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Abstract: Three different Bacillus bacteriophages designated TP21 are known from the 

literature. We have determined the sequence and structure of the TP21-L genome, and 

compared it to the other phages. The genome is 37.5 kb in size, possesses fixed invariable 

genome ends and features the typical modular organization of a temperate siphovirus. 

TP21-L is neither identical to TP21 isolated by Thorne (TP21-T), as shown by a PCR-based 

approach nor to TP21 isolated by He et al. (TP21-H), as estimated from phage dimensions. 

For reasons of clarity, we suggest renaming the different TP21 isolates. 

Keywords: TP21; Bacillus; bacteriophage 

 

1. Introduction 

Bacillus anthracis, B. cereus and B. thuringiensis are closely related organisms and represent a 

diverse range of pathogens as well as biotechnologically useful, non-pathogenic bacteria [1-4]. 

Bacteriophages and their components can be very useful tools for typing, detection and control of 
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pathogenic bacteria in the food chain, biodefense measures, and for treatment of human infections. 

Thus, a better knowledge of the phages infecting Bacillus bacteria is highly desirable [5-8]. 

It is unfortunate that, over the last decades, the name TP21 has been assigned to three independently 

isolated phages infecting B. anthracis, B. thuringiensis and B. cereus [9-11]. However, it may be 

assumed that all of them are different, based on electron microscopy and/or partial genome sequences 

available [10]. The aim of this study was to determine the complete genome sequence of a specific 

TP21 phage isolate previously studied in our laboratory [10]. For reasons of clarity, we added the 

modifier "L" to the phage name, i.e., naming it TP21-L. 

2. Results and Discussion 

TP21-L was propagated using host HER1399 (ATCC 13472) in liquid culture [10], and purified by 

poly-ethylene glycol precipitation and density gradient centrifugation as described elsewhere [12]. 

Electron microscopy of purified negatively stained phage particles [13,14] (Figure 1), allowed 

assignment of TP21-L to the Siphoviridae family, in the order of the Caudovirales [15]. The phage 

features an isometric head of 58.5 nm diameter and a long, non-contractile, flexible tail of 144.8 nm 

length and 11.0 nm diameter. A putative tail fiber could be observed (Figure 1, indicated by arrows), 

corresponding to a putative tail fiber encoding gene in the genome of TP21-L (see below).  

Figure 1. Transmission electron micrographs of TP21-L virions negatively stained with 

2% uranyl acetate or 2% ammonium molybdate. The bar represents 50 nm. A putative tail 

fiber structure is indicated by arrows. 

 
 

Phage genomic DNA was extracted from purified phage as described elsewhere [12]. The TP21-L 

genome sequence was determined using a shotgun cloning and sequencing approach, followed by 

manual gap closing using primer walking. After assembly of the complete genome with 5.6-fold 

average coverage, TP21-L revealed a unit genome sequence of 37,456 base pairs (Figure 2), which is 
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in good agreement with pulsed field gel electrophoresis analysis of full length phage DNA [13] 

(Figure 3). The G+C content is 37.8 mol%, slightly higher than that of the host bacteria (35.5 mol%, as 

determined from Genbank data of published host bacteria genomes (NC_003909, NC_004742, 

NC_005957, NC_003997, and NC_008600). The sequence of TP21-L has been deposited in the 

databases under accession number EU887664.  

Figure 2. Genome map of TP21-L. The lysogeny control region is shown in blue, the lysis 

cassette in red. Structural genes (late genes) are depicted in yellow and putative early 

genes involved in DNA recombination, replication and modification in green. 

Abbreviations are: TerS: Terminase small subunit. TerL: Terminase large subunit. Cps: 

Major capsid protein. Tmp: Tail tape measure protein. Hol: Holin. Ply: Endolysin. 

Numbers to both sides of the graph indicate nt position in the genome sequence. Genes are 

numbered according to annotation. 

 
 

Figure 3. Pulsed-field gel electrophoresis of full length TP21-L genomic DNA prepared 

by phenolic extraction. a. and b. MidRange PFG Marker I and II (New England Biolabs, 

Switzerland). c. TP21-L DNA 

 
 

The TP21-L DNA molecule features invariable, fixed ends, as revealed by the typical pattern of 

single fragments disappearing over time when Bal31-predigested DNA is subjected to restriction 

digestion [13] (Figure 4). Heating of restriction digests prior to electrophoresis did not reveal any 

change compared to non-heated samples (data not shown), suggesting the absence of cohesive ends 

[16].  
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Figure 4. Gel electrophoresis of TP21-L DNA predigested with Bal31 nuclease (New 

England Biolabs), phenolized and subsequently digested with PvuI restriction 

endonuclease (Fermentas). Marker: 1kb Marker (Fermentas). Other lanes: untreated DNA 

and PvuI digest of DNA pretreated with Bal31 for indicated time. Arrows indicate 

fragments disappearing over time. 

 
 

Fifty-six putative open reading frames could be identified in the TP21-L genome, but only 17 of 

them revealed homologies to proteins of other bacteriophages (Table 1). No indication for modified, 

hydroxy-methylated bases [17] was found by restriction profiling. Mass spectrometry based 

identification (MALDI-MS peptide fingerprinting) of SDS-PAGE-separated structural proteins 

(Figure 5) [13,18] led to the identification of ten distinct protein species: one could be allocated to a 

minor structural protein (gp17) of 192.6 kDa, and another could be allocated to the putative tape 

measure protein (gp15) of 99.9 kDa. The dimension of the phage tail is in good correlation with the 

size of the Tmp protein, as demonstrated for phage Lambda and others [19-21] (Table 1, Figure 2). 

The putative portal protein (gp3) was identified in a band of approx 67 kDa, not in agreement with the 

predicted mass, and a tail fiber protein (Figures 1, 2) (gp16) was identified in a band of approx. 58 

kDa. A putative capsid protein (gp4) as well as the major capsid protein (gp7) were also identified (39 

kDa and 30 kDa, respectively). Yet another band (approximately 21 kDa) apparently contained traces 

of the major capsid protein, probably due to proteolytic cleavage or posttranslational modification of 

Cps, a fact also observed in other phages [13,22]. The predicted gene products gp6, gp8, and gp11 

could also be identified as structural proteins, but do not exhibit amino acid homology to any known 

protein from the databases. However, the predicted mass of gp6 did not match the observed mass 

(Figure 5), suggesting posttranslational processing of this protein.  

 



Viruses 2010, 2                            

 

 

965

Table 1. General features, database matches and functional assignments of coding 

sequences (cds) of the Bacillus phage TP21-L genome for which homologies (e-value 

< 0.01) to known proteins could be found. Molecular mass (MM) and isoelectric points 

(pI) of the gene products (gp) are indicated. An asterisk indicates transcription on the 

complementary strand. 

cds start stop MM (kDa) pI amino acid homologies (best hits) and deduced putative 

function 

1 10 489 17.8 6.6 Phage terminase small subunit (various Streptococcus, 

Bacillus, Clostridium and Enterococcus prophages) 

2 808 2127 51.8 8.4 Putative large terminase subunit (Staphylococcus phage 

CNPH82) 

3 2299 3771 56.8 5.0 SPP1 family phage portal protein; ORF003 Staphylococcus 

phage 187 

4 3775 4800 39.9 9.4 Putative head protein (Clostridium phage phi CD119); 

SPP1 family phage head morphogenesis protein 

7 5798 6634 30.8 5.9 Putative major head protein (various Clostridium 

prophages) 

9 7040 7372 12.4 9.0 Putative phage head-tail adaptor (Bacillus prophages) 

10 7372 7788 15.4 10.7 Phage protein, HK97 gp10 family (Bacillus cereus 

NVH0597-99 and others) 

15 9651 12494 99.9 5.3 Phage tail tape measure protein, TP901 (Bacillus 

prophages) 

16 12506 14020 57.8 6.0 Phage putative tail component (Bacillus cereus subsp. 

cytotoxis NVH 391-98); phage tail fiber protein (Bacillus 

phage Gamma) 

17 14024 19144 192.6 6.3 Phage minor structural protein (Bacillus prophages) 

19 19500 20291 29.7 8.9 Lysin (Bacillus phage IEBH); prophage LambdaBa01, N-

acetylmuramoyl-L-alanine amidase 

20* 20372 21754 53.7 8.9 Recombinase (Bacillus and Paenibacillus prophages) 

21* 21754 22386 23.9 8.9 Transcriptional regulator (Bacillus thuringiensis serovar 

monterrey BGSC 4AJ1) 

22 22645 22893 9.8 9.4 Cro-like protein, phage associated (Lactobacillus phage 

Sal2) 

32 26585 27400 32.5 8.9 ORF016 (Staphylococcus phage 42E); primosome, DnaD 

subunit (Geobacillus sp.) 

34 27570 28313 29.2 9.2 Rha family regulatory protein (Bacillus weihenstephanensis 

KBAB4); phage regulatory protein, Rha family 

(Paenibacillus sp. JDR-2) 

40 30404 31744 51.3 6.1 Replicative DNA helicase (Bacillus thuringiensis serovar 

tochigiensis BGSC 4Y1) 
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From the genome sequence (Figure 2), the endolysin (gp19) [10,23], a putative holin (gp18; 

featuring a TMHMM-predicted transmembrane domain [24]), as well as the lysogeny control region 

could be deduced. The latter consists of only two genes (gp20 and gp21) (Figure 2), whose predicted 

products share homologies with a transcription repressor and a recombinase. This correlates well with 

the ability of TP21-L to lysogenize its host (HER1399). In order to demonstrate this, we have isolated 

clones of HER1399 resistant to infection with TP21-L, sub-cultured the cells, treated them with UV 

light (254 nm, 120 mJ/cm2, 2 min), and used the sterile-filtered supernatants for demonstration of lytic 

activity against HER1399 on pre-inoculated agar plates. As a control, a UV-induced culture of wild-

type HER1399 did not release any phage. The lysogenized strains were homoimmune to 

superinfection with up to 109 Pfu/ml TP21-L. PCR using TP21-L specific primers (see below) 

confirmed the presence of phage in the lysogenized strains (results not shown). 

Figure 5. SDS-PAGE of TP21-L structural proteins. Left: Size Marker, molecular mass is 

indicated. Right: TP21-L structural proteins and their assignment as deduced from 

MALDI-MS/MS analysis. Abbreviations: Cps: Major capsid protein. Tmp: Tail tape 

measure protein.  

 
 

Unfortunately, the designation TP21 has coincidentally been assigned to a total of three phages in 

the past. In our attempt to identify the individual TP21 isolates and clarify their nomenclature, the 

origins and history of the isolates is briefly described. TP21-L was made available to our lab by Hans-

Wolfgang Ackermann, from the Félix d’Herelle Reference Center for Bacterial Viruses in 1994; it was 

described as a phage infecting Bacillus thuringiensis and designated TP21. Unfortunately, it was not 

possible to further elucidate the exact origin of this phage, and it was also not kept in the Félix 

d’Herelle Reference Center for Bacterial Viruses collection. However, since the genome sequence is 
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now available, and it is also clear that TP21-L is unique among the Bacillus phages, it should be re-

deposited in the collection.  

The second Bacillus phage named TP21 was isolated more than 20 years ago by Ruhfel and Thorne 

[11,25]. We propose that this phage should be renamed to TP21-T. The phage is unusual since it was 

shown to persist as an autonomously replicating plasmidal prophage in B. thuringiensis kurstaki [25]. 

In order to determine that TP21-L is different from TP21-T, we designed and used a set of PCR 

primers to amplify unique sequences of 0.5 to 1.1 kb from the genomes of both phages (the primer 

sequences were generated based on the unpublished genome sequence of TP21-T (R. Okinaka and P. 

Jackson, personal communication). Amplification with primers specific for TP21-L phage do not yield 

detectable products using template DNA from B. thuringiensis kurstaki HD1-9 or strain DP 4848 / UM 

101, a carrier of TP21-T (Figure 6), although the primer combination TP21-L2_Fw an TP21-L2_R 

seems to produce an unspecific product both with HER1399 and DB 4848 as template (Figure 6, 

lane 2). Using primer combinations specific for TP21-T produced products of the expected size with 

strain DB 4848 as template but not with HER1399 (Figure 6). Vice versa, using TP21-L DNA as 

template did also not yield specific amplification products with TP21-T-specific primers [11] (data not 

shown). We conclude that TP21-L is not the same as TP21-T from Ruhfel and Thorne [11,25].  

Figure 6. PCR detection of TP21-T. Left block: A colony of HER1399 was used as 

template. Right block: A colony of DB 4848 / UM 101 was used as template. M: 1kb 

Marker (Fermentas). 1. Primer combination TP21-L1_Fw and R; 2: Primer combination 

TP21-L2_Fw and R; 3: Primer combination TP21-T1_Fw and R; 4: Primer combination 

TP21-T2_Fw and R. 5: Negative control (no primer). 

 
 

The third TP21 isolate was isolated from a Chinese factory producing B. thuringiensis powder and 

described by He and coworkers [9], and thus renamed to TP21-H. This phage apparently features an 

elongated head of 87 x 55 nm and a flexible tail of 140 x 8 nm in size (B2 morphotype), thus clearly 

distinguishing it from TP21-L (Figure 1). Unfortunately, however, further details are not available, and 

the whereabouts of TP21-H are unclear. It is not kept in the Félix d’Herelle Reference Center for 

Bacterial Viruses collection or any other collection, and has probably been lost (H.-W. Ackermann, 

personal communication). Even though, we propose to name this phage TP21-H, should it ever be 

rediscovered or reisolated.  
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3. Experimental Section 

3.1. Phage Propagation 

Phage TP21-L was propagated on B. cereus HER1399 (ATCC 13472) at 30°C in liquid culture in 

half-strength BHI media (Biolife, Italy) under light agitation. Phages were PEG precipitated (PEG 

8000, Fluka, Switzerland) over night at 0°C from cleared lysates and purified by CsCl density gradient 

centrifugation [12] in a Beckmann L-60 ultracentrifuge at 76.000 x g for 18 h. 

3.2. Transmission Electron Microscopy 

Electron micrographs of purified TP21-L particles were taken as previously described [13,14]. 

TP21-L was negatively stained with 2% uranyl acetate or 2% ammonium molybdate. Samples were 

observed with a Philips CM100 microscope (FEI, USA) at 100 kV equipped with a TVIPS Fastscan 

charge-coupled-device camera (Tietz Systems, Germany). 

3.3. DNA Isolation and Sequencing 

TP21-L DNA was extracted from CsCl purified phage after dialysis against 2.000-fold excess of 

SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-Cl) at 4°C by organic extraction [12]. Briefly, 

following EDTA (0.5 M) and Proteinase K (50 µg/ml) treatment at 56°C for 1 h, DNA was extracted 

by subsequent steps of phenol, phenol-chloroform and chloroform-isoamyl alcohol (Roth, Germany) 

addition, centrifugation and removal of the organic phase, followed by ethanol precipitation [12]. For 

the preparation of phage DNA shotgun libraries, DNA was sonicated (Sonopuls, Bandelin, Germany) 

to 1-3 kb fragment size, size-exclusion selected by electrophoresis, blunt-ended (EndIt Repair Kit, 

Epicentre, USA) and ligated into EcoRV (Fermentas, Germany)-linearized pBLUESCRIPT II SK 

minus (Stratagene, USA) vector, followed by electroporation into E. coli XL1-blue MRF’ and blue-

white screening. Confirmed inserts were sequenced using primers M13forward 

(GTAAAACGACGGCCAGT) and M13reverse (CAGGAAACAGCTATGACC). Gaps remaining 

between contigs were closed by a primer walking strategy using purified genomic phage DNA as 

template. Primers were derived from the contig sequences as they became available. 

3.4. Peptide Mass Fingerprinting 

Phage proteins were separated by horizontal sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis on 8–18% gradient gels (GE Healthcare, Germany) as described previously [13]. 

Unstained Protein Molecular Weight Marker (Fermentas) was used as molecular size marker. Gels 

were stained with Coomassie blue R-350 (Phastblue R; GE Healthcare). Major bands were excised 

from the gel and, after tryptic in-gel digestion, analyzed by matrix-assisted laser desorption ionization-

time of flight mass spectrometry (MALDI-MS/MS) to determine the peptide masses of the fragments 

(Functional Genomics Center Zurich, Switzerland). Data were analyzed using Scaffold 2 (Proteome 

Software Inc., USA) software. Protein domains were predicted with InterProScan 

(http://www.ebi.ac.uk/InterProScan). 
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3.5. Bal31 Nuclease Treatment, PCR and Electrophoresis 

For determination of the genome structure of TP21-L, 20 µg of purified TP21-L DNA were treated 

with 10 U of Bal31 nuclease (Fermentas) at 30 °C. Samples were taken 0, 5, 10, 20 and 40 min after 

treatment and phenol-chloroform extracted [12], followed by subsequent restriction with PvuI 

(Fermentas) for 3 h at 37 °C and electrophoresis. 

PCR was performed using 2x PCR Master Mix (Fermentas) according to the manufacturer’s 

instructions and 2 µl of one colony of bacterial strain dissolved in 100 µl water or approximately 1x107 

pfu phage were used as template. Primers used were TP21-L1_Fw (TCTGGTCAAGGTCGATATGG), 

TP21-L1_R (TGTATTTCCGTAGGTTTGCC), TP21-L2_Fw (CGGATGAAACGATCAAAGG) and 

TP21-L2_R (TGACTCACATTCCCACGG) for TP21-L and TP21-T1_Fw (GTACATACTGAT 

TTCACTGCTACC), TP21-T1_R (GGTAATTGGTCGTGTTGAGG), TP21-T2_Fw (GCTGTAT 

CAAATCCTAGAGAGC) and TP21-T2_R (AGCACACCTTATGAGTAGTAAGG) specific for 

TP21-T. We used an annealing temperature of 52°C and 1.5 min elongation time in a Biometra T3000 

Cycler. 

Pulsed-Field Gel Electrophoresis of purified phage DNA was performed in a CHEF-DR III 

apparatus (Biorad, Germany) at 1–5 s switch time, 120° angle and 5 V/cm in 14 °C 0.5x TBE buffer 

for 20 h. Conventional electrophoresis was done in a Pharmacia GNA-200 electrophoresis apparatus at 

2 V/cm for 6 h in 1x TAE buffer.  

3.6. Bioinformatics 

Sequences were edited and aligned using the software Vector NTI Advance version 10.3 

(Invitrogen, Switzerland) or CLC Main Workbench Version 5.5 (CLC Bio, Denmark). Open reading 

frames (ORFs) corresponding to a minimum size of 30 amino acids were predicted with Vector NTI or 

CLC Main Workbench using ATG, GTG, and TTG as possible start codons. The BLAST algorithms 

used for sequence homology searches are available through NCBI (http://www.ncbi.nlm.nih.gov), 

Vector NTI, or CLC Main Workbench. 

4. Conclusions 

We present the complete genome sequence and molecular characterization of the temperate Bacillus 

phage TP21-L. The TP21-L unit genome is 37.5 kb in size and encodes 56 open reading frames, 17 of 

which could be assigned a putative function. Ten structural proteins of the virion were identified by 

peptide mass fingerprinting. We analyzed the relationship of TP21-L to two Bacillus phages sharing 

the same designation. The three TP21 isolates analyzed here clearly represent different phages, as 

determined by genome sequencing of TP21-L, PCR probing of TP21-T and comparison of 

morphological data on TP21-H and TP21-L. Only two of them have been maintained, and they should 

be designated TP21-L and TP21-T. Unfortunately, the confusion in naming or re-naming 

bacteriophages is symptomatic for the confusing nomenclature of phages infecting many different 

organisms, and underlines the urgent need for a strong, reliable and unambiguous classification 

scheme which should be based primarily on molecular data. Most bacteriophage names do not provide 

immediate recognition of host and origin and often have dual meanings (e.g. TP can stand for 
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‘transducing phage’ or ‘B. thuringiensis phage’). Recently, a rational scheme for phage nomenclature 

has been proposed by Kropinski et al. [26], which would resolve ambiguities by a name prefix 

composed of virus type identifier, host abbreviation, virus family and specific designation. However, 

the TP21 phages represent the rare case where even such a robust system alone would fail, since all 

TP21 phages are from the same virus type, family and host organism. In these cases, the addition of a 

suffix, as proposed here, provides means of resolution of the naming disorder, even it if results in re-

naming of the phages with unpredictable side-effects to citation of scientific literature. 
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