Lawrence Berkeley National Laboratory

 Recent WorkTitle
RADIATION-INDUCED OXIDATION OF PROTEIN IN AQUEOUS SOLUTION

Permalink

https://escholarship.org/uc/item/6dd616xs

Authors

Garrison, Warren M. Jayko, Michael E. Bennett, Winifred.

Publication Date
1961-08-01

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence Radiation

TWO-WEEK LOAN COPY
This is a Library Círculating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

RADIATION-INDUCED OXIDATION OF PROTEIN IN AQUEOUS SCLUTION Warren M. Garrison, Michael E. Jayko, and Winifred Bennett

August 1961

1. INRRODUCTION

1.1 General

Development of a comprehensive radiation chenistry of aqueous protein zyatems has been limited by a nubber of experimental factors. One of the major problems arises fron the fact that the complex chemical couposition of protein offers a multiplicity of loci for parallel reaction. The magaitude of the analytical problems involved in characterizing these reactions is indicated most directly by studies of the emino acia composition of hydrolyzates prepared from irradiated protein solutions. Although the aronatic and heterocyclic constituents and, in particular, the sulfur moieties appear to be the most susceptible to indirect action, the evidence is that the over-all reaction of protein involves a diversity of emino acid residues even at the lowest irradiation levela. (1-3) In fact, quite recent studies of the radiation-induced Inactivation of enzymes containing a maximal number of free -3R groups show that an appreciable fraction of the absorbed energy is not accounted for sinply in teras of the destruction of sulfhyaryl function (4,5). While such strudies of the 1083 of components and functions of protein atructure bave provided empirical estimates of the "radiation sensitivity" of amino acid residues, still, most concepts regarding the nature of the products and the mechanism of the reactions involved are largely based on various types of indirect evidence (6).

The present paper describes a direct approach to the study and measurement of radiation-induced modifications in the co-valent atructure of protein. The reactions to be considered are largely those of the N-C bond which, in its various chemical forns, represents the aingle most remament configuration of protein structure.

1. 2 Develoment of the Present Approach

Of the various types of compounds containing the N-C Inkase, certainly the
α-amino aclds have received the greatest attention in radiation chanistry. With the exception of cysteine, all amino acids of the type $\mathrm{NH}_{2} \mathrm{CH}(\mathrm{R}) \mathrm{COOH}$ undergo oxcdative deanination in aqueous solution to yield amonia, α-keto acid, and hydrogen peroxdde (6). Primary aliphetic arines undergo analogous reactions with formation of arraonia and the corresponding aldehyde or ketone. The net reaction for cleavage of the N-C Iinicage of primary mino compounds is represented to a Mrat approximation by the equation:

$$
\begin{equation*}
\mathrm{NH}_{2}-\mathrm{CH}(\mathrm{R})_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{M} \longrightarrow \mathrm{NH}_{3}+\mathrm{BCOR}+\mathrm{H}_{2} \mathrm{O}_{\mathrm{e}} \tag{1}
\end{equation*}
$$

On the basis of a detailed atudy of nechanism in the radiolysis of the α-anino acids (7), we were prompted several years ago to investigate the radiolytic oxidation of certain of the simpler secondary emines. We found in the case of diethylemine, for example, that a principle over-all reaction in orggenated bolution yields ethylamine and agetaicinyde (8):

$$
\begin{equation*}
\mathrm{RHI}-\mathrm{CH}(\mathrm{~A})_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \cdots \cdots \rightarrow \mathrm{RHH}_{2}+\mathrm{ACOR}+\mathrm{H}_{2} \mathrm{O}_{2} \text {, } \tag{2}
\end{equation*}
$$

and subsequent stuales of various $N-a l y y l$ amino acids have ectablished that the above reaction is gonerally characteristic of this clasa of compounds. For example, arcosine (N-methyl alycine) and proline (pyrrolidina-2-carboxylic acia), both undergo degradation ais represented by equation 2 . Such reaction is chemieally quite analogous to the radiation-induced degnination of primary aminee, as given by equation 1 end, as will be discussed, presumbly involves aimilar intemediate processem

Now; in our initial comunication (8) on radiation-induced degradation of secondary amines via reaction 2, we also auggested that a corresponding reaction viz

$$
\begin{equation*}
\mathrm{RCONH}-\mathrm{CH}(\mathrm{R})_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow m \rightarrow \mathrm{RCONH}_{2}+\mathrm{RCOR}+\mathrm{H}_{2} \mathrm{O}_{2} \tag{3}
\end{equation*}
$$

could be of troortance in the radiolyais of equeous peptide aystems notwithstanding earlier reporta that various 1 -substituted amines had been found to be
relatively inext to the action of ionizine medtation in equotus soluticm. whe latter conclustion wate besed primarily on the finding that annonis production in cusyenatad solutions of such componds repregents oniy a fraction of the amonia yicid abtained fern free α-tmino ectas undcy identicel conditions (9). However,
 basis for estimetine ralistion-cherileal reaction the pertide linkese, for exmaple, unlass the "mude" products had been quentitatively hydrolyzod paicr to andycia. Wo mave investigeted the effect of pont-iryediation hyirolyede on a veriety of bimple peptide matence, und find that the total yteld of Isbarsted amonila acess in tact approach that obtained from the free α-matno weid under the ano arpertmental contitions (10).
yy eralogy uth recations 1-3, we conaider it 11rely that the redintion Induced decomposition of tertiary manes and quatermary nitrogen compouma Involues roantion of type 4,5 reapeetively

$$
\begin{align*}
& (\mathrm{A})_{3} \mathrm{H}^{+}-\mathrm{CH}(\mathrm{R})_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}-\longrightarrow \longrightarrow(\mathrm{R})_{3} \mathrm{I}+\mathrm{HCOR}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{E}^{+} \tag{4}
\end{align*}
$$

 oxyereated nolution (12) hes not beon detemancu.

Mineliy, refererice houla be ruile to the ract that at pH values above 7. a oometing path for segwation of the doc bond involves formetion of axime
 whif chionetry.

Tields of "total hydronylmine" (hydroxylanine + oxime) eron prinary and
necondory autnes increase abruptiy with pif over the wange 8 to 10 and then Level ofi above pH 10 to 11; however, the martran yleld of reaction 6 is relatively low even at the highest pH values (11).

The besis of the present appronch to the slucidation of mechenim in the radiolysis of oxysenated colutions of protein is that reaction at the loci of N-C linkages may be generalized in teras of the over-all equation:

$$
\begin{equation*}
(\mathrm{R})_{2} M-\operatorname{Cn}(\mathrm{R})_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} M \rightarrow(\mathrm{R})_{2} \mathrm{n}+\mathrm{RCOR}+\mathrm{H}_{2} \mathrm{O}_{2} \tag{P}
\end{equation*}
$$

where ($\mathrm{R}_{2} \mathrm{~N}-\mathrm{CH}(\mathrm{R})_{2}$ wepreceate any of the variously aubstituted primary, secondary, and tertiary ano conflgurations of proteln moleculsi etructure. Note that regandiess of the type or extent of substitution, a reactive cerbonyl function is obtained as on of the producta of reaction F as mitten. The chemical rom of the nttrogen-contalning product 1 apecifled, however; by the nature of the DG lintage. As will be shom in tubsequent mections of this paper, reactions of type P, together with other closely roleted reactions, account for a principal frection of the energy bibsorbed in golutions of certain proteine. Preltninary chenten evidence of the validty of thie eeneral amproch to the redietion-cherical atudy of aqueous proteln Eystems hes been reported pa briefly fron time to tim $(8,33-15)$, the preseat paper emplithers and extends these onservations ond offers tho dotelled esperimental procedures.

2. HEmanmant PAEI

2.1 Meteriale end Irradiation Conditions

Solutione of pepsin (Worthington Booheratical Corp." tuice recxystalized) were prapared by ading bolid in ouncesslve mall anounts to distijled rater that had been adfusted to pHI 5 or below wt th $\mathrm{H}_{\mathrm{e}} \mathrm{SO}_{4}$; a magnetio atirrer provided adequate ntring whout couring undu foming. In certatn experimenta the pepsin solution tere dalyzed in cellophane ogatnst ectdixted water (oH 4 to 5). Ali. quots of the atock bolutions were adjusted to a particular pill velue by addition

The gelatin waed in these etudieo (Rastman, lime yrocossed) wes selected because of 1 ts low amido and carbonyl content. Tho atock eolutions (opproxdmateiy 5\%) Were routinely diajyzed againat mumine water at 30% lot 18 to 24 hourd to rearve polit produatu and tracer of free armonial final concentrition vise determined by drying an aliquot to constant weleht at $100^{\circ} \mathrm{C}$. The poly-di-elutautc acia (Pilot chemicals) was treated in a atmilar maner. Solution of yeart alcohol dehydrogenase, B-lectoglobulin, ana d-chynotrypsin (Nutritional Hiochemicsl Com.) wexe prepared by addug the materiala an recelved directiy to triply distilled watar irmediately priom to inmatation.

Reageat 24 -dinitrophexylingareaine (Eastman Orgate Chentocla) was wed nt
 γ-reys Ircon elther a 2000 curle or a 100 curle aource. ponerowtes for the gecanetrien used were $2.6 \times 10^{20} \mathrm{ev} / \mathrm{mi} / \mathrm{hin}$ and $7.2 \times 10^{16} \mathrm{ev} / \mathrm{mi} / \mathrm{min}$ reapectively. ${ }^{2}$
 Pyrex tubeg. Contents mex wixed at intervals to provent depletion of axigen in the galution turlng exposixut.

2. 2 motal Cosbonyl Production

The 2, 4 miniturophenylhydratanee of nost carbonyl campond how ensentially the semie absorption spectrua in dilute sodiun wotroside and have very similare extinetion coefficiente (E) at the weve lensth of meximm aboorption (λ max . Exceptione inciuda the 1,2 -dicarbonyle and certain other foma containing $\alpha-\beta$ ungaturation (17). Tha fact that the mpatral properties of the chrowionore
 nature of R (with the exceptions noted) hal been variousty mplied in the olucidetion of atructure of orrente compound and, tha the present instance, provider tha besia for mensitive and drect meacurenont or toual carponyl production In immadistad protetn pystemat.

2.E. 2 Fornation of Protein Fhenyihydrazonea: Fhenylhydrazone derivetives

 of the hich-molecular-welght products wan fomed by treating the irredinted protela solution with 2; ifdinituophenyluydrazone-hydrochloric nota solution arter femoval of hydrogen peroxide an described in bection 2. $\%$. The protein phenylhydramones could be quantitatively determined in emomte as anall as 10^{-8} dalymis.

In the extruction procedury the aroteln solutiona wow made apmoximately 0.1 In hyilrochloric acta and tretwed with 2,4 -DinPi to give a two-rold to fivefold emens of wement over the eetinsted carbongt conceatration (A dowe of 1×10^{15} ev/mit, for example, gives a carboryl concentration of $1.6 \times 10^{-5} \mathrm{M}$ for a $a(0 \mathrm{Cm} 0$) of 1). 2the solutions were allowed to atand for 3 to 4 houra at rocon
 of equal voluwes of duethy evther. Scone 4 to 6 extrectione were requitred to no-
 acla ocmecntretion whis increated to 1 A to inguro that the nolutions vere acide
 phane ajbinat ruming water at $30^{\circ} \mathrm{C}$ for a mexted of 15 to 18 hour . It wam found that if the initial bolutions were nade up to contaln a ive to ton-fold

 Bection 2.2.2. After monal of maneacted reagent by extrection op dialyide an apgromplate nitinut on proteln nolution wha node aproxinately 1.25 in potascium hydroxide, and the abcorption mpectra of the protein phenylhydrazonea vere moasured over the renec 400 mp to 650 raf with a Beclman modicl DU wheotrophotometer (17). Axiquote of the unimedisted solutiong wore alway tarried

2.2.2 Park-reaction of 2 , 4-dinitrophenylhydrazino with proteing: of the

 proteing studied, pepsin, chymotrypsin, and β-lactorslobulin in unirradiated solution show negligible retention of 2,4-DNPH after dialysis or extraction as outlined in section 2.2.1. Unirradiated gelatin solutions, particulaxiy at the higher concentrations (i.e., above 0.1\%) exhiblit meacurable readinge at 450 mp even after prolonged dielysis or exhaustive extraction of the gelatin-2,4-dinitrophenylhydramine colutions. However, for a particular stack aolution, the background correction in reproducible and introduced on uncertainty of leas than 5\%. Allquots of the unirradiated solutiona (in all caseb) were carried through the described proceduren in parallel with the imediated anmples, and calculations of carbonyl yiclds axe baeea on the differential apectra.All of the proteins Btudied undergo a slow "dark-reaction" with 2,4-DMPH If the reagent is present in large exaess, or if the reaction mixture is atlowed to stand for long periods (24 hours) prior to dialysis or axtraction. Heatins acceleratas the reaction, and temperatures above $35^{\circ} \mathrm{C}$ were avolded. We have not inquired into the neture of the dark reaction, elthough oxidation of protein by $2,4-\mathrm{mmph}$ and(or) fomation of hydramide darivativen would seem to be likely proceases. FMgure 1 111ustrates the effect of concentration on reactions of 2,4-DNPI with 1 madiated wad uniradiated aolutions of gelating these data were obtained through use of the extraction procedure.
2.2.3 Quintitative measuresente! The absorption opectre of the "protein phenyliydrazone(s)" obtained from pepsin and gelatin aro ohom in Fig. 2. That these are predcalnemely unconjugated phenylhytirazonea is ovidenced by the bhape of the absorption curve. The presence of apprectable mants of the phenylhydrenones of conjugated carbonyls, particularly the $1,2 \times d$ carbonyls, would ba manilested by a pronounced bhift in $\lambda_{\text {hax }}$ to longor wave lengths (17).

Wost of ow quantitative studiea on the yleld of total carbonyl $\left[a(>C=0)_{t}\right]$
involved the pepsin and gelatin systens and, unless othomise noted, tho values of $\mathrm{G}(>\mathrm{C}=0)_{t}$ herein reported were calculated, wing 2.4×10^{4} as the extinction coeflicient or the $(\mathrm{R})_{2} \mathrm{CoN-HMC} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$ conflguration at 450 ma in 2.25 N NaOH . This value represents an avomge of the moleculax extaction coefticients reported for a mide varlety of authentic nonoctaromyl derivatives (17,18). Valuea of $\mathrm{G}(\mathrm{PCO})_{t}$ for beveral different proteins under a standard set of irradiation conditiona are given in rible ra. In subaequent referencee to the effect of a particular experinental parmeter on $G(>C=0)_{t}$ it may be assuned, unlean other*hse stated, that all ouner vartables confom to these standard reference condtions.

Values of $G(C=0)_{t}$ were found to be esbentialiy independent of dose at levela below $10^{20} \mathrm{ev} / \mathrm{al}$, provina the solvent oxtraction procedure was used. Pertinent data for gelatin are chom in Fis. 3. If dialysia was amployed to
 was found to decroese eradvaliy with lncreaning dome above approxinately $3 \times 10^{19} \mathrm{ev} / \mathrm{ml}$. Solutione of pepaln ohorea the rame effect but at a sonewnt higher dose. Presunably, after prolonged exposuree of these solutions, the nolecular wefght distrivution of the product fragnento is cuch that a measurnble fraction of the phenjluydrazone derivetives exe renoved in the disiysis step along with the excess reacent. Although the effect of proteln concentretion on $\mathrm{G}(\mathrm{P}=0)_{t}$ was not btuated in great detall, we did establish that (indtial) cabonyl yicids from pepsin and gelatin do not decreesa apreciably with decreasine protein concentretion witil coneentration below 0.1% are reached. Carbonyl yields from Eelatin ere easentian n_{1} constent over the range 0.1% to 3.0%.

Table IT showe the effects of vextous aded solutes on corbony yields frem pepain. Nesther $W_{2} \mathrm{SO}_{4}$ nor twis at oncentrations ns hich as 0.1 M havo any apprectabla affect on arbongl production. The absence of an attenuation by
chlortde ion is or particular intarect fron the radation biological standpoint. In regard to the effects of aded cysteine, we observe that a nolar concentration approxinately ten tinee that of the protein is required to decrease $G(>C=0)_{t}$ by 50%. Large differences in the effect of $p H$ on cerbonyl yields fron pepain and celatin colutiona were found as shom in Table ic. It is to be noted that pepsin is stable in acid solution and inactivated rapialy at pll values above neutrality (16).

Reference should be made to the fact that the $\mathrm{G}(\mathrm{C}=0)_{t}$ value of 0.5 reported for alcohol dehydrogenase (Table IA) is subject to considerable uncertainty. We consistently found with thia particular systen that the (differential) absorption apectrua of the product phenylhydrazones indicated apprectable anounts of $1,2-d i c a r b o n y l$ or conjurgated carbonyl derivatives (with unknom extinction coefficients). The nature of this phenomenon is not understood, but it seens likcoly that it is related to the findine that the (unirradiated) alcohol dehydrogenase contains sone 4 to 5 uncenjugated carbonyl groupa as evidenced by reaction with 2,4 -DNFH reaction.

2. 3 Constituent Cerbony1 Campounds

In the intial stagea of this work vamious attempta were made to hydrolyze the proteln-hydrezonea directly to the conatituent hydrazone derivativee but, unlike the classical case of the II-dinitrophenyl derivatives (19), the dinitrophenyinydrazones (as might be expected) undergo extensive decoxposition and rearrangement under conditions required to bring about complete hydrolytic cleavage of protelin. However, as will be described in a following paragraph, we found in a beries of quantitative control atudes that the constituent carbonyl product compounds are themselves relatively stable under the conditions of conventional acid hydrolysie. Accordingly, the conatituent carbonyl compounds werefirgt ilberated by hydrolysim in 2 m 4 g HCL and then treated with $2,4-$ DHFII to obtain the Individual hydrenone derivatives for mubsequent
menipulation.
The irrudiated colutione were dialywed until hyarogea peroxide ${ }^{3}$ (In an aliquot) conld not be detectod with titamum sulfate reacent, made 4 in HC1, and then hydrolyzed in vacuo at $95^{\circ} \mathrm{C}$ for a period of 18 to 24 hours. The hydrolyzate was neutralized with Moos in a minimun volune and placed on a colum of Dovex-50 (hydrogen fom). Thin was then washed vith water to effect a sinple separation of two carbonyl-product factions. Alahydes, ketones; and carbonyl acida (frection I) pass directly through the colvon with iftle or no retention, and were collected together for subsequent tanaysis. The nitrocen-containing cerbonyls, e.e., aldehyio α-amino acids, mino α-keto actds, etc., (fraction II) are retained on the column along with the unchanged amino acida. Frection I weas treated with excese 2, h-piuptind, after etanding for 3 to 4 hours (to allow for complete reaction), hydrazone products plus unreactod reagent were quentitatively extracted with chloroform or ether. Separate alichots of the axtracted musture were chronatographed on filter paper (Whatman No. 1) by we of the solvent systems (a) butanol saturated with 3\% aqueous annonia (b) heptane (pract.) moturated with mothanol (20). The first method separater the carbonyl acia hydrazones; the second mothod beparates the "noutral" hyarazonea, 1.e., thoce of corrieldehyde, acetaldehyde, etc.

All the irrodiated protein solutions exalned in this way geve a couplex mixture of α-keto acids as the principal component of fraction I. However, most of our detajled pituden of α-lioto acid products were confined to the gelatin system because of its low werine-threonine content. These B-hydroxy α-amino acids yield anall arounts of pyruvie acid and a-ketobutyric acid respectively durine conventionil acid hydrolyals of protein (21) and, in the case of pepsin, the yielda are such as to serlously interfore with the measurenont of α-iteto acids derived from radiation-chemical reactions.
 chronatogrea of the a-beto acid phenyluydrazonea inolated from an imuatated eelatin solution. que lever curve was obtained with an equal volune of the unirradiated control solution under identical conditions. Thene trecines are presented here primsiliy to illuwtrate the onders of magntude of the princtipel peaks. The actuel chromatogras, particularly thone of the hyorezoned inolated from impolated solutiona, are considerably nore camplex when scanned visually.

This complextty axlees not only from the zect that fraction I containe a mixture of co-keto acid hydrazoned, but also from the fact that each individual α-keto acid yields two 1 sonerle (cia-trans) hydrazonoa with diferent R_{i} values. Although one foxm unuly predouinater, the miative yielas of the two are influenced by temparature, solvent, concentration, tine of standinc, ctc. (22). Therefore, 1 dentiftcetions could not be based wholiy on co-chrcmatosraphie studies of product and authentie hydratone derivatives. As en correlative prom cedure, the α-keto ectd hydrazones were cluted with methonol and then hydrogenated over PtO_{2} under 40 Ib . pressure for 16 hours to obtain the correspondIne co-suino acids which were then re-chronetographec (23). Through obvious combination of these two procedurea, we succeeded in identifying the following acids anong the madation-chencal products of fraction I fran gelatin: oxalacetic, ${ }^{4}$ α-ketociutaric, elyorylic, pyruvic, and phenylpymivie. Although pyrivic acta (and co-betobutyric) is observed in the control, it in readily appareat even qualitatively from Hg. 4 that the mount is conelderably increased by irradiation. Incidentally, the yield of α-ketobutyric acid provides an internal control on the hyarolysis conditions since this particular cerbonyl ecid appears to be dorived wholly from the hydrolytie degradation of threonine. Although G values for individual α-koto actas in the product mixture wore not deteminod becauce of the conplicationa introduced by cia-trona isonerian, 5
the combined yield of a-keto acid function was measured by a modification of the spectrophotanetric procedure outhined in Section 2.2. A modified procedure is required since the gis-isoners of the o-feto ecid hydrazones, unlike the trans-isomers, do not show the characteristic hydrazone color-reaction in diute (1.25 N) bodiun hydroxide. Howevery it has been shom elsemere (22) that hydrazones of the various c-lato acids do hove very ainilar absorption epectra in $0.25 \mathrm{M} \mathrm{WallCO}_{3}$ with values of $\lambda_{\text {max }}(380 \mathrm{~m} \mathrm{\mu})$ and E that are ecoentialiy independent of the relative concentrations of the cis-trans 1somers. 6 Application of this modicied procedure to the α-iceto acid hyarazones dexived from gelatin gived $G(>C=0)_{\alpha}=4 a(>C=0)_{t}$. This relationship was found to hold constant in the case of gelatin (18 golution) for dosages up to approximately $1 \times 10^{20} \mathrm{ev} / \mathrm{mal}$.

In the later etage of thle worl we found that α-ketoglutaric acid (unlike all other α miketo acids btudied) eives but one hydrezone (trang-isomer) in the aformentioned extraction procedure. Ints finding together with the fact that the hydrazone of α-letoglutaric acid in well beparated chronatographleally from other product species enebled us to measure the erfect of dosage and other variables on the yield of thia particular cerbonyl acid. As show In FIG. S. α-wetoglutaric acid production from gelatin (1\% solution) 1s directly proportional to dose over the renge studied. similar reaulto were obtained with β-lactoglobulin (0.1% solution); no preferrential oxidation of the N-terminel anino ecid Leucino could be dotected even at doses as low as $1 \times 10^{18} \mathrm{ev} / \mathrm{mal}$.

In the introductory paregraph of this section se stated that the identity of the α-keto acia producte in retained during acia hydrolysia. Evidence for this ia as follows: (a) pyruvic and α-letobutyric acias are the only α-jeto acids observed in hydrolyzatea of unirradiated controlas (b) addition of any one
of the product beide to imediated on untrediated nolutions just prior to hydrolysis does not reaut in any signixicent change in the opectrma of the other componente of maction I^{7} (c) no evidence wos found for the fomation of α-keto acids by redetions of aded fommaldyde or acetaldehyde; (d) an fncresee in the time of hydrolysis froi 10 hours to 36 houre does not introduce a measuruble chonge in $G(>C=0)_{\alpha}^{8}$ It dhould also be noted here that eddition of varlous amino acide, glycine, clutanic acta, etea, to irrudieted protein solution (1 mean ano acid/ms protein) does not result in any preformential change in the cerbonyl product aistribution,

2.4 Ammonta and Amide Groupe

Study of nitrogen products was confined largely to the gelatin sybtem. Line procesced gelatin (Section 2.1) was found to be paxticuleriy muitable, since mont of the mate groupe of the guturine and emparagine readues of the parent collogen are reaved throuch hydrolyels in the menufecturine process (24). Unodisied proteing generally contain aride groups in aufficlent nuber to mabl the rudiethon-chemeal production of "exalde" function at the loter 1 rredtation dosages.

Analysed were mede for aree and "futce" monta, both before and after irradiation. An mppopriate allquot of eech soltrtion wace made alkaline to phenolphtheietn, chilled, and then datilied in vecuo Into a recaver containing 1 mi of 0.1 II $\mathrm{H}_{2} \mathrm{SO}_{4}$ at the temperature of Liquad nttrogen (control analysis eatablishea that mades are not hydrolyzed apprectably aums thin manipulation). The aletillate was then isolated, thawed, and assayed for mania by means of the Nesstex reaction. A second aliquot of eech solution was made 1 I in HCl end heated for 90 minutee at $95^{\circ} \mathrm{C}$ to 41 berate exmonia fron anide linkwgee (25); aubsequent troatment wes then ad described for emonta. Fiture 5 gives typleel hydrolyole dato for control and imediated solutiona of celatin, and Fig. 6 thora the bose-yleld relationships for the
 The possibility that part of the "made" raction as monured in the above procedure antses from otrecter degradation of NO linkaged during the hydroLytis was investigated in scane detail since both peroxides kad carbonyls wnder certain conditions are known to dagrade anino acids with fomation of mania. (26). Hovever, It was found that the addition of hydrogen perordde9 and c-lieto nelds In anounts equivilant to five tine the reapective product a values does not change the observed antde yield. Also, there is no enfect of added ree anino acida in large excess (1 me mino mela/rag proteln).

2.5 Perocides

Hydrogen peroxida was dotexined by the titanium mulfate mothod; total peroxde $\left(\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{ROOK}\right)$ wan neocured iodonetrically. The dotalled procedures equloyed were thone racently given in gerien of reports on the production of organic paroxided in the xadolysis of acucous solutiona of mano acide, peptides, end related compounds (27). In the present application acine difficulty Whas encountened in the ute of the lodide mothod cor menourement of total peroxde in irrodiated gelatin soiutions. Whoree most of the cystems studed In reforence at ative reanonbly stable nolution of x_{3}^{*} on adation of KI in excess, we found in the caue of gelatin that abcorption of I_{3}^{*} ot 550 m decrectsed on btending with a baif-tine of approximately 30 minutes. Howaver; since the meaction of I^{*} with proxidem in these systens 14 mapid coxpared to the feding reection, extrapolation coud be mployed to obtain the initial $I_{3}^{* *}$ concentrations. Peroxide deten are included in mable II.

```
                                3. CEINHAL CONGDDERNTIONS
```


3.1 Blemontary Erocesses.

The over-ail chomical chenge produced in water by absorption of highenergy rediation is reprecented here by

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O} \leadsto \sim \mathrm{H}, \mathrm{OH}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}_{\mathrm{e}}{ }^{\circ} \tag{W}
\end{equation*}
$$

Wh asaund for 7 mays the 100 -ev ytelas as givon by the approxinations $G(H) \approx G(O n)=3, G\left(H_{2}\right) \simeq G\left(H_{2}, O_{2}\right)=0.5(7)$. Recent proposals that the eolvated

 may bo interpreted in toxm of the prinazy atop (W) followed by the intormadiate proceswer

$$
\begin{align*}
& \mathrm{H}+\mathrm{O}_{2} \longrightarrow \mathrm{HO}_{2} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& (\mathrm{A})_{2} \mathrm{HiC}\left(\mathrm{~B}_{2}\right)+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~N})_{2} \mathrm{H}+\mathrm{HCOR}+1 \mathrm{O}_{2} \tag{9}\\
& 2 \mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}
\end{align*}
$$

It it to be noted that step 9 as whtiten atyen oniz a etolchiowatrie reprecen-
 Linely bo be invalued in thif otep in considered in a folloring diecuasion on the rola of orcande peroxidos.
2.2. Luel pe gantion
or the data given tur the equaxHoartal party certainiy the most atrect evidence for monfor farolvenent of meaction in the radiolynit of oxrgemated proteln colutiona ar the resulta obtatned on armouta and waddo production as

 are zemoved by readtion at N-C 1 nutagee undar the deasribed condition. And,

 an upper indit for the colloctive contribution of aide-chatin (and tomatnal)

It might be enticipated on the bashs of naction 3 thec the condmed yield

 that the reported $\mathrm{C}(\mathrm{C}=0)_{a}$ value le besed on cualyoie of cerbony fruation I
 contoining carboyy derivatives. Ondation via retaction 3 of the peptide chain at the lock of lyetne and erginine restucte, for emmple, woud yicld nitrogescontaining auseto acias, ond theae would appear in carbonyl frection II. ${ }^{11}$ as mentlond th the exporimental part, wethoda are being develoned for the detatled analyois of fraction II, but at the presert tio the mort that can be nata is that cirbomy producte ane deanttoly present. of course, part of the dis-

 (footrote 7). Honvver, there eqpear to be other mone batc enosderations involved. For eamaple, there it evidence that oxtdative cleavage of the peptide bond at the loaus of tha glycine wesldue 10 more complicated than 18 ahown by equation 3. Studien of the oxddetion of glycine anlydride indicate (10)that parallol reactlon of the type:

$$
\begin{equation*}
\text { ROOUH }-\mathrm{CH}_{2} R+\mathrm{O}_{2}-n \rightarrow 2 \rightarrow 0 \mathrm{n} \rightarrow \mathrm{H}_{2}+5 \mathrm{COOH} \tag{3a}
\end{equation*}
$$

is involvad. Analogous wocetions heve bect invoked In intarpreting radiationinduced oxtditions of vartous organte opected (20). Also, (as a corollary of neaction 3), it must be ammed that reaction of the gumidino growe of argin2no
may contribute to the yseld of "matde" manda through hydrolysis of guandine undar the analytical conditiona mployed. Invidenco that chemical chate corrosponding to 3 b occure in the rodiolymio of oxgernatod colutiong of arginine in
to be fown in tho older literature (30), blthoug we have not as yet detemined apecifle contuibutions of reantions of this type in proteln mytoms.

 arphosizes the mporemes of extending then etuties to inctudo all of the nitrogen-conteinting coxbomyl producte. Mrene are on cource other poesible oxdation mections thich do not Involve the N-C linkege, but which do yield andno alahyde end anino betone derivatives; oradntion of the aleonol function
 and heterocyclic pap-chatns (31) may alpo coatwhate to the onrbonyl content of froction II. A falriy detadled ptuy of the contributions of the varlous nitzogen-containing couporya producto is now boinc cotried on as an outerowth of the presert warts.

3.3 Heottan spactetaty

Apropos of thit general aubject of the multiplictty of reuction loci in protein ruduoyyels, thare it the inteneating question of whethar or not certain of theok loed undergo preferentiel ettack by on reducala bepore other
 that the production of amonla, alle, and the ceveral carbonyl frections from gelatin axe etwetiy proportional to dode over the range atudied, and that esch of the curven extrapolates throuch the oristin. sinoe the fixct experimental point in 14.3 comeapondo to the romatlon from water of leas than one of rudicel per protein molecule, wo conclude that the observed chentoml changea arice fran Initial reactiona that oecir in parallel. Dath obtained -1th β-lactoglobilin (Bection 2.3) aloo lead to a ginilaw concluaion, in that chronatogrags of the product co-keto acid hydrezones chov (e) no meamurable variation in welative yiela with doot, and (b) no evidence por preferention oxdamion of leucine, the M-tominal acid.

Although the relative contributions of various reaction loci of protein would be expected on a strictly chealcal basis to vaxy with ph, it is interesting to find (fible IC) that the magaltude of the effect of pi on $\mathrm{G}(>\mathrm{C}=0)_{t}$ for pepain is considerably freater than for gelatin et pll values above neutral1ty. While gelatin maintains a relatively extended configuration over the pH range studied, pepoin is denturuted at pH 7 and above to give a random coillike configuration (26). The comparative eriecta of pH on $G(>C=O)_{t}$ in these two systeas would sugcest that rediation-chemical atudies may have useful applications in the stuay of protein structurea in aqueous bolution. 2.4 Role of Oyten

Reforence has been made to the fect that step 9 of the mechand outilned above does not specify the nature of the intemedate formed on reaction of (A$)_{2} \mathrm{BH} \mathrm{CR}_{2}$ radicals with O_{2}. For NC C linkages containing at leaet one If aton attached to nitrogen, two alternate patho for step 9 con be written. Tha asmploet fommation involves hyturogen abstraction with formation of tehydro product ${ }^{12}$

$$
\begin{equation*}
\mathrm{MNH}+C^{\prime}(\mathrm{R})_{2}+\mathrm{O}_{2} \longrightarrow \operatorname{mb} C(R)_{2}+H O_{2} \tag{9a}
\end{equation*}
$$

followed by

$$
\begin{array}{r}
\operatorname{RH}=C(R)_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNH}_{2}+\mathrm{RCOR} \\
2 \pi \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}=
\end{array}
$$

On the other hand, an orgonic peroay indical may be involved

$$
\begin{equation*}
\mathrm{mLI}-\mathrm{C}(\mathrm{R})_{2}+\mathrm{O}_{2} \rightarrow \operatorname{mon}-\mathrm{C}\left(\mathrm{O}_{2}\right) R_{2} \tag{96}
\end{equation*}
$$

and oubsequentiy lesd to the some protuct stolchicmetry via

$$
\begin{aligned}
& \mathrm{MH}-\mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{r}_{\mathrm{a}}+\mathrm{HO}_{2} \longrightarrow \mathrm{H} \longrightarrow \mathrm{HI}-\mathrm{C}(\mathrm{OOH}) \mathrm{R}_{2}+\mathrm{O}_{2} \\
& \mathrm{MHI}-\mathrm{C}(\mathrm{OOH}) \mathrm{R}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{RNH}_{2}+\mathrm{RCOR}+\mathrm{H}_{2} \mathrm{O}_{2}
\end{aligned}
$$

or possibly through

$$
\begin{aligned}
& \mathrm{H} H \mathrm{H} \mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{R}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MH}-\mathrm{C}(\mathrm{OH}) \mathrm{R}_{2}+\mathrm{HO}_{2} \\
& \mathrm{MHILC}(\mathrm{OH}) \mathrm{A}_{\mathrm{e}} \longrightarrow \mathrm{MmH}_{2}+\pi \mathrm{COR} .
\end{aligned}
$$

 type ge, 90 , chice buth the dehytro intemedate and the intemedretes de-
 On the other hand, it doos apear poesibie to aistingulah such intemediates In reactions involving the peptide boud, ($R=x \in O$). In this case, the dehydropeptiden, RCONaCR R_{2}, oxe rioderetely atalbie in aquacus solution (32), and It appears that they can be diferemtated kneticaly from Intermedietes derived fron the orgmic hatroperoxides. th the bacis of the apprach, we
 and crolic dipenptides which indicote tixt both reaptions cia be of importance, end that the rolotive contributions of atops 9 and 96 are deternined by the chenteal propertlea of the anino ceid (rataua) involved.

Although relatively lone-1ived hydroperoxtess are know to be produed in the radiolyol of various ameno nelds, peptides and related compound (27), the evidence is thet nost of the peroxy crows detected in buch cesen are not at the α-carbon position, and are not 41 rectly involved $s . s$ nafor intermediates in oridstive clecrexte of the N-C bond, thosw enino ecids and stiphe peptides that have been foom to give nelativoly high ylelds of orgate hydroperoxtes have alde-chains thet possess athor a terticury corbon atar or at leest two adjucent methylene Group: me relatively stable hydroperoxile(s) thet is fomed in tha rediolysio of axycenated eelatin aolutions with $G \simeq 0.5$ (Section 2.5) 1s premund, therefore, to be essocleted with such whemonn confteurations.

3.5 Appliogtiona to Bolld etate gtudea

On the bestu of the initial proposale roguratng the reectivity of the

$$
\begin{array}{r}
\mathrm{NONH}_{2}-\mathrm{CHR}_{2} \rightarrow \mathrm{RCOH}_{2} \rightarrow \mathrm{CR}_{2}+\mathrm{H}_{2} \\
\rightarrow \mathrm{RCONH}-\mathrm{CR}_{2}+\mathrm{H}
\end{array}
$$

and in a subsequent paper (13) it was shom twat irrolited rolld yepsin on Gissolution in water yielac hich noleculam-welght products contednine the carbongl function. suntine obserotionh have beon reported fran other lab-
 cedures duvelone in the present troxi to a detalled. atuly of congtituent centonyl producte derived fron "dry" protetns following y-irradiation. of the preimenary regulto obtained to date with gelintin, perixum the moot interceting lis the obiempation that (a) the relative ylolds of the variowa individual α wheto acti products are atrongly inthuenced by the presence or aryeen, and that (b) the mectra of oarbonyl actastrom both cracuated and oxpgonated gyatems diffar atrifingly froa the tracing mown in Fis. 4. A prelintindy wenort on thia wrork is in preparmation.

4. Sidelax

Thes aution of lonizing radiatione on compounde containine primary soine, gecondery mine, Itmikylualde and peptide bonid conflisurations are correlated
 chsalical chenge. It is showa thit miofor walation-chentical changes in aqueous
 $\mathrm{R}_{2} \mathrm{H}-\mathrm{CHR}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{w} \rightarrow \mathrm{B}_{2} \mathrm{NH}+\mathrm{RCOR}+\mathrm{H}_{2} \mathrm{O}_{2}$ wero $\mathrm{R}_{2} \mathrm{~N}-\mathrm{CH}_{2}$ may repreaent any of the variousily substituted N-C linimesed of protela molecular structure. Detoflud experimental studica of oxddition prolucts aerived from varioud nuch 1001 are raporived corcelations with studiea on "dry" proteln exe siven.

1. E. S. G. Barron, J. Ambrose, and P. Johnson, Studies on the mechanism of action of ionizing radiations XIII. The effect of X -irradiation on some physio-chemical properties of amino acids and proteins. Radiation Research 2, 145-158 (1955).
2. M. P. Draire, J. W. Giffee, D. A. Johison, and V. L. Koenig, Chemical effects of fonizing radiation on proteins I. Erfect of γ-radiation on the emino acid content of Insulin. J. Ara. Chem. Soc. 72, 1395-1401 (1957).
3. S. Okada and G. Gehrmann, Inactivation of desoxyribonuclease I by X-xaya. IV. Changes in amino acid composition and ultraviolet light absorption induced by ionizing radiation. Blochim. Biophys. Acta 25, 179-182 (1957).
4. R. Lange and A. Pihl, The mechanism of X-ray inactivation of phosphoglyceraldehyde dehydrogenace. Int. J. Rad. B101. 2, 301-308 (1960).
5. A. J. Romant and A. L. Tappel, Aneerobic irradiation of alcohol dehydrogenase, aldolase and ribonuclease. Arch. Biochem. Biophys. 79, 323-329 (1959).
6. A. J. Swallow, Radiation Chemistry of Organic Compounds, New Yoris, Pergemon Press, 1960.
7. B. M. Weeks and W. M. Garrison, Radiolyai of aqueous solutions of glycine. Radation Research 2, 291-304 (1958).
8. M. E. Jayko and W. M. Garrison, Indirect action of radiation on the - HEA-CH2- Inkage in diethylamine (A mechanim for rediation-induced decomposition of the peptide chain). J. Chem. Phys. 25, 1084 (1956).
9. W. M. Dale, J. V. Davies, and C. W. Gilbert, The kinetics and specifities of deanination of nitrogenous compounds by X-irradiation. Blochem. J. 45, 93-99 (1949).
10. W. Bennett and W. M. Garrison, Radiation chemistry, Lawrence Radiation Laboratory Report UCRL-8988, p. 73 (1959).

FIFFRENCES (continued)

11. G. G. Jayson, G. Scholes, and J. Weiss, Chemical action of ionizing radiations in solution. Part XIV. The action or X-rays (200 kv) on sone aliphatic amines in aqueous solution with particular reference to the formation of oximes. J. Chem. Soc. 2594-2600 (1955).
12. R. M. Lemmon, P. K. Gomdoa, M. A. Parsons, and F. Mazzetti, Effects of ionizing radiation on choline chloride and its analogs II. J. Am. Chen. Soc. 80, 2730-2753 (1958).
13. M. E. Jayko and W. M. Gerrison, Formation of $>\mathrm{C}=0$ bonds in the radiationinduced oxidation of protein in aqueous systems. Nature 181, 413-414 (1958).
14. W. Bennett and W. M. Gerrison, Production of amide groupa and amonia in the radiolybis of aqueous solutions of protein, Wature 183. 889 (1959).
15. M. H. Jayko, B. M. Weeks, and K. M. Garrison, Mechanism in the radiolybis of aqueous protein systems. Proc. Second Intern. Conf. on The Peaceful Uses of Atomic Bnergy, paper 921 (United Nations, New York, 1958).
16. H. Edelhoch, The denaturation of pepain I. Macromolecular changes. J. Am. Chem. Soc. 72, 6100-6109 (1957).
17. G. R. Lappin and L. O. Clark, Colorimetric method for determination of traces of carbonyl compounds. Anzi. Chem. 23, 541-542 (1951).
18. C. Cennamo, B. Carafoli, and E. P. Bonetti, Non-enzymatic transamination between peptides and pyridoxal. Isolation of the 2,4-dinitrophenylhydrazones of some ketopeptides. J. Am ${ }_{*}$ Chem. Soc. 78, 3523-3527 (1956).
19. R. R. Porter and F. Sanger, The free amino groups of haemoglobins. Blochem. J. 42, 287-294 (1948).
20. W. M. Garrison, H. R. Haymond, W. Bennett, and S. Cole, Radiation-induced oxidation of aqueous acetic acidmoxygen solutions. Radiation Research 10 , 273-282 (1959).
21. B. Franck and J. Knoke, α-keto acids in protein hydrolyzates. Chem. Ber. 90, 2450-2458 (1957).

REFEREMCES (continued)

22. F. A. Isherwood and D. H. Cruickshank, Chromatographic separation and analysis of mixtures of pyruvic; oxalacetic and α-ketoglutaric acids. Nature 173, 121-122 (1954).
23. A. Meister and P. A. Abendschein, Chronatography of a-keto acid, 2,4dinitrophenylhydrazones and their hydrogenation products. Anal. Chem. 28, 171-173 (1956).
24. A. W. Kenchington and A. G. Ward, The titration curve of gelatin. Bhochern. J. 58, 202-207 (1954).
25. H. B. Vickery, The rate of hydrolysis of wheat gliedin. J. Biol. Chera. 53, 495-511 (1922).
26. A. Schonberg and R. Moubecher, The Strecker degradation of α-anino acids. Chem. Rev. 50, 261-276 (1952).
27. S. Okada; Formation of hydroperoxides from certain anino acids and peptides In aqueous bolutions by irradiation in the presence of oxygen. organic Peroxides in Rediobiology (M. Haissinsky, Ed.) pp. 46-49, Pergemon Press Inc., New York, 1958.
28. N. F. Barr and A. O. Allen, Hydrogen atome in the radiolysis of water. J. Phys, Chem. 63, 988-931 (1959).
29. J. Weiss, Primary processes in the ection of lonizing rudiations on weter: Formation and reactivity of self-trapped electrons ("polarons"). Nature 186, 751-752 (1960).
30. J. Loiseleur, Action of radon on mino acids. Compt. rend. soc. biol. 114, 589.59 (1933).
31. G. G. Jayson, G. Scholes, and J. Weiss, Fometion of formylkyurenine by the action of X-rays on tryptophan in aqueous solution. Blochem. J. 57, 386-390 (1954).

REFERENCES (continued)
32. J. P, Greenstein, Dehydropeptidases. Advances in Enzymology 8, 117-169 (1948).
33. A. Caputo and K. Dose, Direct ection of X-rays on proteins, peptides, and amino acids. Part I. Proteing: Irradation of Iysozyme. Z. Naturforsh 12b, 172-180 (1957).
34. P. Alexander and L. D. G. Hamilton, Irradiation of proteins in the solid state II. Chemical changes produced in bovine serum albumin. Radiation Research 13; 214-233 (1,960).
35. K. W. Taylor and M. J. H. Smith, 1,2-pianino-4-nitrobenzene as a reagent for the detection and determination of α-keto acids in blood and urine. Analyat 80, 607-613 (1955).
36. A. J. Allen, R. B. Steiger, M. A. Magill, and R. G. Franklin, XXIII Anino acids, acylamino acids, dipeptides, ecyldipeptidea, and derivatives of these compounds. II Effects of irradiation with cathode rays and ultra.violet light. Biochem. J. 31, 195-204 (1937).

Production of Reactive Carbonyl. Function in the γ-ray Radiolysis of Oxygenated Protein Solutiona, b

IA: Values of $\mathrm{G}(>\mathrm{C}=0)_{\mathrm{t}}$, for various proteins

IC: Wifect of pH on $\mathrm{a}(>\mathrm{C}=0)_{t}$ for pepsin and gelatin

	Gelatin	Pepsin
pH 1.3	-0	1.34
3.0	.87	1.25
5.0	.89	1.20
7.0	1.04	1.52
9.0		2.21

[^0]
Product Yields in the γ-ray Radiolysis of Oxygenated Solutions of Gelatin ${ }^{\text {a }}$

ProductTotal carbonyl89
α-ketoacids 40
(α-ketoglutartc)
Total anmonia 1.25
Aratde 95
Free 30
Hydrogen peroxide 1.24
Organic peroxide 38Gelatin concentration=1\%, dosem2.5 $\times 10^{19} \mathrm{ev} / \mathrm{ml}$.

1

2

3 trol experiments established that if the solutions were centrifuced prior to hydrolygis, no untoward effects were introduced by the platinum black treatment.

4 contributes to the pyruvic acid yield. However, in several of the runs oxalacetic acid was isolated separately (as the hydrazone) in rinute anounts.

5 We are presently investigating the use of 1,2 -diamino-4-nitrobenzene (35) in the analyais of these complex mixtures of α-liseto acids.

6
Reference 22 shows this to be the case for pyarvic, oxalacetic and α-xeeto glutaric acids. We have found that the seme values also apply within $\pm 5 \%$ to the laoners of giyoxylic, o-ketobutymic and mesoxalic acids.

Recovery of aded α-ketoacids (glyoxylic and α-ketoglutaric) from both irradiated and unirradiated systens was aproximately 85\%.

8
This indicates also that the observed α-ketoacids are not produced in any apprecioble amount through hydrolytic decomposition of radiation-produced β-hydroxy actas.

9 Hydroten peroxide does, however, dacrease the observed yield of α-ketoacids and for thite reason wes routinely removed froa the ixrodated solutions prior to hydrolybie as described in Section 2.3.

FOOTHORS (continued)

${ }^{10}$ The 100 -ev yields for total, "mide", and free omonia are dealgated $G\left(\mathrm{NH}_{3}\right)_{t}, G\left(\mathrm{NH}_{3}\right)_{\mathrm{a}}$ and $\mathrm{G}\left(\mathrm{NH}_{3}\right)_{\mathrm{P}}$ respectively.

11 The proline residue represents en importent exsaple of a tertiary arnino confleuration which through reaction 4 may also contribute to the anino carbonyl content of frection II.

12 Quailtative data on amonie fomation in the photolysis and (cathode ray) radiolysis of acylaraino acids and simple peptides in queous colution are given in the older intersture (ref. 36). Although the diatinction between direct and indirect action was not mede in these early stuaied, it is of Interest to note that dehydro producto of the type $R C O N=C R_{2} \wedge^{\text {Included anong }}$ the posaible reaction intermediates.

Fis. 1. Effect of irradiation on the reactionc of 2,4-dinitrophenylhydrazine with gelatin.

Fig. 2. Absorption spectra of 2,4-dinitrophenylhydrazine and derivatives.

F1g. 3. Carbonyl production fron 1\% gelatin as a function of time of irradiation.

Fig. 4. Densitometric tracing of typical chromatogram of α-ketozcid 2,4-dinitrophenylhydrazones from gelatin: (1) α-letogiutaric acid; (2) glyoxylic acid; (כ) pyruvic acid; (4) α-ketobutyric acidj (5) phenylpyruvic acia.

Fig. 5. Typicel hydrolysis date for control and Irradiated 1% gelatin.

Fig. 6. Ammonia production from 1% gelatin aa a function of time of irradiation.

Fig. 1

$M U-24250$

Fig. 2

MU-24252

Fig. 3

Fig. 4

MU-24253

Fig. 6

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: a Unless otherwise stated, dose $3 \times 10^{18} \mathrm{ev} / \mathrm{ml}$, proteln concentration $=0.5 \%, \mathrm{pH} \sim 5$. b Each of the reported valuep represents an average of at least tivo independent measurements.

 ## ${ }^{c}$ For a 0.3% solution.

 ${ }^{d}$ Caitonyl production in oxygen-free solution is attributed to disproportionation reactions of the type $2 R N H F-\mathrm{CR}_{2} \rightarrow \mathrm{RNH}_{2}-\mathrm{CHR}_{2}+\mathrm{RN}_{2}=\mathrm{CR}_{2}$ and subsequent hydrolyais of the dehydro product (CA. ref. 7).
 e Not measured.

