nodes. (Section

5.4)

5.2 Adaptive Monitoring Framework

In this section, we describe the design choices and architecture of our proposed REAM

framework. In order to optimize the selection of sensors, analytics operators, and their

associated network links, we organize them into workflows. The choice of using RL agents

over a supervised learning approach is due to the fact that community behavior and patterns

often change over time and hence the definition of events in a space can change. It is also not

always obvious what the right sensing and analytics option is and may require a sequence

of selections, and hence RL provides more flexibility in the way an agent can be trained

to adapt to changing conditions. In order to support the publish-subscribe data exchange

described earlier, we develop a middleware at each edge server and also define a coordinator

between edge servers.
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Figure 5.2: REAM framework architecture.

5.2.1 Architecture

Fig. 5.2 illustrates our proposed infrastructure monitoring framework with two edge servers

that have three sample monitoring applications running on them. Each monitoring appli-

cation relies on the measurements of a specific set of sensors that have been instrumented

in the community infrastructure. The communication and data transmission between the

sensors and the edge server can take place through various networks like WiFi, Bluetooth,

ZigBee, LoRa, Ethernet, optical fiber, etc. These network links can have differing quality
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levels captured by network loss rate, available bandwidth, etc, depicted by the dashed lines

in Fig. 5.2. Once the sensor data are received at the edge server, they are run through a

set of analytical models which could constitute ETL (Extract, Transforming, Load) func-

tions, Machine Learning models, Time-series analyses, among others in order to obtain useful

information. Next, we introduce several key software components in REAM architecture.

Action Plans. Since each application can use different combinations of sensors and analytics

to achieve its objective with differing quality of results, we define each combination as an

action plan where each plan can be thought of as a workflow, or an execution graph, of

sensors, analytical models, and network links. They can vary in their execution complexity

(large workflows with numerous sensor inputs and analytics), their resource requirements

(resource-heavy sensors, large data volumes, complex analytics models), as well as in the

quality of their network links (links with high loss rates would result in more packets being

dropped). In our framework, as illustrated in Fig. 5.2, every monitoring application is a

collection of action plans which can be a coarse-grained action plan that provides a baseline

quality of continuous monitoring while consuming less resources, or various fine-grained

action plans that provide a range of in-depth monitoring at higher costs, providing better

results.

RL Agents. In the REAM framework, at each timestep, an application can choose to

execute one of its action plans as denoted by the current tags in Fig. 5.2. The decision

of which action plan to execute is taken by an RL agent that learns by interacting with

the community infrastructure based on its application’s objective. The agent observes the

readings from the application’s sensors, network link quality information, outputs of the

analytical models, and other external community environment contextual information such

as the weather and time-of-day. It uses this information to develop a probabilistic learning

model that drives the selection of which action plan to execute based on the effectiveness or

utility of each plan.
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Our framework design assigns one agent for each application. We opt not to create a global

agent across all applications at the edge for the following reasons:

• Flexibility: Individual agents simplify the process of dynamically adding or removing

monitoring applications since agents can be trained independently of others unlike with

a global agent.

• Tractability: The dynamic and complex nature of community infrastructure can result

in the agent having to reason about an extremely large number of states [45]. By

assigning one agent to each application, we can ensure that the number of states is

manageable.

• Simplicity: Applications can have different objectives and operate at different time

granularities. It is therefore difficult to define a global objective for each community

infrastructure that is normalized across different applications. Furthermore, individual

agents allow each application to set its own timestep granularity for sensing, moni-

toring, and analysis, even though the resulting decisions may slightly differ from the

optimal ones.

REAM Runtime. In order to facilitate the exchange of information - both data and control

messages, we implement a middleware on each edge server called REAM Runtime. As shown

in Figure 5.3, the REAM Runtime hosts the publish-subscribe data exchange implementation

of REAM, and handles the information flow of data from the community environment to

the edge server, capturing the network and environment states. In addition, the REAM

Runtime middleware also tracks the amount of resources available on the edge server which

is an essential information for the RL agent to be able to decide on feasible action plans that

it can utilize. Finally, REAM Runtime also communicates back to the devices and analytical

models that have been selected by the RL agent using the publish-subscribe paradigm. We

further detail the control and data flows in REAM in the next section.
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Figure 5.3: REAM uses a publish-subscribe data exchange model for control and data flows.

Edge Server Coordinator. In order to maintain a repository of the available action plans

and the state of each edge server and its applications, we design an Edge Server Coordinator

that can reside in the cloud or on an edge server. It also maintains knowledge of (1) the

application states including their action plans, resource requirements, and objectives, and

(2) the edge server states which include their resource availability, current applications,

action plans, and corresponding network link quality. Agents can use such information to

take decisions, and system administrators can use the coordinator to modify application

objectives and resource availability.
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5.2.2 Control and Data Flows

Fig. 5.3 presents the control and data flows in our REAM framework. In order to facilitate

information and data exchange among the components, the REAM framework architecture

uses a publish-subscribe data exchange model. This model allows sensors, edge servers,

network links, analytical models, and the coordinator to have their own topics (or channels)

that they publish information to, which can be accessed by subscribing to these topics. In

particular, sensors publish their raw data streams and network link quality information to

dedicated topics, which are subscribed to by edge servers hosting one or more analytical

models that analyze the sensor’s data. The computed analytics results by these models

are then published to dedicated topics for each application, that can be subscribed to by

community stakeholders and administrators. The action plans selected by the RL agents are

also published in order to activate the appropriate sensors and models in the selected plan

by the REAM Runtime. It also communicates with the coordinator to exchange resource

availability, action plan selection, and metadata information.

5.3 Problem Formulation

In this section, we formulate the problem of resource efficient adaptive monitoring in com-

munity infrastructure, describe our approach to represent the decision making as an RL task,

and then present our solution approach. We provide a list of symbols used throughout this

article in Table 5.1.
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Table 5.1: Symbols used in this chapter

Symbol Description
A Set of monitoring applications
S Set of sensors

aφi Priority of application ai
O Set of analytics
L Set of network links
P Set of action plans
B(pj) Benefit of action plan pj
C(pj) Cost of action plan pj
Rk Amount of resource of type k
N (pj) Network loss on links of action plan pj
U(pj) Utility of an action plan pj
rt Reward at time step t
S ′ Operating state of the sensor servicing the application
O′ Analytical models currently running
v(A′) Value returned by the application’s analytics
N ′ Loss rates of the network links used by the application
Ext External contextual information about the community space
P ′ Set of valid action plans
Jt Cumulative reward

5.3.1 Utility Driven Action Plan Selection

We consider a community space that has a set of monitoring applications A, where each

application ai ∈ A has a priority aφi associated with it. For example, a gunshot detection

application in a community would have a higher priority than a parking violation monitoring

application. The community space is instrumented with a set of sensors S, whose data can

be analyzed using a set of analytical models O that are transmitted over a set of network

links L and are hosted on a set of edge servers.

We define a set of action plans P , where each plan pj ∈ P consists of a workflow of sensors,

network links, and analytical models, and services a specific application. Each action plan pj

provides a certain benefit, B(pj), for the monitoring application it services which is dependent

on the application’s objective. Each plan pj also incurs a cost C(pj) which reflects the amount

of resources Rk of type k (e.g., CPU, bandwidth, power, memory, etc.), that it consumes to

run all the sensing and analytics present in the action plan. Each plan also incurs a network
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Figure 5.4: Example of two action plans for a stormwater visible contamination monitoring
application.

loss N (pj) reflecting the network loss rates across the links li ∈ L, connecting the devices in

the plan. We then define the overall utility of an action plan pj as:

U(pj) =
B(pj)

C(pj)
× 1

N (pj)
. (5.1)

where the first term represents the tradeoff between the benefit and cost of each action plan,

and the second term ensures that plans with high network loss rates reduce the overall utility

of the plan.

Fig. 5.4 shows an example of two different action plans that service the same stormwater

visible contamination monitoring application. Plan p1 utilizes a simple turbidity sensor that

would be less accurate than the camera based solution of plan p2, since it relies on a manually

set and potentially erroneous threshold. Moreover, today’s state-of-the-art vision algorithms

can typically achieve high levels of accuracy and thus p2 can provide a much higher benefit

to the application. However, the cost incurred by p1 is much lower than that of p2, since

the periodic capture and transmission of images would consume a lot of network bandwidth,

the camera would require more power, and the vision algorithm would also consume more
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Figure 5.5: REAM action plan selection workflow.

compute resources in order to provide results in near real-time.

Moreover, the benefit vs. cost tradeoff captured by the utility of an action plan, is also de-

pendent on various environmental contexts of the community space which REAM leverages.

For instance, at night, the camera images may not be good enough for the vision algorithm

to detect discoloration and debris, which might result in both action plans having similar

accuracy. Hence, it would be a prudent decision to execute the coarse-grained plan more fre-

quently at night since it can achieve similar benefit at lower costs, and the fine-grained plan

during the day when it can provide much higher benefit. Furthermore, it is also important

to consider the quality of the network links across which data is transmitted by each plan.

If the links in plan p2 result in a large number of packets being dropped, this can cause a

drop in monitoring accuracy due to the lack of data delivery, even though the camera images

provide high quality information, and hence using the turbidity sensor based plan p1 might

provide higher utility due to consistent data delivery.

We visualize the action plan selection workflow used by REAM in Fig. 5.5. Each edge server

receives sensor data and network link quality information through the publish-subscribe data

exchange model. The RL agent in the edge server then leverages this information, along with

knowledge of the community environment states, current resource availability of the edge
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Figure 5.6: REAM RL agents selecting action plans following the policy learned by a Deep
Neural Network (DNN)

server, as well as available action plans, in order to generate a set of action plan candidates

along with their expected benefit and cost attributes. It then computes the relative utility

of each plan and selects the plan with the highest utility. Once the plan has been selected by

the agent, the REAM Runtime middleware then publishes this information to community

stakeholders as well as to activate the sensors and analytical models in the selected action

plan.

5.3.2 Defining RL Agents

Consider the general setting shown in Fig. 5.6, where an RL agent interacts with an envi-

ronment. At each time step t, the agent observes some state st, and then chooses to perform

an action at based on a policy. Once the action is performed, the environment transitions

its state to st+1 and the agent receives a reward rt. The state transitions and rewards are

stochastic and are assumed to have the Markov property, i.e., the state transition probabili-
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ties and rewards depend only on the state of the environment st and the action at taken by

the agent.

State Space. In the REAM framework, we represent the state st of each application’s RL

agent at any given time as a class object that consists of the following attributes - (1) S ′ :

the operating state of the sensors servicing the application, (2) O′ : the analytical models

currently running, (3) v(A′) : the value returned by the application’s analytics, (4) N ′ :

the network loss rates of the network links used by the application, and (5) Ext : external

state and contextual information about the community space (e.g., time-of-day, weather

information, etc.), which can influence the performance of the sensors and analytical models.

Action Space. At each timestep, an application’s agent determines its action space as a

set of valid action plans P ′ ⊆ P that it could potentially execute from its current state. The

timestep is configurable, which can be different for individual applications in the space. Each

plan pj ∈ P ′ consists of a set of active sensors, their operational states (on/off for simple

sensors, pan–tilt–zoom for a camera), the network links used by devices in the plan, and a

set of active analytical models together with its monitoring workflow or pipeline.

Reward. The reward rt obtained by the agent for executing an action plan is the utility

provided by that plan. The benefit of plan pj depends on the specific application (e.g.,

classification accuracy, distance based error, etc.). We compute the cost of pj by first nor-

malizing the amount of resources required of each resource type (CPU, bandwidth, memory,

etc.) across all action plans of the application and then calculating a weighted sum of these

normalized costs for plan pj as:

C(pj) =

|R|∑
k=1

wk ×R
pj
k , (5.2)

where wk refers to the weight and R
pj
k refers to the normalized amount of resources of type k
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required for plan pj. The weights allow system administrators to prioritize the conservation

of certain types of resources and lessen their importance if they are abundantly available.

We then compute the network loss for pj as the multiplication of the loss rates across all the

links, li ∈ L used by the plan:

N (pj) =
n∏
i=1

li , ∀li ∈ L (5.3)

5.3.3 Training RL Agents

Each agent can only control its action plan selection and has no apriori knowledge of the

rewards or the state transitions which can be affected by external factors. During training,

the agent interacts with the community space environment and observes the rewards and

state transitions while choosing different action plans. The agent’s goal is to select action

plans in a way that maximizes the cumulative reward Jt it receives over any time period T :

Jt =
T∑
t′=t

γt
′−trt′ (5.4)

where γ is a discount factor ∈ [0, 1] and rt′ is the reward at timestep t′. We then define

Q∗(s, pj) as the maximum expected reward achievable by following a policy π(s, pj), which

refers to the probability of action plan pj being chosen by the agent when in state s. That

is:

Q∗(s, pj) = max
π

E[Jt|st = s, pjt = pj, π] (5.5)

. Using the Bellman equation [137], this can be represented as:

Q∗(s, pj) = E[rt + γmax
pjt+1

Q∗(st+1, pjt+1)|st, pjt] (5.6)
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Algorithm 3 Deep Q-learning Algorithm

1: Initialize Replay Buffer D
2: Initialize Q, DNN with random weights θ
3: for t = 1→ T do
4: With probability ε, select a random action plan pj

otherwise, select pj = max
p
Q(st, p; θ)

5: Communicate chosen plan with REAM Runtime and
receive allowed plan p′j

6: Execute action plan p′j and observe environment to get
reward rt and state st+1

7: Store transition (st, p
′
j , rt, st+1) in D

8: Sample random minibatch of transitions (sk, pk, rk, sk+1)
from D

9: Set yj = rj + γmax
p
Q(st+1, p; θ)

10: Perform gradient descent step on (yj −Q(st, pj ; θ))
2 with

respect to θ

Since community spaces are complex and can have a large number of possible {state, action

plan} pairs, it would be infeasible to store the policy π(s, pj) in a tabular form as a lookup

table, also known as a Q-table. Instead, it is more common to use function approximators to

represent the policy by estimating Q∗(s, pj). Among the approximators, Deep Neural Net-

works (DNNs) [54] have recently gained popularity for solving large-scale RL tasks since they

do not need hand-crafted weights. A network with weights θ can be trained by minimising

a sequence of loss functions Li(θi) at each iteration i, where:

Li(θi) = E
[(
rt + γmax

at+1

Q(st+1, at+1; θi−1)−Q(st, at; θi)
)2
]

(5.7)

We represent the action plan decision making policy as a neural network with weights θ which

takes the current state of the RL agent as input and outputs a probability distribution over

all valid potential next action plans. Note that we allow the RL agent to continue executing

the current action plan in the next timestep as well.

We train the agents using the deep Q-learning algorithm [99] as shown in Algorithm 3. It

uses an ε-greedy policy [144] in order to select an action plan by either randomly selecting a
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plan pj with a probability ε, or selecting the plan with the maximum value of the probability

distribution. At each timestep, the chosen action plan is executed and its reward and the

next state are observed. We store the agent’s transitions in a buffer D of a fixed size and

then perform gradient descent to update the weights θ of the neural network (Line 10 in

Algorithm 3) using a minibatch of transitions drawn at random from the buffer as:

∇θiLi(θi) = E
[(
r + γmax

at+1

Q(st+1, at+1; θi−1)−Q(st, at; θ)
)
∇θiQ(st, at; θi)

]
(5.8)

Rather than computing the full expectations in the above gradient, it is often computation-

ally expedient to optimise the loss function using approaches like stochastic gradient descent

(SGD), Adam [73], RMSProp [147], etc.

5.3.4 Prioritized Action Plan Selection

Before the RL agents identify the optimal action plans, the edge server must perform a sanity

check to find the subset of all action plans that can be feasibly executed without saturating all

the available resources. That is, the REAM Runtime middleware at each edge server employs

our proposed Prioritized Action Plan Section (PAPS) algorithm, as shown in Algorithm 4,

to coordinate with the RL Agents in selecting action plans for varying resource availabilities

and publishing that information to activate the appropriate sensors and analytical models

in the selected plans.

More specifically, at each timestep, the REAM Runtime sequentially communicates with

each application’s RL agent in the order of their priority Aφ. It limits the candidate action

plans for each agent (P ′ ∈ P) based on the current resource availability. The agent then

selects an action plan with the highest utility (Equation 5.1), based on the current state
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Algorithm 4 Prioritized Action Plan Selection

1: Input: Action Plans P = {p1, ..., pn}, Plan resource requirements PR = {pR1 , ..., pRj }, Applica-

tion priority Aφ = {aφ1 , ..., a
φ
j }, Available edge server resources R = {R1, ...,Rk}

2: for t = 1→ T do
3: for φ = 1→ j do
4: Pass action plan candidates {P ′ ∈ P | (P ′)R > R} to agent aφi
5: Obtain action plan pj ∈ P ′ with max. utility (Eq. 5.1)
6: R = R \ pRj
7: Publish to activate sensors and operators ∈ pj

of the community environment. The REAM Runtime then obtains the selected action plan

pj, and updates the available resources (R) as well as publishes this information to activate

the sensors and operators that are parts of the selected plan pj. If an edge server has

limited resource availability, the algorithm ensures that high priority applications can select

action plans with high utility, while potentially limiting the plans selected by low priority

applications.

At every timestep, Algorithm 4 must handle all monitoring applications in the environment

(|A|), each of which can have |P | number of action plans. This can result in the need to

publish to |E| number of sensors and operators where E represents the total set of sensors

and operators in the environment. This results in a polynomial time complexity of O(PAE).

To illustrate our RL-based approach and the selection of action plans by the REAM RL

agents, we give an example in Figure 5.5. We see that the edge server receives sensor data

from heterogeneous devices across network links with varying quality. Algorithm 4 is used

to determine the available resources on the edge server, and to determine the feasible action

plans as shown in the third box. We can see that the three available action plans have varying

benefits (B), costs (C) in terms of power consumption, and network loss (N ). To determine

the reward of each plan, we normalize the values and use Equation 5.1 to obtain a utility of

[28.0, 9.1, 5.9] for the three action plans respectively. The RL agent hence chooses the first

plan and publishes it. The sensors and analytics in the selected plan are then activated and

this process repeats for the newly observed state from the sensors in the selected plan.
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5.4 Experiments

In this section we evaluate the resource-aware infrastructure monitoring capabilities of our

proposed REAM framework and compare its performance to existing approaches. We present

two monitoring applications in real-world testbeds located in Orange County, USA and

National Tsing Hua University (NTHU), Taiwan.

In our first set of experiments (Sections 5.4.2 and 5.4.3) we evaluate the benefit vs. cost

tradeoff in REAM. We assume that the network loss in these experiments are negligible. For

each application, we compare the performance of REAM with static monitoring approaches

that execute specific action plans in isolation. We also compare with a machine learning

approach using random forest that uses the same training and test data.

We then evaluate how REAM performs in community environments with network loss. Since

a controlled introduction of loss in the real community infrastructure testbeds is challenging,

we simulate the input to the REAM prototype under conditions of network loss. We compare

its performance with a network agnostic planning approach to evaluate the impact that

network quality aware monitoring has on the monitoring accuracy (Section 5.4.4). We also

evaluate the scalability of REAM to large-scale community deployments (Section 5.4.5).

5.4.1 Experimental Setup

Prototype Implementation. We implemented our REAM prototype shown in Fig. 5.3

using Python. The RL agents are implemented using Keras [35], where each agent is a

neural network containing two fully connected hidden layers with 24 neurons. We update

the policy network parameters using the Adam algorithm [73] with a learning rate of 10−3

and implement our analytic operators for monitoring applications using Scikit-learn [110].
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For the data exchange implementation in the prototype, although there are many publish-

subscribe protocols available (e.g., AMQP, MQTT), the REAM prototype implementation

uses the Data Distribution Service (DDS) protocol which offers several advantages. Unlike

other protocols, DDS does not require centralized brokers and instead allows for fully decen-

tralized, data-centric, and peer-to-peer communications. DDS supports dynamic discovery

of publishers, subscribers, and data transmission while offering 30+ QoS levels for tuning

data exchange performance, resource usage, priority, reliability, etc., which allows REAM to

be fine-tuned for various environments. DDS also supports UDP for both high-performance

and multicast communications. There are various DDS libraries available like OpenDDS,

Opensplice, Fast DDS, etc [85, 13, 119]. We chose to implement DDS in our prototype

using the Real Time Innovations (RTI) Connext DDS framework [64] which provides spe-

cific implementations for resource-limited devices that are often found in smart community

infrastructure deployments.

Our prototype implementation defines publish-subscribe topics for each sensor and analytics

output, coordinator messages, and every edge server using the DDSTopic interface found in

the RTI Connext API [65]. Each topic is listened to using the DDSTopicListener interface,

and also published to by implementing an object of DDSPublisher class associated with

each sensor and analytics operator. The network monitoring through DDS is done using

the DDSFlowController interface that also allows packets to be sent using a fixed rate or

even on demand. Each edge server has an instance of such a network monitoring component

implemented in the REAM Runtime middleware.

Resource Measurements. Since the goal of the REAM framework is to be able to achieve

application objectives while utilizing as little resources as possible, we capture the actual

resource consumption (CPU, networking, and power) of the various devices and analytical

models in order to run faithful experiments when comparing our solution against baseline

approaches. Tables 5.2 and 5.3 summarize the resource consumption of individual devices
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Device Make/Model Power (W) Note

Motion Optex LX-402 0.33
Camera LiteOn 3MP 3

PC Intel i3 @ 1.7 GHz 6 Idle
PC Intel i3 @ 1.7 GHz 27.5 Loaded

Stormwater In-Situ 600 0.54

Table 5.2: Power Consumption of Sensors Deployed in the Infrastructure Testbeds

Analytics CPU Usage Memory Usage Running Time per Frame

OpenCV 194.80% 1.7% 0.052s
YOLOv3 100.43% 8.5% 17.38s

Table 5.3: Resource Consumption of Video Analytics Models

and analytics in both testbeds.

5.4.2 Smart Stormwater Infrastructure

We utilize five stormwater sensing units that have been instrumented by Orange County

Public Works Department (OCPWD) in order to monitor the quality of the water flowing

through the storm drains, which is depicted in Figure 5.7. The stormwater can get con-

taminated while flowing into the drains by collecting pollutants like bacteria from human

or animal waste, fertilizers, and even chemicals from industries that illicitly discharge their

waste into these drains [154]. Each sensing unit consists of several hydraulic and chemical

sensors to measure pH, turbidity, dissolved oxygen, flow rate, etc., that together are capable

of detecting a wide range of potential contaminants. The sensor measurements are trans-

mitted using LoRa networks and are analyzed at an edge server using Machine Learning

classifiers to determine the presence of contamination. The sensing units are deployed in

secure underwater housing and are battery powered. Accessing these units in order to re-

place the batteries, therefore, involves significant efforts to dig up the housing and access the

hardware within, hence frequent battery replacement would incur large costs. OCPWD’s
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Figure 5.7: Our testbed in Orange County, USA: a storm drain and the locations of sensing
units.

objective is to prolong the battery life while maintaining contamination event detection

accuracy.

Since stormwater contamination events occur sporadically with long periods of normal activ-

ity, measurements of a subset of sensors can be sufficient to provide coarse-grained signatures

that can then be used to trigger all the sensors for fine-grained monitoring during contamina-

tion events. This is because using all the sensors for continuous monitoring would consume

a lot of battery power. The goal of deploying our REAM framework is to accurately identify

stormwater contamination events while prolonging the battery life of these sensing units by

appropriately switching between coarse and fine grained monitoring.
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Stormwater Data

We use four months of sensor measurements from the sensing units at two different locations

(A, B). For each location, we use three months of data for training and one month for testing.

The measurements have a granularity of 15 minutes and the contamination event ground

truth was annotated by an expert from OCPWD. We also obtained precipitation data for

the location and battery consumption information of the sensing unit. We use two sensors

- dissolved oxygen and pH, that are most sensitive to changes in the ecosystem to form the

coarse-grained baseline action plan along with a Support Vector Machine (SVM) classifier.

But since the changes can be due to minor natural variances in the chemical composition of

the water, the coarse-grained plan can result in a number of false-positives. We hence define

one fine-grained action plan that uses more information, consisting of the previous sensors

along with temperature, Total Dissolved Solids (TDS), conductivity, and turbidity sensors

and uses a Random Forest classifier, that is triggered by the coarse-grained approach and

can more accurately determine if a contamination event has occurred. We define the reward

for the REAM RL agent based on the utility provided, where the benefit B(pj) of every

action plan is its classification accuracy and its cost C(pj) is the total battery consumption

of the sensors and analytic operators in the action plan.

Stormwater Contamination Monitoring Results

We measured the accuracy achieved in classifying contamination events for the test data

from both locations (Table 5.4 and Table 5.5). We observed that REAM achieved 90.9%

and 80.1% accuracy at location A and B respectively, which is comparable to the 95.4% and

86.1% achieved by using only the fine-grained action plan and better than the 88.2% and

76.9% obtained by using the Random Forest supervised learning approach and the 73.3%

and 68.6% achieved by using just the coarse-grained action plan. Moreover, the REAM
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Comparison approach Accuracy (%) Total energy Exp. battery Avg. detection
consumption (J) life (days) delay (mins)

REAM 90.9 86.40 53 20.2
Random Forest 88.2 101.77 44 24.7

Fine-grained 95.4 155.52 29 14.4
Coarse-grained 73.3 46.08 98 45.9

Table 5.4: Stormwater Contamination Monitoring - Location A

framework consumed on average 42% less energy than the fine-grained action plan across

both locations, resulting in a longer battery life by 24 days at location A and 19 days at

location B that we derived based on the two D-cell alkaline battery capacity of the In-Situ

600 stormwater sensing unit.

At location A, REAM had a 20 minute delay on average in detecting contamination events,

compared to the 14, 24 and 45 minute delays achieved by the fine-grained, Random Forest,

and coarse-grained approaches respectively. At location B, REAM’s average detection delay

was 14 minutes, compared to 10, 19 and 24 of the fine-grained, Random Forest and coarse-

grained approaches respectively. Fig. 5.8 shows a zoomed in view of the contamination

event ground truth and the action plans chosen by the REAM RL agent during a week of

the test period. We observe that for most of the contamination events, the agent utilizes the

fine-grained action plan to achieve high accuracy and ends up using the coarse-grained plan

during periods when no events occur. The occasional shift to the fine grained plan as shown

by the red circle occurs since the agent explores different action plans based on the ε-greedy

policy described in Section 5.3.2 to adapt to changing environmental conditions, e.g., dry

vs. wet weather, seasonal patterns, etc.

From these results, we can see that the REAM framework can increase the battery replace-

ment cycle from less than 1 month with the fine-grained approach to almost 2 months with

less than a 5% drop in accuracy and a detection delay within 5 minutes on average.
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Comparison approach Accuracy (%) Total energy Exp. battery Avg. detection
consumption (J) life (days) delay (mins)

REAM 80.1 95.76 46 14.5
Random Forest 76.9 120.93 35 19.3

Fine-grained 86.1 163.44 27 10.1
Coarse-grained 68.6 54.21 90 24.6

Table 5.5: Stormwater Contamination Monitoring - Location B
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Figure 5.8: ε-greedy approach to selecting action plans by the REAM RL agent to determine
stormwater contamination events

5.4.3 Smart Campus

We have instrumented eight smart street lamps on the NTHU campus in Taiwan, as shown

in Fig. 5.9 for smart campus applications. In our testbed, each street lamp is instrumented

with a power supply, an Ethernet switch, a Raspberry Pi (which also serves as a Bluetooth

and Zigbee gateway), and a wide spectrum of environmental sensors, such as motion (PIR,

passive infrared), temperature/humidity, and air quality (PM 2.5) sensors. Four of the
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Figure 5.9: Our testbed at NTHU campus, Taiwan.

Figure 5.10: Sensor-rich smart street lamps (left) and a motion sensor (right).

lamps are equipped with 3MP cameras, of which three are fixed bullet cameras and one is a

Pan–Tilt–Zoom (PTZ) camera. There’s also an outdoor motion sensor installed on one of the
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lamps, providing longer sensing range (12m) for the intersection. Fig. 5.10 gives the photos

of our NTHU testbed. The lamps are connected using a heterogeneous network consisting

of Gigabit Ethernet, WiFi mesh, LoRa, and NB-IoT. We install edge servers in two of the

street lamps for running monitoring applications. The edge servers are Intel NUC PCs, each

has a 4-core CPU at 1.7 GHz, 8 GB RAM, and 500 GB disk.

We utilize this testbed for a pedestrian counting application that attempts to profile the

movement of people at main intersections. This is to dynamically dispatch security guards

to direct on-campus vehicles when intersections are crowded. The goal of the campus admin-

istration is to infer these profiles using as little resources as possible to ensure availability for

other on-demand (emergency) applications. Using fine-grained camera feeds coupled with

analytic libraries like YOLOv3 [124] and OpenCV [22] can result in accurate counts, but this

approach is resource intensive. Since the flow of pedestrians is not continuous (fewer people

walking at night), a coarse-grained motion sensor could be used to trigger the camera based

analytics in order to conserve resources. However, since different moving objects (e.g., car,

bicycle, etc.) can also activate the motion sensor, its accuracy would be lower than that

of camera feeds. The goal of deploying our REAM framework is to be able to learn when

pedestrians are likely to be present and switch between coarse- and fine-grained monitoring

to preserve resources.

Pedestrian Flow Data

For the pedestrian counting application, we use two different sets of data collected over

different time periods. The first dataset (termed Data1) consisting of video data from a

camera and a motion sensor on a street lamp overlooking an intersection, was obtained over

a week in April. The second dataset (termed Data2), utilized three week’s worth of video

and motion sensor data from the same street lamp during August. Using two such datasets

also allows us to evaluate the effectiveness of REAM during extended periods of differing
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Figure 5.11: Sample video frames from a street lamp camera for the pedestrian counting
application. The recognized objects and bounding boxes are given by YOLOv3.

pedestrian flow. For Data1, we use five days for training and two days for testing, while for

Data2 we use ten days for training and the remainder for testing. The measurements have

a granularity of one second.

Fig. 5.11 shows four sample frames of the video data. For both datasets, we define the

coarse-grained action plan to consist of the binary output analyzed from the motion sensor.

This plan is sufficient to capture situations where there are none or just one pedestrian at a

given time as shown in the top left frame of Fig. 5.11. However, we notice that the motion

sensor can be triggered by other objects such as the vehicles in the top right frame resulting

in false positives. Hence, we define two fine-grained action plans that run OpenCV [22] and
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Comparison approach Distance from Total power Total data
ground truth (%) consumption (W) generated (GB)

REAM 7.1 61.8 33.1
Random Forest 15.4 54.6 30.3

YOLOv3 0 126.5 55.62
OpenCV 37.3 39.32 55.62

Motion Sensor 62.3 36 0.0005

Table 5.6: Pedestrian Counting–Data1 (April)

Comparison approach Distance from Total power Total data
ground truth (%) consumption (W) generated (GB)

REAM 8.6 319.9 160.5
Random Forest 14.1 291.3 141.6

YOLOv3 0 697.5 305.9
OpenCV 32.1 246.2 305.9

Motion Sensor 54.9 198 0.006

Table 5.7: Pedestrian Counting–Data2 (August)

YOLOv3 [124] object detection algorithms respectively, which can also handle cases where

there are many pedestrians simultaneously present as shown in the bottom left frame. The

YOLOv3 library is more powerful in that it can more accurately handle situations where

there are multiple different objects like pedestrians and vehicles present together as shown

in the bottom right frame. We hence assume that the output of the YOLOv3 plan is the

ground truth for our evaluations. The benefit of every action plan is defined as its distance

from the ground truth in terms of the pedestrian count, and its cost is a weighted sum of

its power, bandwidth, and CPU consumption. We assume equal weights in the evaluations

if not otherwise specified.

Pedestrian Counting Results

Tables 5.6 and 5.7 show a summary of the performance comparisons, where we report the

total power consumption as a sum of the power consumption of the sensors (motion, camera)

and the edge servers. REAM achieved pedestrian count errors of 7.1% and 8.6% for Data1
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Figure 5.12: Comparisons of hourly pedestrian count ground truth and action plan chosen
by REAM framework during a week – Data1 (April).

and Data2, respectively, compared to the YOLOv3 based approach that we assumed to

be the ground truth and performed better than the Random Forest, OpenCV, and the

coarse-grained motion sensor based approaches for both Data1 and Data2. However, the

YOLOv3 library is very resource intensive, and this coupled with the significant power

consumption of using a camera continuously, results in REAM having 51.0% and 54.1% less

power consumption over the two datasets. The REAM framework also results in 44.0% and

47.5% less data being generated than the YOLOv3 and OpenCV approaches that require

continuous generation and transmission of video data.

Figures. 5.12 and 5.13 illustrate heatmap based comparisons of the ground truth of average

hourly pedestrian flow per week and the corresponding most frequent action plan chosen by

the REAM RL agent during that hour for Data1 and Data2, respectively. While we observe

that the flow of pedestrians was slightly lower in Data2 (August) compared to Data1 (April),

in both cases, the number of pedestrians is the highest during the day (8am - 5pm) and during

those periods the predominantly used action plan is YOLOv3 which results in high accuracy.

Also, during the night and early mornings, when extremely few pedestrians are on the road,

the RL agent chooses to use the motion sensor approach which is sufficiently accurate to
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Figure 5.13: Comparisons of hourly pedestrian count ground truth and action plan chosen
by REAM framework during a week – Data2 (August).

model the pedestrian flow. The REAM framework can thus achieve > 90% accuracy (hence

not missing many people), while consuming∼ 50% less power and generating less data (hence

consuming less resources), compared to static monitoring approaches. The performance of

the RL agent could be made better by including additional contextual information like the

weather, campus holidays, etc., that would have a direct impact on the pedestrian flow.

5.4.4 Exploring Network Loss Performance

We next evaluate the performance of our REAM prototype in the presence of network loss.

Due to the challenge of experimenting with controlled network loss in a real community

infrastructure, we simulate the input and network loss to the prototype based on our testbeds

and compare the performance of REAM with a network agnostic planning approach. We use

images from camera sensors with two different analytic operators YOLOv3 and OpenCV. As

described earlier, while YOLOv3 achieves higher levels of accuracy, it uses more resources

in terms of power consumption, CPU, and memory, as compared to OpenCV. In addition,

we also leverage a feature in RTI’s DDS framework to track the number of messages lost or
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Figure 5.14: Network quality simulator: (a) experiment setup and (b) action plans selected
by REAM and the static planner.

received across all action plans over time.

In order to evaluate REAM under conditions with network loss, we define two action plans

as shown in Figure 5.14(a). The setup consists of 2 camera sensors {s1, s2}, 2 edge servers

{e1, e2}, and 2 receivers {r1, r2}, with network links {l1, ..., l6} connecting them as shown in

the figure. There are 2 action plans {a1, a2} that can be chosen, where a1 uses OpenCV,

and a2 uses Yolov3 as the analytics operators respectively and hence benefit B(a2) > B(a1).

We assume that the sensors and edge servers are homogeneous which means that the cost

C(a2) = C(a1). When each experiment begins, the nodes start publishing data, and after 15

seconds, we introduce network loss on Link l2. The loss rate persists for 60 seconds, after

which it is set back to zero.

We compare the performance of REAM’s network aware action plan selections with a static

planning approach that uses Benefit and Cost to determine the action plan to use, but is

agnostic to variability in network link quality, i.e., Ustatic = B(pj)/C(pj). Figure 5.14(b)

shows the action plan selections during the experiments by both approaches. We see that

for the initial period with no network loss, both approaches choose action plan a2 which

has higher utility than a1, since its benefit is higher and the cost and network loss is the

same. However, when the network loss is introduced on Link l2, REAM uses this information

and selects a1, whose utility becomes larger due to the network loss. However, the static
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Figure 5.15: Cumulative data delivered by REAM and the static planner for network loss
rates of: (a) 0.1 and (b) 0.5, respectively

planning approach continues to use a2. When the network quality is restored, REAM once

again switches back to action plan a2 whose utility is once again larger than that of a1.

For the above experiments, we first compare the cumulative data delivery rate over the

affected Link l2 achieved by REAM and the static planner for two different network loss

rates of 0.1 and 0.5. As shown in Figure 5.15, the loss incurred by REAM is significantly

lower as compared to that by the static planner. The difference ranges from 6% for 0.1

network loss rate to 27.5% for 0.5 network loss rate. Since this difference in delivery rate is

a function of the network loss rate on the affected link, the link quality of the alternative

paths, as well as the duration for which the link disruption persists, it would be even bigger

for large-scale disruptions on multiple network links.

We then compare the benefit achieved over time by REAM and the static planner during the

experiments. We measure the accuracy over time by multiplying the expected accuracy of

each selected action plan with the measured message delivery rate. We calculate the delivery

rate for each action plan as the number of packets received each timestep divided by the total

number of packets sent for that plan. Fig. 5.16 shows the accuracy values per timestamp

achieved by both approaches over the entire experiments for both 0.1 and 0.5 network loss

rates. We see that before the introduction of the network loss rates, both REAM and the

static planner achieve the same high accuracy since they both use the high utility action
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Figure 5.16: Average monitoring accuracy obtained by REAM and the static planner for
network loss rates of: (a) 0.1 and (b) 0.5, respectively

Figure 5.17: Running time taken per application for deployments ranging (a) from 120 to
1200 nodes and (b) from 1 to 10 tasks

plan a2. We also see that the introduction of network loss results in a drop in accuracy for

both approaches. However, REAM’s agent recomputes the utility values and selects action

plan a1 unlike the static planner that continues with a2 and thus suffers from lost packets.

The average difference in accuracy levels ranges from 11% with 0.1 network loss rate and

42% with 0.5 network loss rate. When the network condition on the affected link recovers,

REAM switches back to action plan a2.
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5.4.5 Evaluating Scalability

In this section, we evaluate the scalability of REAM for large-scale community infrastructure

deployments consisting of a multitude of sensors, edge servers, stakeholders or receivers, and

monitoring applications with varying action plan complexities. We use the same prototype

and simulated input setup as in the network loss experiment. We first varied the total

number of sensors, edge servers, and receivers, and then measured the time taken by REAM

to handle action plan selections for multiple applications. Figure 5.17(a) shows the time

taken per application by REAM for 100 applications, in environments ranging from 120

nodes (100 sensors, 10 edge servers, and 10 receivers), to 1200 nodes (1000 sensors, 100

edge servers, and 100 receivers). Each action plan candidate for the applications was set

to have 3 tasks (sensing, compute, and publication). We observed that the time taken per

application remained relative constant despite the 10x scaling of the environment size. The

runtime of REAM ranged from 0.020 to 0.022 seconds to select and publish action plans for

each application which shows a near constant runtime, thus showing REAM’s effectiveness

in handling large-scale infrastructure deployments.

We then varied the number of tasks (i.e., the number of data processing steps) associated

with each action plan from 1 to 10 for 100 applications. We kept the environment size

constant at 1200 (1000 sensors, 100 edge servers, 100 receivers). Fig. 5.17(b) shows that

there is a small increase in the time taken to select and publish action plans per application

while increasing the number of tasks per action plan. The runtime ranges from 0.019 to 0.032

seconds for an average of 0.027 seconds per application. Given how small these runtimes

are, it is an insignificant increase in the runtime of REAM when handling a larger number

of tasks per action plan.
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5.5 Chapter Summary and Discussion

In this chapter, we address the operational challenges of infrastructure monitoring under

heterogeneity and varying community environments (structure and behavior). We develop a

resource efficient adaptive monitoring framework, REAM, that balances the resource require-

ments and objectives of multiple infrastructure monitoring applications in order to provide

good quality monitoring of community infrastructure, while incurring low compute, network-

ing, and energy costs. REAM allows community stakeholders and users to define monitoring

workflows or pipelines of sensing, communication, and analytics that can be leveraged to

serve each monitoring application. It leverages reinforcement learning (RL) agents that

identify and learn structural and behavioral patterns in the community infrastructure, to

determine an optimal policy for selecting different monitoring workflows depending on the

given state of the community infrastructure and environment. Experimental results show

that REAM achieves high levels of monitoring performance at significantly low resource con-

sumption costs, while adaptively switching between different workflows to handle changing

infrastructure conditions.
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Chapter 6

Sharing Monitoring Solutions Across

Communities

The solutions presented in the previous two chapters addressed deployment and operational

challenges for infrastructure monitoring within one community. However, developing moni-

toring solutions for each individual community requires time and effort, and oftentimes may

not be possible due to a lack of sufficient resources like sensor instrumentation, monetary

capital, available data and compute resources, etc., that are required to train effective mod-

els. Hence, extending single-community solutions to work or generalize across communities

can provide significant benefits by enabling communities to collaboratively achieve good

quality infrastructure monitoring and save on costs and time by sharing data and models.

In this chapter, we present our approach to enable cross-community solutions while address-

ing challenges of centralized training, privacy, and data biases. We develop a solution for

the distributed training of monitoring models that can generalize and be deployed across

communities without a loss in performance.
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6.1 Chapter Overview

Community infrastructure monitoring applications driven by Internet-of-Things (IoT) de-

vices generate a massive amount of data from sensors or devices at the edge. Machine

learning models are trained on these datasets to learn complex patterns and correlations be-

tween infrastructure events and the different data features or attributes that are measured.

The objective of these models is to identify the underlying causal relationship between the

different data features and the target event, and often require large amounts of training data

and compute resources to achieve good performance. Since different locations and commu-

nities observe a diverse range of events, training models on data shared from these different

sources can improve their robustness and event detection capabilities.

Similarly, model sharing between communities is also beneficial, since models that can be

reused by different communities can save them the time and costs required to extensively in-

strument infrastructure and collect data. Moreover, some communities do not have sufficient

monetary capital and resources to obtain the data and computation needed to train effective

monitoring models. This can result in communities with access to different levels of resources

having starkly different monitoring capabilities both in terms of the quality and extent of

monitoring. Hence, sharing data and models between communities can help improve the

robustness of the monitoring models, save time and costs associated with model training,

and ensure that every community irrespective of their resource availability, can obtain good

monitoring models for their infrastructure. However, such sharing between communities is

challenging today due to issues of centralized training and the inability to handle data biases:

• Centralized training: Given the vast quantities of data generated by IoT sensors,

centralized data collection and training places enormous strain on transmission network

bandwidths and storage requirements needed for other applications. Additionally, a

central location acts as a single point of failure that can be compromised by malicious
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actors since infrastructure monitoring often results in the collection of personal and

sensitive data. For instance, smart building applications collect WiFi usage data,

images, and other mobile device information from occupants. On the other hand,

critical community infrastructures like water networks store sensitive information like

network vulnerabilities and water treatment schedules. Such kinds of information, if

obtained by malicious actors, can cause significant adverse impacts on individuals and

the community at large. These issues preclude communities and stakeholders from

sharing data and information, necessitating distributed training solutions.

• Data biases: During the training process, models try to identify causal patterns in the

community infrastructure by learning from correlations present between the different

features being measured and the target event. However, some of these correlations may

be biased or spurious, where they do not exist outside of the collected data. Models

relying on these features often perform poorly on new data where the biases are no

longer present. This makes it challenging to train and share models using data from

one or more communities, since they need to ignore existing community biases that

may not exist in other communities in order to perform well.

In this chapter, we address the above challenges and develop an approach to enable the

distributed training of infrastructure monitoring models that can be shared or generalized

across communities without a loss in performance. Our contributions would enable resource-

poor communities to obtain good quality infrastructure monitoring models without needing

extensive capital and resources, and also allow each community to improve the robustness

of their models by training them on diverse events observed in other communities without

the need to share sensitive data. Our key contributions include:

• Develop a solution, titled FedGen, to train generalizable infrastructure monitoring

models in a distributed manner that can be shared and re-used effectively across com-
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munities.

• Present approaches to leverage the federated learning paradigm for distributed training

and to improve generalizability by identifying biases in data.

• Develop a novel masking function that leverages individual feature stability during

model training to distinguish between causal and spurious (biased) features in a dis-

tributed manner.

• Formal proof of the correctness of our approach in learning only the causal features

and ignoring biases in the data.

• Conduct extensive evaluation of FedGen on real-world datasets from different infras-

tructure monitoring applications and comparisons with existing state-of-the-art ap-

proaches. Our results demonstrate the significant improvement in generalizability

achieved by models trained using FedGen, while overcoming the drawbacks of cen-

tralized training.

6.2 Distributed Training of Generalizable Monitoring

Models

Traditionally, machine learning models for monitoring community infrastructure are deployed

on central cloud servers and trained on data collected from distributed sensor deployments

in communities. However, the increased popularity of IoT-driven monitoring has resulted in

the generation of a massive amount of data from these distributed deployments. The vast

quantities of data, coupled with network bandwidth limitations, and privacy concerns have

made it impractical to gather all the data from these sensors to a single server to conduct

centralized training.
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To address the need for a distributed training approach for infrastructure monitoring ap-

plications, federated learning has emerged as an attractive paradigm to allow local devices

or clients to collaboratively train a shared global model. The typical federated learning

paradigm involves two stages – (i) clients train models with their local datasets indepen-

dently, and (ii) a central server gathers the locally trained models and aggregates them to

obtain a shared global model. Federated learning is also privacy-aware, since instead of

sharing sensitive raw data, only individual model weights or parameters need to be shared

between the clients and the central server. For infrastructure monitoring, the clients can

correspond to data from individual devices, local servers, specific locations, or even entire

communities themselves. This semantic flexibility in federated learning therefore enables

different infrastructure monitoring applications to define clients and local models depending

on their objectives.

A standard approach for model aggregation in federated learning has been FedAvg [96],

where parameters of local models are averaged element-wise with weights proportional to

sizes of the client datasets. While most existing work using federated learning for smart

community applications use FedAvg, it has been shown to have several shortcomings [86,

171]. Of particular importance, is its poor performance when the data across clients are not

independent and identically distributed (i.e., non-iid data). However, the presence of non-iid

data for training is often the case with infrastructure monitoring applications, where sensors

and devices can have differing amounts of data, and the data distributions can also vary

across devices due to differences in sampling rates and device heterogeneity, among other

reasons.

Additionally, infrastructure monitoring data often contains biases, which are also not ad-

dressed by existing federated learning approaches. The goal of every monitoring model is

to capture the underlying causal relationship or invariant correlations between different

features or attributes and the target event. However, data collected from infrastructure
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Figure 6.1: Spurious correlation between event (air pollution) and temperature only holds
in training data

in a specific community, can often have inherent biases or spurious correlations present

between some features and the target event. These spurious correlations can occur due to

sensor locations, sampling issues, and other community-centric characteristics like weather

patterns among others. These correlations have no causal relationship with the event out-

side of the collected data, but because models leverage all correlations during the training

process, they also learn and rely on these biases or spurious relationships. This results in

models showing poor performance on new data without these biases, from either the same

community or other communities, preventing their sharing across communities.

An example of this can be seen in Figure 6.1, depicting images from different cities to detect

the presence of air pollution. Additionally, feature measurements like PM2.5 (particulate
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matter), temperature, and humidity were also collected. In this example, the sole invariant

correlation between the target event (i.e., air pollution) and the features is due to high

PM2.5 sensor readings. That is, this relationship between air pollution and high PM2.5

measurements would hold true, no matter the community. However, this example also

contains a spurious correlation between the event and the temperature readings, where

most places with air pollution have high temperatures (> 80F ), and most places with no air

pollution have low temperatures (< 60F ). This correlation is captured by the model during

training, leading it to believe that communities with high temperatures would likely show

air pollution, while cold communities would not have air pollution. However, this bias would

obviously not hold outside of the collected data as shown in the test examples in Figure 6.1,

where communities with high temperature can have no air pollution and vice-versa. Hence,

models influenced by spurious correlations would perform poorly when deployed in other

communities where the biases no longer hold.

Improving the generalizability of machine learning models by training them to distinguish

between spurious and invariant features is an important challenge that has been predom-

inantly studied in the context of computer vision problems [7, 77]. However, this is also

critical to address for smart community and infrastructure monitoring applications, where

data biases are prevalent and hard to manually identify. In the rest of this chapter, we

present relevant background and our approach to train generalizable models in a federated

privacy-aware manner.

6.3 Background

In this section, we provide an overview of federated learning and machine learning general-

ization. We present formulations and discuss prior work in both domains.
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Figure 6.2: Illustration of the FedAvg approach using data from three communities

6.3.1 Federated Learning

Recall that federated learning involves the distributed training of multiple local models or

clients and subsequent centralized model aggregation. For smart community settings, these

clients could refer to models analyzing data from individual devices or even large sensor

deployments across an entire community. We assume that these models are deployed on edge

servers, and the centralized aggregated model is present either at the edge or on the cloud.

Figure 6.2 illustrates the general federated learning paradigm, where we depict clients as

individual communities with their own local models and data. These local model parameters

are periodically transmitted to the central server, which aggregates the parameters and

returns them back to update the local models.
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Consider a set of K clients, each with data samples drawn from D distributions or domains

on X × Y , where X is the set of input features and Y is the target label. We denote nk

as the number of data samples on client k ∈ K, and N =
∑K

k=1 nk as the total number of

samples across the K clients.

For the federated learning setting, we define the local loss for the model on client k, which

maps the model parameters wk to the expected loss on the local data distribution Dk ∈ D

for a given loss function ` as:

fk(wk) = E(xk,yk)∼Dk
[`(xk, yk);wk] (6.1)

The central server aggregates these local models into a central model using the following

central objective function:

F (w) =
K∑
k=1

nk
N
fk(wk) (6.2)

where w is the parameters of the aggregated central model. The overall goal of the federated

learning paradigm is to find model parameters w∗ such that:

w∗ = arg min F (w) (6.3)

Federated Averaging (FedAvg) proposed by McMahan et al. [96] has emerged as the de-facto

optimization approach for smart community applications in the federated setting. At each

iteration of the algorithm, FedAvg performs E local epochs of stochastic gradient descent

(SGD) on a random subset of clients. The clients then communicate their local model

updates to the central server, where they are averaged as shown in Figure 6.2. The details

of FedAvg are summarized in Algorithm 5.
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Algorithm 5 Federated Averaging (FedAvg)

1: Input: Devices k ∈ K, local epochs E, learning rate η, global model w randomly
initialized

2: for t = 1→ T do
3: Server selects subset Kt of K devices at random
4: Server sends wt to devices in Kt

5: for each client k ∈ Kt in parallel do
6: Update wt for E epochs of SGD to get wt+1

k

7: Send wt+1
k back to the server

8: Server aggregates wt+1 ←
∑K

k=1
nk

N
wt+1
k

However, it has been shown that when the local clients have non-iid data partitions and

heterogeneous local objectives fk, the local training in FedAvg may lead each device to opti-

mize its local objective as opposed to the central objective – potentially hurting convergence

or even causing divergence of the central model due to the underlying heterogeneous data

distributions [20]. In order to improve the convergence under non-iid settings and to reduce

the total number of communication rounds (by setting high local epochs), several alternative

approaches have been proposed [100, 171]. For example, Li et al. [86] proposed FedProx,

which adds a proximal term to the local client’s update functions, thereby limiting the im-

pact of local updates by keeping them close to the global objective. In particular, they define

the following objective:

wt+1
k ≈ min

wk

hk(wk, w
t) = fk(wk) +

µ

2
||wk − wt||2 (6.4)

where µ is a hyper-parameter and we can see that when µ = 0, this reduces to FedAvg.

However, these approaches only focus on improving convergence in non-iid settings, but

do not address the additional challenge of data biases and spurious correlations which can

cause training distributions to differ significantly from test distributions. Thus, as we will

demonstrate in our experimental evaluation, these approaches do not result in robust and

generalizable models.
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6.3.2 Generalization of Monitoring Models

Machine learning models have always been evaluated by their performance on unseen test

data. Classical machine learning approaches assume that the unseen test data are drawn

i.i.d from the same data distribution as the training set used to train the model. However,

in many real-world applications including infrastructure monitoring, this is often not the

case. When this discrepancy occurs, classical training approaches often result in models

failing to perform on different data distributions. Recent efforts have provided evidence

that models trained with the iid assumption rely on statistically informative but non-causal

features in the data (i.e.) spurious correlations [11, 51, 63]. These spurious correlations are

often misleading features/attributes that hold for a majority of training examples but will

not always hold. Hence, models that learn and rely on these spurious correlations would

demonstrate good training accuracy, but perform poorly on new test data where they no

longer hold. This has prompted the need for solutions that can train generalizable models

that are robust to spurious correlations.

Generalization is a harder problem to address than the related areas of domain adaptation

and meta-learning, which have been studied in the context of community monitoring appli-

cations. These other areas assume that the test data distribution is known apriori, and often

some unlabeled test data is also available. However, in generalization, no such assumptions

are made, and the test distributions are unknown. Thus far, efforts to develop solutions for

generalization have looked at centralized training, and not distributed training settings.

As described in Section 6.2, generalizable monitoring models need to be able to distinguish

between spurious and invariant features, thereby ignoring spurious correlations present in the

training data. Given the set of input features X used by the client models, the set of invariant

features XI across all clients is one where the event prediction probability is consistent across

all data distributions, (i.e.) p(Y |Xi ∈ XI ,D) is approximately constant. Conversely, the
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set of spurious features XS consists of features whose prediction probabilities differ across

distributions due to the presence of data biases. Hence, it follows that XI ∪XS = X, and

XI ∩XS = ∅, (i.e.) a feature cannot be both invariant and spurious.

The classical centralized approach to training machine learning models uses Empirical Risk

Minimization (ERM), which tries to minimize the average loss over all training examples in

a distribution agnostic manner:

F (w) = E(X,Y )∼D[`(X, Y );w] (6.5)

where D refers to the different distributions across the K clients. While ERM has been

shown to work well in practice for i.i.d. data [157], it often fails when test distributions differ

significantly from training distributions [153].

To overcome this, several approaches have been proposed, including the popular Invariant

Risk Minimization (IRM), proposed by Arjovsky et al. [7]. IRM searches for an invariant

representation of input features across the different distributions. We paraphrase the IRM

principle as : An invariant representation Φ(X) is one such that the optimal linear predictor

w is the same across all distributions D ∈ D. They show that finding the invariant predictor,

w ◦ Φ, requires solving the following bi-level optimization problem:

min
Φ,w

∑
D∈D

F (w>Φ(X,D)) (6.6)

s.t. w ∈ argmin
w̄

F (w̄>Φ(X,D)), ∀D ∈ D (6.7)

However, since this optimization is highly intractable, particularly when Φ is non-linear,
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they propose a tractable variant (IRMv1) :

min
Φ

∑
D∈D

F (Φ(X,D)) + λ‖∇wF (w>Φ(X,D)‖2
2 (6.8)

where λ ∈ [0,∞) is a regularizer that balances between predictive power within a distribution

(ERM), and the invariance of the predictor across distributions. There have been several

extensions to the IRM framework. For instance Ahuja et al. [2] propose a game theoretic

approach to IRM, while Krueger et al. [77] introduce the notion of risk extrapolation to

encourage strict equality between training losses.

However, these IRM-based approaches suffer from two inherent weaknesses. First, they rely

on the assumption that the different training distributions D are known apriori. Second,

they require perfect segmentation of the training data into these distributions. In practice

however, since the data at a single client could consist of multiple distributions, it is chal-

lenging to identify and distinguish data from individual distributions, resulting in imperfect

segmentation of data.

To demonstrate the sensitivity of IRM to imperfect data segmentation, we use the Punctu-

ated SST-2 dataset [34]. It consists of sentences and their binary sentiment labels (positive

or negative) divided into two training distributions. A punctuation mark, either a ’ !’ or ’.’,

is introduced as a spurious feature with an 80% and 90% correlation with each of the binary

sentiment labels in the two training distributions respectively, and only has a 10% correlation

in the test distribution. Any model influenced by the punctuation feature rather than the

sentence while predicting the sentiment, would do well during training but perform poorly

at test time. To simulate imperfect segmentation of data into the training distributions, we

“incorrectly” assign a percentage of examples from the first distribution to the second.

Figure 6.3 shows the resulting out-of-distribution accuracy on the test distribution by the
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Figure 6.3: Comparing the sensitivity of Invariant Risk Minimization (IRM) to Empirical
Risk Minimization (ERM) for imperfect segmentation of data into distributions. The test
accuracy of IRM degenerates to that of ERM when the training data is not segmented
correctly, resulting in no model generalization.

IRM model as compared to a standard Empirical Risk Minimization (ERM) model where the

ERM model tries to minimize the average loss over all training examples. We observe that

with perfect data segmentation (0% error), the IRM model is not influenced by the spurious

feature correlation and achieves good generalization unlike the ERM model. However, as

the segmentation error increases, its accuracy drops significantly. The IRM model becomes

heavily influenced by the spurious punctuation feature, as evidenced by the high training

accuracy and low out-of-distribution test accuracy. It degenerates to the accuracy obtained

by ERM when there is no difference in the spurious correlations between the two segmented

distributions, thus achieving poor generalization.

The example above highlights the drawbacks of IRM-based approaches and motivates the

need for a distribution-agnostic solution for the generalization of machine learning models.
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6.4 FedGen: Generalizable Federated Learning

We have described the shortcomings of existing federated learning approaches being unable

to handle biases and spurious correlations, and generalization approaches relying on cen-

tralized training and not being distribution-agnostic. In this section, we address all these

shortcomings by developing a generalizable federated learning approach, named FedGen,

which enables models to identify spurious and invariant features during distributed training.

Our approach to determining whether the ith feature Xi ∈ X is spurious or invariant, is by

measuring the stability of its parameter weight wi. Recent work [66, 163] has shown that

if Xi is a causal or invariant feature, wi converges to a fixed magnitude, (i.e.) E[Y |Xi] = c

for some constant value c, across all training iterations. Whereas if E[Y |Xi] is changing,

wi would keep changing as well, and hence spurious features have parameter weights that

exhibit high variance. This definition is equivalent to learning features whose correlations

with the target variable are stable.

We leverage this intuition for our federated setting and define a set of masks Mk = {m1k, ...,

mnk} over the input features for each of the k ∈ K clients, where mik ∈ R and n is the

number of input features in X. We update the masks during training by using the variances

in the feature weights to emphasize invariant features and suppress spurious ones. During

each training epoch, we update the local masks for each client k ∈ K as:

mik ← mik − α(v(wik)) +
1

n

n∑
i=1

v(wik), ∀mik ∈Mk (6.9)

where hyper-parameter α serves as a scaling factor, v(wik) is the variance of the weights of

feature Xi on client k, and the last term is the average variance of all feature weights. We

know from our earlier intuition that the variance of the weights of invariant features is low and

that of spurious features would be high. Hence, we see that updating the local masks on each
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client using Equation 6.9 results in the masks of invariant features gaining in value on each of

the K clients since their variance is lower than the average (i.e.) 1
n

∑n
i=1 v(wik)−α(v(wik)) >

0. Masks of spurious features on the other hand, become progressively negative, since the

variance of their weights coupled with α is larger than the average which is brought down by

invariant features. Since our update function does not enforce a bound on the mask values

(i.e.) mik ∈ [−∞,∞], multiplying the masks with each input feature can distort the scale of

the feature values. In order to retain the scale of the original feature values, we multiply the

masks with the sigmoid function σ which is bounded between [0, 1]. Hence using the masks

and the update function on the input features for each local client results in:

σ(mik)�Xi →


Xi if Xi is invariant

0 if Xi is spurious

,∀Xi ∈ X (6.10)

where � denotes element-wise multiplication. The local loss on each client for the federated

setting described in Equation 6.1 can be represented for FedGen as:

w∗k = min
wk

f ′k(wk)︸ ︷︷ ︸
local loss

+λ‖∇wk
w>k f

′
k(wk)‖2

2︸ ︷︷ ︸
FedGen penalty

, where (6.11)

f ′k(wk) = E(xk,yk)∼Dk
[l(σ(Mk)� xk, yk);wk]

The penalty term here is inspired by IRM and serves as a regularizer for the local models that

penalizes doing too well on one data distribution (i.e., possibly relying on spurious features)

and rewards doing well across distributions (i.e., relying on invariant features). However,

note that FedGen does not require any form of data segmentation or prior knowledge about

distributions. FedGen then trains the centralized model by communicating and subsequently

aggregating both the local model parameters as well as the local masks of the clients. We
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Figure 6.4: Illustration of our proposed FedGen approach

use the same element-wise averaging for aggregation as used by prior work:

F (w) =
K∑
k=1

nk
N
f ′k(wk) , M =

K∑
k=1

nk
N
Mk(wk) (6.12)

where F and M are the globally aggregated model parameters and masks respectively. Ag-

gregating the masks allows us to build a consensus between the clients, where features that

are invariant across all clients will be further emphasized, while features that are deemed

spurious by clients will be suppressed. Our federated generalization approach is described

in Algorithm 6 and illustrated in Figure 6.4. We next formally prove that FedGen results

in an aggregated model that is generalizable in Theorem 6.1 by formulating it as a minimax
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Algorithm 6 Federated Generalization (FedGen)

1: Input: Devices k ∈ K, local epochs E, learning rate η, global model w randomly
initialized

2: for t = 1→ T do
3: Server selects subset Kt of K devices at random
4: Server sends wt to devices in Kt

5: ClientUpdate:
6: Initialize masks mik = 1, ∀i : 1→ n
7: for e = 1→ E do
8: Compute `loc = [`(σ(Mk)� xk, yk);wk]
9: Compute `1 = ‖wk‖1 . L1 regularization

10: Compute `pen = λ‖∇wk
w>k f

′
k(wk)‖2

2

11: L = `loc + `1 + `pen . Total loss
12: wk = wk − η∇L
13: mik += 1

n

∑N
i=1 v(wik)− α(v(wik)),∀mik

14: Server aggregates wt+1 ←
∑K

k=1
nk

N
wt+1
k

15: Server aggregates M t+1 ←
∑K

k=1
nk

N
M t+1

k

problem and showing that the resulting model minimizes the loss using invariant features,

even under the most adverse unseen test distributions.

Theorem 6.1. Given training distributions Dtr and a test distribution Dte, the set of in-

variant features XI is the saddle point of the following minimax problem:

XI = min
w

max
XI ,XS

Ltest(F (σ(M)�X,w);Dte)

where Ltest is the cross-entropy loss for the test distribution, F (w) is the FedGen central

objective function, and XI , XS denote the set of invariant and spurious features respectively

such that XI ∪XS = X, and XI ∩XS = ∅ (i.e.) they are disjoint.

Proof. For notational simplicity, we denote Z = σ(M) �X. For every Z, we can partition

it into invariant variables ZI and non-invariant variables ZS as:

ZI = σ(M)�XI , ZS = σ(M)�XS. (6.13)
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Consider a test distribution D∗te, where the set of spurious features XS∗ are not predictive

of the output Y , and only the invariant features XI are predictive of Y , (i.e.)

p(Y |Z, D∗te) = p(Y |ZI , D∗te), p(Y |Z, Dtr) = p(Y |ZI , Dtr) (6.14)

Therefore, Ltest(F (Z, w) ;D∗te)

= H(p(Y |Z, D∗te); p(Y |Z, Dtr))

(i)
= H(p(Y |ZI , D∗te); p(Y |ZI , Dtr))

(ii)
= H(p(Y |σ(M)�XI , D∗te); p(Y |σ(M)�XI , Dtr))

(iii)
= H(p(Y |XI , D∗te); p(Y |XI , Dtr))

= Ltest(F (XI , w) ;D∗te)

(6.15)

where H(·) is the cross-entropy loss function. Step (i) is obtained from applying equation

(6.14). Step (ii) is obtained by applying equation (6.13), and step (iii) is due to the property

of the masks from equation (6.10).

Recall that XS∗ was assumed to be non-predictive of Y . However, in most cases, the spurious

feature XS would have some predictive power over Y in the training environment. Hence,

from the definition of spurious features XS, their biased influence on the model performance

during training will lead to an increased loss in the worst case test environment:

max
XS
Ltest(F (Z, w);Dte) ≥ Ltest(F (Z, w);D∗te) (6.16)

Recall XI denotes the set of invariant features, thus p(Y |XI , Dtest) does not depend on XS.
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Therefore,

max
XS
Ltest(F (XI , w);Dte) = Ltest(F (XI , w);D∗te) (6.17)

By combining equations (6.15), (6.16), and (6.17), we have:

max
XS
Ltest(F (Z, w);Dte) ≥ max

XS
Ltest(F (XI , w);Dte) (6.18)

The above formulation holds for all XI . Hence, taking the maximum over XI in equation

(6.18) preserves the inequality,

max
XI ,XS

Ltest(F (Z, w);Dte) ≥ max
XI ,XS

Ltest(F (XI , w);Dte)

which in turn implies,

XI = min
w

max
XI ,XS

Ltest(F (Z, w);Dte)

6.5 Experiments

In this section, we present an extensive evaluation of FedGen on real-world infrastructure

monitoring applications and compare its performance with other centralized and federated

learning approaches. Similar to prior work [7, 34, 2], we augment these datasets with spu-

rious correlations to measure the generalizability of the resulting models from the different

approaches. This spurious correlation is strongly present in the training data distributions

Dtr between the target events Y and a feature XS (i.e., p(Y |XS, Dtr ≥ 0.8), and this corre-

141



Dataset #Clients Train Samples Test Samples

HAR 30 7352 2947
Stormwater 15 132,227 14,237
Air Quality 61 549,162 38,398

Table 6.1: Summary of Federated Datasets

lation does not hold in the test data distributions (i.e., p(Y |XS, Dte) ≤ 0.1).

We assess the quality of generalization of the aggregated model resulting from the different

approaches as the classification accuracy obtained on the unseen test distribution without

spurious correlations, disjoint from the set of training distributions. We also conduct addi-

tional experiments to compare the impact of local training epochs on accuracy, convergence

rates achieved, and an ablation study to measure the contribution of the different components

of our proposed masking function.

6.5.1 Datasets

We use three real-world datasets depicting monitoring applications across stormwater infras-

tructure, personal wearables, and air quality. Table 6.1 shows a summary of these different

datasets.

Stormwater Contamination Detection

We obtain stormwater quality data from 15 different cities across USA [46] along with their

corresponding stormwater contamination event information. We treat the data from each

city as a client for our federated learning setting. The data comprises of chemical sensor

readings such as turbidity, conductivity, pH, temperature, DO2, in addition to environmental

attributes like humidity and precipitation, and the model’s objective is to identify the occur-

rence of stormwater contamination given these different measurements. In this application,
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the chemical sensors are the invariant features for the occurrence of contamination. However,

we divide the cities into training (12 cities) and test (3 cities) datasets, such that there is

a strong spurious correlation between contamination events and high levels of humidity for

cities in the training set, which does not hold for those in the test set.

Human Activity Recognition (HAR)

The HAR dataset [6] consists of smartphone accelerometer and gyroscope readings recorded

from 30 individuals performing six activities (walking, standing, sitting, etc.). The model’s

objective is to predict the activity being performed given the sensor readings. The data

consists of sequences of 128 time-steps of sensor readings which correspond to any particular

activity. We consider the data from each individual as a local client, and augment a strong

spurious correlation between the specific activity performed and the smartphone model used

by individuals in the training set (25 individuals), which does not hold for the individuals

in the test set (5 individuals).

Air quality monitoring

The dataset [182, 46, 67] consists of air quality sensor measurements (PM2.5, PM10, NO2, O3,

etc.) from 61 cities across USA, China, India, and Europe, along with meteorological data

such as temperature, precipitation and wind speed. The target event reflects the air quality

index (AQI) [3] consisting of six classes ranging from good to hazardous, and the model’s

objective is to classify the sensor and meteorological measurements into the appropriate

category. The invariant features for identifying AQI are the air quality sensors, however we

divide the clients such that there is a strong spurious correlation between the temperature

values and the different AQI classes in the training set (45 cities), that does not hold for

those in the test set (16 cities).
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6.5.2 Benchmarks

We compare FedGen to four benchmark approaches:

• ERM: Standard empirical risk minimization approach that minimizes the average loss

over the entire training data. Used to compare performance with centralized training.

• FedAvg: Federated averaging approach by McMahan et al. [96] where model parame-

ters are averaged element-wise.

• FedProx: Approach by Li et al. [86] to handle heterogeneous non-iid data in federated

settings using a proximal term to keep local models close to the global model.

• Inv-FedAvg: FedAvg trained on data without any spurious features. This approach

reflects the setting where spurious correlations are not present.

6.5.3 Implementation Details

We implement FedGen, ERM, FedAvg, and Inv-FedAvg using the PyTorch library [108] and

implement FedProx based on their publicly available code1. For each dataset, we tried both

MLP and LSTM classifiers of different architectures and selected the model that performed

the best. We used the same model architecture for all comparison approaches to ensure a

fair comparison. We used the cross-entropy loss for classification during training and the

Adam optimizer. We searched for hyper-parameters based on the values in Table 6.2, and

chose the configurations with the best performance for each of the approaches. We also

assume the central server samples all the local clients to join the training process in every

communication round for simplicity.

1https://github.com/litian96/FedProx
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Hyper-parameter Range

Learning rate [10−5, 10−1]
Regularization weight [10−6, 10−2]
Mask scaling factor [10−2, 10]
FedProx µ [10−5, 10−1]

Table 6.2: Hyper-parameter ranges tried for all comparison approaches

Algorithm HAR Stormwater Air Quality
Train Test Train Test Train Test

ERM 98.10 73.22 88.76 65.39 83.17 60.44
FedAvg 98.03 66.38 91.30 63.84 87.49 54.95
FedProx 96.76 70.17 86.74 67.14 82.96 59.28

FedGen (ours) 94.23 87.39 75.47 90.95 78.44 82.06

Inv-FedAvg 93.01 89.97 74.56 93.18 78.13 85.64

Table 6.3: Accuracy achieved by comparison approaches for all datasets

6.5.4 Results

Model accuracy

We first measure the accuracy of the final aggregated global model resulting from all the

comparison approaches on the test set to compare their generalizability. We identify the

final models when they have either converged, started to diverge, or run a sufficient number

of rounds (e.g., 200 rounds), whichever comes earlier. We consider the models to converge

when the loss difference between two consecutive communication rounds |F t−F t−1| < 10−4,

and consider the models to diverge when we observe |F t − F t−10| > 1, similar to definitions

by prior work [86, 128].

Table 6.3 summarizes the results, where we see that FedGen outperforms both centralized

and federated approaches across all three datasets achieving nearly 23% improvement in

accuracy on average. This reflects the significantly increased generalizability of the resulting

model from FedGen. We observe that the models from the other approaches rely on the
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spurious correlations since their training accuracy across the datasets is high. However,

this results in low generalization on the test set where the spurious correlation no longer

holds. FedGen, on the other hand, ignores the spurious correlations, and performs nearly

as well as Inv-FedAvg, which reflects accuracy when spurious correlations are not present.

Additionally, the centralized training approach (ERM) outperforms FedAvg and FedProx,

which reflects the inherent drawback of distributed training. FedProx outperforms FedAvg

across the datasets, showing that the proximal term helps a little with limiting the influence

of spurious correlations.

Effect of local training epochs

For federated learning approaches, while a large number of local training epochs E can

help in reducing the communication costs, previous work has also shown that the value of

E can impact the performance of FedAvg and can sometimes lead to divergence [96, 26,

128]. We conduct an experimental study on the effect of E over the different comparison

approaches across all three datasets. The candidate local epochs we consider are E ∈

{20, 40, 60, 80, 100, 120, 140}. We run each approach till it either achieves convergence, or the

number of rounds exceeds 150 and report the test accuracy achieved in Figure 6.5. We observe

that the performance of FedAvg and Inv-FedAvg deteriorates with longer local training, thus

showcasing its sensitivity to hyperparameter settings, which matches prior observations made

in literature. FedProx only partially alleviates this problem and also demonstrates a drop in

accuracy for larger number of epochs. On the other hand, we observe that FedGen benefits

from longer training, since it is not influenced by spurious features and can further emphasize

invariant features, suggesting that FedGen is the only approach that can be used by local

clients to train their models for larger number of epochs without being influenced by local

data distributions.
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(a) HAR (b) Stormwater (c) Air Quality

Figure 6.5: Effect of number of local training epochs on federated learning approaches

(a) HAR (b) Stormwater (c) Air Quality

Figure 6.6: Convergence rates of different federated learning approaches across all datasets

Convergence Rate

In this experiment we compare the global model convergence rates achieved by the different

federated learning approaches. We use the same definition of convergence and tune the

number of local training epochs as described in our previous experiments. We report the

convergence rate for E that yields the best final aggregated model accuracy over the test set

for the different approaches. Figure 6.6 shows the comparison of the convergence rates of the

federated learning approaches across the three datasets. We observe that the convergence

achieved by the approaches are quite similar, and that FedProx converges the quickest,

followed by FedGen and then FedAvg.
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Algorithm Test Accuracy (%)
HAR Stormwater Air Quality

FedGen 87.39 90.95 82.06
− scaling (α) 74.93 85.51 71.22
− σ(M) 62.16 63.46 40.01
− penalty term 70.41 81.38 69.38

Table 6.4: Ablation Study

Ablation Study

We perform an ablation experiment to measure the contribution of the components of our

masking function and the FedGen penalty term as shown in Table 6.4. We first remove the

hyperparameter α used to scale the masks, and observe that there is a drop in accuracy across

all three datasets since the degree of spuriousness may not be fully captured, and hence the

local models can get influenced by spurious features. We next remove the masking function

σ(M), essentially reducing the loss function to that used by FedAvg. This is reflected by

the accuracy values, which are similar to those achieved by FedAvg, thereby demonstrating

that our proposed masking function is the primary reason for model generalization. We

finally remove the penalty term while optimizing model weights (Equation 6.11) and again

observe a drop in accuracy across all datasets, thereby demonstrating the importance of all

components of our proposed masking function.

6.6 Chapter Summary and Discussion

In this chapter, we present our solution, FedGen, for training generalizable monitoring mod-

els in a distributed manner that can be deployed across communities. This results in the

significant benefits of enabling communities to share and obtain good quality infrastruc-

ture monitoring models without needing extensive capital and resources, and also allows

communities to improve the robustness of their models by training them on diverse events
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observed in other communities without the need to share sensitive data. FedGen addresses

the associated challenges of centralized training, privacy concerns and data biases by lever-

aging federated learning as a distributed training paradigm to avoid data sharing, and uses

a masking function driven by feature stability to identify and ignore biases in the training

data. Our results indicate that FedGen results in significantly more generalizable monitoring

models compared to other existing distributed and centralized training approaches.
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Chapter 7

Conclusion

7.1 Summary of Thesis

In this thesis, we propose approaches towards building comprehensive infrastructure mon-

itoring frameworks for smart communities. These frameworks involve a synergy between

different layers of components, ranging from sensing to analysis, and achieving this goal

requires optimizing these layers, while leveraging the unique structural and behavioral char-

acteristics of different community infrastructure. Our efforts in this thesis, described below,

are a key step towards building the next generation of infrastructure monitoring frameworks,

that can be deployed anytime, anywhere, and for any application, while adapting to changing

infrastructure conditions and resource availability.

We addressed the challenge of sensor placement using both in-situ and mobile sensors in

Chapter 4, where we proposed several methodologies to measure the impact of adverse events

on a given community, and thereby developed an impact-driven approach to determining

the optimal locations for sensor deployment to rapidly detect high impact events on the

community. We evaluated our approach on several real-world water distribution network
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testbeds, and demonstrated that our approach resulted in a significantly lower impact of

events on the community compared to traditional sensor placement approaches.

Chapter 5 presented REAM, our framework for resource efficient adaptive monitoring. It

provides communities the ability to define custom monitoring pipelines consisting of sensors,

network links, and analytical models at the edge or the cloud. REAM utilizes reinforcement

learning agents to learn the various structural and behavioural patterns of the community

infrastructure to make optimal decisions of which monitoring pipeline to execute for each of

the multiple monitoring applications by looking at a quality vs. resource availability tradeoff.

We deployed REAM on two real-world testbeds and demonstrate its ability to learn these

patterns, and adapt to changing conditions. Our results showed that using REAM can enable

communities to achieve high monitoring performance, while at the same time resulting in

the judicious utilization of limited available resources.

In Chapter 6, we described the importance of developing approaches to share infrastructure

monitoring models across communities. We explain challenges with centralized training,

privacy requirements, and data biases that have thus far prevented an effective solution for

the sharing or generalization of models across communities. We presented our approach,

FedGen, that used a novel masking function to identify and ignore community-specific data

biases in order to ensure that models would continue to perform well when deployed in other

communities. FedGen also leveraged the federated learning paradigm, to overcome the draw-

backs of centralized training and handle privacy concerns, wherein monitoring models could

be trained in a distributed manner on data from infrastructure across multiple communities,

without the need for sharing any raw data. We evaluated FedGen on several real-world

monitoring use-cases and demonstrated its ability to train robust and generalizable models

in a distributed manner.
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7.2 Future Work

As we move towards a vision of developing better infrastructure monitoring solutions, that

incorporate the different ideas proposed in this thesis, other challenges remain open. We

outline several future directions that are quite interesting and important to pursue towards

this vision.

7.2.1 Community Data Exchange and Interoperability

Today’s infrastructures suffer from the issue of fragmented management, where they are

maintained and operated by different entities (e.g., public agencies). Each of them develop

solutions for their own infrastructure or location, and there is very little coordination. How-

ever, events in one infrastructure can often cascade into others. For instance, large scale

flooding due to pipe breaks can cause damage to nearby industries and homes, and also

affect supply chains of goods and services.

Developing data exchange solutions that allow seamless exchange of relevant information

can help unify the management of different infrastructures and improve their efficiency and

resilience when handling events. Achieving this requires solutions for interoperability of

network and data exchange protocols. Since, each infrastructure and application can have

their own data and information formats, facilitating exchanges would require translation

from one to another. Rather than hard-coded approaches to implement translators for each

pair of protocols, dynamically-configurable software artifacts can improve the flexibility and

ease of data exchange.
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7.2.2 Improved Planning and Maintenance

The vast majority of community infrastructure have been built without any thought for IoT

instrumentation or monitoring. The use of sensor technology is now an afterthought where

infrastructures are being retrofitted with devices, networks, and compute capabilities. This

often leads to suboptimal results such as the inability to instrument certain locations or

intermittent network connectivity due to poor planning. With the advantages of IoT-driven

monitoring now becoming clear, it is important to improve the planning of new community

infrastructure by incorporating the components of a monitoring workflow into the planning

process from the beginning. Some initial efforts [31] have shown how infusing traditional

urban planning tools with the cross-layer IoT workflow can result in improved monitoring

performance while resulting in lower overall costs.

Additionally, the performance of different components of the monitoring workflow can de-

grade over time, necessitating solutions for periodic maintenance. For instance, the quality of

measurements from sensors can deteriorate due to factors like mechanical wear or damage,

environmental conditions like temperature and pressure, or even sudden electrical surges.

Sensor calibration solutions are important to ensure the accuracy and validity of monitor-

ing data which is essential to take appropriate decisions. Similarly, analytical models can

also drift over time, This can happen due to concept drift, where the underlying physical

phenomena of the event change, or data drift, where the statistical properties of the data

measurements change over time. For example, climate change can cause a slow shift in

the precipitation patterns of a community (concept drift), and can also cause an increase

in overall temperature measurements of the region (data drift). Ensuring the effectiveness

of an existing infrastructure monitoring framework requires addressing these planning and

maintenance issues.
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7.2.3 Cryptography for Secure Distributed Training

We addressed privacy challenges associated with infrastructure monitoring using the feder-

ated learning paradigm in Chapter 6. Federated learning only provides privacy to the extent

that data is not shared across public networks with other entities. However, model param-

eters need to be transmitted, and these parameters become vulnerable to malicious actors

who can introduce adversarial values that can prevent proper aggregation, or even worse,

can induce the central model to emphasize wrong features entirely. This is an important

issue especially when considering critical infrastructure like water networks, where incorrect

model predictions can cause significant harm.

Cryptographic protocols that encrypt transmissions are a potential solution to help provide

high security guarantees and further deter malicious actors. Techniques like Multi-Party

Computation (MPC) provide methods for parties to jointly work together in a secure manner,

while at the same time also protecting their private data from each other, which is a key

tenet of this setting. Leveraging blockchain technology is another promising direction, where

local model learning updates are periodically verified. This can ensure that in the event a

local client is compromised, and adversarial samples are introduced to impact the central

model, its parameters and updates can be verified by the other clients thereby detecting

abnormal activity. Such techniques can overcome the single point of failure issue associated

with today’s distributed training approaches.
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