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ABSTRACT 

An .operator formalism is presented which conveniently treats the interaction 

of a spin-1 nucleus with a weak radio frequency field. The Hamiltonian in the 

rotating frame is X=- ~w Iz- w1Ix + ~ wQ(3 I:-I(I+l)) where ~w is the 

resonance offset (~w = w
0

-w) w
1 

is the intensity of the rf field and wQ is 

the quadrupolar splitting. Nine fictitious spin-~ operators,· I . where 
p,l. 

p = x,y,z and i = 1,2,3, are defined where p refers to the transition between 

two of the levels and i the Cartesian component. The operators, which are the 

generators of the group SU(3), satisfy spin-~ commutation relations [I . , I k] 
p,J p, 

i I n where j ,k,9v = 1,2,3 or cyclic permutation. Thus each p defines a three 
p, )f., ' 

dimensional space termed p-space. For irradiation near one of the quadrupolar 

satellites, for example ow, w
1 

<< wQ,it is shown that the 

ow Ix, 3 -/2 w1 Ix,l i.e. a 

fictitious spin-~ Hamiltonian in x-space with effective magnetogyric ratio y 

~w = w + ow with 
Q 

effective Hamiltonian can be written X ~ 

along the 3 (resonance offset) axis and /2 y along the 1 (rf field) axis. For 

irradiation near the center we can effect double quantum transitions between 

m = ±1. The formalism allows us to write the effective operators for these 

transitions. For example, if we take ~w = ow again with ow, w1 << wQ we 
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f~nd the effective Double Quantum (DQ) Hamiltonian XDQ ~ -2 ow Iz,l -
wl 
- I • Thus the z-space is referred to as the double quantum frame 
wQ z,3 

with effective magnetogyric ratio 2y along the 1 (resonance offset) axis 
wl 

and-y along the 3 (rf field) axis. The limiting expressions are compared 
WQ 

with exact calculations for arbitrary w1 done by high speed computer. 

The theory is applied to_various cases of irradiation including our 

previously reported technique of Fourier Transform Double Quantum NMR. 

Various pulse sequences for preparing, storing and maintaining the 

evolution of double quantum coherence are analysed for single crystal 

and polycrystalline samples. Finally the effects of rf phase on the 

double quantum phase are presented briefly and the possibility of double 

quantum spin locking is analysed. 

* Support of this work by the U. S. Energy Research and Development Administration, 

the National Science Foundation and the Petroleum Research Fund administered 

by the American Chemical Society is gratefully acknowledged. 

t Present address: Division of Isotope Research, Weizmann Institute of Science, 

Rehovot, Israel. 

:j: 
Alfred P. Sloan Foundation Fellow and Camille and Henry Dreyfus Teacher Scholar. 
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I. INTRODUCTION 

One of the most familiar and useful descriptions of pulsed nmr 

experiments is in terms of the evolution of a magnetization vector. in 

h . f 1 t e rotat~ng rame. Often, in such experiments, a resonant radio 

frequency pulse brings the spin eigenfunctions into coherent super-

position, creating a transverse magnetization which evolves in a free 

induction decay (FID) yielding on Fouri~r transformation an nmr absorption 

spectrum. For noninteracting spin -~ nuclei this description is complete, 

but may not be for spin -1 or greater or for interacting spins. In 

particular, we have been interested in the case of spin -1 such as 

2 3 
deuterium, where it was shown recently ' that states of the system 

can be created by double quantum transitions which cannot be described 

by a single three dimensional vector. Such cases are important and 

have allowed us for the first time an approach to overcoming the large 

deuterium quadrupolar broadening and obtaining high resolution solid 

state Fourier transform nmr of d~uterium. 

The question which arises and is discussed in the present paper is 

whether we can provide a compact, convenient operator and vector 

picture for the description of this spin -1 pulsed nmr. To do this we 

need to develop an operator formalism for the possible single quantum 

and double quantum transitions in the system, such that the density 

operator and Hamiltonian of the system are described in terms of a 

fb · ·he · · 1 · 3 
set o as~s operators w~t artes~an cornmutat~on re at~ons. This 

would be a valuable supplement to the elegant three level Bloch equations 

4 developed by Brewer and Hahn. 
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To make this more clear, let us consider a system of noninteracting 
. I .. · ' ; _, ' .· '-r 

I-spins in an externaLmagnetic field. The spin system can be.defined 

by the spin density matrix p: which in the case of noninteracting 

spins has a dimension of (2I + 1) x (2I + 1). From the fact that there 

(2I + 1)
2 ~ 1 traceless independent Hermitian operators A , the 

n 
are N 

density matrix can be expressed as: 

N 
p(t) 2: 

n=l 
a (t) A + a 1 

n n o 
(1) 

wherel is the unity mat~rix and the coefficients a (t) can be obtained 
n 

by schving the equation of motion for p(t): 

a at p(t) = -i [JC,p] . . 

JC is the spin Hamiltonian of the system: 

JC = - w I -2w I coswt 
0 Z 1 X 

rf where w
0 

= y H
0 

with H
0 

magnetic field strength and 2w
1 

the 

irradiation strength at frequency w. Using the high temperature 

approximc:ttion for the equilibrium form of p: 

1 . wo 
Po = 2I + 1 (l + kT I ) 

z 

and represertting' the.density matrix in the rotating frame 

(2) 

(3) 

(4) 

(5) 
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the solution of Equation (2) is: 

p = exp(i(~I + w
1

I )t) p exp(-i(~wi + w1I )t) 
Z X 0 Z X 

(6) 

• 
where we have dropped the. asterisk on p, The most general form of this 

solution is easily obtained from the commutation relations between the 

angular momentum operators I , I and I : 
X y z 

p = L a (t) I + a 1 (7) 
p p 0 p=x,y,z 

and is depicted schematically in Figure 1. It is therefore clear that 

for this case the spin system is defined by the coefficients of only 

three operators I , I and I and that we do not need all (2I + 1)
2 

- 1 
X y Z 

operators. This simplification makes it also possible to represent the 

density matrix in terms of a vector in a three dimensional space with 

coordinates, ax, ay and a • 
z 

This vector describes the density matrix 

sufficiently and is proportional to the real magnetization vector in the 

rotating frame. 

All these basic·arguments are valid in the case that the main Hamiltonian 
,. 

X has only linear terms in the angular momentum operator. If we add any 

bilinear term to the Hamiltonian the solution of Equation (2) no longer 

has the simple form of Equation (7) and the three angular momentum 

operators are not sufficient to describe p. For the particular case of 

I = 1/2 these solutions are general for any interaction, because there are 

only three independent traceless Hermitian operators with dimension 2 x 2 

(Pauli matrices). However for I> 1/2 there are more than three and we must 

use them to describe the spin system in operational form. For our case 
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we need to add electric quadrupolar interactions to the Zeeman interactions 

in Eq. (3) and to define a new basis set of operators. The number of 

opera'tors is determin7d by the spi_n value I and they can be taken in many 

forms. Physically, the additional operators correspond to the possibility 

of operations other than'puie rotations on the spin system, such as the 

production of normally forbidden tr~nsitions. In the next section we 

define a convenient set of operators for spin systems with I = 1 and show 

that they have a useful Cartesian representation. This particular choice 

is very helpful for the description of pure nuclear quadrupole resonance 

in' solids
5 

and .it will be shown to be just as useful in the description 

of double quantum coherence and cross polarization experiments of 

deuterium nmr in solids. The main thrust of the theory is therefore to 

provide a formal basis for describing double quantum experiments. 

In Section III the Zeeman and the electric quadrupole Hamiltonian are 

represented in terms of these operators and in Section IV the solution 

for the spin density matrix for different forms of the Hamiltonian is 

derived. The actual physical observables, the signal intensities and 

frequencies, are discussed in Section V and the Fourier transforms of the 

signals observed in an NMR experiment are calculated. 

In Section VI we present the results of central interest based on 

the formalism of the previous sections. We consider the case of double 

quantum coherence and its detection. It is shown then in an appropriate 

limit the evolution of the system can be described in terms of rotations 

of a vector in a fictitious three dimensional space, a subspace of the 

full set of operators introduced previously. The physical significance 

of this frame and its transformations to the observed rotating frame are 
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discussed. The basic structure of Sections IV-VI is therefore logically 

broken into the steps: 

preparation ~ evolution ~ detection 

Finally, applications of the theory to deuterium nmr in single crystals 
• 

and polycrystalline samples are illustrated in Section VII. 
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II .. FICTITIOUS SPIN-~ OPERATORS 

Let us now consider a system of noninteracting spins I = 1 in an 

external magnetic field with a nonvanishing electric quadrupole inter-

action. As·was mentioned before, the density matrix for such a system 

cannot be described by only three angular momentum operators and we 

have to define a set of 8 independent traceless Hermitian operators. 

The set we select has particular commutation relations between the 

individual operators. The matrix representation of the operators in 

the basis set of the eigenfunctions of I
2 consists·. of the fictitious 
z 

spin half operators and to the generators of the group SU(3)~ The 

operators in terms of the three linear angular momentum operators are 

given by: 

I - ~ I x,l x 
I 
y,l ~ I y 

I 
z,l ~ I z 

I = ~(I I +I I ) x,2 y z z y 
I = ~(I I +I I ) 
y,2 Z X X Z 

I z,2 ~(I I +I I ) 
X y y X 

I ~(I 2-I2 ) x,3 z y 
k:(I2-I2) 
2 y X 

(8) 

For reasons of symmetry we defined nine operators which are dependent 

through the equality 

I 3 + I 3 + I 3 x, y, z, 0 (9) 

The most important property of these operators is that I 
1

, I and 
p, p,2 

I 
3 

behave like the Cartesian angular momentum operators I , I , and I 
p, X y Z 

for all three possible p's; p = x,y,z, 
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Namely 

[I 1, I 2] p, p, 
i I or cyclic permutation of 1, 2, 3 

p,3 

and therefore: 

-i6I i6I l 
p,l I p, 

e p, 2 e = (I 
2 

cos6 + I sin6) 
p, p, 3 

The form of the operators and their transformations are summarized in 

tabl~ I, and the matrix representation of the~e operators for I = 1 

is shown in table II. 

The two indices p,i in I . indicate that for each p we have a 
p,l. 

subspace i = 1,2,3 with spin -~ transformation properties, thus the 
7 

(10) 

(11) 

name fictitious spin -~ operators. Thus each p defines a three dimensional 

space which we term the p-space. In particular, for reasons which will 

become clear, the z-space is termed the double quantum space. In many 

physically realistic situations the spin system will evolve with no transitions 

between the p-spaces and will con~ist of rotations in one three-dimensional 

space. 

Now, using these operators we rewrite the Hamilt9nian and the spin 

t 

density matrix of the spin system. If we consider a Zeeman and quadrupole ./ 

Hamiltonian we have: 

Jf = - w I 
0 z 

= - 2 2w I + w (I - I ) 
o z,l 3 Q x,3 y,3 

I 

(12) 
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where w
0 

= yiHo is again the external magnetic field strengh in 

angular frequency units, and 

2 
e qQ 1 2 2 

21(21-1) [-z(3cos 6-1) + n sin e cos2¢] 

is the quadrupole interaction strength truncated with respect to the 

1 
direction of the magnetic field (w << w ). In the fictitious spin-~ Q 0 

formalism, the two terms in the Hamiltonian of Equation (12) are 

commutative, because of the general rule: 

[I . , I 
3 

- I 
3

] = 0 
p,~ q, r, 

p,q,r x,y,z 

i 1,2,3 (13) 

an important relationship which will be used later many times; it 

" is particularly important for cross polarization experiments in which 

8 
case they form the two constants of the motion. At high temperatures, 

a possible representation of the density matrix in terms of the nine 

operators: 

3 
p 2: (14) 

i=l 

is conveniently. described in terms of three coordinate systems accordin-g 

to the three groups of three operators defined by p in Equation (10). In 

Figure 2 we demonstrate pictorially this representation. From the definitions 

of the operators, only the (p,l)-axes correspond to the observable angular 

momentum expectation values <I >, <I > and <I >. It will be shown in the 
X y Z · 

next section that we can connect each coordinate system to one of the 
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three transitions in the three level system of spin I=l in the rotating 

frame. The properties of the operators and the simple transformation 

rules in Tables I and II will be used in the following sections to 

describe the spin system in ~he most convenient way. For completeness 

we give the expressions of our operators in terms of the irreducible 

tensor representation components T~m of the angular momentum operators 

9 
of first and second rank: 

=1 (Tll-Tl-1) 
1 

I x,l I x, 2 2 (T21-T2-l) 

= -{ (Tll+Tl-1) 
1 

I I = 2 (T2l+T2-l) y,l y,2 

I =~T +1:. (T22+T2-2) I = _h 
T20 +1:. (T22+T2-2) x, 3 4 20 4 y ,3 4 4 

I 
·z, 2 I z,3 

In the description of our experiments of double quantum nmr, the T~m 

(15) 

are not convenient operators. We can see that the I 2 and I 
3 

operators z, z, 

are related to the double quantum transition states (~m 2), while 

I 
1

• I 2 and I 
1 

and I 2 have matrix elements between the levels of 
y, y, x, x, 

the single quantum transitions (~m = 1). We can now discuss the spin 

Hamiltonian of a spin system with I=l in terms of theoperatorsof Table 

I and we shall derive the different forms of this Hamiltonian for different 

situations of frequency and intensity of radio frequency irradiation. 

.. 

•· 
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III. HAMILTONIANS 

The purpose of this section will be to represent the spin Hamiltonian 

of a spin system with spins I~l in terms of the operators ~f Table I for 

I 
several experimentally realistic situations. In general and with the 

definitions of Equation (12) we write the Hamiltonian 

(16) 

for the spin-1 nucleus with Zeeman and quadrupole coupling (see fig. 3) 

where we allow for a rf irradiation field of strength of 2w1 and of 

frequency w. With the assumption that w
0 

>> wQ it is common to represent 

the spin system in the rotating frame defined by the unitary transformation 

u exp(-iw I t) 
z 

(17) 

The Hamiltonian becomes then: (suppressing rapidly oscillating terms): 

where 

w - w !::.w 
0 

(18) 

Since we work from now on in the rotating frame, we suppress the asterisk. 

The Hamiltonian can now be written in terms of the operators of Table I: 

2 
JC ~ - 2/::.wi 1 - 2wli 1 + - w (I 3-I 3) z, x, 3 Q x, y, (19) 

To emphasize the use of the new operators we shall discuss this Hamiltonian 



-10-

for different values of ~w, w1 and wQ. We shall show that by proper 

rotations this Hamiltonian assumes a convenient form which makes it 

easier to deal with. As a rule we shall always try to write X in terms 

of I 3 , I 3 and I 3 , because then it is possible to evaluate the x, y, z, 

behavior of the spin density as a function of time analytically. This 

is analogous to the case of only Zeeman interaction in which we rotate 

the Hamiltonian in the rotating frame to a frame so that the Hamiltonian 

10 
becomes proportional to I , i.e., the tilted rotating frame. Here we 

z 

shall want the vectors along p,3 in each of the p-frames. 

~w = 0, w1 = 0: (At resonance, no irradiation) 

The first case under consideration corresponds to a situation where 

there is not a rf field and the rotating frame is taken to be at frequency 

w • Then 
0 

2 
X = + -

3 
WQ (I 

3
- I 

3
) 

x, y, 

= 

(a) 

(b) 

(c) (20) 

The three expressions for JC are identical and can be obtained by using 

the definitions of Table I. The reason for representing X in the three 

forms is, that each expression has the form 

X = a I - a (I -I ) 
p pJ qr q3 r~ 

with p,q,r = x,y,z or cyclic permutation 

(21) 

•· 
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a sum of two commuting oper~~~ (Eq. 13). These representations make 

it possible to obtain simply the solution of the equation of motion in 

the rotating frame for different initial density matrices: 

ap 
at i [JC, p] 

For example, if p(o) I , then we use 20(b) to find 
X 

p(t) 
2e-iJCti e+iJCt =2e-i(wQrx,3- ~Q(Iy,3-Iz,3))ti ei(wQix,3+Q(Iy,3-Iz,j) 
· x,l x,l 

. WQ . WQ 
-iwQI 

3
t 1 -

3 
(I . 

3
-I 

3
)t -1 -

3 
(I 

3
-I 

3
)t 

2e x' e y' z' I e Y' z' 
x,l 

iwQ I 3t 
e x, 

The last step in equation (22) is calculated using the first commutation 

relation in Table I. The.important properties of equation (20) will be 

used many times in calculating the evolution of the density matrix. The 

usefulness of these representations will become clear when we apply an 

rf field with small w
1

, where they maintain their form after a small 

fictitiou's spin -~ rotation. 

f..w f. 0, w
1 

= 0': (Off resonance, no irradiation) 

When we consider the rotating frame with respect to a rotation frequency 

different from w -then f..w f. 0 and JC becomes in the rotating frame: 
0 
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(23) 

To derive from this equation the general form of equation (21), we apply 

a transformation corresponding to a tilt of our coordinate system with 

the operator: 

The transformed (tilted) Hamiltonian XT can be calculated, realizing that 

·U 2 operating on the first term of X, will rotate it to I 
3 

and that it z, z, 

is commutativewith the second term: 

u+ xu 
z,2 z,2 

Again we can rewrite UT according to the definitions of I p,3 

To obtain the expressions in equation (25) from equation (24) we 

(24) 

(25) 

use the following· formalism: The Hamiltonian for the three level system 

of spins with I=l can always be represented, after the proper tilt, by 

;J('T (E -E )I 3 - E (I 
3
-I 

3
) = w I - E (I -I ) 

X y z, z x, y, z z,3 z x,3 y,3 

= (E -E )I 
3 - E (I 

3
-I 

3
) = w I - E (I -I ) y z x, X y, z, . x x,3 x y,3 z,3 

= (E -E ) I 
3 - E (I 

3
-I 

3
) = w I - - E (I 

3
-I 

3
) (26) 

Z X y, y z, x, y y,3 y . z' x, 

:i 
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where E , E , E are the energies of the eigenstates /x>, jy> and /z> of 
X y Z 

~T. The expressions of the eigenstates of ~T in terms of the eigenstates 

of I in this tilted frame are: 
z 

/x> 
1 . 

=-- (/+1>-j-l::j; /y> = ]:_ (/+1>+/-1>) and /z> = 
12 ,f2 

This can be derived from the definitions of I and: 
p,3 

/o> (27) 

. 1 2 2 1 
Iq, 3 /p> = ~(Ip-Ir)jp> =- ~/p> - · 

Ir,3/p> = ~(I~-I~)jp> = ~/p> (28) 

This is depicted schematically in Figure 4. From the matrix representation 

in Table II, we can see that the fact that the trace of ~ is zero corresponds 

J '<.' ' : '.'.< } 

E + E + E 
X y Z 

0 (29) 

~w = 0, w1 I 0 (irradiation at resonance) 

I~ WQ I WQ 

~I ... ~ ... 
I 
I 

wo 

t w, 
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We now introduce the radio frequency irradiation field at frequency w . 
0 

Jf= (30) 

To find the tilt operator which will transform this Hamiltonian to the 

form of equation (26), we rewrite Jf again in the following way: 

We now tilt with the operator: 

with 

u 2(8) x, 
exp(i8I 

2
) 

x, 

2w 
e = tan -l (-..-:!:.) 

WQ 

(31) 

The reason for writing equation (31) is now clear, because I commutes x,2 

with the third term and rotates the two first terms: 

with: 

w 
e 

ut xu 
x,2 x,2 

2 + 2)1/2 = (4w1 wQ 

+w 
e 

1 I - - w (I 
3
-L 

3
) 

x,3 3 Q y, z, 

where we used again equation (26) to obtain the second expression. 

Clearly, in the last term of (32) we-wQ can be neglected. 

(33) 

,. 
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For the case that· wl 

2 

J( 
wl 

I = --
T WQ z,3 

where we used 

1 ((4wi+w~)l/2 2 

6 0 
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<< wg equation (32) results in 

2 (I -I ) + 3 wq x,3 y,3 

/ 

(34) 

2 

- w ) 
wl 

:::< 

Q WQ 
(35) 

A ~imilar result can be obtained by coherent averaging of -w I by X 
· 1 X .Q 

11 
when the approximation w

1 
<< wQ is valid·. 

~w # 0, w1 # 0: (general case) 

Finally we shall discuss the case in which all terms of equation (19) 

are different from zero. In this case it is not simple to transform 

Jf to our ~esired form. However, for the most important situations where· 

w1 << wQ we can obtain the result with an approximation. We shall therefore 

discuss these cases separately in the following: 

~w ""_wQ, w1 << wQ: (irradiation near one satellite) 

-

We start with an rf irradiation field about the frequency (w
0

- wQ). In 
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thiscase the Hamiltonian becomes, with ~w 

(36) 

1T 
Tilting this Hamiltonian by U

2
, 2 (2) we obtain (Table I and equation (25)): 

4 
=-ow I 3 - (-

3 
wQ + ow)(I 

3
-I 3) - J2w1 {I 1-I 2} x, y, z, x, y, 

(37) 

In the We now use the approximation w
1 

<< wQ to simplify the last term. 

last'expression of equation (37) we realize that with the approximation 

w1 << wQ, the term y{zw1 Iy, 2 can be neglected, yielding: 

JCT :::: - ow I - /2w1 I x,3 x,l 

This result has the form of a Zeeman interaction in the fictitious 

x-rotating frame (x-space) with an rf field of y{zw1 intensity and 

an offset frequency of ow as in figure 5. Thus, in the physically 

(38) 

reasonable limit w
1 

<< wQ we see that one satellite of the quadrupolar 

spectrum can be considered as a single spin -~ Zeeman type transition 

with modified (in fact anisotropic) y on which one can perform nmr 

experiments. The last term of (38) is co.nnnutative with the rest and 

can in most cases be disregarded. 
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bw ~ - wQ and w
1 

<< wQ (irradiation near other satellite) 

WQ 
-

I 

In analogy with the former case we obt"airi the Hamiltonian in the tilted 

1T 
frame, defined by U

2
, 2 (2); with bw = - WQ +OW 

and with the same arguments, ignoring J1w1 rx,l since w1 << wQ, we 

have: 

This is depicted schematically in figure 6. 

14 
WQ I WQ 

~I ·'~ I 
I 

wo 

f 
w, 

(40) 
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We shall now discuss the Hamiltonian in the rotating frame with an rf 

irradiation near to the center(~w = ow) frequency of the quadrupole 

spectrum. This of course is the region where we expect to induce double 

quantum transitions. We shall see how this comes about rigorously. 

~Te have: 

(41) 

To obtain a convenient expression for JCT we perform the same tilt as 

was necessary for equation (32), transforming to a tilted frame 

exp(i 8 I 
2

) 
x, 

e 

which results in: 

= - 2 ow (I 
1 

cos8/2 + I sin8/2) + w I 
z, y,2 e x,3 

1 
- JDq<1y,3-Iz,3) · 

With 

with 

(42) 
2 

the conditions 2 ow w
1 

<< wQ we ·can neglect the term 2 ow sin8/2 I 
y,2 

1 
respect to 2 (we+wQ) Iy, 3 • yielding: 

(43) 

This. shows that even in the case of rf irradiation near to the center 

frequency we can talk about a fictitious Zeeman interaction in a fictitious 

z coordinate system. For the case that w
1 

<< wQ we can use (35) yielding: 

2 

~ - 2 ow I 
z,l 

wl 

WQ 
(44) 

1 

·' 
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This is depicted in figure 7 and defines the z-frame, or double quantum 
w2 

frame. The effective rf irradiation field along the z,3 axis is 1 and 
WQ 

the resonance offset if multiplied by 2, i.e., 2 ow. 

The exact solution for the general case of w1 ~ 0, ~w ~ 0 and 

wQ ~ 0 must be calculated by numerical computations and in Section VII 

we shall discuss some results of those calculations. The main results 

of this section are summarized in Table III. Also included in the table 

for future use are the forms of Ix and Iy in the tilted frames, IxT and 

IyT· After representing possible forms of the Hamiltonian in the rotating 

frame we now discuss the time behavior of the spin system under the 

influence of those Hamiltonians and attempt to obtain closed expressions 

for the signal intensities measured in nmr experiments. 
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IV. PREPARATION OF SPIN DENSITY MATRIX 

We now calculate the evolution of the density matrix during pulses 

described by the various cases of irradiation in the previous sections. 

If we define a reduced density matrix appropriate to high temperature 

then in the rotating frame: 

a 
at P i [JC,p] 

From the equilibrium expression for p it is clear that p in general can 
0 

be written as: 

p (t) = 
1t3 xtz a .(t) I 

l. p,l. p,i 
(45) 

with a 
p,i 

calculated from: 

p(t) 
-iJft 

p (o) 
i3Ct 

= e e (46) 

Our aim is now to obtain the explicit forms of the last equation for 

different Hamiltonians derived in the previous section. A variety of 

specifically interesting cases for nmr spectroscopy will be discussed. 

The initial signal intensities measured in the corresponding nmr experi-

ments will be calculated. 

WQ I WQ I _.. - I 
A wo 

WI 
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We shall start with the case in which rf irradiation is applied about the 

resonance of the higher side peak of the quadrupole spectrum and ,we shall 
I 

take as the initial condition for p
0 

the reduced high temperature equilibrium 

expression: 

Po = b I 
z 

with 

w 
b 0 (47) =-

kT 

We wish, now to calculate (46) with 'JC given in (36). As was shown in (36)- (38) 

the Hamiltonian can be rewritten in a tilted frame and the result is given 

in (38) and Table III. We begin by taking the case that ow = 0, i.e., 

irradiation exactly at one satellite. In this tilted frame p becomes 
0 

= - 2b I 
3 

= b I 
3 

+ b (I 
3
-I 

3
) 

z, x, y, z, 

Insertion of p
0

T and JCT from Table III assuming ow 

into equation (46) yields: 

= e 
-i'JC t 

T 

(48) 

0: 

(50) 
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where we used the commutation relations of Table I. It is clear from 

this result, that the density matrix pT(t) can be described in the 

fictitious x-coordinate system. The last term of pT(t) is not significant 

for the present experiments because it will not result in an nmr signal. 

It is crucial of course in many double resonance experiments and 

. constitutes the quadrupolar reservoir. With the result of equation (50) 

we can calculate the signals measured in an nmr experiment, after a pulse 

in the ~-direction of duration t, i.e., <I (t)> and <I (t)> the expectation 
X y 

values of I and I in the rotating framei 
X y 

S (t) = y<I (t)> 
X X 

(51) 

where we used the fact that the trace is independent of the representation 

of the operators. In our case from Table III: 

I xT 
2 Ut (TI) I U 

z,2 2 x,l z,2 
(.:!!_) = ji (I -I ) 
2 x,l y,2 

2 Ut 2 (TI2) I 1 U 2 (TI2) = J2 (I l+I 2) ·z, y, z, y, x, 
(52) 

and with equation (50) we get the expected result for irradiation in the 

x-direction: 

s (t) 0 
X 

with 
2 

=- N y b 
3 

(53) 
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·and N is the number of spins in the sample. We want to emphasize here 

. that the effective rotation frequency, due to an irradiation field in 

the rotating frame, of w1 = yJC
1

, on one satellite is /tw
1 

= ~yJC1 . 

This is representative of an effective magnetogyric ratio J2y.l(b) The 

truncation of JCT, by ignoring the term with I 2 , is the reason for 
y, ,-

the fact that the solution of equation (53) is not affected by the 

off resonance satellite of the quadrupolar spectrum at 2wQ. 

The result for irradiation at b.w = - wQ can be obtained in the 

same way. Starting from equation (40) for JCT and calculating the values 

of S and S gives results analogous to equation (53). To complete 
X y 

the description of the nmr signal after a single pulse on one of the 

satellites of the quadrupole spectrum we now take into account also ow ~ 0. 

The Hamiltonian effective for this transition is (equation (38) and 

Table III): 

- ow I - /iw I x,3 1 x,l 

where we took ow = b.w - wQ and the effective initial condition for p 

in this frame from equation (48) is: 

p = b I 
3 0 x, 

The signal intensities are proportional to the expectation values of 

I l and I 2 : x, x, 

Sx(t) = J:2 y tr{pT(t) Ix,l} = 2~ S0 
sin¢ cos¢ (1-coswst) 

SY(t) = /2 y tr{pT(t) rx,Z} = - Vz S
0 

cos¢ sinwst 

(54) 

(55) 

(56) 
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This result is in full analogy to a regular Zeeman interaction Hamiltonian 

as is discussed in Section I. The analogous operators for spin -~ are 

I , I and I for I 
1

, I 
2 

and I 
3 

respectively. 
X y Z X, X, X, 

I 
... ~~ 

I 
I ·I 

The discussion of rf irradiation at the center frequency of the spectrum 

is interesting from the point of view of double quantum effects in our 

three level system. In this section we shall discuss the creation of 

coherence of the double quantum transition. In this case, according to 

Table 

-1 
tan 

III, the Hamiltonian in the 
2wl 2 

<wQ ) and 46w w1 « wQ is: 

frame tilted by U 
2

(6) with 6 = 
x, 
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Jc. = - 2ow I -. :!
2 

( (wQ2 + 4 w
1
2) 1/ 2 )I .2 ( ) T z,l - WQ z,3 + J WQ 1x,3-Iy,3 

To evaluate equation (46) for this case we transform p in equation (47) 
0 

according to U 2(8): x, 

p = 2b exp(-i8I 2)I 
1 

exp(i6I 2) oT x, z, x, 

= 2b (I 
1 

cos 8/2 + I 2 sin 6/2) 
z, y, 

(57) 

(58) 

We calculate pT(t) by inserting equations (57) and (58) in equation (46) with 

ow = 0: 

- :i1C. t +iJ( t 
( ) T e T pTt = e poT 

i .!. 1 
2 (w -wQ)I 3t -i 2 (w -wQ)I 3t 

= 2b e e z, I e e z, cos 8/2 
z,l 

where we recall that: 

w = e 

The calculated behavior of pT(t) becomes for w1 « wQ (equation (35)) 



/ 
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t - I 
z,2 

The second term in equation.(60) reQ.resents the coherence of the 

double quantum transition, because it has matrix elements between the 

(60) 

I+ 1> and l-1> eigens ta tes of I z _a_rt_d~i-'t~· _b_e~h_a_v.;...· e_s_· _a_s_t_h_e---'c_o_h_e_r_e_n_t __ s_u__,p._e_r~p._o_s_i_t_i_o_n 

of these states. For the case w
1 

< < WQ we can again talk effectively about 

a fictitious Zeeman type Hamiltonian on the transition 1+1> -- l-1>. The 

preparation of the density matrix in this case is depicted schematically 

in Figure 8 for ow = 0. We refer to sur.h a pulse with w
1 

<< wQ and 

<< w~ as a double quantum pulse. The effective Hamiltonian in this 

case is obtained from (35) and (57): 

2 
wl 

JC = -2 ow I · - -
T z,l WQ 

I 
z,3 (61) 

wl 
The effective magnetogyric ratio is -- y and the off resonance term is two 

WQ 
tfmes the offset frequency. The rotation frequency of spins around I is z,3 
~ 3 and was already observed by Hatanaka et al. 
WQ 

The observables S and S subsequent to preparation by a double quantum 
X y 

pulse can be calculated from equations (51) and (59) 

I 2 u t (8) I u 2(8) = 2(I cos e - I sin 8) x,T x, 2 x,l x, x,l x,3 

.1. 8 . e) 2 u 
J 

(8) ux,2(8) 2 (I I = I cos - - I s~n 2 y,T x,2 y,l y,l 2 z,2 
-(62) 

and become: 
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~ 0 since w
1 

« wQ giving sin8 ::: 0. 

i!) 
0 

Thus after such a pulse there is essentially no observable signal, i.e .. 

the double-quantum coherent state does not evolve with an observable signal. 

Since I .
2 

and I 
3 

are related to the coherence of ± 1 transition we define 
z' z' 

the double quantum coherence in the case that I is prepared: z,2 

Q(t) = 2y tr(p(t) I 
2

) = 2y tr(pT(t) I 
2

) (64) 
z, z, 'l 

or similarily with I 
3 

or a combination of I 
2 

and I 
3

• 
. z, ' z, z, 

Q(t) as mentioned above is not an observable in an nmr experiment. It can be 

calculated in our case using: 

I = ut (8) Iz, 2 ux, 2(8) z,2T x,2 
I cos 

2
8 + I sin 8

2 z,2 y,l 

giving: 

Q(t) = -

The coherence Q(t) is maximum in the case of w
1 

<< wQ for 

2 
wl 
~-

WQ 
Tf 

t = 2 

the ~ condition for a double quantum pulse with w
1 

<< wQ is given by 

Tf Tf = 2. This is a 2 double quantum pulse. 

(65) 

(66) 

(67) 
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The preparation of the density matrix in the rotating frame for the general 

case during rf irradiation with ow 1 0 is complicated and is best calculated 

with the help of a high speed computer. In the next section, we shall 

discuss the evolution of the spin system without rf irradiation after the 

density matrix has been prepared in non-equilibrium form. The signal 

intensities measured after rf pulses will be discussed and the Fourier 

transforms of different FID signals will be given. 
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V. EVOLUTION AND SIGNALS 

In this section we give the equations for the density matrix of the spin 

system in,terms of our nine operators for the case that no rf irradiation 

, is applied to the system. We assume the system to be in a non-equilibrium 

state after some preparation and ask how it evolves with time. This 

corresponds to the behavior of the spin systemafter an excitation 

pulse. We ignore for simplicity all relaxation effects. 

The evolution ·of the spin density matrix under the influence of the 

main Hamiltonian without rf irradiation: 

is calculated by inserting this Hamiltonian in the solution for p(t) in 

equation (46). The signal intensities are then proportional to the expectation 

values of I and I . We shall therefore first derive the time behavior of an 
X y 

arbitrary p(o) due to X and shall show which of the coefficients of p(o): 

p ( o) = "" a . ( o) I ( 68) .4-J p,1 p,i 
1P 

are subsequently detectable. A straightforward calculation gives for the 

coefficients a .(t), wit~ the assumption that a 3 (o) = 0; p = x,y,z: 
p,1 p, 

a 1 (t) =! (a 
1

(o) + a 2 (o)) cos(wQ-~w)t -! (a (o) + a 
1

(o)) sin(wQ-~w)t 
x, 2 x, . y, 2 x,2 y, 
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1
2 (a 

1
Co) - a 2 (o)) cos(-w ~~w)t +! (a 2 (o) - a 

1
(o)) sin(-wQ-~w)t 

y, x, Q 2 y, x, 

az, 1 (t) a 
1

(o) 
z, 

a . 
2
(t) 

z, 
a 

2
(o) cos 2~wt 

z, 

a . 
3
(t) 

z, 
- a 

2
(o) sin 2~wt 

z, 

a (t) = - a 
3

(t) = 0 (69) 
x, 3 y, 

For the special case that~ w 0 we get: 

a 
1

Ct) = a 
1

(o) cos wQt - a 
2

(o) sin wQt x, x, x, 

a 
2 

(t) 
x, ax;l (o) sin wQt +a 

2
(o) 

x, cos wQt 

a 
1 

(t) = a 
1

(o) cos wQt +a 2 Co) sin wQt y, y, y, 

a 
2 

(t) - - a 
1 

(o) sin wQt + ay, 2 (o) cos wQt y, y, (70) 
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These expressions are calculated by the following procedure: 

with 

and 

= L a . (o) p,1 
p, i . 

-i3C t 
T 

e 

The result for the FID signal can now be calculated: 

S = y ti {p(t) I } = a 
1

(t) ~(t) 
X X X, 

S = y ti {p(t) I } = a 
1

(t) ~(t) 
y y y, 

(71) 

(72) 

(73) 

(74) 

1 ·where ~(t) is a decaying function with a decay time T2 and ~(o) = 3 y N = S
0

• 

The coherence of the double quantum transition is defined as 

Q(t) = az,Z(t) ~(t) (75) 

A schematic representation of the results of equations (69). and (70) is shown 

in Figures 9 and 10. The x- andy-components of the a vectors are defined 
p 

by the coefficients of: 

p (t) = .Ea . (t) I . 
y i y,1 y,1 

p (t) =l:a .(t) I . 
X i X,1 X,1 

(76) 
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respectively, i.e., a is the vector defined by the components a .. The 
p p,1 

time evolution of the z-vector defined by the coefficients of: 

p (t) =~a (t) I . 
z i z z,1 

is also shown. From the results of equations (69)-(75) and of Figure 9, 

we see that in the case of ~w = 0 the signal is linearly polarized. This 

is also demonstrated in Figure 11 for the case p = a I + a 
2 

I 
0 y,l y,l y, y,2 

We find. in this case for the detected signals: 

s 0 
X 

s =(a 
1 

cosw t +a 
2 

sinwQt)ljl(t) = y a cos(wQt-cp)ljl(t) 
y y, Q y, y 

1/2 -1 ~ 
where a = (a 

1 
+ a 

2
) and <P = tan Ca 2) 

y y, y, y, 

The results for ~w f:. 0 with the same initial condition is given by 

S = a cos (wQt-¢) sin ~wt ljl(t) 
X y 

s 
y 

For completeness we give in Table IV the results of p(o) after a resonant 

(~w = 0) pulse of t seconds and of w
1 

strength in the x direction for 

different initial density matrices just before the pulse. 

(77) 

(78) 

(79) 

The evolution of a 
2

(t) and a 
3

(t) in equations (69) is particularly 
z, z, . 

interesting. Although they are not directly detectable as mentioned 

previously the time dependence does not contain wQ, i.e., they do not 

exhibit any quadrupolar interaction. Thus if their decay could be monitored, 

they would yield a high resolution nmr spectrum. This indeed is the basis 

for the approach we have termed Fourier transform double quantum nmr. 



-33-

To observe a pure double quantum decay, the system must be prepared so 

that 

p(o) = a 
2 

I + a I z, z,2 z,3 z,3 

After time t the double quantum coherence which has evolved only with 2 ~w 

must be detected by an additional pulse or set of pulses. In the next 

section this is discussed in detail both for the ideal double quantum case 

w1 << wQ and for the more practical case of general w
1

• 

r 
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VI. DOUBLE QUANTUM COHERENCE 

In this section examples of different pulse sequences will be discussed. 

We shall be interested in the efficiency of formation of I 
2

, double quantum 
z, 

coherence and its detection by pulses since it is not directly detectable as 

an nmr signal. First the effect of a single pulse on the spin system will 

be described and the physical observables will be derived. In all the examples 

discu~sed below, we take /J.w = 0 during the pulses, i.e., we assume w
1 

>> /J.w 

wl 
and -- >> /J.w. Without rf irradiation we take account of !J.w. 

WQ 

A. One pulse (Figure 12) 

Applying a short rf pulse on our system results in a new density matrix 

after this pulse given in Table IV. These results are simplified in Table V 

for the special cases of very strong (w
1 

>> wQ) and very weak (w1 << wQ) 

irradiation. In the former case we expect pure rotations, i.e., normal single 

quantum behavior and in the second oneexpectsdouble quantum effects. The 

results of this table are calculated from equation (46) with JC as given in 

Table III: 

2 

: JC:::-
wl 

I 
2 

(I 3 - I ) w <.< w 
z,3 

+-w 
1 Q WQ 3 Q x, y,3 

and 

w >> w 
1 Q 

JC ::: .,... 2w
1 I x,l 

(80) 

From the results of Table V we can answer the question of which pulse we need 

to apply in order to obtain a detectable signal or to create double quantum 
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coherence. From the discussion of the previous section we know that the 

only coefficients of p(t) which give rise to detectable signals during 

evolution are a 
1

, a 
2

, a 
1 

and a 
2

• These coefficients can be 
x, x, y' y' 

created for example from Iz,l and Iz, 2 by w1 >> wQ, while for w1 << wQ 

the double quantum coherence coefficient a 2 is obtained. For comparison z, 

between the exact solutions of Table IV and the approximated solutions 

of Table V we have plotted in Figure 13 and Figure 14 the coefficients 

of Iz, 2 and Iy,l as functionsof the length of an x~ulse with\11 =20KHz 

arid VQ = 60KHz for p. = I 1 . 
~ z, 

we expect from Table V a 2 z, = -

For 

sin 

The results of the coefficient 

pure double quantum behavior w1 << wQ, 
oo2 
__! t. 
WQ. 
of I 1 (Figure 15) and I 2 (Figure z, z, 

16) are shown as functions of VQ for a fixed pulse time T = 56 ~sec and 

T = 28 ~sec respectively. This is to indicate the degree to which we can 

create double quantum coherence, I 2 over a continuous range of wQ. z, 

The approximated results are in reasonable agreement with the exact 

calculations for wQ > 2.5 w1 • 

To illustrate the case where w1 is larger than wQ, we take v1 = 60 KHz 

and VQ = 20 KHz. The approximated results and the exact calculation are 

compared in Figure 17 for the coefficient of I 
1 

as functions of th~ pulse 
y, 

length, with p. = I • We see that for long pulses the approximated solution 
~ z,l 

is out of phase with the exact calculation. This comes from the fact that 

even in this case (v
1 

> VQ) some az, 2 is formed. In Figure 18 we show the 

I coefficient as a function of VQ for a constant pulse length of 16 ~sec. z,2 

We see that at VQ = 20 the coefficient of Iz, 2 is az, 2 = .84. In Figure 19 

we also show an experimental result on a single crystal of deuterated 

oxalic acid dihydrate. In this experiment the value of a 1 after a single 
z, 
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pulse probes how much I 
1 

is left. The a 
1 

value is detected by a z, z, 

second pulse, which is applied at time T2 following the first pulse. 

The signal after this second pulse is then proportional to a 1 and is 
z, 

plotted as a function of the length of the first pulse. The experimental 

values are compared with the calculated a 
1 

values for the experimental 
z, 

parameters v
1 

= 26KHz and VQ =16KHz from Equation (69). 

In Table VI we summarize the effects of pulses of particular length 

corresponding to a 90° rotation for the single quantum case w1 >> wQ 

where the effective 'rotary frequencies are w1 or 2 w1 and for the 
wr 

double quantum case w1 << wQ where the effective frequency is WQ 

B. Two pulses (Figure 20) 

In this paragraph we shall discuss the effects of three different 

two-pulse sequences which then will be used later for the detection of 

double quantum coherence in single crystals and powders. 

Two weak pulses 

The application of two x-pulses of equal length and strength Figure 

20(a) is used for the storage of a 2 . What we mean by this is that 
z, 

after a single weak pulse (Table V) on p. = I 1 the density matrix 
1 .z, 

contains a coefficient a 
2 

f 0. This coefficient of I 
2 

after the 
z, z, 

pulse can then evolve for a time T after which it can be brought back 

to a coefficient of I 
1 

by an additional weak pulse. It will be shown 
z, 

later that this can be of importance for the detection of the time 

behavior of az, 2 ' the coherence. With the assumptions w1 << wQ and 

~w << wQ the results for the density matrix in this case are :· 



where 

0 0 6 

p. = I 1 
l. z' 2 

wl 
p(t ) ~ 

p 

p{t +T) 
p 

I l cos-t 
z, w~ p 

wl 
::::; I fOS- t 

z, WQ p 

2 

u 
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- I z,2 
2 

wl 
sin- t '{I cos 2bwT - I 

3 
sin 2~wT} 

wQ p z,2 z, 

2 2 
wl 

- sin 2 wl 
t -t p(2t +T) 

p 
~ I -l {cos 

z, WQ p WQ 
COS 2bwT} 

p 

2 2 2 
wl wl . wl 

- I 2 cos t sin - t { 1 + cos 2bwT} - I 
3 

sin- t z, WQ p WQ p z, WQ 
sin 2bwT p 

t 
p 

t = t 
P·l P 2 

(81-) 

From this result we see that in the ideal case 1T =-
2 ' 

i.e., two 

90° double quantum pulses: 

p(2t +T) = - cos 2~WT I - sin 2~wT I 
3 p, z,l z, 

(82) 

and that the coefficient of the final density matrix reflects the evolution 

of It,Z between the pulses. When we have a distribution of wQ, e.g., 

powder, then of course we cannot satisfy the 90° double quantum pulse 

in a 

condition for all wQ. To see the distortion effects • the square of the exact 

coefficient of az, 2 after the first pulse, which reflects the man~r in 
2 wl 

which I 
2 

is created and "stored" as I . 
1

, is shown with sin - t , z, z, . WQ p 

for v1 =20KHz and tp = 28 ~sec, as functions of vQ (Figure21 ). The 

advantage of "storing" the a 2 as a 
1 

with the second pulse is discussed. z, z, 

in the next paragraph. 
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Two strong pulses 

We go now over to the case in which we apply two strong rf irradiation 

pulses [Figure 20(b)] on the spin system with a time delay ofT. This 

sequence is important for polycrystalline samples in which a range of wQ 

values are present. In that case this pulse sequence is used to obtain 

an echo signal since the amplitude of the signal following one pulse is 

obscured by dead time. If we consider an initial state pi I 
1 

then 
z, 

we obtain for the WQ independent coefficients of the density matrix p(2T)a 

time T after the second pulse with w
1 

>> wQ and 6w << w1 the following form 

values: 

For 

w t 
l,x Pl 

a l(t 1) y, p 

1T =z- and wl tp2 ,y 

1 and a 
1

(2T) 
y, 

2 cos 6wT 

and for 

w t 
l,x Pl 

and w t 
l,x p2 

1T 
= '2 

a 
1

(t 
1

) = 1. and a (2T) =·l sin 26wT 
y' p x, 1 2 

where we write p(2T) for P(tpl + T + tp2 + T) and where w
1 

is a pulse in 
,p 

(84) 

the p-direction. All other coefficients of p(2T) are dependent on wQ, and 

will average away for polycrystalline samples. From these results we see that 

the spin echo in a sample with a distribution of WQ is still dependent on 6w 

while the wQ dependence essentially disappears. This effect will be 

discussed again in the next paragraph. In Figure 22 an example of a 

two strong pulse sequence is shown with v1 = 60 KHz and t = t = 4 ~sec. 
pl p2 
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The exactly calculated coefficient of I 1 after 2T is plotted for y, 

different VQ values. 

the two pulses. 

The echo thus gives a good measure of az,l before 

One weak pulse and one s~rorig pulse 

The final two pulse sequence consists of one weak pulse followed 

after T seconds by a strong pulse, Figure 20(c). The reason for 

applying this sequence is to detect in the simplest way the coherence 

behavior during the delay time T. 
w2 

If the first pulse is selected to be 

1 a double quantum 90° pulse, -- t 
1 WQ p 

1T = 2 then the density matrix for 

p. = I is given after this pulse by 
1 z,l 

I 
z,2 

The evolution of p(T) during the time T between the pulses is given by: 

p(t +-T) = -I 
2
cos 2~WT +I 

3 
sin 2~WT 

pl z' z' 

and the strong second detection pulse results in: 

where we took t = ~ with w >> w . 
wl p2 2 1 Q 

This results in a signal intensity, according toequations (79): 

sx = S
0 

cos2 ~WT sinwQt sin~wt 

(85) 

(86) 

(88) 

The behavior of this pulse sequence is depicted schematically in Figure 23 for I 1 y, 
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The signal thus begins with zero intensity, but the average intensity 

during evolution after the second pulse is proportional to the double 

quantum free induction decay. A convenient way to detect the double 

quantum decay is to Fourier transform S + i S and plot the intensity 
. X y 

of the transform versus T for the quadrupolar frequency of interest. 

A second Fourier transformation then yields the double quantum spectrum. 

12 This is a special case of two-dimensional spectroscopy. If there is 

a distribution of wQ as in a powder the double-quantum I condition cannot 

be met everywhere yielding characteristic lineshapes.
13 

This is discussed 

in the next section. 

/ 
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VII. EXAMPLES 

In this last section we shall discuss some possible pulse sequences 

for the detection of the chemical shifts of spins with I=l. The idea of 

detecting the coherence of the double quantum transition has been shown 

to be useful for the determination of chemical shifts values in single 

crystals and polycrystalline samples. The quadrupolar broadening is 

eliminated in the double quantum transition and the dipolar coupling can 

be eliminated by diluting the deuterium in a protonated host and spin 

decoupling the protons. 

A. Single crystals 

The fact that there are a finite number of discrete wQ values present 

in a measurement on a oriented single crystal, makes it possible to detect 

the chemical shift value, a, of a particular nucleus by a two pulse 

sequence as discussed at the end of the last.section. In the ideal case 

in which we can apply pulses with either w1 << wQ or w1 >> wQ the pulse 

lengths are determined by the conditions in the previous section. However, in 

practice it is not always possible to obtain these ideal pulses and we have 

to deal explicitly with the actual parameters (w1 , tp) of the pulses and 

the exact solutions for the density matrix and signal intensities. If we 

consider a deuterium nucleus in a crystal with a single well defined value 

wQ and we assume that the rf irradiation strength w1 always satisfies 

w
1 

>> ow + aw
0

, where ow is the offset frequency of irradiation and a is 

the unknown chemical shift (in ppm), we can derive the explicit expressions 

for the spin density matrix. The basic idea for the detection of a is 

to apRlY two pulses; the first pulse to create the coherent state I z,2 

and the second to monitor it in the form of a signal. Consider as 
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(an, example Figure 20(c) using the simplest pulse sequence. The density 

matrix after the first pulse, applied to a spin system in thermal equilibrium, 

with intensity w1 and length tp,l is given by (not assuming w1 << wQ): 

p(t pl) S~n2 8/2 cos ! (w +w )t ]I 
~ 2 Q 1 1 e p z, 

- sin
2 

8/2 sin -2
1 

(w +wQ)t ~I 2 e p z, 

+.!. 
2 sin 8 [ . 1 

S1fl 2 (we+wQ)tpl + sin ~ (we -wQ)tpl ]I 
y,l 

+! 8 
1 

(we+wQ)tpl 
1 

li 2} sin [cos 2 - cos 2 (we-wQ)tpl 2 y, 

with 

2 4w2 2 
and 8 

-1 2wl 
w + WQ tan e 1 WQ 

The optimal preparation pulse makes the coefficient of I 
2 

one, i.e., 
z, 

a 2 = 1. We require, therefore, that the I 1 and I 
2 

coefficients 
z, y, y, 

(89) 

are zero, so to make the signal intensities after this pulse zero. This 

condition becomes from (89): 

i.e.' 

27Tk 
w 

e 
k = 1,2, ..• 

For this condition, equation (89) becomes: 

(90) 

(91) 
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I - sin ! (w -w )t 1 z,l 2 e Q P (92) 

In the ideal case we make the coefficient of I equal to one in (92) by: z,2 

n = 0,1, ... 

Together with the definition- of w and Eq. (91) we obtain: 
e 

2m-l = --7T 
WQ 

k,m = 1,2, •.• 

k > m 

In Figure 24 the values for tp,l and w1 are plotted as functions of WQ 

(93) 

(94) 

for m = k = 1 and m = k = 5. From such graphs we can determine appropriate 

w
1 

and tp's for the experimental wQ. After this preparation pulse we let 

p(tp
1

) = 2b I evolve over a period of T and apply the second pulse z,2 

when: 

p(T) = 2b I . 
z,2 

cos2(ow+crw0)T - 2b I 
3 

sin2(ow+crw0)T 
z, 

(95) 

If we measure the signal intensity, S , 11 t seconds after the second pulse 
y 

and we take /1t. << 1/ow, then any strong pulse gives an intensity 

proportional to a 
2

(T) = 2b cos2(ow+crw )T. The signal intensity after z, 0 

a second pulse in the x-direction is seen from Table IV to be proportional 

to 

(96) 
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and the proportionality factor is a function of the pulse length and height 

and of the value of wQ. In the ideal case of an infinitely strong x~pulse 

we obtain for the S t seconds after the pulse: 
y 

s (t) = S cos2 (ow + aw )T sinwQt cos(ow + crw ) t 
y 0 0 0 

(97) 

The double quantum decay can thus be plotted as a function ofT. The 

result after an arbitrary pulse can be written as: 

where 

a ( ( ) + a 2(o)))l/2 Y = ay,l o y, 

<P = tan-l (a (o)/a 
2

(o)) 
y,l y, 

and a (o) and a (o) are the initial coefficients of I 1 and I 2 y,l y,2 . y, y, 

just after the second pulse. To demonstrate the dependence of a and 
y 

(98) 

(99) 

<P on the parameters of the second pulse and on the value·of wQ we show in 

Figure 25 the exact calculated a 
1

(o) and tpl a 
2

(o} values of the den~ity 
y, y, . 

matrix after a pulse of length t 3 l!Sec and of height v
1 

= 60 KHz applied p 

p(T) = I It is clear that this projection of the densit:y matrix on the z,z· 
y-coordinate system is strongly dependent on WQ and that the ayand <P values 

in Equation (98) are different for different wQ values. 

Second Order Quadrupole Shift 

Before discussing some aspects of the double quantum coherence 

measurements on polycrystalline samples, we shall make some comments on 

on 
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the higher order corrections which we must consider in doing chemical shift 

measurements. 

The quadrupole Hamiltonian as it was defined in Equation (12) is only 

taken to first order with respect to the external magnetic field -w I . 
0 z 

There are, however, measurable second order effects, which will shift the 

measured wQ values by an amount: 

C
2) c 2/12 ) > { · 2 2e + · 4 e} wQ = wQ w0 8 s~n s~n (100) 

with the definition of Equation (12) and the assumption of a symmetric 

"quadrupoie tensor. A straight-forward calculation shows that this 

correction adds up to the Hamiltonian in the rotating frame as: 

This result shows us that this second order correction is indistinguishable 

from the chemical shift tensor and that it must be calculated and subtracted 

from the measured value ow 
0 

+ (2) 
WQ • In a magnetic field of ~ 4.5 T the 

correction can introduce a shift in a of the order of 1 ppm for wQ ~ 100 KHz. 

· We now go over to discuss some aspects of measurements on polycrystalline 

samples. 

B. Polycrystalline Samples 

In this paragraph we discuss the measurements of the chemical 

shielding tensor in polycrystalline samples. The distribution of wQ values 

in a powder sample complicates the detection of the chemical shift pattern 

as depicted schematically in Figure 26. In particular, as was discussed 
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in the former sections, the preparation of the double quantum coherence 

and its detection is strongly dependent on the quadrupolar frequency wQ. 

The simplest pulse sequence for the detection of crw is the two pulse 
0 

sequence shown in Figure 20(c). After the first pulse we obtain a value 

of the coefficient of Iz,Z which will now be wQ dependent, az, 2 (wQ). In 

the ideal case we would like to obtain az, 2 (wQ) ~ 1, but this is not 

possible practically over the whole wQ range. We .therefore apply a first 

pulse which will make az, 2 (wQ) maximum over the range of wQ's. The 

optimization can be determined by a high speed computer calcul~tion and 

these procedures will not be discussed here. In Figure 16 an az, 2 (wQ) 

plot is shown for the case of one pulse with a maximum value of VQ = 120 KHz. 

Except for the values of 'VQ near VQ = 0, the az, 2 (wQ) values are larger than 

0.6, if we take p.(wQ) =I 1 • To obtain the efficiency of the detection 
l. z, 

of the double quantum coherence Q(T,WQ), we calculate the observable 

ay,l(wQ) after the second x-pulseoriginatingfrom az, 2 (wQ) just before this 

pulse. The product of az, 2 (wQ) after the first pulse and this ay, 2~L 

will yield the efficiency of the measurement of double quantum coherence 

for the different wQ values. We shall call this product the double quantum 

transfer function. Again in the ideal case this transfer function would be 

one over the whole wQ range. In Figure 27(a) we show a transfer function of 

a two pulse sequence calculated for a 1 just after the second pulse. This 
y, 

illustrates the type of distortion which will be obtained in the Fourier 

transform double quantum spectrum as a function of wQ. We shall of course 

have for every function a value of zero for wQ = 0. Knowing the transfer 

function we are able to predict the high resolution spectrum for an experiment 

where the total signal: 
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is.measured just after the second pulse as a function of the time 

' between the pulses, T. We need, however, to know the relative 

oriei:ttat'l.ons of the electric quadrupole tensor and the chemical 

shielding tensor. 

Before we show an actual calculation of a high resolution double 

·' quimtum chemical shift powder spectrum; we realize that in practice S 
' . y 

cannot be obtained just after the second pulse due to detector recovery 

time. In Figure 27(b) we show again the transfer function for the 

same· conditions as in Figure 27(a), if we wait 30 llSec to detect S 

after the second pulse due· to receiver dead time. Due to the WQ 

y 

dependence of a 1 after the pulse we do not obtain a useful transfer 
' y' 

function and we are forced to use other pulse sequences. A good example 

for detection of the double quantum decay is the pulse sequence of 

Figure 20 (a). With this sequence we store the az, 2 (wQ) coefficients in 

the coefficients of I 
1

• This was discussed in the last section and a 
z, 

calculated az,l(wQ) after the second pulse is shown in Figure21. If we 

wait now more than r2 seconds and we apply a third pulse the signal sy 

will be proportional to the coherence a .2 before the second pulse, i.e., z, 

will map out the double quantum decay. In Figure 28(a) the transfer 

fl.lnct'ion for this kind of experiment is shown. Again optimization 

t~chnique~ must' be used to obtain the best maximum transfer function 

compa~ing ·Figur~ ·. 27(a) .. a~d Figure 28 (a) we see that the first result 

·.· : 

is somewhat favorable over the second, although we realize that the 
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rf irradiation ~trength is not much larger than wQ and that therefore ay,l 

is generated instead of ay,Z" To overcome the problem of not being able 

to measure S just after the strong pulse, we combine the pulse sequences 
y 

of Figure 20(a,) with 20 (b). In combining these two sequences we obtain 

an echo signal after the fourth pulse which has an amplitude almost equal 

to the value of S just after the third pulse. The corresponding transfer 
y 

function for this four pulse sequence is shown in Figure28 (b) and can be 

compared with the results of Figure 29(a). These results are indeed very 

good if we realize that the irradiation strength was much smaller than the 

extreme wQ values 

To calculate the expected polycrystalline chemical shift lineshape 

from the double quantum decay for the pulse sequence of Figure 28(b) we 

assume as a simple example that the electric field gradient tensor and 

the chemical shift tensor are axially symmetric with their symmetry axes 

parallel. The result is shown in Figure 29(a) and is compared with the 

teal lineshape function that we should have measured if there ·were no 

quadrupole interaction in the powder sample. In Figure 29(b) we show a 

similar result for the two pulse sequence. These theoretical results 

show that it is indeed possible to detect high resolution double quantum 

spectra from polycrystalline samples and that by choosing the proper 

pulse sequences all information about the chemical shielding can be 

obtained. In practice the results of Figures 28 and 29 ,will be broadened 

and part of the complicated lineshape will not be observable. It is also 

clear that for other relative orientations of the quadrupole and the shielding 

tensor the distortion of the double quantum spectrum will be different so 

that from the lineshape we can say something about the relative orientations 
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of the electric field gra.dient ~nd shielding. tensors. ExperimentaL 

13 
results on polycrystalline samples will be shown in a separate paper. 
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C. Double Quantum Phase Shift and Spin Locking 

We saw in Section III that irradiating the spin-1 system near w
0 

with 

a field -w1Ix such that w1 << wQwas e~~ectively equivalent to irradiating 

it in the double quantum frame with - _l I 
3

• In fact the effective 
WQ z, 

double quantum operator fr-om Equation (44) can be written: 

2 
wl 

2ow I 
1 
--I 

z, wQ z,3 

ignoring the commutative quadrupole term. The effective rf field is 

(101) 

along the z,3 axis in this frame. 
2
we now enquire about the effect of 

wl 
the rf phase on the direction of - in the double quantum frame. To do 

WQ 
this we assume that an rf field is applied with arbitrary phase <P, i.e., 

the rotating frame Hamiltonian has the form: 

X = - 2dw I 
1 

- 2w
1 

(I 
1 

cos <P + I sin ~) z, x, y,l 
(102) 

Applying the same transformation as in Equation (42 ) and assuming again 

w1 << wQ we find to a good approximation the effective double quantum 

Hamiltonian: 

XDQ ~ - 2/::.w I z,l (I 
3 

cos2<P + I sin2<f>) z, z ,2 (103) 

2 
where again the commutative term -

3 
wq· (I 

3
-I 3) has been dropped. Thus x, y, . 

an rf phase shift of p corresponds to a shift of 2<P in the double q~antum 

frame. For example a phase shift of 90° causes the effective transverse 
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double quantum field to reverse sign. A phase shift,of 45° would be used 
'·.-./ :· .. ~... ' . '• .. -· ' . ) 

to effect double quantUn:is~in 
w 

locking. This w~uld be done by applying a 

1 90° double quantum pulse - t 
WQ 

= ~ transforming the density matrix f:;cm 

Iz,l to ·rz, 2 and then phase shifting by 45° 
w2 

1 the density matrix by the operator - I . 
2

• 
WQ z, 

sununariZed schematically in Figure 30. 

inducing spin locking of 

The phase effects are 

Both phase reversal and spin locking experiments have been.performed 

14 
successfully and the results are presented elsewhere. 
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Table I. Fictitious Spin~ Operators in Terms of Spin-1 Operators 

Definitions 

I p,l 
=.!_I 

2 p 

I p,2 
= .!_ (I I +I I ) 

2 q r r q 

I p,3 
= .!. (I2 - I2) 

2 r q 

Co.nnnutation Relations 

[I . , I j 1 = i I p,k p,~ p, 

[I 1' I 2 1 i =--I 
. p, q, 2 r,2 

[I 2' I 11 i· =--I 
p, q, 2 r,2 

[I 2' I 21 i =--I 
p, q, 2 r,l 

p,q,r = x,y,z or cyclic permutation 

i,j,k = 1,2,3 or cyclic permutation 

p,q,r = x,y,z or cyclic permutation 

[I 1' I - I ] = 0 q,3 r,3 p, 

Linear Dependence 

I 3 + I 3 + I 3. = 0 x, y, z, 

Fictitious 
1 . 

Spin-z Transformations 

ut I u = cos8 I + s-in8 I p,i p,j p,i p,j p,k 

ut I u = cos8/2 I 1 + sin8/2 I 
1 p,l q,l p,l q, . r, 

ut 
p,l I q,2 u p,l = cos8/2 I q,2 - sin8/2 I r,2 
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t 
u I u = cos8/2 ~q 1 - sin8/2 I 

p,2 q,l .p,2 , . r,.2 
. -~ ' ... 

t 
u I u = cos8/2 I - sirfJ/2 I 
p,2 q,2 p,2 q,2 r,l 

with 

u .. : = exp(i e t' .) 
p,i p,l. 

p,q,r = x,y,z or cyclic permutation 

i',j 'k = 1,2,3 or cyclic permutation 

,; 
·, ·' 
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Table II. Matrix Representations of·the Nine Operators 

1 
I 1 = -2 z, 

0 

t~ 
0 

0 

I x,l . t (: 

0 

0 

0 

0 

0 

0 

0 

1 

I 1 
z,2 = 2 

0 

Iy, 2 = ~ ( o 

-i 

0 

I x,2 1 ( =2 0 

0 

0 

0 

0 

0 

0 

i 

I . 
z,3 

1 --2 

-1 0 

I ... .!2 (o o y,3 

0 0 

I x,3 
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Table III. Hamiltonian Representations 

• 

with 

and 

with 

and 

ow I 3 +li w1 I 2 - (4
3 WQ - ow) (I 3-I 3) y, y, z, x, 

2 
IxT = - (I . -I ) .(2. x,l y,2 

6.w = ow 

ow I l z, 

with 

2 
wl 2 

--I +-w 
WQ z, 3 3 Q (I 3-I 3) x, y, 
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and 

= 2(cose I 1-sine I 3> x, x, I = 2(cos8/2 I 
1
-sin8/2 I 2) y,T y, z, 
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Table IV. -Effect of rf Irradiation on Spin-~ Operators 

(x,1;x,l) 

(x,1;x,2) 
.. 

(x,l;~, 3) 

(x,2;x,1) 

(x,2;x,-2) 

(x,2;x,3) 

(y,l;y,1) 

(y,1;y,2) 

(y,1;z,1) 

(y,l;z,2) 

(y,2;y,1) 

(y,2;y,2) 

(y,2;z,1) 

(y,2;z,2) 

= 

= 

= 

= 

-= 

= 

- :iXt :iXt 
e I e p,i 

2 2 
cos a cosw t + sin a e 

cos a sinw t e 

cos a sin a (cosw t -e 

'',. 
·- cos a sinw t e 

cosw t e 

- sin a sinw t e 

= ~ (p,i;q,j)I j 
q~j . q, 

1) 

= cos
2
a/2 cos; (we+wQ)t

1

+ sin
2
a/2 cos; (we-"WQ)t

= - cos
2
a12 sin-~ (we+wQ)t + sin

2
a/2 sin t (we-wQ)t 

1 1 ; 
=- cosa/2 sina/2 (sin 2 (we+wQ)t +sin 2 (we-wQ)t) 

1 1 = cosa/2 sina/2 (cos 2 (we+wQ)t- cos 2 (we-wQ)t) 
\ 

2 1 2 = cos a12 sin 2 (we+wQ)t - sin a/2 sin ; (we-wQ)t 

2 1 
= cos a/2 cos 2 2 

(we+wQ)t + sin a/2 1 
cos 2 (we -wQ)t 

cosa/2 sina/2 1 1 
= (cos 2 (we+wQ)t - cos - (w -w )t) 2 e Q 

= cosa/2 sina/2 1 1 
(we-wQ)t) (sin 2 (we+wQ)t + sin -2 
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(~,1,y,1) = cos8/2 sin8/2 (sin t (we+wQ)t +sin t (we~Q)t) 
(z,1,y,2) cos8/2 sin8/2 1 1 = (cos 2 (we+wQ)t - cos 2 (we-wQ)t) 

(z,1;z,1) = sin28/2 
1 . . 2 1 

cos 2 (we+wQ)t +cos 8/2 cos 2 (we~Q)t 

(z,1;z,2) sin28/2 sin t (we+wQ)t 
. 2 1 

(we-wQ)t = - cos 8/2 sin -2 

(z,2;y,1) 1 1 
= cos8/2 sin8/2 (cos 2 (we+wQ)t- cos 2 (we~Q)t) 

(z,2;y,2) =- cos8/2 sin8/2 (sin~ (we+wQ)t +sin~ (we-wQ)t). 

(z,2;z,1) = - sin
2
8/2 sin ~ (we+wQ)t + cos

2
8/2 sin i (we-wQ)t 

2 1 2 1 
(z,2;z,2) = sin 8/2 cos 2 (we+wQ)t +cos 8/2 cos 2 (we~Q)t 

with 

and 

-1 2w1 a= tan (-) 
WQ 



pi 

I p,l 

I p,2 

I p,3 

I q,1 

I q,2 

I 
q,3 

I r,l 

I r,2 

I r,3 
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Table V. Form of Density Matrix after Strong (Single Quantum) and Weak 

(Double Quantum) Pulse on Different Initial Density Matrices. 

Single Quantum Double Quantum 

wl » WQ ' t:.w = 0 ·w << w t:.w = 
1 Q 

p-pulse x-pulse 

I p,l 

I p,2 cos 2w
1

t - I p,3 sin 2w
1

t 

I p,3 cos 2w1 t. +I 2 sin 2w1t p, 

I q,1 cos w
1

t - I r,1 sin w
1

t 

I 
q,2 cos w1t + I r,2 sin w1t 

1 2w
1
t) +! (I 3-I 3) - 2 (I 

3 
cos 2w1t + I 2 sin 

p, p, 2 q, r' 2· 

I + I sin I 
w1 

- I 
r,1 

cos w1t q,1 w1t z,l 
cos-t 

z,2 wq 

I r,2 cos w
1

t - I q,2 sin w
1

t I z,2 
cos 

w~ 
-t 
WQ 

+ I z,1 

1 
(I 3 cos 2w1t + I sin 2w

1 
t) 1 

(I 3-I 3) 2 p,2 -2 I z,3 p, q, r, 

p,q,r = x,y,z or y,z,x p,q,r x,y,z 

0 

2 
. w1 

s1.n -t 
w~ 

sin w1t 
WQ 
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Table VI. Effective ~ Pulses 

w1 >> wQ w1 « WQ 

x-pulse x-pulse 

2 

pi w1t pf pi 
wl 

pf w-t 

I I I 1T - I 
x,l x,l z,l .· 2 ~,2. 

I 1T/4 - I I 
1T I 

x,2 x,3 z,2 2 z,l 

I x,3 
1T/4 I x,2 

I z,3 
I z,3 

I y,l 1T/2 - I z,l 

I y,2 1T/2 I z,2 

I 
y,3 1T/2 - I z,3 

I z,l 
I y,l 

I z,2 
1T/2 - I y,2 

I z,3 1T/2 ,_ I 
y,3 

y-pulse y-pulse . 

I 1T/2 I I 1T + I 
x,l z,l z,l 2 z,2 

I 1T/2 - I I 1T - I 
x,2 z,2 z,2 2 z,l 

I x,3 1T/2 - I 
z,3 

I y,l I 
y,l 

I y,2 1T/4 - I y,3 

I 
y,3 1T/4 I 

y,2 
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Table VI continued. 

I 
z,l 

rr/';. I 
x,l 

I z,2 
rr/2 I ·x, 2 

I rr/2 - I 
x,3 z,3 
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Figure Captions 

1. For isolated spin-~ the density matrix can be written p = A I + 
XX 

a I + a I ignoring the constant a 1 term. This is depicted 
y y z z 0 

schematically as a three dimensional vector which is proportional 

to the magnetization. 

2. For isolated spin-1, this figure depicts schematically the representation 

of the density matrix based on the 9 fictitious spin-~ operators 

I p,i p = x,y,z and i = 1,2,3, i.e.' p = I: a p,i 
I 
p,i 

+al. The 
p,i 0 

commas in p,i are suppressed in the figure for compactness. The 

state of the system is specified by the three vectors in the three 

p-spaces each of which corresponds to one two-level transition. In 

special cases where weak and selective rf irradiation is applied, 

the vectors may rotate independently in the three spaces. The z-space 

(al, z2, z3) is referred to as the double quantum space; zl is related 

to I the z-magnetization and z2, z3 are related to the double quantum z 

coherence as explained in the text. 

relations for i = 1,2,3. 

I . have spin-~ commutation 
p,l. 

3. Energy levels for quadrupolar spin-1 in high magnetic field. The 

quadrupolar interaction gives rise to two "allowed" transitions at 

frequencies w
0 

± wQ where w
0 

is the Larmor frequency. The double 

quantum transition from m = +1 to m = -1 is unshifted, at w
0

. 

4. Schematic representation of the quadrupole Hamiltonian XT of equations 

(24) and (25) in the three p-spaces of the fictitious spin-~ operators I i" 
p, 

The three vectors representing JCT correspond to the first terms in (24) and 

(25): a vector along x3 of magnitude wQ-~ depicts the term of the form 

(wQ-~w)Ix, 3 in (25). The three vectors in Figure 2 representing the density 
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matrix will rotate each around its p3 axis with a frequency w , due 
p 

to these XT vectors. 

obtain w 
X 

With the definition of w in equation (26) we 
p 

-(wQ + ~w) and wz = 2~w. The bottom right 

of the figure depicts the energy scheme of XT corresponding to the 

parameters of (26). 
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5. When the system is irradiated near the frequency of the low field 

quadrupolar satellites W0-WQ such that OW,Wl <<wQ, the effective 

Hamiltonian in a tilted frame defined in the text is given by 

J£T :::: -ow I.. -li w
1 

I 
1

. Thus the Hamiltwnian is that of a 
x, 3 x, 

fictitious spin-~ in the three dimensional .x-space, with effective 

magnetogyric ratio y along x,3 (the effective external field direction) 

and /2. y along x,l (the effective applied rf field direction). The 

figure depicts this concept schematically. The term single quantum 

frame is.used as a reminder that the irradiation is near. one of the 

allowed t.ransitions and involves normal single quantum effects. 

6. The same as Figure 5 except that the irradiation is now near the 

frequency of the high field quadrupolar satellite. The effective 

.Hamiltonian is now ~ :::: - ow I 3 +12 w1 I 2. and the figure shows 
y, y, 

the y-space in which the evolution of the density matrix can be described. 

7. in this case irradiation is near the unshifted Larmor frequency such 

that again ow1 ,w1 << wQ. The effective Ha,iltonian in a tilted frame 
w 

defined in the text is JC ::: - 2 ow I 
1 

- _! I 
3

• Thus the Hamiltonian 
z, WQ z, 

is that of a fictitious spin-~ in z~space with effective magnetogyric 

wl 
ratio 2y along z,l (the effective external field direction) and -- y 

WQ 
along.z,3 (the effective applied rf field direction). The term double 

quantum frame arises from the fact that the I· ., operators defining the 
' z ,.l 

z-frame have matrix elements between the m = ± 1 levels and involve 

double quantum transitions. 

8. Preparation of double qu;::tntum coherence. The situation is that of 

Figure 7 with ow = 0, i.e., irradiation at resonance with w
1 

« wQ. 
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2 
wl 

The effective Hamiltonian is then X ~ - I and its effect on a 
wQ z,3 

density matrix starting as p =a 1 I 
1 

(i.e., thermal equilibrium) z, z, 

is shown. The vector ~ nutates as a fictitious spin-~ about z,3 

angular 
wl 

This is analogous to the nutation about at frequency -. X 
WQ 

at w
1 

for real spin-~. In this case the double quantum coherence 

corresponds to the preparation of a component along z,2. 

9. Schematic description of the evolution of the spin density matrix 

2 
under the influence of the quadrupolar Hamiltonian XQ = 3 WQ{Ix,J-Iy,J) 

on resonance, (i.e., 6w = 0). The density matrix can be expanded as 

P = Px + Py + Pz where pp = ~ap,i I . • The figure demonstrates that 
l. ·p,l. 

in the case that all a 
3

(0) = 0, p rotates in the 1-2 piane in x-space 
p, X 

at frequency wQ, py in y-space and pz stays constant in z-space. 

10. Same as Figure 9 for the case that 6w f 0. In this case the x and y-frames 

are coupled together. The figure shows the evolution of the x and y 

components of the density matrix p (O) = a 
1 

I 1 + a I and 
x x, x, x,2 x,2 

p (0) = a 1 I 1 + a 2 I 2 under the influence of the quadrupole and y y, y, y, y, 

resonance offset Hamiltonians. 

11. The observables in an nmr experiment are <I 
1

> and <I 
1

>. The 
x, y, 

evolution of the coefficients of these components of the density 

matrix, a 
1 

and a 
1 

under the influence of the quadrupolar Hamiltonian 
x, y, 

for 6w = 0 and the quadrupolar plus resonance offset Hamiltonians for 

6w f 0 are shown for the case that the initial density matrix is given 

by a I + a 2 I 2 . y,l y,l y, y, 

12. Single rf pulse of duration T operates on the density matrix pi and 

transforms it top which evolves as p(t). 
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13. Theoretical calculation of the effect of a single pulse with v
1 

= 20 KHz 

at resonance to the density matrix p 
0 

I 
1

. The solid line is the 
z, 

exact (computer generated) value of the double quantum coherence 

coefficient az 
2 

as a function of the pulse length. The dashed line , 
shows behavior2expected for pure double quantum transitions, i.e., 

a z,2 
. wl 
s~n- T. 

WQ 
The discrepancy arise~ from the fact that w

1
/wQ 

is not zero, i.e., single quantum transitions are also induced. 

14. The same parameters as Figure 13 except that the observable y-signal, 

a .
1 

is presented, solid line (exact calculations). For pure double 
y, 

quantum transitions we shou]d have a 
1 

= 0 as indicated by the y-, < 

dashed line. 

15. Theoretical calculation of the remaining z-magnetization a 
1 

for an 
z, 

rf pulse of intensity v1 = 20 KHz and duration 56 ~sec applied to the 

.equilibrium density matrix I 
1 

as a function of quadrupole splitting 
z, 

VQ = wQ/2TI. The solid line is an exact calculation and the dashed line 

indicates thz expected behavior for pure double quantum behavior 

wl 
For large wQ the agreement becomes better as. -r 

WQ 

wl 
a 

1 
= cos-T .. 

z, WQ 
gets smaller, while for small wQ the double quantum expression is of 

course not valid. 

i6. Preparation of double quantum coherence with a single pulse. An rf 

pulse of intensity v1 = 20 KHz and duration 28 ~sec is applied to 

p .~I 
1 

and the calculated values of a 
2 

are shown ~sa function 
0 z. z, 

of wQ. . The solid line is an exact calculation showing the distortion 

in preparation of double quantum coherence when we have a range of 

WQ values as in a polycrystalline sample. The dashed line is that 
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expected for pure double quantum 
. wl 

becomes more valid for small --. 
WQ 

Effect of intense rf pulse on the 

behavior a = -z,2 

2 
. wl 

s~n -- t which 
WQ 

density matrix I 
1

• The coefficient 
z, 

of the observable signal is plotted from an exact calculation (solid 

line) and for pure single quantum behavior sin w1t (dashed line). 

18. Calculation of double quantum coherence for intense pulse of duration 

16 ~sec operating on Iz,l" This shows that even for large v1 we can 

create double quantum coherence for particular wQ's. 

19. Rotary free induction d~cay for pulse of intensity v1 = 26 MHz followed 

by intense pulse to monitor remaining a 
1 • The solid line is calculated 

z, 

from equation (69) and the circles are experimental points from a single 

crystal of deuterated oxalic acid dihydrate. 

20. Various pulse sequences used for preparation and detection of double 

quantum coherence. Pulse sequence (a) has two weak pulses. The first 

is to transfer a to a which then evolves during T. The second z,l z,2 

transfers a 2. back to a ·where it can then be detected by strong 
z, z,l 

pulses yielding a signal proportional to the double quantum coherence 

a 2 (T). The pulses in (b) are stronger, yielding a mixture of double 
z, 

and single quantum effects. They are used to detect the amount of a 1 z, 

for example prepared by (a) by producing a spin echo at time 2T 

proportional to a 1 before the pulses. This also overcomes the problem z, 

of detector recovery time. In (c) we see the simplest pulse sequence 

for monitoring the evolution of double quantum coherence. The signal 

after the second strong pulse is proportional to a 
2

(T) as explained in 
z, 

the text. 
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21. Distortion in preparation and storage in a 
1 

of double quantum 
z, 

22. 

coherence by two weak pulse sequence for range of wQ values. 

The first pulse transforms a 
1
· to a· with an efficiency dependent 

z, z ,2 

The·second pulse stores a 
2 

at time T back to a · 
1 

(for 
z, z, 

subsequent detection) with the same efficiency. Thus the overall 

double quantum transfer function for this pulse sequence is 

2 
proportional to a · 2 where a 2 is calculated from one pulse as in z, z, 

Figure 16. The solid line is an exact calculation and 

2 
one .is calculated for pure double quantum behavior a 

z,2 

Efficiency of detecting a 
1 

(created perhaps 'after two 
z, 

the ··dashe~ 

. 2 wl = Sl.n - t. 
WQ 

weak pulses) 

by. two. strong pulse sequence. The distortion induced by this 

sequence in-detecting double quantum coherence will also contribute 

to .the final lineshape. The value of a 1 , the detected signal at 
y, . 

the arrow (near the echo maximum), is plotted as a function of VQ 

and shows very little distortion even for wQ = !:lw
1 

.. 

23. Evolution and detection of double quantum coherence by simple two 

24. 

pulse sequence. The expressions on tlie figure are written for the ideal 

case of a pure double quantum -TI/2 pulse (w1 << wQ) followed by a normal 

single quantum TI/2 pulse (w
1 

>> wQ) starting with a density matrix p
0 

= Iz. 

Fourier transf0rmation of the signal yields a dispersion-like line with 

intensity proportional to <I 
2

(-r)> = cos2 ow-r.· 
z, . 

Allowed values of tp 1 and v1 as a function of vQ to produce pure 

90° double quantum pulse from exact calculations. The integers k 

and m are defined in equations (91)-(9~) in the text. 

25. Application of single pulse of intensity v1 = 60 KHz and duration 3 

~sec applied to p(T) = I 2 • Shown are the values of a 
1 

and a 
2
. 

z, y, y, 
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on the circular arc as a function of vQ. This demonstrates the 

distortion in amplitude a and phase ~ from equations (98) and 
y 

(99) in detecting the double quantum coherence with sequence 20(c). 

26. .Schematic representation of powder pattern for deuterium with 

axially synnnetric electric field gradient and chemical shift terms. 

We wish to determine the chemical shift anisotropy which is 

broadened tremendously by the quadrupolar splittings. 

27. Double quantum transfer function, i.e., detected signal a 1 at y, 

position of arrow for two pulse sequence. The first weak pulse prepares 

the double quantum coherence and the second stronger one monitors 

the decay. The lineshape shows the type of distortion across the 

VQ values for realistic and optimal values of the parameters. In 

(a) the signal intensity is calculated immediately after the pulse. 

Since this practically is impossible (b) shows the effect of detecting 

after 30 ~sec. The distortion would make this essentially useless for 

application to a powder. This can be alleviated using an echo. 

28. Detected signal a 
1 

at position of arrow for three and four pulse 
y, 

I 

sequences. (a) shows the detection of double quantum coherence 

prepared and stored by two weak pulses. In (b) the practically 

more useful case of a spin echo is shown. This shows that an 

appreciable amount of double quantum coherence is prepared and 

detected over the whole VQ range. 

29. Calculated Fourier transform double quantum spectra for polycrystalline 

deuterium sample with axially symmetric electric field gradient and 

chemical shift tensors having their symmetry axes parallel .. The 
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spectrum is obtained by multiplying the ideal chemical shift powder 

pattern (top solid line) by the functions for the corresponding pulse 

sequences in Figure28(b) and 27(a). 

30. Effect of rf phase on the double quantum phase. A phase shift of ~ 

for w
1 

in the rot2ting frame corresponds to a 2~ shift for the 
wl 

effective field -- in the double quantum frame. The absolute phases 
WQ 

in each frame are arbitrary and were taken only for convenience of 

presentation. 
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Spin 1/2 Density Matrix Representation 
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Spin I Hamiltonian Representation 
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Effective Single Quantum 
Rotati na Frame 
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Effective Single Quantum 
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Effective Double Quantum 
Rotating Fra1ne 
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Double Quantum Coherence 
In Rotating Frame 

Z3 

Zl Z2 
XBL 768-10224 

Figure 8 



-so-
Density Matrix Evolution, 8~ = 0 

. X3 
' . 

XI X2 Y3 

Yl Y2 
Z3 

Zl Z2 
XBL 768-10204 

Figure 9 



7 6 

-81-

Density .Matrix Evolution, ~w ::1= 0 
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