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Abstract of the Dissertation 

Knowledge Acquisition Via Incremental Conceptual Clustering 

by 

Douglas Hayes Fisher Jr. 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1987 

Dr. Dennis Kibler, Chair 

Concept learning and organization are much studied in artificial intelligence 
and cognitive psychology. Computational models of learning and memory that 
hope to be flexibly applied in real-world settings need to be incremental and 
improve an agent's ability to make predictions about the environment. While 
these are useful properties for purely artificial organisms, they also characterize 
much of human learning and memory. 

This dissertation describes COBWEB, an incremental method of conceptual 
clustering that builds a classification hierarchy over a sequence of observations. 
These hierarchies are characterized in terms of their ability to improve prediction 
of unknown object properties. Computer experimentation and comparisons with 
alternate methods of classification show that COBWEB's approach effectively im
proves prediction ability. More generally, prediction of unknown object properties 
is forwarded as a performance task for all conceptual clustering systems. This 
opens the way for objective, not anecdotal, characterizations of and comparisons 
between concept formation systems. 

A fundamental bias of this dissertation is that research on human learning and 
memory can usefully inspire directions for work on artificially intelligent systems 
and vice versa. Concept representations and measures of concept quality used by 
COBWEB are inspired by work in cognitive psychology on typicality and ba.r;ic 
level effects. Conversely, COBWEB is the basis for a second system, COBWEB/2, 
that accounts for typicality and basic level effects in humans. Apparently, this is 
the first computational model that accounts for basic level effects. The account 
of typicality effects stresses the need to consider concepts in the context of a 
larger memory structure. This approach also facilitates speculation on possible 
interactions between basic level and typicality effects. 

xvi 



In summary, the dissertation presents an incremental method of conceptual 
clustering that is evaluated with respect to a prediction task. Concept represen
tations and heuristics are borrowed from cognitive psychology, with repayment in 
the form of a cognitive model of basic level and typicality effects. 
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CHAPTER 1 

Introduction 

1.1 Contributions of the Dissertation 

Classification is the basis of inferential capacity and is critical to the success 

of any intelligent organism. Artificial intel.ligence (AI) and cognitive psychology 

seek to explain the form and acquisition of classification structures and processes. 

This dissertation reports two systems for building classification schemes that have 

been influenced by principles of AI and cognitive psychology. 

From an AI or machine learning standpoint this dissertation addresses the 

problem of learning under two assumptions. The first is that concept learning is 

incremental; objects are incorporated into a classification structure as they are 

observed. Second, concept learning should increase the correctness of predictions 

ma.de about the environment. These assumptions are studied within the context 

of conceptual clu.&tering, a machine learning task concerned with building classifi

cation structures. 

From a cognitive psychology standpoint, constraints on human classification 

can illuminate principles of (human and machine) intelligence, generally. In par

ticular, this dissertation takes advantage of research on ba.'Jic level and typicality 

effects observed during human classification. These effects suggest principled ways 

of measuring concept quality, representing concepts, and classifying objects. 

Two foci of interest, psychological and computational, represent apparently 

dichotomous objectives. However, these interest.s are cooperative and the interplay 

between them yields insights that are incorporated into two concept formation 

systems. COBWEB is an incremental conceptual clustering system that attempts 

1 



Learning 
Element 

Figure 1 

l'----'!llllol 

A model of learning and performance 

2 

Performance 
Element 

to maximize the ability to correctly predict unknown object properties. To do this 

it uses a measure of concept quality inspired by psychological studies. Furthermore, 

incremental processing and inference ability characterize much of human learning 

and memory. From COBWEB, a second system, COBWEB/2 is derived. This 

system builds classification hierarchies that account for basic level and typicality 

phenomena. From a cognitive modeling standpoint, this work appears to be the 

first computational model to account for basic level effects, and its explanation of 

typicality effects has several advantages over previous accounts. 

1.2 Conceptual Clustering 

Machine learning is concerned with improving performance by automating 

knowledge acquisition and refinement. This view is reflected by the simple model 

of learning and performance in Figure 1 [DIET82). Learning organizes observa

tions into a knowledge base that facilitates performance with respect to some task. 

Assumptions about environment, knowledge base, and performance all impact the 

design of a learning algorithm and delineate general learning tasks. For instance, 

learning from ezamples assumes that objects (states, events, etc.) come preclassi

fied with respect to a number of 'teacher' defined classes. Under this environmental 

assumption a learner induces concepts for each object class. Learning to diagnose 

soybean disease from examples (MICH81] assumes that a 'teacher' identifies the 
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Figure 2 

An example classification tree 

disease (or lack of disease) of soybean plant case histories. Over several case his

tories the learner induces rules or concepts that allow it to independently identify 

diseases categories. Learning from examples has been applied in numerous do

mains (WINs75, HAYE78, VERE80, MITC83, PoRT84, BRAD87, ScH86B], but in every 

system that learns from examples, performance reduces to matching previously 

unseen 'objects' against induced concepts, thus identifying their class membership 

(e.g., an example of a particular soybean disease). 

In contrast to learning from examples, conceptual clu8tering systems [MICH80] 

accept a number of object descriptions and produce a classification scheme over 

the observed objects. For example, a conceptual clustering system might form 

a classification tree over a number of animal descriptions as shown in Figure 2. 

These systems do not require a 'teacher' to preclassify objects, but use an evalua

tion function to find classes with 'good' concept descriptions. Concept descriptions 

may be stored at classification tree nodes. For example, the 'mammals' node of 

Figure 2 might be characterized by the concept, has-hair /\ bears-living-young. 

Conceptual clustering is a type of learning by observation or concept formation (as 
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opposed to learning from ezamples). However, the recency of conceptual cluster

ing's definition has allowed little exploration of it in the context of environment 
, 

and performance. 

The most important contextual factor surrounding learning is the perfor

mance task that benefits from it. Unfortunately, this task is ill-defined or not 

discussed at all with respect to most conceptual clustering work (and thus the of

ten asked question, "How do you know the classifications you get are any good?"). 

However, some attempts have been made to evaluate conceptual clustering with 

respect to a performance task. For example, Cheng and Fu [CHEN85) and Fu 

and Buchanan [Fu85) use clustering techniques to facilitate disease diagnosis in 

expert systems. Generalizing (and clarifying) t~eir use of conceptual clustering, 

classifications can be the basis for effective prediction of unseen object proper

ties. The generality of classification as a means of guiding inference is manifest 

in recent discussions of problem-solving as classification [CLAN84]. For example, 

having recognized an animal with respect to the 'mammals' node of Figure 2 - say 

by virtue of it having hair - a prediction that it bears-living-young can be made. 

In a medical domain, a set of symptoms may suggest a particular disease, from 

which a treatment can be inferred. The first system described in this dissertation, 

COBWEB, is designed to form classification trees that are good predictive models 

of the environment. 

A second factor surrounding learning is the environment. In particular, con

ceptual clustering systems have assumed that environmental inputs are indefinitely 

available for examination and thus the environment is amenable to nonincremental 

processing of observations. However, real world environments encourage incre

mental object assimilation (CARB86, LAN86A, SAMM86] and systems that process 

observations in this fashion are gaining prominence (REIN85, ScH86A, LEB082, . 
Kot83A]. In response to real world considerations, COBWEB has been constructed 
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as an incremental system of conceptual clustering. Its underlying control mecha

nisms are abstracted from previous work on incremental concept formation, notably 

Lebowitz' UNIMEM [LEB082] and Kolodner's CYRUS [KoL83A]. However, unlike 

these precursors, COBWEB is evaluated along a number of dimensions related to 

the cost and quality of learning. 

This dissertation imposes the framework of conceptual clustering onto incre

mental concept formation systems like those developed by Lebowitz [LEBo82] and 

Kolodner (KoL83A]. This combination extends the traditional conceptual clustering 

literature to include incremental processing and clarifies the processing character

istics of these other incremental systems. In addition, this work suggests prediction 

of missing object properties as a performance task for conceptual clustering. 

1.3 Basic Level and Typicality Effects 

The processing strategies of COBWEB borrow from work in AI and machine 

learning. However, the AI influence is balanced with results from cognitive psy

chology. Many aspects of human intelligence demonstrate important principles of 

general intelligence. In the context of classification, two phenomena are of par

ticular interest. The first is that members of a class are not regarded as equally 

representative, but vary along a dimension of typicality (MERV81, SMIT81]. For 

example, a robin is more quickly recognized as a bird than is a penguin. The 

observation that some instances are regarded as more typical of a class than others 

does not jibe with assumptions often associated with logical, typically conjunctive, 

concepts (SMIT81]. The limitations of logical representations motivates the use of 

proba.bili8tic concepts in COBWEB. Probabilistic concepts associate probabilities 

or other confidence measures with object class properties. For example, a platypus 

is a mammal that lays eggs. A probabilistic concept for 'mammals' would indicate 
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that a mammal has-hair with probability, 1.0, and bears-living-young with prob

ability, 0.97, to accommodate platypi. Generally, probabilities add information to 

concept representations that can be exploited during classification and inference. 

Other studies indicate the tendency of humans to prefer a particular con

ceptual level in hierarchical classification schemes [Ros76A, JotI84]. For instance, 

when asked to identify a collie, a subject will respond that it is a dog rather 

than a collie or mammal. This task, and a host of others [MERV81], indicate that 

in a hierarchy containing (collie, dog, mammal, anima~, dog is the preferred or 

ba&ic level concept. The identification of preferred concepts in humans suggests 

principled measures of concept quality in AI systems. COBWEB uses a measure 

of concept quality called category utility [Gtuc85] that was inspired by basic level 

studies. Category utility assumes probabilistic information is known regarding class 

members, thus reinforcing the choice of probabilistic concepts. Moreover, category 

utility rewards concepts that facilitate prediction and is therefore compatible with 

COBWEB 's performance goals. 

Ba.sic level and typicality effects motivate concept representation and evalu

ation in COBWEB. These psychological considerations do not interfere with the 

computational goals of incremental processing and utility of classifications for infer

ence. Rather, probabilistic concepts and category utility are completely compatible 

with these goals. 

Although its design is influenced by psychological concerns, COBWEB should 

not be regarded as a cognitive model per se. However, its environmental (i.e., 

incremental processing), performance (i.e., inference), and knowledge base (i.e., 

hierarchical classifications and probabilistic concepts) assumptions are consistent 

with much of human learning and memory. As a result, the memory structures of 

COBWEB are the basis of a second memory model that accounts for typicality and 

basic level effects observed during human classification. These hierarchies use an 
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indexing scheme adapted from work by Lebowitz [LEB082) and Kolodner [KoL83A] 

and they demonstrate how various pieces of partial evidence combine to produce 

the des.ired psychological effects. Indexed classification hierarchies are learned by 

COBWEB/2, a second system that demonstrates advantages and problems with 

indexed memory when learning. 

1.4 An Overview of Computational and Psychological Antecedents 

In summary, this dissertation draws upon work from AI and cognitive psychol

ogy. Work in conceptual clustering and incremental concept formation contributes 

to COBWEB's and COBWEB/2's control mec~anisms, while work in cognitive 

psychology suggests concept representations and quality preferences. Specific an

tecedents and their contributions to this work are pictured in Figure 3. While 

interest in natural versus artificial intelligence traditionally divides research efforts 

in AI (HALL85, NEWE73]., they are intertwined in this dissertation. 

1.5 Methodological Biases 

AI is an evolving discipline, amalgamating concepts from several fields, in

cluding computer science and psychology. As a result there is no consensus among 

AI practitioners as to which research problems are important, which methodolo

gies are productive, and in general, what constitutes 'good research' [HALL85]. The 

burden of identifying important questions, productive methodologies, and evalua

tion criteria is placed on the indi,vidual researcher; these are not explicit and well 

.understood constraints of the field as a whole. However, research communities 

have emerged within the field, the identification of which can aid in guiding and 

reporting research. 
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Hall and Kibler [HALL85) have recently forwarded a taxonomy of method

ological perspectives in AI. They initially divide perspectives by interest in natural 

intelligence versus purely artificial intelligence. Natural approaches are further 

8 
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broken down by the specificity of the natural behavior that a computer system is 

expected to model. 

Empirical approaches are characterized by a validation of system behavior 

with respect to tightly constrained experimental evidence. Experiments need not 

be performed by the 'cognitive modeler', but may be performed previous to and 

independent of the computational model. An existing database of experimental 

findings can be used for comparative purposes. Hall and Kibler cite GPS [NEWE63] 

as an example of this perspective. Feigenbaum's EPAM (FEIG63] is another. 

In contrast, .9peculative approaches look to natural behavior for initial inspi

ration, introspect as to the rules guiding this behavior, and validate the resultant 

computer system by gross comparison of system and natural behavior. Speculative 

methods are not constrained by specific experimental evidence, but seek general 

principles by looking to 'general' behavior. Hall and Kibler give Schank and 

Abelson's (ScHA 77] theory of scripts as an exemplar of the speculative approach. 

Empirical and speculative approaches can be viewed as differing in the 'grain 

size' of the natural phenomena that are used to validate the cognitive model. 

The empirical approach dictates validation with respect to tightly constrained 

behavior, while research efforts following the speculative approach are compared 

with natural behavior of less specificity. Importantly, this distinction does not 

imply that the mechaniJmJ of an empirical artifact be special purpose. In fact, 

one property (intended or not) of many empirically motivated studies is that 

the cognitive model's mechanisms move beyond the experimental evidence and 

allow predictions about natural behavior that was not the original focus of study. 

More generally, mechanisms suggested by either perspective may be transported 

outside the realm of psychological interest entirely. The means-ends strategy ~J 
I 

GPS and semantic nets [Qu1168] are well-known examples of formalisms that 
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were initiated for cognitive modeling, but that have been adopted by artificial 

intelligence generally. 

In contrast to studies of natural behavior, Hall and Kibler propose three 

perspectives interested in strictly 'artificial' intelligence. Constructive AI forces 

general principles of intelligence to emerge by designing and building computer 

systems that address complex but specific real-world problems. For example, 

DENDRAL (BucH69] illuminated general issues of knowledge-intensive or expert 

systems while focusing on the specific task of identifying molecular structure. 

Analysis of heuristic search (A,..) [HART68] is an example of work in the formal 

perspective of AI. In general, formal work seeks to unify a body of disparate work 

under a single, generalizing framework. Additionally, Hall and Kibler stipulate that 

this unifying framework be characterized formally or analytically (e.g., by proofs 

of correctness). 

Finally, performance AI seeks to achieve expert behavior, with little con

cern towards extracting important processing principles that underlie performance. 

Performance AI should not be identified with every system concerned with a per

formance task, but only with systems that are concerned with performance to the 

exclusion of underlying processing principles. 

1.5.2 The Dissertation in Perspective 

This dissertation reflects several of the approaches outlined by Hall and 

Kibler. With important qualifications, the development of COBWEB resembles 

a. formal study. The conceptual clustering framework proposed by Michalski and 

Stepp [M1c83A, M1c83B], and elaborated by Fisher and Langley [F1s85A, F1s86A], 

clarifies the basic control mechanisms of existing incremental concept formation 

systems [LEB082, Ko183A]. This inspires the basic processing assumptions of 

COBWEB. In addition, the system uses probabilistic concepts and a principled 
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measure of concept quality, as opposed to logical representations or the sta.tistically

based, but ad hoc, representations and measures found in [LEB082, Kot83A]. This 

approach highlights issues of representation and evaluation that are difficult to 

extract from more ad hoc techniques and also suggests several dimensions for 

evaluating similar systems. Prediction of unseen object properties is implied as 

a performance task for conceptual clustering systems and criteria relating to the 

cost and quality of learning are suggested as dimensions for evaluating incremental 

concept formation systems .1 

Like formal approaches, work on COBWEB seeks to clarify and cast new light 

on existing work. However, the characterization of COBWEB is not analytical, 

but relies instead on empirical validation via extensive computer experimentation. 

This type of process characterization is influenced by Quinlan [QuIN86] and others 

(HAMP83, Sca86A] and finds it roots in work on pattern recognition and data anal

ysis [DUDA 73, EVER.80]. However, COBWEB's empirical characterization is novel 

in several respects, most notably as it relates to prediction ability. The system's 

ability to make accurate predictions is compared to two alternative methods: a 

'straw man' and a better known system for learning from examples. 

Furthermore, COBWEB is not only characterized in a number of domains, 

but a measure for characterizing the domain itself is forwarded. In general, little 

attention has been paid to Simon's point [SIM069] that domains must be charac

terized before the advantage of a learning system can be evaluated. Collectively, 

computer experiments are used to address the same issues as more formal meth

ods, e.g., system behavior under varying conditions. There is no debate that when 

possible, a formal analysis is better than an empirical one. But when a system (or 

1 Importantly, control strategies and representations used by COBWEB were ab
stracted from or inspired by existing systems; they did not emerge (in this study) 
as the result of exploring concept formation in a highly constrained domain. Thus, 
COBWEB's development is not constructive. However, the development of some of 
COBWEB's precursors, particularly UNIMEM and CYRUS, might be so classified. 
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researcher) is not amenable to formal analysis, empirical studies may enumerate 

the dimensions along which some future, more formal analysis can proceed. 

Although COBWEB is of computational interest, the work reported in the 

following chapters also reflects empirical and speculative approaches to cognitive 

modeling. In particular, COBWEB classification trees are the basis for an indexed 

memory structure that accounts for certain basic level and typicality effects. While 

this dissertation does not include psychological experimentation, a significant body 

of existing research supports the existence of these phenomena. However, there are 

difficulties with using all of this data for comparative purposes. Many experimental 

studies use natural domains (e.g., animals), but in such domains there is no 

way of knowing the properties that human subjects use to represent instances 

and therefore no way of assuring equivalent encodings in the computer model. 

Nonetheless, comparisons between human subjects and the computer model are 

made with respect to two experimental studies of basic level effects and one study 

of typicality effects, each using artificially constructed domains (e.g., nonsense 

strings). Artificial domains allow some experimental control over the properties 

to which subjects attend. 

Besides the. three experimental studies referred to above, the cognitive model 

is also characterized with respect to other tasks and domains, but these comparisons 

are hypothetical in nature. For example, computer experiments using a classifica

tion hierarchy over objects of the 'natural' domain of congressional voting records 

suggest several properties of human memory that cannot currently be verified as 

consistent with human behavior. 

Additionally, the cognitive model is characterized with respect to some of the 

same tasks as COBWEB classification trees. Incremental learning and accurate 

prediction are important to human behavior and the ability to do these well is 

the classic sort of evidence admitted by speculative studies for the legitimacy of 
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a cognitive model. However, this dissertation avoids using such an analysis as 

confirming evidence for the psychological validity of a model. Rather, the bias is 

that these analyses supply disconfirming evidence, if they supply any evidence at 

all. If indexed memory can not be effectively modified as learning occurs this must 

impact claims for its psychological validity, as well as its computational utility. 

In particular, the learnability of indexed classification hierarchies is investigated 

in the context of COBWEB/2, a system derived from COBWEB. Analysis of 

COBWEB/2's behavior generally indicates good learning and prediction abilities, 

but also uncovers a weakness of indexing. The impact of this finding on the validity 

of the memory model is discussed. 

The methodological biases exhibited in this dissertation have been related 

to three of the approaches outlined by Hall and Kibler: formal, empirical, and 

speculative. However, problems arise when one uses their taxonomy to classify the 

biases of the dissertation. For example, while work on COBWEB reflects the intent 

of the formal approach, empirical, rather than formal characterization distinguishes 

it from this approach. Furthermore, the dissertation addresses computational as 

well as psychological concerns. This dichotomy is magnified by Hall and Kibler's 

initial division of methods by the intention of the researcher (i.e., interest in natural 

versus artificial intelligence). This division is common to other commentaries on 

methodological biases in AI (e.g., [NEWE73]) as well. A taxonomy that generalizes 

the formal approach and lessens the apparent schism between computational and 

psychological research is motivated and developed next. 

1.5.3 A Taxonomy of Al Research 

Classification schemes are rarely useful if developed in a vacuum; typically, 

they are motivated by some intention or goal. A fundamental bias of this dis

sertation is that AI depends on demonstrations of natural intelligence to supply 

specifications for its systems, whether this is inspirational or is more constrained 
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Figure 4 

A view of system development 

in nature. Therefore, division of research based on artificial versus natural intel

ligence is somewhat illusory. It may also be counterproductive since it may mask 

insights into methods and representations that are true across natural and artificial 

systems (e.g., the utility of probabilistic concepts). An alternate to the intention

centered taxonomy of Hall and Kibler is a method- or design- centered taxonomy 

that emphasizes the portability or generality of an information-proceuing &y&tem. 

A popular information-processing view of system development distinguishes 

&pecification, de,,ign, and implementation (Figure 4) [PAGE80]. The specification is 

a statement of a system's function. Whether the system is a cash register, a library 

access system, or an expert system for medical diagnosis, system specification 

describes what the system is supposed to do; specification defines a 'black box'. The 

objective of system design is to outline the procedures and data representations 

necessary to satisfy the functionality of a black box. That is, design is concerned 

with how a system performs. Finally, implementation is concerned with realizing 

procedures and representations on a physical device (e.g., a computer). Within 

AI proper, Marr's computational theory, algorithm, and implementation levels 

[MARR82] represent a similar view of information processing systems. 2 Analogs to 

Hall and Kibler's perspectives can be understood in terms of how they differ along 

dimensions suggested by this view of information processing systems. 

2 Of course there are problems with an exact mapping between these views. In 
particular, Marr is intimately concerned with 'why a computation occurs. This 
issue typically arises in a requirements analysis phase of ,system development, which 
precedes specification. 
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Four perspectives seek to uncover general principles or descriptions of intel

ligence that best fit the design level of information-processing systems. Heuristic 

search, evidence combination, scripts, and means-ends analysis are general pro

cessing principles that emerged from work in the formal, constructive, speculative, 

and empirical perspectives, respectively. Only performance AI is unconcerned with 

forwarding general processing principles. 

Constructive, empirical, and performance AI each assume domain-dependent 

specifications. This assertion rests on the assumption that an 'expert' identifying 

molecular structures and a subject solving the eight-tile puzzle exhibit behavior 

of roughly the same granularity or level of specificity, despite differences in the 

overall complexity of these tasks. GPS and much of the work on expert systems 

move from specific (specifications) to general (designs). 

Formal and speculative approaches are distinguished by their use of gen

eral, domain-independent specifications. Note that this does not imply ill-defined 

specifications. For example, A* is precisely specified. Furthermore, objections to 

(apparently) speculative approaches [0HLS83] may be symptomatic of 'bad specu

lation' and not of the speculative approach itself. 

Figure 5 gives a revised taxonomy of AI perspectives. This taxonomy is 

heavily influenced by, but differs in a number of respects from Hall and Kibler's 

framework. At the top level, perspectives are divided in terms of the generality of 

system design or principles. Performance AI is distinguished from the others along 

this dimension. The remaining four perspectives are distinguished by the generality 

of specification or problem statement. Constructive and empirical approaches move 

from specific problem statements to general principles, while formal and specula

tive approaches assume that general mechanisms/representations are derived from 

general, domain-independent specifications. Finally, approaches are distinguished 

by the interest of the researcher in natural versus purely computational intelligence. 
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At the leaves of this taxonomy, the formal approach has been generalized to one 

that roughly corresponds to Newell's view of AI as a quest for general 'methods' 

(NEWE73]. This approach shares the intent of Hall and Kibler's formal approach, 

but leaves the form of characterization (i.e., formal or empirical) unspecified. 

The taxonomy of Figure 5 demotes the importance of the natural/ artificial 

distinction. Rather it emphasizes the importance of design and specification gener

ality, and thus the portability of ideas across domains and tasks. Importantly, few 

researchers fit precisely within one perspective. However, this taxonomy predicts 

that a researcher's differing perspectives will share method; constructive and empir

ical approaches will intermingle, as will the computational methods and speculative 
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approaches. This seems to more accurately reflect the sort of methodological shift

ing that occurs than does a taxonomy that initially differentiates based on artificial 

and natural orientations. Hall and Kibler cite Feigenbaum's early work on EPAM 

[FEIG63] as an example of work in the empirical perspective, while his later work on 

expert systems is constructive. Closer to home, this taxonomy lessens the schism 

between interest in natural and computational mechanisms that is exhibited in this 

dissertation. Hall (personal communication) suggests that combining interests in 

natural and artificial intelligence can be problematic, since it facilitates confusions 

between claims of psychological validity with claims for computational utility. That 

this happens frequently can be taken as evidence for the descriptive accuracy of 

the taxonomy of Figure 5. Prescriptively speaking though, this sort of confusion 

is a flaw that the dissertation seeks to avoid. 

1.6 Overview of the Dissertation 

This dissertation describes COBWEB, COBWEB/2, and the classification 

structures formed by these systems. The presentation focuses on the design (or 

algorithmic) level, as opposed to implementation level descriptions. The emphasis 

on design-level issues clarifies the connection between these systems. This descrip

tive level also maximizes the 'portability' of these systems and facilitates rational 

recon8truction (BUND84). 

Chapter 2 gives relevant background from machine concept learning. While 

this chapter describes particular systems, the goal is to present a general framework 

for incremental conceptual clustering. This framework is described in terms of a 

predominant AI paradigm: 3earch. In addition, the chapter motivates and describes 

. a performance task for conceptual clustering. 

Chapter 3 describes important background from cognitive psychology on 

typicality and basic level effects. Results presented in this chapter are important 
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for validating the psychological consistency of an indexing scheme presented in 

chapter 7 and for motivating the concept representation and evaluation measure 

used during conceptual clustering. 

Chapter ·':t describes COBWEB, an incremental and domain independent 

system of conceptual clustering. This system instantiates the general search frame

work of chapter 2. 

Chapter 5 evaluates classification schemes produced by COBWEB in terms 

of prediction. In particular, experiments with soybean and thyroid disease diag

nosis demonstrate the cost effectiveness of the approach as opposed to selected 

alternative methods. 

Chapter 6 characterizes COBWEB along, dimensions that are relevant to 

incremental learning systems. This chapter demonstrates that the system is compu

tationally economical, while still robust in the sense that 'high quality' classification 

schemes are typically constructed. 

Chapter 7 shows how COBWEB classification schemes can be modified to 

account for basic level and typicality effects. While results from three (human) 

experimental studies are explained by the classification model, support of a more 

hypothetical nature is garnered from (computer) experiments in the domain of 

congressional voting records. 

Chapter 8 describes COBWEB/2, a derivative of COBWEB that incremen

tally builds the classification structures of chapter 7. The system's economy, ro

bustness, and inference ability are characterized in relation to the 'ideal' COBWEB 

system. The fact that classification structures of this type can be learned and per

form reasonably along a number of computationally important dimensions is not 

taken as confirming evidence for the psychological validity of the indexing scheme. 

Rather, problems during learning motivate a discussion of some possible weaknesses 

of the indexing scheme as a psychological model. 
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Chapter 9 concludes the dissertation with a summary of results and a prospec

tus of future research. 
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CHAPTER 2 

Concept Induction in Artificial Intelligence 

2.1 Chapter Overview 

This chapter gives background from machine learning that contributes to the 

development of COBWEB and COBWEB/2. In particular, conceptual clustering 

is distinguished from other types of concept learning in terms of environmental (in

put), knowledge base (output), and performance assumptions. Concept learning 

methods are also differentiated by the learning· mechanisms that support differ

ing assumptions. The chapter frames these mechanisms in terms of a pervasive 

paradigm of AI - search. 

Mitchell [MITc82] has proposed the view of concept learning as search in 

the context of learning from ezamplea. This task is characterized as a search for 

concepts that appropriately describe 'teacher' defined classes. Section 2 briefly 

surveys object and concept languages that can be used to delimit the search 

space traversed during learning from examples, but focuses on a simple language 

of attribute-value descriptions; this language is an antecedent to those used by 

COBWEB and COBWEB/2. 

Section 3 describes the task of learning from examples in terms of search. 

Performance tasks associated with learning from examples reduce to identifying 

objects with respect to 'teacher' defined classes. 

Section 4 extends the search framework to cover methods of conceptual clus

tering. These methods drop the assumption of a teacher. Many systems also build 

hierarchical classification schemes, as opposed to the fiat concept organizations of 

learning from examples. 

20 
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Many concept induction tasks of the learning from examples and conceptual 

clustering variety are nonincremental. They assume that all objects over which 

induction occurs are present from the outset of system execution. Section 5 

considers incremental induction in terms of search. A class of incremental methods 

are identified, of which COBWEB and COBWEB/2 are members. Systems of this 

class share a hill-climbing search strategy. Dimensions for evaluating these methods 

and incremental systems generally are presented. 

Finally, section 6 gives a performance task for conceptual clustering that 

will be used to evaluate COBWEB and COBWEB/2 in later chapters. This task 

consists of predicting unknown object properties and generalizes the performance 

task associated with learning from examples - i.e., predicting the 'special' property 

of teacher-defined class membership. 

2.2 Object and Concept Representation 

Figure 6 illustrates that the task common to all forms of concept induction 

concerns creating of a map between two languages': an object (or instance) language 
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{sphere, block, wedge } 
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and a concept language. The external world is perceived in terms of an object 

language, where each string represents a single primitive object (observation, event, 

etc.). Rather than storing all objects in some extensional fashion, it is desirable to 

summarize observations in terms of a concept language. In general, a string in the 

concept language (henceforth, simply concept) is a generalized description of some 

number of objects, and thus intensionally represents the set. 

2.2.1 Syntax and Semantics 

Many object languages have been used for concept learning. They differ 

along a continuum of complexity where two (fuzzy) endpoints are the languages of 

attribute-value descriptions and &tructural (or relationaQ descriptions. An attribute 

is a typed variable that takes on one of several values. These values are termed the 

domain of the attribute. Some example attributes and their respective domains 

are given in Table 1. 

Attributes are similar to unary predicates. For example, Color(red) is true 

or false of an object. However, throughout the dissertation at most one attribute 

value will be allowed for a given object. Thus, Color(red) precludes the pos·sibility 

of Color(blue ). In this way, the dissertation's assumptions about attribute-value 

representations are more restrictive than unary predicates. Allowing an object 
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1) {[ Color=blue], (Size=large], (Shape=sphere]} 

2) {[ Color=blue], [Size=medium], [Shape=sphere]} 

3) {[ Color=blue], [Size=smallJ, [Shape=block]} 

Table 2 

Objects represented as sets of attribute-value pairs 

to have multiple values along the same attribute might be useful in many do

mains. For example, it would be nice to include Keyword( conceptual-clustering) 

and Keyword(inference) as well as A~thor(Fisher) in an 'object' representation of 

this dissertation. However, this luxury is not assumed in future discussion. 
~. 

Attribute - value representations admit only unary predicates. However, 

structured descriptions generally allow arbitrary predication of values For exam

ple, an off-road vehicle might be partially described by the predicates: Bigger

than( wheel-1, wheel-2), Bigger-than(wheel-3, wheel-4), On(a:xle-1, wheel-1, wheel-

3), On(axle-2, wheel-2, wheel-4). 'Values' (e.g., wheel-1) are commonly interpreted 

more liberally as object component8. 

The choice of an object language has important implications for learning. 

Structured representations have greater descriptive power, but are more costly 

to process. In particular, determining the truth of a set of attribute values is 

a simple matter of independently determining the truth of each. However, the 

truth of a structured description may depend on interactions between predicate 

arguments. This introduces nondeterminism that underlies the matching problem 

(MITC82, WINs75) for structured descriptions. A more general overview of issues 

relating to structured descriptions is given by Nilsson [N11s80). 

While structured descriptions are used in a number of systems that are 

discussed later, attribute-value representations are particularly relevant to the 

development of COBWEB. Objects will be represented as a set of attribute-value 
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pairs (or feature vector) throughout the dissertation. Table 2 gives three object 

descriptions. Given attribute value representations of individual objects, some 

representation of object classes is required. A simple enumeration of objects is an 

extensional representation of a class. However, the attribute-value language can be 

extended to allow intensional representations or concepts. A standard extension is 

to define a concept as a set of attribute-value set pairs. For example, consider the 

following concept: 

{[Color= {blue, red}], [Size= {large}], [Shape= {sphere, block}]} 

The semantics of this concept are: 

{xix is an object for which 

Color = blue V red 
/\ Size = large 
/\ Shape = sphere V block } 

Thus, there is a simple map between a concept and the set of objects that it covers. 

Allowing value sets permits internal disjunction [MICH80], since it represents a 

disjunction of values within (internal to) an attribute. If a value set is a singleton, 

its solitary· value can be regarded as necessary for concept membership. 

To simplify discussion, an object description will be regarded as a concept 

where all value sets are singletons. This implies that all object descriptions are 

concept descriptions, but not vice versa. Most systems assume that the object 

language is a subset of the concept language. This strategy is sometimes called the 

'single representation trick' (DIET82]. 

A short-hand representation sometimes omits an attribute reference in a 

concept. If an attribute is not explicitly given in a concept then it means that a 

member of the concept can possess any value in the domain of the omitted attribute. 

This is a process of dropping conditions that are not criteria! in delimiting concept 
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1) {[Color={blue}], [Size={ large,medium,small}], [Shape={sphere,block})} 

or 

2) {(Color={blue}], [Size={ large,medium,small}], [Shape={sphere,block,wedge}]} 

or 

3) {(Color={blue,red,green}], [Size={ large,medium,small}], 
[Shape={ sphere,block,wedge}]} 

Table 3 

Concepts of increasing generality 

membership. This definition of a concept is similar to the definition of a conjunctive 

concept found in Bruner, Goodnow, and Austin [BRUN56]. 

2.2.2 A Partial Ordering On Concepts 

There may be many concepts that cover a given object set. Consider the 

following objects: 

{ [ Color={blue}], (Size={large}), [Shape={ sphere}]} 

{[Color={blue}), [Size={medium}], [Shape={ sphere}]} (2-1) 

{[Color={blue}), [Size={ small}], (Shape={block}]} 

The concepts of Table 3 each cover this set. Dropping conditions gives syntactic 

variants of these concepts: 

1) { [Color = {blue}], [Shape = {sphere, block}]} 

2) {[Color= {blue}]} 

3) {} 
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Although each concept covers the object set, concept 3 covers a greater number of 

possible objects than concept 2, which in turn has greater coverage than concept 

1. Letting 01, 02, and 03 be the object sets covered by concepts 1, 2, and 3, 

respectively, then 

In other words, concepts are partially ordered by the subset or more general than 

relation [MITc82]. At the top end of the generality scale is a single maximally

general concept that is the empty set (after droppJ.ng all conditions). The empty ~et 
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covers all possible objects, while at the bottom end are concepts of least generality 

or mazimal 8pecificity, which represent single objects. Figure 7 shows a partially 

enumerated space of concepts defined over Color, Shape, and Size. A shorthand 

for concepts is used in this figure that expresses (Shape = {blue, red}] as blue or 

red. In addition, dashed lines indicate that all nodes of the concept space are not 

shown. For example, (blue or red) and 8phere is more general than blue and 8phere 

but less general than sphere, and thus lies between them in the concept space. 

The more general than relation imposes order on the space of concepts. 

Concept learning systems can take advantage of this fact when looking for concept 

descriptions that cover observed objects. 

2.3 Learning From Examples 

Learning from ezample8 (also concept identification or acquiJition) identifies 

concepts for teacher-defined object classes. Traditionally, learning from examples 

has been the prevalent form of machine learning studied. The input/output as

sumptions of learning from examples are: 

Given: • A set of objects, 0 
• A partition of O, P = {Oi, 02, ... , On}, such that Ui Oi = 0 
• A set of concept descriptions, C, which is usually represented 

intensionally by a concept language. 

Find: A Concept, Ci in C, for each object set, Oi, where each C;, 
completely covers O;, and consistently excludes objects 
in all other Oj. In this case, C;, is said to be a complete and 
consistent concept [M1c83c]. 

Each member of a class is a positive instance of that class and a negative instance 

of all other classes. Learning from examples assumes that the Pi 's are mutually

disjoint and that corresponding Oi's cover mutually-disjoint classes as well. 

The task of learning from examples is defined by the environmental assump

tion that objects come preclassified by a teacher. In addition, a property of most 
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systems is that the knowledge base is a flat set of concept descriptions, although 

there is a notable exception [Qurn83]. 

2.3.1 The Learning Element 

Under these input/output assumptions, the process of learning from exam

ples has been characterized as a process of search by Mitchell [MITC82]. In this 

framework, a search space is maintained for each object class. An obvious strategy 

is to traverse the space of all concepts and retain those that cover the object class 

and do not intersect any other class. The problem with this strategy is that the 

concept space may be infinite or prohibitively large. Rather than maintaining an 

explicit space of concepts, only certain portions of the space are enumerated.as 

they are deemed relevant. More generally, many problems can be solved by first 

formulating a space of possible states, S, and enumerating portions of the space 

until a solution to the problem is found. This process is termed state-Apace search 

and it is ubiquitous in AI. Three pieces of information that enable a state-space 

search to proceed include: 

• A selected state from the space of possible states, S, termed the initial state. 

• A selected subset of S, termed the goal states. 

• A set of operators that transform one state into another. Each operator may 
have preconditions that must be satisfied by a state before the operator can 
be applied. 

Initial states plus operators give an implicit representation of the entire set of 

possible states. Beginning with an initial state, operators can be used to transform 

or expand this state, as well as subsequently generated states. Repeated state 

expansion traces out a search. Search terminates when a goal state is generated 

(successful termination), or when there is no state to which any operator applies 

(unsuccessful termination). A state to which no operators apply is called a dead

end. 
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In searching a state space, operators are usually not applied arbitrarily. 

Operator application is typically constrained by a 1earch control 1trategy. A control 

strategy specifies which operators should be applied to which of the currently 

enumerated states. These decisions are based on some notion of the 'closeness' 

of a current state to a goal state or some other 'quality' measure. Some strategies 

treat all states as equally distant from a goal (or equally 'good') (e.g., resulting in a 

depth-first and breadth-first search), whiie others (e.g., best-first and hill-climbing) 

use heuri1tic1 to approximate the distance from a goal. A thorough introduction 

~o state-space search can be found in most general AI texts, including [R1ca83, 

NILS80]. 

The learning from examples task is easily mapped onto the general search 

procedure. While there are many possible mappings, one assumes that for every 

teacher defined class, Qi, a search for a corresponding concept, Ci, is made. Ci must 

cover all positive (Qi) and no negative (-,Qi) instances. This mapping assumes that 

a state is a 5-tuple ( C, P, N, P', N'): a concept, the set of positive instances (from 

Qi) covered by the concept, the set of negative instances (from -,Qi) covered by 

the concept, the set of positive instances not covered by the concept, and the set 

of negative instances not covered by the concept. 

• An initial state is given by (pi, {pi},{}, Qi - {pi}, -,Qi), where Pi is a single 
positive instance that plays two roles: it is the initial concept (recall the single 
representation assumption) and the only object covered by the concept. 

• A goal state is one with a concept, C, that covers all the positive instances, 
but no negative instances, i.e., ( C, Qi,{},{}, -,Qi)· 

• Many learning operators may exist, but a simple one assumes that a currently 
uncovered positive instance is used to generate a new concept description from 
the concept of a current state. The old concept is modified to cover the new 
instance by "unioning the corresponding value sets of the concept and new 
positive instance". For example, if the color of a currently uncovered object 
is red and all currently covered positive objects are blue, the (partial) effect 
of this operator is given as 

{[Color ={blue}], ... } ==} {[Color == {blue,red}], ... } 
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This operator has the effect of forming a more general concept description and is 
thus called a generalization operator. 

This is only one way of mapping learning from examples onto state space 

search. Nonetheless, the mapping is quite general. With the exception of the 

example generalization operator, the mapping makes no assumptions about the 

object or concept language. The only major assumption is that the initial state 

contains a maximally-specific concept and learning moves from specific to more 

general concepts. An alternative would be to begin with the maximally-general 

concept and move in the direction of greater specificity [LAN87 A]. In some cases this 

might be achieved by 'inverting' generalization operators and moving 'backward' 

through the state space, 3 but future discussion 1;1.Ssumes that if general to specific 

motion is desired, specialization operators will be explicitly supplied. Besides strict 

unidirectional movement, some systems initiate search at both maximally-general 

and maximally-specific concepts and move 'inward' [MITC83, MITC77] or search 

begins at concepts of intermediate generality and moves 'outward' (ScH86c] .. 

There are several factors that influence the cost of searching the space of 

concepts. Most notably, the concept language defines the search space, thus biasing 

search [MITC83, REND86]. For example, the concept language considered thus 

far makes important assumptions in this regard: concepts are a conjunction of 

attribute-value set pairs. Consider the search traced out in Figure 8 that uses the 

generalization operator given above. Each new object causes a single new state to 

be generated. 4 This 'search' is really deterministic. Allowing disjunction to occur 

between values of different attributes (e.g., Color= blue V Size= large), and not 

simply internal disjunction, would increase the nondeterminism of search [ScH86c, 

3 This is similar to what is done when backward-chaining (R1cH83, N11s80] from 
a goal to initial state. The proposal here though is to move from the maximally
general state which is probably not the goal. 
4 For simplicity, Figure 8 only shows the concepts associated with each state. 



31 

see blue? small, block 

see blue, medium, sphere 

most specific concept: see blue, large, sphere 

Figure 8 

'Search' for maximally-speci:fic,conjunctive,attribute-value concepts 

M1cH8l, VER.EBO]. Structured representations also necessitate increased search 

(M1c83A, VER.EBO, HAYE78, MITC83, PORT84]. 

Another reason that 'search' is deterministic ·in Figure Sis that the gener

alization operator of this example generates a single, maximally-specific concept 

to accommodate each object. An important result (which is not proved here) of 

the conjunctive attribute-value assumption is that there is exactly one maximally

speci:fic concept for a given object set. Unioning attribute value sets in the manner 

above is guaranteed to yield this set. Additional search may also be required if 

opera.tors are not constrained to generating maximally-specific concepts [MICH80]. 

2.3.2 The Performance Task 

The goal of search in learning from examples is to find a concept that covers 

all positive and no negative instances. Doing this for each teacher-defined class 

insures that learned concepts can be used to identify the class membership of all 

observed objects. However, recall that a concept covers a superset of the positive 
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The performance task for learning from examples 
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instances. Learned concepts can also be used to identify previously unobserved 

objects with respect to teacher-defined classes. In some cases this identification 

will be incorrect (as graded by the teacher), but nonetheless, a number of systems 

demonstrate empirically [QuIN86, HAMP83, SALZ86, ScH86B] or formally [VERE80] 

that correct prediction occurs a high percentage· of the time. 

Systems that learn from examples have been applied in many domains, in

cluding integral calculus [MITC83, PoR.T84], soybean diagnosis [M1cH8l], visual 

recognition [Wrns75], speech recognition [BR.AD87], and horse racing [SALZ86). 

Despite this diversity, ~he performance tasks associated with all these systems 

reduce to identifying objects (states, events, facts, etc.) with respect to teacher 

defined classes by using induced concepts. Figure 9 demonstrates this task. An 

object description is matched against a set of previously learned concepts, from 

which class membership can be predicted. 

2.3.3 Summary 

Learning from examples is defined by the environmental assumption that 

objects come preclassified by a teacher. The result is typically a set of concepts, 

one for each class. Concepts are used to predict the membership of future objects. 

Appropriate concepts are found through a process of search. Two dimensions of 

this search process have been alluded to. One is search control, which ranges 

from exhaustive to heuristic strategies. A second dimension is the direction of 
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Jearch, which can proceed from specific to general using generalization operators, 

or alternatively, may proceed from general to specific. 

Learning from examples is a good context for introducing learning as search. 

However, many situations relax some constraints associated with learning from 

examples. In particular, conceptual clustering systems do not assume the presence 

of a teacher. In addition, they organize concepts into hierarchies. These revised 

assumptions motivate an extension of the search framework, as well as a new 

performance task. These issues are discussed in the following sections. 

2.4 Conceptual Clustering 

Concept~al clustering is a process of concept formation that differs from learn

ing from examples in terms of its environment, knowledge base, and performance 

task assumptions. Briefly stated, conceptual clustering assumes: 

Given: • A set of objects, 0 
• A set of concept descriptions, C, which is usually represented 

intensionally by a concept language. 

Find: • Classes or clusters, Oi, that are subsets of 0 
• Concepts, Ci in C, that correspond to the classes, Oi. 

Objects do not come preclassified as with learning from examples, but object 

classes must be discovered by the conceptual clustering system. Classes need not 

be mutually disjoint. Most systems build classes at several levels of generality, thus 

producing a classification hierarchy. In addition, concepts must be found for each 

discovered class. This is a subtask that conceptual clustering shares with learning 

from examples. 

2.4.l The Knowledge Base: Concept Hierarchies 

Intuitively, concepts reflect the regularity or structure of the objects classes 

that they represent. For instance, the concept has-hair /\ bears-living-young 
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shows the relation between two properties over the set of mammals. However, for 

an arbitrary set of objects there may be little commonality, and thus little revealed 

by the corresponding concept. Therefore, conceptual clustering systems frequently 

decompose a domain into subsets that can be represented by helpful concepts. A 

favorite way of structuring this decomposition is a tree. 

A popular type of tree is the deci.sion or di.scrimination tree [Qurn86, CHAR80, 

FEIG84, HUNT66]. An example is shown in Figure 10. Each node represents an 

object class. Depending on convention, concepts or membership te.stJ label arcs 

or nodes of the tree and guide object recognition. For example, an animal with a 

backbone is sifted down the left subtree, where a second test based on Body-cover 

is made. This continues until a leaf is reached. Leaves typically supply a property 

(or class name) that can be predict~d of objects that have reached that point. 

The decision tree of Figure 10 exhibits both monothetic and polythetic tests. 

The top node divides objects based on their values along a single attribute (e.g., 
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Backbone), and is thus a monothetic classifier. In contrast, vertebrates are parti

tioned by a polythetic test based on their values along multiple, perhaps differing, 

attributes [F1s86A, M1c83A}. However, regardless of whether a test is monothetic 

or polythetic, each is a concept that discriminates objects of one class from all 

others and for that reason is termed a discriminant concept [MIC83c]. 

Although decision trees (and the processing assumptions typically associated 

with them) are of great utility, they have weaknesses. First, they are not well

suited for recognizing objects with missing information. If an object is encountered 

that does not exhibit an attribute value(s) required for a test, then recognition 

cannot proceed [BARS84], other than to explore all possible subtrees [Qu187B]. 

Second, predictions are limited to the leaves of the tree. Intermediate predictions 

may be useful when partial information does not allow trav~rsal to a leaf. Last, 

decision trees do not allow exceptions of arc tests to be placed in the same claSs. 

For example, suppose has-hair /\ warm-blooded /\ offspring-born-alive is 

a discriminant concept for mammals. However, because platypi lay eggs they 

cannot be placed with other mammals (unless offspring-born-alive is removed as a 

discriminant feature of mammals). 

Motivated by these restrictions, several variants of the decision tree have 

evolved [LEB082, Kot83A, Kot83B]. The Generalization Based Memory (GBM) 

organization of UNIMEM [LEB082] exemplifies how problems with decision trees 

can be overcome. First, GBM indexes nodes with multiple tests. For example, 

a node corresponding to mammals might be indexed by three different arcs cor

responding to has-hair, offspring-born-alive, and warm-blooded. thus, recognition 

can proceed when some properties are unknown. Second, GBM distinguishes arc

labeling concepts that discriminate objects from node-labeling concepts. The latter 

concepts give properties common to all class members and are called characteristic 

concepts (Mw83c]. Arc-labeling concepts correspond to sufficient conditions and 
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node labeling concepts are necessary conditions for class membership. Of course, 

some conditions may be necessary and sufficient and thus be used at both nodes 

and arcs. The important ramification of using node concepts is that intermediate 

predictions can be made. For example, having reached the mammal 'node' (perhaps 

by virtue of observing hair) suggests that the animal is also warm-blooded. Last, 

while early versions of GBM did not allow exceptions to be introduced, later ver

sions have done so [LEB087). Exceptions mean that node conditions are no longer 

necessary, but are only default values. More will be said later about the nonmono

tonic reasoning that arises when using default values [BRAC85, ETHE83, REIT80]. 

Additionally, GBM relaxes the sufficiency assumption by allowing attribute values 

to index more than one concept. 

An example GBM structure is shown in Figure 11. The important extensions 

to the basic decision tree structure are the multiple indexing of nodes, node-labeling 

concepts that are a conjunction of typical properties, and exceptions. This last 

extension, along with relaxation of the sufficiency condition on arcs, introduces 

some nondeterminism into the recognition process; concepts no longer logically 

partition objects, but a process analogous to evidence combination and partial 

matching [R1cH83) must be used to guide recognition. 

2.4.2 The Learning Element 

Conceptual clustering is a process abstraction originally defined by Michalski 

[MICH80]. Conceptual clustering does not assume that objects are preclassified. 

Instead, a system must discover classes for itself. Most systems arrange these 

classes into a hierarchy. This process is not haphazard, but is guided by quality 

measures that rank classes and concepts. This section focuses on the mechanisms 

that underlie many conceptual clustering systems. This entails a detailed exa~

nation of se_veral systems. More generally, conceptual clustering will be viewed as 
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animals: 

vertebrates: 

mammals: 

platypus: 

Figure 11 

An example of GBM 

a process of search. However, conceptual clustering will first be distinguished from 

a class of methods known as numerical taxonomy. 

2.4.2.l Conceptual Clustering and Numerical Taxonomy 

Michalski proposed conceptual clustering as an alternative to numerical tax

onomy [EVER80], a class of techniques developed by social and natural scientists 

to analyze experimental and observational data. Like conceptual clustering, these 

methods fo.i:m classification schemes. Unlike conceptual clustering however, they 
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do no form concept descriptions for discovered classes. Specifically, Michalski 

[M1ce80) distinguishes conceptual clustering and numerical taxonomy by the way 

each evaluates the quality of object classes. 

In methods of numerical taxonomy [EvER80], the similarity between two ob

jects is the value of a function applied to the object descriptions. The description 

of an object is much like the attribute-value representation described earlier, but 

typically similarity is defined around the assumption that numeric attributes pre

dominate. Typically, a data analyst computes the pair-wise similarity of all objects 

in a data set and inputs a matrix of these similarities to a numerical taxonomy 

program. The similarity matrix is used to group objects that are most similar 

and to distinguish objects that are least simila:r. Intra-cluster and inter-cluster 

similarity are computed by a function of the pair-wise similarities of the objects in 

each cluster. Given two objects, A and B, with descriptions, A' and B', Michalski 

[MICH80] points out that a typical similarity measure between A and B has the 

form 

Similarity( A, B) = f(A', B'). 

This measure is context-free, since the similarity between A and B is indepen

dent of A's and B's relationship to other objects being clustered. Context-sensitive 

measures of similarity have also been developed in which the similarity of two 

objects is dependent on their relation to additional objects. That is, within a set 

of objects, O, with a set of symbolic descriptions, O', the similarity of two objects, 

A and B, has the form 

Similarity(A,B) = J(A', B', O'). 
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If we assume integers are 'objects' then using a context-sensitive measure would 

result in greater similarity between the integers 1 and 9 when considered within 

the range 1 to 100 than when considered within the range 1 to 10. 

Using a numerical taxonomy program, the data analyst guides the search for 

useful classification schemes by standardizing the raw data in various ways and/ or 

by using different similarity functions to build the similarity matrix input to the 

program. However, despite the usefulness of numerical taxonomy techniques, any 

such method (whether it uses context-free or context-sensitive measures) suffers 

from a major limitation - the resultant clusters may not be easily characterized 

in a generalized conceptual language. This limitation can be of concern to a data 

analyst (or learning program) who wants to abstract the underlying conceptual 

structure of object clusters in order to hypothesize about future observations. In 

conceptual clustering, a cluster is not simply an extensional enumeration of objects, 

but is intensionally represented by a concept. 

Conceptual clustering addresses the problem of determining conceptual rep

resentations of object clusters. Given a set of concepts, C, Michalski defines the 

similarity between two objects, A and B, as 

Similarity( A, B) = f(A', B', O', C). 

In other words, the similarity between two objects is dependent on the quality 

of concepts used to describe them. Extending this idea, the quality of an object 

cluster is dependent on the quality of the concept that describes it. 

Michalski and Stepp [MIC83A, MIC83B] suggest several quality measures for 

conceptual clustering that are a function of concepts or the map between concepts 

and the objects they cover. For example, assuming the attribute-value represen

tations described earlier, simplicity is a function of the size and number of value 

sets present in a concept after dropping conditions. The simplest concept is null 
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(maximally general). On the other hand, fit measures the ratio between the number 

of observed members of a concept and the number of possible objects covered by 

the concept. The 'tightest-fitting' concept for a set of observations will be the most 

specific concept that covers them. 

In practice, Michalski and Stepp measure class quality as a tradeoff between 

simplicity and fit (and possibly other measures). The rational for these measures 

is that simple and 'tight-fitting' concepts are easier to understand, and classes so 

described should be favored. The tradeoff between simplicity and fit is analogous 

to the numerical taxonomy tradeoff between inter- and intra- cluster difference. 

However, in conceptual clustering this give and take occurs at the level of concept, 

not object, descriptions. 

2.4.2.2 Types of Conceptual Clustering Systems 

Conceptual clustering systems differ along many dimensions. However, sys

tems can be initially distinguished by the types of classification schemes that 

they form, a dimension frequently used to classify numerical taxonomy methods. 

Discussion to follow gives a complete account of methods to date, some of which 

will be pursued in more detail later. 

Optimization techniques form a 'flat' (i.e., unstructured) set of mutually 

exclusive classes and concepts (as with learning from examples). Optimization 

techniques make an explicit search for a globally optimal K-partition of an object 

set, where K is a user-supplied parameter. This search makes optimization tech

niques computationally expensive, thus constraining their use to small data sets 

and/or small values of K. An example of an optimization method is the partitioning 

module of Michalski and Stepp's CLUSTER/2 system [M1c83A, MIC83B]. 

Hierarchical techniques form classification trees over object sets, where leaves 

are individual objects and internal nodes represent object clusters. Decision trees 
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are the predom.inant representation used by such systems. A 'flat' set of mutually

exclusive clusters may be obtained by severing the tree at any level. Hierarchical 
' 

techniques depend on 'good' clusterings arising from a series of 'local' decisions. 

The use of 'local' decision-making in hierarchical methods make them computa

tionally less expensive than optimization techniques, with a possible reduction in 

the quality of constructed clusterings. 

Hierarchical techniques are further divided into diviJive and agglomerative 

methods, which construct classification trees top-down and bottom-up, respec

tively. Agglomerative methods begin by assuming that each object is its own 

singleton class. Classes are successively grouped until a single, all-inclusive class is 

achieved. Figure 12 shows example 'snapshots' of an agglomerative method at work 

- concepts for the object classes are not shown. In this example, {01} and {o2} are 

initially the most similar classes by a similarity measure that will not be specified 

here. After merging them, {01,02},{03},{04}, and {os} remain. Of these, {04} 

and { 05} are the most similar. Combining these singletons results in a partition 

{{ 01, 02}, { 03}, { 04, 05}}. The singleton { 03} is then merged with { oi, 02}. Finally, 

the last snapshot shows that the remaining classes, { 01, 02, 03} and { 04, o5}, are 

combined into a single class. 

The example of Figure 12 also demonstrates why hierarchical methods are less 

expensive than optimization methods. 'Local' decisions that grouped 01 and 02, and 

04 and 05, precluded the possibility of ever forming {01,02,04}. An optimization 

technique would consider this possibility and many others. Agglomerative methods 

include work by Cheng and Fu [CHEN85], MKlO by Wolff [WotF80), and WITT by 

Hanson and Bauer [HANS86]. 

In contrast to agglomerative systems, divisive methods begin with a single, 
i 

all-inclusive class and continually divide classes until singletons are reached or some 
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Figure 12 

An agglomerative method at work 

other termination condition is satisfied. Divisive systems include the Hierarchy

building module of CLUSTER/2 by Michalski and Stepp [M1c83A, MIC83B], Stepp's 

CLUSTER/S [STEP84, STEP86], DISCON by Langley and Sage [LANG84], Fisher's 
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RUMMAGE [F1s85B], and OPUS by Nordhausen [Noao86]. A particularly in

teresting method is the Hierarchy-building module of CLUSTER/2; it calls an 

optimization technique (the partitioning module) to divide classes. By building 

the tree with a small branching factor {e.g., 2), a K-partition of all objects can be 

cheaply obtained by appropriately severing the tree. However, this method is likely 

to result in a partition of lesser quality than one obtained by calling the partition 

module directly for partition size K. 

Clumping techniques build classifications where classes may overlap. The 
' 

possibility of class overlap stems from independently treating some number of 

classes as poss~ble hosts. In hierarchical and optimization techniques an object 

is placed in the class that maximizes a quality function. In clumping techniques a 

class is selected if it satisfies some constraint that is independent of other classes 

(e.g., a quality score surpasses a threshold). GLAUBER by Langley, Zytkow, 

Simon, Bradshaw, and Fisher [LAN86B, LANG85], and NGLAUBER by Jones 

[JoNE86] were originally framed as conceptual clumping methods. In addition, 

Lebowitz' UNIMEM [LEB086, LEB085, LEB082] has been so framed by Fisher 

and Langley [F1s86A] and Kolodner's CYRUS [KoL83A, KoL83B] can be similarly 

described. All of these techniques form classification hierarchies where objects may 

be classified in several places and nodes may have multiple parents. UNIMEM's 

GBM [LEB082] allows clumps, although d~scussion in section 2.4.1 did not consider 

the clumping aspect of this work. Like the hierarchical methods above, clumping 

methods may be distinguished in terms of top-down versus bottom-up processing. 

Despite variety in the classification schemes formed by conceptual clustering 

systems, there is a good deal of commonality in their processing. The next section 

looks at three systems in more detail. 



44 

2.4.2.3 Selected Conceptual Clustering Systems 

Both learning from examples and conceptual clustering are concerned with 

formulating descriptions that summarize data. In the former a teacher dictates 

class assignment, leaving the learner to characterize each class. In the latter the 

learner has the two-fold task of creating object classes as well as characterizing 

these classes. Thus, there are two problems that are addressed by a conceptual 

clustering system: 

e The clu.5tering problem is the problem of partitioning a set of objects into 
subsets. In other words, extensional object classes are formed. The clustering 
problem is addressed by conceptual clustering and numerical taxonomy, but 
not by learning from examples. 

e The characterization problem is the problem of determining concepts for ex
tensionally represented object classes. This is simply the problem of learning 
from examples. This problem is addressed by conceptual clustering and learn
ing from examples, but not by numerical taxonomy. 

Given this view, a natural approach in conceptual clustering is to form object 

classes and then use traditional methods of learning from examples to find concepts. 

These concepts can be used to evaluate the quality of the classes they represent. 

In fact, most present conceptual clustering algorithms can be framed this way. 

RUMMAGE and DISCON 

RUMMAGE [F1s85B] and DISCON (LANG84] both use a simple solution to 

the clustering problem. Each assumes objects are represented as attribute - value 

pairs. The values of an attribute collectively imply a partition of an object set, 

where objects with the same value are members of the same class. RUMMAGE 

solves the clustering problem by considering a number of partitions, each implied 

by the values of a distinct attribute. It selects that partition with the 'best' concep

tual descriptions over the remaining attributes, thus solving the characterization 

problem. RUMMAGE evaluates concept quality using variants of Michalski and 

Stepp's measures of simplicity and :fit. Since it selects partitions based on the 
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values of a single attribute, RUMMAGE forms ~onothetic trees. RUMMAGE ap

plies this method recursively to each of the resulting clusters, tracing out a single 

classification tree. In effect, RUMMAGE produces a classification tree where nodes 

have 'good' concept descriptions over attributes that have not been used previously 

as classification tests. Like RUMMAGE, DISCON uses attribute values to imply 

possible partitions. However, it does not construct an explicit description of the 

devised clusters, but simply calls itself recursively on each of the possible clusters, 

thus forming a classification tree over the objects of each cluster with respect to the 

remaining attributes. The attribute that implies subtrees with the least number 

of total nodes is chosen to initially divide the object set. As a result of applying 

this procedure recursively DISCON finds a classification tree with the least number 

of nodes. That is, DISCON finds the tree that on average classifies the observed 

objects in the least number of tests. Both RUMMAGE and DISCON are loosely 

based on Quinlan's ID3 program [Qurn86, QuIN83]. An example of the clustering 

processes of both RUMMAGE and DISCON is given in Figure 13. 
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The Partitioning Module of Michalski and Stepp's CLUSTER/2 system 

[Mrc83A, Mrc83B] uses a more experimental solution to the clustering problem 

than RUMMAGE or DISCON. Given the task of dividing the observed objects 

into N disjoint classes, the system initially selects N seed objects (initially this is 

done randomly). The system treats each seed as a positive instance of some class 

and treats the other seeds as negative instances of the same class. The program 

then derives maximally-general discriminant concepts for each class (each class is a 

singleton). As the name implies, a maximally-general discriminant concept is the 

most general concept that discriminates the positive instances from all negat~ve 

instances. ~_The result is that for each seed a number of concepts are derived, each 
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of which covers that seed and no other seed. Each concept also covers some number 

of non-seed objects. Once all objects (seed and non-seed) have been classified with 

respect to the maximally-general discriminant concepts, these concepts are 'thrown 

out', and maximally-specific concepts are derived for each class. By selecting one 

concept for each seed, a set of (possibly overlapping) clusters results that classifies 

the input object set. A pictorial summary of this process is shown in Figure 14. 

The reasons for this seemingly roundabout means of clustering and character

ization are best explicated in Michalski (MICH80]. By first formulating maximally

general descriptions, any clustering implied by any combination of maximally

general descriptions (one description for each seed) can be shown to contain at lea3t 

one cluster that covers an arbitrary object. By first formulating maximally-general 

descriptions, CLUSTER/2 guarantees that every observed object is classified. Once 

all objects are classified, maximally-specific descriptions reduce the possibility of 

overlapping clusters with respect to unobserved objects. A 'fix-up' operation is 

then employed to make all possible clusterings mutually-disjoint. In general, each 

concept is composed of multiple attributes. Therefore, CL USTER/2 forms poly

thetic rules. 

2.4.2.4 Conceptual Clustering as Search 

Descriptions of individual systems show that clustering and characterization 

are not independent. In fact, the definition of conceptual clustering implies the 

results of characterization (i.e., a set of concepts) must be used to determine the 

quality of object clusters (i.e., the result of clustering). A learning from examples 

(characterization) task is embedded within a larger task of forming object clusters 

(clustering). Fisher and Langley (F1s85A, F1s86A] adapt the view of learning 

as search to fit conceptual clustering. Clustering and characterization dictate a 

two-tiered search, a search through a space of object clusters and a subordinate 

search thr~ugh a space of concepts. This is demonstrated by Figures 16 and 
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17, which depict the expansion and evaluation phases of search. In the case of 

hierarchical techniques this becomes a three-tiered search, with a top-level search 

through a space of hierarchies. The snapshots of Figure 13 (i.e., the example of an 

agglomerative method) give an intuition as to the states in this space. 

Just as dimensions can be applied to the characterization search process 

in learning from examples, dimensions such as search control and direction dis

tinguish conceptual clustering systems at any of the three levels of search. For 

instance, most systems transform a single classification tree throughout processing 

and thus perform hill climbing through the space of hierarchies (e.g., CL USTER/2 

[MIC83A, M1c83B] and RUMMAGE [F1s85B]). On the other hand, Langley and 

Sage's DISCON system [LANG84] makes a nearly exhaustive search of hierarchy 

space, and selects that classification with the fewest nodes. Second, when searching 
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through a space of hierarchies, search direction may dictate building a tree top

down (divisive techniques) by continually dividing nodes [LANG84, MIC83A, F1s85B] 

or building a tree bottom-up (agglomerative methods) by continually fusing nodes 

(WoLF80, HANS86, CHEN85].. Although there is variety in searching hierarchies, 

most systems search for maximally-specific, conjunctive, attribute-value represen

tations at the level of characterization. Recall that under this assumption the 

characterization process is deterministic. Exceptions include CL USTER/2 that 
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searches for more general concepts and CLUSTER/S by Stepp (STEP84, STEP86], 

that clusters structured objects. 

One interaction between the search for characterizations and the search for 

partitions has been mentioned; the result of characterization must be used to eval

uate competing partitions. More generally, the nondeterminism of a subordinate 

search constrains the possible nondeterminism of higher level search. For exam

ple, in searching a space of partitions there are two sources of nondeterminism: 

the number of generated partitions and the number of characterizations produced 

for each cluster (for simplicity, Figure 16 showed only 1 characterization being 

returned). In the case where only one concept for each cluster is being returned 

(e.g., when searching for maximally-specific, attribute-value concepts), the num

ber of characterizations is eliminated as a source of nondeterminism in searching 

partitions. 

The nondeterminism of searching hierarchy space is similarly constrained 

by the search for partitions. The number of trees generated cannot exceed the 

number of partitions being investigated in the subordinate search. For example, 

the hierarchy building module of CL USTER/2 performs a beam search (of size M) 

through the space of partitions, but maintains only a single tree (beam size= 1 ~ 

M), and therefore is hill climbing through this space. On the other hand, DISCON 

investigates all partitions and all trees as well. 

The search framework clarifies the mechanisms of conceptual clustering. This 

clarity makes the impact of environmental and knowledge base assumptions on pro

cessing more accessible. The next section drops the environmental assumption that 

all objects are present at once. A strategy for incremental conceptual clustering is 

developed that is distinguished from nonincremental methods by search direction 

and control strategies. 
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2.5 Incremental Concept Induction 

Many concept learning systems, whether they be of the learning from ex-. 
amples or conceptual clustering variety, are nonincremental, in that all objects 

over which induction occurs must be simultaneously accessible to the system. In 

contrast, incremental methods accept a stream of objects that are assimilated one 

at a time. A primary motivation for using incremental systems is that a knowledge 

base may be updated as each new object is observed, thus sustaining a contin

ual basis for reacting to new stimuli. This property is paramount if systems are 

to be used in real-world environments (CARB86, LAN86A, SAMM86]. Therefore, 

search-intensive methods (e.g., depth-first, breadth-first, best-first search) may not 

be appropriate in incremental systems, since they require updating a frontier of 

concept hypotheses and/or examining a list of previously seen objects. For this 

reason, a profitable view is that incremental strategies operate under diminished 

search control. Specifically, this supposition is investigated by looking at some 

existing concept learning programs. Each system uses hill climbing to keep object 

assimilation costs down. They also include mechanisms that maintain learning 

robustness. 

2.5.1 Incremental Learning from Examples 

Systems that learn from examples typically conduct a single-level search 

through a space of characterizations or concepts. Two systems are described that 

exemplify the hill-climbing strategy for incremental learning from examples. 

'ARCH' 

Winston's 'ARCH' [Wrns75] learns conjunctive structural descriptions from 

examples. Consider the positive and negative instances of an arch in Figure 17. 

The system's initial concept for the positive instances is simply a positive instance. 

Representing the positive instance of Figure 17 as a ~onjunction of predicates yields 
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Shape(B, wedge)/\ Shape(A, block) /\ Shape(C,block) /\ 
Ontop(A, B) /\ Ontop(A, C) 
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Suppose that a second positive instance is observed where the top component 

is a block, not a wedge. 'ARCH' matches the description of this instance with the 

current concept and a generalized concept description is formed to cover the new 

instance. 5 The new concept is 

Shape(A, block) /\ Shape(C,block) /\ 
Ontop(A, B) /\ Ontop(A, C) 

Eliminating a Shape predicate indicates that one of the components may be any 

shape. Next the negative instance of Figure 17 is given by the 'teacher'. This 

instance matches the current concept description for positive instances. To make 

the concept consistent it must be specialized. There are many ways to specialize 

this concept and achieve consistency. Here are three: (1) add a predicate, not

Touching(A, C), to the conjunction, (2) add a predicate, At-end-of(A, B), or (3) 

add a predicate, not-Shape(B, wedge).6 

5 The matching process for structured descriptions will be left to the reader's 
intuition, but in general there can be several possible ways to do the match, one 
of which is selected by 'ARCH'. 
6 Winston uses 'near misses' - negative instances that differ only in one respect to 
to the current concept description - to limit the number of possible specializations 
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The last alternative, though making the concept consistent (with respect to 

the negative instance), makes it incomplete as well, since the first positive instance 

is no longer covered. However, 'ARCH' does not save instances and has no way 

of knowing this. Vere (VERE80] first pointed out this weakness of 'ARCH'. The 

second alternative maintains completeness while insuring consistency. However, it 

is simple to create an arch where both supports are slightly indented. The second 

alternative may cause problems down the road that will require generalization, 

possibly even a return to the concept just specialized. Only option (1) will satisfy 

current and past knowledge, and not unnecessarily complicate the incorporation of 

future instances. Of course, the system ·has no way of knowing or using this when 

selecting one (and only one) option. 

'ARCH' can be viewed as a hill climber since it considers only one hypothesis 

at a time. In addition, the system can generalize or specialize its concept de

scription through operator application. Rather than moving in only one direction, 

'ARCH' has bidirectional mobility through the the space of concept descriptions. 

While this strategy is computationally cheap, it can also lead to incorrect hypothe

ses and there is the pqssibility of cycling between states. 7 

ID4 

Schlimmer and Fisher (ScH86A] have developed a number of incremental 

variants of Quinlan's ID3 [QuIN86, Qurn83]. Unlike most systems that learn from 

examples, ID3 forms a decision tree. An object is sifted down the tree until a leaf 

that need be considered. However, present discussion considers such an assumption 
external to the learning from examples system. 
7 The system can also backtrack if a dead-end is reached; this is a concept descrip
tion in which there is an explicit contradiction among predicates (e.g., Touching( A, 
C) and not-Touching( A, C)) in the current hypothesis. Thus, 'ARCH' has two ways 
o( 'moving bidirectionally . One is through backtracking which is part of the sys
tem's search control strategy and the second is by using operators that specialize 
and generalize. Future discussion will be concerned only with the latter meaning. 
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is reached. Every leaf is labeled by a class designation that is used to predict the 

membership of a recognized object. 

An ID3 decision tree is monothetic. An object set is divided by the values 

of the attribute that maximizes an information theoretic measure; knowing the 

value of this attribute is most helpful (among all attributes) in predicting the class 

of an object. After dividing the top-most node of the tree, division of subnodes 

continues recursively until it is not useful to do so anymore. This happens when no 

attribute conveys significant information about class membership. A special case 

of this occurs when all objects at a subnode are members of the same class. In 

general, the chi-square measure of statistical independence is used to stop further 

expansion of the tree. 

ID3 is nonincremental. It requires simultaneous access to all objects in order 

to compute the divisive, information-theoretic heuristic and the chi-square measure. 

On the other hand, Schlimmer and Fisher's variant, ID4, builds a decision tree 

incrementally. Beginning with an initially 'empty' tree, ID4 records important 

statistical information as objects are observed. It does not save instances, but 

only retains summary statistics. When statistics indicate that a node division 

is reasonable (according to chi-square), it is done along the 'best' attribute by 

ID3's divisive heuristic; 'empty' subtrees are created as children. Subsequent 

objects cause statistics at the root to be updated. Objects are passed down to 

the appropriate subtree and dictate changes in subnode statistics as well. This 

process continues indefinitely. 

Because of its increm.ental nature, ID4 may initially choose an attribute for 

node division that later proves to be nonoptimal according to the divisive heuristic. 

That is, as statistics change to reflect a growing body of observations, they favor a 

different divisive attribute. When this happens ID4 throws out the subtrees rooted 
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at the offending node and creates a new set of 'empty' subtrees that correspond to 

the values of the newly determined 'best' attribute. 

Unlike most learning from examples systems, ID4 and its predecessor ID3, 

can be viewed as searching a space of decision trees. However, as an incremental 

learner, ID4 demonstrates some of the same characteristics as 'ARCH'. ID4 hill 
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climbs through the space of decision trees. It builds a tree by repeated node 

division, but can also undo the effects of past expansion by dropping subtrees . . 
This approximates backtracking without the associated overhead of saving past 

states or instances Figure 18 illustrates the process of approximating backtracking 

in ID4.8 As with 'ARCH', this process is inexpensive, but can lead to cycling. 

Dropping subtrees also means that learning over a subset of past instances must 

be repeated. For this reason ID4 may require more instances than ID3 to converge 

on the same decision tree. 

Schlimmer and Fisher identify three dimensions for evaluating any incremen

tal system: 

• The co1t of updating a knowledge base to accommodate a new instance. 

• The number of obJervations required by a ~oncept learning system to obtain 
a 'stable' knowledge base. 

• The quality of concept description& obtained by a concept learning system. 

They show that ID4 cheaply integrates new observations into its decision tree. This 

property stems from the hill-climbing control strategy. Additionally, ID4 converges 

on decision trees that correctly predict class membership to the same degree as 

the nonincremental ID3. Quality is maintained by approximating the effects of 

backtracking by operator application. This approximation ability is similar in 

intent to dependency-directed backtracking [RrcH83] used by some nonmonotonic 

reasoning systems.9 Last, in general ID4 required more observations to find the 

desired tree than did ID3. 

2.5.2 Incremental Conceptual Clustering 

A hill-climbing control strategy, paired with bidirectional operator mobility, 

is effective for incremental learning from examples. However, this strategy can also 

be extended to conceptual clustering. This section describes a system that can be 

8 Unlike, 'ARCH' which allows backtracking proper, ID4 is completely dependent 
on operator application to undo the effects of past learning. 
9 An observation due to Jeff Schlimmer. ' 
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viewed as an incremental method of conceptual clustering. Langley, Gennari, and 

Iba [LAN87B] discuss further examples of this approach to concept formation. 

UNIMEM 

Lebowitz' UNIMEM [LEB086, LEB085, LEB83A] was not originally framed 

as a conceptual clustering system. It was abstracted from the earlier IPP system 

(LEB83B], which integrated news stories on international terrorism into a knowledge 

base. However, UNIMEM has been framed as a conceptual clustering system by 

Fisher and Langley [F1s86A, F1s85A].10 

To be more specific , UNIMEM carries out conceptual clumping; it builds 

classification hierarchies that allow objects to be classified under multiple nodes. 

Given a new object and an existing hierarchy (GBM structure) that was built from 

previous observations, UNIMEM incorporates the object into the hierarchy. This 

is a two-step process. Starting at the root of GBM, arc-labeling values that are 

shared by the object 'activate' some number of subnodes. Arc-labeling values are 

predictive of object classes and are used to make some initial guesses as to what 

nodes will match the object. Node-labeling values of each activated node are then 

compared to the attribute values of the object. If the object's values do not disagree 

with any node labeling value, the object is recursively classified under the node. 

Node-labeling values are predictable of all class members and must be satisfied by 

the new object. Notice that the success of an object-node match is independent 

of whether the object matches other activated nodes - thus UNIMEM's clumping 

behavior. 

During classification UNIMEM can alter the classification hierarchy. If an 

object matches enough (according to a user supplied threshold) of an activated 

10 At the suggestion of Dennis Kibler. 
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node's predictable values then the object and node can be generalized. A super

ordinate node is created with predictable values that are the intersection of the 

object and old node's predictable values. This is similar to the operation of ag

glomerative techniques, but it only considers object-node combinations. In general, 

agglomerative methods allow arbitrary nodes to be combined. 

There are other ways to modify GBM during classification. Each predictable 

value of a. node has an associated integer count. If a node is activated by an 

object but has a predictable value that violates the object (e.g., Color = red versus 

Color = blue), the count( s) of the unmatched value( s) is decremented. In all . 
cases, if a predictable value matches an object value, its count is incremented. 

If a predictable value's count falls below a user supplied threshold, the value is 

removed as a predictable value of the node. This is a second form of generalization 

allowed by UNIMEM. If the number of predictable values falls below a user supplied 

threshold, the node and all of its subtrees are thrown away. Analogous update rules 

are followed for predictive values. 

Object incorporation results in a single new GBM structure that covers the 

new object as well as previously classified objects. Since UNIMEM only maintains 

one hierarchy following each observation, it can be viewed as hill climbing through 

a space of hierarchical classifications. It bears a limited similarity to agglomerative 

conceptual clustering methods in that objects can be combined with existing nodes 

to form higher-level nodes. Secondly, UNIMEM can drop subtrees as a way of 

undoing previous generalizations based on changing statistics. In this respect, its 

control structure is similar to that of ID4. 11 UNIMEM is also similar to Kolodner's 

CYRUS system [Ko183A]. In fact, at the level of abstraction that UNIMEM has 

been described here, CYRUS is nearly identical. Differences between these systems 

will be explained as they become relevant. 

11 Given the chronology, it is more accurate to say that ID4 is similar to UNIMEM. 
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While existing descriptions of UNIMEM are oblivious to search concerns, 

desirable search properties can be abstracted from them. Diminished search control 

and greater operator flexibility is a practical strategy for incremental learning. 

However, there has been little evaluation of UNIMEM along the obvious dimensions 

suggested by this framework: update cost, convergence time, and hierarchy quality. 

Though, Lebowitz [LEB087) has recently addressed these issues. 

2.5.3 Summary 

The premise of this section is that incremental processing demands rapid 

knowledge base update. This need drives the selection of learning strategies. 

Several incremental learning systems have been examined and a common search 

methodology has been abstracted. Each uses a hill-climbing control strategy and 

operators that allow search to progress bidirectionally in appropriate state spaces. 

This abstraction has not been explicit in previous descriptions of any of these 

systems.12 Three dimensions for evaluating incremental learning methods emerge 

naturally as a result of adopting this view. The framework and dimensions are used 

for characterizing the behavior of COBWEB and COBWEB/2, and are themselves 

a contribution. They encourage experimental validation and comparison of incre

mental learni~g methods, something missing in previous accounts. 

2.6 A Performance Task for Conceptual Clustering 

A performance task that improves with learning is a vital concern of most 

learning systems. This task motivates choices in system design and is the dimension 

used to judge the efficacy of learned knowledge. Nevertheless, conceptual clustering 

has not been traditionally associated with a performance task. With this in mind, 

an important question is "How do you know the classifications you get are any 

good?" 

12 Except ID4, whose experimental characterization was guided by this view. 
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Michalski and Stepp's [M1c83A, M1c83B] original formulation of conceptual 

clustering stressed it as a way of organizing data in an 'understandable' manner 

by forming classes that had 'simple' and 'tight-fitting' concepts. The quality of 

classification schemes was judged by the implementers and domain experts in 

terms of understandability. The tack of this dissertation is considerably different; 

classification schemes and concepts are judged by the degree that they promote 

predictions about the environment. 

The idea that conceptual clustering can improve inference is not entirely 

new. The reason for dropping nodes with too few predictable values in UNIMEM 

(and CYRUS) is that nothing useful can be predicted from class membership. 

However, a performance task for UNIMEM is never clearly explicated [LEB082, 

LEB085, LEB086]. Kolodner asserts that CYRUS and related systems are useful for 

'diagnosis' in domains such as psychiatric illness and dispute mediation [KoL85A, 

Kot85B, Kot83c] . However, she provides no well-defined performance task. There 

is only anecdotal evidence that these systems improve performance. 

A somewhat better delineation of an inference task is given by Cheng and 

Fu [CHEN85]. They show that in the domain of traditional Chinese medicine, 

their system builds a classification tree that corresponds well to classification 

schemes used by experts. Further, after building the classification they attach. 

expert assigned diagnostic conditions to classified instances. They show that of 

the 118 instances that were used to build the classification tree, 117 are correctly 

diagnosed using the tree. While their statement and validation of the inference 

abilities of classification structures is better than that of Lebowitz and Kolodner, 

there are problems. First, Cheng and Fu only consider prediction of diagnostic 

condition. If diagnostic condition is deemed equivalent to class membership then 

this task is identical to the one used to validate learning from examples systems. 

It is not clear that using conceptual clustering is useful if teacher-defined classes 
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are already known. Cheng and Fu do little to illuminate this issue. Secondly, they 

test diagnostic ability on previously observed objects. There is no demonstration 

that inference ability extends to unseen cases, which is the primary motivation for 

using inductive techniques. 

COBWEB and COBWEB/2 are characterized with respect to the perfor-

mance task shown in Figure 19. Classification structures are useful in predicting 

unknown attribute values of an observed object. Success at this task implies that 

the percentage of correct prediction for arbitrary attributes should be high. This 

property should hold over previously unobserved instances, as well as those ob

jects used to build the classification scheme. This performance task motivates the 

selection of a concept quality measure in Chapter 3. 

This performance task is a generalization of the one for learning from exam

ples. Like Cheng and Fu, class membership (as defined by some 'teacher') can be 

treated as simply another attribute for purposes of prediction. Note that this does 

not imply that the proce.s.s of conceptual clustering is a generalization of learning 

from examples. Nor does it say anything about whether conceptual clustering will 

do better, the same, or worse than learning from examples at facilitating prediction 

of class membership. However, both of these issues will be addressed later. 
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2.7 Chapter Summary 

In this chapter two machine learning tasks, learning from examples and 

conceptual clustering, were framed as search. Hierarchical conceptual clustering 

was described as three-tiered search: a search through a space of hierarchies, a 

search through partition space, and a search for characterizations. This framework 

was extended to incremental concept induction which was distinguished along two 

search dimensions, search control and search direction. A strategy of diminished 

search control (i.e., hill climbing) and bidirectional mobility was abstracted from 

a. number of concept learning systems. This strategy is the basis for COBWEB's 

search through the space of partitions and hierarchies, processes that are detailed in 

chapter 4. Additionally, a performance task is suggested for conceptual clustering. 

The identification of a behavior that improves du'e to conceptual clustering has not 

been previously explicated, but is important if conceptual clustering is to remain 

a vigorous area of machine learning research. 

The following chapter introduces important psychological phenomena that 

motivate a measure of concept quality. While this discussion is important for 

defining the heuristic measure used by COBWEB, chapter 3 also introduces psy

chological effects modeled in chapter 7. 

Chapter Acknowledgements 
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CHAPTER 3 

Psychological Constraints on Concept Induction 

3.1 Chapter Overview 

Chapter 2 developed incremental conceptual clustering as a process of search. 

This framework comes from artificial intelligence and it represents an important 

conceptual foundation for COBWEB.· However, COBWEB classification trees also 

are the basis of a psychologically consistent model of memory organization. This 

chapter presents the psychological phenomena that this memory organization mod

els. Moreover, the chapter motivates some high level constraints on the COBWEB 

system itself, including a concept language that extends the attribute-value rep

resentations of the last chapter and a measure of concept quality that is used to 

guide search. 

In section 2, the view of a concept as a logical conjunction of properties is 

questioned in light of typicality (or prototypicality) effects that have been observed 

during human classification. Attempts to account for these effects have led many 

researchers to adopt a probabilistic definition of concepts. This chapter adopts one 

such definition that augments the attribute-value representation of chapter 2. 

Section 3 describes experimental evidence supporting the existence of a basic 

or preferred set of concepts in human hierarchical memory systems. Additionally, 

explanations of basic level effects are used to develop a measure of concept quality. 

In summary, chapter 3 leaves intact the idea that concept induction is a 

process of search. However, the discussion of chapter 3 opposes commonly held 

AI views about the nature of the space( s) searched during induction. Specifically, 

typicality dfects impact the representation of individual concepts, while basic-level 

64 
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effects impact assumptions about the structure of concept hierarchies. Quantitative 

measures used to account for these phenomena are proposed as heuristics for 

guiding search in a principled manner. 

3.2 Typicality Effects and Probabilistic Concepts 

The concept representation discussed in chapter 2 is roughly equivalent to 

Bruner, Goodnow, and Austin's [BR.UN56] definition of a conjunctive concept. 

Concepts of this form fall under what Smith and Medin [SMIT81] have called the 

Clauical view of concept structure. 

One implication of classical concept representations is that all concept mem

bers are in some sense 'equal'. To be recognized, each object value must be 

examined to insure that it is in the value set of the respective concept attribute. 

Each attribute is checked, regardless of the makeup of the instance being scru

tinized; thus the assertion of 'equality' for all concept members. However, work 

in experimental psychology indicates that human subjects do not treat concept 

instances equally, but regard certain members as more 'typical' than others. 

3.2.1 Exper~mental Indicators of Typicality Effects 

Many studies of human classification are concerned with the ability of subjects 

to recognize concept instances or subclasses. A target recognition task requires a 

subject to answer questions of the form "Is a sparrow a bird?" In this example, bird 

is the target concept against which sparrow is tested for membership. Two variants 

on this task have been used. The first uses a verbal cue (e.g., the word sparrow) 

to identify the test Hem. The second uses a picture (e.g., of an actual sparrow) to 

identify the test item. In most all studies, the target is identified verbally. 

Regardless of whether the test item is given symbolically (by word) or picto

rially, the human subject is required to answer 'yes' if the test item is a member 
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of the target or 'no' otherwise. The primary variable of interest is the subject's re

sponse time. Several studies (RIPS73, Ros75B] 13 indicate that subjects consistently 

respond affirmatively more quickly to certain positive instances than to others. For 

example, subjects more quickly confirm that a sparrow is a bird than they confirm 

that a chicken is a bird. The relative ranking of positive test items (as a function 

of response time) is consistent within individuals, as well as across individuals. 

The ranking of test items in target recognition tasks is indicative of an 

apparent bias in human subjects; some test items are more typical representatives 

of a concept than others. Besides studies of classification time, the belief in a 

typicality ranking is bolstered by evidence from a variety of other experimental 

sources. For instance, Rips, Shoben, and Smith [RIPS73] and Rosch [Ros75A] had 

subjects rank members of a target concept based on the subject's judgements of 

typicality. The rankings explicitly obtained from subjects are highly correlated with 

rankings based on response time. In addition, various studies have also found that 

typical items (judged by the tasks above) tend to be learned first and that when 

asked to list all members of a particular concept (exhaustive retrieval), subjects 

tended to list items in order of decreasing typicality [Ros76B]. See [MER.V81, 

MER.V80, Rosc78, SMIT81] for good reviews. 

3.2.2 Implications of Typicality Effects on Concept Structure 

Typicality effects suggest that concept members do not interact identically 

with their respective concept definition. Classical representations do not easily 

account for these effects and a number of alternative concept representations have 

been proposed. 

An early attempt to discover structural determinants of typicality was made 

by Rosch et. al. [Ros76B, Ros75B]. They found that class members sharing 

13 Smith and Medin f SMIT81, p 35] indicate that more than 25 studies of semantic 
categorization have been conducted and give a partial bibliography. 
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features with many other members tended to be judged most typical. Further, 

when a disjoint (or 'contrasting') class was considered, members that shared few 

features with contrasting class members tended to be judged most typical. Thus, 

Rosch and Mervis identify two aspects of typicality; typical items share much with 

other members of the same class and they share little with members of contrasting 

categories. These two aspects are captured in a family re&emblance function that 

assumes a test i tern, I, a target class, C that contains I, and a set of contrasting 

classes that are denoted collectively as ..., C. Specifically, 

family-resemblance( I, C) =!(I: II n Oil, I: II n 031). (3-1) 
Ci EC C;e~c 

The family resemblance of a class member is a function of the number of properties 

shared with other members of the same class and the number of properties shared 

with contrasting class members. 14 Similar properties have been found to relate to 

human identification of 3tereotype& [McCA80, McCA 78]. 

3.2.3 Probabilistic Concepts 

The apparent relation between family resemblance and typicality indicates 

the importance of attribute value distributions in human classification. Classical 

concept representations do not capture distributional information. Models of clas

sification based on classical representations have difficulty accounting for typicality 

effects. A number of concept representations have been developed in response to 

the limitations of classical representations. A class of these representations have 

been termed probabilistic concept representations by Smith and Medin (SMIT81]. 

A probabilistic representation associates a probability, weight, or some other con

fidence number with each attribute value of a concept definition. 

14 II n Cil is the size of the intersection (i.e., th~ number of shared properties) 
between objects I and Ci. 
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The following discussion assumes a strict probability is maintained. That is, a 

concept includes attribute values a.sin classical representations and the distribution 

of those values across class members as well. For each attribute-value pair, Ai == 

Vii, a conditional probability of the form P(Ai = Vii I Ck) is maintained in the 

concept representation of class, C1c. 15 P(Ai = Vii I Ck) is referred to as the category 

validity of Vii with respect to C1c. It is a measure of a value's predictablity with 

respect to a class. The conventions of chapter 2 (i.e., objects are defined over the 

same attributes and each object exhibits exactly one value along each attribute) 

guarantee that for each attribute, Ai, 2:1-'i; P(Ai = ViilCk) = 1.0, over Vii in the 

domain of Ai. 

Probabilistic concepts subsume the logical representations of chapter 2. In 

the case where attribute-value pairs are being used, any probabilistic concept that 

associates a weight with each pair can be mapped onto a unique (maximally

specific) logical analog. Conversely, for a given logical concept there may be 

many probabilistic 'equivalents'. A necessary attribute value has a probability 

of 1.0. Nonnecessary values have probabilities of less than 1.0. Only values with a 

probability greater than 0.0 are an explicit part of a concept representation. 16 

Recognition using probabilistic concepts is not a matter of verifying a con

junction of conditions as with logical representations. It is quite possible that no 

necessary conditions exist. Somehow, evidence in the guise of individual attribute 

values must be combined to select one of several possible concepts. A simple 

recognition scheme is proposed by Smith and Medin (SMIT81]. This procedure 

sums the probabilities (or weights) of all concept attribute values that are present 

15 This probability is assumed to be exact over all currently known members of Ck. 
As chapter 4 demonstrates, this probability is only an approximation (hopefully) 
of the value's distribution over future objects that will be classified by ck. 

16 Furthermore, nonnecessary, but nontheless highly probable, values can be in
terpreted as default values with the associated probability being a measure of 
confidence in their truth. Default values in the context of probabilistic representa
tions allow for a compact representation of concept knowledge. Further discussion 
on default values and the relation between probabilistic and logical concept repre
sentations is given in chapter 5. 
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in an object. Specific examples that follow this general recognition procedure in

clude Collins and Loftus [CoLL75], Smith, Shoben, and Rips [SMIT74), Hampton 

[HAMP79], and Hampson [HAMP83]. If the sum passes a specified threshold, the 

object is assumed to be a member of the concept, otherwise the object is rejected 

as a concept member. 

This model of object recognition offers an explanation of why typical concept 

members are more quickly recognized than atypical members. The values of typical 

class members are shared by more objects of the same class. These values have 

greater probabilities and, as a consequence, summation will tend to reach the 

threshold more quickly for typical objects. In the case where verbal cues identify 

a subclass as the test item, the concept corresponding to the cue is assumed to be 

retrieved by an unspecified process, after which it can be compared with the target 

(retrieved by the same unspecified process) via the summing procedure. A pictorial 

representation of the test i tern is assumed to directly convey the the properties of 

the test item for inspection by the subject. 

At a cursory level the threshold recognition procedure assumes recognition 

with respect to a concept occurs independently of contrasting concepts. This 

assumption can be undesirable in cases where concepts must represent mutually 

disjoint classes. There are at least two ways to extend the summation procedure 

so that it operates in the presence of contrasting categories. One step is to include 

a measure in the weight of values that is dependent on the makeup of contrasting 

concepts. One such measure is cue validity [MEDI83, SMIT81). This is a conditional 

probability of the form, P(CklAi = Vii)· It is simply the probability that an 

arbitrary object is a member of concept Ck, given it exhibits value Vii. Cue validity 

is a measure of a value's predictiveness for a concept. The cue validity of a value 

with respect to a concept, ck, is dependent on -,ck, as well as ck. 
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Although a context-dependent measure like cue validity makes classification 

dependent on contrasting concepts, in general this augmentation cannot enforce a 

restriction of mutually exclusive classes. A second means of extending the sum

mation procedure is to replace the constant threshold with a variable 'threshold'. 

An obvious solution is to assume the concept that maximizes the summation for 

an object is the concept that contains the object. 

3.2.4 Alternatives to Probabilistic Concepts 

The threshold recognition procedure based on probabilistic concept represen

tations has been called an independent cue model of concepts. Recognition is a 

process of evidence combination that sums separate (or 'independent') pieces of 

evidence. Medin (MEDI83, MEDI78) asserts that the 'independence assumption' has 

several important ramifications. 

Generally, the real world tends to be segregated into bundles of correlated 

attribute values (MERV81]. An assumption is that humans are naturally attuned to 

correlations for categorization. This conjecture has been experimentally supported 

(MEDI83]. However, independent cue models do not explicitly compute correlations 

among attribute values. Therefore, the conclusion by some researchers [MEDI83, 

HANS86] is that independent cue models cannot be reasonable models of human 

concept structure. 

A more specific consequence of using independent cue models is that only 

linearly separable categories can be recognized. That is, independent cue models 

assume a weighted and additive combination of independent attribute information. 

Medin hypothesizes that if independent cue models are reasonable models of human 

categorization, linearly separable categories should be more easily learned than 

nonlinearly separable ones. However, experiments [MEDI83] indicate that this is 

not necessarily the case. 
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The apparent weaknesses of independent cue models of recognition have led 

to a number of alternative models. In one way or another, each of these models 

assume an explicit representation of attribute-value combinations. Recognition 

profits from knowledge about attribute-value combinations (e.g., red and large), as 

well as individual values (e.g., red). 

3.2.4.1 Exemplar Models 

A straightforward way of keeping track of attribute value combinations is 

to simply remember concept instances. Each instances is a maximally specific 

conjunction (combination) of values. Summary information can be computed, 

as necessary, during recognition. These assumptions underlie exemplar concept 

models [SMIT81]. 

A simple exemplar model is the proximity model [REED72]. A concep.t is 

an extensional listing of all its known members. A new object is classified as 

a member of a concept, C, if it most closely matches (i.e., is most similar to 

or in closest proximity to) an instance of C, versus a member of a contrasting 

concept. More generally, extensional concept representations are assumed by many 

techniques of numerical taxonomy. Classification based on a 'best' match with a 

single known concept member is a principle shared by single linkage or nearest 

neighbor techniques of numerical taxonomy [EvER80]. 

Arguably, keeping and accessing an extensional listing of all known concept 

instances can become expensive as the number of known objects increases. This is 

demonstrated by Kibler and Aha (KIBL87) in a comparison between the proximity 

model with alternative methods. A loosely specified model that limits the number 

of stored instances is Smith and Medin's best examples model [SMIT81]. Smith 

and Medin assume that a family resemblance function is used to filter out atypical 

instances. Only instances that are likely to be typical are stored. While reducing 

the number of instances stored by the proximity model, the best examples model 
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still allows a significant number of exemplars to be stored. In general, this seems 

necessary if the structure of many natural categories are to be adequately captured. 

For example, there may be many 'typical' animals (e.g., a particular dog, a fish, a 

bird, a frog). 

A new instance is matched in parallel against the stored exemplars of each 

contrasting concept. The first concept for which a specified number of exemplars is 

found to sufficiently match the instance, according to another threshold, classifies 

the instance. Presumably, the best examples model would account for typicality 

effects, but this hypothesis has not been tested. New and typical instances would 

more closely match the currently stored, typical instances. A criterial number of 

retrieved exemplars would tend to be reached more quickly for typical instances, 

rather than for atypical ones. 

A final exemplar model is the context model by Medin and Schaffer [MEDI78]. 

The context model is similar in most respects to the best examples model, including 

its account for typicality effects. In fact, Smith and Medin developed the best 

examples model as a simplification of the context model. However, the context 

model allows the 'importance' or salience of attributes to be specified. Salience 

can be regarded as the degree that a subject attends to a particular attribute. The 

impact of variablizing attribute salience is that some attributes can be ignored if 

salience = 0. For example, if four facial attributes are equally salient, a particular 

face may be encoded as {Eye-height = high, Eye-separation= wide, Nose-length 

= long, Mouth-height = low}. However, if subjects do not attend to Mouth

height, 17 the same exemplar may be encoded as {Eye-height= high, Eye-separation 

= wide, Nose-length = long} [SMIT81, p 152). Allowing an attribute salience of 0 

results in exemplar encodings that are (apparently) abstractions; they may not 

uniquely match a single object. For example, the encoding {Eye-height = high, 

17 How attribute salience is determined is an issue. that falls outside of the definition 
of the context model. 



73 

Eye-separation= wide, Nose-length= long} matches an object with low, medium, 

or high Mouth-height. 

Exemplar models assume that concepts are inherently disjunctive and directly 

encode attribute-value combinations. Therefore, these models also evade problems 

like being restricted to representing only linearly-separable categories. The prox

imity and best examples models remember instance descriptions exactly. These 

models store attribute-value combinations, but such combinations are limited to 

complete instance descriptions. The context model is not limited to storing com

plete instances. A subset of an object's values can be stored. On the surface, 

this appears to admit abstractions or generalizations over instances. However, in 

the context model there is no utilization of such a subset as an abstraction; it 

conveys no information about category-wide regularity whatever. The occurrence 

of a value subset only implies that one instance with that set of properties oc

curred. In particular, the salience of an attribute is a measure of importance that 

is completely independent of category makeup, unlike category and cue validity. 

The context model uses only instance level, versus 'category level', information for 

classification. The context model shares this general property with other exemplar 

models. 

3.2.4.2 Relational Cue Models 

Another class of models are termed relational cue model" (SMIT81). Relational 

cue models generalize both exemplar and independent cue models, albeit in differ

ent w:ays. Like independent cue models, relational cue models allow probabilities 

(weights, confidence measures) of individual attribute values to be maintained in 

concept descriptions (e.g., P(Color·= redl01c)). Moreover, relational cue models 

also permit joint probabilities for larger configurations of attributP. values, e.g., 

P(Color = red A Size =large A Shape = sphere ICk)· Relational cue models also 
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generalize exemplar models. Since an instance is a conjunction of values, relational 

cue models allow the storage of instances (with associated probabilities). 

One relational cue model is given by Hayes-Roth and Hayes-Roth (HAYE77). 

The property-set model supposes that frequencies of all possible value combinations 

are stored.18 For example, if objects are described over Size and Shape, a concept 

for the class, 01 = {large sphere, small cube}, would contain19 

large[l], small[l] 
sphere[l], cube[l] 

large /\ sphere[l], small/\ cube[l] 

The decision as to which cori~ept classifies an object is made by identi

fying the most 'diagnostic' attribute value conjunction among the competjng 

concepts. In particular, from frequencies stored at concepts, the cue validity 

of each value conjunction can be computed.2° For example, suppose an object, 

0 = {small sphere}, is compared with two classes, 01 (given above) and 02. 

Assume that the only instances of a sphere are in 01. Then the cue validity, 

P(01IShape =sphere)= f = 1.0. Moreover, suppose that P(02ISize =small)== 

0.5 and P(C2ISize =small /\ Shape= sphere) = 0.0. Then, 'Shape = sphere' 

is the most diagnostic condition and it indicates that 0 should be classified as a 

member of C1. There are some rules for deciding 'ties', but in general, recognition 

using the property-set model is poorly specified and it remains unimplemented. 

The property-set model stores frequencies for all possible value combinations 

for each concept. However, much of this information may be useless for classifi

cation. In the example above, P(02ISize =small) = 0.5 was given, and a simple 

18 While frequencies are explicitly stored, recognition involves computation of prob
abilities from these frequencies. 

1~ It is not clear from the description of Hayes-Roth and Hayes-Roth whether 
property sets (or value sets) with a frequency of 0 are explicitly stored or implied 
by their absence. 

20 In discussing the independent cue model, the category validity of individual 
attribute values was assumed. For discussion of relational cue models, it will be 
convenient to focus on cue validity. However, storing either category or cue validity 
allows the computation of the other by Bayes' rule. 
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computation will verify that P( 01 I Size = small) must therefore equal 0.5 as well. 

Knowing that an object is small does not alone aid classification, since the cue va

lidity of this property is the same for each concept. A reasonable storage strategy 

would throw out value conjunctions that do not aid classification. This strategy 

is employed in ACT by Anderson and Kline [ANDE79]. ACT assumes structured 

object descriptions and associates a real-valued weight with predicate conjunctions. 

While many conjunctions are stored, only those whose weight surpasses a variable 

threshold are used to generate a prediction. A more principled approach to filtering 

out minimally diagnostic conditions is used by STAGGER, a system by Schlimmer 

and Granger (ScH86c]. STAGGER weights attribute value combinations (i.e., con

junctions, disjunctions, negations) using statistical analogs of logical sufficiency and 

logical necessity that were originally used in the PROSPECTOR system (DUDA 79]. 

These measures interact so that only useful diagnostic combinations tend to be 

retained. 

Recognition in relational cue models is based on weights of individual at

tribute values, as well as combinations of values. This allows computation of 

nonlinearly separable categories and makes recognition a function of correlated 

values. However, computing joint probabilities can be expensive. It may be neces

sary to fore.go the luxury of computing all joint probabilities as in the property-set 

model and only keep certain value combinations. The heuristics that determine 

what conditions to remember will differ from system to system. 

3.2.4.3 Summary 

In general, the representational power of exemplar-based and relational cue 

models are equivalent. Stored exemplars can be used, as needed, to compute 

any of the information used in relational cue models. To a limited extent, joint 

probabilities are computed from exemplars by a number of current clustering 

systems (H.~\Ns86]. 
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Exemplar and relational cue models both address a purported weakness of 

independent cue models. Independent cue models are limited in that they do 

not allow correlations between attribute values to be represented. However, the 

approach of this dissertation is that this motivates a consideration of concept 

organization&, not new models of individual concepts. In particular, concepts of the 

independent cue variety capture the same information as exemplar and relational 

cue models, provided they are organized into concept hierarchies. 

3.2.5 Independent Cue Models and Concept Hierarchies 

Smith and Medin's complaints regarding independent cue models (henceforth, 

probabilistic concepts) dissipate when concepts are not considered singly, but 

within the context of larger constructs like con.cept trees. Trees can be used to 

compute the information content of relational attribute value information. In 

terms of information content, tree-organized probabilistic concepts are equivalent 

to relational cue models. 

3.2.5.1 Equivalence of Relational Cue Models and Probabilistic Concept Trees 

Consider a situation with two contrasting concepts, 01 and 02. Assume that 

the diagnostic information retained by a relational cue model includes: 
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Figure 20 

Encoding joint probabilities in tree form 

P(01 Ired) = 0.75 
P( 02 Ired ) = 0.25 
P( 01 Ired /\ cube) = 0.5 
P( 02 Ired /\ cube) == 0.5 
P( 01 Ired /\ sphere) = 1.0 
P( 01 Ired /\ cube /\ rough) == 1.0 
P( 02 Ired /\ cube /\ smooth) = 1.0 

P( 01 I blue /\ cube) == 1.0 
P( 02 lblue /\ sphere) == 1.0 
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This information can be encoded as shown in in Figure 20. Associated 

with each node is a probabilistic concept that gives the node-conditioned cate-
I 

gory validity of each attribute. However, for convenience most of the nodes of 
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Figure 20 only show values with probability 1.0 (e.g., P(redlN1) = 1.0). Class 

designations and their associated probabilities (e.g., P( C1 IN1) = 0. 75) are shown 

as well. In addition, some supplementary information is given, like the base rate 

probabilities of values (e.g., P(redlNo) = 0.5) and the probability of each node 

(e.g., P(N1IN0) = 0.5). 

Each node of Figure 20 represents an object class. This type of tree will be 

called a probabilistic concept tree. It differs from a decision or discrimination tree 

(FEIG84] in that probabilistic (and not logical) concepts label nodes (and not arcs) 

of the tree. Classification is performed by using a partial matching function (e.g., 

a summing procedure) to find the class that best matches an object. This process 

is described in more detail later. 

Concepts at probabilistic concept tree nodes capture the diagnostic conditions 

of the example relational cue model. For example, Ni, N2, and Ns cover only and all 

cases of 'red', 'blue/\. cube', and 'blue/\ sphere', respectively. More generally, from 

individual value probabilities at each node (and node probabilities), information 

about attribute value combinations can be computed. For example, probabilities 

of the form P(Cilcondition) can be recovered from independent attribute value 

information at different nodes. Specifically, 

P( Ci I condition) = 2: P( Ci/\. Nj !condition), 
j 

(3-2) 

where N3 is a first level node. Applying Bayes' rule, each term of this sum can be 

rewritten as 

P( Ci/\ Nj I condition) == 

P( conditionlCi /\. Nj )P( Ci/\. Nj) _ P( condition/\. Ci I Ni )P(Nj) 
P( condition) - P( condition) 

(3-3) 
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For some value conjunctions, the tree has been structured so as to make the 

computation of 3-2 relatively inexpensive. Other combinations are not so cleanly 

captured. Moreover, the difficulty of computing P( condition /\ CilNj) for each Nj 

can vary. The following examples reflect this diversity. 

Example 1 

Consider the computation of P( C1 lblue /\cube): 

P( 01 I blue /\ cube) - P( 01 /\Ni lblue /\ cube) + 

P( 01 /\ N2 lblue /\ cube) + 

P( C1 /\ N3 lblue /\ cube) 

In this case, P( 01 /\Ni I blue /\ cube) = P( 01 /\ Ns lblue /\ cube) = 0.0. Evaluating 

P(C1 /\ N2lblue /\ cube) using 3-3 gives 

P(c N lbl b ) 
_ P(blue /\ cube/\ C1 IN2)P(N2) 

1 /\ 2 ue /\ cu e - P(blue /\ cube) 

Because N2 contains all and only 'blue/\ cube' objects, P(N2) = P(blue /\ cube) 

= 0.2 and P(blue /\ cubelC1 /\ N2) = 1.0. So 

( I ) 
1.0 x 0.2 

P C1 blue /\ cube = = 1.0 
0.2 

The tree of Figure 20 is organized so· that computation of P( C1 I blue /\ cube) is 

easy. Specifically, the P(blue /\ cubelN2) = 1.0 implies P(blue /\ cube/\ C1IN2) = 

1.0 x P( C1 IN2). Similar circumstances make the computation of P( C1 Ired) == 0.67 

and P( C2 lblue /\ sphere) = 1.0 equally easy. Even nodes at deeper levels of the tree 

facilitate a straightforward computation of diagnosticity. For example, knowing 

that P(N122) = P(N122 IN12)P(N12 IN1)P(N1 I No) enables a simple verification that 

P( 02 Ired /\ cube /\ smooth) == 1.0. 
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Example 2 

By isolating joint probabilities at nodes, trees ease the task of computing 

certain relational information. However, 3-2 indicates that to compute some joint 

probabilities requires an examination of multiple paths. For example, P( C1 jcube) 

can be computed, but it is more costly to do so than the previous examples. To com

pute P(C1lcube) requires finding a path to all nodes, Ni, such that P(cubelNi) = 
1.0, i.e., Ni2 and N2. From information at these nodes and accumulated along the 

paths to these nodes, P(C1 !cube) can be computed. In particular, 

P(C1lcube) = P(C1 /\ Nilcube) + P(C2 /\ N21cube) + P(C1 /\ Nslcube). 

P( C1 /\ Ns jcube) simply equals 0 and further exploration of this node can be 

discontinued. Since P( cubelN2) = 1.0, 

P(c NI b ) 
= P(cube /\ C1IN2)P(N2) = 1.0 x 0.2 

1 /\ 2 cu e P(cube) P(cube) 

However, since P( cubelN1) ~ 1.0, 

P(c N I b ) 
= P(cube /\ C1IN1)P(N1) = P(cube /\ C1IN1) x 0.5 

1 /\ 1 cu e P(cube) P(cube) 

where P( cube /\ C1 IN1) must be evaluated in terms of Ni's children. 

= (0.5 x 0.0) + (0.5 x 0.5) 

= 0.25 
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P( cube) is given at the root. However, in general P( condition) can be computed 

by summing the probabilities of nodes for which 'condition' is true with probability 

1.0.21 Thus, P( cube) = P(N1 INo)P(N12 IN1) + P(N2 IN0) = 0.45. All told, 

(0 I b ) 
0.25 x 0.5 1.0 x 0.2 7 

P 1 cu e = + = 0. 2 
0.45 0.45 

In general, any joint probability can be computed from tree-structured prob

abilistic concepts. In terms of information content, tree-structured probabilistic 

concepts are equivalent to relational cue or exemplar models.22 In the best case, a 

single tree node isolates a desired conjunction of values; the probability of the value 

conjunction is the probability of the node. In the. worst case, an extensive search of 

the tree may be necessary to compute joint probabilities fr~m subordinate nodes, 

including leaves representing instances. Ideally, the tree should capture diagnostic 

correlations that occur most frequently, thus minimizing average computational 

requirements. 

3.2.5.2 Concept Tree Nodes and Conditional Independence 

The computations above rely on nodes where P( conditionlNj) = 1.0. These 

nodes provide a simple way of calculating P( condition/\ GilNi) = 1.0 x P( CilNi ), 

i.e., 'condition' is true in the context of Nj regardless of the presence of Ci or not. 

Therefore the joint probability of 'condition' and Ci conditioned on Nj is simply the 

probability of Ci conditioned on Nj. The case where P( condition I Ni) = 1.0 insures 

that 'condition' is conditionally indeper:ident of all other conditions, including the 

truth of Ci. However, the conditional probability of a value conjunction need not 

be 1.0 to insure its conditional independence from other attributes. In fact, many 

21 Using probabilistic concepts at nodes, the probabilities of a conjunction will not 
be stored at the root. 

22 Analogous and more formal arguments for the equivalence of networked percep
trons and other forms of computation are given in [NILs65, RosE58]. 
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useful categories have no necessary values, but nonetheless have typical values that 

approximate independence from other class defining values. 

Pearl [PEAR85) points out that classification tree nodes, Nj, act as 'aux

iliary' attributes that may induce conditional independence over some observed 

attribute(s). Specifically, for a node, Nj, and all values of attributes, Ai1 through 

m 

P( Ai1 = ViiJi1 ' • • •' Aim = V'imJim I Nj) = II P( Ai, = Vi,Ji1 I Nj) • 
l=l 

In general, computing joint probabilities benefits from nodes that induce 

conditional independence among attributes and class designation. 

3.2.5.3 Prediction Using Probabilistic Concept Trees 

Probabilistic concept trees encode attribute correlations at nodes. In par

ticular, discussion has focussed on category diagnostic information. A tree that 

captures 'appropriate' correlations can be used for effective diagnosis or predic

tion of category membership. Recalling discussion from chapter 2, prediction is a 

byproduct of classification with respect to the tree. 

Using a tree, an object is initially classified with respect to the children 

of the root. Using logical ('classical') concepts, chapter 2 assumed that this 

involved determining an exact match between the object and arc-labeling concepts. 

However, using probabilistic concepts, classification is made via a partial match 

using a summing procedure. If the object is to be classified with respect to only one 

child, the node that maximizes the summation is regarded as classifying the object. 

Classification proceeds recursively until a leaf or an appropriate intermediate node 

is reached. At this point a prediction of category membership is made. 

For the tree of Figure 20, classification results in a prediction of either C1 

or C2. Node N2 covers objects for which the conjunction 'blue /\ cube' is true. 

Presumably, a new blue, cubical object stands 
1

a good chance of being classified 
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with respect to N2, although this depends on the relation of all the object's values 

with each node. Having classified an object with respect to N2, the best guess 

as to its class membership is 01. For similar reasons, it is probable that a red, 

rough, cube will be classified with respect to N121· However, unlike the previous 

example, the diagnosticity of attribute values that indicate N121 are spread out 

over a number of nodes. That is, P(N1 Ired, No) = 1.0, P(N12 lcube, Ni, No) = 1.0, 

P(N121 lrough, Ni2, Ni, No) = 1.0. 

The procedure of accumulating conditions over a path of nodes is also followed 

by decision trees. Recall (from chapter 2) that arc-labeling conditions of a decision 

tree perfectly segregate objects at each node. An exact match is required if an ob

ject is to traverse an arc. However, this representation and recognition procedure 

can be easily simulated using probabilistic concepts. For example, assume that the 

probabilities of 'red', 'cube', and 'rough' at Ni, N12, and Ni21, respectively, are 

replaced by sufficiently high weights so that they dominate any possible summa

tion. As with a decision tree, a single value will determine categorization - other 

value probabilities at nodes will not significantly effect the categorization process. 

Decision trees are a special case of probabilistic concept trees, in which necessary 

and sufficient values are introduced at each node. 

In general, trees encode diagnostic information that can be retraced during 

classification. With perfect knowledge about the world, a tree can be constructed 

so that classification and prediction are deductive. Trivially, a decision tree (which 

can be simulated by a probabilistic concept tree) over all objects of a particu

lar domain perfectly distinguishes the class membership of every domain object. 

However, the application of conceptual knowledge is rarely limited to deductive 

tasks. Frequently, concepts and concept trees are used for induction tasks, for 

example, predicting the class membership of previously unseen objects. 
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For inductive tasks, probabilistic concept trees may pose limitations. Some 

correlations are distributed along a single path, but generally, multiple paths must 

be explored to recover arbitrary correlations. However, by convention, classification 

using trees proceeds along a single path of best matching nodes. Under these cir

cumstances important diagnostic information may be excluded from the prediction 

process. In principle trees encode all relational information, but in practice, all such 

information may not be recovered during classification and prediction. One solu

tion allows multiple paths to be explored during classification [QUI87B]. If object 

incorporation is similar to clas.sification, multiple path exploration effectively leads 

to more general hierarchical structures. Apparently, this is a major motivation 

behind the clumping techniques of Lebowitz [LEB082] and Kolodner [Kot83A]~-

3.2.5.4 Probabilistic Concept Trees and Nonlinearly Separable Classes 

A specific result of not representing attribute value correlations is that prob

abilistic concepts are limited to recognizing linearly separable classes. Medin 

[MEDI83] assumes that if independent cue models are good models of human 

concept structure, linearly separable categories should be easier to learn than non

linearly separable sets. An investigation of this question required that subjects 

learn (from examples) one of the two category pairs of Table 4. Objects were char

acterized in terms of four binary attributes, Ai through A4. Learning the linearly 

separable set resulted in more recognition errors and was judged by subjects more 

difficult to learn. Thus, learning linearly separable sets is not nece.ssarily easier 

than learning nonlinearly separable sets. 

Medin's experimental results are only damning of probabilistic concepts that 

are considered singly. Probabilistic concept trees are not constrained to recognizing 

linearly separable sets. In fact, Medin's experimental results are easily accounted 

for by assuming that probabilistic concept trees are learned, rather than solitary 

concepts. 
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LINEARLY SEPARABLE CATEGORIES 

CATEGORY 01 CATEGORY 02 

Ai A2 A3 A4 Ai A2 A3 A4 

Object 1) 1 1 1 0 5) 1 0 1 0 

2) 1 0 1 1 6) 0 1 1 0 

3) 1 1 0 1 7) 0 0 0 1 

4) 0 1 1 1 8) 1 1 0 0 

NON-LINEARLY SEPARABLE CATEGORIES 

CATEGORY 01 CATEGORY 02 

Ai A2 A3 A4 Ai A2 A3 A4 

9) 1 0 0 0 13) 0 0 0 1 

10) 1 0 1 0 14) 0 1 0 0 

11) 1 1 1 1 15) 1 0 1 1 

12) 0 1 1 1 16) 0 0 0 0 

Table 4 

Linearly separable and non-linearly separable classes 

Consider the concept trees of Figure 21, which discriminate the category pairs 

of Medin's experiments. An independent cue model insists that each node divides 

the total object set into linearly separable categories. However, this division need 

not correspond to the sets that were taught, Oi and 02. Rather, members of 

these classes may reside in distinct portions of the classification tree. Probabilistic 

concepts at internal nodes are abbreviated by a general pattern (e.g., lOlX) that 

lists values ~ccurring with probability 1.0 and placing an 'X' for attributes in which 
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Linearly Separable Categories 

Non-Linearly Separable Categories 

Figure 2i 

Concept trees over non-linearly and linearly separable sets 

no value occurs with probability 1.0. The tree reveals a peculiarity of the linearly 

separable set; objects in different categories, 01 and 02, share many properties. It 

is reasonable to expect that they might be placed under the same tree node. 0 b ject 

7 of the linearly separable set is quite unlike any other members of its category, 02. 

On the other hand, fairly specific patterns can be found that perfectly discriminate 

many members of the opposing categories for the nonlinearly separable set. 

Discrimination of 01 and 02 stems from an ability to descend thee· tree to 

arbitrary depth before making a decision as to class membership. This descent may 

be all the way to the leaves of the tree where information on individual objects 
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are kept. However, intermediate nodes may provide sufficient information (e.g., 

P( C;jN;) = 1.0) to warrant a prediction. This occurs with two intermediate nodes 
, 

from the tree over the nonlinearly separable data. In these cases classification 

need only proceed to a depth of 1 for a correct decision to be made with certainty. 

Medin 's finding that the nonlinearly separable sets have an associated fewer number 

of recognition errors might result as a function of the average depth required to 

distinguish whether an object is from class 01 or 02 (depth 1.37 for non-linearly 

separable sets vs. 1.87 for the linearly separable sets in the sample trees). 

3.2.5.5 Concept Trees, Exemplar Models, and Relational Cue Models 

Concept trees that adopt an independent cue model of individual concept 

(i.e., node) structure provide the same information as exemplar or relational cue 

models. Intuitively, a concept tree can include all observed objects at its leaves. 

Arbitrary joint distributions can be computed from these instances. However, a 

concept tree captures certain attribute value correlations at nodes. This makes the 

computation of some relational information easy. It also imposes an classification 

scheme over instances. In this light, concept trees can be viewed as a more tightly 

constrained specification of either exemplar or relational cue models, rather than 

an alternative to them. An appropriately structured tree can efficiently implement 

the classification procedures of these models. 

An observation that is important for understanding the equivalence of concept 

trees to other concept models is that two types of categories result from organizing 

preclassified instances into a tree. First, categories may be defined by some external 

source or 'teacher'. These categories are not restricted to being linearly separable. 

The only constraint is that constituent objects must be expressible in a given object 

language (e.g., attribute-value pairs). Ongoing discussion has denoted these classes 

as Ci. Second, there are categories that correspond to classification tree nodes, Nj. 

Concepts at tree nodes fit the independent cue model of concept structure. Their 
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respective categories are linearly separable. Throughout the dissertation, there will 

be some need to explicitly address the computational and psychological differences 

associated with each type of concept. For example, in cases where objects come 

preclassified, concept tree organization can reflect a desire to maximize correct 

prediction for teacher-defined classes (Ci)· However, this dissertation is concerned 

with concept formation where objects are not preclassified, but arise naturally. In 

concept trees like those dL.~ussed here, naturally occurring concepts correspond 

to nodes (Nj).23 Criteria for tree structuring will differ from the case where 

preclassification exists. 

From a psychological standpoint, studies involving artificial domains require 

subjects to first learn relevant categories by examples. Typicality findings apply 

to the externally defined classes. Other studies use natural domains (e.g., ani

mals). These categories correspond roughly to single nodes. Results obtained in 

future chapters will apply most strongly to natural or 'node concepts', but, to a 

limited extent, will also address computational and psychological issues relating to 

externally defined categories. 

3.3 Basic Level Effects and Concept Hierarchies 

Within hierarchical classification schemes there appears to be a basic level 

that human subjects tend to prefer. For example, in a hierarchy containing {animal, 

vertebrate, mammal, dog, collie}, the behavior of most human subjects indicates 

that 'dog' lies at the basic level. The identification of preferred concepts in humans 

must impact any model of human hierarchical classification. It also provides a basis 

for developing principled criteria for evaluating concept quality in the contexts of 

concept learning and recognition. 

23 In this light, an informative follow-up to Medin's study [MEDI83] would focus on 
the types of concepts naturally formed by subjects in a concept formation setting. 
An initial hypothesis is that discovered concepts would be linearly separable. 
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3.3.1 Experimental Indicators of Basic Level Effects 

Many experimental studies of basic level effects are similar in form those 

focusing on typicality. For example, Rosch (Ros76A] used a target recognition task 

to show that subjects are quicker to confirm that a test item is a member of a 

basic level concept versus a superordinate or subordinate concept. For example, if 

a collie (i.e., the test item) is shown to a subject and the subject is asked "Is this 

a dog?", the subject will more quickly confirm that it is a dog than confirmation 

will be given for similar queries on whether it is a collie (subordinate) or animal 

(superordinate). 

The nodes of a classification tree that are 'preferred' in the target recognition 

task tend to . be the same nodes preferred in ~ther tasks as well. In a forced 

naming ta8k (Ros76A, JOLI84], a subject is shown a picture of a particular entity 

(a collie again) and asked to respond with its identity (rather than confirming the 

correctness of a given identity). When a picture of a collie is shown, most subjects 

will respond that it is a dog, rather than a collie, mammal, or animal. 

3.3.2 Implications of Basic Level Effects on Hierarchical Classification 

In modeling basic level effects, this dissertation will presume that concepts 

correspond to nodes of a concept tree. Hierarchical classification typically assumes 

that classification moves strictly from the root to a leaf. This assumption does not 

easily account for basic level effects. Assumptions about classification hierarchy 

structure and/ or processing must be reconsidered. 

Briefly, results of target recognition and forced naming studies indicate that 

recognition probably does not proceed in a strict top-down fashion; if so, objects 

would be recognized more quickly with respect to superordinate categories. Rather, 

there appears to be an intermediate 'entry point' into the tree that corresponds to 

the basic level. 
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It is possible that entry into a hierarchy is 'hard coded' to be the basic 

level, but closer examination indicates that this is unlikely. Jolicoeur, Gluck, and 

Kosslyn [Jot184) found that the exact level of entry can vary as a function of 

typicality. In particular, atypical members of a category are sometimes identified 

first with respect to a subordinate category. For example, in a forced naming task, 

a robin (typical bird) will be identified as a bird, while a chicken (atypical) will 

be identified as a chicken. This suggests that basic level entry is not 'hard coded' 

but generally emerges as the result of an evidence combination process. This is 

consistent with some types of hierarchical recognition (e.g., UNIMEM [LEB082]) 

discussed in chapter 2, but suggests that discrimination arcs be allowed to skip 

levels of a tree. 

Presumably, once the hierarchy has been entered (generally at the basic 

level), recognition can proceed to superordinate (upper) or to subordinate (lower) 

nodes. Superordinate nodes can be reached by climbing IS-A links from the entry 

point.24 Subordinate nodes can be attained by recursively applying the evidence 

combination procedure at the entry point. The consistency of this hypothesis 

is verified by experimental evidence by Jolicoeur, Gluck, and Kosslyn [Jo1184], 

as well as Rosch, et. al. [Ros76A]. Both studied the time differential between 

classifying (target recognition) an object with respect to its basic level concept 

and either a corresponding subordinate or superordinate concept. Results showed 

that significantly more time was required to recognize an object with respect 

to a subordinate concept than was required for superordinate recognition. This 

is consistent with, but does not necessarily validate, the view that downward 

movement involves a relatively expensive evidence combination procedure, while 

upward movement is a deterministic process guided by IS-A links. 

24 An IS-A link connects a node to its parent. IS-A links allow upward movement 
in a hierarchy. In a tree there is exactly one IS-A link emanating from a node. 
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3.3.3 Measures for Predicting the Basic Level 

A hope of identifying preferred concepts in humans is that measures of concept 

quality can be developed. In fact, a number of measures have been proposed 

to explain basic level phenomena. These measures are functions of the internal 

structure of categories and tend to reward intra-category similarity and inter

category dissimilarity. 

An early proposal for predicting the basic level of a hierarchy was given 

by Rosch [Ros76A, Rosc78). Rosch postulated that a basic level category in a 

tree maximizes a function of the cue validity (i.e., P(N.1e IAi = Vi;)) of individual 

attribute values among its ancestors and descendents. Precisely, Rosch [Rosc78) 

defines the total cue validity of a category as the sum of cue validities for each 

attribute value which is shared by all or most category members. The qualification 

of calculating total cue validity from only attribute values that are shared by all or 

most category members is left fuzzy by Rosch. Nonetheless, the total cue validity 

of a category N k can be approximately formalized as 

2:: 2:: P( Nk I Ai = Vii) for all Vii s. t. P( Ai = Vii INk) ~ 1. 
j 

Rosch postulates that basic level categories maximize total cue validity. 25 

Although Rosch's formulation is not mathematically formal, nor is it rigorously 

evaluated with respect to experimental findings, it does represent a tradeoff be

tween intra-category similarity an,_. inter-category dissimilarity. Calculating total 

cue validity using attribute values with high P(Ai = "ViilNk) (i.e., category validity) 

tends to reward intra-category similarity or the predictability of individual values, 

23 It is important to note that some analyses [MEDI83] of Rosch's measure do not 
reflect Rosch's implication that only values with high category utility be used in 
predicting basic level categories. While this omission seems to shortchange Rosch's 
formulation, the conclusion of these analyses - a measure that is only dependent 
on cue validity cannot be useful per se - is absolutely correct. A measure of class 
quality, particularly one that predicts basic level preferences, must be dependent 
on both cue and category validity, or some analogous tradeoff. 



92 

while high P(N1elAi = Vi;) (i.e., cue validity) favors inter-category dissimilarity 

or the predictiveness of values. Maximizing total cue validity also offers an in-. 
tuitive explanation of basic level effects. Superordinate categories typically will 

have fewer attribute values common to many instances (fewer values with high 

P(Ai = Vi; IN1e)). Subordinate categories will tend to have values that are com

mon to contra.sting categories {more values with low P(N1elAi = Vi1)). Although 

maximizing total cue validity has some desirable explanatory properties, it is a 

relatively ad hoc and underspecified function. 

A measure called collocation has been proposed by Jones [JONE83] to predict 

ha.sic level categories. Collocation is a mathematically sounder formulation of 

Rosch's intuitive notions. The collocation of an attribute value, Vii, with respect 

to a category, Nk, is the product of the cue and category validities of the value, or 

Jones suggests that a basic level node (e.g., 'bird') has the most collocation max

imizing values among all possibilities (e.g., 'animal', 'bird', 'robin'). That is, each 

category receives a score that is the number of values for which collocation is max

imized at that category (as opposed to superordinate or subordinate categories). 

The category with the highest score is predicted to be the basic category. For 

example, hypothetical collocation scores for 'Mode-of-transport = flies' are given 

below. 

node collocation 

'animal' P(animallflies) x P(fliesjanimal) = 1.0 x 0.25 = 0.25 

'bird' P(birdjflies) X P(flieslbird) = 0.95 x 0.89 = 0.85 

'robin' P(robinjflies) x P(fliesjrobin) = 0.09 x 1.0 = 0.09 
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The collocation for the value, 'flies', is maximized at 'birds'. If 'has-feathers' and 

'four-chambered-heart' are maximized at 'birds' as well, then 'birds' would receive 

a score of 3. If 'animals' only maximized the collocation of 'animate' (score = 1) 

and 'red' is the only value maximized at 'robin' (score = 1), then Jones' method 

predicts that 'birds' is the basic level node. 

Jones does not empirically validate his measure against experimental evi

dence, but does make a normative argument in favor of the measure. Intuitively, 

collocation represents a tension between intra-category similarity (i.e., through 

P(Ai = ViJINk)) and inter-category dissimilarity (i.e., through P(NklAi = Vi1)) 

along the same lines as Rosch. Further, Jones formally shows that collocation 

arises as a special case of the index of mean square contingency, a measure of 

association in certain numerical taxonomy applications. 

A final measure, category utility, for predicting basic level concepts has been 

proposed by Gluck and Corter [Gtuc85]. While Gluck and Corter take a different 

tack in developing category utility, the measure can be presented in terms of Jones' 

collocation measure. Specifically, for a concept, N k, 

I: I: P(Ai = Vij )P(Nk I Ai = Vii )P(Ai = Vij INk), 
j 

(3-4) 

represents a 'weighted' collocation measure that has been summed over attributes 

(i), and values (j). The base rate probability, P(Ai = Vii), weights the importance 

of individual values, in essence saying that it is more important to increase the 

class-conditioned predictability and predictiveness of frequently occurring values 

than infrequently occurring values. 

Function 3-4 balances traditional concerns of intra- and inter- class similarity. 

However, 3-4 can also be regarded as rewarding the inference potential of object 

class partitions. More precisely, note that for any i, j, and k, that P(Ai = Vii) 
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P(NklAi = 'Vij) = P(Nk)P(Ai = 'VijlNk) (Bayes rule), so by substitution function 

3-4 equals 

P(Nk) LL P(Ai = Vii1Nk) 2
• 

j 

(3-5) 

L:i L:i P( Ai = Vii 1Nk)2 is the expected number of attribute values that can be 

correctly guessed for an arbitrary member of class, Nk. This expectation assumes 

a guessing strategy that is probability matching, meaning that an attribute value is 

guessed with a probability equal to its probability of occurring. Thus, it assumes 

that a value is guessed with prob"'bility P(Ai = Vii INk) and that this guess 

is correct with the same probability. A probability matching strategy can be 

contrasted with a probability maximizing strategy, which assumes that the most 

frequently occurring value is always guessed.26 While this strategy may seem 

superior at a cursory level, it is not superior in terms of heuristically ordering 

object clasaeJ. In particular, a probability maximizing strategy is not sensitive 

to the distribution of all attribute values, but only the most frequent one. For 

example, assume two distributions of values (Vii) for an attribute, Ai: 

3 3 

A probability maximizing strategy will perform equally well with each distribution. 

A probability matching strategy will do better with the second distribution than 

with the first. A heuristic measure motivated by a probability matching strategy 

26 A number of studies indicate that human subjects use a probability match
ing strategy to make predictions. See Bruner, Goodnow, and Austin [BRUN56, 
pp 182-195] for a discussion of psychological motivations behind a selection of 
guessing strategies. 
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will favor a category with distributions like the second. This property is important 

when constructing classification treeJ. The second distribution provides 'better' 

ways of decomposing a class to facilitate inference at lower tree levels, using either 

a probability matching or probability maximizing (!) strategy. 27 

Gluck and Corter define category utility to be a measure of the increaJe in the 

expected number of attribute values that can be correctly guessed (P(N1c) L:i L:j 
P(Ai = ViJIN1c) 2 ) given knowledge of a category, N1c, over the expected number of 

correct guesses with no such knowledge. Formally, 

i •i j 

The quantity, I:i L:i P( Ai = Vii )2 , is the expected number of correctly inferrable 

properties with no knowledge of an object partition. P(Ai = Vii) is the probability 

of an attribute value not conditioned on class membership (i.e., the base rate 

probability). 

Function 3-6 can be used in the same manner as collocation or total cue 

validity to _distinguish the basic level node in an ancestral line (e.g., 'animal', 'bird', 

'robin'). However, in later discussion, category utility will be used to predict which 

tree level (object set partition) of several competing tree levels is the basic level. 

This is done by averaging over all categories of a partition. That is, 

[l:~=l P(N1c) l:i l:j P(Ai = ViilN1c) 2
] - l:i l:i P(Ai = Vii) 2 

CU( {Ni, ... , Nn}) == . n 

(3-7) 

27 Assuming a probability matching strategy to build classification trees also facil
itates correct prediction using a probability maximizing strategy. Experimental 
evidence in_ chapter 5 bears this out. 
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Hierarchy #1 

Hierarchy #2 · 

Hierarchy #3 

Figure 22 

Hierarchies of objects defined by outer, inner, and bottom shape 

The denominator, n, is the number of categories in a partition, and averaging over 

categories allows comparison of different size partitions. 
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Gluck and Corter show that category utility consistently predicts the basic 

level (as behaviorally identified by human subjects) in a number of domains. For 

example, Figure 22 shows three trees over the same object set, but arranged so 

that human subjects behaviorally identified a different level as basic in each case 

[HoFF83]. From the top tree down, the basic level is the second, third, and fourth 

level, respectively (where the root is the first level). Gluck and Corter show that 

category utility correctly predicts the basic level in each case. 

There are several properties of category utility worth mentioning at this 

point. First, category utility has the desirable property that a partition will score O 

when attribute value distributions are independent of category membership. This 

indicates that nothing can be inferred from knowing category membership that 

could not be inferred equally well without such knowledge. Consider the case 

where an attribute value is independent of category membership: 

Dividing both sides by P(Nk) gives an alternative definition for independence, 

Therefore, if an attribute's value is independent of a category, 

If this is the case over all categories and at mte values, it is not difficult to see 

that category utility equals 0. 

While category utility is not a function of attribute-value correlations, it 

nonetheless tends to favor categories that are formed around such correlations. 

For example, assume that a category, Nk, is fo~med around an attribute value, 
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A1 = Viii. That is, P(A1 = Vi11 INk) > P(A1 = Vli1 ), which implies P(A1 = 
V1ji 1Nk)2 - P(A1 = Viii )2 > 0. Assume that the category utility calculation 

involves a subexpression of the form 

If Vij1 is positively correlated with another value, Vii:n and Nk captures this 

correlation, then P(A2 = Vih 1Nk)2 - P(A1 = Vi}2)2 > 0 as well. This increases 

the category utility value. If Vi11 and Vi12 are independent then we would expect 

the difference between P(A2 = V2j:i 1Nk)2 and P(A1 = Vii;a )2 to be approximately 

0. Thus, categories that capture intercorrelations are rewarded. 

Last, while section 3.2 downplayed the importance of nonlinearly separable 

recognition as applied to solitary concepts, category utility is a quadratic function 

and does not necessarily favor linearly separable categories. For example, of the two 

category sets used in experiments by Medin, the nonlinearly separable sets receive 

a higher category utility score (i.e., CU = 0.125) than the linearly separable set 

(i.e., CU = 0.1094). 

In conclusion, category utility is a function that rewards intra-category sim

ilarity and inter-category dissimilarity. Moreover, category utility can also be 

viewed as a measure that favors categories that maximize inference abilities. 

However, rather than maximizing correct prediction of predefined categories - the 

implied goal of some typicality studies - the measure favors correct prediction 

across many attributes. Inter-category dissimilarity tends to improve the diag-: 

nosticity or predictiveness of attribute values, P( Nk I Ai = Vii). Intra-category 

similarity tends to improve the predictability of attribute values, P(Ai = Vii IN.~), 

once an object is classified. 

Given discussion from chapter 1, these characteristics suggest that category 

utility may be an ideal measure to guide concept formation. In fact, COBWEB 
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adopts category utility as a measure of partition quality. Although category utility 

was developed by assuming extensionally represented categories, it should be clear 

that category utility can be computed from summary information that includes 

P(Ai = 'Vii INk) for each value and category. In effect, a summary category 

representation in the form of a probabilistic concept (along with P(Nk) for each 

category) is sufficient for computing category utility. 

3.3.4 Basic Level and Typicality Effects 

Experimental studies illustrate .the importance of two dimensions in hierar-
' 

chical classification schemes (Rosc78]. A horizontal dimension is concerned with 

the way that c:>bjects are partitioned into contrasting categories. Typicality studies 

are fundamentally concerned with this dimension. Classification using competing 

categories is influenced by the object's typicality with respect to the categories. A 

vertical dimension relates to the arrangement of categories by their generality or 

inclusiveness. Basic level effects point to a preferred entry point along the vertical 

dimension. One would expect that these dimensions interact significantly; object 

set partitions dictate generality relations between categories. Surprisingly, little 

exploration of the interaction between these dimensions has been carried out, but 

Jolicour, Gluck, and Kosslyn [JotI84] are a notable exception. 

An important statement of this dissertation is that typicality and basic level 

effects stem from the same underlying p·rinciples of concept structure and organi

zation. For example, while collocation has been proposed as a predictor of basic 

level concepts, the product of cue and category validity also instantiates Rosch and 

Mervis' general family resemblance function. Collocation as a measure of typical

ity is discussed at greater length in chapter 7. An important implication of this 

analysis is that basic level concepts are the most typical 'images' of superordinate 

categories. 
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The weaknesses of independent cue models have motivated many researchers 

to introduce alternative models of individual concepts. However, section 3.2 showed 

that another option considered systems (i.e., trees) of concepts. Chapter 7 shows 

that classification with concept trees accounts for certain typicality and basic level 

effects. However, it also offers opportunities for studying the interaction between 

these effects. In particular, the impact of typicality on entry point [JoL184] is 

modeled. Second, the idea that typical objects are more quickly recognized in target 

recognition tasks is hypothesized to be dependent on the level (i.e., superordinate, 

basic, subordinate) of the target concept. 

3.4 Chapter Summary 

This chapter developed psychologically motivated constraints on concept in

duction. The chapter focussed on two lines of experimental study in cognitive 

psychology, typicality effects and basic level effects. The important conclusions of 

the chapter include: 

• Experimental evidence of typicality in humans suggests that not all concept 
members are 'created equal'. 

• Logical concept representations have difficulty accounting for typicality ef
fects, but probabilistic representations using a summing recognition proce
dure can account for them. 

• Objections to independent cue models stem from naive assumptions about 
the relation between individual concepts and larger conceptual organizations. 

• Probabilistic concept trees overcome the representation problems of individ
ual probabilistic concepts and are informationally equivalent to relational cue 
and exemplar concept models. In fact, concept trees can be viewed as efficient 
implementations of these alternative models. 

• Experimental evidence of a preferred or basic level in hierarchical classification 
schemes suggests that recognition cannot occur in a simple top-down fashion. 
A plausible model of these effects should allow classification to skip levels. 
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• The identification of category utility as a measure that accurately predicts the 
basic level makes it a prime candidate for evaluating concept quality during 
concept induction. 

The following chapter describes COBWEB, a system that uses category utility 

to guide concept formation. Chapters 7 and 8 describe an indexed classification 

structure that accounts for typicality and basic level effects and suggests a number 

of further experimental studies into basic level effects, typicality effects, and the 

interplay between them. 
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CHAPTER 4 

COBWEB: An Incremental Conceptual Clustering System 

4.1 Chapter Overview 

This chapter describes COBWEB, an incremental system for conceptual clus

tering that brings together aspects of chap~ers 2 and 3. It builds classification trees 

where each node is a probabilistic concept. Hill climbing is used in conjunction 

with category utility to search the space of parti.tions and classification trees. 

Section 2 reviews the environmental and knowledge base assumptions of 

COBWEB, concentrating on the form of classification trees and the use of proba

bilistic concepts. 

Section 3 gives four operators that are at the core of the COBWEB algorithm. 

Operator application is controlled so that a hill-climbing search strategy emerges. 

Moreover, the operator set allows bidirectional movement during search. 

Section 4 demonstrates possible interactions between the core operators over 

multiple observations. This discussion motivates a fifth operator that eases the 

task of finding good classification trees. 

Section 5 presents a way of dealing with missing object information. This 

simply involves adding an additional weight ('salience') to the category utility 

evaluation function. 

Section 6 gives a way of modify}ng COBWEB, as developed in earlier sections, 

to build superordinate classes. This discussion is primarily useful for understanding 

the eventual development of COBWEB/2 which builds superordinate classes in a 
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BodyCover Heart Chamber BodyTemp Fertilization Color 

mammal-1 hair four regulated internal brown 
reptile-1 corn-skin imp4 ·unregulated internal green 
amphibian-1 moist-skin three unregulated external red 
bird feathers four regulated internal red 
reptile-2 corn-skin imp4 unregulated internal gray 
fish scales two unregulated external red 
mammal-2 hair four regulated internal gray 
amphibian-2 moist-skin three unregulated external green 

Table 5 

Animals described in terms of attribute - value pairs 

very natural manner. However, modifying COBWEB to build these classes is some

what tangential and can be skipped without undue hardship. This modification is 

not used in future experiments with COBWEB .. 

Finally, section 7 compares COBWEB's control structure and representations 

with several other systems. 

4.2 Environment and Knowledge Base 

COBWEB is an incremental, hierarchical conceptual clustering system. Its 

function can be stated as: 

Given: • a nominal, attribute - value description of an object, Di, and 
• a classification tree, T, that classifies a set of objects, 0. 

Find: • a classification tree T' that classifies { oi} U 0. 

However, it is often convenient to think of COBWEB's performance only after 

a significant amount of processing. Beginning with an empty classification tree, 

COBWEB forms a classification tree over a stream of objects. That is, 

Given: • a set of object descriptions, 0 = { 01, ... , on} 

Find: • a classification tree, T, that classifies all the members of 0. 
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Figure 23 

Classification tree over animal descriptions 

For example, assume that clustering occurs over the ordering of animals (objects) 

given in Table 5. Given this data, COBWEB forms the classification tree of 

Figure 23 . 28 

There are several important aspects of COBWEB classification trees. First, 

as with other hierarchical systems, COBWEB forms strict trees. There is exactly 

one path from the root to any leaf. Second, trees have only node-labeling concepts 

that characterize objects classified under the node. Each node holds a probabilistic 

concept like those described in chapter 3. However, probabilities are not stored 

directly. Instead, integer counts are stored and used to compute probabilities as 

needed. For each node there is a count of the number of objects classified under the 

node, as well as a count of the objects stored under the node with each attribute 

value. From these counts it is possible to compute the probability of an object 

having a particular value. For example, consider the expansion of the 'animals' 

28 In general, different orderings will result in different classifications. Howevr:: , 
COBWEB will tend to converge on the same tree regardless of input order. 
Convergence is explored in Chapter 6. 



P(animal) = 1.0 

P(BodyCover = hair I animal) = 0.25 
P(BodyCover = feathers I animal)= 0.125 
P(BodyCover = cornified-skin I animal) = 0.25 
P(BodyCover = moist-skin I animal)= 0.25 
P(BodyCover = scales I animal)= 0.125 

P(HeartChamber = four I animal) = 0.375 
P(HeartChamber = imperfect-4 I animal) = 0.25 
P(HeartChamber = three I animal) = 0.25 
P(HeartChamber = two I animal) = 0.125 

P(BodyTemp = regulated I animal) = 0.37 
P(BodyTemp = unregulated I animal) = 0.63 

P(Fertilization = internal I animal) = 0.63 
P(Fertilization = external I animal) = 0.37 

P(Color =brown I animal) = o .. 125 
P( Color = gray I animal) = 0.25 
P( Color = red I animal) = 0.375 
P( Color = green I animal) = 0.25 

Table 6 

Expansion of the "animals" node 
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node in Table 6. The root node shows that 25% of all observed objects have 

hair. The quotient of the number of objects classified at the root that have hair 

(2) and the number of all objects classified at the root (8) equals 0.25. That is, 

P(Body-cover = hairjanimals) = 0.25. 

A second measure associated with each node is the probability of the node 

itself. This is the proportion of objects classified under the node that are also 

classified under the node's parent. For example, since all observed objects are 

classified under the root (the root has no parent), the probability of an arbitrary 

observed object being classified under it is 1.0. As a second example, consider the 

expanded "mammal" node of Figure 23 in Table 7. 'Associated with this node is 



P(mammallmammal/bird) = 0.67 

P(BodyCover =hair I mammal)= 1.0 
P(HeartChamber = four I mammal) = 1.0 
P(BodyTemp = regulted I mammal) = 1.0 
P(Fertilization =internal I mammal)= 1.0 

P( Color = brown I mammal) = 0.5 
P( Color = brown I mammal) = 0.5 

Table 7 

An expansion of the "mammal" node 
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the probability of the node in the context of the "mammal/bird" node. That is, 

673 of the objects classified under "mammal/bird" are classified as mammals. 

4.3 COBWEB's Basic Control Structure 

COBWEB is an incremental system for hierarchical conceptual clustering. In 

accordance with chapter 2, COBWEB can be viewed in terms of search. Heuristic 

search requires attention to several issues: 

• a date representation, initial and goal states, 

• a heuristic evaluation function used to guide search, 

• operators used to explore the state space, and 

• a control strategy that coordinates operator application. 

To review discussion from chapter 2, conceptual clustering proceeds at three 

levels of search: through concepts, partitions, and hierarchies. Each of these spaces 

has its own state representations, heuristics, operators, and control strategies. The 

bottom-most search for descriptive concepts is the task of learning from examples. 

The second level of search is for partitions of the observed objects. In principle, any 

partition of the total set can be viewed as the goal state, but in practice a heuristic 

measure directs search to preferred or optimal partitions. La.st, a search through 

hierarchies uses the subordinate processes of finding concepts and partitions to 
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build classification hierarchies. Like the search for partitions, any classification 

tree can be viewed as a goal, but conceptual clustering systems typically use a 

measure of tree quality to explicitly guide search [LANG84] or rely on heuristics of 

subordinate searches to implicitly define tree optimality [F1s85A, M1c83A]. 

As a hierarchical conceptual clustering system, COBWEB can be viewed as 

conducting a search at three levels. COBWEB classification trees and probabilistic 

concepts have just been described. In addition, the first level of a classification tree 

gives the partition of the entire set of observed objects that is found by COBWEB. 

Before describing the COBWEB algorit4m in detail, it is useful to briefly consider 

some high-level characteristics of the searches through these three spaces. 

4.3.1 Overview of COBWEB's Search Processes 

The bottom most level of search is the one for concept descriptions. The 

probabilistic concepts of COBWEB list all and only attribute values that are 

present in one or more observed instances. Additionally, counts of the number 

of class members with each attribute are listed, as well as the total number of class 

members. The sole operator used by COBWEB to update a concept description 

based on a new object is to union in the attribute values of the object and to update 

corresponding counts as well. Class and attribute value counts (and probabilities 

computed from these counts) are completely determined by the members of the 

class. There is exactly one probabilistic concept for any given class. As with the 

maximally-specific attribute value concepts· of chapter 2, COBWEB's 'search' for 

probabilistic concepts is deterministic. 

The second level of search is the one through a space of object set partitions. 

Chapter 2 indicated that there were two points of possible nondeterminism in 

this search: 1) which class of several possibilities would an object be placed and 

2) which concept description would be selected to describe the updated class. 

However, discussion above points out that selecting a concept description is not 
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a point of nondeterminism. In COBWEB the only decision that need be made 

in searching partitions is which class of the a partition should incorporate a new 

object. Category utility (Gtuc85], the measure of partition quality developed in 

chapter 3, is used to decide upon one class to add the object. This results in a 

single new partition. Thus, COBWEB hill climbs through the space of partitions. 

The final level of search is through a space of classification trees. The nonde

terminism of this search is restricted by the search for partitions. Compositions of 

the partition-update operators, one per tree level, as one descends a classification 

tree can be viewed as transforming the tree in one way. The emergent search 

strategy is one of hill climbing through a space of classification trees. COBWEB 

does not use an explicit measure of classification tree quality to guide this search. 

Rather, tree quality may be defined lexicographically, in terms of the quality of 

its constituent partitions; an optimal tree is one in which the first level optimally 

partitions the observed objects (according to category utility) and each subtree is 

optimal in the same manner with respect to the subset of objects that it classifies. 

In summary, the search for concepts is deterministic in COBWEB and the 

search through the space of hierarchies is completely dictated by the search for 

partitions. This search for partitions is heuristically guided by category utility; 

the objective of this search is the partition that best divides the observed objects 

according to category utility. 

The remainder of this section explains the operators used to search the space 

of partitions. Object incorporation is basically a process of classifying the object 

by descending the tree along an appropriate path. At each tree level one of several 

possible operators is applied. These operators are 

• classifying the object with respect to an existing class, 

• creating a new class, 

• combining classes into a single class, and 

• dividing a class into several classes. 
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These operators are applied to a single object set partition (set of siblings in the 

tree). 

4.3.2 Operator 1: Placing an Object in an Existing Class 

Perhaps the most natural way of updating a partition of objects when a new 

object is observed is to place the object in an existing class. That is, after updating 

the counts of attribute values at the root of a hierarchy, the object is incorporated 

into one of the root's children. To determine which child 'best' hosts a new object, 

the object is tentatively placed in each child and appropriate counts of the node are 

temporarily updated. The partition that results from adding the object to a given 

node is evaluated using category utility (function 3-4). The node that results in the 

best partition is chosen to assimilate the new object and corresponding counts are 

permanently updated. For example, if a partition consists of nodes corresponding 

to 'mammals', 'birds', and 'reptiles', a new animal description, 'dog-1', would 

be added to the 'mammals' class i:ff OU('mammals'+'dog-1', 'birds', 'reptiles') 

> OU('mammals', 'birds'+'dog-1 ','reptiles') and OU('mammals'+'dog-1', 'birds.', 

'reptiles') > OU('mammals', 'birds', 'reptiles'+'dog-1 '). 

Recursively applying this operator to best host nodes causes a descent of the 

classification tree that eventually bottoms out at a leaf. This descent can be viewed 

as a recognition process for the newly observed object. 

4.3.3 Operator 2: Creating a New Class 

In addition to placing objects in existing classes, there is a way of creating 

new classes. After the best host among the existing classes has been determined, 

the quality of the partition resulting from placing the object in the best exist

ing host is compared to· the partition that results from creating a new singleton 

class for the object. Depending on which partition is best (with respect to cate

gory utility), the object is either placed in the best existing class or a new class 
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is created. For example, if an object, 'fish-1 ', is encountered, and 'reptiles' is 

the best existing host among 'mammals', 'birds', and 'reptiles', then a singleton 

class, 'fishes'= {fish-1} is created i:ff OU('mammals', 'birds', 'reptiles', 'fishes') > 

OU('mammals', 'birds', 'reptiles'+'fish-1'). 

This opera.tor allows COBWEB to adjust the number of classes at a partition 

to fit the regularities of the environment. This ability distinguishes COBWEB 

from methods that depend on a system parameter to decide how many classes are 

to be formed (e.g. CL USTER/2). 

4.3.4 A Simple Example 

Figure 24 demonstrates the effect of operat?rs 1 and 2. Snapshot (a) shows a 

classification tree that has been previously built over the 'fish' and 'amphibian-2' 

objects of Table 5. Listed with each node (class) are the probability of the class and 

the probabilities of attribute values conditioned on class membership. For example, 

the probability of having scales is 0.5 for objects classified at the root of snapshot 

(a), while scales are assured with probability 1.0 for objects classified at Ni (a 

singleton class containing only 'fish'). Space has allowed showing only one attribute 

value for each node, but all values exhibited over objects of a node are stored with 

their respective conditional probabilities (e.g., like the expanded nodes of Tables 

6 and 7). Last, probabilities reflect attribute-value distributions over observed 

objects. As with any inductive program there is an implicit assumption that 

the observations collectively approximate the environment as a whole. However, 

distributions are not permanent, but change in response to further observation 

[CHEE85). 

Snapshot (b) shows a new class being created. The transition from (a) to 

(b) is caused by incorporating the 'mammal-1' object of Table 5. The probability, 

P(scales!No), reflects this addition at the root. Cr~ating a new singleton class 
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(a) 

(b) add 'mammal' 

(c) add 'bird' 

Figure 24 

Adding 'mammal' and 'bird' to memory 

(N3) corresponding to 'mammal' yields a better partition than adding the object 

to either of the existing classes. 
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Snapshot ( c) demonstrates an object being added to an existing class. Adding 

'bird' to the tree of snapshot (b) causes appropriate alterations at the root, e.g., 

scales now occur in only one quarter of the observed animals. Adding 'bird' to the 

existing class corresponding to 'mammal' yields the best possible partition. Since 

this node is a leaf in snapshot (b ), incorporation of 'bird' involves expanding the 

leaf to accommodate the new object, as well as the previously classified one. Leaf 

expansion occurs whenever an incoming object differs from the object stored at 

the leaf.29 

Figure 24 demonstrates how a cla~sification is constructed over sequential 

observations and how distributions change to reflect increasing information. While 

this figure shows probabilities at each node, recall that they are actually computed ' 

from integer counts. Stored at each node is a· count of the number of objects 

classified under the node and each attribute-value entry includes an integer count 

of the number of objects classified under the node possessing that value. From 

these counts the probability of a value conditioned on class membership can be 

computed. Probabilities are computed on demand for evaluation purposes, but it 

is the underlying counts that are updated. 

4.3.5 Operators 3 and 4: Merging and Splitting 

While operators 1 and 2 are effective in many cases, by themselves they are 

very sensitive to initial input ordering. Although a classification tree should reflect 

structure inherent in the environment, skewed data may present a different image 

of that structure than representative data. So far there are no mechanisms for 

adjusting a· classification tree when initial observations prove unrepresentative. 

In order to mitigate the effects of skewed data, COBWEB includes operators 

for node merging and .splitting. Merging combines two nodes of a level (of n nodes) 

29 COBWEB remembers every observed object as a leaf in the classification tree. 
However, variations are possible in which instances are 'forgotten' or dropped from 
the tree. 
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Figure 25 

The effect of node merging 

in hopes that the resultant partition (of n - 1 nodes) is of better quality. Merging 

two nodes involves creating a new node and summing the attribute value counts of 

the nodes being merged. The original nodes are made children of the newly created 

node. 

Although merging could be attempted on all possible node pairs every time 

an object is observed, this strategy is unnecessarily redundant and costly. Instead, 

when an object is incorporated, only merging the two best hosts (as indicated by 

category utility) is evaluated. Figure 25 illustrates the general form of merging; if 

classes 'A' and 'B' are the first and second best hosts for a new object, '0', then 

merging 'A' and 'B' occurs iff CU('A'+'B'+'O', ... ) > CU('A'+'O', 'B', ... ). 

A more specific example of the effect of merging is shown by the tree of 

Figure 26. This tree results if 'amphibian-1' is added to the tree of Figure 24c. 

This addition causes Ni and N2 to be merged into a single node N6. This new 

node, once updated to reflect the addition of 'amphibian-1' classifies 603 of the 
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( c) add 'amphibian-1' 

Figure 26 

Merging caused by adding 'amphibian-1' 

total objects. Furthermore, 33% of the objects classified under Ns have scales, 

while 67% have moist skin. 

The effect of merging the two best hosts is that changes in the tree are 

restricted to areas activated during object recognition. This locality constraint is 

enforced, albeit in different forms, by systems such as UNIMEM and CYRUS, and 

is behind Schank's ideas of reminding and dynamic memory [SCHA82]. Selecting 

only two nodes to merge (rather than three, four, or more) is the cheapest way 

of introducing more general classes. Interactions with other operators insures the 

generality of the approach. This is discussed in section 4. 

In addition to merging, node splitting may serve to increase partition quality. 

If a node carries little information, it may be desirable to split it up so that 

subclasses can be reorganized into a more cohesive unit. In general, there are many 
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Figure 27 

The effect of node splitting 

ways to split a class up, but only one is tried. A node is split up into subclasses 

corresponding to the node's children, since these children tend to represent the 

'best' partition of objects classified under the node. Splitting a node of a partition 

(of n nodes) is performed by deleting the node and promoting its children. This 

results in a partition of n + m - 1 nodes, where the deleted node had m children. 

Thus, this operator involves deleting a node of the tree, but looking at this as a 

operator on partitions, it has the appearance of splitting a node into subclasses. 

Besides restricting the ways in which a node can be split, their is also a 

restriction on what nodes to consider splitting. Splitting is considered only for the 

best host among the existing categories. For example, assume 'BH' is the best host 

for an object, '0'. Additionally, 'BH' has a number of children, including 'A' and 

'B'. Of these, 'A' is the best host of '0' among 'BH's children. 'BH' is split and 

replaced by its children iff CU( {'A' + 'O', 'B', ... } ) > CU( {'BH' + 'O'~ ... } ). 

Thus, splitting requires looking ahead one level. The general form of splitting is 

illustrated in Figure 27. 



(c) add 'mammal-2' 

Figure 28 

recursively 
classify 

mammal-2 

Splitting caused by adding 'mammal-2' 
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An example of node splitting is shown in Figure 28. The tree of this figure 

assumes that 'mammal-2' from Table 5 has been added to the tree of Figure 26. 

Node N3 has been split and 'mammal-2' has been recursively classified with respect 

to N4. Splitting N3 assumes that to do so increases the quality of the top-most 

partition. However, this is not true in the case of this tree. In reality, N3 would 

not have been split when adding 'mammal-2'. The purpose of Figure 28 is to show 

the effect of splitting, if it were called for on the previously developed example. 

Merging and splitting are roughly inverse operators, but not perfectly so, 

since merging combines exactly two nodes, while splitting promotes two or more 

nodes, depending on how many children a split node has. However, they do allow 

COBWEB to move bidirectionally through a space of possible hierarchies. Splitting 

can undo the effects of a prior merge and vice versa. In general, node merging 

is invoked when initial observations suggest that the environment is a space of 
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FUNCTION COBWEB (Object, Root ( of a classification tree ) ) 

1) Update counts of the Root 
2) IF Root is a leaf THEN Return expanded leaf to accommodate object 

ELSE Find that child of Root which best hosts Object and perform 
one of the following 

2a) Consider creating a new class and do so if appropriate 
2b) Conside node merging and do so if appropriate and call 

COBWEB (Object, Merged node) 
2c) Consider node splitting and do so if appropriate and call 

COBWEB (Object, Root) 
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2d) IF none of the above (2a,b, or c) were pe~formed THEN call 
COBWEB (Object, Best child of Root) 

Table 8 

The control structure of COBWEB 

highly similar objects, relative to the actual structure of the environment suggested 

by subsequent observations. Splitting is invoked when the environment is more 

'compressed' than suggested by initial input. 

4.3.6 Control of COBWEB's Four Operators 

Table 8 shows COBWEB's control of the four operators described so far. 

These operators share the assumption that change in a classification tree is lo

calized around areas 'activated' during recognition. Additionally, for each object 

incorporated, only one operator can be applied at a given level. Thus, each object 

serves to transform a single partition into a single new partition. Taken collectively, 

these changes transform a single tree into a·single new tree. Therefore, COBWEB is 

hill climbing through the space of classification trees. The objective of this search 

is to obtain a tree that optimally partitions the observations at each tree level 

according to category utility. An alternative interpretation is that COBWEB's 

objective is to search for a single optim 1 partition. The top-most level is the best 

hypothesis. Subtrees are heuristically ordered sub-partitions that can be weaved 

into the top partition (via splitting) as it is deemed necessary. 
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Tree transformation by applying split, split, merge, merge 
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Regardless of the interpretation, COBWEB can be viewed as hill climbing 

with bidirectional operators. Chapter 6 experimentally demonstrates some of the 

limitations inherent in this strategy. The following section looks at some example 

operator interactions over multiple object incorporations. This discussion gives an 

analytic, but intuitive, picture of hill-climbing weaknesses and strengths, as well 

as motivating a fifth operator called promotion. 

4.4 Operator Interactions 

In principle, the four operators of (1) classification, (2) creation, (3) merging, 

and ( 4) splitting are sufficient for constructing a classification tree of any form. 

Given sufficient observations, these operators can completely traverse the space 

of classification trees. For example, consider how merging and splitting could be 

combined to bring about the transformation of Figure 29. Ideally, these operators 

should interact so as to guarantee that given sufficient observations, a classifica

tion tree is found that optimally partitions observations at each level. However, 

preconditions for applying these operators are restrictive. They may be applied 

only if to do so immediately improves the quality of a partition. The limited 
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foresight of operator preconditions can hinder transformations that are necessary 

for optimality. 

One way to guarantee optimal partitions is to check whether operator combi

nations (e.g., split-merge, classify-split-merge) improve partition quality. Applying 

'macro-operators' would guarantee optimal object partitions, but would require a 

search that would greatly cripple any claim that COBWEB was a useful incremen

tal system. This search could be reduced by bounding the size of macro-operators. 

For instance, COBWEB might only examine macro-operators of size two (e.g., split

split ), as well as examining the effects of the solitary operators. However, even this 

scheme involves considerable search, and it would not eliminate the problem it had 

been designed to solve. 

Rather than guaranteeing optimal behavior, COBWEB's integrity as a hill 

climber is maintained. Finding good classifications is dependent on indirect interac

tion between operators that are independently applied over multiple observations. 

The ramifications of this strategy are experimentally demonstrated in chapter 6. 

However, it is helpful to describe some cases of operator interaction and show how 

they impact tree organization. 

4.4.1 Creating New Classes 

Medin [MEDI83] points out that many similarity measures used in concept 

formation do not adequately distinguish when a new class should be created. The 

problem arises because these measures favor classifying an object with respect to 

an existing category as existing categories increase in size. Consider the simple case 

where two categories exist, Ni and N2. Suppose they contain m1 and m2 objects, 

respectively, where m1 +m2 = m-1. If category utility is used to evaluate partition 

quality then P(Nk) = :;~1 and CU( {N1, N2}) equals 



~ l:i l:i P(Ai = ViilN1) 2 

2 

l:i 2:1 P( Ai = ViJ )2 
2 
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A new object will be evaluated with respect to Ni and N2, as well as checking 

whether a new category should be created. A partition with a newly created 

category, N3 will have a CU( {Ni, N2, N3}) equal to 

~ l:i L:1 P(Ai = Vi1 IN1)2 
3 

L:i L:1 P(Ai = Vi1 )2 

3 

As m increases, the probability of a new singleton category, -r!i, approaches 0.0. 

For large enough m, the component score for the third category will effectively be 

0.0, thus reducing the category utility score (since it is an average over categories). 

There is a point at which, regardless of the extent to which an object differs from 

existing categories, it will be forced into one of them. 

Despite the apparent limitation on new class creation, the problem is signif

icantly mitigated by considering the interaction of the classification and splitting 

operators. If an exceptional object is forced into an existing category, similar forth

coming objects will tend to be placed in that category as well. After a sufficient 

number of these simib.c objects have been processed, a split will break the more 

recently formed subclass from the original existing c
1

lass. 
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Figure 30 

A demonstration of three nodes being 'merged' over multiple trials. 

4.4.2 'Merging' More Than Two Nodes 
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COBWEB allows only two nodes to be merged at a time. However, more 

than two siblings can be combined through an indirect interaction of merging 

and splitting over several incorporation trials. Figure 30 demonstrates how three 

siblings can be 'merged' after several trials. This demonstrates that allowing only 

two nodes to be merged at a time does not restrict the form of classification trees 

that can be formed, given sufficient observations. 

4.4.3 Useless Nodes and Node Promotion 

Situations occur when merging two nodes would result in an optimal partition. 

However, ~hey cannot be merged because they are not siblings, e.g., suppose one is 

the uncle of the other. This problem can be generalized and is pictured in Figure 31. 

Merging A with B (and removing B from its current ancestral line) would improve 

quality, but such a move requires foresight beyond the effect of single merge or split 

operators. No amount of (current) operator interaction will alleviate this problem. 

Rather than implementing the macro facility discussed earlier, COBWEB tries to 
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Figure 31 

An example of a lack of heuristic 'foresight' 

recognize when a node is misplaced and selectively promote3 it to a level where it 

can be merged into the 'correct' subtree. 

A simple way of determining if a node is misplaced is to climb the classifica

tion hierarchy, at each level seeing if the node in question belongs with its current 

ancestor or with a sibling of its current ancestor. This involves extracting the node 

from its current ancestor (by decrementing appropriate counts) and alternatively 

incorporating the node in competing nodes (by incrementing appropriate counts). 

Evaluating the resultant partitions (by category utility) indicates the best place

ment of the node. In fact, the gist of this procedure is followed in COB\VEB. 

Notice that this strategy requires parent or IS-A links be added to classification 

trees. 



Probabilities of concept Nk 

P(Color = red!Nk) = 0.67 
P(Color = blue!Nk) = 0.33 
P(Shape = squarelN1c) = 1.0 
P(Size = large!Nk) = 0.5 
P(Size = smalllN1c) = 0.5 

Prototype of N k 

Color= red 

Shape = square 

Size = small (choice arbitrary) 

Figure 32 

A node and its prototype used to test for node misplacement 
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Rather than comparing a node with its ancestors, a prototype of the node 

is created and used for comparative purposes. The prototype of a node is an 

object description that represents the 'central tendency' of the node. Specifically, 

a node's prototype has the most frequently occurring attribute values of the node. 

Figure 32 shows the attribute-value probabilities of a node, and the resultant 

prototype. A node's prototype is compared to the node as well as the node's 

siblings. The comparison process is like that described earlier; the object is added 

successively to each node of a level and the resultant partition is evaluated with 

respect to category utility. This process may be recursively applied for each of 

the node's aJ?,cestors (and their siblings) until the root of the classification tree is 

reached. 

If a node's prototype matches a nonancestral node better than the node's 

applicable ancestor, this indicates that the node under scrutiny is probably (but 

not assuredly) useless. That is, if its prototype cannot be classified with respect 

to its ancestor (and thus the node itself), probably no objects will be. Uselessness 

is the criterion for determining whether a node should be promoted. Pseudo-code 

for the uselessness test is given as function the 'USELESS' in Table 9. 

To test each node for uselessness would be costly. Therefore, COBvVEB 

employs a cheap method of filtering nodes. Associated with each node is a count of 



FUNCTION USELESS (Node-A, Prototype) 

IF Node-A is the Root (i.e., no parent) THEN Return false (useful) 
ELSE 1) Classify Prototype with respect to the Parent of Node-A and 

determine the Best-host for Prototype. 
2) IF Best-host =f. Node-A THEN Return true (useless) 

ELSE Return USELESS (Parent of Node-A, Prototype). 
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Note that Prototype is the prototype of the original node being tested for useless, 
and does not change during recursive calls. 

Table 9 

Pseudo-code for uselessness 

the number of trials since the node last classified an object. Every time an object 

is classified with respect to a node's parent, but is then classified with respect to 

one of the node's siblings, the 'last-accessed' count of the node is incremented by 

one. 

If a node, Nk, has probability, P(Nk) (with respect to its siblings), then 

(1 - P(Nk))m gives the probability (given a random sampling) that a node w.ill 

not classify a single object after m trials. For instance, if a node has a probability 

of 0.4, the probability of it not classifying an object after five trials is given as 

(1 - 0.4)5 = 0.65 ~ 0.078. This approaches 0.0 as the number of trials ( m) since 

the node's last access grows. In COBWEB, if this probability becomes sufficiently 

small (0.05 or less), it is an initial indication that the node is useless. Function 

USELESS is applied to make a final determination. If the node is in fact reachable, 

the 'last-accessed' count, m, is reinitialized to zero. Reinitialization also occurs 

when an object is classified with respect to a node. 

Once COBWEB has been determined that a node is useless, it may promote 

the node. Rather than promoting a node to the level that its prototype indicated 

uselessness, a more conservative approach is taken. A node that is to be promot~d 

may have children. Just as the node may be misplaced with respect to its siblings, 



PROCEDURE PROMOTE (Node) 
IF Node is unreachable with respect to immediate siblings 

THEN Split Node 
ELSE Remove Node as a child of its current parent and 

make it a child of its old grandparent 
Split Node in its current position 

Table 10 

Pseudo-code for promotion 
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a child of the node may also be misplaced with respect to other children of the 

node. The approach that empirically seems to yield the best results promotes the 

useless node a aingle level and then splits it. This allows the node's children to be 

processed separately when future objects are assimilated. 

As new objects are assimilated, useless nodes are successively promoted and 

split. This promoting and splitting may open the way for the standard merge 

and split operators. However, a node may be repeatedly (promoted and) split, 

eventually causing leaves (singleton classes) to surface that represent individual 

objects. An useless leaf cannot be further split. If it has been promoted as far as 

possible, it is removed from the tree and reclassified. Reclassification is performed 

in exactly the same way that any object is classified with respect to a classification 

tree. 

Table 11 gives the pseudo-code for the COBWEB system, including tests 

for uselessness (and associated test of the last-accessed counter) and promotion. 

These changes are made after the object has been classified with respect to lower 

levels. Importantly, node promotion does not assure a globally optimal partitioning 

of objects. Suboptimal partitions do not necessitate that certain subnodes will 

become useless. However, in cases where nodes do become useless, this extension 

insures they will be spotted. Node promotion guarantees locally optimal partitions 

are obtained over sufficient observations. 



FUNCTION COBWEB (Object, Root ( of a classification tree ) ) 

1) Update counts of the Root 
2) IF Root is a leaf THEN Return expanded leaf to accommodate object 

ELSE Find that child of Root which best hosts Object and perform 
one of the following 

2a) Consider creating a new class and do so if appropriate 
2b) Consider node merging and do so if appropriate and call 

COBWEB (Object, Merged node) 
2c) Consider node splitting and do so if appropriate and call 

COBWEB (Object, Root) 
2d) IF none of the above (2a,b, or c) were performed then call 

COBWEB (Object, Best child of Root) and 
reinitialize last-accessed counter of Best child. 

3) FOR each child, N, of Root DO 
IF N has not been accessed in a long while 
THEN IF USELESS (N, Prototype of N) 

THEN PROMOTE(N) (via side effects) 
ELSE reinitialize last-accessed counter of N. 

Table 11 

Pseudo-code for COBWEB with the promotion operator 

4.5 Dealing with Missing Information 
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COBWEB, as described so far, does not deal with partial object information. 

So that objects with missing attribute values can be assimilated during tree con

struction, the category utility measure is extended. This extension adds a salience 

weight to category utility. 

Salience is generally regarded as a measure of the 'perceivability' of an object 

property [SMIT81]. For instance, the color of an object may be considered more 

salient than the smell. However, COBWEB is not directly concerned with the 

perception of objects, but only assumes post-perception object descriptions in the 

guise of attribute-value pairs. Under this assumption, the salience of an attribute 

will be the probability that the attribute's value is observed. For example, in 

a sample of 10 objects, if a value for the attribute Color is present in 7 object 

descriptions, then 



Salience(Color) = P(Color observed)= .!_, 
10 
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Salience can be computed by adding additional integer counters to each node 

of a hierarchy, one counter for each attribute. These reflect the number of times a 

value for a given attribute, Ai, was observed. The probability of observing a value 

of an attribute, Ai, in an object classified under a node, Nk, is 

P(A
. b dlN ) _ ~ of objects under Nk with observed value of Ai 
, o serve /c - it • • 

· w of obJects under Nk 

Category utility is extended so that CU(N1, ... , Nn.) equals 

n 

L:i P(Ai observed) I:j P(Ai = l/ij )2 

n 

(4-1) 

The computation of P(Ai = l/ij) and P(Ai = l/ijlNk) are also altered to take 

into account the possibility of incomplete object descriptions. Specifically, 

p Ai = Vi. Nk = ~ of objects under Nk with value V'ij of Ai 
( JI ) ~ of objects unqer Nk with observed value of Ai 

P(Ai = Vii) is similarly computed from a count of the number of total objects 

that have an observed value for attribute Ai. These computations assume that 

the distribution of observed values reflects the distribution over all (observed and 

unobserved) values. 

Function 4-1 is equivalent to category utility (3-7) if there is no missing 

information. This follows because P(Ai observed) and P(Ai observedlNk) will 
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equal 1.0 for all attributes, Ai, and nodes, Nk. Of course, if all information is 

missing, 4-1 equals 0. In general, function 4-1 will weight more heavily those 

attributes whose values are more frequently observed (i.e., with greater salience). 

Throughout chapters 5 and 6, references to category utility will refer to function 

4-1. Furthermore, this function is assumed in the version of COBWEB tested in 

these chapters. 

4.6 Learning Superordinate Concepts 

COBWEB tends to converge on classification trees where the first level (the 

root is the 'zeroth' level) is the optimal partition of the observed objects. For 

notational convenience, as well as anticipating l~ter discussion, the optimal level 

will be called the ba8ic level since it maximizes category utility (see section 3.3.3). 

Subordinate levels are generated by recursive calls, and are basic levels within 

their respective subtrees. What remains unspecified is a mechanism whereby 

&uperordinate nodes are formed. For example, nodes corresponding to dog, cat, 

bird, lizard, etc. might be the basic level in a classification tree over animals 1 
1:;t 

a superordinate node representing mammal8 may still be useful. 

From a computational standpoint, superordinate categories are intermediaries 

that are useful for classification based on incomplete information. Consider the case 

where a furry thing is seen. It is useful to conclude that it is a mammal, from which 

many other properties can be inferred. In some cases, the use of a salience weight, 

as described in the previous section, may account for 'superordinate' nodes. For 

example, because having-hair is such an easily perceivable property, 4-1 will re

ward a class that covers animals with this property. However, this section presents 

an alternative mechanism, whereby superordinate nodes are created and accessed 

in a different manner than are basic level nodes. In particular, a classification tree 

is constructed so that entry at the basic level is 'hard wired'; superordinate nodes 
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are accessed only after recognition with respect to the basic level. This is not 

intended as a model of human classification, nor is it an extension to COBWEB 

that is used in the remainder of the dissertation. Rather, this extension serves to 

introduce a number of issues and mechanisms important in chapter 7's development 

of a psychological model of basic level effects. This is the most convenient point 

at which to introduce some of these issues. However, this section is tangential to 

the main line of discussion and can be skipped without significantly hindering later 

understanding of the dissertation. 

Given a desire to classify partially described objects, the quality of superor

dinate concepts can be formalized as a measure of the extent to which individual 

attribute values predict concepts, thus allowing even partial object descriptions to 

discriminate concepts. For a concept, Nk, this measure can be formalized as 

:E :E P(Ai = l/ij)P(NklAi =Vii )2 

j 

which can be rewritten as 

:E:EP(Nk)P(NklAi = Vii)P(Ai = ViilNk)· 
j 

(4-2) 

(4-3) 

This function determines superordinate concept quality. When averaged over all 

concepts of a level, it measures partition quality. Like category utility, it is a 

weighted collocation measure (see 3-4). However, the superordinate measure is 

biased towards partitions of fewer concepts, and thus acts to compress a basic level 

partition. 30 

Two assumptions relegate superordinate concepts to roles secondary to those 

of the basic level: 

• Superordinate concepts may only be modified when the basic level is 'stable'. 

30 Superordinate nodes have been implemented in the context of COBWEB's first 
four operators, but not node promotion. 
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Superordinate Levels 

Basic Level 

Subordinate Levels 

Figure 33 

Outline of the object incorporation process in COBWEB. 

• Modifications at superordinate levels do not effect the basic level, but basic 
level changes are made irrespective of their impact on superordinate structure. 

Superordinate concepts can only be modified in cases where no new concepts are 

introduced at the basic level through merging, splitting, or creation for a new 

object. However, in all cases, the counts of superordinate nodes are updated. 

Abstractly, an object is incorporated at the basic level followed by a descent 

to subordinate levels (via recursive call) and an ascent via parent links to su

perordinate levels. Controlling ascent requires that nodes be marked as they are 

visited. This eliminates the possibility that a node's counts are updated more than 

once. The path followed during incorporation is outlined in Figure 33. A node 

directly indexes its basic level descendents, bypassing intermediate (superordinate 

nodes). In addition, each node indexes its immediate children, some of which may 
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be basic level descendents as well. In summary, two sets of downward pointing 

links (children and basic level) are required, as well as parent links. 31 

Creation of nodes at superordinate levels is entirely through merging nodes 

of lower levels. Destruction of nodes is through splitting. Merging and splitting 

of superordinate nodes, like their basic level counterparts, are restricted to nodes 

identified as good hosts for a new object, thus keeping computation cheap. Merging 

superordii:iate nodes is considered after determining the two best basic level hosts 

for an object. The most specific common ancestor of the basic nodes is determined, 

31 These mechanisms are required if the basic level is 'hard-wired' to be the first level 
at which classification occurs. However, this is not an accurate characterization of 
human classification (see section 3.3.2). A psychological model of basic level access 
is presented in chapter 7. Superordinate node formation in the context of the model 
is given in chapter 8 and significantly simplifies the mechanisms currently being 
discussed. 
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BestClass SecondBest 

Figure 35 

Basic level node merging with superordinate concepts 

and the two ancestors of the basic level hosts that are children of this common 

ancestor are merged and evaluated. This process is shown in Figure 34. 

A node is considered an ancestor of itself, so the most specific common 

ancestor of two basic level nodes may be their parent. Second, it is guaranteed 

that the most specific common ancestor of two nodes can be no more general than 

the first marked node encountered. If node merging does not improve the quality 

of a level according to function 4-1, the result of splitting the ancestor of the best 

basic level host is evaluated (unless this ancestor is the basic level host itself). 

In addition to merging and splitting superordinate nodes, merging (not split

ting) of basic level nodes may have significant impact on superordinate structure. 

When two basic level nodes with distinct parents are merged, neither of the old 

parents (and nonshared ancestors generally) can be in a parent (ancestor) relation 

with the new merged node. COBWEB's solution makes the merged node a child of 

the most specific common ancestor (prior to merging) of the two nodes that were 

merged. The process is shown in Figure 35. 



superordinate: 
node 

Figure 36 

A classification tree with superordinate concept. 
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Given the data of Table 5, this strategy yields the tree of Figure 36. 32 This 

extension is not assumed in future discussions of COBWEB. However, it is inter

esting because the control issues that it addresses are similar to those used by a 

psychological model of basic level effects that is described in chapters 7 and 8. 

However, rather than hard-coded access to the basic level, the model employs an 

evidence combination procedure that tends to access the basic level. 

4. 7 Comparison with Other Systems 

According to the tax:onomy of chapter 2, COBWEB is a hierarchical con

ceptual clustering method. It is not strictly agglomerative or divisive, but node 

32 A tree of this form was also formed using 4-1. Over several iterations of the data, 
'Fertilization' was always observed, while all other attributes were observed only 
40% of the time. 
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merging and splitting allow both types of tree formation. These dimensions dis

tinguish COBWEB from other concept formation systems in several important 

respects. The goal of this section is to flesh out differences with respect to some 

selected methods. Discussion focuses on object representation, concept represen

tation, concept quality, hierarchy representation, and control structure. 

4.7.1 Object Representation 

COBWEB represents objects in terms of nominal attributes only. Recent 

versions of UNIMEM [LEB082] allow real-valued attributes. Chapter 9 considers 

extensions to COBWEB (some underway) that allow hierarchical and continuously

valued attributes. CLUSTER/2 (M1c83A] allows nominal, integer, and hierarchical 

attributes. Hierarchical attributes have domains that are hierarchically decom

posed by a 'generalization' hierarchy. For example, color would be a hierarchical 

attribute if its values were grouped into a hierarchy that included 'red' --+ 'hot' 

color --+ any color. More generally, COBWEB does not operate on structured 

object descriptions as do CLUSTER/S [STEP84, STEP86] and RESEARCHER 

(LEB83A). 

4.7.2 Concept Representation 

COBWEB's concepts differ from those of earlier systems. For example, 

CLUSTER/2's [M1c83A) concepts are a logical conjunction of (internal) disjuncts. 

COBWEB's probabilistic representation generalizes CLUSTER/2's representation 

(i.e., for n~minal attributes), since there is a simple mapping from probabilistic 

to conjunctive concepts. UNIMEM's [LEB082, LEB086) concept representation is 

simpler still; it does not allow internal disjunction. While UNIMEM associates 

counts with attribute values, they are simply used to determine if an attribute value 

should be dropped. Only one value of an attribute may be explicitly representea 

in a concept> or the attribute must be dropped. 
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COBWEB's representation is most similar to Kolodner's CYRUS [KoL83A]. 

CYRUS uses counts to compute attribute-value probabilities. In addition, CYRUS 

identifies certain values as normative. These values can be predicted of class 

members with a high probability. Kolodner treats a value as normative if it is 

true of at least 67% of the class members. Like CYRUS, COBWEB identifies 

normative values, but discussion of this ability is deferred until chapter 5. However, 

while CYRUS does compute probabilities, its use of these numbers is analogous to 

UNIMEM's use of integer counts. CYRUS only uses probabilities to to determine 

when values should be 'dropped' as norms, whereas COBWEB uses probabilities 

directly for purposes of object incorporation. 

4. 7 .3 Concept Quality 

COBWEB seeks high quality classes and uses an explicit and continuous 

evaluation function - category utility - to do so. On the other hand, CYRUS and 

UNIMEM use a binary-valued ('good' or 'bad') evaluation function to determine 

whether categories should be kept or abandoned. A concept is dropped if it has 

less than a user-specified number of necessary [LEBo82, LEB086] or normative 

(Kot83A, KoL83B] values. The rationale for this rule is that concepts with too few 

predictable values are not useful for inference. Additionally, a concept (i.e., node) 

can be dropped if all arcs pointing at it are dropped. Recalling chapter 2, each 

arc is labeled by an attribute value that is predictive of the concept. In GBM, a 

value ceases to be predictive of any node if the number of arcs labeled by that 

value exceeds a specified threshold. By indexing 'too many' nodes, the value is not 

predictive· of any of them. 

As in COBWEB, concept quality in UNIMEM and CYRUS is a measure 
.. 

of attribute-value predictability and predictiveness. However, in UNIMEM and 

CYRUS it is unclear as to what (if any) function of predictability and predic

tiveness is being computed. Both systems rely he~vily on user-defined thresholds. 
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'Predictiveness' and 'predictability' appear to be independent of the number of 

defining attributes, the number of nodes at a level, and the number of instances 

classified under a node. For example, in GBM it appears that 'green' may be 

equally predictive of a node containing 5 green objects and 100 green objects. 

The use of probabilistic versus logical concepts distinguishes COBWEB from 

CLUSTER/2. Moreover, COBWEB strives for classes with concepts that facilitate 

prediction, while CLUSTER/2 desires 'understandable' concepts. However, these 

representations and performance objectives need not be incompatible [CHEE85, 

REND86]. Generally, category utility represents a tradeoff between the predictabil

ity of attribute values (operationalized as P(Ai = Yi;INk)) and the predictiveness 

of values (i.e., P(Nk IAi = Yi;)). An appropri~te tradeoff of predictability and 

predictiveness is necessary in classification structures useful for inference - predic

tive values combine to direct the classification of partially described objects. Once 

classified, predictable values can be asserted to complete partial object descriptions. 

As Medin, Wattenmaker, et. al. [MED86A, MED86B] point out, predictability and 

predictiveness generalize logical necessity and sufficiency, respectively. Therefore, 

it is probable that an analogous tradeoff for logical concepts (e.g., Michalski and 

Stepp's measures of 'simplicity' and 'fit') would result in trees that facilitate in

ference. Furthermore, chapter 5 argues that using normative values, simple and 

tight-fitting concepts naturally emerge from COBWEB's search using category 

utility. 

Some may regard the distinction between the understandability versus infer

ence views of concept quality as illusory. However, the distinction is critical in 

changing the perception of conceptual clustering as useful only for compressing 

and presenting data in some intuitively good way. Chapter 5 demonstrates that 

conceptual clustering, guided by appropriate measures of concept quality, is of 

considerable utility for inference tasks. 
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4. 7 .4 Hierarchy Representation 

Like other hierarchical methods (e.g., CLUSTER/2 [Mw83A], RUMMAGE 

[F1s85s], and DISCON [LANG84]), COBWEB groups objects into a strict tree. 

However, in earlier systems classification proceeds by perfect matching against arc

labeling concepts. In contrast, node-labeling concepts are used for partial matching 

in COBWEB trees. Partial matching stems from the use of probabilistic concepts 

and category utility. Of course, probabilistic concepts are not a prerequisite for 

partial matching. For example, a recent version of UNIMEM [LEB087] allows ex

ceptions to concept attribute values. While these values were necessary for all class 

members in earlier versions of UNIMEM (see 4.7.2), the latest version interprets 

them as 'default' values. A satisfactory partial match occurs when an object shar~s 

at least N (a user-defined threshold) of a node's default values. Similarly, a thresh

old number of normative values must be true for an object to match a concept in 

CYRUS. The matching functions used by UNIMEM and CYRUS are binary-valued 

(i.e., 'match' or 'no match') and dependent on constant thresholds. The matching 

function is not sensitive to the number of objects previously classified, nor the 

number of attributes used to describe objects. COBWEB's partial matching func

tion is continuously-valued and is is sensitive to object and attribute multiplicity. 

COBWEB selects the concept that maximizes a match with an incoming object. 

In contrast to forming strict trees, UNIMEM and CYRUS are clumping meth

ods. These methods form hierarchies i:n which objects may be classified under 

multiple nodes. As stated, COBWEB is similar to these methods in that all three 

use partial matching. Clumping in UNIMEM and CYRUS is a result of indepen

dently assessing each class as a possible host for a new object. Kolodner [Ko183A] 

and Lebowitz [LEBo82) point out that clumping is superior to tree formation, since 

the former allow multiple interpretations of classified objects. For example, one 

path may classify an animal as a mammal, while another leads to its identification 
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as a carnivore. As chapter 3 pointed out, there is good justification for clumping, 

although it is unclear whether UNIMEM and CYRUS form the 'right' clumps. 

4.7.5 Control Structure 

COBWEB is an incremental system. Following the general search procedure 

of chapter 2, COBWEB hill climbs thro~gh a space of concept hierarchies, using 

merging and splitting to insure bidirectional mobility through this space. Through 

merging, COBWEB shares the bottom-up approach of agglomerative methods. 

UNIMEM and CYRUS share some of these properties as well. However, unlike 

UNIMEM and CYRUS, COBWEB can merge arbitrary object classes. UNIMEM 

and CYRUS are restricted to 'merging' a class with an object description. It is 

unclear whether this eliminates the possibility of certain object classes, but it seems 

apparent that this limitation would at least increase the number of observations 

required to form certain classes. 

COBWEB's use of splitting has no analog in UNIMEM, and it is unclear 

whether there is a similar operator in CYRUS. UNIMEM can only simulate back

tracking by dropping subtrees. This is similar to COBWEB's promotion operator. 

However, node promotion is a more conservative approach to dealing with 'mis

placed' nodes. Recall that node promotion can eventually lead to the complete 

deletion of objects from a tree followed by reclassification. It is unclear under what 

conditions one technique is more cost effective than the other. The UNIMEM 

approach requires that all deleted objects be observed again and reclassified. This 

may be expensive for large subtrees. On the other hand, COBWEB must succes

sively promote and split subtrees. The vigilance required for this may be overkill 

for small subtrees. An initial hypothesis is that a decision to promote versus delete 

should be dependent on the size of the subtree in question, but any decision must 

await further analysis. 
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Finally, COBWEB reclassifies objects that are removed from a tree, while 

UNIMEM and CYRUS simply throws them out. Reclassification of objects is 

appropriate in contexts such as library database organization; it is undesirable to 

'forget' library books. Forgetting is more appropriate in contexts such as terrorist 

news stories. Forgetting versus reclassification is a domain-dependent decision, 

but a change along this dimension would not effect the basic control structure of 

COBWEB or UNIMEM in a significant way. 

4.7.6 Summary 

COBWEB's representations and processing distinguish it from its precur

sors, CLUSTER/2 and UNIMEM/CYRUS. COBWEB uses probabilistic concepts, 

a principled matching function, and a search strategy motivated by the constraints 

of incremental processing. However, COBWEB's development was strongly _in

fluenced by past systems. In some aspects it uses abstracted or 'cleaned up' 

mechanisms from earlier work. This is particularly true of COBWEB's search 

strategy and concept representation, which find their antecedents in UNIMEM 

and CYRUS. Along some dimensions (e.g., unconstrained agglomerative behavior), 

COBWEB extends the control mechanisms of earlier incremental systems. It is not 

clear whether COBWEB is 'better' than UNIMEM or CYRUS. Rather, this work 

identifies dimensions along which qualitative comparisons between systems can be 

made in the first place. 

4.8 Chapter Summary 

COBWEB is hierarchical and incremental. It can be viewed as hill-climbing 

through a space of partitions, thus necessarily constraining the search for classifi

cation trees to be a hill-climbing procedure as well. Merging and splitting allow 

bidirectional movement in these spaces. Last, COBWEB uses probabilistic concept 

representations and a principled evaluation function to guide search. 
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The following two chapters evaluate COBWEB's output and behavior along a 

number of dimensions. This evaluation assumes the version of COBWEB depicted 

at the right leaf of Figure 37. This version includes incorporation into an existing 

class, new class creation, merging, splitting, node promotion, and the ability to deal 

with partial object descriptions. Chapter 5 explores the utility of COBWEB classi

fication trees for inference in several domains. Chapter 6 characterizes COBWEB 

in terms of the cost and quality of learning. 

Chapter Acknowledgements 

John Gennari's rational reconstruction of a subset of COBWEB's operators 

led to helpful comments on the exposition of the algorithm. 



CHAPTER 5 

Classification and Inference 

5.1 Chapter Overview 

This chapter characterizes COBWEB along two dimensions suggested by the 

learning model of chapter 1. The model posits three elements surrounding learning: 

the environment, the knowledge base, and the performance task. This chapter 

addresses the latter two, while chapter 6 focuses on the impact of incremental 

presentation of environmental observations. 

Section 2 reviews the general form of COBWEB classification trees. They 

constitute the knowledge base formed by conceptual clustering. Trees from two 

domains indicate that COBWEB's use of probabilistic concepts does not preclude 

classes that are characterized by necessary and sufficient properties. Rather, such 

classes naturally arise from the more general process of looking for classes with 

predictable and predictive properties. 

Section 3 elaborates on predictable and predictive values and defines norma

tive values. Normative values can be viewed as default values - values that are 

assumed true unless otherwise stated - with weights that associate a probability of 

truth with each value. Normative values provide a link between the complete listing 

of attribute-value probabilities used by COBWEB and symbolic representations. 

Section 4 demonstrates the utility of COBWEB classification trees for pre

dicting the value of an object's missing attributes. Unlike a learning from examples 

system, COBWEB is evaluated by its ability to facilitate prediction of each descrip

tive attribute, rather than a single teacher-selected 'attribute'. Experiments with 

soybean and thyroid disease case histories illustrate increases in correct prediction 
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afforded by COBWEB over an alternative method. The extent of this increase is 

correlated with a measure attribute dependence, which seems to be a reasonable 

predictor of the 'effort' that is required to 'learn' each attribute. 

Section 5 extends the inference experiments of the previous section by demon

strating the cost effectiveness of using normative values during prediction. A 

prediction in section 4 is made only after classification reaches a leaf. However, 

norms appear to indicate when classification can cease and predictions can be made 

with reasonable confidence. 

Section 6 compares the performance tasks of learning from examples and 

conceptual clustering. The former seeks t~ maximize correct prediction with re

spect to a single attribute, while the latter seeks to maximize prediction across all 

attributes. More particularly, COBWEB's prediction abilities are compared with 

ID3's. ID3 appears to provide a rough upper bound on COBWEB's performance. 

Last, experiments of this chapter are concerned with inductive inference -

prediction over objects that were not used in tree construction. Section 7 dis

. cusses COBWEB's performance as the number of objects used in tree construction 

increases. Intuitive and empirical arguments suggest that prediction accuracy grad

ually approaches theoretical upper limits. 

5.2 Examples of COBWEB Classification Trees 

COBWEB builds classification trees over observed objects. Earlier chapters 

illustrate the system's behavior and output in the domain of animal descrip

tions. This section explores COBWEB's output in two other domains. The 

first demonstrates that probabilistic concepts do not preclude necessary and suffi

cient conditions. However, relaxing attribute-value necessity and sufficiency within 

COBWEB's probabilistic framework leads to a definition of normative values, 

which is the focus of section 5.3. 



Document Title and Keywords 

Cooperative problem solving by like
and mixed-sex teams in a teletypwriter 
mode with unlimited, self-limited, 
introduced and anonymous conditions. 

GROUP PROBLEM SOLVING 
HUMAN SEX DIFFERENCES 
VERBAL COMMUNICATION 
WRITTEN LANGUAGE 
INTERPERSONAL INTERACTION 
COMPUTERS 
MAN MACHINE SYSTEMS 

Table 12 
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Attribute - Value Encoding 

Problem-solving= true 
Words = false 
Learning = false 
Incidental-learning = false 
Sex-differences = true 
Age-differences = false 
Computer = true 
Development =false 
Recognition = false 
Visual-stimuli= false 
Verbal-stimuli = true 
Perception = false 

A document high-level and attribute-value description 

5.2.1 Example 1: Document Descriptions 

Hanson and Bauer (HANS86] use a domain of document descriptions to test 

their clustering system, WITT. Seven document descriptions (abstract and key

words) were encoded in terms of twelve binary-valued attributes. One document 

description and its encoding is given in Table 12. 

After three iterations through a random ordering of the seven documents, 

COBWEB formed the tree of Figure 38. Because of space constraints, nodes 

are labeled only by attribute values common to all node (class) members (i.e., 

P(Ai = Vi; IC1a) = 1.0). However, nodes actually contain all observed values and 

their respective probabilities. 

This domain illustrates that COBWEB's processing and probabilistic repre

sentations do not preclude classes with perfectly common values. These values can 

be interpreted in a number of .ways. For example, each value with probability 1.0 

can be regarded as necessary for class membership. Brachman [BRAC85] calls these 

values definitional. Similarly, a value can be sufficient for class membership. For 

example, a sufficient attribute value for node Nl of Figure 38 is Problem-solving 
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Notation 

Problem-solving= Problem-solving=true 
not Problem-solving = Problem-solving=false 

5 

Figure 38 

A classification tree over document descriptions 

[ =true ], since P(Nl I Problem-solving = true) = 1.0. Thus, Problem-solving is 

both a necessary and sufficient value of Nl. 
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Objects( Senators) 

Attributes (bills) Goldwater(Rep.-AR) Cranston(Dem.-CA) 

Farm Credit 
MX Production 
Budget Cut 
SDI Cut 
Contra Aid 
UN Support Cut 
Relax Gun Control 
Line-Item Veto 
Kill School Prayer 
Guest Workers 
Toxics Liability Limit 
Gramm-Rudman 
Import Limits 
Farm Bill 

? 
y 
y 

N 
? 
y 
y 
y 
y 
y 
y 
y 
N 
y 

Table 13 

A sample of senate voting records 

. 
y 
N 
N 
y 
N 
? 
N 
N 
y 
N 
N 
N 
N 
y 

Of course, as new objects are added to a class, values that were necessary 

(definitional) or sufficient may not be so of the altered class. There is no inconsis

tency in this statement, since the addition of new objects changes a class. Necessity 

(or sufficiency) applies to the old class, not to the new (different) class. In fact, 

COBWEB's probabilistic representation allows the evolution of classes with no 

necessary or sufficient values. This is illustrated in the example below. 

5.2.2 Example 2: Congressional Voting Records 

A domain that shows the flexibility of probabilistic concepts is congressional 

voting reco~ds.33 Members of the U.S. Senate were represented in terms of 14 key 

votes taken in 1985. Key votes were designated by the Congressional Quarterly 

[CoNG85) and ranged from domestic issues like emergency farm credits, gun control, 

and school prayer, to foreign affairs issues such as Nicaraguan 'Contra' aid. Party 

33 This domain was inspired by a similar one used by tebowitz [LEB085]. 



Typical 
values 
P( value I node) 

Ni ('conservative') 

Toxic-Waste - yes (0.81) 
Budget Cuts - yes (0.81) 
SDI reduction - no (0.93) 
Contra Aid - yes (0.88) 
Line-Item Veto - yes ( 0.91) 

Table 14 
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N19 ('liberal') 

Toxic-Waste - no (0.88) 
Budget Cuts - no (0.90) 
SDI reduction - yes (0.83) 
Contra Aid - no (0.83) 
Line-Item Veto - no (0.86) 

Some typical values of 2 clusters from congressional hierarchy 

affiliations (Democrat and Republican) were not included in the representation. 

Each attribute corresponded to one of the 14 votes, with each attribute having 

two possible values, 'yes' or 'no'. Two 'objects' ·are shown in Table 13, while the 

complete data set is given in the appendix to the dissertation. Question marks 

denote unknown values. 

As might be expected, COBWEB formed a classification that roughly groups 

senators as 'liberals' and 'conservatives' at the top level. Democrats predomi

nantly inhabit the 'liberal' class and republicans dominate the 'conservative' class. 

Figure 38 shows some of the values and probabilities associated with these nodes. 

Lower level nodes serve to further distinguish the groups at the top level. 

For instance, a 'conservative' subnode contains eight of the ten democrats in the 

'conservative' class. This smaller group corresponds to the concept of 'southern 

democrat' or alternatively 'Jackson democrat',34 which differ from other 'conser-

vatives' by ·opposing budget cuts (with probability 0.92). 

This domain differs from the document domain by its lack of necessary 

(and/ or sufficient) conditions for top-level classes. None of the 'conservative', 

34 Seven of eight senators were from southern states. A 'Jackson' democrat is one 
that votes conservatively on military /foreign policy issues and liberally on social 
issues. 
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'liberal', or 'southern democrat' clusters contained any perfectly common values. 

A relaxation of necessity leads to the important idea of normativenesa. 

5.3 Default and Normative Values 

A normative value is one that is true with a reasonable degree of confidence. 

Normativeness is a probabilistic notion that captures a tendency, rather than a 

rule, of an object class. Attribute-value normativeness can be naturally defined 

within the probabilistic representations of COBWEB. However, using logical and 

pseudo-logical representations, many researchers have employed the analogous idea 

of a. default value. This section motivates a definition of normativeness, in part, by 

generalizing non-probabilistic conceptions of defaults. 

5.3.1 Definitional and Default Values 

Values that are not necessary (or definitional) of a class may still be regarded 

as default values [BRAc85, ETHE83, REIT80]. In the case where a value, V, is 

definitional of a class, it can be stated that "If an object is a member of the class 

then the object has value V." In the case where V is a. default value of a class, 

it is said that "If an object is a member of the class then the object has value V, 

unless shown otherwise". There are several ways that a default can be overturned 

(i.e., shown otherwise). One way is to simply be told otherwise: "The elephant 

isn't gray (the default), its pink." More generally, a default can be vetoed by a 

proof based on known facts. 

Consider a simplified structuring of the congressional voting records described 

earlier. Assume the deductive rules, 

Vr- Senator(x) 

Senator(x) /\ Contra-aid(x, yes) /\ SDI-reduce(x, no) -+ Conservative(x), 

Conservative(x) /\ Line-item-veto(x, no) -+ Southern-democrat(x), and 

Southern-democrat(x) /\ State(x, alabama) -+ Denton(x). 



Furthermore, assume the default rules, 

Conservative(x) ~ Budget-cuts(x, yes/default) and 

Southern-democrat(x) ~ Budget-cuts(x, no/ default). 

Last, a final deductive rule is 

Denton(x) ~ Budget-cuts(x, yes). 
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KnoWing Conservative(x) suggests that x voted 'yes' to budget cuts. However, 

if deductive rules determine Southern-democrat(x), the earlier default can be re

placed by the guess that x voted 'no' to budget cuts. In turn, this can be overturned 

should it be found that Denton(x). 

Deductive and default rules of this form can be compiled into a decision tree

type structure. The rules above imply the partial decision tree of Figure 39. The 

tree includes four classes: Senators, Conservatives, Southern-democrats, and the 

singleton class, Denton. Conservatives and Southern-democrats have associated 

defaults, while Denton has a definitional value. Classification via the decision tree 

is a simple proo~ procedure. For example, if xis a conservative then x voted yes 

to budget cuts, unless x can be shown to be a Southern-democrat, in which case x 

voted no, unless x can be shown to be Denton, in which case x voted yes. 

Figure 39 demonstrates how defaults can change and even cycle as more 

knowledge is brought to bear. One advantage of defaults is that if limited knowledge 

makes deduction impossible, an inductive guess still offers hope of guessing an 

observation's missing properties. A second advantage of default values is they can 

save space. Consider the additional classes of Figure 39, Reagan-supporters and 

the singletons, Laxalt and Hollings. There are no explicit defaults (Budget-cuts) 

associated with these classes. By convention, they inherit (rather than replace) the 



149 

Conservative: 

Denton: :Hollings :Laxalt 

Figure 39 

Nested classes with defaults. 

defaults of their ancestors. Hollings voted 'no' to budget cuts and Laxalt voted 

'yes'. 

Discussion has stipulated how defaults are used, once selected. However, 

there has been no mention of how defaults are selected. Intuitively, defaults might 

correspond to usually occurring or typical values. However, the literature on default 

values makes almost no mention of prescriptive means for assigning default values. 

Brachman fBRAC85, p 84] states "In the manner used in frame notations, however, 
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a [ default ] value could be violated in every single case!" Lacking guidelines for 

default assignment there is, not coincidently, little (if any) discussion on default . 
value maintenance in the context of learning. Brachman also points out that frame-

based systems typically make no distinction between default and definitional values. 

COBWEB is intimately concerned with learning and dealing with changing 

class structure. Normative values generalize defaults by attaching probabilistic 

qualifiers to values of a class. Probabilities encourage an interpretation of norma

tive (default) values as typical ones. In turn, this provides a prescriptive view of 

normativeness that is not thwarted by changing class structure. 

5.3.2 Normative Values 

Kolodner [Kot83A, KoL83B] defines a normative value as one that is true of 

at least 2/3 (67%) of a class's members. By Kolodner's definition, all values in 

Table 14 are norms of their respective classes. In general, normative values can be 

treated as defaults, but probabilities indicate the degree to which exceptions exist. 

Furthermore, a natural distinction between definitional and default values exists. 

The former are true of class members with probability 1.0, while the latter have a 

probability of less than 1.0. 

Constant threshold strategies, such as Kolodner's, specify when a property is 

reasonably true. However, this technique does not address the issue of when it is 

reasonable to generate a guess. The distinction between these two points is subtle. 

Certainly, if a property is 1003 assured (definitional), it is reasonable to generate 

a prediction. However, if one value is true 673 of the time, is it reasonable to 

continue classification based on further information (if available) or to generate a 

prediction? 

Quinlan's learning from examples system, ID3, addresses this problem~ ID3 

is concerned with prediction of a single 'attribute': a teacher's definition of class 

membership. Recalling chapter 2, ID3 stops tree building when class membership 
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is independent (according to a chi-squared measure) of all other attributes. That 

is, no attribute aids in predicting teacher-defined class membership and so fur

ther decomposition is not worth the effort. The case where teacher-defined class 

membership ( = Ck) is definitional of a node is a special case of this independence 

·condition; all objects at the node are members of Ck, regardless of their value 

along any other attribute. In general, attributes with one value of high probability 

(e.g., 0.67) tend to more closely approximate independence from other attributes. 

A view of normativeness based on independence promises to generalize constant 

threshold strategies and is not dependent on an arbitrary cutoff. 

5.3.2.1 A Definition of Norms 

In COBWEB, a value can only be normative at a node where the attribute 

approximates conditio·nal independence from other attributes. A determination 

of (approximate) independence is not made directly, but indirectly by looking 

for nodes that maximize a function of value predictability and predictiveness. In 

particular, a necessary, but not sufficient, condition for a value, YiJ, to be a norm 

at a node, N1c, is that the value maximize 

Recalling chapter 3, this product is the collocation of 'Vii with respect to Nk. An 

example from 3.3.3 illustrates that in a animal taxonomy containing {animal, bird, 

robin}, the collocation for 'Mode-of-transport = flies' would be maximized at the 

'bird' node since the predictability and predictiveness of this value are both high 

for this class. 

An important property of collocation is that if an attribute, Ai, is rendered 

conditionally independent of other attributes at a node, then the collocation of each 

of the attribute's values will be maximized at that node. For example, consider 



152 

a subtree rooted at Nk with children, C1 through Cn. If Ai is independent of 

membership in Cz then by the definition of independence, 

for all children of Nk. In addition, recall (from 3.3.3) that for a node, Nk, 

for all children, c,. Thus, given Ai is independent of membership in Cz, 

That is, Nk maximizes the collocation of Vi; with respect to its children. In fact, 

under this assumption, Nk maximizes the collocation of Vi; with respect to all 

of its descendents. Because collocation for an attribute's values are maximized 

at nodes that render the attribute independent of lower level classes, norms will 

typically be identified at nodes where it is reasonable to generate a prediction; 

going lower in the tree will not improve prediction accuracy. Importantly, the 

relation between collocation and independence is one-way: attribute independence 

at a node insures that the collocation of the attribute's values will be maximized at 

the node with respect to its descendents, but not vice versa. However, an attribute 

with collocation-maximizing value( s) may approximate independence from lower 

level classes. 

Despite the relation between collocation and independence, perfect attribute 

independence is rarely attained. However, if the probability of one value of an 

attribute is relatively high, the attribute may approximate independence from lower 

level classes. In particular, a node Nk with high P(Ai = Vii INk), will tend to have 

less variance in the value of Ai over the children of N k. The less variance over 
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these children, the closer Ai will approximate independence from other attributes. 

Of course, P(Ai = Vii INk) is maximized at nodes where Vii is definitional ( = 1.0). 

This is guaranteed (but not exclusively so) to occur at leaves (singleton classes). 

Favoritism towards specific nodes is tempered by consideration of P(NklAi =Vii) 

as this probability tends to be higher for more general classes. The tendency of 

P(NklAi = Vii) to increase with the generality of Nk causes collocation to be 

maximized before absolute conditional independence is achieved. 

To summarize, collocation for each of an attribute's values will be maximized 

at a· node that renders the attribute conditionally independent of lower level nodes. 

This will insure that norms indicate when prediction accuracy will not improve by 

deeper classification; this was an important lesson learned from ID3. Second, 

a value that is highly probable will mean less variance over all values of the 

corresponding attribute and thus the attribute may approximate independence 

from lower level nodes. In general, at most one value of an attribute can be 

normative of a class: the value must maximize collocation at the class and the 

value must be the most probable of all values. Together, these conditions generalize 

constant threshold strategies of selecting norms as done in CYRUS. 

5.3.2.2 Examples of Norms 

Consider how norms are determined for the tree formed in the congressional 

domain. In particular, consider the lineage in Figure 40. With each of the 

six nodes are the collocation scores for 'Budget-cuts = yes'. The collocation of 

this value is maximized at the 'Conservative' (Nl) node. While collocations are 

only shown for one ancestral line, in fact, the collocation of 'Budget-cuts = yes' 

at the 'Conservative' node is. greater than at any of its descendents (and not 

just N2, N18, N24, and N29). In addition, P(Budget-cuts = yes!Nl) = 0.81 ~ 

P(Budget-cuts = no!Nl) == 0.29. Thus, 'Budget-cuts = yes' is regarded as a norm 

of the 'Conservative' node. 
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Node P(Bud-cut = yeslNk)P(NklBud-cut =yes) 

Senator: 0.51 x 1.00 = 0.51 
NO 

Conservative: 0.81 x 0.92 = o. 75 
Nl 

N2 0.50 x 0.22 = 0.11 

Southern-dem: 0.08 x 0.02 = 0.0016 
N18 

N24 0.2 x 0.02 = 0.004 

Denton: 1.0 x 0.02 = 0.02 
N29 

Figure 40 

Determining a node where Budget-cuts = 'yes' is normative 

Figure 41 shows similar computations for 'Budget-cuts = no'. For the an

cestral line used in the first (i.e., 'Budget-cuts = yes') example, the collocation 

for 'Budget-cuts = no' is greatest at the root. However, the root does not maxi

mize collocation with respect to all of its descendents. As Figure 41 shows (and 

Table 14 alluded to), collocation for 'Budget-cuts = no' is maximized at the 

'Liberal' node and it otherwise satisfies the conditions for normativeness. 

5.3.2.3 Subnorms 

The norms of the last two figures are computed from the predictability of 

an attribute value at a node and the value's predictiveness towards the node in 
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Node P(Bud-cuts = nolNk)P(Nk !Bud-cuts= no) 

Senator: 0.49 x 1.00 = 0.49 
NO 

---~- ------ -----
Conservative: 0.19 x 0.22 = 0.04 

Nl 
0.90 x o. 77 = 0.69 

N2 0.50 x 0.22 = 0.11 

Southern-dem: 0.91 x 0.22 = 0.20 
N18 

N24 0.80 x 0.08 = 0.06 

Denton: 0.00 x 0.00 = 0.00 
N29 

Figure 41 

Determining a node where Budget-cuts = 'no' is normative 

question; predictiveness has been from the root of the tree to the node. For 

example, the predictiveness of 'Budget-cuts = no' for node N2 in Figure 41 IS 

P(N21Bud-cuts=no) = 0.22. This value is based on root level statistics. It Is 

also possible to compute the predictiveness of 'Budget-cuts = no' towards a N2 

from node Nl. This predictiveness score is conditioned on prior classification 

with respect to node Nl. That is, P(N21Bud-cuts=no, Nl) = 1.0. Because 

the norms of the previous examples were based on statistics accumulated o¥er 

all observed objects and stored at the root, they are ~alled unconditioned norms; 
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NO 

Bud-cut = yes 
P(Bud-cut = yes!Nl)P(Nl!Bud-cut =yes) = 0.75 Nl 

N2 

N18 Bud-cut= no 
P(Bud-cut = nolN18)P(N18IBud-cut = no, Nl) = 0.92 

N24 

N29 Bud-cut = yes 
P(Bud-cut = yeslN29)P(N29IBud-cut = yes, N18) = 1.0 

Figure 42 

Determining subnorms for Budget-cuts 

the computation of predictiveness is not conditioned on nodes that are subordinate 

to the root. 

Once normative values have been defined at a node, it is possible to define 

8Ubnorms. Subnorms are values that contradict and supercede normative values 

at higher level nodes. They are similar in form and intent to the nested default 

values shown in Figure 39. Using unconditioned norms, subnorms can be identified. 

Although no unconditioned subnorms were identified in the last two figures-·, if an 

unconditioned norm for 'Budget-cuts = no' had been found that was subordinate 

to node Nl of Figure 41, this would supercede 'Budget-cuts = yes' at Nl. 
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More generally, subnorms are not restricted to unconditioned norms. In 

particular, conditioned norms are identified by assuming that the constituent prob

abilities of collocation are conditioned on membership in the last class containing a 

norm along the appropriate attribute. For example, consider Figure 42. 'Budget

cuts =yes' has already been identified as a norm of the 'Conservative' (Nl) node. 

To determine subnorms, collocation (conditioned on Nl) for 'Budget-cuts = no' 

is computed for each descendent of Nl. These computations indicate that the 

'Southern democrat' (N18) node contains 'Budget-cuts= no' as a subnorm. Similar 

computations (conditioned on membership in Nl8) can spot normative values of 

still lower nodes. 

5.3.2.4 The Cost of Identifying Norms 

Identification of normative values in COBWEB appears, in the worst case, 

to require greater computation than using a constant threshold strategy. The 

possibility of greater complexity arises because a maximal collocation value must 

be determined with respect to an ancestral line. In the worst case, this might 

involve checking every node in an ancestral line, as opposed to a constant threshold 

strategy, which requires only descending until a value's probability surpasses a 

threshold. Each of the three previous figures demonstrate two frequently observed 

properties that are important in this regard. One is that the first local maximum 

of the collocation score (as one descends) tends to be the global maximum. For 

example, the collocation for 'Budget-cuts = yes' is 0. 75 at node NL This is the 

first local maximum and the global maximum as well. This observation offers hope 

that norms can be efficiently determined. However, collocation does not necessarily 

decrease in an orderly manner as one descends the tree. There may be many local 

maxima. It does not appear possible to prove the first local maximum is necessarily 

the global maximum. 



Ni ('conservative') 
P(Ai = ViilN1), P(N1IAi =Vii) 

To.xic=Waste =yes (0.81,0.90) 
Budget Cuts = yes (0.81,0.92) 
SDI reduction = no (0.93,0.88) 
Contra Aid = yes (0.88,0.88) 
Line=Item Veto =yes (0.91,0.90) 
MX Production= yes (0.90,0.95) 
Guest Workers = yes (0.77,0.83) 

Farm Bill = yes (0.81,0.82) 

N19 ('liberal') 
P(Ai = ViilN19), P(N19IAi =Vii) 

Toxic=Waste =no (0.88,0.78) 
Budget Cuts = no (0.90,0. 78) 
SDI reduction = yes (0.83,0.90) 
Contra Aid = no (0.83,0.83) 
Line=Item Veto = no (0.86,0.88) 
MX Production= no (0.93,0.87) 
Guest Workers = no (0. 78,0. 71) 
Gramm=Rudman = no (0.54,0.92) 
Farm Bill= no (0.75,0.73) 

Table 15 

Normative values for congressional classes 
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Despite the difficulty with proof, experimentation indicates that the first 

collocation maximum tends to be the global one. Intuitively, decreasing value pre-

dictiveness encourages this. Therefore, once there is a decrease in collocation, an 

experimentally validated rule is that the prior node maximizes collocation. Thus, 

in general a one node 'look-ahead' strategy appears adequate for determining node 

norms. This strategy is comparable in cost to norm identification using a constant 

threshold strategy. Chapter 8 returns to the problem of a cost-effective identifica

tion of norms since COBWEB/2 needs to dynamically identify norms. However, 

dynamic identification of normative values is not important from the standpoint of 

incorporating objects in COBWEB. Rather, the importance of individual values is 

implicit in the category utility calculation. Instead, from COBWEB's perspective, 

normative values provide a link between probabilistic and symbolic representations 

that can be exploited after learning has occurred. 



159 

5.3.3 Normative Values and Symbolic Descriptions 

The use of probabilistic (versus logical) concepts distinguish COBWEB from 

the work of Michalski and Stepp [M1c83A). However, these representations need not 

be incompatible [CHEE85, REND86). The gap between probabilistic and symbolic 

representations is bridged by normative values. Consider COBWEB's selection of 

normative values in Hanson and Bauer's document domain. These correspond to 

the necessary and sufficient values listed with the classification tree nodes of Figure 

37. In Michalski and Stepp's terminology, necessary and sufficient values represent 

concepts that are simple and tightly fit the data. 

In cases where there are no (simply stated) necessary and sufficient conditions, 

normative conditions may still be used to symbolically describe classes. Consider 

the complete set of normative values selected for nodes Ni ('Conservative') and 

N19 ('Liberal') of the congressional domain and shown in Table 15. Members of 

these classes tended to be at opposite poles on many issues. A symptom of this 

is that for every norm of the 'Conservative' class there is a corresponding norm 

of the 'Liberal' class with an opposite vote on the same issue. Conversely, of the· 

'Liberal' norms, only 'Gramm-Rudman = no' has no corresponding norm in the 

'Conservative' class. In general, siblings of a COBWEB classification tree need not 

have such a preponderance of norms defined along the same attributes. 

Collectively, almost any three norms from the 'Liberal' or 'Conservative' class 

can be used to (perfectly) distinguish members of that class. For example, a rule 

of the form 

If any two of the values, {Toxic-waste = yes, Budget-cuts = yes, SDI

reduction = no}, is true of an senator, then he/she is a 'Conservative', 

can be used to distinguish 'Conservatives' from 'Liberals'. This is an example of a 

polymorphous concept [HANS86]. In general, a list of normative values is regarded 
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as a class prototype and any object with a specified number of these values can 

be regarded as a class member. In the example above the specified number is two . . 
More generally, this threshold may be constant or variable (e.g., a majority). In 

the congressional domain, two normative values are sufficient to distinguish classes, 

but this need not be the case in other domains. 

A large collection of normative values tends to be an emergent property 

of using category utility to guide class formation. Specifically, the numerator of 

category utility (3-7) of a partition can be expressed as 

where 1 = P(rootlAi = Vii) for each Vii· Furthermore, 1 x P(Ai = Vii) is the 

collocation of Vii at the root. Category utility tends to favor classes having values 

with collocation scores greater than the root's, i.e., P(NklAi = 'Vii)P(Ai = ViilNk) 

~ 1 x P(Ai =Vii)· Intuitively, category utility favors classes with many norms.35 

Experimentally, classes with many norms are found to have simple and tight

fitting symbolic descriptions in the sense used by Michalski and Stepp [M1c83B]. 

That is, polymorphic concepts for each class will require few norms to distinguish 

classes. Additionally, norms are values that can be predicted with reasonable 

assurance; many norms offer greater inference possibilities. Thus, the performance 

objectives of COBWEB (inference) need not oppose an earlier view of conceptual 

clustering, which favors understandable concept descriptions. 

Finally, while probabilistic concepts are typically justified because they gen

eralize logical (typically conjunctive) representations [SMIT81, HANS86], the former 

35 Since the basic level is hypothesized to be where category utility is maximized, 
a characteristic of the basic level may be that it has more normative values. This 
discussion also relates to Jones' [JoNE83] hypothesis that the basic level is where 
the most collocation maximizing nodes are present. See section 3.3.3 for more 
details. 
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seem more suitable for incremental systems (Schlimmer, personal communication). 

Even heuristic measures applied to logical representations may be computed from 

summary statistics. However, in the context of nonincremental systems these statis

tics can be computed as needed and there is no need to make them an explicit 

part of the concept representation. In incremental systems it is advantageous to 

maintain summary statistics, thus reducing cost when incorporating new objects. 

Nonincremental methods tend to compute statistics as necessary, whereas an ef

fective incremental strategy is to generate symbolic descriptions as necessary. 

5.3.4 Summary 

COBWEB's definition of normative values generalizes the notion of default 

values by assuming probabilistic qualifiers. This provides a clear prescription of 

how default values are identified and maintained over a changing classification 

structure. Normative values indicate tendencies in data. This does not preclude 

a representation of necessity, but generalizes it. Identification of strong tendencies 

in da.ta. are primarily useful for purposes of inference, a task that is explored in the 

next section. 

5.4 COBWEB Classification Trees and Inference 

COBWEB seeks classifications that maximize the information inferrable from 

category membership. The efficacy of this domain-independent heuristic requires 

that important properties be dependent on regularities or 'hidden causes' [PEAR.85, 

CHEN85] i~ the environment, and that these regularities be identified by a concep

tual clustering system. 

Experiments in two domains indicate the utility of COBWEB's classification 

trees as predictive models. More generally, this reinforces a view of inference as 

a byproduct of classification. Last, comparisons with ID3, a program that learns 



Attributes 

Time of occurence 
Plant stand 
Precipitation 
Temperature 
Occurence of hail 
Severity 
Leaf con di ti on 

Diagnostic Condition 

Domains 

( april, may, june, ... , october) 
(low, normal) 
(low, normal, high) 
(low, normal, high) 
(yes, no) 
(minor ,potential,severe) 
(normal, abnormal) 

(Stem Canker, ... ) 

Table 16 

Sample soybean disease cases 
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Example 

october 
normal 
high 
normal 
no 
potential 
abnormal 

Stem Canker 

from examples, indicate a weakness in COBWEB's reliance on strict trees as a way 

of structuring observations. 

5.4.1 Learning to Diagnose Soybean Disease 

The first domain was a set of 47 soybean disease cases taken from [STEP84]. 

Each case (object) was described along 35 attributes. Four categories of soybean 

disease were present in the data - Diaporthe Stem Rot, Charcoal Rot, Rhizoctonia 

Root Rot, Phytophthora Rot. These disease designations were also included in each 

object description, making a total of 36 attributes. An example case description is 

given in Table 16. 

Soybean cases were presented to COBWEB in order to see whether the resul

tant classification could be used for effective disease diagnosis. While Diagnostic

condition was included in each object description, it was simply treated as another 

attribute. In building a classification tree, Diagnostic-condition did not force a 

classification as in learning from examples. After incorporating every fifth instance, 

the remaining unseen cases were classified (but not incorporated) with respect to 

the classification tree constructed up until that point. Thus, like studies done by 



100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

% CORRECT DIAGNOSIS 

COBWEB 

64% 

frequency-based 
----~~~~~~~~~~~ 

o._~--~~--~--~~--~-
o 5 10 15 20 25 

# INCORPORATED SOYBEAN CASES 

Figure 43 

Diagnostic success with soybean cases 

163 

Quinlan [QuIN83], the input was implicitly divided into training and te&t sets. The 

goal was to determine if clustering over the training set improves inference over 

the test set through a process of classification. 

Classification was performed in a manner similar to incorporation, except 

that statistics were not updated, nor were merging, splitting, or class creation 

performed. That is, a test object was tentatively placed in each class of a set 

of siblings. The class that maximized the category utility of the resultant par

tition was selected as the best host. The object was then classified recursively 

with respect to the best host. Test instances contained no information regarding 

Diagnostic-condition, but the value of this attribute was inferred through classi

fication. Specifically, classification terminated when the test object was matched 

against a leaf of the classificatioi:i tree. The leaf represented the previously observed 

object that best matched the test object. The Diagnostic-condition of the test ob

ject was predicted to be the corresponding condition of the leaf. This procedure is 

given as one type of case-based reasoning by Kolodner [Ko1087]. 
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Figure 44 

The top levels of a classification tree over soybean disease cases 

Figure 43 gives the results of the experiment. The graph shows that after 

5 instances the classification could be used to correctly infer Diagnostic-condition 

(over the remaining 42 unseen cases) 883 of the time. After 10 instances, 1003 cor

rect diagnosis was achieved and maintained. To put these results into perspective, 

Figure 43 also graphs the results obtained by a simpler, but reasonable, inferenc

ing strategy. This 'frequency-based' method dictates that one always guess the 

most frequently occurring value (Phytophthora Rot) of the unknown Diagnostic

condition attribute. This method gives a 363 correct prediction rate. Thus, the 

COBWEB classification tree facilitates a 643 increase in correct prediction. 

While impressive, these results follow from the great regularity of this domain. 

Members of the different diagnostic conditions are sufficiently different that having 

seen one instance of each diagnostic condition insures good prediction along this 

attribute.36 In fact, when COBWEB was run on the data with no information 

36 The rapidity with which diagnostic condition was 'learned' may be surprising 
to some readers. To bolster claims about the generality of this observation, 10 
more experiments were made on randomly generated orderings. On eight of the 
ten trials, 1003 correct diagnosis was obtained by 25 instances, while 963 and 
913 accuracy was obtained on the remaining two trials. On six trials 1003 correct 
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Success at inference averaged over all soybean attributes 
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of Diagnostic-condition at all, the four classes were 'rediscovered' as nodes of the 

resultant classification tree (Figure 44).37 This indicates that Diagnostic-condition 

participates in a network of attribute correlations. Forming classes around these 

correlations is rewarded by category utility, resulting in classes corresponding to 

the human-defined diseases. 

The success at inferring diagnostic condition implies a relationship between 

an attribute's dependence on other attributes and the utility of COBWEB clas

sification trees for induction over that attribute. To further characterize this 

diagnosis was obtained after 9 or fewer trials. One trial only required 7 instances 
to achieve 100% correct diagnosis. 

37 Stepp's CLUSTER system (Stepp, 1984) also rediscovered the disease classes. 
However, unlike CLUSTER, COBWEB is dependent on the order that instances 
are observed. On the third pass through the soybean data COBWEB segre~ated 
the soybean instances in a manner corresponding to their diagnostic condition. 
All orderings might not result in 'rediscovery' and the time until rediscovery may 
vary greatly depending on ordering. Chapter 6 discusses convergence time and 
related issues. It is important to note however that rediscovery is not important 
in the experiments that follow. A major impetus for COBWEB's characterization 
in terms of prediction is that it defines an objective dimension for evaluating the 
utility of clustering. 
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relationship, the induction test was repeated for each of the remaining 35 attributes. 

The results of these tests (including Diagnostic-condition) were averaged over all 

attributes and are presented in Figure 45. On average, correct prediction of at

tribute values for unseen objects levels off at 873 using COBWEB 's classification 

tree.38 Figure 45 also graphs the averaged results of the frequency-based method. 

Averaged results using this strategy level off at 743 correct prediction, placing it at 

133 under the COBWEB classification strategy. However, these averaged results 

do not tell the whole story - the primary interest is in determining a relationship 

between attribute correlations and the ability to correctly infer an attribute's value 

using COBWEB classification trees. 

To characterize the relationship between attribute dependence and inference 

ability it is necessary to introduce a measure of attribute dependence. The depen

dence of an attribute AM on other attributes Ai is given as 

This function is derived in much the same way as category utility, but it measures 

the average increase in the ability to guess a value of AM given the value of 

a second attribute. If AM is independent of all other attributes, Ai, then 5-1 

equals 0 since P(AM = VMJMIAi = ViJJ = P(AM = VMJM) for all Ai, and thus 

P(AM = VMiMIAi = ViJJ 2 
- P(AM = VMJM) 2 = 0. 

Figure 46 shows the increase in correct prediction afforded by COBWEB's 

classification tree after 25 instances over the frequency-based method as a function 

of attribute dependence. Each point on the scatter graph represents one of the 

36 attributes used to describe soybean cases. For example, after 25 instances 

diagnostic condition was correctly predicted 1003 of the time using COBWEB 's 

38 To emphasize, this is an induction task. As would be expected, when classifying 
previously incorporated objects, correct prediction of missing attribute values is 
generally 1003. See section 5. 7 for further discussion. 
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classification tree, while 36% correct prediction was achieved using the frequency

based approach. Figure 46 shows the difference of 64%. 

More generally, there is a significant positive correlation between an at

tribute's dependence on other attributes and the degree that COBWEB trees 

improve inference. 39 For example, Diagnostic-condition is most dependent on other 

attributes and prediction accuracy benefits most for this attribute. Prediction of 

attributes that approximate independence from other attributes does not bene

fit from classification and in the case of four attributes is less effective than the 

frequency-based approach. 

A more general lesson of this analysis is that learning performance is as much 

(if not more) a function of the domain as it is of the learning algorithm. In some 

cases (e.g., Diagnostic-condition) learning is swift and correctness is high. In other 

cases, even after seeing half of the total objects, performance may not be as good 

as that obtained using a 'stupid' frequency-based approach. Domains must be 

39 The Pearson product-moment coefficient is 0.88, indicating a highly significant 
correlation. 
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Attributes Domains Example 

age ( <18, 18-29, 30-42, 42-55, 55-68, >68) ? 
sex (M,F) M 
on thyroxine (T,F) F 
query on thyroxine (T,F) F 
thyroid surgery (T,F) F 
query hypothyroid (T,F) F 
query hyperthyroid (T,F) F 
pregnant (T,F) F 
sick (T,F) F 
tumor (T,F) F 
lithium (T,F) F 
goitre (T,F) F 
TSH (normal,high) normal 
T3 (low ,normal,high) normal 
TT4 (low ,normal,high) normal 
T4U (low ,normal,high) normal 
FTI (low ,normal,high) normal 
TBG (low ,normal,high) normal 
Diagnostic Condition (negative,sick-euthyroid,hypothyroid) negative 

Table 17 

Sample thyroid disease cases 

characterized before the advantages of a learning system can be properly assessed. 

These general findings are probably extendable to many inductive learning systems, 

although to date COBWEB's analysis is novel in this respect. 

5.4.2 Learning to Diagnose Thyroid Disorders 

The inference experiments were repeated for a second domain of 150 thyroid 

patient case histories. 40 Each patient was described by 19 attributes. Three diag

nostic conditions were exhibited (with equal probability) in the data (hypothyroid, 

sick euthyroid, neither of these).' The tree formed over the data by COBWEB is 

partially shown in Figure 4 7. 

40 This data was kindly supplied by J .R. Quinlan and taken from patients of the 
Garvan Institute of Medical Research. 
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Figure 47 

The top levels of a classification tree over thyroid disease cases 

An experiment similar to that conducted for the soybean cases was conducted 

using the thyroid data. The graph of Figure 48 indicates that classifications rapidly 

became effective tools for diagnosis in this domain, with the percentage of correct 

predictions of Diagnostic-condition leveling off at 883. 

While prediction of Diagnostic-condition improves by 553 using COBWEB's 

tree, Figure 49 indicates that prediction averaged over all attributes increases only 

by 53 over the frequency-based approach. 

Figure 50 shows the reason for this feeble average improvement. In general, 

attributes in this domain interact (statistically) less than those of the soybean 

domain. As Figure 50 shows, the relatively weak showing for COBWEB stems from 

the many attributes that are better predicted using the frequency-based approach. 

These attributes tend towards independence from other attributes. 
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Experiments indicate that COBWEB is a viable means of organizing obser

vations to support inference but at least initially, its utility must be qualified. 

Classification improves prediction accuracy with respect to attributes that par

ticipate in many data dependencies (e.g., Diagnostic-condition). In general, the 

efficacy of COBWEB's domain-independent approach stems from the observation 

that real-world domains tend to exhibit significant degrees of data dependence 

[MERV81]. However, there is room for improving prediction, particularly with re

spect to relatively independent attributes. 

5.5 Inference Using Norms 

In the experiments above, classification proceeded to a leaf before a prediction 

was made. Chapter 3 showed that the classification tree is a concise way of repre

senting certain relationships and sub-relationships between attributes of a domain. 

For predicting the value of an attribute dependent on many other attributes, a 
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'deep' classification (e.g., to a leaf) is necessary if all dependencies are to be taken 

into account when making a prediction. However, if an attribute is independent 

of other attributes, traversal to a leaf may introduce spurious relationships that 

do not facilitate prediction. In fact, prediction of relatively independent attributes 

in the soybean and thyroid domains indicate that the frequency-based approach 

often Outperforms the use of a COBWEB classification tree. 

The frequency-based method of prediction can be viewed as classification 

only with respect to the root of a tree. The root contains probabilistic information 

over all currently classified objects. Being limited to classification at the root, the 
' 

best prediction for an attribute is its most frequently occurring value. Recalling 

discussion of norms, the collocations of values for an independent attribute will 

be maximized at the root. Therefore, the most frequently occurring value of an 

independent attribute will be a norm of the root. 

In general, effective use of normative information can improve the cost and 

correctness of inference by demarcating when classification should cease and pre

diction should occur. In particular, the soybean and thyroid inference experiments 

were modified so that prediction could benefit from limited use of class norms. 

5.5.1 Exploiting Norms in the Soybean Domain 

COBWEB was trained on the same 25 soybean cases as earlier experiments. 

After building a classification tree over these· objects, unconditioned normative 

values were identified. That is, collocation maximizing nodes were found for each 

attribute vhlue. This computation was conditioned only on root-level statistics, 

which allowed limited nesting of normative values. For example, 'Root-condition 

= normal' is a norm for the top-most (root) class (true of 72% of the first 25 

objects), while 'Root-condition = rotted' is a norm of a lower level node. Thus, 

some subnorms were generated. However, subnorms in the sense of Figure 41 were 
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not used for this experiment. Only unconditioned normative values were identified, 

not subnorms conditioned on lower (than the root) node statistics. 

Using unconditioned norms, an initial experiment used the first normative 

value encountered during classification as the prediction of a missing attribute's 

value. Figure 51 shows the difference between correct prediction afforded by norms 

and prediction g-enerated at leaves as a function of attribute dependence. For 

example, prediction of Occurrence-of-hail benefits from norms. Using norms, a 

77% correct prediction is achieved over a 59% correctness rate without norms (i.e., 

classification to a leaf). Figure 51 shows the difference, which is 18%. On the other 

hand, prepction of Root-condition is 56% worse when the first encountered norm 

is used. The norm 'Root-condition = normal' is encountered immediately at the 

root. In general, prediction either benefits or remains the same when using the 

first encountered norm to predict relatively independent attributes. As attribute 

dependence increases, this method can be significantly worse than classification to 

a leaf (e.g., 56% worse). 
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The apparent need for deeper classification as a precurser to predicting more 

dependent attributes motivated a second experiment. Unlike the first experiment, 

limited use of subnorms was allowed (i.e., all norms were still unconditioned). 

A prediction was generated at the last unconditioned norm encountered before 

reaching a leaf.41 The results of this experiment are shown in Figure 52. In 

general, performance for most relatively dependent attributes is still not as good 

as achieved by classifying to a leaf. However, prediction of these attributes is 

still significantly better than is achieved by simply using the first .encountered 

norm. For example, prediction of Root-condition is now 18% worse than achieved 

by classification to a leaf, as opposed to 56% worse when using the first norm. 

Prediction of most independent attributes remains unchanged, indicating the first 

and last encountered norms are the same. For many of these attributes collocation 

of all values is maximized at the root. 

41 In general, identifying the last norm before a leaf necessitates classifying to a leaf 
and recalling the last norm encountered. 



20 

10 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

-80 

-90 

% INCREASE WITH ALL UNCONDITIONED NORMS 

• 
• • . - -. -- - - - -- - - - - -. - - - .... -• • • 

• •• •• • 
• ~ 

Root-condition 

-lOO+--.-~......--T~-.---r~""T'"---.~----

-20 -10 0 10 20 30 40 50 60 70 
COBWEB % - FREQUENCY % 

Figure 53 

Difference between using and not using unconditioned soybean norms 

175 

In addition to graphing differences as a function of attribute dependence, 

results of the last experiment can be viewed as a function of how well classification 

(to leaves) stacked up against the frequency-based approach. This alternative view 

of the advantage of using norms is shown in Figure 53. This figure shows that in 

the soybean domain using unconditioned norms and the frequency-based approach 

tend to be superior (and inferior) to classification to leaves in the same situations. 

While using norms and the frequency-based approach do relatively good 

and bad under the same conditions, the use of norms still beats the frequency

based approach overall. Figure 54 makes the difference between these guessing 

strategies explicit. The shape of this graph is reminiscent of Figure 45, which 

showed the difference between results obtained through classification to a leaf and 

the frequency-based approach. 

Averaged results for these experiments are shown in Table 18 and indicate the 

cost effectiveness or using norms. Correct prediction based on norms averaged 84%, 

as compared to 87% (recall Figure 44) for classificatio'n to a leaf. While average 
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Increase in correct inference with norms over frequency approach 

Classification Unconditioned First norm Frequency 
to a leaf norms only based 

Correctness 0.87 0.84 0.78 0.74 

Depth 3.09 0.35 0.12 0.00 

Table 18 

Averaged inference results in the soy bean domain 
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correctness was nearly as good, the effort required in using norms is significantly 

less. On average, it required classification proceed to approximately 1/10 the depth 

(0.35 levels) that was required of classification to a leaf (3.09 levels). 

5.5.2 Explohing Norms in the Thyroid Domain 

The cost effectiveness of using norms in the soybean domain is accented in 

the thyroid domain. The soybean domain illustrates that relatively independent 

attributes benefit most from normative values and these attributes dominate the 

thyroid domain. Figure 55 shows the results of using the first encountered norm for 
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prediction. Like the soybean domain, prediction of independent attributes tends to 

benefit most. However, unlike the soybean domain, dependent attributes benefit 

as well, though not to the same extent. There is an average increase in prediction 

correctness using the first encountered norm over using no norms at all. 

Results from using all unconditioned norms (i.e., last encountered) are shown 

in Figure 56. In this case there is a slight decline in average performance as 

compared to using the first norm. This is due to a drop in correct predictions of 

independent attributes. However, note that overall accuracy remains higher than 

using no norms whatsoever.42 As Table 19 indicates, in the thyroid domain pre

diction benefits from norms not only in terms of cost (i.e., depth of classification), 

but in correctness as well. 

42 The shape of this scatter graph is roughly maintained after changing the horizon
tal dimension to be the difference between performance obtained from classification 
versus the frequency-based approach. 
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Difference between using and not using unconditioned thyroid norms 

Classification Unconditioned First norm Frequency 
to a leaf norms only based 

Correctness 0.85 0.87 0.89 0.80 

Depth 4.81 0.49 0.35 0.00 

Table 19 

Averaged inference results in the thyroid domain 

5.5.3 Summary 

Using norms can improve the cost effectiveness of prediction. Demonstrations 
·' 

in the soybean and thyroid domains indicate that the simple rule of using the 

first norm encountered during classification improves prediction with respect to 

relatively independent attributes. In general, this improvement is tempered by a 

symmetric decrease in accuracy with respect to dependent attributes, although pre

diction of the (relatively few) dependent attributes of the thyroid domain actually 
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increased as well. Averaging over all attributes indicates that accuracy using norms 

approximates the accuracy achieved without norms, at significantly less cost. 

The norms used in these experiments have been called 'unconditioned' norms, 

since their identification is trivially conditioned on root node statistics. They have 

provided a simple mechanism for demonstrating the promise of using normative 

information. However, it seems apparent that a method taking greater advantage 

of nested norms (conditioned, as well as unconditioned) can improve the cost 

effectiveness of prediction of more dependent attributes by stipulating when it 

is best to predict the value of an attribute. Any such method must trade cost and 

correctness. Such a method is not described here, but it is left as future work. 

5.6 Conceptual Clustering and Learning from Examples 

The soybean and thyroid data strongly suggest that COBWEB captures the 

important inter-correlations between attributes and that it summarizes these cor

relations at classification tree nodes. In doing so, COBWEB promotes inference of 

attributes roughly in proportion to the degree that they participate in correlations. 

This is in contrast to learning from examples, which seeks to maximize correct pre

diction with respect to a single 'teacher' selected attribute. Thus, the performance 

task associated with COBWEB (and implied for conceptual clustering, generally) 

generalizes the performance task of learning from examples. However, this gener

ality may come at the expense of correctness with respect to individual attributes. 

This observation suggests a way of obtaining a rough theoretical upper bound on 

COBWEB's inference ability. 

5.6.1 103 and COBWEB 

In order to demarcate an upper bound on COBWEB's performance, predic

tion accuracy stemming from a single COBWEB classification tree was compared 
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to results obtained from a reconstruction of Quinlan's (1983) learning from exam

ples program, ID3. The program, ID3', builds deci8ion tree& to distinguish object 

classes. 43 Specifically, for each of the 36 attributes of the soybean domain, the 

training set (of 25 instances) observed by COBWEB was used to train ID3'. In 

each case, the values of the attribute were treated as 'teacher' imposed classes. 

Thus, ID3' built one decision tree to distinguish the various diagnostic conditions, 

a separate tree to distinguish seed conditions, and a distinct tree for each subse

quent attribute. These decision trees were used to predict the appropriate attribute 

values in the remaining unclassified soybean cases.44 

Two variations on this basic experiment were conducted. In the first, classi

fication to a.. leaf of COBWEB's tree preceded prediction. Results obtained by this 

method were compared to a version of ID3' that did not use the chi-square measure 

43 ID3' does not include 'windowing' and other efficiency enhancements. 
44 In the context of ID3, the single domain of soybean case histories can be viewed as 
36 individual 'domains'. ID3 is being run for each attribute, not simply Diagnostic
condition. The measure of data dependence ( 5-1) can be interpreted as a measure 
of domain complexity. The 36 'domains' implicit in the soybean case histories are 
well distributed across the complexity space defined by 5-1. 
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COBWEB 
(unconditioned 

norms) 

0.84 

to determine when to stop expanding the tree. Decomposition ceased when all ob

jects classified under a node had the same value along the appropriate attribute, 

but there was no check using chi-square of whether the best divisive attribute 

was a statistically useful classifier. Figure 57 gives the difference& between correct 

prediction using each ID3' decision tree and the single COBWEB classification 

tree. For example, COBWEB's tree predicts Root-condition correctly 100% of the 

time, while the ID3' decision tree for this attribute yields 96% correctness, giving 

a difference of -4%. 

On average, correctness afforded by the COBWEB classification tree is com

parable to that afforded by the 36 ID31 decision trees. However, this statement 

must be qualified. This variation of ID3' does not include protections against 'ex

ceptional' objects (i.e., the chi-square measure). A second experimental variation 

used a version of ID3' that applied chi-square to control tree construction. The use 

of chi-square in ID3' and norms in COBWEB are motivated by the same principle 

of avoiding over-specialization. 

5.6.2 The .. Upper Bound Supplied by Learning from Examples 

Table 20 shows averaged results of the ID3' and COBWEB experiments. 

Overall, COBWEB's single tree approximates the predictive ability of ID3''s 36 

trees. In fact, Figure 57 shows that COBWEB trees facilitate better predic

tion than a corresponding ID31 decision tree for many (9) attributes. However, 
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Figure 58 gives a slightly different picture of performance that takes into account 

ID3' using chi-square and COBWEB using unconditioned norms. Like Figure 57, 

Figure 58 shows the difference between ID3' correct prediction and COBWEB's. 

However, in this experiment the best score obtained by either version of ID3' (i.e., 

using and not using chi-square) is compared against the best score from either 

version of COBWEB (i.e., with and without norms). Note that ID3' does as well 

or better along all but three attributes. Hopefully, this analysis approximates a fair 

comparison between the theoretical best scores obtained using ID3' and COBWEB 

trees. 

Figure 58 indicates that ID3' provides a rbugh upper bound on correct pre

diction with respect to most attributes, as well as on the average (1 % difference). 

However, three caveats preclude the possibility of any strong conclusions at this 

point. First, comparisons of COBWEB's classification tree and ID3 decision trees 

may be unfair; ID3 trees discriminate based on a single attribute at decision points 

(i.e., they are monothetic classifiers), while the use of category utility as a matching 

function makes COBWEB trees essentially polythetic and therefore more sensitive 
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to attribute inter-correlations. The advantage of polythetic classification may be 

magnified by the small data set. 

To summarize, there may be learning from examples systems that further 

improve upon COBWEB's behavior. However, the possibility of improved learning 

from examples behavior may be counteracted by a more sophisticated method of 

using nested norms in COBWEB. To some extent, the choice between selecting 

classification to a leaf or classification to the last unconditioned norm is one way 

of approximating the performance of a more robust method. Finally, irrespective 

of the polythetic/monothetic issue, chapter 3 pointed out that a weakness of strict 

trees is that if 'orthogonal' inter-dependencies exist in the data, only some may be 

isolated at tree nodes. Not all dependent attributes can be equally rewarded. This 

may be a fundamental limitation on the performance of both ID3' and COBWEB 

with respect to induction tasks. 

Last, the use of normative values in COBWEB and chi-square in ID3 are 

motivated by similar concerns - it may not be desirable to classify an object too 

precisely. Recent results by Quinlan [Qu187 A] and Michalski [MICH87] indicate that 

it is possible to simplify decision trees and concept descriptions and only decrease 

slightly or actually improve prediction accuracy over unseen cases. However, 

COBWEB's results using norms imply a dimension along which the benefits of 

simplification vary. While extending COBWEB's results to the issue of concept 

simplification is left as future work, the advantages of simplification probably vary 

as a function of certain domain characteristics (e.g., attribute dependence). 

5. 7 Induction and Deduction 

Prediction emerges naturally from classification. The experiments of this 

chapter illustrate this point, but they focus exclusively on classifying objects that 

were not used in classification tree construction. As with any inductive learning 



L. 

184 

program, COBWEB assumes that the patterns (rules, correlations) expressed over 

the observed objects approximate the patterns of the whole environment. For 

example, having seen the objects · 

(1) {Ao = O, Ai = O, A2 = 1, A3 = 1 }, 

(2) {Ao= O,A1 = O,A2 = O,A3 = O}, 

(3) {Ao= l,A1 = l,A2 = l,A3 = O}, and 

(4) {Ao= l,A1 = l,A2 = O,As = 1}, 

COBWEB may form object classes, N1 = {1, 2} and N2 = {3, 4}, corresponding 

to cases where Ao = O, Ai = 0 and Ao = 1, Ai = 1, respectively. Suppose that this 

grouping is used to predict the value of Ai for a new object, {Ao = O, Ai =?, A2 = 

O, A3 = 1}. Given COBWEB's prior grouping info N1 and N2 and the classification 

procedure used throughout this chapter, the values of A2 and As offer no help in 

classifying the new object. However, the new object is classified as a member of N1 

by virtue of Ao = 0. At this point the value of Ai can be predicted to be 0 since 

this is the case with all members of N1. Of coarse this prediction may be wrong, 

but underlying this prediction is the assumption that because Ao = 0 --+ Ai = 0 

(or more precisely, Ao = 0 --+ Ni --+Ai = 0) is true of the observed objects, it will 

be true of all objects of the domain. This is an example of inductive reasoning. 

More generally, one type of inductive inference takes the form: 

if a property, P, is true of each member of an object set, 0 = {Oi, 02, ... } 
(i.e., P( 01 ), P( 02 ), ... ) 

then P i,s true of all objects if the set of all objects is a proper superset of 0. 

If 0 is not the set of all objects then asserting P is true of an arbitrary object 

(member or nonmember of 0) may prove false. However, as 0 closer approximates 

the set of all objects, the higher the expectation that such an assertion will be true 

(i.e., the less the 'inductive leap'). Finally, if 0 equals the set of all objects then an 
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assertion of P( Oi) must be true for any Oi. The fact that P( Oi) can be asserted 

with certainty is an example of deductive inference. 45 

Consider the relationship between induction and deduction using ID3 (with

out chi-square) decision trees as an example. ID3 builds a decision tree that 

distinguishes two or more classes, lets say 0 and -iO. A decision rule, R, that 

distinguishes 0 from -iO can be generated by taking the disjunction of all paths 

leading to a leaf labeled by 0. 0 and R can each be regarded as predicates that are 

true of a particular instance or not. Over the observed objects, R( z) = 0( z ), but 

in using the decision tree we are typically only interested in R( z) -+ 0 ( z). In the 

terminology developed above P( Oi) :: [R( 01) -+ 0( 01)]. If the observed objects 

are a subset of all objects, this leads to inductive reasoning, i.e., R( 01) -+ C( Di) 

may or may not be true for all objects and 0( Di) may be incorrectly asserted of 

an object 01 if R( O,). However, if the decision tree classifies all possible objects, 

the truth of 0( 01) is ascertained deductively - with certainty. 

Like ID3, the 'inductive leap' using COBWEB classification trees decreases as 

the number of observed objects increases. As a result, prediction using COBWEB's 

classification trees becomes increasingly accurate. After all objects of a domain 

are observed, prediction is ideally a deductive process. As evidence, consider that 

prediction was 1003 correct for every attribute over the 25 soybean case histories 

U8ed to build the tree in the experiments reported in this chapter. 

Despite the perfect performance over observed soybean case histories, some 

qualifications apply to the claim that prediction (via classification) eventually 

becomes deductive using COBWEB. In particular, COBWEB may require seeing 

45 There are two generally accepted deductive rules [MEND79]. Informally stated, 
the first is 'if a property s true of all objects then it is true of each one of them.' The 
second, modu8 ponens, states that if p -+ q and pare true then q is true. Phil-0sophy 
traditionally seems to regard induction as any process that employs the inverse of 
either deductive rule (SKYR 75], while others [CHAR85] regard induction as using 
the inverse of the first deductive rule and abduction as inference using the inverse 
of modu8 ponens. However, comparisons are complicated by the connection drawn 
by some between abduction and the less formal notion of causality. 
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in the case of relatively independent attributes, and it hinted at an approach for 

cost effective inference with respect to all attributes. COBWEB's performance 

was also compared that of ID', a system that learns from examples. COBWEB 

attempts to maximize the correctness of prediction with respect to all attributes, 

while learning from examples attempts to maximize correctness with respect to a 

single attribute. Comparisons between COBWEB and ID3' indicate that a single 

COBWEB classification tree approximates the abilities of multiple ID3' decision 

trees for many attributes. However, ID3' still provides an upper bound. The 

general lesson is that when there is a known attribute for which prediction should 

be maximized, conceptual clustering should n.ot serve as a replacement for learning 

from examples. 

The methodological biases demonstrated in this chapter are severalfold. Most 

important is the observation that the performance of inductive learning programs 

must be qualified. The statement that a system achieved accuracy 'x' in time 't' in 

a domain conveys no information per &e. Results must be compared to alternative 

methods to put results into perspective. Furthermore, an attribute dependence 

score was used to characterize the difficulty of COBWEB's prediction tasks (or 

'domains' for ID3).. As demonstrated, prediction accuracy is quickly achieved 

for some attributes, while perfect prediction may never be obtained for others. 

While there may be problems with attribute dependence as a general measure of 

domain difficulty, it is important to note that qoBWEB's analysis follows Simon's 

(SIM069] suggestion that domains be characterized along with AI systems. This 

methodological bias is novel with respect to current practices in AI. 

While many domains exhibit significant regularities in data, the ability to 

uncover these regularities may be hindered by a number of factors. For instance, 

one difference between COBWEB and other conceptual clustering systems is that 

it is incremental. The inability to examine all instances simultaneously can be a 
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significant barrier to learning. The next chapter analyzes the impact of incremental 

processmg. 
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CHAPTER 6 

COBWEB as an Incremental Learner 

6.1 Chapter Overview 

COBWEB is an incremental conceptual clustering system. As such, it has 

been designed to accept objects one a~ a time; objects of the environment are 

not assumed to be present all at once.' This is a necessary property of systems 

that are to be usefully applied in many real-world domains. Moreover, while' 

COBWEB stores all previously observed instances, only a small fraction of them 

are reexamined when a new observation is incorporated. This characteristic keeps 

incorporation costs down and insures that the system can rapidly update memory 

to reflect new stimuli. 

A bias of this dissertation is that rapid memory update is a major constraint 

on the design of many incremental systems. In COBWEB, this constraint moti

vated a hill-climbing search strategy through the space of possible partitions and 

classification trees. While many systems can be made to behave incrementally -

incorporate objects observed - search intensive strategies may not be practical in 

these situations, since they require updating a frontier of hypotheses or examining 

a list of previously observed instances. 

Along with the cost advantages of a hill-climbing implementation of incremen

tal processing comes some disadvantages. By their nature, search-intensive systems 

are more likely to find the 'best' hypotheses according to some criteria (under 

the assumption that sufficient time is available for search). That is, a frontier of 

hypotheses can be maintained until one emerges as the optimal. A hill climber 

maintains only one hypothesis; early in the learning process a hypothesis may be 
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kept that later proves to lead to a nonoptimal solution. However, a suggestion of 

chapter 2 is that a hill climber can overcome some of these limitations by using 

operators that move bidirectionally in the search space. This allows the system to 

approximate the effects of backtracking through operator application. COBWEB 

implements such a strategy by using divisive (splitting) and agglomerative (merg

ing) operators in tree construction. Last, bidirectional movement may require that 

more objects be observed by the system if it is to find the same solutions as a 

search-intensive system. The latter strategy generates (and keeps) all hypotheses 

consistent with a new object. This information can be recovered through back

tracking (e.g., as in depth-first search) or it is maintained simultaneously (e.g., as 

in breadth-first search). 'Recovering' alternative hypotheses in a bidirectional hill 

climber requires that operators be 'fired' by additional observations. 

Motivated by an interest in alternative designs for incremental systems, 

Schlimmer and Fisher [ScH86A] propose three criteria for evaluating incremental 

systems. These criteria (adapted for conceptual clustering) are: 

• the cost of incorporating a single instance into a classification, 

• the quality of learned classifications, and 

• the number of objects required by a system to converge on a stable classifica
tion. 

For incremental systems in general, incorporation cost should be low, thus al-
·' 

lowing real-time update. However, this may come at a cost oflearning lower quality 

classifications and/ or requiring a larger sample of objects to find a good classifica

tion than a similarly intended nonincremental and search-intensive method. This 

chapter characterizes COBWEB in terms of these criteria and shows the system~to 

be an ecorromical and robust learner. 
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6.2 Cost of Assimilating a Single Object 

A desirable property of incremental systems is the update be performed 

quickly. This section shows that COBWEB keeps update costs low. The cost 

of incorporating a new object into an existing classification tree can be computed 

by 

cost = (number of nodes an object is compared to) x (comparison cost). (6-1) 

To simplify the analysis, cost is first computed without regard to the promote 

operator. 

In COBWEB, the cost of comparing an object to a single node involves 

incrementing appropriate counts of the node and evaluating the. entire partition of 

which the node is a member. Evaluating an entire partition makes the comparison 

cost linear with respect to the average number of nodes in a set of siblings (i.e., 

the average branching factor). Let B be the average branching factor. If A is the 

number of defining attributes and D is the average number of values per attribute, 

then 

comparison cost = O(BAD). (6-2) 

In addition to testing an object with respect to existing nodes, a singleton class 

with the object as sole member is evaluated (one comparison), the result of merging 

the two best hosts is evaluated (one comparison), and the result of splitting the 

best host is evaluated (B comparisons). The cost of these additional tests is added 

to that of testing existing nodes, so that 6-2 remains a legitimate upper bound 

approximation of comparison cost. 

The number of nodes to which an object must be compared is approximated 

by the product of the average number of nodes at each level ( B) and the average 
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depth of the classification tree. The depth of a tree that classifies n objects is 

approximately logB n. Thus, 

number of nodes = B logB n. (6-3) 

Substituting 6-2 and 6-3 into 6-1, the approximate cost of assimilating a 

single object into a classification hierarchy is given as 

cost = 0( B 2 logB n x AD), 

where A = number of defining attributes, 

D = average number of values per attribute, 

B = average branching factor of the tree, and 

n = number of objects classified by the tree. 

(6-4) 

Thus, the cost of incorporating a new object into an existing hierarchy is logarith

mic with respect to the number of previously seen instances and quadratic with 

respect to the average branching factor. 

This analysis does not take into account the 'promote' operator. Recall 

that during object incorporation, some nodes may be tested for uselessness. The 

increased work required for promoting stems from the test for uselessness and 

not from the actual operation of promoting a node. The uselessness test requires 

ascending the classification tree from the node in question to the root. The ascent 

requires cqmparing the node's prototype with approximately B nodes at each level. 

The most levels that are ascended is the depth of the tree, logB n. At worst, each 

node tested for uselessness triggers a search of B logB n comparisons. Theoretically, 

at any given branch of the classification tree with B nodes, B - 1 nodes may 

trigger the test for uselessness. Testing these B - 1 nodes of one tree level may 
I 

trigger (B - 1) x B logB n == O(B2 logB n) comparisons. This can happen for 
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each level of which there are about logB n, so the total cost that may be incurred is 

about 0( B 2 log~ n) comparisons, thus increasing the upper bound on incorporation 

cost. However, empirically O(B2 log1 n) does not seem to be a tight bound on the 

worst case performance, and it is certainly not a good reflection of average cost. 

Unreachable nodes are quickly filtered out and few appear to be created to begin 

with. Empirically, the number of nodes tested for uselessness at a level does not 

exceed two, but is generally zero. From this observation it follows that a tighter 

bound on the cost of promotion is O(Blog~ n). This still alters 6-4 as an upper 

bound on update cost in the worst case. However, under the assumption that 

zero objects are generally tested for promotion, 6-4 remains a good average-case 

approximation. 

The cost of adding a single object to a classification tree is O(B2 logB n) for 

COBWEB, where n is the number of previously seen instances and Bis the average 

branching factor of the classification tree. Fortunately, the branching factor does 

not appear to be dependent on the number of object" in a domain, but is depen

dent on regularity inherent in the environment. Further, the branching factor is 

not bounded by a constant (as in CLUSTER/2 [M1c83A]) or the average number 

of values per attribute (as in RUMMAGE [F1s85A] or DISCON (LANG84]). Tests 

in a variety of domains show that the branching factor ranges from two to five. In 

any case, the cost of adding a single object in COBWEB is significantly less expen

sive than rebuilding a classification tree for a new object using a nonincremental 

clustering method such as CLUSTER/2 which Fisher and Langley [F1s86A] have 

shown requires polynomial time of degree B. 

6.3 The Quality of Classification Trees 

Unlike incremental systems lik.: INIMEM [LEB082] and CYRUS [Ko183A], 

COBWEB explicitly attempts to form classifications where the first level is an 
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optimal partition of an object set. Although node splitting and merging reduce the 

sensitivity of COBWEB to initial sample skew, and thus aid convergence on optimal 

partitions, no pure hill-climbing approach completely eliminates susceptibility to 

becoming trapped in local optima. 

The objective of this section is to explore COBWEB's ability to find optimal 

partitions versus suboptimal partitions. Ideally, such an analysis should vary 

a number of dimensions to determine what effect this variance has on system 

performance. For example, the prediction experiments of chapter 5 took one 

approach to testing a system under different conditions; the measure of attribute 

dependence that was used can be viewed as a measure of task or domain 'difficulty'. 

This measure was applied in two natural domains and variance in this measure 

was highly correlated with attribute prediction corre.ctness. The hope is that this 

correlation extends or generalizes to other domains. However, this strategy may 

be difficult to adapt to the present question about optimality. In particular, the 

optimal partition of an arbitrarily chosen domain may be very difficult to uncover 

by human or machine. If the optimal partition cannot be determined a priori, there 

is no way of telling whether COBWEB uncovered it or not either. Accordingly, the 

methodological approach of this section is to use artificially constructed domains. 

These domains are constructed in a manner that makes the optimal partition 

easily determined. While natural domains were appropriate for earlier studies, 

the pliability of artificial domains make t~em better suited for demonstrating the 

range of a system's behavior. 

COBWEB was tested in four artificial domains. Figure 59 shows state ma

chines representing these domains. Each state machine represents a domain whose 

objects it recognizes. Each object, regardless of domain, is represented by at

tributes Ao through A3. For example, domain 4 contains ten instances, one of 

which is {Ao = O, Ai = O, A2 = 4, A3 = 4}. Domains 1, 2, and 3 contain four, six, 
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CU of partition 
based on A2 and A3 

0.5 

0.45 

0.37 

0.32 

and eight objects, respectively. A state machine representation was chosen since it 

is compact and gives a pictorial view of the correlation between attributes. This 

view of attribute correlations also makes it easy to identify the optimal paitition 

of each domain. Note that attributes Ao and Ai are codependent, as are A2 and 

A3. This implies that a partition based on either pair of attributes will lead to 
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some increase in prediction ability as measured by category utility; category utility 

scores for both of these partitions are given in the figure for each domain. While 

there are codependent attribute pairs, note that Ao and At are independent of A2 

and A3, and vice versa. Thus, a partition based on any crossover between these 

attribute pairs will not capture a useful correlation and will not result in a higher 

category utility score than the two partitions based on the separate attribute pairs. 

In each domain, the optimal partitioning of objects is a segregation based on 

the values of attributes, Ao and Ai, including domain 1 in which there is a tie. 

Partitioning based on attributes A2 and A3 forms a partition of lesser quality - a 

local optimum. Each domain was constructed so that there was a global and local 

optimal partitioning. The difference between the quality of the global and local 

optimum (in terms of category utility) was systematically varied from domain 1 

with the least difference to domain 4 with the greatest difference. 

COBWEB was run 20 times on random samples of 50 objects from each do

main. Since none of the four domains has more than 10 distinct instances, each test 

required multiple observations of the same objects. The graph of Figure 60 shows 

the results of these runs. The vertical scale gives the percentage of runs in which 

the optimal partition was discovered. The horizontal scale gives the difference 

between the category utility of the optimal and local optimums (normalized to 

lie in [O, 1]).46 The graph indicates that as the distance between global and local 

partitions grows, the possibility of becoming trapped a local optimum rapidly di

minishes. COBWEB's inability to converge on optimal partitions in extreme cases 

is a direct:, result of its hill-climbing strategy. A search-intensive method would 

typically discover the optimal partition in all situations. However, since category 

utility measures the degree that a partition promotes correct prediction of. object 

46 Distance was normalized by taking the optimal score, subtracting by the local 
score and dividing by the optimal. A normalized score of 0 indicates the 'global' 
and 'iocal' optimum are tied, while a score of 1 indicates there is only one optimum 
or peak in the domain. 
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properties (i.e., the expected number of correctly predictable properties), the graph 

shows that COBWEB finds the global optimum when it is most important to do 

so (i.e., when there is most at stake in terms of correct inference). COBWEB 

will stumble into local optimum only when there is little lost in terms of inference 

ability. 

6.4 Number of Objects Required For Convergence 

COBWEB converges on classification trees in which the first level tends to 
I 

be a global optimum. In this section, the system is discussed in terms of a third 
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Domain 1) CU of Optimal Partition = 0.45 

Domain 2) CU = 0.89 

3) cu= 1.33 

4) cu= 1.77 

Figure 61 

Domains used to test convergence time 

criterion for evaluating incremental methods: the number of objects required to 

converge q,n a 'stable' (global or local optimum) partition. 

Again, four artificial domains were used to test COBWEB. These domains 

are represented by the state machines of Figure 61. The number of objects in 

domains 1 through 4 are 19683, 2187, 243, and 27, respectively. Members of all 

domains are represented along attributes Ao through Ag. An example of an object 

from domain 2 is {Ao= l,A1 = l,A2 = l,A3 = l,A4 = O,As = 2,As = 2,A1 = 
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1, As = O, Ag = O}. Note that in this example all values of the initial attributes, Ao 

through A3, are the same. More generally, the four domains were selected so the 

optimal partition of each domain is unambiguous and easily visualized. In each 

case the optimal partition is one based on the values of the initially correlated 

attributes (e.g., Ao and Ai for domain 1, Ao through Aa for domain 2, etc.) - all 

remaining attributes are mutually independent. 

The domains of Figure 61 systematically differ in terms of the quality of i,ae 

optimal partition. The question that this section investigates is whether tne ease 

with which the optimal partition can be incrementally discerned varies with the 

category utility (i.e., absolute quality) of the optimal partition. 
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COBWEB was run on 5 random orderings from each of the four domains. 

During learning, 100 objects were intermittently and randomly selected from the 

domain being learned and classified (but not incorporated) with respect to the clas

sification thus far formed by COBWEB. If the top-most partition of COBWEB's 

classification tree segregated the sample in the same manner as the optimal parti

tion of the environment as a whole, the two partitions were regarded as equivalent.47 

Figure 62 shows the results of this experiment. As the quality of the optimal 

partition grows, the fewer objects COBWEB required to converge on the optimal 

partition, or more accurately, a partition equivalent to the optimum. Inversely, as 

the quality decreases the number of objects required for convergence appears to 

increase exponentially. While a search-intensive method would probably exhibit a 

similar curve, the rate of increase would be considerably less as the quality of the 

optimal partition decreased. 

While COBWEB may require many objects to stabilize on a partition, it 

appears to converge rapidly in domains of significant regularity.48 To put some 

of the previously examined domains in context, the partitions (first level of the 

classification trees) formed for the soy bean, congressional, and thyroid domains 

measured 1.5Q, 1.20, and 0.50, respectively. The category utility values inherent 

in these domains indicate that the congressional and soybean domains are learned 

47 Because COBWEB builds a classification tree in a recursive manner, character
izing behavior with respect to the top-most level also characterizes behavior with 
respect to lower levels. 

48 Pat Langley points out that there is a confound in the previous two experiments. 
For example, the intent of the last experiment was to vary the category utility 
score of tlie optimal partition across domains. However, in doing this, the number 
of objects in each domain was also varied. There may be some question as to 
whether experimental results reflect the variance in category utility or the variance 
in domain size. One reason that this may be a necessary confound is that it appears 
that the category utility score of the best partition and the number of domain 
objects are necessarily dependent. In particular, it does not seem possible to vary 
the category utility of the best partition while holding everything else (e.g., number 
of objects, number of attributes, number of values per attribute, category utility 
score of local optima) constant. However, the acknowledgement of confounding 
variables (necessary or not) should motivate a more extensive, but future, analysis. 
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easily, while the thyroid domain probably requires significantly more observations 

on average. 

6.5 Chapter Summary 

This chapter evaluated COBWEB in terms of update cost, hierarchy quality, 

and convergence time. Experimentation verifies that while hill climbing keeps in

corporation costs down, bidirectional mobility in hierarchy space allows COBWEB 

to typically converge on optimal partitions over a wid~ range of domains. However, 

the effort required to converge may be distributed over a large sample of objects. 

Experiments show that as the quality of the optimal partition decreases, the num

ber of objects required to ferret it out increases exponentially, and if locally optimal 

partitions are of sufficient quality, the global optimal may not be discovered at all. 
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CHAPTER 7 

A Computational Account of Basic Level and Typicality Effects 

7.1 Chapter Overview 

Chapter 6 demonstrates that the first level of a classification tree generated by 

COBWEB will tend to be optimal according to category utility. While the system 

uses category utility to improve inference, the measure was originally motivated 

and validated as a predictor of the basic level (Gtuc85]. Despite COBWEB's use of 

category utility, its classification structures and processes should not be regarded 

as a model of basic-level effects. Although category utility characterizes 'preferred' 

concepts in humans, COBWEB's explicit use of this measure does not show how 

this preference emerges as the result of using more primitive measures. 

This chapter develops an indexing scheme and recognition procedure that 

accounts for basic level and typicality effects. In particular, the model offers an 

explanation for some target recognition (e.g., Is X a bird?) results. Explanations 

for these effects assume that object properties are directly perceivable, i.e., objects 

are presented to the system as attribute-value pairs. There is no claim that the 

model extends to the case where verbal (e.g., a word) or other symbolic cues are 

used to identify objects being recognized. The impact of these tasks on the model 

are briefly considered at the end of the chapter. 

Section 2 develops a new scheme for indexing concepts and recognizing in

stances that involves 'extracting' certain aspects of the category utility measure. 

The procedure for classifying an object combines 'evidence', giving approximately 

the same effects as an explicit category utility calculation, but without having to 

202 
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examine all categories of a level or all values of an attribute; consideration is limited 

to classes that are indexed by a value of the observed object. 

Section 3 compares results obtained through indexing with psychological 

studies of basic level effects. Apparently, this is the first computational model 

that accounts for any basic level effect. 

Section 4 extends claims of the model's psychological consistency by showing 

how it accounts for typicality effects. This analysis includes an explanation of 

experimental findings by Rosch and Mervis [Ros75s], as well as a hypothetical 

treatment of typicality effects in the congressional voting domain of chapter 5. 

Finally, section 5 considers interactions between basic level and typicality 

effects. The model is consistent with interaction~ that have been found experimen

tally and predicts behaviors that have not yet been investigated. These interactions 

emerge as a consequence of the model's focus on concepts within a larger memory 

structure, rather than on isolated concepts. 

In summary, this chapter presents a hierarchical indexing scheme that ac

counts for certain basic level and typicality effects. This chapter does not address 

how the indexing scheme is maintained during learning. Although object classifi

cation and incorporation are closely related in incremental systems [Kot83A], this 

chapter is strictly concerned with classification. Issues of indexing and memory 

update (i.e., learning) are addressed by COBWEB /2, a system that is described 

in chapter 8. 

7.2 An Indexing Scheme Based On Category Utility 

The classification procedure used by COBWEB recursively descends a tree 

along a path of 'best matching' nodes. At each level of the descent the object being 

classified is tentatively added to each node (i.e., class) and the resultant partitmn 

is evaluate<l using category utility. The node to which adding the object results 
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in the highest category utility score is chosen as the best host or best matching 

node for the object. Classification recursively proceeds through the best host. Two 

aspects of this procedure limit it as a model of basic level and typicality effects. 

One limitation is that classification proceeds in a strict top-down fashion. 

If superordinate nodes exist, this procedure cannot naturally account for basic 

level effects. Secondly, COBWEB's classification trees cannot naturally account 

for typicality effects. Recall that category utility involves a summation of expres

sions of the form, P(Ai = Vi11Nk) 2 - P(Ai = Vi3) 2• Subexpressions involving 

some attributes will contribute more positively to the summation than will other 

attributes. While chapter 3 argued that typicality effects depend on attributes hav

ing varying importance for classification, an att~ibute's importance in the current 

scheme arises implicitly. A calculation for each attribute value must still be made; 

it cannot explain the variability of recognition time as a function of typicality. To 

model typicality phenomena, there must be an explicit representation of attribute 

importance. 

To account for typicality and basic level effects, the classification scheme 

embodied by COBWEB is modified along two dimensions [Rosc78] of hierarchical 

classification. A horizontal dimension is concerned with the placement of objects 

among contrasting categories at the same tree level. While COBWEB explicitly 

checks each category, UNIMEM [LEB082] and CYRUS [Ko183A] use attribute-value 

indices to constrain the number of possible object hosts along the horizontal dimen

sion. Indic~s explicitly signify the importance of some attributes for classification. 

A vertical dimension is concerned with the placement of objects among categories 

at various levels of generality. Hierarchical classification usually proceeds from 

general to specific categories, but allowing intermediate entry points in a hierarchy 

results in variability along the vertical dimension; a model of human classification 

should allow entry points that correspond to the basic level. 
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7.2.1 The Horizontal Dimension: Motivating an Indexing Scheme 

If an object is to be classified with respect to a number of mutually exclusive 

classes, it can be compared with each class using category utility. However, for 

purposes of classification (versus incorporation), operations like merging, splitting, 

and new node creation are not performed; classification is simply a matter of 

(recursively) identifying the best existing host at each tree level. Under this 

assumption, the category utility calculation can be significantly simplified. 

Recall that category utility (3-7), CU( {N1, ... , Nn}) = 

n 

To determine the best host for a new object requires tentatively placing the object 

in each class and evaluating the resultant partitions by category utility. If there are 

n existing classes, determining a best host involves comparing n partitions, each 

of size n. For partitions of the same size and over the same object set, category 

utility (3-7) gives exactly the same ranking as 

n. 

L P(N1c) LL P(Ai = ViilN1c) 2
' (7-1) 

k=l j 

since both n and Li Lj P( Ai = Vii )2 are constant under these assumptions. For 

purposes of classification, but not incorporation, 7-1 orders partitions in exactly 

the same manner as 3-7. Thus, 7-1 is guaranteed to identify the same class as the 

best host as 3-7. 

Evaluation using 7-1 is done after an object has been tentatively added to a 
~:! 

category and appropriate counts temporarily updated. Intuitively, an object will 

tend to be placed in the class whose current distribution of attribute values is 

most reinforced by the values of the object. To place an object otherwise would 

lesson the predictability of a class' attribute values. This observation suggests 

a way of selecting a best host without evaluating the quality of the resultant 
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partition. Rather, the best host can be selected by independently comparing an 

object description with each existing class. In particular, selecting the best host 

for an object 0 = {A1 = Viiu A2 = Vii:a, ... ,A,,. = Vnjn}, can be done by finding 

the category, N k, that maximizes 

{7-2) 

In words, the best host will tend to be the class with the greatest probabilities for 

attribute values of the object. 

Importantly, using 7-2 is not guaranteed to identify the same class as the best 

host as would be identified using 7-1. However, application of 7-1 and 7-2 most 

always identify the same best host. As empirical evidence for this claim, consider 

the results of 4 COBWEB learning trials, one for each of the artificial domains 

of Figure 61. Object incorporation was actually done in the usual manner using 

function 3-7 to determine the best host, as well as to decide when to merge, split, or 

create a new class. However, regardless of what operator was actually applied, once 

the best host at the top level of the tree was selected using 3-7 (which is equivalent 

to 7-1 in this ~ontext ), the best host was identified using 7-2. Over a sample of 

75 objects from domain 1 (whose optimal partition is of least quality according 

to category utility), 64 of the 75 objects were classified by the same best hosts 

as identified by functions 3-7 and 7-2; in eleven cases these functions identified 

different hosts. Over samples of equal size from the remaining domains, there was 

never a disagreement using the two functions over which node best hosted a new 

object. 

While 7-1 and 7-2 almost always identify the same best host, application 

of 7-2 is considerably cheaper. It is also more useful in developing an indexing 

scheme because it eliminates extraneous attribute values from the computation 
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Figure 63 

Sample nodes with predictability and predictiveness measures 

that determines an object's class. Extraneous values are those not present in an 

object being recognized. 

Using Bayes rule, 7-2 can be rewritten as 

(7-3) 

Although equal to 7-2, 7-3 suggests an appealing way of mapping component 

probabilities onto a classification tree structure. In particular, chapter 3 pointed 

out that P(NklAi = Vii) or the cue validity of Vij is a measure of predictiveness, 

while P(Ai = Vii INk) or category validity is a measure of a value's predictability at 

Nk. Simil~rly, P(Ai = Vij) = P(Ai = VijlRoot), is a measure of the predictability 

of Vii at the root of a classification tree. Figure 63 shows these probabilities 

distributed over two classification tree nodes. 

Indices can be used to direct classification. For example, COBWEB com

pares an object against each node among a set of siblings. In contrast, UNIMEM 
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[LEB086, LEB082] and CYRUS [KoL83A, KoL83B] use a two-step recognition pro

cess. Attribute value indices are used to identify nodes that may classify the object. 

Thus, indexing is a relatively cheap way of filtering out nodes that are not similar 

to the new object. Nodes deemed relevant through indexing are then evaluated 

more completely with respect to the object. 

A method of distributing category utility information over a classification 

tree has been sketched. Individual attribute values index subordinate concepts. 

A comprehensive match between an object and possible hosts is preceded by an 

indexing stage that initially identifies relevant concepts. Indexing is guided by cue 

validities on arcs. The information needed for a complete match (i.e., computing 

category utility) is contained at nodes, as well as arcs, of a tree. In a manner 

similar to that employed by UNIMEM and CYRUS, this procedure can identify a 

best host for an incoming object. However, in UNIMEM and CYRUS, indices are 

restricted to connecting nodes to their immediate children. Under this assumption, 

indexing aids classification only along the horizontal dimension. In fact, systems 

that do hierarchical classification move strictly top - down; choices of classification 

along the vertical (or generality) dimension are not considered. Before fleshing 

out a two-step classification procedure that has been inspired by category utility, 

implications of the vertical dimension are considered. 

7.2.2 The Vertical Dimension: Placing Indices 

If a value is relatively unique to members of a subordinate node, it will 

indicate the subclass roughly to the same degree that any superordinate node 

is indicated. For example, in a hierarchy containing animal, vertebrate, mam

mal, dog, collie, having hair is unique to mammals; P( mammalslhave-hair) = 

P( vertebrates!have-hair) = 1.0. Rather than directing an index for have-hair from 

animals to vertebrates, an index can bypass vertebrates and go directly to mammal-s. 

Mammals is- the node where have-hair is necessary a~d sufficient for membership. 
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More generally, the rule for index placement can be relaxed by directing indices at 

nodes that maximize collocation for the corresponding attribute value. Collocation 

is a. tradeoff of value predictability (i.e., P( Ai = l/ij INk)) and predictiveness (i.e., 

P( NA: I Ai = V;;)), which generalize logical necessity and sufficiency, respectively. 

As discussed in chapter 5, values that maximize collocation at a node are 

considered normative of the node. These values approximate conditional inde

pendence from other values. Moreover, collocation maximizing indices will tend 

to be directed at subordinate (i.e., specific) nodes. Taken together, conditional 

independence and greater specificity tend to insure that value indices are directed 

at nodes from which the most can be predicted from simply knowing the value. 

Allowing indices to skip levels introduces .variability along Rosch's vertical 

dimension of classification. A tree that is indexed in this way is partially shown 

in Figure 64 as an example. This indexed tree corresponds to the unindexed tree 

over animals given in Figure 36 of chapter 4. Dashed lines indicate parent - child 

relationships. Although node probabilities (predictability) are not shown for space 

reasons, predictiveness scores for certain arc labeling attribute values are shown. 

Each arc corresponds to an attribute value whose collocation is maximized at the 

node where the arc terminates. For example, 'HeartChambers =four' predicts the 

'mammals/bird' node with probability 1.0 and its predictability at this node is 1.0 

as well. The collocation of 'HeartChambers = four' is 1.0 x 1.0 = 1.0 which is the 

maximal score for this attribute value. Thus, an arc for 'HeartChambers == four' 

is directed from the root to the 'mammals/bird' node. Recalling discussion from 

chapter 5, arcs are directed at nodes where the applicable node is normative. While 

space only permits showing arcs from the root of the tree, the indexing procedure 

is applied recursively; each node is treated as the root of its own subtree. -

Recognition using this scheme is a two-step process that begins at the root 

of a classification tree. Possibly relevant nodes are activated by indexing. A 
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(mammal-llbrown) = 1.0 

Figure 64 

A partially indexed tree of animals 

more complete evaluation is then made to determine where an object resides. In 

particular, the following scheme is used to classify an object, 0 = {A1 = Viiu A2 = 

Vii;a' "''An:= Vmjm}: 



INDEX: Return a set of relevant nodes that might classify an object, O, by: 
a) Compute the sum, L:i P(NklAi = Vij,), for all nodes, Nk, 

over all 'Viii that index Nk and are present in 0. 
b) Identify the node, Nmaz, with the maximum sum (i.e., the most 

highly predicted node). 
c) Identify all nodes that share indexing values with Nmaz· These 

nodes, together with Nmaz, are kept for further evaluation. 
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Activated nodes that share one or more indexing values with Nmaz cannot be 

ancestors or descendents of N maz, since only one node in an ancestral line can 

maximize collocation for a given value. Thus, the INDEXing stage returns a set of 

nonancestral related nodes. These nodes may then be more carefully evaluated by 

the following procedure. 

EVALUATE: The set of nodes that were kept following activation are 
evaluated by computing function 7-3 over all object values. 
The node that maximizes 7-3 is' assumed to classify 
the object. 

An example of this recognition procedure is illustrated using the partially in

dexed tree of Figure 64. Consider the problem of classifying 'mammal-1' from Table 

5 of chapter 4. This object is described by {BodyCover =hair, HeartChambers = 
four, BodyTemp = regulated, Fertilization = internal, Color = brown}. Each of 

the nodes (except the root) shown in Figure 64 are indexed by at least one value 

of this object. Moreover, because each value predicts one of the given nodes with 

probability 1.0, these are the only nodes indexed by a value of this object. Of 

these nodes, 'mammals/bird' has a total predictiveness score of 1.0 + 1.0 = 2.0. 

This is the maximally predicted node and is identified as Nmaz· Furthermore, no 

other in?exed node shares an indexing value with 'mammals/bird'. Therefore, this 

node is the only one retained for evaluation and is thus chosen to initially classify 

'mammal-1 '. 

After a best host has been determined, classification recursively proceeds to 

deeper levels, eventually terminating at a leaf. Invariably (with respect to the 

example above and the following experiments), Nmax maximi~es 7-3 from among 
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the activated nodes. In many cases, this happens because N maz is the only node 

passed on for evaluation. However, regardless of the number of nodes passed on by 

indexing, there are good reasons for the great favoritism towards Nmax.. Because 

indices are directed at nodes that maximize collocation, P(Ai = ViilNmax.) tends 

to be quite high for indexing values. Therefore, the total predictiveness score of 

Nmaz equals 

which is approximates 

Moreover, because P(Ai = l/ij) for each value is constant across all activated nodes, 

it will tend to have little impact in selecting between Nmaz and its competitors. In 

chapter 8, the two-step classification procedure is followed for tree update, but in 

the remainder of this chapter, no mention of the EVALUATE stage will be made. 

7.3 Basic Level Effects 

Using attribute value indices that are directed at collocation maximizing 

nodes tends to result in objects being first recognized with respect to the basic 

level. The reason for this behavior is intuitively simple: category utility predicts 

that the basic level of a hierarchy maximizes a tradeoff between the ability of 

attribute values to discriminate categories (using P(NklAi = l/ij)) and the ability of 

values to characterize categories (using P(Ai = l/ij INk) ). Specifically, a basic-level 

node tends to be that node among its descendents and ancestors that maximizes 

collocation for the most frequently observed attribute values. Since attribute-value 

indices are directed to those node( s) which maximize collocation for in di vi dual 
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values, indices collectively tend to maximally predict basic level nodes. In this 

section, this intuition i~ validated using two experimental studies. 

7.3.1 Explanation of the Murphy and Smith Data 

An experimental study was conducted by Murphy and Smith [MURP82). 

They presented subjects with 16 line drawings of simple, abstract tools, including 

hammers, bricks, pizza cutters, and knives. Tools were arranged into a hierarchy 

of five levels. Subjects were trained to recognize a tool at each of the four levels 

of abstraction (e.g., a large, clawed, hammer could be identified as such, or as 

simply a clawed hammer, hammer, O:f pounder) using fictional names provided by 

the experimenters. Following the training phase, Murphy and Smith employed 

a target recognition task to determine the level treated by subjects as basic. 

Subjects behaviorally identified the intermediate level containing nodes hammer, 

brick, knife, and pizza cutter as basic, since recognition was consistently verified 

more quickly with respect to these categories. 

In order to test the validity of the indexing scheme, the pictorial repre

sentations used by Murphy and Smith must be converted to an attribute-value 

representation. As pointed out by Gluck and Corter [Gtuc85], the nature of such 

a transformation is the focus of a good deal of research in vision and pattern

recognition. However, the drawings used in these experiments were varied along 

four perceptual dimensions: the shape of the tool handle, the shaft, and the head, 

as well as the overall size of the drawing. Secondly, subjects were told that the 

superordinate distinction implicit in the tool classification tree was in terms of 

function: cutting tools (knives and pizza cutters) vs. pounding tools (hammers 

vs. bricks). These considerations lead to an encoding in terms of five attributes, 

which is shown in Table 21. An encoded version of the leftmost portion of the 

tree presented to human subjects is shown in Figure 65. Leaves give an abbrevi~te 

each object description as a string that is ordered as Function, Handle, Shaft, 
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Category (Node) Attributes 

Superordinate Basic Function , Handle Shaft Head Size 

Pounder Hammer Pounding 2 2 2 0 
Pounding 2 2 2 1 
Pounding 2 2 1 0 
Pounding 2 2 1 1 

Brick Pounding 0 3 4 0 
Pounding 0 3 4 1 
Pounding 1 3 4 0 
Pounding 1 3 4 1 

Cutter Knife Cutting 3 4 2 0 
Cutting 3 4 2 1 
Cutting 3 4 3 0 
Cutting 3 4 3 1 

Pizza C. Cutting 4 0 5 0 
Cutting 4 0 5 1 
Cutting 4 1 5 0 
Cutting 4 1 5 1 

Table 21 

An attribute - value encoding of the Murphy and Smith tools 

Head, Size. For example, 'P2220' stands for {Function = Pounding, Handle = 2, 

Shaft = 2, Head = 2, Size = O}. Internal nodes are listed by the fictional class 

names provided by the experimenters and used by subjects to verbalize object 

identifications. This encoding is identical to that presented by Gluck and Corter, 

except that Table 21 lists function as an attribute, where Gluck and Corter did 

not. In the computer experiments to follow, it turns out that adding function does 

not change the node that is first used to classify an object. 

Using the encoding of Table 21, Figure 66 illustrates the indexing scheme 

imposed on the classification tree of simple tools. Each node lists those attribute 

values that have collocation maximized at the node. To simplify discussion~ indices 

are shown only for the leftmost nodes of the tree, but this path is representative of 

all others. Associated with each index is the probability of the indicated node given 
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Figure 65 

Attribute-value encoding of the Murphy and Smith tree 

the indexing attribute value. Similarly, associated with nodes are the probabilities 

of attribute values conditioned on category membership. 

The recognition procedure predicts that all tools are first recognized with 

respect to basic nodes as indicated by human subjects. For example, when a small, 

clawed, hammer is presented (encoded as function = O, handle = 2, shaft = 2, 

head = 2, size = 0), the predictiveness scores computed during the first stage of 

recognition ·'are as follows: 
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Figure 66 

Indexing imposed on the tree of Murphy and Smith experiment 

Node 

Pounder 

Hammer 

Clawed Hammer 

Predictiveness Score 

P(PounderlFunction = Pounding) = 1.0 

P(Hammer!Shaft = 2) + P(Hammer!Handle - 2) 
= 1.0 + 1.0 = 2.0 

P( Clawed Hammer!Head = 2) = 0.5 
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The node with the highest predictiveness score is Hammer with a score of 

2.0. This node is retained for the second stage of processing. Moreover, since 

no other nodes with indexing values that intersect with Hammer are activated, 

Hammer is the only one retained. This example indicates that an object description 

corresponding to a small, clawed, hammer is first recognized with respect to the 

basic node as indicated by human subjects. Similar verification of the basic level 

phenomena can be made for all objects (tools) pf this domain. 
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--------Hierarchy #3----------

Figure 67 

Hierarchies of objects defined by outer, inner, and bottom shape 
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7.3.2 Explanation of the Hoffman and Ziessler Data 

The recognition/indexing scheme gives results that are consistent with a 

second set of experiments conducted by Hoffman and Ziessler [HoFF83]. Subjects 

were trained to recognize eight different artificial objects. Objects were arranged 

into classification trees, similar to those used by Murphy and Smith. Unlike the 

earlier experiment however, Hoffman and Ziessler arranged the objects into three 

different tree structures and trained a different set of subjects on each tree. The 

trees are given in chapter 3, but are presented again for convenience in Figure 67. 

The goal of arranging objects into three hierarchies was to impose a different 
' basic level in each case. Target recognition tasks verified that subjects identified a 

~-

different level as basic for the three cases. Objects in this domain were characterized 

in terms of three attributes, corresponding to the shape of an object's outer 

perimeter, the shape of a subobject residing inside the outer object, and the shape 

of the bottom of the outer object. The attribute value encoding for each tree, along 

with the basic level is presented in Table 22. 

The indexing/recognition scheme unambiguously predicts recognition with 

respect to the basic level in the majority of cases, but in one case there is a 

tie. Consider the indexing scheme imposed onto the leftmost portion of tree 2 

in encoded form shown in Figure 68. The collocation of 'Inside= O' is maximized 

at the node pointed at by the appropriate arc. Note that level one nodes are not 

indexed by any values since no value maximizes collocation at these nodes. The 

figure only shows indices that emanate from the root. As pointed out in previous 

examples,·· indices also emanate from lower level nodes, thus allowing an to be 

recursively classified with respect to lower level nodes. 

Subjects behaviorally identified level two of this tree (where the root is at 

level 0) as basic. When presented with the object, (Shape== O, Inside== O, Bottom 

= O), two ·nodes (one is not shown) at level two are indexed by Shape = 0 with 
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Tree 1 
Category (Node) Attribute 

(Basic) 
Superordinate Middle Instance Shape Inside Bottom 

High 1 Mid 1 1 0 0 0 
2 0 0 1 

Mid 2 3 0 1 2 
4 0 1 3 

High 2 Mid 3 5 1 2 0 
6 1 2 1 

Mid 4 7 1 3 2 
8 1 3 3 

Tree 2 
Category (Node) Attribute 

(Basic) 
Superordinate Middle Instance Shape Inside Bottom 

High 1 Mid 1 1 0 0 0 
2 0 0 1 

Mid 2 3 1 3 2 
4 1 3 3 

High 2 Mid 3 5 1 2 0 
6 1 2 1 

Mid 4 7 0 1 2 
8 0 1 3 

Tree 3 
Category (Node) Attribute 

Superordinate Middle 
(Basic) 
Instance Shape Inside Bottom 

High 1 Mid 1 1 0 0 0 
2 1 3 2 

Mid 2 3 0 1 3 
4 1 2 1 

High 2 Mid 3 5 1 2 0 
6 0 1 2 

Mid 4 7 1 3 3 
8 0 0 1 

Table 22 

Attribute value encodings of trees used by Hoffman and Ziessler 
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Figure 68 

Indexing imposed on tree 2 of Hoffman and Ziessler Experiments 

predictiveness 0.5 each, while Inside = 0 indexes one of these with a predictiveness 

of 1.0. Two nodes at level three are indexed by Bottom= 0 with a predictive score 

of 0.5 each. In contrast, the leftmost level two node has a total predictiveness 

score of 1.5 which is greater than any other indexed node. By a similar process, 

all objects are recognized with respect to the basic level when classified using tree 

2. Moreov~r, all objects are classified with respect to the bottommost level of tree 

3, which is basic in this case. 

While objects are classified unambiguously with respect to the appropriate 

basic level in the case of trees 2 and 3, some ambiguity arises in the case of tree 1. 

In this case, nodes of the top and middle levels are predicted equally. This occurs 
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because nodes at each level maximize collocation for a single attribute value, and 

this value is perfectly predictive of the node. For example, when presented with 

the object (Shape = O, Inside = O, Bottom = 0), the appropriate level 1 (basic 

level) node has a predictive score of 1.0, since Shape = 0 predicts this node with 

probability 1.0. Likewise, the level 2 node indexed by Inside = 0 has a predictive 

score of 1.0. Since both nodes are predicted by the same amount, the selection of 

which to retain for the second phase of processing is arbitrary. 

There are several possible explanations for the preference by human subjects 

for the top level of tree 1. The first, which cannot be addressed by the current 

scheme, is that outer shape may be more salient to subjects than inside shape, 

where salience is a measure of an attribute's 'noticability', and not tied to the 

probability of observation used in chapter 4. A second explanation concerns the 

use of the base rate probability of attribute values. In the current scheme a sum 

of probabilities of the form P( ck I Ai = Vii) is used to compute predictiveness. 

An alternative model could include base rate probability in the computation of 

predictiveness, i.e., a sum of P(Ai = Vi3)P(CklAi =Vii)· In the case of tree 1, the 

top level would be unambiguously selected to classify an object with Shape= 0 and 

Inside= O, since P(Shape = 0) = 0.5 > P(Inside = 0) = 0.25. However, using this 

scheme would simultaneously result in a tie between levels 1 and 2 of tree 2. Thus, 

each scheme results in a tie with respect to one of the Hoffman and Ziessler trees. 
·-

The selection of the current computation of total predictiveness was made because 

it corresponds exactly with the psychological measure of total cue validity discussed 

in Chapter 3. Second, the product P(Ai = Vij)P(CklAi ==Vii)= P(Ai = Vij !\Ck) 

has less intuitive and mathematical appeal as a measure of predictiveness than 
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7.3.3 Summary 

The indexing scheme and recognition procedure classify objects with respect 

to the basic level as identified by human subjects in two experimental studies. 

Of course, there are many psychological studies of basic level effects that have 

not been examined in this section. Of these, many study basic level effects in 

natural domains (e.g., animals). In these cases, a rigorous comparison between the 

model's and human performance is difficult, since there is no way of controlling 

the features that human subjects use to encode observations. Furthermore, this 

section only presents evidence for the consistency of the model with results from 

target recognition tasks. There has been no attempt to account for many other 

studies of basic level effects [MER.V81, Rosc78]. Nonetheless, apparently this is the 

first computational model intended to account for any basic level effect, although 

it borrows heavily from work by Gluck and Corter [Gtuc85], as well as Jones 

[JONE83]. 

7 .4 Typicality Effects 

The indexing scheme of this chapter accounts for basic level effects in two 

experimental studies and appears to be consistent with human prefe,eences along 

Rosch's vertical dimension of classification. However, humans also exhibit prefer

ences along a horizontal dimension. These preferences are evidenced in typicality 

studies. This section demonstrates that indexing accounts for typicality effects in 

three domains, two of which are artificial domains used in experiments by Rosch 

and Mervi~ [Ros75B], as well as the congressional domain of chapter 5. 

7.4.1 Explanation of the Rosch and Mervis Data 

Several studies by Rosch and Mervis [Ros75B] were used to elicit typicality 

effects from human subjects. These studies tested the hypotheses that an instance's 

typicality was dependent on the instance's 'family resemblance' to other class 



Category Letter 
String 

JXPHM 
QBLFS 

A XPHMQ 
MQBLF 
PHMQB 
HMQBL 

CTRVG 
TRVGZ 

B RVGZK 
VGZKD 
GZKDW 
ZKDWN 

Within-
Category 
Overlap 

15 (low) 
15 
19 (medium) 
19 
21 (high) 
21 

Table 23 

Between-
Category 
Overlap 

0 
0 
0 
0 
0 
0 

Categories used to test the effect of intra-class similarity on typicality 

223 

members. In particular, they tested how behavioral indicators of typicality (e.g., 

response time) varied with an object's similarity to members of the same class and 

a contrasting class. 

7.4.1.1 The Effect of Intra-category Similarity 

Rosch and Mervis used nonsense strings to study typicality effects [Ros 75B]. 

'Objects' of this type allowed them to easily manipulate within- and between

category similarity. The effect of varying intra- (within- ) category similarity 

on typicality was studied using the categories of Table 23.49 Category A was 
·-

constructed so that each member shared properties with other members of category 

49 Rosch and Mervis actually used ten different sets of data, each composed of 
a different combination of letters and numbers. However, the following analysis 
assumes that because each set was 'identically structured', the conclusions reached 
for analysis of one data set (the only one published) are tentatively extendable to 
all data sets. This seems to be reasonable assumption because while Rosch and 
Mervis presumably used different symbol combinations to rule out the possibility 
of certain salience effects, the computer model is oblivious to such preferences. 
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A to varying extents, but did not overlap at all with any member of category B. For 

example, there are 19 cases of the letters of 'XPHMQ' in category A (i.e., 2 'X's + 

3 'P's + 4 'H's + 5 'M's + 5 'Q's) and no cases of a letter from this string in any 

member of category B. Thus, between-category similarity was held constant, while 

within-category similarity was varied. For purposes of analysis, Rosch and Mervis 

grouped category A members into three subsets: the two strings with low (i.e., 15), 

medium (i.e., 19), and high (i.e., 21) overlap with other category A members. 

Subjects were taught to distinguish categories A and B. After learning, sub

jects participated in a target recognition task; they verified category membership 

for each learned string (e.g., Is 'JXPHM' a member of Category A?). In addition 

to target recognition times, averaged results of s.ubject 's subjective judgements of 

instance typicality (using a 6 point scale) and the average number of errors in 

classification were collected. This study supported the hypothesis that category 

A members sharing more symbols with members of the same category tend to be 

recognized more quickly, judged more typical, and are less frequently misidentified. 

An explanation of these effects can be constructed using the indexing scheme 

based on category utility. However, this explanation presumes that indexing is 

imposed on an existing classification tree. For purposes of testing indexing's 

consistency with human classification, in this and future experiments, two trees 

are tested. One tree forced objects of the same externally defined categories (i.e., 

A and B) to be classified under the same node of the tree. A second tree is built 

by COBW~B and groups objects based on attribute-value similarity, irrespective 

of their externally defined classes. In Rosch and Mervis' experiments categories 

A and B were taught by a process of learning from examples, perhaps biasing 

subjects to segregate members of A and B. However, it is possible, if not pr~,bable, 

that similarities along other attribute values impact object grouping. Rather 

than testing the indexing scheme with respect to a single tree, the two trees 
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Partially indexed tree over strings of Table 23. 
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represent extremes of possible encodings. An assumption of upcoming analysis 

is that if classification using these trees is consistent with human classification, 

tree encodings of intermediate forms will be as well. 50 

Consider the tree of Figure 69, which covers the strings of Table 23. This 

tree was formed by manually segregating members of categories A and B. The tree 

is 'flat', only decomposing the object set to one level deep. Indexing is shown for 

a subset o(fhe observed letters; these are sufficient for demonstrating recognition 

for a string of low ('QBLFS') and high ('PHMQB') within-category overlap. In 

placing indices, each string was encoded in terms of attribute - value pairs; each 

50 One tree of intermediate form might result from running COBWEB on data in 
which class designation was included in object descriptions, but is simply treated 
as another attribute. However, trees so generated are not investigated here. 
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letter (e.g., 'Q') was considered an attribute whose value was 'present' (e.g., 'Q 

= present'). Because no value is shared between category A and B members, 

each value is perfectly predictive of the node covering a single class. For example, 

P(Ni IP) = 1.0 because Ni contains all and only members of category A. For this 

reason also, once an object is classified with respect to Ni, it can be asserted as a 

member of category A. 

To demonstrate classification using the tree of Figure 69 consider 'PHMQB'. 

All indices for letters of this string are individually predictive of Ni with probability 

1.0 (i.e., P(Ni IP=present) = 1.0). Considering all indices, Ni is indicated by a 

total predictiveness score of 5.0; Ni is the only node indicated. Since only category 

A members are stored at Ni (i.e., P(Category~AINi) = 1.0), 'PHMQB' can be 

unambiguously asserted to be a member of category A. In fact, because of the 

flatness of the tree of Figure 69 and the lack of overlap between letters found in 

category A and B members, all members of category A indicate Ni with a total 

predictiveness of 5.0. This can be verified for 'QBLFS', whose values are also shown 

as indices in Figure 69. If recognition time is assumed to be only a function of total 

predictiveness, the current tree offers no explanation of response time differences 

between instances with varying intra-class similarity. 

A second tree over the data of Table 23 is shown in Figure 70. This tree was 

constructed by COBWEB. Because of the lack of overlap between category A and 

B members, this tree also partitions category A and B members under two nodes. 

Category A instances are all classified under Ni. However, unlike the manually 
.: . 

segregated tree, COBWEB's tree decomposes the data set all the way to individual 

objects at tree leaves. Two of Ni's descendents, N2 and N4, are shown. Indices 

are shown for the letters of strings 'QBLFS' and 'PHMQB'. However, because the 

tree is deeper than one level, indices are spread across several levels. As examples, 

the letter 'Q' is common to most category A ~embers and its collocation score 



Figure 70 

S(l.00) 

Q{l.O),B(l.O), 
L{l.O),F{l.O), 

S{l.O) 

Partially indexed (COBWEB) tree over strings of Table 23 . 
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is maximized at Ni, while 'S' is unique to 'QBLFS' and its collocation score is 

maximized at the leaf N4. 

For 'PHMQB ', indexing indicates Ni with a total predictiveness of 5.0. This 

is the same score obtained with the first tree. However, classification of 'QBLFS' 
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Class A Intra-category Human Total Average 
instance similarity time predict model 

(ave.) score time 
to Ni (ave.) 

JXPHM low 692 ms 2.5 0.40 units 
QBLFS 
XPHMQ medium 617 3.5 0.29 
MQBLF 
PHMQB high 560 4.5 0.22 
HMQBL 

Table 24 

Human and computer model response times (1) 

yields a different result. Because collocation for some letters are maximized at 

nodes subordinate to Ni, not all indices corresponding to the letters of 'QBLFS' are 

directed at Ni. For example, indices for 'L' and 'F' indicate N2 with probabilities 

0.67 and 1.0, respectively. An index for 'S' indicates N4 with probability 1.0. 

Indices for 'QBLFS' are spread over nodes at three levels, thus diffusing the 

total predictiveness with respect to each node. The total predictiveness scores 

for 'QBLFS' and each indexed node are: 

Total predictiveness of Ni = P(N1 IQ)+ P(N1 IB) = 2.0 

Total predictiveness of N2 = P(N2IL) + P(N2IF) = 1.67 

Total predictiveness of N4 = P(N4IS) = 1.0 

Node Ni is indicated with the greatest total predictiveness score, 2.0. Additionally, 

there are no other nodes indexed with overlapping letters and so Ni is chosen to 

classify 'QBLFS'. 
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Figure 71 

Human and computer simulated response times 

Indexing the tree produced by COBWEB explains the variation in response 

time resulting from differences in intra-class similarity: collocation for attribute 

values that are shared by many class members will tend to be maximized at the 

same node and instances that possess many of these frequently occurring values 

will more strongly suggest a single central node. Values that are not universally 

shared by class members may be directed to subordinate nodes and diffuse the 

predictiveness of an instance over several tree levels. This explanation assumes 

that the more an instance predicts a node, the less time required to reach the 

node. That is, response time is inversely proportional to total predictiveness. The 

results of Table 24 are consistent with this conclusion. 

More specifically, the model can be used to predict response time by assuming 

that total predictiveness is a measure of the rate at which activation proceeds from 

one node to another. A further assumption is that the distance between any 
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two nodes is equal; for convenience, this distance will be 1.0. A straight forward 

measure of the time it takes to reach a subordinate node from the root is given by 

. distance 
time = --- - -------

total predictiveness 

1.0 

rate 

This equation allows a comparison between human response time and the response 

time predicted using category utility based indexing. For example, the time to reach 

Ni when observing 'QBLFS' is 2~0 = 0.5 units, while the time for 'PHMQB' is 5~0 
= 0.2. Reaching Ni permits an assertion that the instance is a member of category 

A. Table 24 also shows the average predicted response times for instances with low, 

medium, and high intra-class similarity. Figure 71 graphically shows that predicted 

response times order the instances of category A in the same manner as human 

subjects. The use of a simulated response time is for conceptual convenience; 

there is no strong commitment to this particular measure of time. However, this 

measurement of response time represents one possible instantiation of a firmer 

commitment: response time is inversely proportional to total predictiveness.· 

7.4.1.2 The Effect of Inter-category Similarity 

In a second experiment, Rosch and Mervis [Ros75B] tested the impact of 

varying inter-class similarity on typicality. Table 25 shows the strings used in this 

study. Each member of category A shared an equal number of symbols with other 

members of category A, but differed in the number of letters shared with category 

B. For example, the symbols of 'HPNSJ' occurred a total of 12 times over category 
.;! -

A instances (i.e., 3 'H's + 3 'P's + 3 'N's + 1 'S' + 2 'J's) and two symbols appear 

in category B (i.e., 'S' and 'J'). Thus, within-category similarity was held constant, 

while between-category similarity was varied. In a manner similar to the previous 

experiment, category A members were grouped into three subsets: the two strings 

with low, medium, and high overlap with category B members. 



Category Letter 
String 

HPNWD 
HPC6B 

A HPNSJ 
4KC6D 
GKNTJ 
4KCTG 

8SJKT 
8SJ3G 

B 9UJCG 
4UZC9 
4UZRT 
MSZR5 

Within-
Category 
Overlap 

12 
12 
12 
12 
12 
12 

Table 25 

Between-
Category 

, Overlap 

0 (low) 
1 
2 (medium) 
3 
4 (high) 
5 

Categories used to test the effect of inter-class similarity on typicality 
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Subjects were taught to distinguish categories A and B. After learning, sub

jects verified category membership for each learned string (e.g., Is 'HPNWD' a 

member of Category A?). Table 25 shows the results of this experiment. Response 

times have been averaged for instance pairs corresponding to those with low, in

termediate, and high inter-class overlap. In addition to target recognition times, 

Rosch and Mervis recorded subjective judgements of instance typicality and the 

average number of classification errors. Rosch and Mervis verified that category A 

members sharing fewer symbols with members of the contrasting category tended 

to be recognized more quickly, judged more typical, and led to fewer identification 

errors. 

Indexing based on category utility accounts for the typicality findings of 

this experiment. Consider indexing applied to the tree of Figure 72. This tree 

corresponds to the case where category A and B members are manually partitioned 

under the same nodes, N1 and N2. Collocation for 6 symbols (i.e., 'S', 'J', 'T', 'G', 
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All category A members All category B members 

Figure 72 

Partially indexed (manual) tree over strings of Table 25. 

Class A Inter-category Human Total Average 
instance similarity time predict model 

(ave.) score time 
to Ni (ave.) 

4KCTG high 1125ms 1.6 0.63 units 
GKNTJ 
4KC6D medium 986 2.9 0.35 
HPNSJ 
HPC6B low 909 4.5 0.22 
HPNWD 

Table 26 

Human and computer model response times (2) 
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'C', '4') are maximized at the root; no indices for these symbols emanate from the 

root. The presence of seven norms at the root signifies that many symbols are 

not predictive of either category A or B, rather they are distributed about evenly 
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Figure 73 

Partially indexed (COBWEB) tree over strings of Table 25. 

in each category. Using this tree, category A members that significantly overlap 

with category B will tend to have values that are norms at the root; they do not 

contribute to total predictiveness. For example, '4KCTG' has four values that are 

root norms (i.e., '4', 'C', 'T', 'G'). Only 'K' is predictive of Ni. This string's total 

predictiveness equals the predictiveness of 'K', 0.75. On the other hand, 'HPNWD' 

does not share any symbols with catego~y B and has a total predictiveness score of 

5.0. Simul~ted response times can be calculated as discussed earlier. Human and 

computer model response times for strings with low, medium, and high inter-class 

overlap are shown in Table 26. In the case of the tree of Figure 72, predicted 

response times rank strings in the same manner as human subjects. 
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In addition to the previous tree, a tree constructed by COBWEB also ac

counts for typicality differences that result from changes in inter-category similarity. 

Figure 73 shows part of a tree that was built by COBWEB over the strings of Table 

25. The COBWEB tree does not necessarily place objects of the same category 

(i.e., A or B) under the same node. Rather, it groups objects that are most similar 

according to category utility. For example, under Ni are two strings from category 

A and three from category B. Not coincidentally, the two strings from category 

A (i.e., '4KCTG' and '4KC6D') share a majority of symbols (i.e., five and three, 

respectively) with category B members. The third category A member that shares 

a majority of symbols with category B is 'GKNTJ'; this string is stored under N9 

along with the remaining three members of category B. On the other hand, the 

three strings of category A with least category B' overlap reside together and alone 

at N14. The segregation of these three instances will make them easier to recognize 

as members of category A. 

The tree of Figure 73 has been partially indexed so that classification of 

'4KCTG' and 'HPNWD' can be demonstrated. Classifying 'HPNWD' involves 

activating. all indices that match a symbol of this string. N14 is indexed by three 

of these symbols, 'H', 'P', and 'N'. 'H' and 'P' are unique to Ni4, predicting this 

node with probability, 1.0. 'N' predicts N14 with probability 0.67. The total 

predictiveness of 'HPNWD' is 1.0 + 1.0 + 0.67 = 2.67. The exceeds the total 

predictive:r;ess of the only other indexed node, the leaf containing 'HPNWD' which 

is not shown in Figure 73, but which is indexed by 'W' and 'D'. 'W' is unique 

to this string and therefore indexes it with probability 1.0, while 'D' indexes it 

with probability 0.5. The time required to reach N14 is 2 .~ 7 = 0.37. Since Ni4 

only includes instances of category A, 'HPNWD' can be verified as a category A 

member having reached Ni4. 
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Classification of '4KCTG' is somewhat more complicated than the previous 

example. Two symbols of this string, 'T' and 'G', are norms at the root and do not 

aid classification. '4' and 'C' predict Ni with a combined score of 1.80. 'K' predicts 

N6 with a score of 0.5. In this case, Ni is initially selected to classify '4KCTG', 

where this node is reached in 1.~0 = 0.55 time units. However, Ni includes a mix 

of category A and B members; a correct prediction of category membership is not 

assured having only reached Ni. There are several choices of what to do at this 

point. One is to continue classification from Ni until a node is reached where a 

category can be guessed with assuredness. A second alternative to simply generate 

a prediction of category membership and hope it is correct. Depending on the 

distribution of category A and B members this may lead to a significant number 

of erroneous predictions. As chapter 5 argued; taking advantage of norms may 

improve correctness, but classification must proceed to nodes with norms. As it 

turns out, no such category norms exist at Ni, and so continuing classification 

becomes the choice of preference. 

At N1, '4' and 'C' are normative and do not aid continued classification. 

'K' predicts Ns with probability 1.0, while 'T' and 'G' each indicate the leaf 

corresponding to '4KCTG' with probability 0.50 (not shown). Thus, Ns and the 

leaf each have total predictiveness scores of 1.0. Each node is reached from Ni in 

1.0 time unit. At either node, '4KCTG' can be asserted as a member of category 

A. Both nodes are reached in the same time, but for convenience the following 

computations assume that N6 is where '4KCTG' is classified as a member of 

category A> 

The total time required to recognize '4KCTG' as a member of category A is 

the the sum of the times required to reach Ni and the time required to then reach 

N6 • The total predictiveness for the first leg of this trip (i.e., Root to Ni) is 1.8, 

while the predictiveness of the second leg (i.e., Ni to N6) is 1.0. The time required 
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Class A Inter-category Total Total Model 
instance similarity predict distance time to 

score(s) to prediction 
prediction (ave.) 

4KCTG high 1.8,1.0 2.0 1.55 1.52 
GKNTJ 0.67 1.0 1.49 
4KC6D medium 1.8,2.0 2.0 1.05 0.71 
HPNSJ 2.67 1.0 0.37 
HPC6B low 2.0 1.0 0.5 0.44 
HPNWD 2.67 1.0 0.37 

Table 27 

Human and computer model response times (3) 

Human Response Time ( m~) 
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Figure 74 

Human and computer simulated response times 

for the first leg is / 8 == 0.55 and the time for the second leg is f = 1.0. Thus, the 

total time required to reach N6 and make a prediction of category membership is 

1.55. 
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Table 27 shows the time required for each category A member to be recognized 

as such. In the case of two instances this requires traveling two nodes deep in 

the tree of Figure 73. Each of these instances are classified with respect to N6 

where they can be unambiguously identified as members of category A. In these 

cases, Table 27 shows the total predictiveness scores for each leg of the trip. The 

remaining nodes are first classified with respect to N14 where they can be identified 

as category A members. Figure 74 graphically shows that indexing the COBWEB 

classification tree, as well as the tree resulting from manually partitioning category 

A and B members, results in simulated classification times that are consistent with 

human performance. 

7.4.1.3 Summary 

Experimental studies indicate that human subjects verify category member

ship more quickly for some instances than for others. Rosch and Mervis [Ros75B] 

demonstrate that response time in a target recognition task depends on the degree 

that an instance is similar to members of the target category and dissimilar to 

members of a contrasting category. 

This section demonstrates that indexing based on category utility yields 

simulated classification times that are consistent with human differences. Instances 

that have few values in common with other category members tend to have values 

that are unique within the category. Indices corresponding to values of such an 

object will be spread over a number of tree levels, thus diffusing the collective force 

with which any one node is indicated. This can slow the classification of the object 

with respeet- to all nodes. On the other hand, the attribute values of instances 

having much in common with contrasting category members will tend to be less 

predictive of target concept members; these values may even be normative, in which 

case they do not aid classification at all. It is also possible that target category 

objects may be grouped at tree nodes with members of a contrasting category. 
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Having reached such a node during classification, it may be necessary to proceed 

further down the tree, thus increasing response time, or be satisfied with making 

a guess at the node, thus increasing the probability of an erroneous prediction. 

While a demonstration of the consistency of indexing with typicality effects is 

important, this discussion suggests a model-independent way of identifying typical 

and atypical instances. Indices are directed at nodes that maximize the value's 

collocation. Objects that share many values with other members of the category 

and have few values in common with members of contrasting categories will tend 

to be grouped together at classific~tion tree nodes. Objects that most strongly 

indicate these nodes will have more values that index the node - more values for 

which collocation is maximized at the node. The next section demonstrates that a 

simple function of collocation is an accurate predictor of object typicality. It is an 

objective measure that is not tied to any specific model of recognition. 51 

7.4.2 Collocation as a Measure of Typicality 

Rosch and Mervis [Ros75B) argue that the typicality of an object, with respect 

to a category, increases as the number of category members that share the object's 

properties increases. Inversely, the more properties the object shares with members 

of contrasting categories, the less it is typical of the target category. Rosch and 

Mervis hypothesize that typicality is predicted by a family resemblance measure 

which is a function of an instance, I, a category, 0, and a set of contrasting 

categories, •O. Recalling function 3-1, . 

family resemblance( I, O, •O) =/(I: II n Oil, I: II n Oji). 
C1EC C,E-.C 

51 The distinction between a model-independent predictor of typical instances and a 
computational model of typicality is important and harkens back to the distinction 
between specification and design raised in chapter 1. Collocation is a specification 
of typicality, whereas indexing and recognition are computational processes that 
account for typicality. 



A 

B 

Set 1 

Letter Within- Sum of 
String Category collocation 

Overlap scores 

JXPHM 15 2.50 
QBLFS 15 2.50 
XPHMQ 19 3.17 
MQBLF 19 3.17 
PHMQB 21 3.50 
HMQBL 21 3.50 

CTRVG 
TRVGZ 
RVGZK 
VGZKD 
GZKDW 
ZKDWN 

Set2 

Letter Between- Sum of 
String Category collocation 

Overlap scores 

HPNWD 0 2.00 
HPC6B 1 1.80 
HPNSJ 2 1.68 
4KC6D 3 1.51 
GKNTJ 4 1.34 
4KCTG 5 1.18 

8SJKT 
8SJ3G 
9UJCG 
4UZC9 
4UZRT 
MSZR5 

Table 28 

Artificial categories used in typicality studies by Rosch and Mervis 

239 

While their studies indicate the importance of within- and between-category 

overlap, Rosch and Mervis do not propose a function that instantiates function 3-1. 

However, a candidate measure of typicality is the collocation measure proposed by 

Jones [JoNE83). While Jones proposed collocation as a predictor of the basic level, 

there are good reasons to believe that it qualifies as a good measure of typicality. 

Recall that the collocation of an attribute value, Ai = Vii, with respect to 

a category, Ck, is expressed as P(Ai = ViilCk)P(CklAi = Vii)· Note that as an 

attribute value's frequency within ck increases, so does P(Ai = Vii I Ck) increase. 

Similarly, as the frequency of a value in contrasting categories increases, P( ck I Ai = 

Vij) decreases. For an object represented as (A1 = ViiuA2 = Vih, ... ,Am = VmjnJ, 

the sum of object-value collocations with respect to a category, Ck, is 
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Figure 75 

3.5 

Recognition time as a function of collocation (typicality) 
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(7-1) 

For reasons already mentioned, the sum of collocations instantiates the Rosch and 

Mervis notion of family resemblance. To verify the plausibility of function 7-1 as 

a measure of typicality, it is helpful to compare the measure with experimental 

evidence. For this purpose, the studies conducted by Rosch and Mervis [Ros75B] 

are most relevant. 

As described, Rosch and Mervis used two sets of data to test the effect of 
.:! ~ 

varying intra- and inter- category overlap on typicality. These sets are given again 

in Table 28 as sets 1 and 2, respectively. After teaching subjects to distinguish 

categories A and B, Rosch and Mervis used a target recognition task to determine 

which strings subjects regarded as most typical (classified most quickly). The 

results of this task are graphed in Figure 75. The graph shows that as collocation 
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3.5 

Subject's judgements of typicality and collocation 
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increases for a string, the time required to recognize the string as a member 

of category A decreases. Thus, collocation appears to be well correlated with 

recognition time. 

As well as using the target recognition task to determine typicality, Rosch 

and Mervis also had subjects give a subjective judgement of typicality (using a 

6 point scale). Figure 76 shows that subject judgements of typicality increase 

with increasing collocation within the same data sets. The lack of a (rough) 

linear relat~onship between collocation and subject judgements across data sets 

can perhaps be attributed to a conscious scaling or normalization on the part of 

subjects. This is in contrast to the continuum across data sets that can be seen 

in Figure 75, where no such normalization could occur. The target recognition 

and subjective judgement data bolsters claims that collocation reflects important 

determinants of typicality. 
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Category Letter Within- Between- Sum of 
String Category Category collocation 

Overlap Overlap scores 

JXPHM 15 0 2.50 
XPHMQ 19 1 3.03 

A PHMQB 21 2 3.14 
HMQBL 21 3 2.89 
MQBLF 19 4 2.33 
QBLFS 15 5 1.53 

GVRTC 
VRTCS 

B' RTCSF 
TCSFL 
CSFLB 
SFLBQ 

Table 29 

Within- and between- category overlap are simultaneously varied 

One weakness of the previous analysis is that within- and between- category 

overlap are never in conflict in the sets shown. That is, either within- or between

category overlap is held constant, while the other is varied. In fact, Rosch and 

Mervis did conduct an experiment in which both dimensions were simultaneously 

varied. In particular, category B of set 2 was replaced by category B', and subjects 

were trained to distinguish categories A and B' shown in Table 29. No specific 

data regarding recognition times was published for this experiment, in large part 

because many of the differences were not statistically significant. This appears to 

be consistent with the the ranking of category A members using collocation, which 

illustrates that within- and between- category overlap act at cross-purposes. 

Summing collocations for object values instantiates Rosch and Mervis' family 

resemblance function by rewarding within-category overlap and between-category 

non-overlap. Further, the collocation measure appears to rank objects in a manner 

similar to that obtained from human subjects with respect to various typicality 
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tasks. As a result, the collocation summation measure ( 7-1) will be used throughout 

this chapter as a measure of typicality. 

7.4.3 Typicality Effects in the Congressional Domain 

With collocation as a measure of typicality it is possible to make predictions 

about human behavior in domains that were not previously used in psychological 

studies. In the remainder of the chapter, the sum of collocation function is used as a 

measure of typicality in several computer experiments. These experiments suggest 

possible human behaviors, some of which have been demonstrated in humans in 

other domains. However, with respect to the particular domains used for upcoming 

computer experiments, the results of computer simulation are speculative. 

Consider the congressional domain discussed in chapter 5. One hundred 

senators were represented in terms of 14 key votes. COBWEB was run on this 

data without knowledge of the political parties (i.e., Democrat or Republican) of 

individual senators. COBWEB clustered senators h1to groups that corresponded 

roughly to 'liberals' and 'conservatives'. 

7.4.3.1 Target Recognition 

Indexing was imposed on the congressional classification tree produced by 

COBWEB. All members of the 'liberal' and 'conservative' clusters were reclassified 

using the indexed tree. The simulated time required to recognize each instance as 

a member ::of its respective cluster was recorded. Notice that this task required 

recognition with respect to a node of the tree (e.g., 'liberal') and not with respect 

to an externally defined class (e.g., democrat) as was the case using the artificial 

domains of Rosch and Mervis [Ros75B]. However, the constraints of the task are 

identical. In particular, the simulated time to recognize a particular senator as a . 
'liberal' is given by the quotient of the 'liberal' node's distance from the root (i.e., 
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Response times for 'conservative' senators as function of typicality 
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1) and the total predictiveness over all indices that match a value of the senator 

being classified. 

Figure 77 shows the simulated time required to recognize senators classified 

under the 'conservative' node as a function of their collocation (i.e., typicality) 

with respect to the class of conservative senators. Similarly, Figure 78 shows the 

simulated time required to recognize members of the 'liberal' cluster. Each point on 

these scatter graphs corresponds to a single senator. Each graph indicates a strong 

tendency for more typical instances of each class to be recognized more quickly. 

Because each attribute (i.e., vote) has only two possible values, 'yes' or 'no', few 

values are relatively unique to subsets of the 'liberal' and 'conservative' classes. 

For this reason, m :t of the response time variances are not due to a diffusion of 

predictiveness across tree levels, but result from values being shared with members 
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Response times for 'liberal' senators as function of typicality 
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of the contrast category. That is, atypical 'liberals' vote like 'conservatives' along 

some dimensions. 

As earlier computer experiments with the Rosch and Mervis data indicated, 

demonstrations of typicality effects are not limited to categories that correspond to 

classification tree nodes. For example, individual Democrats and Republicans also 

vary in terms of their typicality with respect to these externally defined categories. 

In the classification tree produced by COBWEB, Democrats that share many values 

with other Democrats and few values with Republicans will tend to be placed under 
·' 

the same nodes. A typical Democrat will more strongly predict a node with a 

concentration of Democrats (i.e., the 'liberal' node) than an atypical Democrat. 

Atypical Democrats may even predict nodes with a majority of Republicans (i.e., 

the 'conservative' node). Similar principles guide the grouping and recognition of 

typical and atypical Republicans. 
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Recognition of atypical Democrats may require going to deeper levels of the 

tree if a correct prediction is to be assured; this results in slower recognition times. 

An alternate strategy is to guess political party when it becomes normative. This 

will lead to more errors in predicting political party for atypical Democrats. For 

example, an atypical Democrat may be regarded as a Republican if it is initially 

classified at the 'conservative' node. Most likely, recognition of atypical objects 

with respect to externally defined categories involves some tradeoff between deep 

classification, resulting in slower times, and using normative values to cut search 

.off, resulting in erroneous predictions for atypical instances. 

7.4.3.2 Exhaustive Retrieval 

Several overviews of typicality data [SMIT81, Rosc78, MERV81] contend that 

when asked to list all members of a category, human subjects will list instances 

roughly in order of typicality. The common wisdom seems to be based on two 

studies. Rosch [Ros75A) provides some evidence that superordinate concept (e.g., 

furniture) members are listed in order of typicality. Rosch, Simpson, and Miller 

(Ros76B] taught subjects classes of nonsense strings and found that after learning, 

instances tended to be listed in order of typicality. Computer experiments using the 

indexing sc~eme strongly disagree with results from human studies. The purpose 

of this section is to explore the impacts of this apparent contradiction. 

A number of strategies for exhaustive retrieval using this chapter's model were 

tried in an effort to match psychological results. In general, each retrieval strat-

egy generalized the recognition procedure used in previous experiments. Previous 
~'! -

computer experiments assume that object recognition proceeds by following indices 

corresponding to object values and summing index weights, P(Nk IAi = Vij ). A 

procedure to deal with partial object descriptions (not used in previous experi

ments) followed indices for all values of missing attributes as well. However, for 

missing attributes, the probability of a particular value's truth, P(Ai == Vii), was 
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Time to retrieve 'conservatives' in the congressional domain 
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used to weight the predictiveness of the value, P(NklAi = ViJ). Rather than 

terminating at a single leaf, all leaves that are consistent with the partial object 

description are returned. If all attributes are missing, this is recognition of the null 

object. All leaves under a specified node are consistent with the null description. 

'Recognition' of the null object is one model of exhaustive retrieval. The time of 

retrieval is based on summing P( Ai = Vii )P( N k I Ai = Vii) for all indices emanating 

from the specified node. 

Figure 79 shows that when retrieving members of the 'conservative' node of 
.: . 

the congressional tree, if there is any tendency, it is that atypical 'conservatives' 

are retrieved first. No retrieval strategy that was reasonably close to the above 

led to agreement with apparent human behavior. In the best cases there was 

no correlation between typicality and retrieval order. Intuitively, these resuLts 

stem from an important property of hierarchical representation in general and this 
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chapter's particularly; normative values are not used to index lower-level nodes. 

The most important attribute values in determining object typicality are factored 

out of the retrieval process. A consequence of using a hierarchical representation is 

that more typical objects will not necessarily be retrieved faster, unless additional 

assumptions are made. 

Disagreement with psychological studies indicates that either the model's ex

planation of exhaustive retrieval is incorrect, or that psychological findings must be 

qualified. Rosch, Simpson, and Miller [Ros76B] found that when subjects learned 

(by examples) classes of nonsense strings, instances tended to be retrieved in order 

of typicality. However, subjects often retrieved nonsense strings that were never 

taught. This observation suggests the possibility that instances were not explicitly 

stored, but only a summary representation of each class was remembered. In 

this case, instances have to be generated, rather than retrieved from the sum

mary description. Generation of previously unseen instances could be expected. 

Additionally, if the summary representation is similar to the sort of representation 

at nodes in a COBWEB tree, generation would be influenced by attribute value 

distributions. It is probable that objects would be generated beginning with the 

most typical objects. Findings of this experimental study may not generalize to 

cases in which there is reason to believe that instances (or subclasses) are explicitly 

stored. 

A second study [Ros75A) indicated that members of two superordinate classes 

are listed roughly from most to least typical. However, this finding may not 

generalize to all classes. In general, superordinate classes share few properties 

across subclasses and many times are defined in terms of function, rather than 

perceptual properties. While computer experiments certainly cannot negate these 

findings, they suggest that they be more thoroughly investigated. In cases where 

class instances (or subclasses) are explicitly stored, the hierarchical representation 
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of this chapter offers intuitively good reasons to believe that atypical objects may 

be retrieved first. Informal experiments with two UCI computer science graduate 

students seem to bear this out. Each was asked to list all the birds they knew; 

ostriches, hawks, eagles, and penguins were among the initially retrieved instances. 

This is only intended as anecdotal support for the predictions of the computer 

model. It should be recognized that more extensive human experimentation is 

required to identify weaknesses with the computer model and/or the common 

wisdom stemming from psychological experiments. 

7 .5 Basic Level and Typicality Effects 

The previous sections have looked at how ·indexing explains basic level and 

simple typicality effects. This section looks at interactions between these classes of 

phenomena. In particular, sufficiently atypical objects may be initially recognized 

with respect to nodes that are subordinate to the basic level. Also, typicality effects 

may not emerge during target recognition when the target concept is subordinate. 

Apparently, this latter phenomenon cannot be verified (or clisconfirmed) by current 

data on human behavior. However, it is a prediction of the model. 

7.5.1 The Impact of Typicality on Basic Level Effects 

Psychological experiments indicate the tendency of human subjects to initially 

classify observations with respect to the basic level of a hierarchical classification 

scheme. D~monstrations in the early part of this chapter indicate that a properly 

indexed classification tree offers one explanation for this behavior. However, ex

periments by Jolicour, Gluck, and Rosslyn (JoLI84] qualify the human preference 

for basic level concepts. In particular:, they found that atypical instances of a basic 

level class were sometimes initially recognized with respect to a subordinate con

cept. For example, while a robin (i.e., typical bird) is usually recognized as a bird, 



250 

a penguin (i.e., atypical bird) is recognized as a penguin. This section illustrates 

how and why the indexed memory model accounts for this phenomenon. 

Experiments with Rosch's nonsense strings indicated that an object's typi

cality can effect recognition time. In the case where an object contains relatively 

unique values with respect to other target class members, recognition may be 

slowed because indices are spread across several levels of a tree; in other words, 

indices may be spread across the tree vertically. Atypicality may also imply that 

competing concepts cause indices to be diffused horizontally. Both factors re

duce the total predictiveness towards· the target node and presumably this slows 

recognition time. The effects of horizontal and vertical dispersion of indices can 

also effect recognition time with respect to the ~asic level. For example, objects 

that are not typical of their basic level class may be more similar to competing 

classes than typical objects. This will cause the basic node to receive less total 

preclictiveness when classifying an atypical object. Atypical objects of a basic class 

may also have relatively unique values compared to other class members. This 

will result in a simultaneous decrease in the total preclictiveness towards the basic 

node and an increase in the total predictiveness of subordinate nodes. If the total 

predictiveness of an atypical object towards the basic level is sufficiently weakened, 

while being sufficiently increased towards a subordinate node, the object may be 

initially recognized with respect to the subordinate node. 

The impact of typicality on basic level effects is demonstrated using the tree 

construct~.,d by COBWEB in the thyroid domain. Each member of node 'Nl 'of 

this tree was classified using the tree after adding indices. The total predictiveness 

towards the 'Nl' (i.e., basic) node was recorded for each thyroid case history. 

In addition, the totai predictiveness of the most predicted subordinate node was 

recorded. Each point on the scatter graph represents the difference between the 

total predictiveness of the basic node and the most predicted subordinate. A 
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negative score on the vertical dimension indicates that an object displayed a greater 

predictiveness towards a subordinate node than to the basic node. In this case, 

three members of 'Nl' have a greater total predictiveness towards a subordinate 

node, and are thus recognized by the lower-level node first. 

While atypical objects may be recognized with respect to subordinate nodes, 

in most cases their total predictiveness towards the basic node is not sufficiently 

weak and total predictiveness towards subordinate nodes is not sufficiently strong 
·' 

to disrupt the basic level preference. In most domains, there are no exceptions 

to the basic level preference, even for the most atypical objects. Figure 81 shows 

that while the difference tends to less for atypical objects of the 'liberal' node, total 

predictiveness is always greater for the 'liberal' node. Members of the 'liberal' class 

are always recognized first as liberals (i.e., the basic node). 
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Apparently there have been few studies of the impact of target concept 

generality (i.e., superordinate, basic, subordinate) on typicality effects. Most 

psychological studies of typicality in natural domains make the (stated or unstated) 

assumption that the target concept resides at the basic level. For example, Ro: -·h 

and Mervis [Ros75B] run target recognition experiments using concepts that are 

verified to reside at the basic level (e.g., car, chair, lamp). 

Target recognition using basic concepts limits the apparent impact of other 
-:! -

concepts on recognition, since these basic concepts lie at the entry points of a 

concept hierarchy. An implication of hierarchical classification is that recognition 

with respect to subordinate concepts can be significantly influenced by higher level 

organization, since an object must first be recognized with respect to the basic 

level and perhaps other concepts before reaching a subordinate target concept. 



Hollings 
Stennis 
Benston 

Nunn 

' ' ' 

Dole 
Laxalt 
Heb.ns 

Rudman 

Figure 82 

' ' ' ' ' ' ' ' e 

The 'conservative' class with subordinate target concepts 

253 

As an example of subordinate target recognition, reconsider part of the con

gressional classification tree shown in Figure 82. Included are the 'conservative' 

node and its two children, N2 and N36· Listed under each subordinate are a 

number of senators classified under that node. These nodes differ considerably 

in structure. N2 contains all ten Democrats classified under the 'conservative' 

node. Additionally, the average collocation of a member of N2 with respect to the 

'conservative' class is 7.75. In contrast, the average collocation of N36 members 

with respect to 'conservatives' is 9.48. Intuitively, N2 tends to have atypical 'con-

servatives', while N36 classifies more typical 'conservatives'. Properties of these 

subordinates impact the object recognition process, particularly influencing typi

cality effects associated with each class. 
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Figure 83 shows the simulated time required to recognize each member of 

N2. Each object was first recognized with respect to the top level node, 'conserva

tives'. Thus, distance in the time calculation was 2 for each object. For example, 

'Hollings' was recognized as a member of N2 in time, 1.40. This is relatively slow, 

despite the fact that 'Hollings' is a relatively typical member of N2. In general, 

Figure 83 does not reveal any response time trends as a function of subordinate 

class typicality. Apparently this results because a typical member of N2 will tend 

to be an a~ypical 'conservative'. Since recognition passes through the 'conservative' 

node, atypicality with respect to 'conservatives' may offset any response time gain 

because of typicality with respect to the subordinate class. 

In contrast to members of N2, Figure 84 shows that N36 instances follow 

the expected trend; response time decreases with an increase in typicality w-i.th 

N36· Unlike N2, N36 instances tend to be typical members of the 'conservative' 
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class. In general, atypicality with respect to the basic node does not counterbalance 

typicality with respect to the subordinate. 

The explanation of typicality offered in this chapter focuses on object recog

nition in the context of a larger conceptual organization. This leads to inter

ference effects between levels of generality, notably basic and subordinate levels. 

Recognition of typical subordinate concept members is not necessarily faster if 

these objects are atypical members of higher level concepts. However, this section 

has not investigated typicality with respect to superordinate concepts. Rosch and 
·' 

Mervis [Ros75B) report a study of human superordinate typicality effects, but they 

looked at subjective iudgements of typicality and not response time. A hypothesis 

suggested by the meu10ry model of this chapter is that interference between basic 

level and superordinate concepts are minimal. Although objects would be first 

recognized at the basic level, a superordinate concept is reached by climbing an 
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IS-A link and not by another evidence combination process. Thus, response time 

differences would be dominated by an object's typicality with respect to its basic 

level concept. 

7.5.3 Discussion 

Two interactions between basic level and typicality effects have been hypothe

sized and modeled. First, the basic level- preference may not emerge for sufficiently 

a.typical objects. Second, an object's basic level typicality may offset typicality 

with respect to subordinates. Considering object recognition in the context of an 

organization of concepts, rather than considering concepts in isolation, makes these 

interactions apparent. 

This chapter assumes that basic level and typicality effects stem from the same 

principles of memory organization and recognition. Object typicality is postulated 

to vary with an object's predictability and predictiveness with respect to a class. In 

particular, the sum of P(Ai = ViilCk)P(CklAi = Vij), or collocation, for all values 

of an object predicts typicality with respect to a class, Ck. Typical objects have 

higher scores by this measure and are more forcefully directed to the appropriate 

nodes. Typical instances can also be viewed as the best representatives of a class. 

Similarly, basic level nodes are those that tend to maximize collocation for the most 

frequently occurring attribute values tend to be most forcefully predicted nodes 

over all objects of the environment. Basic level classes are 'generalized instances' 

that best represent the class of all domain objects. 

7 .6 Caveats 

Indexing based on category utility explains a number of important effects, but 

its scope as a cognitive model must be qualified. The model's account of typicality 

and basic level effects depends on 'direct' observations of an object's attribute 

values, e.g., through visual input. However, there has been much work done using 
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verbal cues. Recognition models that assume verbal input make an assumption 

that concepts are initially retrieved by an unspecified process. For example, the 

question may be asked, "Is a robin a bird?" While this chapter has made no effort to 

model experimental :findings using verbal cues, it is useful to discuss their possible 

impact on this chapter's memory model. 

Several studies of target recognition use verbal cues for both instances (or 

sub-concepts) to be recognized and target concepts. Once retrieved via verbal cue, 

recognition with respect to the target can proceed by comparing attribute values 

of the two concept definitions, as in the general summing recognition procedure of 

chapter 3. This avoids the problem of how concepts interact in a larger memory 

structure, but it may be an accurate model of how two concepts are compared 

once they are extracted by a verbal cue. A second alternative is to climb IS-A 

links from a subclass (e.g., robin) to the target (e.g., bird) [Cott69, SMIT81]. This 

model predicts that subclasses will be more quickly recognized with respect to 

more immediate superordinates. Recent evidence [SMIT81] indicates that while 

this is generally true, there are exceptions. These :findings pose a number of 

questions about the hierarchical representation scheme of this chapter. Because 

object properties are assumed to be directly perceivable, this chapter has modeled 

target recognition as a top-down process. Unanswered, however, has been whether 

the representation accounts for psychological effects (particularly typicality) using 

the bottom-up processing implied by reliance on verbal cues. 

In the animal domain, most types of birds will be recognized more quickly as 

a bird than as an animal. However, studies indicate that the name of an atypical 

bird (e.g., chicken) may be more quickly recognized as an animal than as a bird. If 

climbing IS-A links is the only way of accounting for these effects, then this chap-

ter's current classification tree organization offers no explanation of why certaiJ1 

atypical subclasses are more quickly recognized as more distant superordinates. 
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Currently, there is one path from any node up through its ancestors; immediate 

superordinates must be encountered first. Smith and Medin [SMIT81] suggest al

lowing subclasses to have multiple IS-A links. Thus, links may go from chicken 

to bird and from chicken to animal. A still more general structure would allow 

overlapping concepts; a chicken could be a bird, as well as a farm-animal. Smith 

and Medin argue that IS-A links may be of varying 'lengths' and traversal time is 

proportional to 'length'. Presumably, 'length' is dependent on the extent to which 

the classes share features, but this is largely unspecified and offers few constraints 

for augmenting the cognitive model. 

Explanations for the above data need not be dependent on the existence of IS

A links. In fact, proposals for weighting IS-A lin~s [SMIT81, CoLL75, COLL69) may 

assume that weights reflect the underlying similarity between concepts; IS-A links 

may be viewed as a convenient approximation of an upward evidence combination 

procedure, perhaps similar to the downward-directed one presented in this chapter. 

However, such a procedure will not be specified here. 

In summary, the indexing scheme of this chapter accounts for typicality effects 

with the caveat that target recognition occurs with objects that are explicitly rep

resented by their properties; no explanation is given for the case where subclasses 

are indicated symbolically by words or otherwise. 

7. 7 Chapter Summary 

This chapter describes an indexing scheme for classification schemes that 

accounts for certain basic level and typicality phenomena. Apparently, this is the 

first computational model of basic level effects. The model also predicts certain 

interactions between basic level and typicality effects. Inherent in the model's 

explanation of these phenomena are a number of c
1

laims that vary in generality. In 
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general, the model's commitment to these claims decreases with their generality. 

Specifically, these claims are given in order of generality and commitment. 

• Basic level effects can be best explained in the context of hierarchical concept 
organizations. 

• Less obviously, typicality effects must emerge from object recognition in 
organizations of concepts. Typicality effects cannot be adequately explained 
by a simple comparison of concept definitions outside the context of a larger 
memory. 

• Interactions between basic level and typicality effects can be expected. In 
particular, an object's typicality with respect to its basic level class can impact 
whether it is first recognized at the basic level. Second, typicality effects with 
respect subordinate nodes are dependent on an object's typicality with respect 
to more general classes. 

• Recognition time is inversely related to the degree that an object's values 
predict a class. Predictiveness has been formalized in terms of cue validity. 

• Recognition 'is constrained to following attribute-value indices. Indices are 
directed only to nodes that maximize colloc.ation, a tradeoff of attribute value 
predictiveness and predictability. 

This chapter has ignored the problem of memory update. While the indexing 

model presented herein has been compared with human experimental results, a 

weaker, but important test of its plausibility as a description of human memory is 

its ability to support learning. Chapter 8 examines the problem of memory update 

using the indexing scheme of the chapter. Computer experiments in the next 

chapter suggest that the constraint that indices be directed only at collocation 

maximizing nodes is too restrictive. In the context of learning, this constraint 

leads to a 'brittle' memory structure. A general 'fix' to the problem is sketched 

and instantiated. 
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CHAPTER 8 

COBWEB/2: Incremental Update of Indexed Memory 
' 

8.1 Chapter Overview 

Chapter 7 showed how indexing can be imposed on a COBWEB classification 

tree. In addition to simulating psychological phenomena, intuition and computer 

experimentation indicates that indexing tends to classify objects in the same man

ner as an explicit category utility calculation. This chapter extends the scope of 

this discussion to include the feasibility of using and maintaining indices during 

memory update. 

This chapter describes a derivative of COBWEB, COBWEB/2, that incre

mentally builds indexed classification trees. COBWEB/2's behavior and output 

are characterized along many of the same dimensions as COBWEB, including the 

utility of trees for inference, update cost, the ability to find optimal classification 

trees, and convergence time. The findings of this chapter indicate that COBWEB /2 

is generally an effective learner. Prediction accuracy using indexed classification hi

erarchies constructed by the system approximate the levels achieved by COBWEB. 

An important qualification to these findings is that COBWEB/2 is overly brittle 

in the early stages of tree construction. 

Because effective inference under dynamic memory conditions is a high level 
·' 

characteristic of much of human memory, an investigation of indexed memory's 

abilities in this regard necessarily impacts claims of the model's psychological 

consistency. Many speculative [HALL85] research efforts would take COBWEB/2's 

general abilities at learning and prediction as positive evidence for the legitimacy of 
I 

indexed memory as a cognitive model. However, this chapter carefully avoids such 

260 
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claims. Rather, all confirming evidence for the legitimacy of indexed memory was 

given by the empirical treatment of chapter 7. Instead, the view of this chapter is 

that speculative analyses primarily provide disconfirming evidence, if they provide 

any evidence at all - if a memory structure cannot be used for learning, this casts 

doubt on its feasibility as a tool for human, as well as purely artificial intelligence. 

In particular, the finding that COBWEB /2 is brittle early in the learning process 

is taken as evidence against the strictly enforced indexing scheme of chapter 7. 

However, a simple fix to COBWEB/2 diminishes learning brittleness as a stumbling 

block to claims of the indexing scheme's psychological consistency. 

In summary, the primary goal of this chapter is to qualify claims of the 

psychological consistency of the indexing scheme of chapter 7. The objective of 

this chapter is not to present a polished concept formation system. In general, the 

analysis of COBWEB /2 reflects a view that speculative investigations are primar

ily useful for supplying disconfirming, not confirming, evidence for psychological 

plausibility. 

8.2 The COBWEB/2 Algorithm 

The basic COBWEB/2 algorithm and data structures closely parallel those 

of COBWEB. Chapter 7 described the form of COBWEB/2 classification trees. 

Probabilities of the form P( Ai = l/ij INk) are stored with each Vij at tree nodes, 

N1c. Thes~ probabilities are measures of attribute value predictability and collec

tively represent probabilistic concepts. Classification tree nodes in COBWEB /2 

are identical in form to those produced by COBWEB. Additionally however, prob

abilities of the form P(NklAi = Vii) are stored with values that index nodes. 

These probabilities are measures of value predictiveness. Indices are only directed 

at nodes that maximize the collocation of the indexing value. In addition to value 
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indices, COBWEB/2 assumes IS-A links connect a node to its parent and CHILD 

links connect a node to its children. 

COBWEB/2's heuristic measures for guiding classification tree construction 

have also been described previously. Function 7-3 (i.e., I:i P(Ai = Vii )P(Nk IAi = 
ViJ)P(Ai = Vi3INk)) is used to determine which existing node, Nk, best hosts a new 

object. Recall that this function approximates the classification choices indicated 

by category utility ( 4-4) for existing classes. However, because merging and new 

class creation involve the introduction of new classes that impacts partition size, 

these operators use the complete category utility function ( 4-4). The remainder of 

this section focuses on the operators used by COBWEB/2 to incorporate objects. 

This operator set closely mirrors COBWEB's. 

8.2.1 Placing an Object in an Existing Class 

The procedure for placing an object in an existing class is exactly that given in 

chapter 7. That is, indexing initially activates a number of possibly relevant nodes 

and the total predictiveness of each activated node is computed. The predictiveness 

score of a node, Nk, is given by I:i P(NklAi = l'ijJ, where Vij, is a value of the 

object being classified that also indexes Nk. Of the activated nodes, the node, 

Nmaz, with the greatest predictiveness score is kept for more thorough evaluation. 

In addition, all nodes that intersect in at least one indexing value with Nmax 

are kept for evaluation. In many cases there are no nodes that intersect with an 

indexing value of Nmaz, i.e., Nmaz is the only node kept. 

Nodes that are kept for evaluation need not be immediate children of the 
.: -

root, but may be nodes at some intermediate level of the tree. These nodes are 

guaranteed to be nonancestral. The best-host from among this set is the one that 

maximizes 2:i P(Ai = ViiJP(NklAi = Vij,)P(Ai = Vii,INk)· While chapter 7 

assumed that best-host is almost always Nmax, this second evaluation stage alway:s 

occurs in GOBWEB/2. 



FUNCTION COBWEB/2 (Object, Root ( of classification tree)) 
IF Root is a leaf 
THEN Return expanded (and indexed) leaf to 

accommodate new 0 b ject 
ELSE • Index and evaluate indexed nodes and identify Best-host. 

• COBWEB/2 (Object, Best-host) 
• UPDATE-COUNTS( Object, Best-host) 

UPDATE-INDICES( Object, Best-host) 
• UPDATE-INTERMEDIATE-NODES 

(Object, Parent-of(Best-host ), Root) 
• UPDATE-COUNTS(Object, Root) 

UPDATE-INDICES( Object, Root) 

PROCEDURE UPDATE-INTERMEDIATE-NODES 
(Object, Descendent, Ancestor) 

IF Descendent =f Ancestor 
THEN UPDATE-COUNTS(Object, Descendent) 

UPDATE-INDICES( Object, Descendent) 

Table 30 

COBWEB/2 Pseudocode that assumes classification is only operator 

8.2.1 Updating Intermediate Nodes 
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If the only operator for update is classification with respect to existing classes, 

classification recursively proceeds until a leaf is reached. In general though, classi

fication may j.ump tree levels. For example, upon first entering the tree, Best-host 

need not be the child of the root. Because of this, nodes that reside between Best

host and the root must be updated. This involves updating the counts and indices 

of intermediate nodes. 

Pseudocode for applying the classify operator is given in Table 30. Note 

that imm~diately after identifying Best-host, COBWEB/2 is recursively called 

to classify the object with respect to lower levels. Counts and indices of Best

host are not updated until after an object has been classified with respect to 

lower levels. Updating Best-host's counts simply increments appropriate attribute 

value couJ!ts to reflect the addition of the new object. After updating Best-host's 
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counts and those of lower level nodes (on the recursive call to COBWEB/2), 

UPDATE-INDICES updates the downward pointing indices from Best-host for 

all values of the incorporated object. In general, this may involve computing 

the collocation for each object value for all descendents of Best-host (including 

Best-host itself). If all subnodes need to be investigated, this can be a relatively 

expensive operation, particularly if it needs to be done for every node encountered 

during object incorporation. Statistics presented later suggest that this is not 

necessary when updating the hierarchy an object at a time. 

Once Best-host has been identified, nodes lying between Best-host and Root 

a.re updated from the bottom up using UPDATE-INTERMEDIATE-NODES. This 

procedure updates the counts of each intermediate node to reflect the addition of 

a new object. In addition, the indices that emanate from each intermediate node 

are updated as well. Finally, the counts and indices of Root are updated. In 

COBWEB/2, node count update occurs after lower-level nodes have been updated. 

This is in contrast to COBWEB, which updates counts as classification descend~ 

the hierarchy. The more complicated procedure used by COBWEB/2 is required 

if counts are to be consistently maintained, even when classification jumps levels. 

8.2.2 Creating a New Class 

In COBWEB/2, creation of new classes is controlled by evaluating the impact 

of the new class on a partition. In particular, a new class is created as a child of the 

root if it results in a better partition (by category utility) than adding the object 

to the best ezisting child. This is exactly the same rule that is used in COBWEB, 

but in this case, the best host may not be a child of the root. The best existing 

child of the root is found by climbing IS-A links from the best host, as shown in 

Figure 85. In many cases, the best host identified by indices will also be a child of 

the root, i.e., best host and best child will be the same node. The quality of the 
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Testing the quality of creating a new class in COBWEB/2 

IF NEW-CLASS-CONDITION (Object, Best-host, Root) 
THEN Make Object a child of Root. Indices are 

directed to the new class in the normal 
course of updating Root indices. 

FUNCTION NEW-CLASS-CONDITION (Object, Best-host, Root) 
1) Find the ancestor of Best-host that is a child of Root. 

This ancestor is called Best-child and may be Best-host. 
The other children of Root are called Other-children. 

2) IF CU( {Best-child} U Other-children U {Object}) 
>= CU( {Best-child+ Object} U Other-children) 

AND {Object} maximizes collocation of at least one value 
THEN RETURN TRUE 
ELSE RETURN FALSE 

Table 31 

Consider creating a class and do so if appropriate 
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New 
Class 

partition formed by adding the object to the best existing child is compared with 

the qualify of the partition formed by creating a new class. 

Finally, since indices are being used, it is important that a newly created 

node maximize collocation for at least one value. This will insure that it is indexed 

and can be accessed in the future. The complete rule for creating a new node is 

given in Table 31. 
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Merging the two best hosts in COBWEB/2 

8.2.3 Merging and Splitting 
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Second 
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child 

minus 
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Like COBWEB, merging and splitting are allowed in COBWEB/2. However, 

unlike COBWEB, the two best hosts may not be children of the root and may even 

reside at different tree levels. In COBWEB/2 merging and splitting are regarded 

as a single operator; merging the two best hosts may require first splitting apart 

nodes that were previously at different parts of the tree, at least as defined by 

IS-A and child links. Merging nodes in COBWEB/2 is similar, but not identical, 

in form to node merging in COBWEB with superordinate nodes. 

Evaluating indexed nodes, Nk, by 7-3 orders the nodes by the degree that 

they match an incoming object. The node with the highest score is the best existing 

host. In addition, the second highest scoring node (if one exists) is the second best 

host. COBWEB/2 considers merging the two best hosts. 

Figure 86 demonstrates how merging of the two best hosts is evaluated and 

performed. The most specific common ancestor of the two hosts is identified by 

climbing IS-A links and the best and second best children of this common ancestor 

are identified. If best host is a child of the common ancestor, best host and best 



IF MERGE-CONDITION (Object, Best-host, Second-best-host) 
THEN 1) Remove Best-host and Second-best-host from their respective 

ancestors up to their Common-ancestor 
2) Merge Best-host and Second-best-host and make the Merged-node 

a child of Common-ancestor. Add indices to Merged-node. 
3) Recompute indices for all former ancestors of Best-host and 

Second-best-host beginning with their former parents until 
reaching Common-ancestor. 

FUNCTION MERGE-CONDITION (Object, Best-host, Second-best-host) 
1) Find the Common-ancestor of Best-host and Second-best-host. 

Identify the children of Common-ancestor, Best-child and 
Second-best-child, that are ancestors of Best-host and 
Second-best-host, respectively. The other children of 
Common-ancestor are called Other-children. 

2) IF CU( {MERGE-NODES(Best-host, Second-best-host}) 
U{Best-child - Best-host} 
U {Second-best-child - Second-best-host} 
U Other-children) · 

>= CU( {Best-child + Object} 
U{Second-best-child} 
U Other-children) 

THEN RETURN TRUE 
ELSE RETURN FALSE 

Table 32 

Consider merging best hosts and do so if appropriate 
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child will be the same node. A similar observation is true of second beat host and 

second best child. If either one of these conditions is true, best and second best child 

are merged, without regard to how this effects partition quality. The philosophy 

is that if a similarity is noticed and there ·is no 'competing' similarity, there is no 

harm in merging the similar classes together. In this manner, superordinate classes 

can be formed in a much more natural way than described in chapter 4. 

In cases where both best host and second best host are not immediate children 

of common ancestor, a simple merging of these nodes may not be appropriate. The 

reason is that best and second best host already participate in different superordinate 

categories that may have been formed because of similarities different from the one 



FUNCTION COBWEB/2 (Object, Root ( of classification tree ) ) 
IF Root is a leaf 
THEN Return expanded (and indexed) leaf to 

accomadate new 0 b ject 
ELSE Determine best and second best existing hosts 

and perform one of the following: 
a) Consider creating a new class and do so if appropriate. 
b) Consider merging the two best hosts and do so if 

appropriate. 
c) IF none of the above (a or- b) were performed 

THEN COBWEB/2(0bject, Best host) 
UPDATE-COUNTS( Object, Best-host) 
UPDATE-INDICES( Object, Best-host) 
UPDATE-INTERMEDIATE-NODES 

(Object, Parent-of(Best-host ), Root) 
UPDATE-COUNTS(Object, Root) 
UPDATE-INDICES( Object, Root) 

Table 33 

Second approximation of operator control in COBWEB/2 
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that currently indexes them. The best hosts can still be merged, but only if merging 

them (and removing them from intermediate ancestors) results in a better set of 

children of the common ancestor. Figure 86 illustrates this procedure. Merging is 

evaluated using the complete category utility measure ( 4-4) and is applied to an 

object set partition (i.e., the children of the common ancestor). The rule used to 

merge nodes is given in Table 32 . 

. , 
Pseudocode for controlling the three operators of classification, creation, and 

merging are given in Table 33. This pseudocode adds class creation and merging to 

the earlier control structure, which only assumed classification. The abbreviated 

mention of new class creation and merging expand into the more precise rules 

described earlier for each operator. 
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8.2.6 Promoting and Dropping Subtrees 

Like COBWEB, COBWEB/2 regards some nodes as useless. A last-accessed 

count is maintained for each node. If the node does not classify an object after a 

variable threshold number of objects, a prototype of the node is used to determine 

if the node is useless for purposes of future classification. 

In COBWEB/2, unreachable nodes may also occur. Unlike COBWEB trees, 

classification trees produced by COBWEB/2 use attribute-value indices that are 

directed at nodes that maximize collocation. When a node ceases to maximize 

collocation for a value because of changes in the tree, the index is moved to 

the appropriate (collocation maximizing) node. Associated with each node is a 

POINTED-AT field. The POINTED-AT field contains the number of indices that 

currently point at the node. Whenever a new attribute-value index is directed at 

a node, the node's POINTED-AT value is incremented. This field is decremented 

whenever an index is directed away from the node. Unreachability occurs when a 

node's POINTED-AT count reaches zero; this means that no indices point to the 

node and it cannot be activated during indexing. 

When a node's POINTED-AT count reaches zero, it is deleted - a process 

similar to garbage collection (STAN80]. All attribute value indices that emanate 

from the deleted node are removed and the pointer counts of subordinate nodes 

are decremented as appropriate. This is analogous to promoting the children of 

the delete:~ node. However, decrementing subordinate node pointer counts may 

cause some of these to reach zero as well. Very often, once a node's pointer count 

reaches zero, a chain reaction causes all subordinate node pointer counts to reach 

zero as well. In this case, all descendents of the deleted node are deleted -~s well. 

This procedure is similar to that employed in UNIMEM [LEBo82], but this latter 

system does not allow indices to skip levels; thus it can automatically delete entire 



270 

subtrees without explicitly decrementing the POINTED-AT fields of lower-level 

nodes. 

As with any node, when a leaf's pointer count reaches zero, it is deleted from 

the classification tree. However, deleting a leaf removes an actual object from the 

tree. In COBWEB/2, when a leaf is deleted, counts in superordinate nodes up to 

the root are decremented to reflect the object's removal. 

8.2.7 Summary 

The control structure for COBWEB/2 is close in form to COBWEB's. The 

major complicating factors are that indexing allows classification to skip levels. 

Top-down classification must be augmented with a process of updating nodes that 

were initially skipped. In many ways COBWEB/2 is similar to the version of 

COBWEB that built superordinate nodes. However, two things distinguish these 

systems. First, COBWEB/2 does not use different evaluation functions to modify 

superordinate and basic level nodes. Rather, COBWEB/2 introduces a superordi

nate node when any similarity is noticed through ind~xing. Second, COBWEB/2 

does not force classification to originate at the basic level. Instead, it relies on 

the findings of chapter 7 that indexing naturally (and almost always) results in 

classification at the basic level. This latter characteristic, along with findings that 

COBWEB/2's heuristics typically identify the same best hosts as COBWEB's, lead 

to an initial hypothesis that the two systems have similar behavioral properties and 

result in similar classification schemes. Characterizations of COBWEB/2 that fol

low generally verify this intuition, but this analysis also uncovers some important 

qualifications. 

The following sections characterize COBWEB/2 along the dimensions of 

update cost, classification tree quality, convergence time, and prediction accuracy. 

However, while these are the same dimensions used to analyze COBWEB, this 

chapter considers them in a different order. This reordering makes certain problems 
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with COBWEB/2 apparent at the beginning of analysis, thus illuminating more 

subtle matters later on. 

8.3 COBWEB/2 as an Incremental Learner 

Like its predecessor, COBWEB/2 is an incremental concept formation system 

that can be evaluated in terms of update cost, the quality of concept hierarchies, 

and the time required for a 'stable' classification to be achieved. This section 

evaluates COBWEB/2 along each of these dimensions, making comparisons with 

COBWEB as appropriate. Comparisons indicate advantages and problems with 

using indices for memory update and motivate two extensions to the basic algo

rithm. 

8.3.1 Cost of Assimilating a Single Object 

COBWEB /2 employs a two-step classification procedure. Update cost can 

be computed by looking at the overall costs of each stage of classification. That is, 

cost = (activation costs) + (evaluation costs) (8-1) 

Initially, only classification with respect to an existing class is considered. 

Activation costs can be approximated by 

(number of nodes activated) x (single node activation cost) 

Node activation is triggered by object recognition. Each object has one value along 
·' 

each attribute. If A is the number of attributes, the cost of activating a single node 

and computing its total predictiveness is O(A). It is difficult to analytically come 

by the number of nodes that are activated. In domains used for experimentation 

however, the number of nodes activated at each level of classification seems to 

approximate the branching factor of the tree. For example, the average number of 
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nodes activated at the top level of the congressional tree is 2.6, while there are 2 

nodes at the top level. Assuming that the branching factor, B, is a good average 

approximation of the number of activated nodes at each level and that classification 

-,roceeds to a depth of logB n on average, the total number of activated nodes is 

about 0( B logB n ). The total activation cost is 

activation costs = O(B logB n x A). 

Evaluation costs can be approximated in a manner very similar to activation 

costs. The number of nodes that are evaluated is always less than or equal to the 
' 

number of activated nodes. For example, the average number of activated nodes 

at the top level of the congressional tree was 2.~, while the number of nodes that 

needed to be kept for further evaluation was 1 in all cases. While evaluation in 

this second stage is more extensive than computing total predictiveness, it still is 

bounded by the number of defining attributes. That is, P(Ai = Vii )P(NklAi = 

Vii )P( Ai = Vii INk) is computed for each object value, of which there is one per 

attribute. Accumulated activation costs and evaluation costs are given by the same 

upper bound approximation. Since their costs are additive, the total cost of update 

assuming only classification with respect to existing nodes is 

cost = O(B logB n x A). 

Adding merging and class creation to the set of permissible operators does 

not appear to raise the upper bound approximation significantly. Class creation 

requires evaluating an object set partition using category utility at a cost of 

O(BAD), where D is the average number of values per attribute domain. Merging 

inflicts the same cost since it examines a partition. After adding merging and new 

class creation, the update cost of COBWEB/2 is approximated by O(B logB n ~X 

AD). 
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This analysis has not considered the costs that can be incurred when a node's 

POINTED-AT count reaches zero. This state requires that all downward pointing 

indices from this node be removed, possibly causing a chain reaction in which the 

entire subtree is dropped. However, this generally occurs for very small subtrees 

early in processing and does not appear to affect the average update costs of 

COBWEB/2. 

In general, COBWEB/2's update cost appears to average O(BlogB n), where 

B is the average branching factor of the tree and n is the number of previously 

classified objects. This undercuts COBWEB's cost of O(B2 logB n) somewhat. On 

average, it appears that indexing can effectively be used to cut down on the number 

of nodes that need be considered for object inco~poration. However, unmentioned 

has been the cost of updating indices to point at collocation maximizing nodes. In 

the worst case, the addition of an object may require checking every descendent of 

a node. In the worst case, if the updated node classifies n objects, this may require 

checking 2n + 1 nodes, which is the number of nodes in a complete binary tree. 

Properties of index update were investigated experimentally in the domain 

of congressional voting records used in chapter 5. An experiment was designed to 

collect statistics on index update during learning. Shifts of indices that emanated 

from the root over the course of clustering senators were recorded. For example, 

an index for 'Budget-cuts = yes' might shift from one subordinate of the root to 

another to reflect a change in where collocation for that value was maximized after 

incorporating the voting record of senator Gary Hart. The variable of interest in 
.::! -

this experiment was the degree of shift. If indices tended to point at the same nodes 

or shift locally, from a node to a child or parent, then this is an indication that a full 

blown search for collocation maximizing nodes is not required; only a local search 

in the immediate vicinity of the existing collocation maximizing node need be ma_de 

following object incorporation. On the other hand, if collocation maximizing nodes 
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CU of partition 
based on A2 and A3 

0.5 

0.45 

0.37 

0.32 

are not localized, this implies that a more costly search is required following each 

update. 

COBWEB /2 was run on the one hundred senator descriptions. Statistics were 

recorded for 110 updates (node unreachability /uselessness caused 10 senators to be 

reprocessed). In 58 of these cases there was no change in collocation maximizing 
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descendents with respect to any value. In the remaining 52 cases some shift in 

the node that maximized collocation for a value occurred. These cases can be 

further divided up. In 29 cases, a shift of one node occurred. That is, collocation 

maximization for a value shifted from a node to its parent or one of its children. 

This class of shifts is important because these constitute 'local' shifts; spotting them 

requires only a search around the immediate vicinity of the node that previously 

maximized collocation. However, in 29 instances (not mutually-exclusive from the 

last 29), a shift of greater than one node occurred for one attribute value. This 

class of shifts can not be spotted by a localized search (of 1 node). 

Apparently, in 29 cases a local search around a previous collocation maximiz

ing node could not guarantee that the new collocation maximizing node would be 

found. However, 15 of these cases occurred in the first quarter of the instances; in 

these early trials many values were being seen for the first time and changes through 

merging and new class creation were changing the structure of the first tree level. 

In contrast, only 3 of these shifts occurred in the last quarter of the instances, and 

none occurred in the last 18. A tentative lesson is that while extensive searches for 

collocation maximizing nodes may be required early in clustering, a search appears 

unnecessary after some stabilization has occurred. Despite the relative infrequency 

of nonlocal shifts in collocation maximizing nodes, the data above points to the 

possible costliness of maintaining indices early in the clustering process. 

8.3.2 The Quality of Classification Trees 

COBWEB/2's matching function (7-3) tends to place objects in approxi-
.:! -

mately the same classes as using the complete category utility function. In fact, 

when the indexing scheme and classification procedure were developed in chapter 

7 and imposed on trees constructed by COBWEB, object recognition proceeded 

correctly for each object. However, recall from section 7.2 that the ability of this 

scheme to approximate the behavior of COBWEB ls somewhat dependent on the 
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number of previously observed objects. Moreover, apart from the use of different 

evaluation function, there may be problems that are introduced by using a discrete 

indexing scheme rather than a continuous evaluation function. This section more 

fully investigates the ability of COBWEB/2 to converge on trees with top levels 

that best partition the observed objects according to category utility. 

As with COBWEB, the current system's ability to converge on optimal parti

tions was tested in the four domains of Figure 87. To review, each domain contained 

a globally optimal partition defined along attributes, Ao and Ai. A segregation 

based on the values of A2 and A3 define a partition of lesser quality, a locally 

optimal partition. 
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Figure 88 indicates that COBWEB /2 does not reliably converge on globally 

optimal partitions. In fact, as disparity between globally and locally optimal 

partitions increases, the ability of COBWEB/2 to converge on the global optimal 

decreases. 52 This behavior is the opposite of that displayed by COBWEB, which 

rapidly tends to converge on globally optimal partitions as they become more 

obviously distinguished from other patterns in the data. 

Intuitively, COBWEB/2's behavior is a result of a restrictive indexing policy. 

Consider the example of an initial clustering in Figure 89 over two objects in 

domain 3. These objects share values of 0 along attributes Ao and Ai. However, 

they are sufficiently distinct along A2 and A3 that they are initially placed in 

separate cl.asses. However, Ao = 0 and Ai = 0 are not predictive of either node 

and these values are not used as indices, while the predictiveness of A2 and Ag 

values are used as indices. Already there is a bias against forming classes based 

52 The difference between the category utility scores of the globally optimal partition 
and the partition oflesser quality were normalized to lie between 0 and 1, inclusive. 
This was done by dividing the difference of the absolute category utility scores by 
the absolute score of the globally optimal partition. 



% Runs that converged on global optimum 

100 

90 Cobweb2 with priming 

80 

70 

60 

50 

40 
' t3- __ -Gl Cobweb2 without priming 

' TI 
30 

20 

10 

0+-~...,-~-.,...~--,.~---.,r--~..,..-~-r-~-r-~--~--~--

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Normalized Difference Between Global and Local Optimums 

Figure 90 

Convergence on optimal partitions using priming in COBWEB/2 

278 

on the values of Ao and Ai, though it is still possible that such a classification 

will arise. However, in general, the greater variability in the values of attributes 

A2 and A3 will cause them to be unique across the small set of initially created 

classes; they will likely serve as indices. In contrast, the less variability of Ao and 

Ai values will tend to cause objects with the same values along these attributes to 

be spread across initial classes. In many cases, before there is an opportunity to 

merge these classes together, Ao and Ai indices will be dropped. 

COBWEB/2 can be easily thrown off track in the early stages of clustering. 

This appears to occur in domains where a number of competing patterns exist. 

Distinct, but infrequently occurring patterns will tend to spread out instances 
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exhibiting the dominant pattern early on. Indices that reflect the dominant pat

tern may be lost. The requirement that indices only be directed at collocation 

maximizing nodes is overly restrictive. Any 'fix' should relax the requirements 

for indexing early in the clustering process. At one extreme, all nodes could be 

indexed initially, giving dominant patterns a chance to arise. Perhaps the most 

straightforward approach in this regard is to use a continuous evaluation function 

early in processing. In particular, the COBWEB incorporation process is used 

initially. Indexing is utilized after a 'sufficient' number of objects are observed. In 

COBWEB/2 this number was rather arbitrarily specified to be 10. Not surpris

ingly, as Figure 90 indicates, allowing memory to be primed in this fashion results 

in behavior that i~ nearly identical to COBWEB's. 

Priming is certainly not the last word in adapting indexing for problems 

encountered early in concept formation. It is unlikely, that human learners so 

abruptly move from a continuous to a more discrete indexing procedure. However, 

in human learning a gradual shift from continuous to discrete indexing is possible. 

Priming is a straightforward and inexpensive means of approximating this shift. 

COBWEB 's continuous evaluation procedure is a rough functional equivalent of a 

more extensive indexing scheme and it allows memory to better find high quality 

partitions. Moreover, it is probable that the more conservative policies for par

tition update used by COBWEB will lead to more 'stable' trees. This may be 

important in reducing the extent of index shifting that plagued COBWEB /2 in 

the congressional domain. In the sections that follow, results from COBWEB/2 

without p;riming are stressed, since these represent worst-case scenarios. With 

priming, c·OBWEB/2 can be expected to mimic COBWEB's behavior. 

8.3.3 Number of Objects Required for Convergence 

COBWEB /2 has trouble converging on optimal partitions when competing 

patterns are present in the data, but when there is one predominant pattern, 
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Domain 1) CU of Optimal Partition = 0.45 

Domain 2) CU = 0.89 

3) cu= 1.33 

4) cu= 1.77 

Figure 91 

Domains used to test convergence time 

the following experiments indicate that COBWEB/2 has little problem finding it. 

COBWEB/2 was tested in the four domains previously used in chapter 6, and given 

again in Figure 91. COBWEB/2 was run on five random orderings from each of 

the four domains. During learning, 100 objects were intermittently and randomly 

selected from the domain being learned and classified (but not incorporated) with 

respect to the classification formed thus far. If the t~p-most level of COBWEB/2's 
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tree classified the objects in the same manner as the optimal partition as a whole, 

the two partitions were regarded as equivalent. 

Figure 92 indicates that as the quality of the optimal partition grows, there is 

a corresponding drop in the number of objects required by COBWEB/2 to converge 

on the op~imal partition. In fact, on this dimension COBWEB/2 appears to out

perform COBWEB, more quickly achieving the optimal partition in domains 3 and 

4. Ironically, the reasons for good performance are related to the reasons for poor 

performance in the last section; indexing more quickly focuses attention on certain 

attributes as important during classification. In cases, where indices correspond 

to values that define the optimal partitioning, COBWEB /2 can be expected to 



282 

converge on that partition sooner. The caveat is that while COBWEB/2 makes 

a commitment more quickly as to what attributes are important, it is more likely 

than COBWEB to be wrong. 

8.3.4 Summary 

COBWEB/2 has been characterized as an incremental clustering system 

along three dimensions. In general, along two of these dimensions COBWEB/2 

compares favorably with COBWEB. Indexing can be used to reduce the cost of 

object classification. Furthermore, the discrete nature of indices emphasizes the 

importance of certain attribute values e~rly on, thus shortening convergence time. 

However, early in the clustering process, an experiment in the congressional domain .. 

indicated that index update may be expensive. Moreover, in domains where a num

ber of orthogonal, competing patterns exist in the data, indices can prematurely 

designate the 'wrong' attributes as important. Thus, cost and partition optimality 

can suffer in the early stages of learning with indices. A tentative remedy for these 

problems is to loosen the requirements for directing indices to nodes. In the most 

extreme case, indices need not be used at all early in clustering. The COBWEB 

procedure of comparing an object with respect each child is functionally equivalent 

to making sure all children are initially indexed. Indices are introduced after a 

number of objects have primed memory. 

8.4 COBWEB /2 Classification Trees 

The previous section identified problems with using indices too early in con-

cept formation. It motivated a modification of COBWEB/2 that shifted to indexing 

only after a number of objects had been added to memory via COBWEB's more 

conservative incorporation procedures. This section concentrates on the worst-case 

performance of COBWEB/2 (without priming) in the congressional voting domain.. 

Comparisons between COBWEB/2's output and COBWEB's are also made. 



Ni ('conservative') 
P(Ai = ViJIN1), P(N1 IAi = Vii) 

Budget Cuts - yes (0.95,0.83) 
SDI reduction - no (0.89,0.92) 
Contra Aid - yes ( 0.86,0.87) 
Line-Item Veto - yes (0.88,0.91) 
MX Production - yes (0.92,0.89) 
Guest Workers - yes (0.81,0.78) 
Farm Bill - yes (0.80,0.83) 

Ns1 ('liberal') 
P(Ai = ViJINs1),P(Ns1IAi =Vii) 

Budget Cuts - no (0.80,0.93) 
SDI reduction - yes (0.88,0.86) 

Line-Item Veto - no (0.86,0.84) 
MX Production - no (0.85,0.91) 
Guest Workers - no (0.78,0.74) 
Farm Bill - no (0.74,0.70) 

Table 34 

Norms for congressional classes formed without priming 
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Like COBWEB, COBWEB/2 grouped congressmen into classes correspond

ing roughly to 'conservatives' and 'liberals'. Classes at the top level of the 

COBWEB/2 tree closely matched those formed by COBWEB. For example, one 

node of the COBWEB/2 tree contained all the 'liberals' from the COBWEB tree, 

except one; this node contained three senators not in the COBWEB 'liberal' clus

ter. The normative values of COBWEB/2's 'liberal' and 'conservative' clusters are 

given in Table 34. 

While COBWEB/2 grouped senators at the top level into intuitively appeal-

ing classes, its decomposition of senators at lower levels was less pleasing. At 

the second level of the tree there tended to be several singletons, or otherwise 

small classes. Lower levels did not seem to capture subpatterns (e.g., 'southern

democrats') within the larger patterns represented by 'liberals' and 'conservatives'. 

Intuitively~ this can be explained by the same principles that caused COBWEB /2 

to do poorly when confront~d with competing patterns in data. COBWEB /2 did 

fine at discovering the obvious patterns of 'liberal' and 'conservative' voting records, 

but when confronted with less clear-cut alternatives at lower levels of the tree, it 

does not fare so well. 
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8.5 The Utility of COBWEB/2 Classification Trees for Inference 

This section characterizes the effectiveness of classification trees formed by 

COBWEB/2 for inference. While the analysis of COBWEB/2 trees is not nearly 

as extensive as for COBWEB trees, it shows that COBWEB/2 approximates 

COBWEB's abilities on this dimension. 

COBWEB/2's success at diagnosing soybean disease is given in Figure 93. 

Without priming, COBWEB/2 requires about 10 more soybean case histories to 

achieve perfect prediction over unseen cases than COBWEB. A similar effect is 

shown in Figure 94 for the thyroid domain where COBWEB/2 (without priming) 

requires more objects to achieve roughly the same accuracy as COBWEB. 

While COBWEB /2 takes somewhat longer to reach the levels of diagnostic 

correctness achieved by COBWEB, it nonetheless reaches these levels with respect 

to the Diagnostic-condition attribute. With respect to all attributes, COBWEB/2 
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does not fair as well as COBWEB, particularly with respect to attributes of 

intermediate dependence. However, Figure 95 indicates that it still does fairly 

well. This graph is reminiscent of the corresponding one for COBWEB (Figure 

45). 

8.6 Chapter Summary 

The goal of this chapter was to test the computational limits of chapter 7's 

indexing scheme in the context of learning. Such a speculative analysis can indi-
~ -

rectly impact claims about the psychological plausibility of a computational model. 

The main findings of this chapter were that indexing supports cost effective learn

ing and relatively accurate prediction. However, an important caveat is that the 

indexing scheme is brittle and expensive to maintain early in the learning process. 

These results suggest that indexing should be less constrained initially, becoming 
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more discretized as learning progresses. While this process has been approximated 

by using COBWEB's continuous evaluation/incorporation procedures initially, the 

exact nature of this evolution is left as future work. Importantly, there is little 

work in cognitive psychology on the emergence of basic level and typicality effects 

during learning that can guide a cognitive model of this process. 



CHAPTER 9 

Conclusions 

9.1 Contributions of the Dissertation 

A major bias behind this research effort has been that artificial intelligence 

and cognitive psychology are cooperative; expertise in cognitive psychology is 

focused on de8cribing intelligent (human) behavior, while artificial intelligence is 

primarily concerned with modeling or explaining behavior. In the terminology of 

chapter 1, psychology is concerned with specification and artificial intelligence is 

concerned with design, or at least that is the prescriptive view of the dissertation. 

More specifically, the work reported herein draws from and contributes to 

three formally disparate literatures: conceptual clustering, incremental concept 

formation, and cognitive psychology studies of basic level and typicality effects·. 

The former two are subareas of machine learning that are concerned with the 

mechanisms underlying concept formation. These mechanisms can be usefully 

constrained by data on human classification. In return, general mechanisms can 

be molded into models of human behavior. The dissertation reflects a view of this 

process as one of step-wise refinement; concept representation and quality measures 

in COBWEB are suggested by work on human classification; these are consistent 

with computational desires for incremental processing and prediction accuracy. 

In turn, these latter properties are consistent with much of human learning and 

memory; from COBvVEB, a memory structure that accounts for the more specific 

behaviors of typicality and basic level preference is derived. 

287 
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The remainder of this section details the debts and contributions to machine 

learning and cognitive psychology, and in doing so, indirectly illustrates the inter

play between them. 

9.1.1 Conceptual Clustering 

COBWEB fits the definition of conceptual clustering as laid out by Michalski 

and Stepp [MicH80, M1c83A]. The system forms classes whose quality is dependent 

on the quality of their respective summary or concept level descriptions. 

COBWEB uses probabilistic concepts to describe object classes. Probabilistic 

descriptions are a major departure from the logical concept representations of much 

work in AI and machine learning in general, and conceptual clustering in particular. 

COBWEB is evaluated in terms of the performance task of predicting un

known attribute values. This performance task generalizes the task of predicting 

class membership in learning from examples. Previously, no well-specified perfor

mance task was associated with conceptual clustering, but the identification of such 

a task is imperative if the field is to progress. 

In contrast to previous systems, COBWEB is an incremental. It incorporates 

objects as they are encountered, and thus can be more flexibly applied in real world 

environments. 

9.1.2 Incremental Concept Formation 

COBWEB's control structure was inspired by earlier work on incremental 

concept learning [LEB082, KoL83A, WINs75). In terms of search, COBWEB uses a 
.:! -

hill-climbing control strategy with operators that allow bidirectional mobility. 

While earlier systems embody hill-climbing/bidirectional strategies, this dis

sertation is novel in explicitly characterizing their behavior as such. This view of 

incremental learning suggests three dimensions for evaluating incremental systems: 
I 

update cost-, concept quality, and convergence time. Characterization along these 
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dimensions demonstrates that COBWEB is a robust and cost-effective means of 

building classification hierarchies. 

9.1.3 Psychological Studies of Concepts and Classification 

COBWEB's adoption of probabilistic concept representations was motivated 

by the identification of typicality effects in humans. Additionally, the heuristic 

measure of class quality used by COBWEB was developed as a predictor of pre

ferred concepts in humans [Gtuc85). 

In response to objections against probabilistic concepts, a number of alter

native representations for individual concepts have been proposed (e.g., exemplar 

and relational cue models). Chapter 3 points o~t that probabilistic concept trees 

of the type built by COBWEB capture the same information as these alternative 

representations. Objections to probabilistic concepts properly motivate looking 

to larger organizations of concepts, as well as alternative models of individual 

concepts. 

Object classification in COBWEB inspires an indexing scheme that accounts 

for simple basic level and typicality effects, as well as interactions between the two 

classes of phenomena. Computer experiments using the indexing scheme suggest 

directions for further experiments with human subjects. While it is probable 

that the indexing system of this chapter is not precisely correct, it embodies an 

important assumption: psychological phenomena, typicality and basic level effects 

in particular, cannot be explained without regard to a larger memory structure. 

9.1.4 Methodological Biases 

In addition to substantive contributions to subareas of machine learning 

and cognitive psychology, this dissertation advances a relatively novel method of 

validating inductive learning methods. It builds on the methodological biases of 
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Quinlan [Qurn83, Qurn86] and others [ScH86c, HAMP83], which favors extensive 

computer experimentation in a variety of domains. 

In addition, COBWEB is characterized with respect to a normalizing method, 

in this case the frequency-based method of chapter 4. While the frequency-based 

method is a 'straw-man' in many respects, few learning systems are compared 

to such methods, much less alternative learning techniques. 'Straw-men' give an 

initial indication of when learning is difficult and help to normalize the results and 

apparent advantages of more complex inductive methods. In addition, comparisons 

with ID3 roughly upper bound COBWEB's performance and demonstrate room 
' 

for improvement along some attributes. 

Finally, COBWEB is not simply characterized in a number of domains, but a 

measure for characterizing the domain itself is forwarded. In chapter 5, COBWEB 's 

ability to predict an attribute's value was shown to vary with the dependence of the 

attribute on other attribute's. While there may be problems with this function as a 

general predictor of 'domain difficulty' (e.g., representation language dependence), 

the philosophy that domain characterization must accompany algorithm charac

terization harkens back to discussions by Simon [S1Mo69], but is relatively unique 

to current experimental practices. Chapter 6 illustrates how artificial domains can 

be effectively used to demonstrate the range of a system's behavior. While natural 

domains are alluring, over reliance on them makes it difficult to test the limits of 

a system's capabilities. 

9.2 Future VVork 

Many directions for future work are suggested by work on COBWEB and 

COBWEB/2. Proposals can be roughly segregated by subject matter: machine 

learning, cognitive psychology, and methodological studies. 
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9.2.1 Proposals in Machine Learning 

Undoubtedly, future work will focus on rectifying a number of COBWEB's 

limitations. One limiting aspect is the object description language: nominal 

attribute-value pairs. One way to relax this constraint is to allow numeric, 

continuously-valued attributes. Gennari, Langley, and Fisher (GENN87] report 

a modification to COBWEB, CLAS SIT, that rewards partitions formed around 

'dense' value areas of numeric attributes. An alternative approach that has been 

implemented, but not extensively tested in COBWEB, discretizes continuous at

tribute domains into ranges based on how well they contribute to higher-order 

conceptual descriptions. A range of values can then be treated like a. nominal 

value. This approach is similar to that used by Michalski and Stepp [MIC83B]. 

A second way of relaxing object description constraints is to allow &tructured 

objects and concepts. Manipulating structured representations is an important 

prerequisite for applying conceptual clustering methods in sophisticated problem

solving domains [F1s86B]. As CL USTER/2 and UNIMEM served as precursors to 

COBWEB, CLUSTER/S [STEP86, STEP84] and RESEARCHER (LEBo86) are likely 

starting points for work on incremental clustering of structured objects. Work by 

Levinson [LEVI84] on incrementally discovering patterns in graph structures is also 

relevant. Work by Vere [VERE77] on 'clustering' relational productions shows how 

conceptual clustering methods might be applied to operator descriptions. 

Finally, future work will also focus on improving COBWEB's hill-climbing 

search strategy. Experimentation in chapter 6 suggested that COBWEB's lack of 

heuristic foresight might preclude its discovery of optimal partitions in domains 

that lacked clear-cut, dominant patterns in the data. Some situations can be 

imagined that magnify this limitation considerably. For example, the problem of 

tracking changes in the environment (e.g., the change of seasons) has been studied 

in the context of learning from examples by Schlimmer and Granger [ScH86B]. In 
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real-world domains, a concept formation system must be cognizant of changes in 

the regularity of the environment. Tracking is equivalent to the problem of dealing 

with extremely skewed data. Under extreme skew a hill-climbing strategy results 

in a classification whose utility may irreversibly and progressively degrade. 

One solution to this problem might involve loosening the constraints in which 

the split operator is applied. Currently, splitting is only applied if it immediately 

improves partition quality. However, the heuristic for splitting could be localized; 

its application could be made dependent on such things as whether partition quality 

was decreasing over a 'window' of recent trials or on whether an individual node 

was of poor 'quality' (e.g., too few predictable values). Liberalizing the policy for 

splitting would allow subtrees to be broken apart and rebuilt (in a different form) 

through merging. In conjunction with liberalizing conditions under which to split, 

it may be desirable to liberalize conditions under which new classes are created. 

One effect of this strategy is that higher-level classes will not be formed through 

merging or classification until some (constant or variable) threshold number of 

objects are observed. 

9.2.2 Proposals in Cognitive Psychology 

The indexing scheme of chapter 7 appears consistent with certain typicality 

and basic level effects. More importantly, it makes a number of predictions about 

expected effects (e.g., exhaustive retrieval) and the interaction between basic level 

and typicality phenomena. The predictions made by the computer model are an 

obvious point of departure for experimentation with human subjects. 

This dissertation has _foregone the opportunity of studying the emergence 

of basic level and typicality effects during learning. However, COBWEB and 

COBWEB/2 offer a unique framework for generating hypotheses about the evo

lution of these effects. A pragmatic question is "How does the basic level shift 

as one becomes expert in a domain?" A task in which principles underlying basic 
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level effects, typicality effects, and memory update might be particularly relevant is 

information or document retrieval [VANR79]. Queries to a database can be viewed 

as partial object descriptions. Principles that cause typical objects to be recognized 

most quickly and lead the vast majority of objects to be recognized with respect to 

the basic level, can undoubtly be used to guide queries to the most 'relevant' parts 

of memory. Using queries to 'update' the database can help optimize retrieval for 

the most frequently made queries. 

9.2.3 Methodological and Comparative Studies 

COBWEB and COBWEB/2 have been characterized along a number of 

dimensions (e.g., convergence time, inference improvement). Importantly, these 

characterizations have carefully avoided statements of superiority over earlier sys

tems. In fact, there is a very good chance that a number of earlier, but comparable 

concept formation systems are better than COBWEB (and COBWEB/2) along 

several important dimensions. The contribution of this work is not that COBWEB 

is a 'better' system, but that its characterization enumerates a number of dimen

sions along which comparisons can be made to begin with. 

COBWEB is an incremental system that uses a search strategy abstracted 

from incremental systems like UNIMEM and CYRUS. Describing COBWEB in 

terms of search has motivated an evaluation of its behavior with respect to the 

cost and quality of learning. While UNIMEM and CYRUS have not been evaluated 

along the same dimensions as COBWEB, to some degree COBWEB's character

ization is probably extensible to them (e.g., logarithmic update cost). However, 
;: ~ 

a major difference between COBWEB and UNIMEM/CYRUS is that these latter 

systems form overlapping concepts and hierarchies that are not strict trees; there is 

no notion of a 'best' partition in these systems. However, while UNIMEM/CYRUS 

heuristics are somewhat different from COBWEB 's, a reasonable expectation is 

that classes formed by an appropriately biased UNiMEM/ CYRUS-type system 
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would form a superset of the classes formed by COBWEB. In experiments on 

COBWEB's ability to discover the global optimal partition, UNIMEM/CYRUS 

might well form classes corresponding to to the globally (as well as the locally) 

optimal set, ren in cases where the global optimal is little 'better' than the local. 

COBWEB classification trees have been characterized by their ability to 

promote correct prediction of attribute values. In addition, a cheaply computed 

measure of attribute dependence appears to have some predictive value in telling 

how well q<?BWEB's tree will promote prediction. Figure 96 shows the aver

age increaae afforded by COBWEB classification trees over the frequency-based 

approach. For example, recall that correct prediction for diagnostic condition in 
_, 

the soybean domain reached 100%, while correctness using the frequency-based ap-

proach averaged 363, leaving a difference of 64%. This data point is represented at 

the right terminus of the plotted line. An important question asked in Figure 96 is 
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"How will other methods perform under varying conditions with respect to this 

task?" 

Comparisons with ID3 in chapter 5 indicated that COBWEB matched ID3's 

correctness with respect to a majority of the attributes. However, ID3 defined 

a rough upper bound that indicated room for improvement on COBWEB's per

formance with respect to several (i.e., about 1/5 of the soybean) attributes. An 

initial hypothesis is that a number of concept formation methods will outperform 

COBWEB, particularly with respect to attributes of intermediate dependence. 

UNIMEM/CYRUS form more general hfo,rarchical structures than trees. Chapter 

3 pointed out that overlapping concepts may do a better job at capturing important 

correlations that can aid induction. A nonincremental method like CL USTER/2 

makes a more extensive search of the possible partitionings of objects; it is more 

likely than COBWEB's hill-climbing strategy to discover the best possible parti-

tions. 

While this dissertation has been primarily concerned with concept formation 

systems, the methodology used to characterize COBWEB can be extended to 

compare learning from examples systems like ID3 with other systems as implied 

in Figure 97.53 In the context of learning from examples, the measure of attribute 

dependence can be regarded as a predictor of 'domain difficulty'. This measure 

is by no means a perfect predictor and to a significant degree remains untested. 

However, a more general methodological principle is at issue: a simple statement 

that algor~thm X works in domain Y transmits no information about the difficulty 

of the domain or the advantages afforded by the algorithm. Domains (natural and 

artificial) must be characterized before learning algorithms can be characterized. 

Ideally, a cheaply computed approximation of domain difficulty (e.g., attribute 

53 Figures 96 and 97 give only approximate averages of COBWEB and ID3 perfor
mance, respectively. 
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dependence) should precede and guide the self"~tion of learning strategies under 

varying conditions (REND87]. 

9.3 Closing Remarks 

This research has tried to embody three themes. First, learning processes 

in general and conceptual clustering methods in particular must be considered 

within the larger context of intelligent processing. This has motivated concerns 

for incremental processing and prediction accuracy. Second, artificial intelligence 

and cognitiv~ -psychology are complementary sciences, but to take advantage of 

this synergism requires an explicit acknowledgement of the spheres of each field's 

expertise; psychology is primarily concerned with delimiting intelligent behavior, 

whereas artificial intelligence is primarily concerned with modeling this behavior. 

COBWEB draws significantly from studies of basic level and typicality effects, but 
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hopefully contributes to a better understanding of the mechanisms underlying these 

effects, as well as pointing out directions for further study. Last, simple case studies 

may not uncover the strengths and weaknesses of a learning system. Domains 

must be characterized as well as algorithms. Furthermore, balanced testing in 

natural and artificial domains can more fully demonstrate the abilities of a system. 

However, the luxury (and necessity) of this philosophy completely hinges on the 

more 'constructive' efforts of those researchers to which this dissertation owes much. 
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Appendix A 

Data for Computer Experiments 

Computer experiments in chapters 5 and 9 used three main sets of data: 

soybean case histories, thyroid case histories, and congressional voting records. 

The data sets used by COBWEB and COBWEB/2 are given here. In addition, 

explanations of how the data was transformed from its original source are given. 
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SOYBEAN CASE HISTORIES 

Robert Stepp used a set of 4 7 soybean case histories to characterize the 

CLUSTER system in his dissertation. CLUSTER handles both ordinal (linear 

or integer) and nominal values. While no overt changes were made to the data, 

COBWEB treated all values as nominal. The domains of the ordinal values were 

sufficiently small that this appeared a reasonable thing to do. Nonetheless, a loss 

of information was experienced by this implicit 'transformation' in the data. The 

35 attributes, their original type (ordinal or.nominal) and their respective domains, 

are given below. 

time-of-occurance (linear): O:april l:may 2:june 3:july 4:august 
5:september 6:october 

plant-stand (nominal): O:normal l:less-than-normal 
precipitation (linear): 0: below-normal 1 :normal 2:above-normal 
temperture (linear): O:below-normal l:normal 2:above-normal 
occurance-of-hail (nominal): O:no l:yes 
number-years-crop-repeated (linear): 

O:none l:one 2:three 3:four-or-more 
damaged-area (nominal): O:scattered-area l:low-area 2:upland-area 

3:whole-fields 
severity (ordinal): O:minor !:potentially-severe 2:severe 
seed-treatment (nominal): O:none !:fungicide 2:other 
seed-germination (ordinal): 0:903-100% 1:80%-89% 2:less-than-803 
plant-height (nominal): O:normal !:abnormal 
leaf-condition (nominal): O:normal l:abnormal 
leaf-spots-halos ( nomainal ): O:absent 1 :with-yellow-halos 

2:without-yellow.:halos 
leaf-spots-margin (nominal): O:water-soaked l:not-water-soaked 

2:not-applicable 
size-of-leaf-spots (nominal): O:less-than-one-eighth-inch 

1 :greater-than-eighth-inch 2:not-applicable 
shot-holing (nominal): O:absent l:present 
leaf-malformation (nominal): 

O:absent 1 :present 
leaf-mildew""growth (nominal): 

O:absent l:upper-leaf-surface 
2 :lower-leaf-surface 



condition-of-stem (nominal): 

stem-lodging (nominal): 
stem-cankers (nominal): 

O:normal 1 :abnormal 
O:absent 1 :present 
O:absent 1 :below-soil 2:slightly-above-soil-line 
3:above-send-node 

canker-lesion-color (nominal): 
O:not-applicable l:brown 2:dark-brown-or-black 
3:tan 

fruiting- bodies-on-stem (nominal): 
O:absent 1 :pres.ent 

outer-stem-decay (nominal): 
O:absent 1 :firm-and-dry 2:watery-and-soft 

mycelium-on-stem (nominal): 
O:absent l:present 

internal-discoloration-of-stem (nominal): 
O:none l:brown 2:black 

scerotia-internal-or-external (nominal): 
O:absent l:present 

fruit-pod-condition (nominal): 
O:normal 1 :diseased 2:few-or-none 
3:not-applicable 

311 

fruit-spots (nominal): O:absent l:colored-spots 2:brown-spots-black-specks 
3:distorted-pods 4:not-applicable 

seed-condition (nominal): O:normal l:abnormal 
seed-mold-growth (nominal): O:absent l:present 
seed-discoloration (nominal): O:absent l:present 
seed-size (nominal): O:normal l:smaller-than-normal 
seed-shriveling (nominal): O:absent l:present 
root-condition (nominal): O:normal l:rotted 2:galls-or-cysts 

Four diagnostic conditions were represented in the data: Diaporthe Stem 

Canker (10 cases), Charcoal Rot (10 cases), Rhizoctonia Root Rot (10 cases), and 

Phytophthora Rot (17 cases). The case histories are listed below with values for 

the 35 attributes given in the order listed above. All instances of Diaporthe Stem 

Canker are listed first, followed by all cases of Charcoal Rot, all cases of Rhizoctonia 

Root Rot, and finishing with Phytophthora Rot. 



Diaporthe Stem Canker 

40211101021102200010311100004000000 
5 0 2 1 0 3 1 1 1 2 1 1 0 2 2 0 0 0 1 1 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0 
30210202111102200010301100004000000 
6 0 2 1 0 1 1 1 0 0 1 1 0 2 2 0 0 0 1 1 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0 
40210302021102200010311100004000000 
50210201101102200011311100004000000 
30210211011102200011301100004000000 
30210102121102200010301100004000000 
60210301111102200010311100004000000 
60210101021102200010311100004000000 

Charcoal Rot 

60021021001102200011030002104000000 
40010231111102200010030002104000000 
5002032102110220001003000~104000000 
60011331101102200010030002104000000 
30021021011102200010030002104000000 
40011131111102200011030002104000000 
30010121001102200010030002104000000 
50021221021102200011030002104000000 
60020131101102200010030002104000000 
50021331121102200010030002104000000 

Rhizoctonia Root Rot 

01200111111002200010110110034000000 
21200312011002200010110100034000000 
21200211021002200010110110034000000 
01200011121002200010110100034000000 
01200211111002200010110100034000000 
40201012021102200011110110034000000 
21200312021002200010110110034000000 
01200011011002200010110100034000001 
302013J_20 11 0 0 2 2 0 0 0 111101100340 0 0 0 0 0 
0 1 2 0 0 1 1 2 1 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0 
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Phytophthora Rot 

21211312121102200010220100034000001 
0 1 1 1 0 1 1 1 0 0 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 'o 0 1 
31200112101102200010220000034000001 
21211112021102200010120100034000001 
11200311121102200010220000034000001 
11210012111102200010220000034000001 
01210311001102200010120000034000001 
21200112001102200010120000034000001 
31200212111102200010220000034000001 
31100212121102200010220000034000001 
01211111001102200010120100034000001 
11211312011102200011120100034000001 
11200012101102200010220000034000001 
11211231111102200010220100034000001 
2 1 1 0 0 3 1 2 0 2 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 1 
01111212101102200011220100034000001 
01210311021102200010120000034000001 
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THYROID CASE HISTORIES 

J. R. Quinlan kindly supplied a number of researchers at UCI with a sizable 

database of thyroid case histories taken from the Garvan Institute, Australia. 

A total of 6326 case histories were supplied. Three diagnostic conditions were 

present in the data: negative, hypothyroid, and sick euthyroid. Each case history 

was described by at most 25 attributes. Of this original data, 151 records were 

classified as hypothyroid, 294 were classified as sick euthyroid, and the remainder 

were negative. These original attributes and their original domains are given below. 

age 
sex 

Attributes 

on thyroxine 
query on thyroxine 
on antithyroid medication 
thyroid surgery 
query hypothyroid 
query hyperthyroid 
pregnant 
sick 
tumor 
lithium 
goitre 
TSH measured 
TSH 
T3 measured 
T3 
TT4 measured 

-TT4-
T4U measured 
T4U 
FTI measured 
FTI 
TB G measured 
TBG 

Domains 

continuous 
Male (M), Female (F) 
false ( f), true ( t) 
false ( f), true ( t) 
false ( f), true ( t) 
false ( f), true ( t) 
false ( f), true ( t) 
false (f), true ( t) 
false (f), true (t) 
false(£), true (t) 
false ( f), true ( t) 
false (f), true (t) 
false (f), true (t) 
yes (y), no (n) 
continuous 
yes (y), no (n) 
continuous 
yes (y), no (n) 
continuous 
yes (y), no (n) 
continuous 
yes (y), no (n) 
continuous 
yes (y), no (n) 
continuous 
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For the experiments of this dissertation, the data was not used in its raw form. 

Three major changes were made. First, all continuous attributes were nominalized. 

This was done using value ranges used by experts in the thyroid field. The ranges 

representing nominal values are given below. 

Attribute 

age 
TSH 
T3 
TT4 
T4U 
FTI 
TBG 

Ranges 

under 18 (1 ), 18-29 (2), 30-44 (3), 45-64 ( 4), over 64 (5) 
under 6 inclusive (normal), over 6 (high) 
under 1.2 (low), 1.2-2.8 (normal), over 2.8 (high) 
under 60 (low), 60-150 (normal), over 150 (high) 
under 0.6 (low), .0.6-1.25 (normal), over 1.25 (high) 
under 65 (low), 6p-155 (normal), over 155 (high) 
under 12 (low), 12-30 (normal), over 30 (high) 

The second major change to the data was the elimination of all attributes 

of the form, 'X measured' (e.g., TSH measured). These attributes appeared to be 

redundant when using COBWEB, since COBWEB can incorporate objects with 

missing information. That is, if TSH is present in an instance then TSH was 

measured, otherwise it was not measured. 

Lastly, rather than using all 6326 instances, 150 instances were used. 50 

instances were randomly selected from each diagnostic class (i.e., negative, hy

pothyroid, sick euthyroid). This makes the task of increasing correct prediction 

of diagnostic condition considerably easier than Quinlan has it, but it provides a 

good 'base line' attribute for comparing against the frequency based approach. In 

effect, making diagnostic condition equiprobable raises its attribute dependence 

score. _However, recall that in the thyroid domain ( 150 case histories) there were 

many other attributes at the low end of the attribute dependence scale. 
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The 150 case histories follow - one case history per line. Attribute values are 

given in the following order with abbreviated value names: 

age 
sex 
on thyroxine 
query on thyroxine 
on antithyroid medication 
thyroid surgery 
query hypothyroid 
query hyperthyroid 
pregnant 
sick 
tumor 
lithium 
goitre 
TSH 
T3 
TT4 
T4U 
FTI 
TBG 

1,2,3,4,5 
M, F 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
f,t 
n,h 
l,n,h 
l,n,h 
l,n,h 
l,n,h 
l,n,h 

Missing attributes are marked with a '?'. The instances are arranged so 

that all negative instances come first, then all hypothyroid instances, then all sick 

euthyroid instances. 

negative 

3, F, f, f, f, f, t, t, f, f, f, f, f, h, n, n, n, n, ? 
3, F, f, f, f, f, f, f, f, f, f, f, f, n, ? n, n, n, ? . ' 
5, F, f, f, f, f, f, t, f, f, f, f, t, n, h, n, n, n, ? 
4, F, f, f, f, t, f, f, f, f, f, f, f, n, n, n, n, n, ? 
? F, f, -f, f, f, f, f, f, f, £, f, f, n, n, n, n, n, ? . ' 
4, F, f, "f 

' 
f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

4, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 
2, F, t, f, f, f, f, t, . f, f, f, f, f, ? ? ? ? ? h . ' . ' . ' . ' . ' 
? F, f, f, f, f, f, f, f, f, f, f, f, h, n, n, h, n, ? . ' 
4, F, f, f, f, f, f, f, f, f, f, f, f, ? ? n, n, n, ? . ' . ' 
1, M, f, f, f, f, f, f, f, f, f, f, f, n, ? n, n, n, ? . ' 
1, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, 1, 1, n, ? 
5, F, f, ~f, f, t, f, f, f, f, f, f, f, n, n, n, n, n, ? 
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4, M, f, f, f, f, f, f, f, t, f, f, f, n, n, n, n, h, ? 

4, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, F, f, f, t, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

2, M, f, f, f, f, f, t, f, f, f, f, f, n, n, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

? M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? . ' 
2, F, f, f, f, f, f, f, f, f, f, f, f, n, h, h, h, n, ? 

4, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, F, f, f, f, f, f, f, f, f, f, f, f, ? ? ? ? ? h . ' . ' . ' . ' . ' 
4, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, F, f, f, f, f, f, t, f, f, f, f, f, ? ? ? ? ? h . ' . ' . ' . ' . ' 
4, M, f, f, f, f, f, f, f, f, f, f, f, n, n, h, h, n, ? 

? F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? . ' 
3, M, f, f, f, f, f, f, f, f, f, f, f, ? ? n, n, n, ? . ' . ' 
5, M, f, f, f, f, f, f, f, f, f, f, ·t, n, 1, n, n, n, ? 

4, F, t, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 
? F, f, f, f, f, f, f, t, f, f, f, f, n, h, n, h, n, ? . ' 
? F, f, f, f, f, f, f, f, f, f, f, f, h, 1, h, 1, h, ? . ' 
4, F, f, f, f, f, f, f, f, f, f, f, f, n, n, n, h, n, ? 

4, F, f, f, t, f, f, f, f, f, f, f, f, h, n, n, n, n, ? 

3, F, f, f, f, f, f, f, f, f, f, f, f, h, h, n, h, n, ? 

2, F, f, f, f, f, f, f, f, t, f, f, f, n, h, n, n, n, ? 
? F, f, f, f, f, f, t, f, f, f, f, f, ? ? n, n, n, ? . ' . ' . ' 
5, F, t, f, f, f, t, f, f, f, f, f, f, n, n, h, n, h, ? 

5, F, f, f, f, f, t, f, f, f, f, f, f, n, n, n, n, n, ? 

3, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, t, f, f, f, f, f, f, n, 1, n, n, n, ? 

3, F, f, f, f, f, t, f, f, f, f, f, f, n, n, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 

3, F, f, f, f, f, f, f, t, f, f, f, f, n, h, h, h, n, ? 

" -

hypothyroid 

5, F, f, f, f, £, t, £, f, f, £, f, f, h, n, 1, n, 1, ? 

2, M, £, f, f, f, f, £, f, f, f, f, f, h, ? 1, n, 1, ?-. ' 
2, F, f, f, £, £, f, f, £, f, f, £, f, h, 1, 1, n, 1, ? 

5, F, f, f, f, f, f f, £, f, f, £, £, h, 1, 1, n, 1, ? 
' 

5, F, t, f, £, f, f, f, £, f, £, f, £, h, ? 1, n, 1, ? . ' 
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4, M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

3, M, f, f, f, t, f, f, f, f, f, f, f, n, 1, 1) n, 1, ? 

4, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

1, F, t, f, f, f, f, f, f, f, f, f, t, h, n, 1, n, 1, ? 

3, F, f, f, f, f, f, f, f, f, f, f, f, h, ? 1, n, 1, ? . ' 
? M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? . ' 
3, M, f, f, f, f, f, f, f, f, f, f, f, h, h, 1, n, 1, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, h, n, n, n, n, ? . ' 
? M, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? . ' 
5, F, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 
? ? f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? . ' . ' 
5, F, f, f, f, t, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

1, F, t, f, f, f, f, f, f, f, f, f, t, h, n, 1, n, 1, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

4, F, f, f, f, f, t, f, f, f, f, f, f, h, n, n, n, 1, ? 

4, F, f, f, f, f, f, f, f, f, f, f, .f, h, n, 1, n, 1, ? 

4, F, f, f, f, f, f, f, f, f, f, f, t, h, ? n, n, 1, ? . ' 
5, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

5, F, f, f, f, f, t, f, f, f, f, f, f, h, n, n, n, 1, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

3, M, f, f, f, f, f, f, f, f, f, f, f, h, n, n, n, 1, ? 

2, F, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

3, F, t, f, f, f, f, f, f, f, f, f, f, h, h, n, h, 1, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, h, 1, ? . , 
4, F, f, f, f, f, f, f, f, f, f, f, t, h, n, n, h, 1, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

5, M, f, £, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 

3, M, f, f, f, f, t, f, f, f, f, f, f, h, ? 1, n, 1, ? . ' 
2, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? . ' 
5, F, f, . f, f, f, t, f, f, f, f, f, f, h, n, 1, n, 1, ? 

4, M, f, ~f f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 
' 5, F, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

4, F, t, f, f, f, f, f, f, f, f, f, f, h, ? 1, n, 1, ? . ' 
2, F, f, f, f, f, t, f, f, f, f, f, f, h, ? 1, n, 1, ? . ' 
3, M, f, f, f, f, f, f, f, f, f, f, f, h, n, 1, n, 1, ? 

3, F, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, n, 1, ? 
? M, f, f, f, f, f, f, f, f, f, f, f, h, 1, 1, h, 1, ? . ' 
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sick euthyroid 

? M, f, f, f, f, f, f, f, f, f, f, f, n, 1, 1, n, n, ? . ' 
? M, £, £, £, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . , 
2, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

3, M, f, £, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

. 1, M, £, £, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 
4, M, f, f, f, f, f, f, f, t, f, f, f, n, 1, n, n, n, ? 
? M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
5, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

3, M, f, f, f, f, f, f, f, f, f, f, f, n, n, n, n, n, ? 
? M, £, £, f, f, f, t, f, f, f, f, f, n, 1, n, n, n, ? . , 
4, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
4, F, f, f, f, f, f, f, f, t, f, f, f, n, 1, 1, 1, 1, ? 

5, M, f, £, f, f, f, £, f, f, f, f, f, n, 1, n, n, n, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, n, n, h, n, n, ? . , 
4, F, f, f, f, f, f, f, f, f, f, f, f, n, h, h, n, h, ? 
5, M, f, f, f, f, f, f, f, t, f, f, .f, n, 1, n, n, n, ? 

5, F, £, £, f, f, f, f, f, t, f, £, f, n, 1, n, n, n, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
4, M, f, f, f, f, f, f, f, t, f, f, f, n, 1, 1, n, 1, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, 1, n, n, ? 

4, M, f, f, f, f, f, f, f, t, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, t, f, f, n, 1, n, n, n, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
5, M, £, £, £, f, f, f, f, f, f, f, t, n, 1, n, n, n, ? 
? ? f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' . ' 
3, F, £, f, £, f, f, f, f, f, f, f, £, n, 1, n, n, n, ? 
? F, f, f, f, t, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
5, F, f, f, f, f, f, f, f, t, f, f, f, n, 1, n, n, n, ? 
? ? f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' . ' 
5, F, f, f, f, f, f, f, f, £, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, t, f, f, f, n, 1, n, n, n, ? 

2, M, £, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F ,_ f, ~ _ f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, t, f, f, f, n, 1, 1, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

2, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, h, ? 

3, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 
? F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? . ' 
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5, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F, t, £, f, f, t, £, f, f, f, £, f, n, 1, n, n, n, ? 

4, M, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, F, f, f, f, f, f, f, f, t, f, f, f, n, 1, n, n, n, ? 

4, F, f, f, f, f, f, f, f, f, f, f, f, n, 1, n, n, n, ? 

5, M, f, f, f, f, f, f, f, f, f, f, f, ? 1, n, n, n, ? . ' 
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SENATE VOTING RECORDS 

The votes of 100 senators that were cast along 14 'key votes' were taken from 

the 1985 edition of the Congressional Quaterly. Each senator was considered an 

object. Each vote was considered an attribute. In the original data, each vote 

could have one of eight values. The values were: 

Y (voted yes) 
# (paired for) y (for bill) 
+ (announced for) 

N (voted no) 
X (paired against) n (against bill) 

(announced against) 

P (voted present) 
C (voted present to avoid conflict of interest) 

The first three values (Y, #, +) are all instances of a senator being for a bill. 

Thus these values were mapped onto a single value, 'y'. Likewise, the values (N, X, 

-) were mapped onto 'n'. The last two values were treated as unknown(?), along 

with cases where there was absolv iy no value for a senator along a particular vote. 

The vote (y, n, or ?) of senators are listed in the following order: 

Emergency Farin Credit 
MX Missile Production 
Budget Resolution 
Anti-Missile Defense 
Nicaragan 'Contra' Aid 
United Nations Budget 
Gun Control 
Line-Item Y~to 
School Prayer 
Seasonal Workers 
Toxic-Waste Victims Aid 
Gramm-Rudman-Hollings 
Textile Import Limits 
Farm Bill 
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The name of the senator is given first, although neither this or political party 

were given in the object descriptions given to COBWEB. 

den ton 
murkowski 
st evens 
gold water 
wilson 
armstrong 
weicker 
roth 
haw kins 
mat tingly 
mcclure 
symms 
lugar 
quay le 
grassley 
dole 
kassebaum 
mcconnell 
co hen 
mathias 
boschwitz 
durenberger 
cochran 
danforth 
hecht 
laxalt 
humphrey 
rudman 
domenici 
damato 
east 
helms ~. 
andrews 
nickles 
hat field 
packwood 
heinz 
specter 
chafee 

y y y 
y y y 
y y y 
? y y 
n y y 
n y y 
y n y 
n y y 
y y n 

n y y 
n y y 
n y y 
n y y 
n y y 
y n y 
n y y 
n n y 
n y y 
n y y 
y y n 
n y y 
y n y 
n y y 
y y y 
n y y 
n y y 
n y y 
n y y 
n y y 
y y n 
n y y 
n y y 
y n y 
n y y 
y n y 
n y y 
n y y 
y y n 
n y y 

Republican 

n y y 
n y y 
n y y 
n ? y 
n y y 
n y ? 
y n n 
n y y 
n y y 
n y y 
n y y 
n y y 
n y y 
n y y 
y y y 
n y y 
y y y 
n y ? 
n n ? 
y n n 
n y y 
n y y 
n y y 
n y y 
n y y 
n y ? 
n y y 
n y ? 
n y y 
n y y 
? y y 
n y y 
n y y 
n y y 
y n n 
n n y 
n y y 
? n y 
y n n 

y 
y 
y 
y 
y 
? 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
n 

y 
y 
y 
y 
y 
y 
n 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
n 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
n 
n 
y 
y 
y 

n y 
n y 
y y 
y y 
y y 
n y 
y n 
n n 
n y 
n y 
n y 
n y 
y y 
n y 
n n 
n y 
y y 
n y 
y n 
y n 
y y 
y n 
n y 
y n 
n y 
n y 
n y 
y y 
y y 
y y 
? y 
n y 
y n 
n y 
y y 
y n 
y n 
y y 
y n 

y y 
y y 
y y 
y y 
y y 
y y 
y n 
y y 
y y 
y. y 
y y 
y y 
y y 
y y 
y y 
y y 
y n 
y y 
n y 
n ? 
y y 
n y 
y y 
y y 
y y 
y y 
n y 
y y 
y y 
n y 
? y 
y y 
? y 
y y 
y n 
n y 
n y 
n y 
n y 

y 
n 
n 
n 
n 
n 
y 
y 
y 
y 
y 
n 
n 
n 
n 
y 
n 
y 
y 
y 
n 
n 
y 
n 
n 
y 
n 
y 
y 
y 
y 
y 
n 
n 
n 
n 
y 
y 
n 

y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
y 
y 
y 
y 
y 
n 
y 
y 
y 
y 
y 
y 
y 
y 
? 
y 
y 
n 
y 
y 
y 
y 
y 



thurmond 
abdnor 
pressler 
gramm 
garn 
hatch 
st afford 
trible 
warner 
evans 
gorton 
kasten 
simpson 
wallop 

proxmire 
rockef ell er 
byrd 
leahy 
bent sen 
sasser 
gore 
hollings 
pell 
boren 
metzenbaum 
glenn 
bur dick 
moynihan 
bingaman 
lautenberg 
bradley 
zorinsky 
ex on 
melcher 
baucus
eagleton 
stennis 
riegle 
levin 
kerry 
kennedy 
sarbanes 

n y y 
y y y 
y n y 
n y y 
n y y 
n y y 
n n y 
n y y 
n y y 
n y y 
n y y 
y y y 
n y y 
? y y 

n y 
n y 
n y 
n y 
n y 
n y 
n n 
n y 
n y 
n n 
n n 
n y 
n y 
n y 

y y 
y y 
y y 
y y 
y y 
y y 
y y 
y y 
y y 
y y 
y y 
? y 
y y 
y y 

y 
y 
y 
y 
y 
y 
n 
y 
y 
y 
y 
y 
y 
y 

n 
n 
n 
n 
n 
y 
y 
n 
n 
y 
y 
n 
n 
n 

Democrat 

n n 
y n 
y y 
y n 
y y 
y n 
y y 
y n 
y n 
y y 
.y n 
y n 
y n 
y n 
y n 
y n 
y n 
y y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 

n 
n 
n 
n 
y 
n 
n 

n 
n 

n 

n y 
n y 
n n 
n y 
n n 
n y 
n y 
n n 
n y 
n n 
n y 
n n 
n y 
n y 
n n 
n y 
n n 
y n 
y 
n 
n 

n 
n 

n 
n 

n 
n 
n 

n 
y 
y 
y 
? 
y 
y 
y 
y 
y 

n y 
y ? 
y y 
n ? 
y y 
n y 
n y 
y y 
n n 
y y 
n y 
n y 
n y 
n n 
n y 
n y 
n ? 
n y 
y 
n 
n 
n 
y 
n 
n 

n 
n 

n 

y 
? 
y 
y 
y 
y 
y 
n 
? 
n 

y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
n 
y 
y 
n 
y 
n 
? 
y 
y 
y 
y 
y 
? 
y 
n 
n 
n 

n 

y ,y 
n y 
n y 
y y 
n n 
n n 
n y 
y y 
y y 
y y 
n y 
n y 
n y 
n y 
n y 
n y 
n y 
y y 
y 
n 
n 

n 
n 
n 
n 
n 
y 
n 

n 
y 
y 
y 
n 
y 
y 
y 
y 
y 

y 
y 
n 
y 
y 
y 
n 
y 
y 
y 
y 
n 
n 
y 

y y 
y y 

y ,Y 
y y 
y y 
n y 
n n 
y y 
y y 
y y 
y y 
y y 
y y 
y y 

n n y 
n n y 
n n n 
y n y 
y Y. y 
y n y 
y n y 
y y y 
n n n 
y ? y 
n n n 
n y n 
n n y 
n ? n 
n y n 
n n n 
n n n 
n y y 
y 
n 
y 
n 
? 
y 
n 
n 
n 

tJ. 

n 
n 
n 
n 
? 
n 
n 

n 
n 

n 

n 
y 
y 
n 
y 
n 
y 
y 
y 
n 

y y 
n n 
n n 
n y 
y y 
y y 
n ? 
y y 
y y 
n y 
n y 
y n 
n y 
n y 

y 
y 
y 
y 
y 
y 
y 
y 
y 
n 
y 
y 
n 
y 
y 
y 
n 
n 
n 
y 
n 
y 
y 
y 
y 
y 
y 
y 

y 
n 
n 
n 
y 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 

n 
n 

n 
n 
n 
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mitchell y n n y n y y n y y n n y n 
long y y n n y n ? n n n y y y y 
johns ton y n n y y y y n n n y n y y 
ford y n n y y y y n n n n y y n 
harkin y n n y n y y n y n n n n n 
simon y n n y n ? ? n y n n y y n 
dixon y n n n y y y y y n n y y n 
matsunaga y n n y n n n n y n n n n y 
inouye y n n y n n n n y ? n n n ? 
nunn y y n n y y y y y y y y y y 
chiles y n n y y y y n y n n n ? y 
bi den y n n y n n y y y n n y y n 
dodd y n n y n y n n y n n y y n 
hart y n n y n n n n y n n n n n 
cranston y n n y n ? n n y n n n n y 
pry or y n n y n y y n y y n y y y 
bumpers y n n y n ? y n y y n y y y 
deconcini y y n y y y y y y y n y y y 
he:flin y y n n y y y y ·Il y y y y n 








