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Abstract 
When an individual honey bee (Apis mellifera) changes in a hive, its’ glandular output 

also changes. For example, a worker’s mandibular glands (Mdg) typically produce 

larval food and other pheromones but in queen-less hives it will more closely resemble 

a queen’s. As the biosynthesis of insect pheromones occurs in specialized tissues and 

involves regulatory modifications to conserved metabolic pathways, we hypothesized 

microRNAs (miRs), short (~22 nucleotide) RNA negative transcriptional modifiers 

and known regulators of metabolic pathways, would have significant roles in 

regulating pheromone production in honey bee Mdgs. We further hypothesized 

queen-less workers would have similar miR expression profiles as queens. Small 

RNA-Seq of the Mdg identified robust caste-specific (queen and worker) miRs profiles 

as well as a high number of previously undescribed miRs. Worker-expressed genes in 

the Mdg were enriched for predicted miR response elements (MREs) of miRs 

coherently up-regulated in both queens and queen-less workers with some ovary 

activation. In addition, novel worker-expressed genes were enriched for MREs of 

novel queen-expressed miRs. Predicted miR-protein-protein interaction networks 

identified potential regulatory hubs and detailed regulatory roles for individual miRs 

expressed according to caste and mating status. We also found putative worker 

pheromone biosynthesis genes expressed in queens are enriched for MREs of two 

worker-expressed miRs; ame-miR-31a-5p and ame-miR-92b-3p. Interestingly the two 

fatty acid synthase genes that may be expressed according to caste are predicted to 

contain the highest number of MREs for anti-correlated miRs of all putative 
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pheromone biosynthesis genes. MREs for ame-miR-375-3p that are highly up-

regulated in queens and queen-less workers relative to queen-right workers, are 

enriched in genes down-regulated in queen-less workers relative to queen-right 

workers. Mandibular gland RNA-sequencing of queen-less worker bees fed an 

inhibitor for ame-miR-375-3p identified multiple genes involved in metabolic 

processes, autophagy, and stress responses reverting to the expression profile of a 

queen-right worker.  
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Introduction 

Honey bees (A. mel) are eusocial animals and live in colonies comprised of a single 

reproductive female queen and typically tens of thousands of sterile workers who 

provide for the young, maintain and defend the hive, and forage for food [1]. Workers 

are well-studied examples of phenotypic plasticity where worker’s phenotypic roles 

change in response to the larger needs of the hive [1].  A colony’s ability to efficiently 

respond to the larger needs of the hive relies in large part upon a complex system of 

chemical communication where a worker’s distinctive role is characterized by the 

output of its’ many exocrine glands [1–3]. Queen's regulate worker behavior with a 

complex chemical signal produced by multiple glands that specifically inhibits 

swarming, the rearing of new queens, the onset of foraging behavior, dopamine 

expression in the worker brain, and juvenile hormone (JH) biosynthesis while 

promoting a retinue response and the expression of nurse-associated genes such as 

vitellogenin [4,5].  A worker retinue response consists of workers licking the queen 

and rubbing their antennae on her cuticle to then spread her signal throughout the 

colony. In the presence of a healthy queen signal, young workers feed worker-destined 

larvae with the secretions of two specialized glands, the hypopharyngeal and 

mandibular gland, comprised of proteins, fatty acids, and sugars [1,6]. Workers no 

longer receiving a queen signal will raise a new queen by moving a developing larvae 

into a specialized cell and provisioning it with an adjusted ratio of sugar, 
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proteinaceous and fatty acid secretions from the mandibular and hypopharyngeal 

glands commonly known as “royal jelly” [1,6].  

The mandibular gland (Mdg) is a paired sac-like gland in the head attached to 

the mandible that primarily secretes fatty acid-derived pheromones in both workers 

and queens [7–13]. Worker Mdg are smaller than a queen’s and change output 

according to colony role [8,14–16]. Younger workers produce nursing-related free 

fatty acid compounds, 10-hydroxy-2-decenoic acid (10-HDA) being the primary 

compound [1,17–19]. 10-HDA has anti-inflammatory and histone deacetylase 

inhibition properties and is an important regulator of caste-specific larval 

developmental pathways [20,21]. As workers transition to foraging, the worker Mdg 

significantly increases production of 2-heptanone, once thought to be an alarm 

pheromone but may be a mild paralyzing agent [15,22]. As workers age, the Mdg 

displays structural differences as well as changes in the organelle composition in the 

various cell types within the ultrastructure, the most apparent being the composition 

of mitochondrial sub-types [15,17,23]. Specifically, during periods of high fatty acid 

production, the periphery of worker Mdg cells are populated with large mitochondria 

and large smooth endoplasmic reticulum [15,23].   

 Caste-specific blends of fatty acid-derived Mdg pheromones are product of a 

bifurcated biosynthesis pathway where genes related to fatty acid β-oxidation, 

amongst other cellular pathways, are expressed according to caste [4,8,14,24–26]. 

Glandular output in worker Mdgs as well as the underpinning gene expression is 

highly labile in conjunction with the shifting needs of the hive. For instance, Mdg 
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profiles of many workers in queen-less (QL) colonies will partially resemble that of a 

queen which then revert to “worker-like” upon introduction of a queen [4,8,14,27–29]. 

Foragers that return to brood-feeding duties are capable of re-activating brood-food 

biosynthesis pathways in their Mdgs [30,31]. While it has been demonstrated that 

the overall juvenile hormone (JH) levels and brain gene methylation profiles return 

to “nurse-like” state [30,32], much remains unknown regarding the molecular 

regulatory mechanisms underpinning phenotypic plasticity observed in Mdg.    

Exocrine glands such as the Mdg are specialized animal secretory tissues 

where evolutionary, pleiotropic constraints typical of more conserved tissues are 

relaxed [33,34]. In such contexts, novel biosynthesis pathways emerge via the 

exaptation of deeply conserved metabolic gene modules [35–38]. A gene module can 

be defined as a cellular biochemical network, or patterns of connectedness between 

genes greater than those found in a randomly connected network [34]. The relaxed 

pleiotropic constraints that lead to the development of novel tissues are a significant 

source of evolutionary novelty where alterations to the regulatory regimen of gene 

modules are achieved, for instance, via sequence changes in transcription factor (TF) 

binding sites [34,35,39,40]. While transcriptional regulation is an important area of 

focus in understanding the origins of novel phenotypes, post-

transcriptional regulatory actors, such as microRNAs, also deserve scrutiny [41–46]. 

MicroRNAs (miRs) are small (~22 nt) endogenous non-coding RNAs that 

regulate a myriad of biological processes by inhibiting the translation of specific 

target proteins [41,47]. In animals, the RNA-induced silencing complex (RiSC) binds 
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an miR with target messenger RNAs (mRNAs) via base pairing interactions to either 

degrade the mRNA or inhibit translation machinery [47]. MiR expression is often 

highly tissue specific and miR genomic diversity has been correlated to organismal 

complexity [44,45,47–49]. While a single miR binding site, or miR response element 

(MRE), often has a muted negative effect on protein level, miRs exert significant 

phenotypic effects upon single gene by having multiple and diverse MREs or via a 

single miR targeting multiple nodes within a cellular pathway [48,50–52]. Sequence 

divergences in MREs contribute to paralog neofunctionalization [53,54], a major 

evolutionary driver of specialization in novel tissues [55–57]. In such novel contexts, 

it is theorized that gene modules acquire novel regulatory apparatus via novel miRs 

more readily than TFs partially due to the deleterious pleiotropic effects novel TF 

binding domains may be more likely to confer [45,46,58–60]. Interestingly, the rise of 

novel miR families occur at a higher rates in animals relative to the rise of novel TF 

families [46]. Furthermore, novel miRs tend to emerge in scenarios of 

relaxed pleiotropic constraint such as specialized tissues or novel developmental 

contexts where it’s predicted the more severe negative pleiotropic effects are avoided 

by novel miRs being relatively lowly expressed [46].  

MiRs add robustness to cellular processes by stabilizing developmental 

switches, regulate biochemical bottlenecks and gene modules, acting as transcription 

buffers, and are fine-tuners of protein dosage [48,52,61]. The stabilization of gene 

expression by miRs canalizes phenotypes by augmenting the heritability of a trait 

and sharpening the action of natural selection [62]. Highly complex metabolic 
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networks are composed of smaller functional modules that sense a wide range 

of external input via sensory bottlenecks accordingly adjusting the expression of 

module enzymes [63]. The complex nature of metabolic networks allows for a greater 

potential of evolutionary exaptation where the functional modules can be duplicated 

and undergo neo-functionalization [36]. MiRs are well-known regulators of metabolic 

homeostasis as well as cross-talk between metabolic modules [52,64–66]. In 

particular, miRs have been shown to target network hubs and pathway bottle-necks 

of metabolic flows [52]. 

 Insect pheromone biosynthesis pathways are derived from deeply conserved 

metabolic pathways and modules [37,38]. As metabolic pathways and modules are 

tightly regulated by microRNAs, we predict microRNAs will also have a significant 

role in the regulation of phenotypic plasticity observed in the honey bee Mdg. 

Furthermore, as queen-less worker Mdg gene expression and pheromone profiles 

resemble that of a queen, we predict the miR expression profile will as well. We also 

predict the inhibition of miRs coherently up-regulated in both queen-less workers and 

queens will act to return a queen-less Mdg transcriptional profile to a queen-right 

worker (“queen-right” meaning workers in a colony with a queen present). As 

exocrine tissues are theorized to be contexts of relaxed pleiotropic constraint, we 

further predict taxonomically restricted miRs will comprise a significant portion of 

expressed miRs while individually being lowly expressed. As worker-expressed genes 

are more likely to show signs of positive selection [67], we likewise predict enrichment 
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for MREs of taxonomically-restricted miRs amongst targeted genes to be more likely 

in workers than in queens.  

Here, we use small RNA sequencing to quantify miR expression profiles of two 

honey bee tissues across multiple phenotypes and identify strong similarities in the 

in miR expression profiles of queens and queen-less workers relative to queen-right 

workers. We also identify many gene modules caste-expressed miRs are predicted to 

target. Additional RNA-sequencing of queen-less bee MGs where an miR showing 

high expression in both queen-less workers and queens relative to queen-right 

workers was inhibited showed many genes returning to a “queen-right”-like MG 

expression profile.  

Results and discussion 

MicroRNA expression clusters strongly according to caste and 

tissue type   

In order to determine if miR expression correlated with caste and or mating status, 

we profiled small RNA expression of queens, queen-right workers, and queen-less 

workers with and without activated ovaries. We found miR expression in the 

mandibular gland correlated strongly with tissue type and caste (Fig 1, Table 1). 

Integrating the individual expression patterns of all differentially-expressed miRs 

using k-means clustering methods determined three miRNA expression clusters to 

be optimal. Sequencing data (Table S1) and pairwise comparisons (Table S2) across 
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multiple sample types are both provided in the supporting material. 

 

 

Fig. 1. MicroRNA expression clusters. A) Multidimensional scaling (MDS) plot of the 

miR expression of queen mandibular gland (“Q-Mdg” represented as gold triangles, 

n=6 samples: three virgin & three mated queens), worker mandibular gland (“W-

Mdg” represented as aqua square grids. n=9 samples: three queen-right workers 

(QRW), three queen-less workers with un-developed ovaries (QLU), three queen-less 

workers with developed ovaries (QLD)), queen fat body (“Q-FB” represented as orange 

crosses. n=6 samples: three virgin & three mated queens), worker fat body (W-FB 
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represented as aqua circles. n=9 samples: three queen-right workers (QRW), three 

queen-less workers with un-developed ovaries (QLU), three queen-less workers with 

developed ovaries (QLD). B) Heat map of correlation between sample type and miR 

expression clusters as determined by k-means clustering. The values in the squares 

represent the correlation value to the group and the values in parentheses represent 

the calculated p value. Cluster 1 most strongly aligned with miR expression patterns 

of Q-Mdg samples, cluster 2 with W-Mdg samples, and cluster 3 with both Q-FB and 

W-FB samples). C) Hierarchical clustering of miR by co-expression modules. The 

expression of individual miR is displayed in a hierarchically clustered heatmap. 

Queen and worker fat body samples (blue) cluster together whereas queen (green) 

and worker (orange) Mdg show distinct co-expression patterns. Correlated miR 

expression intensity is shown in green where anti-correlated expression intensity is 

red.  

 

 

Table 1. MicroRNA Co-expression Clusters 

Cluster 1 (Mandibular Gland: Worker) ame-miR-14-3p, ame-miR-278-3p, ame-miR-3049-5p, ame-miR-31a-5p, 
ame-miR-3759-3p, ame-miR-6043-3p, ame-miR-6047a-3p, ame-miR-
6047a-5p, ame-miR-750-3p, ame-miR-92b-3p, ame-miR-932-5p, ame-
miR-9883-5p, ame-miR-989-3p, ame-miR-993-3p, NC_037638.1_16823-
3p, NC_037639.1_24322-3p, NC_037641.1_28636-3p 

Cluster 2  (Mandibular Gland: Queen) ame-bantam-3p, ame-let-7-5p, ame-miR-11-3p, ame-miR-12-5p, ame-
miR-13a-3p, ame-miR-190-5p, ame-miR-275-3p, ame-miR-2765-5p, ame-
miR-279a-3p, ame-miR-279b-3p, ame-miR-279c-3p, ame-miR-279d-3p, 
ame-miR-281-3p, ame-miR-283-5p, ame-miR-2944-3p, ame-miR-29b-3p, 
ame-miR-305-5p, ame-miR-306-5p, ame-miR-317-3p, ame-miR-34-5p, 
ame-miR-3477-5p, ame-miR-3718a-3p, ame-miR-3720-5p, ame-miR-375-
3p, ame-miR-3785-3p, ame-miR-3791-3p, ame-miR-6005-5p, ame-miR-
6037-3p, ame-miR-6040-3p, ame-miR-79-3p, ame-miR-8-3p, ame-miR-
996-3p, NC_037648.1_3252-3P 

Cluster 3 (Fat Body: Queen and 
Worker) 

ame-miR-1-3p, ame-miR-10-5p, ame-miR-100-5p, ame-miR-125-5p, 
ame-miR-133-3p, ame-miR-137-3p, ame-miR-13b-3p, ame-miR-184-3p, 
ame-miR-193-3p, ame-miR-2-3p, ame-miR-252a-5p, ame-miR-252b-5p, 
ame-miR-263a-5p, ame-miR-263b-5p, ame-miR-276-3p, ame-miR-277-
3p, ame-miR-2788-3p, ame-miR-2796-3p, ame-miR-282-5p, ame-miR-
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307-3p, ame-miR-315-5p, ame-miR-316-5p, ame-miR-3719-3p, ame-miR-
3786-3p, ame-miR-3786-5p, ame-miR-7-5p, ame-miR-71-5p, ame-miR-
87-3p, ame-miR-927a-5p, ame-miR-92a-3p, ame-miR-92c-3p, ame-miR-
9a-5p 

The table lists the individual honey bee microRNAs comprising microRNA expression 

clusters most strongly correlated with sample type as determined by k-means 

clustering. 

 

 

Queen-less bees have “queen-like” miRNA expression patterns 

Unsurprisingly, miRs differentially-expressed across tissues (DE-miRs) are 

comprised of miRs found within the above expression clusters (Table S2). 

Interestingly, in the mandibular gland, there is coherence in the relative direction of 

expression for many DE-miRs between queen-less and queen-right workers and 

between queens and queen-right workers (Table 2). There are 19 DE-miRs between 

Q-FB and W-FB and a single DE-miR between queen-less and queen-right workers 

(Table S3). Many fat body DE-miRs (11 of 19) are coherently expressed between 

queens and workers in the Mdg but the miRs often differ in the relative amount of 

total expression within each tissue. For instance, seven miRs, including ame-miR-

375-3p and ame-miR-3477-5p, are up-regulated in queens relative to workers in both 

tissues but represent a larger percentage of the relative expression in the Mdg (Table 

S3, S4). There were no significant expression differences between mated queens and 

virgin queens. One possible factor in the lack of significant expression difference may 

have been that our mated queens were not observed to have laid any eggs. We were 
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unable to replicate queen egg-laying observed in our micro-hives that others reported 

[8].  

 
Table 2. MicroRNA coherent expression 

 
miR Expression (LogFC ) 
 

MRE enrichment 
QL v QRW 

miR 
Q v 
QRW  

QLD v 
QRW  

QLD v 
QLU CDF FE 

ame-miR-11-3p 1.352 1.426 2.568 1.39E-05 1.26 
ame-miR-3477-5p 1.287 1.178 1.379 1.85E-03 1.21 
ame-miR-375-3p 1.135 1.125 0.767 2.08E-02 1.04 
ame-miR-3785-3p  1.578 1.132   
ame-miR-7-5p 2.176  2.147 5.19E-11 1.24 
ame-miR-14-3p -1.387 -2.047 -2.429   
ame-miR-9883-5p -3.751  -8.176   

Table 2 lists the miRs coherently regulated in queen mandibular glands and queen-

less workers with developed ovaries workers versus queen-right workers and queen-

less workers with un-developed ovaries. Numbers are the log fold change in 

expression of the first listed group versus the second. Also listed is the enrichment of 

miR response elements (MREs) within genes down-regulated in queen-less worker 

Mdgs relative to queen-right worker Mdgs (QL v QRW). Listed are significant 

cumulative distribution function (CDF) p values and the fold enrichment (FE) of the 

number of MREs within a set of genes relative to all genes.  

 

Anti-Correlated expression of microRNAs and transcripts 

according to caste and mating status 

To examine the regulatory roles of miRs in the contexts of caste and mating-status, 

we conducted a systems-level analysis integrating our miR expression and target 

prediction data with previously published mandibular gland RNA-Seq data [14]. As 
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miRs are known regulators of gene modules [52,64–66], we sought to elucidate 

specific modules important in caste and mating-status regulated by miRs up-

regulated in the same context. To accomplish this, we generated multiple putative 

miR-Protein-Protein Interaction (mPPI) networks comprised of predicted miR-target 

pairings of up-regulated miRs and cognate predicted targets down-regulated in the 

same context (i.e. anti-correlated). Known protein-to-protein interactions between 

target genes with Drosophila melanogaster orthologs were taken from the BioGRID 

protein-to-protein interaction database [68]. First-degree interactor proteins were 

added and filtered by those with an A.mel ortholog predicted to be targeted by an 

anti-correlated miR (Table S7, S8). We then conducted network topological analysis 

on each network to identify potential regulatory interactions between up-regulated 

miRs and anti-correlated gene modules potentially relevant in glandular function.  

Large mPPI networks comprised of the targets of all up-regulated miRs did not 

display significant degrees of network topology such as average number of neighbors, 

characteristic path length, clustering coefficient, or network density relative to 

random sets of genes (Table S5). This may be because of the large number of genes 

and 1st degree interactors comprising these mPPIs. Relatively smaller mPPIs 

comprised of the down-regulated targets of individual anti-correlated miRs displayed 

significant topology (Table S6) which comports with evidence that individual miRs 

regulate multiple nodes within a gene modules or biological pathways [48,50–52]. 

 

Predicted anti-correlated miR-target pairs with respect to caste  
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A vast majority (812/1028) of differentially-expressed genes (DEGs) down-regulated 

in Q-Mdg relative to W-Mdg [14] are predicted to be targeted by at least one anti-

correlated miR (Table S7) underscoring a potentially significant role in caste 

phenotypes. [14]Each protein in the “QvW” mPPI is targeted by an average of 5.31 

DE-miRs irrespective of the number of predicted MREs for a particular miR within a 

DEG (Table S8). The most highly targeted nodes are generally involved in structural 

or catalytic activities (Fig 2).  
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Fig. 2. Functional GO categories of highest predicted targeted DEGs. Number of 

genes in functional GO categories representing the top 20% predicted targets of anti-

correlated miRs. “QvW” (white) is genes down-regulated in queens versus queen-right 

workers targeted by anti-correlated miRs. “WvQ” (pink) is genes down-regulated in 

queen-right workers versus queens. “QLWvQRW” (blue) is genes down-regulated in 

queen-less workers versus queen-right workers. “QRWvQLW” (green) is genes down-

regulated in queen-right workers versus queen-less workers. 

 

When considering the anti-correlated expression and predicted number of 

target genes, ame-miR-375-3p is putatively the most relevant miR (Fig 3A, 3B, Table 

S6). Ame-miR-375-3p accounts for a higher proportion of expression in Mdg samples 

relative to FB samples but is also expressed higher in queens in both tissues (Table 

S3). Interestingly, both ame-miR-3477-5p, and ame-miR-8-3p are predicted to target 

relatively few DEGs but represent a relatively high percentage of the overall miR 

expression profile in the mandibular gland relative to FB samples. Of note, Ame-miR-

3477-5p is expressed higher in queens relative to workers in both tissues, while . 

Ame-miR-8-3p additionally represents a relatively high proportion of overall 

expression in the FB but does not display FB caste expression bias. Ame-miR-317-3p 

is expressed higher in queens in both tissues but displays no significant difference 

between tissues suggesting it may be a systemic regulator of caste. Ame-miR-34-5p 

is only expressed higher in Q-Mdg relative to QRW-Mdg and is slightly elevated, 

though statistically significantly, in W-FB relative to W-Mdg.  
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Fig. 3. Interaction networks of miRs with the highest expression changes and highest 

number of predicted targets. A) miR-protein-protein interaction (mPPI) network of 

ame-miR-375-3p, up-regulated in queens, predicted down-regulated protein targets 

in queens relative to queen-right workers (QRWs) with Drosophila melanogaster 

orthologs [14] and their first-degree interacting proteins with an Apis mellifera 

ortholog also predicted to be targeted by ame-miR-375-3p. Predicted down-regulated 

protein targets are shown in squares with rounded edges where the size and color 

intensity reflect up (red) or down (blue) regulation in terms of the log difference in 

average counts per million. First-degree interactors are not differentially-expressed 

and are shown as small points. Protein-protein and predicted miR-protein 

interactions are shown with straight lines where predicted miR-protein interactions 

with supporting evidence in Drosophila melanogaster are shown as wavey lines. B) 

Top ten log 2 values of the product of average counts per million for miRs up-regulated 

in queens relative to QRWs and total predicted targets among genes down-regulated 

in queens relative to QRWs [14]. C) Top ten log2 values of the product of average 
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counts per million for miRs up-regulated in QRWs relative to queens and total 

predicted targets among genes down-regulated in QRWs relative to queens [14]. D) 

miR-protein-protein interaction (mPPI) network of ame-miR-14-3p, up-regulated in 

QRWs relative to queens, predicted down-regulated protein targets in QRWs relative 

to queens with Drosophila melanogaster orthologs [14], and their first-degree 

interacting proteins with an Apis mellifera ortholog also predicted to be targeted by 

ame-miR-14-3p. 

 

 

The expression of miR-375-3p has been identified as an important regulator of 

pancreatic processes; a gland with both exocrine and endocrine functions related to 

the digestion and regulation of blood sugar levels [69–72]. MiR-375-3p is a putative 

biomarker for pancreatic cell death, diabetes, and prostate cancer and is known to 

regulate multiple aspects of pancreatic b-cell function, including clustering and islet 

formation, lipoapoptosis, phosphatidylinositol 3-kinase (PI3K) signaling, insulin 

exocytosis via Na+ channel regulation, glucose homeostasis, and vesicle fusion [64,69–

80]. PI3K regulatory subunit alpha has multiple predicted MREs for ame-miR-375-

3p and reverts to worker-like expression in antagomir-fed bees (Table S9). The U-

Shaped (LOC100577801) transcription factor, a target of PI3K [81], regulates insect 

organ differentiation [82] has multiple predicted MREs for ame-miR-375-3p, but did 

not revert to a worker-like expression profile in antagomir-fed bees (Table S9) 

perhaps due to its’ many predicted MREs for other caste-expressed miRs.  
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Mir-375-3p is heavily down-regulated in multiple types of cancer including 

gastric cancer cells where it targets a non-receptor tyrosine kinase and colorectal 

cancer cells where it targets MAP3K, a serine/threonine-specific protein kinase, jak2, 

a non-receptor tyrosine kinase, and Atg7, an autophagy pathway gene [83–85]. 

Tumor cells combat anoxic conditions by upregulating autophagy-related genes and 

miR-375-3p negatively regulates autophagy-associated genes in hepatocellular 

carcinoma cells [86]. In honey bees, ame-miR-375-3p is found in royal jelly, is 

expressed more highly in queen-destined larval development [87–91], is a potential 

regulator of juvenile hormone related genes [92], and involved in zygotic genome 

activation in early embryogenesis [89]. Knockdown of vitellogenin (Vg) in the worker 

fat body was found to decrease ame-miR-375-3p signal in the brain [93].  

As with the “QvW” mPPI, most DEGs in the “WvQ” mPPI (1355/1601) are 

predicted to be targeted by at least one anti-correlated miR (Table S7). The 921 D. 

melanogaster orthologs of 1009 DEGs (Table S7, S8) account for approximately 63% 

of all down-regulated transcripts in this context [14]. Each protein in this mPPI 

network is targeted by an average of 5.1 DE-miRs (Table S8).  

The DEGs with the most predicted targets primarily function in cellular 

transport and catalytic activity including regulation of organ growth and 

intracellular signal transduction (Fig 2). Ame-miR-14-3p is putatively the most 

influential miR in the context of QRW-Mdg given the degree of increase in expression 

relative to Q-Mdg that accounts for over 40% of total expression in QRW-Mdg (Fig 

3C, 3D, Table S4) and is predicted to target ~16% of total targets (Table S6). While 
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still a large proportion of total expression in the Fb, ame-miR-14-3p represents a 

significantly larger proportion of expression in the Mdg (Table S3) and is not 

differentially-expressed according to caste in the Fb. Other putatively relevant miRs 

in this context include ame-miR-263a-5p, ame-miR-989-3p, ame-miR-9883-5p, ame-

miR-31a-5p, and ame-miR-263b-5p. The majority of ame-miR-989-3p, ame-miR-31a-

5p, and ame-miR-9883-5p, expression appears to be concentrated in the W-Mdg. Ame-

miR-9883-5p is minimally expressed in all other assessed contexts. Ame-miR-989-3p 

and ame-miR-9883-5p only show significant up-regulation between W-Mdg and Q-

Mdg and nowhere else assessed whereas ame-miR-31a-5p is up-regulated in Q-FB 

relative to both Q-Mdg and the W-FB in addition to up-regulation in W-Mdg relative 

to Q-Mdg. Roughly a third of anti-correlated genes are predicted to be targeted by 

ame-miR-9883-5p, a miR only known in honey bees, and ~37% are predicted to be 

targeted by ame-miR-989-3p. Ame-miR-263a-5p, already a high overall percentage of 

expression in Q-Mdg, is expressed more highly in W-Mdg by almost an order of 

magnitude representing the second most influence in terms of expression yet is 

predicted to target a relatively small proportion (approximately 10%) of anti-

correlated genes. Furthermore, ame-miR-263a-5p is expressed more highly in the FB 

relative to the Mdg and more highly in the W-FB relative to Q-FB suggesting a role 

as a systematic regulator in the worker caste. Two novel miRs, NC_037641.1_28636-

3p and NC_037648.1_3252-3p, are predicted to be relatively influential in the Mdg 

primarily based on the number of predicted target genes. While the expression of 

these two miRs is relatively low in the Mdg, of assessed tissues it is restricted to the 
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W-Mdg. Interestingly, the NC_037648.1_3252-3p is predicted to regulate the highest 

number of nodes (817) in this putative mPPI and ~50% of all down-regulated genes.  

MiR-14-3p is involved in the regulation of fat metabolism, stress tolerance, as 

well aspects of calcium signaling associated with developmental apoptosis and 

autophagy in D. melanogaster [94–96]. MiR-14-3p levels are positively associated 

with stress tolerance and negatively associated with TAG and diacylglycerol (DAG) 

levels [96]. Lipid levels in insulin-producing neurosecretory cells in the brain, 

themselves theorized to have derived from hormone-producing pancreatic b cells, are 

regulated by the expression of miR-14-3p-target sugarbabe [97]. Inositol 

trisphosphate (IP3) and internal membrane-associated DAG are calcium signaling 

molecules that regulate autophagy flux and apoptosis [98,99]. An IP3 signaling 

pathway molecule, Inositol 1,4,5-trisphosphate kinase 2 (ip3k2), is directly targeted 

by miR-14-3p in D. melanogaster salivary glands where it regulates apoptosis and 

autophagy [94]. This effect was tissue-specific where systemic miR-14-3p loss or 

expression either prevented or precipitated, respectfully, stress-related apoptosis and 

autophagy in the salivary glands but not in the fat body [94]. Ame-miR-14-3p is also 

important in insect development [100,101] and one of the most highly expressed miRs 

in Apis royal jelly [91].  

Predicted anti-correlated miR-target pairs with respect to reproductive status  

As in previous comparisons, the majority (1531/2382) of genes down-regulated in 

queen-less bees mandibular glands (QL-Mdg) relative to QRW-Mdg [14] are predicted 

to be targeted by at least one anti-correlated miR (Table S7). The “QLWvQRW” mPPI 
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network, generated as previously described, contains 1101 D. melanogaster orthologs 

of 1207 DEGs accounting for approximately half of all down-regulated transcripts in 

this context (Table S7, S8). Proteins in this mPPI network are targeted by an average 

of 1.86 DE-miRs (Table S8). The anti-correlated DEGs predicted to be the most highly 

targeted are associated with multiple GO terms shown in Fig 2. As in the “QvW” 

mPPI, ame-miR-375-3p is predicted to influence gene expression most significantly  

given the degree of relative increase in expression, that it accounts for ~8% of total 

expression (Table S4), and the enrichment of MREs in anti-correlated genes (Table 

2) where it is predicted to target 40% of anti-correlated genes (Table S6). 

Slightly less than half (183/379) of the genes down-regulated in QRW-Mdg or 

QLU-Mdg relative to QLD-Mdg are predicted to be targeted by at least one anti-

correlated miR (Table S7). The “QRvQL” mPPI network contains 134 D. melanogaster 

orthologs of 184 DEGs (Table S7, S8) and account for approximately half of all down-

regulated transcripts in this context [14]. Proteins in this mPPI network are targeted 

by 1.48 DE-miRs (Table S8). As in “WvQ” mPPI, ame-miR-14-3p is putatively the 

most relevant miR in terms of association with a QRW-like state given its’ level down-

regulation in QLD-Mdg relative to QRW-Mdg; a decrease from roughly half of total 

expression to about ten percent (Table S4). 

 

Coherence of Anti-correlated Target MicroRNA-Gene Pairs in 

the Mandibular Gland between Queens and Queen-less 

Workers  
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To investigate the degree to which the “queen-like” mandibular gland phenotype is a 

property of gene regulation via microRNA, we quantified the coherence of anti-

correlation, that is, predicted pairings of up-regulated miRs and cognate down-

regulated predicted targets, shared between QLW-Mdg and Q-Mdg relative to QRW-

Mdg. The threshold by which a gene was considered coherently down-regulated was 

simply if it was found to be significantly down-regulated in both cases [14].  

In our Mdg dataset, more miRs were differentially-expressed in the Mdg with 

respect to caste (52) than mating status (11) (Table S3). In contrast, the number of 

genes seen expressed in the Mdg [14] were significantly differentially-expressed 

according to caste (2629) and mating status (2761) were roughly equivalent [14]. 

Seven caste-expressed miRs show coherency in expression direction (Table 2). 

Interestingly, only a small percentage (~12%) of DEGs down-regulated in QLW-Mdg 

relative to QRW-Mdg are also down-regulated in Q-Mgd relative to QRW-Mdg (Table 

S10). Of the 243 total DEGs coherently expressed between queens and queen-less 

workers, 151 are predicted to be targeted by coherently up-regulated miRs (Table 

S11). The most significantly enriched GO categories of coherently targeted genes 

were either related to regulation of developmental, structural, or metabolic processes 

(Fig S1).  

Anti-correlated target-miR pairs coherent between Q-Mdg and QLW-Mdg of 

note include many transcription factors and other effectors of transcription (Table 

S11). The transcription factor Ken, predicted to be targeted by both ame-miR-375-3p 

and ame-miR-7-5p, is an established negative regulator of select components of the 



 21 

JAK/STAT pathway in D.mel which transmits extracellular signals to the nucleus 

[102]. Ken is intermittently expressed during D. melanogaster development across 

multiple tissues [102]. Regulation of JAK/STAT components according to caste in the 

Mdg would align with the suggestion that developmental plasticity is achieved via 

selective regulation of this pathway [102]. Activating transcription factor 3 (ATF3), a 

negative regulator of the toll-like receptor pathways [103], is involved in a wide array 

of cellular stress responses [104–106], most interestingly so in pancreatic b-cells 

where it is up-regulated in the context of high concentrations of palmitate [107]. T-

box genes are a diverse group of metazoan limb and organ developmental regulators 

[108]. The groucho protein, predicted to be targeted by ame-miR-11-3p and ame-miR-

7-5p, is a member of a protein family of transcriptional co-repressors required for 

multiple developmental pathways including Notch and Wnt [109]. Dead ringer (dri) 

is a transcription factor essential in the development of the nervous system, salivary 

gland ducts, and cell shape in D.mel and is also expressed in salivary gland ducts 

[110–112].  

The relatively low number of coherently expressed genes between queens and 

queen-less workers may highlight potential function in active reproduction in honey 

bees irrespective of caste. Interestingly, MREs for four of the five coherently up-

regulated miRs in queens and queen-less workers (Table 2) are significantly enriched 

in genes down-regulated in queen-less workers relative to queen-right workers but 

not in genes down-regulated in queens. Investigations into the relatively larger 
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proportion of non-caste-expressed genes regulated by mating status-associated miRs 

may provide mechanistic insight into worker-specific reproduction.  

 

Taxonomically restricted miRs target genes expressed 

according to caste 

 Taxonomically-restricted genes represent the majority of overall expression in 

specialized glands such as the Mdg and are important in the evolution of eusociality 

[67,113,114]. In the honey bee brain, taxonomically restricted miRs are more likely 

to target novel genes [115] supporting the idea that genes and cognate regulatory 

apparati evolve in parallel. In the Mdg, novel miRs represent an overall large 

population of expressed miRs (107/188) but represent a small proportion (~1%) of 

overall expression (Table S4) consistent with predictions that novel miRs are weakly 

expressed, fast evolving, and expressed in a tissue-specific manner [46]. Biased 

expression of novel miRs in novel tissues theoretically minimizes larger deleterious 

fitness effects and underscores the likely role of novel miRs in the evolution of novel 

tissue [58,60]. While a bias in novel miRs targeting novel genes was observed in the 

brain, a relatively “conserved” tissue, neither genes with a bias in caste-specific 

expression nor signatures of positive selection were enriched for novel MREs [115]. 

In honey bees, neither the overall taxonomic restriction of expressed miRs, nor the 

taxonomic restriction of anti-correlated target genes with a bias in caste-specific 

expression has been investigated in a specialized tissue where novel and genes with 

caste-specific expression biases are primarily expressed.  
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For this analysis, we considered any miR or gene found only in Hymenopteran 

species as “novel” according to miRbase (miRbase.org) or MirGeneDB 

(mirgenedb.org). In the transcriptional networks of derived honey bee tissues, novel 

genes tend to have fewer interactions with other genes and are more likely to be 

expressed in bulk [113]. As previously observed [113], novel genes make up a larger 

portion of overall expression in the mandibular gland relative to the percent of genes 

expressed (Table S12). While this is true for both worker and queen genes, the pattern 

is much more extreme in genes upregulated in queen (Table S12). The higher relative 

expression of novel genes in the queen mandibular gland may be, in part, due to it 

its’ large size relative to workers and that novel genes in honey bee social glands tend 

to be highly expressed genes related to the biosynthesis of glandular products [113]. 

Interestingly, this pattern also remains in genes up-regulated in queen-less workers 

relative to queen-right workers (Table S12) suggesting that, despite it being 

relatively smaller, mimicking queen-like pheromone profiles requires a higher 

proportion of novel gene expression. However, very few genes up-regulated in queen-

less workers relative to queen-right workers are expressed coherently in queens 

relative to queen-right workers [14].  

Among genes expressed according to caste in the Mdg, we tested for 

enrichment with respect to taxonomic restriction of both DE-miR and their predicted 

anti-correlated targets. Worker-expressed genes, irrespective of taxonomic restriction 

status, were enriched for MREs of novel DE-miRs and de-enriched for conservative 

DE-miRs (Table 3, S13). Further, worker-expressed novel genes were also enriched 
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for MREs of novel DE-miRs (Table S13). Perhaps in contrast, all queen-expressed 

genes were enriched for MREs of conserved miRs up-regulated in workers (Table 3, 

S13). As previously noted (Table 2), all worker-expressed genes, irrespective of 

taxonomic restriction, down-regulated in queen-less workers are highly enriched for 

anti-correlated miRs primarily composed of miRs coherently up-regulated in queens 

and queen-less workers. However, in contrast to genes down-regulated in queens, 

genes down-regulated in queen-less workers are enriched for conserved miRs.  

 

Table 3. MRE enrichment by taxonomic restriction 

 
 QvW: CDF FC WvQ: CDF FC QLWvQRW: CDF FC 
Conserved DE-miR MRE in:          

Conserved DEG    enriched 3.92E-08 1.11 enriched 4.8E-05 1.09 
Novel DEG    enriched 1.3E-06 1.10 enriched 6.1E-09 1.14 

all DEGs    enriched 9.08E-13 1.10 enriched 6E-12 1.12 
Novel DE-miR MRE in:          

Conserved DEG          
Novel DEG enriched 0.004 1.13       

all DEGs enriched 0.03 1.06       
Total DE-miR MREs in:          

Conserved DEGs       enriched  2.73E-05 1.09 
Novel DEGs       enriched 1.24E-07 1.1 

All DEGs       enriched 4.03E-11 1.1 
Table 3 lists target enrichment of class of DE-miRs (conserved or novel) by class of 

gene (conserved or novel). “Novel” is short-hand for miRs or genes known only in the 

order Hymenoptera. We also tested for enrichment within gene class irrespective of 

DE-miR class. Calculated cumulative distribution function “CDF” values under 0.05 

and a fold change above 1 were considered “enriched” (below 1 “de-enriched”). “QvW”  

is up-regulated miRs and down-regulated predicted (anti-correlated) gene targets in 

queens versus queen-right workers. “WvQ” is up-regulated miRs and anti-correlated 
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gene targets in queen-right workers versus queens. “QLWvQRW” is up-regulated 

miRs and anti-correlated gene targets in queen-less workers versus queen-right 

workers. 

 

Table 4. Individual DE-miR MRE enrichment in anti-correlated DEGs by class 

   Conserved 
DEGs  

 Novel 
DEGs 

 All DEGs  

miR enriched targets in miR class CDF FE CDF FE CDF FE 

ame-miR-3785-3p  QvW novel   9.864E-03 1.41   
ame-miR-3786-3p  QvW novel   4.999E-02 1.09   
ame-miR-6040-3p  QvW novel   3.599E-02 1.28   
ame-miR-263a-5p  WvQ conserved 1.864E-05 1.57 1.273E-04 1.56 1.41E-08 1.56 
ame-miR-263b-5p  WvQ conserved   6.696E-04 1.30 9.23E-03 1.15 
ame-miR-3049-5p  WvQ conserved     3.53E-02 1.06 
ame-miR-31a-5p  WvQ conserved 3.613E-06 1.31 3.471E-02 1.13 3.78E-06 1.22 
ame-miR-92a-3p  WvQ conserved   2.805E-02 1.13 4.19E-02 1.08 
ame-miR-92b-3p  WvQ conserved 4.286E-03 1.27 3.200E-02 1.18 7.06E-04 1.23 
ame-miR-989-3p  WvQ conserved 4.357E-03 1.13 1.655E-03 1.15 4.45E-05 1.14 
ame-miR-993-3p  WvQ conserved 2.045E-04 1.33   8.28E-03 1.15 
NC_037638.1_16823-3p  WvQ novel  3.031E-02 1.15     
ame-miR-6047a-5p WvQ novel  5.423E-03 1.13 2.629E-04 1.19 1.66E-05 1.16 
ame-miR-750-3p  WvQ conserved     1.92E-02 1.18 
ame-miR-11-3p  QLWvQRW conserved 2.293E-04 1.30 9.428E-03 1.21 1.39E-05 1.26 
ame-miR-3477-5p  QLWvQRW conserved 1.957E-03 1.29   1.85E-03 1.21 
ame-miR-375-3p QLWvQRW conserved   1.297E-03 1.09 2.08E-02 1.04 
ame-miR-7-5p  QLWvQRW conserved 5.454E-06 1.23 1.197E-06 1.24 5.19E-11 1.24 

 Table 4 [48] lists individual DE-miR enrichment by class within anti-correlated 

DEGs by class.  

 

Novel miRs are expressed in both queens and workers but display distinct 

differences in terms of their enrichment within anti-correlated targets. The novel 

DEGs down-regulated in queens are significantly enriched for MREs of anti-

correlated novel miRs while the novel miRs up-regulated in workers, while having a 

relatively high raw number of MREs, are not significantly enriched within anti-

correlated targets, which may suggest worker novel miRs regulate these targets in 



 26 

multiple contexts. Two of the eight worker-expressed novel miRs, ame-miR-6047a-5p 

and NC_037638.1_16823-3p, have MREs enriched in novel anti-correlated targets 

(Table 4, S13). Worker-biased genes are enriched for MREs of three of the five novel 

queen-expressed miRs; ame-miR-3785-3p, ame-miR-3786-3p, and ame-miR-6040-3p 

(Table 4, S13).  

In the brain, worker-expressed genes are enriched for signatures of positive 

selection [67] but not for MREs of novel miRs [115]. Additionally, genes with 

signatures of positive selection in honey bees tend to generally be involved in 

processes associated with caste such as cell signaling, oxidative phosphorylation, and 

related processes [67,116]. Our findings in a derived “social” gland somewhat contrast 

a previous study [115] where we find novel worker-expressed genes are enriched for 

MREs of novel queen-expressed miRs (Table 3, 4). That is, maintaining the queen 

phenotype in the MG  involves the down-regulation of worker genes enriched for 

MREs of queen-expressed novel miRs (Table 3, 4, S13). In contrast we see the queen-

right worker MG phenotype comprises the down-regulation of queen-expressed genes 

and enrichment for conservative queen-expressed miRs. The queen-less worker 

phenotype comprises the down-regulation of some genes also down-regulated in 

queens but primarily consists of other queen-right worker-expressed genes not 

differentially-expressed between queens and queen-right workers. Interestingly 

however, all genes down-regulated in queen-less workers relative to queen-right 

workers are enriched for miRs, mostly conserved, coherently expressed in both 

queens and queen-less workers (Table 3, S13). In other words, a sub-set of queen-
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expressed miRs may be significantly impactful in the queen-less phenotype. Only one 

novel worker up-regulated miR (NC_037638.1_16823-3p) showed any enrichment in 

queen-expressed genes and only in conserved genes (Table S13). Our results suggest 

that when evaluating the role of novel miRs in the evolution of eusociality or any 

novel function, it is important to consider both the degree of specialization with 

respect to tissue, the context of target expression, the biological pathways involved, 

and the enrichment of MREs of context-expressed miRs. Although the degree of 

positive selection was not evaluated amongst caste-specific genes in the Mdg, 

assuming that worker genes, in general, show higher signs of positive selection 

relative to queens, our results may suggest that the emergence of novel miRs may be 

more relevant in the context of maintaining the queen phenotype where the 

expression of more recently evolved worker genes may be deleterious. It is also 

interesting that novel queen-expressed genes in the worker Mdg are more enriched 

for MREs of conservative worker-expressed miRs and it would be interesting to 

determine the extent to which these patterns are true in other social glands. As such, 

the role of novel miRs in the evolution of eusociality, and, more broadly, the role of 

novel miRs in the emergence of novel tissues, should be further explored in a larger 

study examining the targets of expressed miRs in multiple tissue types by social 

context.  

 

Predicted MREs of Putative Pheromone Biosynthesis Genes  
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Previous studies have identified putative pheromone biosynthesis genes (PPBGs) 

expressed according to caste [8,14] potentially involved in the biosynthesis of caste-

specific blends of fatty acid-derived pheromones (Table S14). In order to examine the 

predicted regulatory roles of miRs expressed according to caste upon PPBGs, we 

filtered predicted MREs of anti-correlated DE-miRs within PPBGs and tested for 

statistical enrichment (Table S13, S14). We found that ame-miR-31a-5p, that is up-

regulated in Q-FB vs W-FB, and ame-miR-92b-3p were enriched within PPBGs down-

regulated in workers (Table S13).  

Gene duplication can generate novel functionality partially via diversification 

of regulatory regimes, such as MRE divergences in paralogs [53,54]. Honey bees have 

two putative fatty acid synthase (FAS) paralogs (LOC411959 and LOC412815) which 

some evidence suggests may be expressed according to caste in the Mdg. In a 

microarray study, LOC411959 was up-regulated in queens and LOC412815 up-

regulated in workers [8]. However, this result was not replicated in a subsequent 

RNA-Seq study, although LOC412815 was down-regulated in QLW-Mdg relative to 

QRW-Mdg [14]. Interestingly, the two FAS genes are predicted to be the two most 

targeted PPBGs by cognate anti-correlated miRs (Table S14). Multiple miRs have 

been identified as regulators of FAS and its’ dysregulation in cancer [117–129]. Both 

FAS paralogs share predicted MREs for 88 miRs whereas 170 predicted MREs are 

unique to LOC411959 and 69 unique to LOC412815 (data not shown). The high 

number and diversity of predicted FAS MREs suggests FAS paralogs may be 

divergently regulated in multiple tissue contexts.  
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Cytochrome P450 monooxygenases are a diverse class of metabolic enzymes 

integral to many biological processes including toxin catabolism and the biosynthesis 

of chemical signals [8,14,24,130–132]. Multiple P450 genes with biases in expression 

by caste are amongst the genes with the highest number of predicted targets (Table 

S14). Caste-specific expression of P450s, suggests derived roles in modifications of 

fatty acid pheromone precursors such as the caste-specific hydroxylation of steric acid 

[8,14,24]. Cyp4G11, 6AS5, and 6A1, coherently expressed and regulated by multiple 

miRs up-regulated in both Q-Mdg and QLW-Mdg have been shown to be expressed in 

multiple tissues and are speculated to have roles in detoxifying xenobiotics [14]. An 

ortholog of Cyp4G11 in D.mel acts as an oxidative carbonylase upon aldehyde 

reduction from very long-chain acyl-CoA thioesters, via acyl-CoA reductases [133]. A 

probable cytochrome P450 6a14 is heavily down-regulated in queen Mdgs relative to 

workers [14] where RNAi knockouts in workers significantly reduce 10-HDA 

production [24]. Interestingly, 6a14 contains predicted MREs for anti-correlated 

miRs ame-miR-34-5p, ame-miR-3786-5p as well as ame-miR-6040-3p, the most 

significantly queen up-regulated miR.  

 A putative homolog of aldehyde dehydrogenase family 7 member A1 

(LOC411140) is predicted to catalyze the conversion of 9-HDA to 9-ODA [8,14] 

contains MREs for six miRs showing significant anti-correlated expression (Table 

S14).  

Other miRs that target many PPBGs include ame-miR-34-5p that has been 

previously identified as a 20-hydroxyecdysone-responsive critical developmental 
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regulator in insects [134], specifically of insect segmentation where, in honey bees, it 

targets multiple pair-rule and cytoskeletal genes [134,135]. Its’ expression is also 

associated with glucose and lipid metabolism regulation in mice [136] as well as 

stress-response [137–139]. As previously mentioned, ame-miR-9883-5p is 

taxonomically restricted to A.mel. MiR-989-3p, an miR present so far only in the 

Endopterygota, has a bias in expression in female ovaries where it is required for 

ovary development [140–143] and has also been shown to target the sex-determining 

gene doublesex in Bactrocera dorsalis [141].  

 

Inhibition of ame-miR-375-3p Alters Expression of Genes 

Expressed by Caste 

We predicted that the miRs most likely to influence a “Q-Mdg-like” transcriptional 

profile in workers would be up-regulated in both QLW-Mdg and in Q-Mdg relative to 

QRW-Mdg and that inhibition of these miRs would have the greatest potential to 

return QLW-Mdg to a “QRW-like” transcriptional state. In an attempt to test our 

hypothesis, we targeted ame-miR-375-3p and ame-miR-7-5p for inhibition based on a 

criteria of high expression in QLW-Mdg as well as high number of predicted MREs 

amongst genes with caste-specific biases in both queens and in queen-less worker 

Mdgs (Table S6). Ame-miR-375-3p was predicted to have an optimal combination of 

high expression in Q-Mdg and QLW-Mdg relative to QRW-Mdg with a high number 

of predicted MREs amongst anti-correlated genes. We also chose ame-miR-7-5p given 

the relatively high number of predicted contextual targets.  
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Approximately one thousand genes were differentially-expressed between 

queen-less bees fed the antagomir antisense to ame-miR-375-3p and bees fed sugar 

only (Table S9). No DEGs were found between bees fed the ame-miR-7-5p antagomir 

and controls and a single gene, probable cyclin-dependent serine/threonine-protein 

kinase DDB_G0292550, was differentially-expressed between bees fed the scrambled 

control and bees fed sugar. A majority of DEGs (746) were expressed more highly in 

bees fed the inhibitor than control bees and include genes relevant with respect to 

caste, mating status, or pheromone biosynthesis [8,14,17]. Many up-regulated DEGs 

mimic “worker-like” profiles relative to queens and queen-less workers (Fig 4A, 4C, 

4D).  
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Fig. 4. Up-regulated genes in antagomir-fed queen-less bees.  A) Venn diagram of 

total up-regulated genes in antagomir-fed queen-less bees relative to queen-less 

control bees (“up-DEGs” green), those also expressed higher in QRW-Mdg relative 

QLW-Mdg (“QR-like vs. QL”,orange), those up-regulated in W-Mdg relative to Q-Mdg 

((“QR-like vs. Q”, purple) and those with MREs for ame-miR-375-3p (“DEGs with  

miR-375 MREs”, yellow). B) DEGs increasing in expression in antagomir-fed bees 

also seen highly expressed in worker bees with higher 10-HDA production (circle 

symbols, [17]) as well as mitochondrial genes in worker-destined larvae (triangle 

symbols, [144]). Adjusted p-values are shown with asterisks (adj.P.Val < 0.05 “*”, < 

0.01 “**”, and < 0.005 “***”). Expression of genes in bees fed antagomir for ame-miR-

375-3p (“A375”) are shown in red and control queen-less bees (”CON”) are shown in 

blue. The number of predicted MREs for ame-miR-375-3p within the gene are shown 

in parenthesis. C) DEGs returning to a “worker-like” expression pattern involved in 

autophagy, traffic, secretion, and cell signaling. DEGs with square symbols are 

expressed lower coherently in both queens and queen-less workers relative to queen-

right workers D) DEGs returning to a “worker-like” expression pattern involved in 

fatty acid metabolism or pheromone production. 

 

Many DEGs are also predicted to be targeted by ame-miR-375-3p and, of those, 

many are up-regulated relative to controls suggesting at least a partial inhibitory 

effect of the antagomir localized in the mandibular gland (Fig 4A). While the direction 

of expression of ame-miR-375-3p is coherent in the FB and Mdgs between workers 
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and queens, the magnitude of expression difference observed between QRW and QLW 

in the Mdg is not observed in the Fb (Table S3, S4). While we cannot exclude all 

changes in expression are a result of a systemic effect of the antagomir, ame-miR-

375-3p is expressed in higher proportion in the Mdg relative to the Fb, as well as the 

differential expression observed amongst queen-less and queen-right groups, 

suggesting a local effect of the antagomir in the mandibular gland is reasonable. 

Furthermore, as tissue-specific miR expression is correlated with miRs binding to 

MREs with lower binding affinities [145], it may be that inhibition of an miR highly 

expressed in a particular tissue may affect the expression of genes containing MREs 

that did not meet prediction thresholds.   

The vast majority (>80%) of up-regulated D. melanogaster orthologs in the 

generated PPI sub-network are significantly associated with GO terms related to 

energy and metabolic processes (Fig 5). Network analysis of the PPI showed 

significance with respect to the average number of neighbors and clustering 

coefficient of up-regulated genes relative to all genes (Table S15).  
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Fig. 5. GO terms associated with up-regulated genes in bees fed antagomir for ame-

miR-375-3p.  GO terms generated via ClueGO analysis of upregulated genes. 

 

Predicted Regulation of Gene Pathways by Coherently-

Upregulated MicroRNAs  

Many genes and proteins expressed in the worker Mdg with respect to the 

presence of a queen are putatively involved in insect pheromone biosynthesis 

[8,14,24]. Interestingly, genes, some with predicted MREs for ame-miR-375-3p, 

associated with 10-HDA production in the worker mandibular gland [17] as well as 

genes differentially-expressed between queen and worker larvae [144] return to a 

“worker-like” expression profile in antagomir-fed bees (Fig 4B). Worker production of 

10-hydroxydecanoic acid (10-HDA) is associated with higher counts of proteins 

associated with fatty acid metabolism, carbohydrate metabolism, pheromone 

biosynthesis, as well as protein metabolism, protein folding, cell signaling, major 

royal jelly proteins, detoxification, developmental, and structural pathways [17]. As 

ame-miR-375-3p is expressed higher in QLW-Mdg and Q-Mdg relative to QRW-Mdg, 

and, theoretically, is functional in the “queen-like” transcriptional state of the worker, 

we will discuss genes that return to a “QRW-like” expression profile upon inhibition 

of ame-miR-375-3p in QLWs in the supplemental discussion. There, we first focus on 

genes biased in expression towards QRW-Mdg and the production of worker 

pheromones, have a predicted MRE for ame-miR-375-3p, and that are higher in 

expression in queen-less bees fed ame-miR-375-3p inhibitor relative to queen-less 
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control bees. Upon inhibition of ame-miR-375-3p in queen-less workers, we observed 

genes involved in autophagy, cell trafficking, and secretion (Fig 4C) as well as 

pheromone production and fatty acid and energy metabolism genes (Fig 4D) 

increasing in expression to more resemble expression states observed in queen-right 

worker among other categories of genes. All genes discussed in the supplemental 

section fit this expression profile and have at least one predicted MRE for ame-miR-

375-3p unless noted. In each section, we will also discuss other relevant genes 

predicted to be targeted by ame-miR-375-3p but not differentially-expressed in our 

TAG-Seq assay as well as coherently down-regulated targets of other coherently up-

regulated miRs beyond ame-miR-375-3p between Q-Mdg and QLW-Mdg. 

 

Concluding Remarks 

Here we identified robust miR expression profiles by caste and by social status in the 

honey bee MG as well as the cognate target down-regulated genes by expression 

context. We provide computational and functional evidence suggesting the queen-less 

bee phenotype results from down-regulating worker-expressed genes via up-

regulating a sub-set of queen-expressed miRs. We also show the importance of context 

when evaluating the role of taxonomically-restricted miRs in the evolution of new 

traits and suggest more recently derived tissues may be focal points of subsequent 

study. In addition to more detailed functional analysis and validation of predicted 



 36 

targets, future studies should explore the role of novel miRs more broadly across 

multiple tissue types and, perhaps, with a focus on novel cell types.  

Materials and methods 

Honey Bee Field Work and Sample Selection 

All work with honey bees was conducted at the Harry H. Laidlaw Jr. Honey Bee 

Research Facility at University of California Davis (Davis, CA) primarily in the 

summer of 2015. Multiple queens were grafted from three single drone inseminated 

(SDI) queens in order to reduce genetic variation using established techniques [149]. 

In a haplodiploid context, the daughters of single-drone inseminated queens are 

known as “super-sisters” as they have a coefficient of relatedness (G) of 0.75. Early 

worker larvae were placed in plastic queen-cups containing freshly collected royal 

jelly and reared in specialized queen-less colonies as previously described [149]. 

Sealed queen cells were then placed in an incubator for 48 hours at 34°C and 60% 

relative humidity and then introduced into temporary nucleus hives with 

approximately 10000 workers from the same parent colony, a brood frame, a frame 

with both pollen and honey, and an empty frame [150]. The queens were then either 

allowed to mate freely until the first observation of egg laying or queen cells were 

prevented from mating. Queens and newly emerged workers from the same parent 

colony were then placed into in micro-hives modeled after a previous study [27] and 

maintained in an incubator (34°C, 60% r.h.). Briefly, plastic hives (11×14×7 cm, 

H×L×W) were constructed, a small comb was affixed to the ceiling, and a small 
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amount of pollen cake was provided, and sugar solution was provided ad libitum. 

Experimental micro-hive subsets constructed as follows: from each of the three SDI 

parent hives; five virgin queens each with 50 newly emerged workers, five mated 

queens each with 50 newly emerged workers, five sets 50 newly emerged workers 

from the same SDI parent colony with an established queen (“queen-right” workers) 

so as to avoid any possible confounding effects of using experimental queens with 

experimental workers, and five sets of 50 newly emerged workers with no queen 

(“queen-less” workers). All virgin and mated queens and subsets of workers were 

collected at three weeks of age to control for age effects and directly placed in a freezer 

at -80°C where they remained until sample processing.  

In order to evaluate the relationship between miR expression in the 

mandibular gland and ovary development, the ovary development level  of individual 

queen-less worker bees was assessed prior to mandibular gland miR expression 

analysis. To maintain RNA integrity in the Mdg, queen-less worker heads and 

abdomens were separated from the body on dry ice and placed into separate 

containers of RNA-Later ICE (Thermo-Fisher Scientific) and placed in a -20°C freezer 

according to manufacturer instructions. Abdomens were then dissected by cutting a 

square out of the dorsal cuticle, removing the alimentary canal [151], and the ovary 

activation level was evaluated using a protocol modified from a previous study [152] 

where stage zero is an ovary with no observed activation, stage one is ovary 

enlargement with no observable oocyte development, stage two is some oocyte 

development, and stage three is fully developed eggs. Ovaries advanced beyond stage 
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one were considered “developed”. Mandibular glands and fat body tissue were then 

dissected by removing the samples from RNA later ICE and then dissected as 

previously described [113].  

 

MicroRNA sequencing 

Total RNA was extracted from individual bees using Direct-zol RNA extraction 

kit (Zymo Research) with the optional DNAse I step included. RNA purity was 

assessed using a Nanodrop Spectrophotometer (Thermo Fisher Scientific), 

concentrations were assessed using Qubit (Thermo Fisher Scientific), and RNA 

quality was assessed using Experion RNA HighSens Analysis Kits (Bio-Rad). Small 

RNA Sequencing libraries were made using NEXTflex Small RNA-Seq Kit v3 (BIOO 

Scientific Corp.) in accordance with manufacturer protocols. This kit was selected 

because of reports that its’ use of randomized sequence primers leads to reduction in 

bias and comportment with RT-qPCR expression analysis [153,154]. Libraries were 

sequenced at the UC Davis Genome Center on the Illumina HiSEQ 4000 with single 

read sequencing for 50 cycles. Sequencing quality was assessed using FastQC [155] 

and Cutadapt [156] was used to remove BIOO adapter sequences and return reads 

with a minimum length of 25 nucleotides. Fastx trimmer was then used to remove 

the four random bases the BIOO library kit adds flanking each end of the read 

sequence [157]. Prior to differential expression analysis, novel miRNAs with a score 

of greater than or equal to five were identified using miRDeep2 [158,159]. Reads with 

a minimum length of 18 nucleotides were then mapped to the A.mel genome (version 
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HAv3.1) using the “mapper” program in the miRDeep2 program suite [158–160]. The 

current set of A.mel mature and hairpin miRNA sequences were obtained from 

miRbase in fasta format [161]. Spaces were removed from headers of the miRbase 

A.mel microRNA fasta files as well as the genome fasta reference file in order to be 

readable by miRDeep2. A report of all detected miRNAs is generated by miRDeep2, 

including putative novel miRNAs which are given a score. Read counts were then 

generated using the “quantifier” program in the miRDeep2 program suite for known 

A.mel miRNAs and putative novel miRNA sequences with a miRDeep2 score of > 5 

[158]. The differential expression of miRNAs across multiple pairwise comparisons 

(decide test table) was assessed using the limmavoom program using a cutoff of < 0.05 

for false discovery rate, 173 very lowly expressed miRNAs out of 362 were filtered 

using “filterByExpr”, and libraries were normalized using the  trimmed mean of M-

values (TMM) method [162]. A multi-dimensional scaling (MDS) plot of the samples 

(Fig 1A) was generated where distance between the samples is inversely proportional 

to the similarity of expression profiles [162]. The most dynamically expressed 

miRNAs (miRNAs with both mean counts-per-million and expression variance values 

> 50) were placed in a heatmap of expression clusters by centering and scaling 

expression data where samples (columns) were clustered via the spearman 

correlation method and rows (miRNA) were clustered via the pearson correlation 

method (Fig 1C) [163,164]. The sum of squared error, average silhouette width, and 

the Calinski criterion method of determining the optimal number of expression 

clusters, all determined that the optimal number of clusters for k-means clustering 
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was three [163,164]. Each of the most dynamically expressed miRNA was then 

assigned to one of three clusters using k-means clustering. The correlation of each 

experimental group to each cluster was calculated using a student t-test (Fig 1B) 

[163,164].  

 

MicroRNA Target Prediction  

Three programs were used to predict microRNA response elements (MREs) within 

the latest A.mel transcriptome assembly [160]. Fasta sequences for established 

miRNA were obtained from the miRbase.org repository supplemented with predicted 

novel sequences [161]. RNA22v2 [165] was run with a threshold of minimum free 

energy (mfe) -12.0 kcal/mol, RNAHybrid [166] with a mfe threshold of -20.0 kcal/mmol 

with the xi and theta values estimated using the fly (Drosophila melanogaster) 3’ 

UTR set, and miRanda3.0 also with a minimum free energy threshold of -20.0 

kcal/mmol and a minimum score threshold of 140 [167]. An MRE was kept if it was 

predicted by at least two out of three programs and if the 3’ end was within a 

maximum range of 5 nucleotides. The location of the MRE relative to the coding 

sequence, whether in the 5’ untranslated region (UTR), the coding sequence (CDS) 

itself, or the 3’ UTR, was determined using NCBI CDS coordinates. While questions 

remain about the translation inhibition efficiency of non-canonical MREs [168], they 

were included in this analysis given the multiple lines of evidence suggesting 

functionality [169–174]. For each predicted gene-miRNA target pair, a MRE-per 

transcript-per-gene metric was calculated by dividing the number of MREs by the 
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number of transcripts within a gene. Each target pair was also searched for 

corresponding validation amongst two Drosophila melanogaster data sources, 

crosslinking and immunoprecipitation (CLIP) data [168] and predicted target 

(TARGETSCAN) data [175]. Corresponding orthologous genes as well as taxonomic 

restriction level (Table S17) for each A.mel gene were determined using OrthoDB v10 

[176] which generates clusters of orthologous inter-species gene pairings using the 

best reciprocal hits method. Genes or miRs were considered “novel” if they were 

restricted to Hymenoptera. Genes with a OrthoDB gene ID but without an OrthoDB 

unique ID were considered unique to A.mel. We used hypergeometric tests (Table 

S13) to evaluate enrichment of categories of MREs within sets of genes expressed 

according to caste or mating status in the Mdg [14,177]. We tested for enrichment of 

individual miR or groupings of MREs within all MREs in groupings of genes 

expressed according to either caste of mating status relative to the proportion of all 

MREs for that selection of miRs amongst all MREs of all genes. The expected number 

of MREs in any of the categories was calculated by taking the product of MREs for 

those same miRs within the select list of genes and the total number of MREs for the 

select miRs within all transcripts and dividing by the total number of MREs within 

all genes. Fold change enrichment was calculated by dividing the observed number 

of MREs by the expected. Enrichment p-values were calculated using a cumulative 

distribution function of the hypergeometric distribution [14,177].  

 

Systems Analysis / mPPI networks  
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We generated four putative microRNA-protein-protein interaction (mPPI) networks 

composed of anti-correlated pairings of miRs up-regulated in the mandibular gland 

with respect to either caste (queens and queen-right workers) or mating status 

(queen-right workers and queen-less workers) and their cognate predicted targets 

amongst genes down-regulated in the same context. Gene expression data was taken 

from previously published mandibular gland RNA-Seq data [14]. Orthologs were 

identified for each predicted target gene using OrthoDB v 10.0 [176] as previously 

described. Sub-network sets of predicted anti-correlated target orthologs were filtered 

from the Drosophila BioGRID-3.5.186 network dataset [68] in Cytoscape v3.8 [182]. 

Each mPPI included first-degree neighbor proteins whose A. mel orthologs are also 

predicted to be targeted by at least one anti-correlated miR. Target predictions were 

imported to each mPPI as edge data and distinguished visually as “predicted” or as 

being validated by CLIP and/or TARGETSCAN in Drosophila melanogaster. For this 

analysis, we ignored the total number of times a miR is predicted to target a 

transcript. Gene ontology (GO) functional analysis (biological process) was conducted 

using the ClueGO plugin v2.5.7 [183] for each of the four mPPIs, any miR target 

subset of 115 targets or more, and the subsets of coherent targets between queen-less 

workers and queens with respect to expression direction. The GO term fusion option 

was selected, p values were obtained using Fisher Exact Test and were corrected via 

Bonferroni step down. This basic approach was taken from another study [184] with 

modifications. The most highly targeted DEGs, representing the top 20% of total 

MREs amongst DEGs with a D. melanogaster ortholog, were also assessed for 
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functional categorization and statistical overrepresentation using PANTHER with 

default settings [185]. To more deeply assess the influence of individual miRs in 

regulating expression, anti-correlated miR expression and target data were 

integrated by taking the log of the product of the average categorical counts per 

million (CPM) of each miR and the total number of its’ predicted down-regulated 

targets within the DEG list [14]. There was no substantive difference between total 

MREs/miR or total targets/miR.  

Network topological analysis of each of the miR-specific sub-mPPIs networks 

was conducted by comparing the average degree, average number of neighbors, 

characteristic path length, clustering coefficient, and network density to that of 

random genes selected from the full D. melanogaster BioGRID dataset. Sets of 100 

random genes were compared to the predicted target gene set of each miR. The non-

parametric Kolmogorov–Smirnov test was used to test the assumption that miR-

specific mPPIs networks were comprised of random connections. 

Another protein-protein interaction (PPI) sub-network of the D. melanogaster 

BioGRID dataset without first-degree proteins was curated from genes differentially-

expressed in the mandibular gland of bees fed an antagomir relative to controls. The 

same topological and functional analyses were conducted on this PPI as described 

above.  

 

3’ TAG-Seq of Bees fed MiRNA Inhibitors 
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Antagomirs, synthetic RNA oligonucleotides exactly complementary to mature 

miRNAs, inhibit target microRNA in vivo. Queen-less bees from three SDI parent 

colonies were fed custom miRCURY LNA cholesterol-conjugated antagomirs for ame-

miR-7-5p and ame-miR-375-3p (Qiagen) diluted to 1µg/µl in a sugar solution, in 

addition to a scrambled control sequence and a sugar-only control treatment [184]. 

Approximately fifty age-controlled newly emerged bees per SDI colony per treatment 

were kept in micro-hives and maintained as previously described.  On the twentieth 

day, bees were chilled and harnessed using Eppendorf tubes with sawed-off tips and 

~3.5 cm straw inserts [186,187]. The bees were then placed in an incubator for 20 

minutes and then kept at room temperature for 10 minutes before feeding. The bees 

were fed one microliter of either sugar control, scrambled control, anti-ame-miR-7-

5p, or anti-ame-miR-375-3p, returned to their micro-hives, returned to the incubator 

for an additional 24 hours, and subsequently placed directly into the -80°C freezer. 

Individual mandibular glands were dissected from three individuals from each group 

and each of the three biological replicates for a total of thirty-six samples. Dissections 

and RNA extractions were conducted as described above. Custom 3’ TAG-Seq 

libraries were prepared at the DNA Technologies Core of the UC Davis Genome 

Center and sequenced on the Illumina HiSeq 4000. Adapters were removed from the 

raw reads using Cutadapt. Reads were aligned to the latest version (HAv3.1) of the 

A.mel genome using the STAR aligner using default settings with the --

sjdbGTFtagExonParentGene option set to “gene”. Htseq-count was used to generate 

counts with the -m union option and the “id attribute” and “feature type” set to “gene”. 
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Htseq-count was repeated with the “feature type” set to “pseudogene”. Output files 

were combined into table format and assessed for differential expression between 

groups using limmavoom as above. Taxonomic restriction for each gene was inferred 

using the “OGid” from OrthoDB v10 [176] with the lowest taxonomic identifier. It is 

assumed here that genes without an OGid are unique to A.mel.  

Supporting Information 

Table S1: The average number of aligned reads per sample was approximately 3.5 

million with a standard deviation of 2.2 million reads and a minimum of one million 

reads and a maximum of ten million. (.xlsx) 

 

Table S2: Pairwise comparisons were conducted across multiple experimental groups. 

(.xlsx) 

 

Table S3: Limma zoom calculations of significantly differentially-expressed miRs. 

The data is tabbed where individual comparisons between groups are located on 

unique tabs. Also included is a list of miRs coherently expressed in terms of direction 

between queens and queen-right workers (QRWs) in both the Mdg and FB, logFC 

values of coherent DE-miRs, average expression in both tissues, the absolute value of 

the log difference in expression between queens and QRW in both tissues, log2 fold 

change in average expression across tissues with respect to caste, and a note where 

expression represents the highest percentage of overall expression by caste. Log(abs) 



 46 

was not calculated for all comparisons. Note that “W” stands for all worker groups 

(QRW, QLU, & QLD) together as a single group. (.xlsx) 

 

Table S4: Counts per million values of each miR in each sample. Average CPM was 

calculated by group. The absolute values of the log differences in expression between 

groups was also calculated. (.xlsx) 

 

Table S5: Network analysis data for full mPPI networks. “QvW” is miRs up-regulated 

and genes down-regulated in queens versus queen-right workers. “WvQ” is miRs up-

regulated and genes down-regulated in queen-right workers versus queens. 

“QLWvQRW” is miRs up-regulated and genes down-regulated in queen-less workers 

versus queen-right workers. “QRWvQLW” is miRs up-regulated and genes down-

regulated in queen-right workers versus queen-less workers. (.xlsx) 

 

Table S6: Network analysis data for full mPPI networks. Each tab lists network 

analysis data the target networks of individual DE-miRs up-regulated in that context 

as well as any significant associated GO terms representing 5% or more of network 

nodes. Tab names are the same as in Table S5 but also include “DQW_DQLQR” and 

“DWQ_DQRQL” which are anti-correlated target pairs in common between “DQW” 

and “QLWvQRW” as well as “DWQ” and “QRWvQLW” respectively. (.xlsx) 
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Table S7: Target data for 49 DEGs. “miRs/gene” represents the number of individual 

miRs predicted to target a DEG. “MREs/gene” represents the total number of MREs 

predicted on a gene. “Top 20% of targets” represents if a gene is in the top 20% of 

MREs/gene. Tabs are labeled as in Table S5. (.xlsx) 

 

Table S8: Edge data for all mPPI networks. Tabs are labeled as in Table S5. (.xlsx) 

 

Table S9: TAG-Seq limma zoom data including supplemental information. If a gene 

increased in expression in antagomir-fed bees relative to queen-less control bees, and 

that gene was also higher in expression in queen-right workers relative to queen-less 

workers or queens, it was designated “QR-like-vQL” and/or “QRW-like-vQ” 

respectively. In the columns “Yang et al., 2017 10-HDA Proteome” and “Begna et al., 

2011 Q/W Larvae Proteome”, the gene’s accession number is listed if the protein of 

the gene was found in proteome data of the respective paper. Protein categories from 

52 and gene expression data from 49 are included. Log2 differences in expression 

values were calculated for 49 as well as control (con) and experimental (A375) bees. 

“A375” and “con” are shorthand for antagomir-fed bees and control queen-less bees 

respectively. “MREs/transcript/gene” is an average value of MREs per transcript per 

gene. The column “DQvQRW-QLvQRW” lists the gene’s accession number if the gene 

is coherently regulated in queens and queen-less bees with respect to queen-right 

workers. Most recent ortholog between Drosophila melanogaster and Apis mellifera 
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as well as the level of taxonomic restriction of each Apis mellifera gene are listed. 

(.xlsx) 

 

Table S10: Coherent down-regulated DEGS in queens and queen-less worker 

mandibular glands relative to worker mandibular glands via transcription data from 

49. (.xlsx) 

 

Table S11: Target data of coherently regulated genes from Table S10. Mandibular 

gland expression data taken from 49. As calculations of log2 fold change (LogFC) do 

not quantify the absolute change in expression values, we also calculated the log 

values of the absolute differences between the average RPKM values for each gene to 

quantify the change in percent total expression. “QLvQRW” is queen-less workers 

versus queen-right workers. “QvQRW” is queens versus queen-right workers. (.xlsx) 

 

Table S12: Ratio of percent expression of novel and conserved genes (defined as genes 

found either within or conserved beyond Hymenoptera) divided by the number of 

novel or conserved genes respectively from transcription data from 49. If the ratio is 

greater than one, that category of gene represents a positive disproportion of 

expression relative to the number of genes expressed. (.xlsx) 

 

Table S13: Enrichment of individual DE-miR MREs within anti-correlated predicted 

target genes for each comparison. Tabs are labeled as in Table S5. (.xlsx) 
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Table S14: Putative Pheromone Biosynthesis Genes. Listed are the predicted steps in 

the biosynthesis of fatty acid pheromones, expression data from previous studies 

[8,14] and predicted MREs for each PPBG. (.xlsx) 

 

Table S15: Network analysis of genes differentially-expressed between queen-less 

bees fed an antagomir for ame-miR-375-3p and control queen-less bees. Network 

analysis conducted the same as in Table S6 (.xlsx) 

 

Table S16: Novel miRs determined by miRdeep2 [158,159] (.xlsx) 

 

Table S17: OrthoDB [176] IDs and information for each Apis mellifera gene. (.xlsx) 
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