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Information transfer is a basic feature of life that includes signal-
ing within and between organisms. Owing to its interactive na-
ture, signaling can be investigated by using game theory. Game
theoretic models of signaling have a long tradition in biology,
economics, and philosophy. For a long time the analyses of these
games has mostly relied on using static equilibrium concepts such
as Pareto optimal Nash equilibria or evolutionarily stable strate-
gies. More recently signaling games of various types have been
investigated with the help of game dynamics, which includes
dynamical models of evolution and individual learning. A dynam-
ical analysis leads to more nuanced conclusions as to the outcomes
of signaling interactions. Here we explore different kinds of
signaling games that range from interactions without conflicts of
interest between the players to interactions where their interests
are seriously misaligned. We consider these games within the
context of evolutionary dynamics (both infinite and finite pop-
ulation models) and learning dynamics (reinforcement learning).
Some results are specific features of a particular dynamical model,
whereas others turn out to be quite robust across different
models. This suggests that there are certain qualitative aspects
that are common to many real-world signaling interactions.

costly signaling | replicator dynamics | Moran process

The flow of information is a central issue across the biological
and social sciences. In both of those domains, entities have

information that can be communicated, wholly or partly, to other
entities by means of signals. Signaling games are abstractions
that are useful for studying general aspects of such interactions.
The simplest signaling games model interactions between two
individuals: a sender and a receiver. The sender acquires private
information about the state of the world and contingent on that
information selects a signal to send to the receiver. The receiver
observes the signal and contingent on the signal observed
chooses an action. Payoffs for sender and receiver are functions of
state of the world, action chosen, and (possibly) signal sent. Where
payoffs only depend on state and act, interests of sender and receiver
may be coincident, partially aligned, or totally opposed. Another
layer of complexity is added when signals may be costly to send.
The baseline case is given by signaling when the interests of

the sender and the receiver are fully aligned. This scenario was
introduced by the philosopher David Lewis in 1969 to analyze
conventional meaning (1). We thus call them Lewis signaling
games. In the simplest case the action chosen by the receiver is
appropriate for exactly one state of the world. If the appropriate
action is chosen, then the sender and the receiver get the same
payoff of, say, 1; otherwise, they get a payoff of 0.
By varying these payoffs, the sender’s and the receiver’s in-

centives may change quite radically (2). Sometimes the sender
might have an incentive to not inform the receiver about which
of several states is the true one because the action that would be
best for the sender does not coincide with the action that would
be best for the receiver in a certain state. An extreme form that
will be discussed briefly below is arrived at when this is always the
case so that the signaling interaction is essentially zero-sum.
Misaligned interests lead to the question of how reliable or

honest signaling is possible in such cases (3–5). In costly signal-
ing games certain cost structures for signals may facilitate

communication. Costly signaling games are studied in economics,
starting with the Spence game (6), and in biology (e.g., ref. 4). The
Spence game is a model of job market signaling. In a job market,
employers would like to hire qualified job candidates, but the level
of a job candidate’s qualification is not directly observable. In-
stead, a job candidate can send a signal about her qualification to
the employer. However, if signals are costless, then job candidates
will choose to signal that they are highly qualified regardless of
their qualification. If a signal is more costly for low-quality can-
didates, such that only job candidates of high quality can afford
to send it, signaling can be honest in equilibrium. In this case
employers get reliable information about a job candidate’s quality.
The models of costly signaling in theoretical biology have a

related structure. They model situations as diverse as predator–
prey signaling, sexual signaling, or parent–offspring interactions
(7). A simple example of the latter kind of situation is the so-
called Sir Philip Sidney game, which was introduced by John
Maynard Smith to capture the basic structure of costly signaling
interactions (5). In the Sir Philip Sidney game there are two
players, a child (sender) and a parent (receiver). The sender can
be in one of two states, needy or not needy, and would like to be
fed in either state. The receiver can choose between feeding the
sender or abstaining from doing so. She would like to feed the
sender provided that the sender is needy. Otherwise, the re-
ceiver would rather herself eat. This creates a partial conflict of
interest between the sender and the receiver. If the sender is
needy, then the interactions between the two players is similar
to matching states and acts in the Lewis signaling game. How-
ever, if the sender is not needy, then the payoffs of sender and
receiver diverge.
Now, it is assumed that a needy sender profits more from

being fed than a sender that is not needy. In addition, the sender
is allowed to send a costly signal. If the cost of the signal is
sufficiently high, then there is again the possibility that in equi-
librium the sender signals need honestly and the receiver feeds
the sender upon receipt of the signal.
In these costly signaling games—the Spence game or the Sir

Philip Sidney game—state-dependent signal costs to the sender
or fixed signal costs with state-dependent benefits to the receiver
realign the interests of sender and receiver.
Much of the analysis in the literature on signaling games has

focused on the most mutually beneficial (Pareto optimal) equi-
libria of the games under consideration. This would lead one to
expect perfect information transfer in partnership games, partial
information transfer in games of partially aligned interests, and
no information transfer in games of totally opposed interests.
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Perfect information transfer might be restored in problematic
cases by the right differential signaling costs.
However, we do not want to simply rely on faith that Pareto

optimal equilibria will be reached. What is required is an in-
vestigation of an adaptive dynamic that may plausibly be oper-
ative. Many dynamic processes deserve consideration. Here we
focus on some dynamics of evolution and of reinforcement
learning, where sharp results are available.

Replicator Dynamics
The replicator dynamics is the fundamental dynamical model of
evolutionary game theory (8). It describes evolutionary change in
terms of the difference between a strategy’s average payoff and the
overall average payoff in the population. If the difference is positive,
the strategy’s share will increase; if it is negative, it will decrease.
This is one way to capture a basic feature of any selection dynamics.
Not surprisingly, the replicator dynamics can be derived from vari-
ous first principles that describe selection more directly (9).
The two most common varieties of replicator dynamics are the

one-population and the two-population replicator dynamics. The
one-population replicator dynamics can be used for symmetric
two-player games (i.e., two-player games where the player roles
are indistinguishable). Let s1; . . . ; sn denote the n pure strategies
that are available to each player. Let πiðsj; skÞ be the payoff that
player i receives from choosing sj when the other player is
choosing sk. Because the game is symmetric, π1ðsj; skÞ= π2ðsj; skÞ.
This allows us to drop the indices referring to a player’s payoff
when considering symmetric games. Let x= ðx1; . . . ; xnÞ denote
a mixed strategy. Then πðsi; xÞ is the expected payoff that a player
gets when choosing s1 against x in a random pairwise interaction:

π
�
si; x

�
=

X
j

π
�
si; sj

�
xj:

Furthermore, πðx; xÞ is the expected payoff from choosing x
against itself:

πðx; xÞ=
X
j

π
�
sj; x

�
xj:

Suppose now that there is a population consisting of n types,
one for each strategy. Then a mixed strategy x describes the
relative frequency of strategies in that population. The state
space of the population is the n− 1 dimensional unit simplex.
The population evolves according to the replicator dynamics if
its instantaneous change is given by

_xi = xiðπðsi; xÞ− πðx; xÞÞ    for    1≤ i≤ n: [1]

Here, the payoff πðsi; xÞ is interpreted as the fitness of an i strategist
in the population state x, and πðx; xÞ is the average fitness of that
population. Because these fitnesses are expected payoffs, the rep-
licator dynamics requires the population to be essentially infinite.
The two-population replicator dynamics can be applied to asy-

mmetric two-player games. Let s1; . . . ; sn be player one’s pure
strategies and t1; . . . ; tm player two’s pure strategies. The mixed
strategies x= ðx1; . . . ; xnÞ and y= ðy1; . . . ; ymÞ can be identified with
the states of two populations, one corresponding to player one and
the other to player two. The state space for an evolutionary dynamics
of the two populations is the product of the n− 1-dimensional unit
simplex and them− 1-dimensional unit simplex. The two population
replicator dynamics defined on this state space is given by

_xi = xiðπ1ðsi; yÞ− π1ðx; yÞÞ    for    1≤ i≤ n and [2a]

_yj = yj
�
π2
�
tj; x

�
− π2ðy; xÞ

�
    for    1≤ j≤m: [2b]

Here, π1ðsi; yÞ is the fitness (expected payoff) of choosing strat-
egy si against population state (mixed strategy) y, and π1ðx; yÞ is

the average fitness in population one, likewise for π2ðtj; xÞ and
π2ðy; xÞ.
Both the two-population and the one-population replicator

dynamics are driven by the difference between a strategy’s fitness
and the average fitness in its population. This captures the mean
field effects of natural selection, but it disregards other factors
such as mutation or drift. In many games these factors will only
play a minor role compared with selection. However, as we shall
see, the evolutionary dynamics of signaling games often crucially
depends on these other factors. The reason is that the replicator
dynamics of signaling games is generally not structurally stable
(10). This means that small changes in the underlying dynamics
can lead to qualitative changes in the solution trajectories.
This makes it important to study the effect of perturbations of

the replicator dynamics. One plausible deterministic perturba-
tion that has been studied is the selection mutation dynamics
(11). We shall consider this dynamics in the context of two
population models. If mutations within each population are
uniform, the selection mutation dynamics is given by

_xi = xiðπ1ðsi; yÞ− π1ðx; yÞÞ+ «ð1− nxiÞ    for    1≤ i≤ n and [3a]

_yj = yj
�
π2
�
tj; x

�
− π2ðy; xÞ

�
+ δ

�
1−myj

�
    for    1≤ j≤m: [3b]

The nonnegative parameters « and δ are the (uniform) mutation
rates in population one and two, respectively. Instantaneously,
every strategy in a population is equally likely to mutate into any
other strategy at a presumably small rate. As « and δ go to zero,
the two-population selection mutation dynamics approaches the
two-population replicator dynamics. If the replicator dynamics is
structurally stable, there will be no essential difference between
the replicator dynamics and the selection mutation dynamics as
long as «; δ are small. However, the introduction of deterministic
mutation terms can significantly alter the replicator dynamics of
signaling games.

Lewis Signaling Games. From the point of view of static game
theory, the analysis of Lewis signaling games seems to be
straightforward. If the number of signals, states, and acts coin-
cides, then signaling systems are the only strict Nash equilibria. It
can also be shown that they are the only evolutionarily stable
states (12). However, other Nash equilibria, despite being non-
strict, are neutrally stable states (a generalization of evolutionary
stability) (13). This suggests that an analysis of the evolutionary
dynamics will reveal a more fine-grained picture, as indeed
it does.
Consider the one-population replicator dynamics first. The

Lewis signaling game as given in the preceding section is not
a symmetric game. It can, however, be symmetrized by assuming
that a player assumes the roles of a sender and a receiver with
equal probability and receives the corresponding expected pay-
offs (14). If there are n signals, states, and acts, the symmetrized
signaling game will have n2n strategies. This results in a formi-
dable number of dimensions for the state space of the corre-
sponding dynamics (1) even for relatively small n. A fairly
complete analysis of this dynamical system is nevertheless pos-
sible because the Lewis signaling game exhibits certain symme-
tries. The assumption that both players get the same payoff in
every outcome makes it a partnership game, a class of games for
which it is known that the average payoff πðx; xÞ is a potential
function (8). This implies that every solution trajectory converges
to a rest point, which needs to be a Nash equilibrium. The stable
rest points are the local maximizers of πðx; xÞ.
It is clear that signaling systems are locally asymptotically

stable because they are strict Nash equilibria. The question is
whether there are any other locally asymptotically stable rest
points. It can be proved that this is essentially not the case for
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signaling games with two states, signals, and acts, where both
states are equally probably (15): Every open set in the strategy
simplex contains an x such that the replicator dynamics with this
initial condition converges to a signaling system. This rather
special case does not generalize, however. If the states are not
equi-probable in this signaling game, there is an open set of
points whose trajectories do not converge to a signaling system.
Instead, they converge to states where receivers always choose
the act corresponding to the high-probability state (15).
If there are more than two signals, states, and acts, there al-

ways is an open set of points whose trajectories do not converge
to a signaling system (13, 15). They typically converge to partial
pooling equilibria (15, 16). By “partial pooling equilibria” we
mean equilibria that share three features: (i) Some, but not all,
signals are unequivocally used for states; (ii) some, but not all,
acts are unequivocally chosen in response to a signal; and (iii) no
signal is unused. The last feature makes it impossible for mutants
who use a signaling system strategy to invade by exploiting an
unused signal. A set of partial pooling equilibria P is not an
attractor because for any neighborhood N of P there exists a
solution trajectory that leaves N. Partial pooling equilibria are
Liapunov-stable, though. As is shown in ref. 13, partial pooling
equilibria coincide with those neutrally stable states that are not
also evolutionarily stable states.
A result that holds for all Lewis signaling games concerns the

instability of interior rest points. At an interior rest point, every
strategy is present, creating a “tower of Babel” situation. It can
be shown that any such rest point is linearly unstable. This
implies that the unstable manifold of these rest points has a di-
mension of at least one. Hence, there is no open set of points
whose trajectories converge to the set of interior rest points (15).
These results carry over to the case of two populations.

The game is again a partnership game. It follows that
π1ðx; yÞ= π2ðy; xÞ is a potential function of Eq. 2 and that every
trajectory must converge. Signaling systems are asymptotically
stable by virtue of being strict Nash equilibria. For signaling
games with two signals, states, and acts where the states are
equiprobable almost all trajectories converge to a signaling sys-
tem. This result fails to hold when the states are not equiprob-
able (17). Furthermore, partial pooling equilibria are stable for
Eq. 2 as in the one-population case.
The selection mutation dynamics (Eq. 3) of Lewis signaling

games was studied computationally in ref. 16 and analytically
in ref. 17. The main reason for studying selection mutation dy-
namics (Eq. 3) is that partial pooling equilibria are not isolated.
They constitute linear manifolds of rest points. It is well known
that this situation is not robust under perturbations. Introducing
mutation terms as in Eq. 3 will destroy the linear manifolds of
rest points and create a topologically different dynamics in that
region of state space.
For other games this topic was studied in ref. 18. In ref. 17 it is

shown that the function

π1ðx; yÞ+ «
X
i

log xi + δ
X
j

log yj

is a potential function for the selection mutation dynamics of the
Lewis signaling game. Hence, all trajectories converge. There are
two additional general results. The first says that rest points of
the perturbed dynamics (3) must be close to Nash equilibria of
the signaling game. There are thus no “anomalous” rest points
that are far away from any Nash equilibrium. Second, there is
a unique rest point close to any signaling system that is asymptot-
ically stable. Signaling systems remain evolutionarily significant.
There are no further general results. In ref. 17 the case of two

states, two signals, and two acts is explored in more detail. If the
states are equally probable, the overall conclusions are similar to

the results of the replicator dynamics. There are three rest
points: Two are close to signaling systems (perturbed signaling
systems) and the third is in the interior of the state space. The
latter is linearly unstable whereas the perturbed signaling sys-
tems are linearly stable. So, although there are only finitely many
rest points for the selection mutation dynamics (as opposed to
the replicator dynamics) of this game, the basic conclusion is that
in every open set in the state space there is an x such that the
selection mutation dynamics of Eq. 3 with this initial condition
converges to a signaling system.
Things are more nuanced if the two states are not equiprob-

able, as shown in Fig. 1. In this case the dynamic behavior
depends on the ratio of the mutation parameters δ=«. If δ=« is
above a certain threshold, which includes the important case
δ= «, then almost all trajectories converge to one of the signaling
systems. If δ=« is below the threshold, then there exists an as-
ymptotically stable rest point where nearly all members of the
receiver population choose the act that corresponds to the more
probable signal. Thus, outcomes with basically no communica-
tion are robust under the introduction of mutation into the
replicator Eqs. 2a and 2b.
It is very difficult to analyze the selection mutation dynamics

(Eq. 3) of Lewis signaling games for the case of three states, acts,

Fig. 1. A bifurcation for a signaling game with two signals under the se-
lection mutation dynamics. The game shows a fragment of the full state
space with two sender strategies and three receiver strategies. Dots indicate
rest points. Black dots indicate asymptotically stable rest points and white
dots indicate unstable rest points. In A the ratio δ=« is sufficiently large
(including the case δ= «) so that orbits converge to one of the two signaling
systems from almost all initial conditions. However, in B, one rest point close
to the upper boundary of the state space is asymptotically stable; hence,
some orbits converge to this rest point and not to the signaling systems.
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and signals. The main reason is the rapidly increasing dimen-
sionality of the state space. In a two-population model, there
are 27 types of individuals in each population, resulting in the
product of two simplexes that has 52 dimensions. By exploit-
ing the underlying symmetry of the Lewis signaling game and
by introducing certain simplifications, it is nonetheless possi-
ble to prove some results. The main results concern the ex-
istence of rest points close to Nash equilibria other than the
signaling systems. Most notably, at least one rest point exists
close to each component of partially pooling Nash equilibria.
It can be shown that for all mutation parameters this rest
point is linearly unstable.

Costly Signaling Games. The Spence game and the Sir Philip
Sidney game were studied with the help of the replicator dy-
namics. Additionally, simplified versions of the Sir Philip Sidney
game and related games were analyzed recently (19). For all
these games, the replicator dynamics leads to very similar results,
which can differ quite markedly from those obtained in finite
population models (discussed below in Finite Population Dynamics).
The dynamics of Spence’s model for job market signaling is

explored in ref. 20 for a dynamic process of belief and strategy
revision that is different from the dynamical models considered
here, although the analysis leads to somewhat similar results. In
ref. 21 the two-population replicator dynamics (2) of Spence’s
game is investigated. (Strictly speaking, it is a discretized variant
of Spence’s original game that has a continuum of strategies.)
For all parameter settings there exists a pooling equilibrium
where senders do not send a signal and receivers ignore the
signal. If signaling cost is sufficiently high, then a separating
equilibrium exists; the separating equilibrium can be viewed as
the analog to a Lewis signaling system where signals are used for
revealing information about the sender. If signaling cost is not
high enough, a so-called hybrid equilibrium exists where senders
mix between using signals reliably and unreliably, and where
receivers sometimes respond to a signal and sometimes ignore it.
As is pointed out in ref. 21, the hybrid equilibrium has been
almost completely ignored in the large literature on costly sig-
naling games, although it provides an interesting low-cost alter-
native to the standard separating equilibrium (19).
It can be shown that the pooling equilibrium in this version of

Spence’s game is always asymptotically stable for the replicator
dynamics (Eq. 2). The same is true for the separating equilib-
rium, provided that it exists. The dynamic behavior of the hybrid
equilibrium is particularly interesting. It is Liapunov-stable.
More precisely, it is a spiraling center. It lies on a plane on the
boundary of state space. With respect to the plane, the eigen-
values of the Jacobian matrix evaluated at the hybrid equilibrium
have zero real part, which makes it into a center when we restrict
the dynamics to the plane. In particular, on the plane the tra-
jectories off the rest point are periodic cycles. With respect to the
interior of the state space, the eigenvalues of the Jacobian
evaluated at the hybrid equilibrium are negative. Hence, from
the interior trajectories approach the hybrid equilibrium in a
spiraling movement.
The same is true for other costly signaling models such as the

well-known Sir Philip Sidney game (19, 22). In particular, hybrid
equilibria exist and are dynamically stable for Eq. 2 in the same
way as for the job market signaling game. This suggests that
hybrid equilibria can be evolutionarily significant outcomes.
Both refs. 21 and 22 present numerical simulations that reinforce
this conclusion in terms of the relative sizes of basins of attrac-
tion. According to these simulations, the basin of attraction of
hybrid equilibria is quite significant, whereas the basin of at-
traction for separating equilibria is surprisingly small.
A question that has only recently been investigated is whether

the hybrid equilibrium continues to be dynamically stable under
perturbations of the dynamics (Eq. 2). The question of structural

stability is important here as well because a spiraling center is not
robust under perturbations. Small perturbations of the dynamics
will push the eigenvalues with zero real part to having positive or
negative real part. So it seems possible that by introducing mu-
tation as in Eq. 3 the hybrid equilibrium might cease to be
dynamically stable.
This is not so for sufficiently small mutation parameters. First,

it follows from the implicit function theorem that there exists
a unique rest point of Eq. 3 close to the hybrid equilibrium (19).
Second, it can be proved that the real parts of all eigenvalues of
the Jacobian matrix of Eq. 3 evaluated at this perturbed rest
point are negative. Thus, the rest point corresponding to the
hybrid equilibrium is not a spiraling center anymore but is as-
ymptotically stable instead. This actually reinforces the qualita-
tive point made above, namely, that hybrid equilibria should be
considered as theoretically significant evolutionary outcomes.
Another question is whether the hybrid equilibrium is also

empirically significant. One of the most robust findings in costly
signaling experiments and field studies is that observed costs
are generally too low to validate the hypothesis that high costs
support signaling system equilibria (7). The hybrid equilibrium is
in certain ways an attractive alternative to that hypothesis. It
allows for partial information transfer at low costs. For this
reason it was suggested that hybrid equilibria could be detected
and distinguished from separating equilibria in real-world sig-
naling interactions (19).

Opposed Interests. The possibility of signaling when interests
conflict has also been studied in a rather extreme setting where
the interests of senders and receivers are completely opposed
(23). There is no signaling equilibrium possible in this case.
However, in the two-population replicator dynamics (Eq. 2)
there is information transfer off equilibrium to varying degrees
because there exists a strange attractor in the interior of the state
space. By information transfer we understand that signals have
information in the sense of Kullback–Leibler entropy: Condi-
tioning on the signal changes the probability of states so that
on average information is gained (for details on applying in-
formation theory to signaling games see ref. 24). This result
reinforces the diagnosis that a dynamical analysis is unavoidable
if one wants to understand the evolutionary significance of
signaling phenomena.

Finite Population Dynamics
Consider a small finite population of fixed size. Each step of the
dynamics works as follows. First, everyone plays the base game
with everyone else in a round-robin fashion. Each individual’s
fitness is given by a combination of her background fitness and
her average payoff from the round robin tournament. Following
ref. 25 we will take the fitness to be

1−w+w× uðsi; xÞ;

where w∈ ½0; 1� is a parameter that measures the intensity of
selection and uðsi; xÞ is the expected payoff of strategy i against
the population x, just as in the case of the replicator dynamics.
The background fitness w is the same for everyone. If w= 0 the

game’s payoffs do not matter to an individual’s fitness. If w= 1
the game’s payoffs are all that matter. Next, one individual is
selected at random to die (or to leave the group) and a new
individual is born (or enters the group). The new individual
adopts the strategy of an individual chosen from the popula-
tion with probability proportional to its fitness. Successful
strategies are more likely to be adopted and will therefore spread
through the population. This dynamics, known as the frequency-
dependent Moran process, is a Markov chain with the state being
the number of individuals playing each strategy. Owing to the
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absence of mutation or experimentation all monomorphic pop-
ulation compositions are absorbing states of this process.

Lewis Signaling Games. Pawlowitsch (26) studies symmetrized
Lewis signaling games under this dynamics. Let N be the number
of individuals all playing strategy sj. Imagine that one sponta-
neously mutates to si. The probability that strategy si goes on to
take over the entire population is given by the fixation probability

ρsjsi =
1

1+
PN−1

k=1 ∏
k
l=1

gl
�
si; sj

�

fl
�
si; sj

�
;

where flðsi; sjÞ is the fitness of an si agent in a population of l
individuals playing strategy si and N − l individuals playing sj and
glðsi; sjÞ is the fitness of an sj individual in that same population.
If the mutation is neutral then its probability of fixation is 1=N.
Pawlowitsch (26) uses this neutral threshold to assess the evolu-
tionary stability of monomorphic population compositions. In
Lewis signaling games under the Moran process with weak se-
lection ðwN � NÞ Pareto optimal strategies—that is, perfectly
informative signaling strategies—are the only strategies for
which there is no mutant type that has a fixation probability
greater than this neutral threshold. For this reason Pawlowitsch
argues that finite populations will choose an optimal language in
Lewis signaling games. This highlights an important difference
between the behaviors of infinite and finite populations in
these games.

Costly Signaling Games. However, what about signaling games
where interests conflict? To address this question we introduce
mutation. Suppose that with small probability, «, the new in-
dividual mutates or decides to experiment and chooses a strategy
at random from all of the possible strategies—including those
not represented in the population—with equal probability. The
presence of this mutation makes the resulting Markov process
ergodic. Fudenberg and Imhof (27) show that it is possible to use
a so-called embedded Markov chain to calculate the proportion
of time that the population spends in each state in the limiting
case as « goes to zero. The states in this embedded Markov chain
are the monomorphic population compositions, and the transi-
tion probability from the monomorphic population in which all
individuals play sj to the monomorphic population in which all
individuals play si is given by the probability that a type si mutant
arises («) multiplied by the probability that this mutant fixes in
the population ðρsjsiÞ. The stationary distribution of this em-
bedded chain gives the proportion of time that the population
spends in each monomorphic state in the full Moran process as «
goes to zero. Intuitively, this is because when « is very small the
system will spend almost all of the time in a monomorphic state
waiting for the next mutation event, and after an event the
Moran process will return the population to a monomorphic
state before the next mutant arises.
Consider the two-state, two-signal, two-act signaling game with

payoffs given in Fig. 2. The receiver prefers the act high in the
high state and low in the low state, whereas the sender always
prefers the act high. This game is structurally similar to the Sir
Philip Sidney game, but here we will assume that both signals are
costless. In this game there is no Nash equilibrium in which the
signals discriminate between the states. The only Nash equilibria
are pooling, where the sender sends signals with probabilities
independent of the states and the receiver acts low.
The Moran process is a one-population setting, so we will

consider the symmetrized version of this game (14). We then let
our round-robin phase match each pair both as (sender, receiver)
and (receiver, sender). Suppose that selection is strong (i.e.,
w= 1), and that the probability of state high is 0.4. Then in the

small mutation limit the process spends 57% of its time in states
with perfect signaling and 19% of its time in Nash equilibria (28).
In other words, this small population spends most of its time
communicating perfectly even though such information transfer
is not a Nash equilibrium of the underlying signaling game. This
phenomenon is robust over a wide range of selection intensities
and state probabilities, but as the population size is increased
the proportion of time spent signaling diminishes. This is to be
expected because as the population size tends to infinity the
behavior of the Moran process tends toward the behavior of the
payoff-adjusted replicator dynamic (29), which does not lead to
information transfer in this game.
The importance of non-Nash play in the rare mutation limit is

also evident in the case of cost-free preplay signaling. Two
players play a base game, but before they do so each sends the
other a cost-free signal from some set of available signals, with
no preexisting meaning. The small population, rare mutation
limit for a related dynamics is investigated in ref. 30 for the cases
where the base game is (i) Stag Hunt and (ii) Prisoner’s Di-
lemma. Like the Moran process, this related dynamics is com-
posed of two steps. First, all individuals play the base game with
each other in a round-robin fashion to establish fitness. Second,
an individual is randomly selected to update her strategy by
imitation. This agent randomly selects another individual and
imitates that other individual with a probability that increases
with an increase in the fitness difference between the two agents.
In particular, this probability is given by the Fermi distribution
from statistical physics so that the probability that an individual
using strategy si will imitate an individual using strategy sj is given
by the function

h
1+ e−β½πðsi;xÞ−πðsj;xÞ

i−1
;

where β should be interpreted as noise in the imitation process.
For high values of β a small payoff difference translates into a high
probability of imitation, whereas when β tends to zero selection is
weak and the process is dominated by random drift (29).
In the case where the base game is the Prisoner’s Dilemma,

the only Nash equilibrium is noncooperation. However, if the
population is small and the set of signals is large, the population
may spend most of its time cooperating. If the base game is the
Stag Hunt, where there are both cooperative and noncooperative
equilibria, preplay signals enlarge the amount of time spent
cooperating, with the more signals the better.
Why is it that dynamics in finite populations with rare muta-

tions can favor informative signaling even when such behavior is
not a Nash equilibrium? Consider again the game in Fig. 2. In
a pooling equilibrium the sender’s expected payoff is 0.48 and
the receiver’s is 0.6. Jointly separating, however, gets the sender
an expected payoff of 0.88 and the receiver an expected payoff
of 1. Signaling Pareto dominates pooling, and this means that
a small population is likely to transition from a monomorphic
pooling state to a monomorphic signaling state. Of course, if the
receiver discriminates, then the sender can gain by always
sending whichever signal induces act high. Such behavior will net
the sender an expected payoff of 1. However, note that there is
a smaller difference in payoff for the sender between this profile

Fig. 2. The payoff structure underlying a signaling game. If the state is
high, then the sender’s and the receiver’s interest coincide. If the state is low,
then the sender prefers the receiver to choose high, whereas the receiver
would want to choose low.
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and the separating profile than there is between the separating
profile and the pooling equilibrium. Consequently, the proba-
bility of transitioning away from a monomorphic separating
population to the monomorphic population in which the senders
always induce the receivers to perform act high is less than the
probability of transitioning from a monomorphic pooling pop-
ulation to a monomorphic separating population. For this rea-
son, in the long run the population will spend more time
signaling informatively than it will spend pooling. A similar story
explains why finite population dynamics can favor informative
signaling and cooperation in prisoner’s dilemma games with cost-
free preplay signaling (30).

Reinforcement Learning
In models from evolutionary game theory—such as the replicator
dynamics—“learning” occurs globally because the size of pop-
ulations with more fitness increases faster. However, in the re-
inforcement learning model it is the individuals’ behavior that
evolves iteratively: The players tend to put more weight on
strategies that have enjoyed past success, as measured by the
cumulative payoffs they have achieved. This linear response rule
corresponds to Herrnstein’s “matching law” (31).
Reinforcement learning is one of a variety of models of stra-

tegic learning in games, where players adapt their strategies with
the aim to eventually maximize their payoffs: No-regret learning,
fictitious play and its variants, and hypothesis testing, are other
examples of such procedures analyzed in game theory (32).
However, reinforcement learning is a particularly attractive

and simple model of players with bounded rationality. The
amount of information used in the procedure is small: Players
need only observe their realized payoffs and may not even be
aware that they are playing a game with or against others. It
accumulates inertia, because the relative increase in payoff
decreases with time. On the one hand this might be expected
from a learning procedure, although on the other hand it could
be exploited by other players in certain games.
In Roth and Erev (33) and Erev and Roth (34) reinforcement

learning is proposed and tested experimentally as a realistic
model for the behavior of agents in games—see Harley (35) for
a similar study in a biological context.
Formally, in a game played repeatedly by N players, each one

having M strategies, each individual i is assumed at a time step n
to have a propensity qijn for each strategy j and plays the strategy
with probability proportional to its propensity,

qijnPm
k=1q

i
kn
: [4]

Each individual i is endowed with an initial vector of positive
weights ðqij0Þj at time 0. At each iteration of the learning process,
the strategy j taken by any player i results in a nonnegative
payoff, UjðiÞ, and the weights are updated by adding that payoff
to the weight of the act taken,

qij;t+1 = qij;t +UjðiÞ; [5]

with the weights of strategies not taken remaining the same.
This process can be exemplified by an urn model. Each in-

dividual starts with an urn containing some balls of different
colors, one for each potential strategy. Drawing a ball from the
urn (and then replacing it) determines the choice of strategy.
After receiving a payoff, the number of balls of the same color
equal to the payoff achieved are added to the urn.
As balls pile up in the urn, jumps in probabilities become

smaller and smaller in such a way that the stochastic process
approximates a deterministic mean field dynamics, which is
known as the adjusted or Maynard Smith version of the replicator

dynamics (36, 37). However, classical stochastic approximation
theory (38–41) does not allow one to deduce much in general,
because this ordinary differential equation takes place in an
unbounded domain.
Beggs (36) shows that if all players apply this rule then itera-

tively strictly dominated strategies are eliminated, and the long-
run average payoff of a player who applies it cannot be forced
permanently below its minmax payoff. He also studies two-per-
son constant-sum games, where precise results can be obtained.
Hopkins and Posch (37) show convergence with probability zero
toward unstable fixed points of the Maynard Smith replicator
dynamics, even if they are on the boundary, which solves earlier
questions raised in particular in ref. 42. This second result is,
however, not relevant in signaling games, where the unstable
fixed points are not isolated and consist of manifolds of finite
dimension (43, 44).
Consider the simplest Lewis signaling game. The reinforce-

ment learning model proposed in ref. 43 considers, in Eqs. 4
and 5, each state possibly transmitted by the sender as a player
whose strategies are the signals and, similarly, each signal as
a player whose strategies are the (guessed) states. Now a state i
that “plays” signal j gets a payoff of 1 if, conversely, j “plays” i
and Nature chooses i. In practice, at each time step, only the
state chosen by Nature will play along with its chosen signal, so
that this reinforcement procedure can be simply explained from
a sender–receiver perspective.
Let us first consider the case of two states 1 and 2: Nature flips

a fair coin and chooses one of them. The sender has an urn for
state 1 and a different urn for state 2. Each has balls for signal A
and signal B. The sender draws from the urn corresponding to
the state and sends the indicated signal. The receiver has an urn
for each signal, each containing balls for state 1 and for state 2.
The receiver draws from the urn corresponding to the signal and
guesses the indicated state. If correct, both sender and receiver
are reinforced and each one adds a duplicate ball to the urn just
exercised. If incorrect, there is no reinforcement and the urns are
unchanged for the next iteration of the process.
There are now four interacting urns contributing to this re-

inforcement process. However, the dimensionality of the process
can be reduced because of the symmetry resulting from the
strong common interest assumption. Because the receiver is
reinforced if and only if the sender is, the numbers of balls in the
receiver’s urns are determined by the numbers of balls in the
sender’s urns. Consider the four numbers of balls in the sender’s
urns: 1A, 1B, 2A, 2B. Normalizing these, 1A=ð1A+ 1B+ 2A+ 2BÞ,
etc., gives four quantities that live on a tetrahedron. The mean field
dynamics may be written in terms of these. There is a Lyapunov
function that rules out cycles. The stochastic process must then
converge to one of the zeros of the mean field dynamics. These
consist of the two signaling systems and a surface composed of

State     1         2         3         4          5 

Signal   A          B         C         D         E 

Fig. 3. Synonyms and bottlenecks. One state is sent to two different signals,
which we can call synonyms. Two states are sent to only one signal, which we
call an information bottleneck.
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pooling equilibria. It is possible to show that the probability of
converging to a pooling equilibrium is zero. Thus, reinforcement
learning converges to a signaling system with probability one (43).
This result raises several questions: Does the same result hold

for N states, N signals, and N acts? What happens if there are too
few signals to identify all of the states or if there is an excess of
signals—that is, N states, M signals, N acts? Nature now rolls
a fair die to choose the state, the sender has N urns with balls of
M colors, and the receiver has M urns with N colors.
This reinforcement process is analyzed in ref. 44. Common

interest allows a reduction of dimensionality, as before. The
sender is reinforced for sending signal m in state s just in case the
receiver is reinforced for guessing state s when presented with
signal m. Again, for a state i and a signal j, consider the number
ij of balls of color j in the sender’s urn i. As in the 2× 2 case,
the dynamics of the normalized vector of sender-receiver con-
nections ij=

P
ij is studied, as stochastic approximation of a non-

continuous dynamics on the simplex.
The expected payoff can be shown to be a Lyapunov function

for the mean field dynamics; convergence to the set of rest points
is deduced, with a technically involved argument. This is required
because of the discontinuities of the dynamics, and because not
all Nash equilibria are rest points for this dynamics, contrary to
what we have in the standard replicator dynamics.
The stability properties of the equilibria of this mean field

dynamics can be linked to static equilibrium properties of the
game, which are described by Pawlowitsch (13): The zeros of
the gradient of the payoff, the linearly stable equilibria, as well
as the asymptotically stable equilibria of the mean field dy-
namics, correspond, respectively, to the Nash equilibria, neu-
trally stable strategies, and evolutionarily stable strategies of
the signaling game.
Finally, the following result can be stated in terms of a bi-

partite graph between states and signals, such that there is an
edge between a state and a signal if and only if that signal is
chosen infinitely often in that state. It is shown that any such
graph with the following property, P, has a positive probability of
being the limiting result of reinforcement learning:

P: (i) Every connected component contains a single state or
a single signal and (ii) each vertex has an edge.

In the event where property P holds, if there is an edge be-
tween a state and a signal, then the limiting probability of
sending that signal in that state is positive.
When M =N, property P is exemplified by signaling systems,

where each state is mapped with probability one to a unique
signal. However, even in this case it is also exemplified by con-
figurations that contain both synonyms and information bottle-
necks as in Fig. 3. Evolution of optimal signaling has positive
probability, but so does the evolution of this kind of suboptimal
equilibrium. The case of M =N = 2 is very special. This corre-
sponds closely to the replicator dynamics of signaling games,
where partially pooling equilibria (which contain synonyms and
bottlenecks) can be reached by the replicator dynamics.

Discussion
The results on the replicator dynamics suggest that for large
populations the emergence of signaling systems in Lewis sig-
naling games with perfect common interest between sender and
receiver is guaranteed only under special circumstances. The
dynamics also converges to states with imperfect information
transfer. Introducing mutation can have the effect of making the
emergence of perfect signaling more likely, although this state-
ment should be taken with a grain of salt because the precise
outcomes may depend on the mutation rates.
When interests are diametrically opposed in signaling games,

there is no information transmission in equilibrium. However, the
equilibrium may never be reached. Instead senders and receivers
may engage in a mad “Red Queen” chase, generating cycles or
chaotic dynamics. In well-known costly signaling games, where
interests are mixed, this Red Queen chase is a real possibility.
Along the trajectories describing such a chase there are periods
with significant information transfer from senders to receivers.
Those interactions are undermined because of the underlying
conflicts of interest, resulting in periods of low information
transfer, from which a new period of higher information
transfer can start.
Unlike large populations, a small population may spend most

of its time efficiently signaling, even when the only Nash equi-
librium does not support any information transfer. A small
population engaged in “cheap talk” costless preplay signaling
may spend most of its time cooperating even when the only Nash
equilibrium does not support cooperation.
A similar difference between small and large populations may be

at work in costly signaling games. In the small population, small
mutation limit costless signaling is possible even in games with
conflict of interest. In large populations this is not true, but there are
alternatives to the costly signaling equilibria where signaling cost can
be low while in equilibrium there is partial information transfer.
We encounter a similarly nuanced picture for models of in-

dividual learning. Herrnstein–Roth–Erev reinforcement learning
leads to perfect signaling with probability one in Lewis signaling
games only in the special case of two equiprobable states, two
signals, and two acts. In more general Lewis signaling games, the
situation is much more complicated. To our knowledge, nothing
is known about reinforcement learning for games with conflicts
of interest and costly signaling games. This would be a fruitful
area for future research.
We conclude that the explanatory significance of signaling

equilibria depends on the underlying dynamics. Signaling games
have multiple Nash equilibria. One might hope that natural dy-
namics always selects a Pareto optimal Nash equilibrium, but this
is not always so. On a closer examination of dynamics, in some
cases, Nash equilibrium recedes in importance and other phe-
nomena are to be expected.
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