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Natural selection plays a variety of roles in hybridization, speciation, and admixture. Most research has focused on two extreme

cases: crosses between closely related inbred lines, where hybrids are fitter than their parents, or crosses between effectively

isolated species, where hybrids suffer severe breakdown. But many natural populations must fall into intermediate regimes, with

multiple types of gene interaction, and these are more difficult to study. Here, we develop a simple fitness landscape model,

and show that it naturally interpolates between previous modeling approaches, which were designed for the extreme cases, and

invoke either mildly deleterious recessives, or discrete hybrid incompatibilities. Our model yields several new predictions, which

we test with genomic data from Mytilus mussels, and published data from plants (Zea, Populus, and Senecio) and animals (Mus,

Teleogryllus, and Drosophila). The predictions are generally supported, and the model explains a number of surprising empirical

patterns. Our approach enables novel and complementary uses of genome-wide datasets, which do not depend on identifying

outlier loci, or “speciation genes” with anomalous effects. Given its simplicity and flexibility, and its predictive successes with a

wide range of data, the approach should be readily extendable to other outstanding questions in the study of hybridization.

KEY WORDS: Dobzhansky–Muller incompatibilities, Haldane’s Rule, heterozygosity, inbreeding, speciation genetics, sterility.

Impact summary
When individuals of different populations mate, the offspring

will carry new combinations of alleles. Sometimes the new

combinations bring fitness benefits (heterosis). This is often

true, for example, when the parental lines are closely related

and highly inbred: a fact that can be exploited in artificial

breeding programs. Sometimes, the hybrids are much less fit

than their parents (hybrid breakdown), suggesting that the pop-

ulations may be distinct species. These different outcomes

depend on the ways in which the alleles interact, and so com-

paring the outcomes of different types of hybridization can

tell us a lot about gene interactions. We developed a general

mathematical multigenic model that makes simple predictions

for the fitness of hybrids of any type. We show that our model

can account for a large number of empirical patterns, includ-

ing some that were not well explained by alternative theories,

developed for specific cases. We tested our predictions with

new data from mussels, and published data from plants and

animals, and obtained a good fit. Our framework suggests a

new and complementary approach to analyzing genomic data

from hybrids, which does not rely on identifying small regions

of the genome with anomalous effects.

Hybridization and admixture lead to natural selection act-

ing on alleles in different genetic backgrounds. Most classical

studies of hybridization can be placed into one of two classes.

The first, involves crosses between closely related inbred lines,

where there is no coadaptation between the deleterious alle-

les that differentiate the lines, such that most hybrids are fitter

than their parents. Wright’s single-locus theory of inbreeding was

developed to interpret data of this kind (Wright 1922, 1977; Crow

1952; Hallauer et al. 2010). The second, involves crosses between
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effectively isolated species, where viable and fertile hybrids are

very rare. Data of this kind are often analyzed by focusing on a

small number of “speciation genes,” and interpreted using mod-

els of genetic incompatibilities (Dobzhansky 1937; Coyne and

Orr 1989; Orr 1995; Gavrilets 2004; Welch 2004; Kalirad and

Azevedo 2017).

The differences between these types of hybridization are

clear, but it is equally clear that they are extremes of a contin-

uum. Furthermore, the intermediate stages of this continuum are

of particular interest, because they include phenomena such as in-

cipient speciation, and occasional introgression between partially

isolated populations (Waser 1993; Rosas et al. 2010; Mendez et al.

2012; Fraı̈sse et al. 2016a; Duranton et al. 2017). However, it can

be difficult to model natural selection in this intermediate regime,

not least because models require a large number of parameters

when they include epistatic effects between many loci. The em-

pirical study of hybrid genotypes in this regime is also difficult.

The analysis of lab crosses often focuses on segregation distor-

tions of large effect, and pairwise incompatibilities (Coyne and

Orr 2004; Abbott et al. 2013). This QTL-mapping framework can

miss small effect mutations (Noor et al. 2001; Rockman 2012),

which are difficult to identify individually, but whose cumulative

effect can be substantial (Boyle et al. 2017).

One promising approach is to use Fisher’s geometric model,

which assigns fitness values to genotypes using a model of op-

timizing selection on quantitative traits (Fisher 1930; Orr 1998;

Welch and Waxman 2003; Martin and Lenormand 2006). The

tools of quantitative genetics have often been used to study hy-

bridization (e.g., Melchinger 1987; Lynch 1991; Demuth and

Wade 2005; Fitzpatrick 2008), but Fisher’s model is fully additive

at the level of phenotype, and the “traits” need not correspond in

any simple way to standard quantitative traits (Rosas et al. 2010;

Martin 2014; Schiffman and Ralph 2017). Instead, the goal is to

generate a rugged fitness landscape, which includes a wide vari-

ety of mutational effect sizes and epistatic interactions on fitness,

with a minimum of free parameters (Orr 1998; Blanquart et al.

2014; Barton 2017; Hwang et al. 2017).

Here, we build on previous studies (Mani and Clarke 1990;

Barton 2001; Rosas et al. 2010; Chevin et al. 2014; Fraı̈sse et al.

2016b; Schiffman and Ralph 2017), and use Fisher’s geometric

model to study hybridization. We develop a simple Brownian

bridge approximation, and show that it can naturally interpolate

between previous modeling approaches (Wright 1922, 1977; Orr

1995; Gavrilets 2004), which are appropriate for the two extreme

types of hybridization. We then show how the model can ac-

count for surprising empirical patterns that have been observed in

both regimes (Wright 1977; Moehring 2011; Moran et al. 2017).

Finally, we show that the model yields novel predictions for se-

lection on heterozygosity, and test these predictions with a wide

range of new and existing datasets (Table 1).

Models and Results
THE MODELS

Notation and basics
We will consider hybrids between two diploid populations, la-

beled P1 and P2, each of which is genetically uniform, but which

differ from each other by d substitutions. Considering all possi-

ble combinations of the two homozygotes and the heterozygote,

the populations could generate 3d distinct hybrid genotypes, and

each might differ in their overall fitness, or in some component

of fitness, such as fertility or viability. Below, we will focus on

rank order differences between different classes of hybrid (e.g.,

high vs. low heterozygosity, males vs. females, F1 vs. F2 etc.). As

such, following Turelli and Orr (2000), we describe hybrids us-

ing a “breakdown score,” S, which is larger for hybrids that have

lower values of the fitness component of interest. Breakdown

might relate to fitness via,

ln w ∝ −Sα/2 (1)

in which case, the parameter α adjusts the rate at which fitness

declines with breakdown. This is related to the overall levels

of fitness dominance and epistasis (Hinze and Lamkey 2003;

Tenaillon et al. 2007; Fraı̈sse et al. 2016b), and so these can vary

independently of other results. We now define the key quantity f ,

as the expected value of S for a given class of hybrid, scaled by

the expected value for an unfit reference class.

f ≡ E(S)

E(S†)
(2)

Here, E(S†), is the expected breakdown score for the class of

hybrid with the lowest fitness, on the condition that the parental

genotypes are optimally fit. In this case, f can vary between zero,

for the best possible class of hybrid, and one, for the worst possible

class. We will also consider the case where the parental types

are themselves suboptimal, with their own level of “breakdown,”

denoted fP1 and fP2. In this case, when fP1, fP2 > 0, then the

value of f for the hybrids can be greater than one (see below).

To define classes of hybrid, we also follow Turelli and Orr

(2000). We pay particular attention to interpopulation heterozy-

gosity, and define p12 as the proportion of the divergent sites that

carry one allele from each of the parental types. We also define p1

and p2 as the proportion of divergent sites that carry only alleles

originating from P1 or P2, respectively. Since p1 + p2 + p12 = 1,

it is convenient to introduce the hybrid index, h, which we de-

fine as the total proportion of divergent sites originating from P2

(Barton and Gale 1993).

h ≡ p2 + 1

2
p12 (3)

This quantity is closely related to measures of ancestry (e.g.,

Falush et al. 2003; Fitzpatrick 2012; Christe et al. 2016),
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A B C

Figure 1. Diploid hybrid genomes can be represented as points in a triangular space, indicating their hybrid index, h (the total proportion

of divergent alleles that originate from parental line P2), and their interpopulation heterozygosity, p12 (the proportion of divergent sites

that carry one allele from each parental line). Panel (A) shows how the standard crosses are placed in this space, with biparental

inheritance. The two parental lines P1 and P2 are at the lower corners. The initial F1 cross (P1 × P2) will be heterozygous at all divergent

sites, and so be found at the top corner. Individuals from later crosses will vary due to segregation and recombination, but the F2 (F1 × F1)

will tend to be found toward the center, while backcrosses (such as BC1 = F1 × P1 or F1 × P2) will be found on the upper edges (see Fig. 3

for more details of these backcrosses). Panel (B) illustrates the selection on heterozygosity predicted by Fisher’s geometric model, when

the parental lines are well adapted (eq. 9). In backcrosses, heterozygosity will be under diversifying selection, favoring both extreme

values. By contrast, in the F2, we predict directional selection toward higher heterozygosity. Panel (C) illustrates some complications

introduced by heteromorphic sex chromosomes (see eq. 16 and Appendix 4). With XO sex determination, male F1 carry no heterozygosity

on the X, which will tend to reduce their fitness, consistent with Haldane’s Rule. For male backcrosses (F1 × P1), the selection acting

on (autosomal) heterozygosity, will depend on the alleles carried on the X. When the X carries mostly P2 alleles, fitter individuals will

be more heterozygous (darker gray arrow). When the X carries mostly P1 alleles, the fittest individuals will carry no heterozygosity

(lighter gray arrow). gX is the proportion of the divergent sites found on the X, and is set at 37%, as we have estimated for Drosophila

pseudoobscura.

although it considers only divergent sites. We can now describe

each individual genotype via its heterozygosity, p12, and hybrid

index, h. This means that all hybrids can be represented as points in

a triangular space, as shown in Figure 1 A (Gompert and Buerkle

2010; Fitzpatrick 2012). Our goal in this article is to represent this

space as a kind of fitness landscape, and show how f can vary

with p12 and h.

Fisher’s geometric model
Fisher’s model is defined by n quantitative traits under selection

toward an intermediate optimum (Fisher 1930). We will assume

that fitness is always measured in a fixed environment, but we

make no assumptions about how this optimum might have moved

during the parental divergence (see Appendix 1). If the selection

function is multivariate normal, including correlated selection,

then we can rotate the axes and scale the trait values, to spec-

ify n new traits that are under independent selection of differ-

ent strengths (Waxman and Welch 2005; Martin and Lenormand

2006; Martin 2014). Examples with n = 2 traits are shown in

Figure 2. We now define the breakdown score of a phenotype as

S ≡
n∑

i=1

λi z
2
i (4)

where, for trait i , zi is its deviation from the optimum and λi is

the strength of selection. By assumption, all mutational changes

act additively on each trait, but their effects on fitness can vary

with the phenotype of the individual in which they appear, and

this yields fitness dominance and epistasis (Appendix 1).

The d substitutions that differentiate P1 and P2 can be con-

sidered as a chain of vectors, which connect the two parental

phenotypes (Fig. S1). While the sizes and directions of these vec-

tors will generally be unknown, in Appendix 1, we show that

the chain can be approximated as a constrained random walk,

or Brownian bridge (Revuz and Yor 1999, Ch. 1). This approx-

imation relies on the fact that hybrid genomes contain the fixed

alleles in effectively random combinations, and it gives accurate

results for a wide range of assumptions about the divergence pro-

cess (Figs. S2–S3), including adaptation of the parental lines to

different environments (Appendix 1; Fig. S4).

Under the Brownian bridge approximation, the quantity

E(S†), that appears in equation (2), is given by

E(S†) = d
n∑

i=1

λivi (5)

where vi is the expected variance contributed to trait i by a fixed

mutation in heterozygous state and we have assumed that any

maladaptation has accrued independently in the two parental lines

(see Appendix 1 and Table S1). The key quantity f is given by

f = fP1 + β1h(1 − β2h) − p12 (6)

EVOLUTION LETTERS OCTOBER 2018 4 7 5
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A

B

C

Figure 2. Fisher’s geometric model generates a flexible series of fitness landscapes for hybrid genotypes. The left-hand panels show a

schematic representation of the model, with n = 2 traits, each under optimizing selection of differing strengths. (The orientation of the

axes shows that the model allows for correlated selection, although this is ignored in the text, by rotating the axes). The right-hand panels

show how the expected breakdown score (eqs. 2 and 6), varies for hybrids of different types. Panels (A)–(C) show different assumptions

about levels of parental maladaptation. Panel (A) shows a scenario where all of the parental divergence is maladaptive, with no tendency

for their alleles to be coadapted. In this case, hybrid fitness increases with their heterozygosity, as predicted by Wright’s single-locus

theory of inbreeding (eq. 8; Wright 1922, 1977). Panel (B) shows a scenario where the parental lines are optimal (or, at least, very well

adapted compared to the worst class of hybrid that can be formed between them). In this case, the hybrid index is under symmetrical

diversifying selection, and the form of selection on heterozygosity will vary for different cross types (eqs. 9, 13, and 15). This landscape

can also be generated by a general model of genetic incompatibilities (see Appendix 2). Panel (C) shows a situation where only one of

the parental lines is maladapted (eq. 10 with fP2 = 0.5).
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where

β1 ≡ 4 − 2 fP1

β2 ≡ 4 − fP1 − fP2

4 − 2 fP1
(7)

(see Appendix 1 for full details). Two features of equation (6)

are immediately notable. First, it does not depend on any of the

model parameters. For example, the number of traits, n, could

affect the accuracy of our approximation (since S will tend to

approach normality as n increases); but it does not appear in

equation (6), which depends solely on p12, h and the levels of

parental maladaptation. Second, for a given value of h, the fitness

of hybrids will tend to increase with their heterozygosity, p12. This

prediction agrees with the widespread finding of heterosis (Crow

1952; Table S1 of Fraı̈sse et al. 2016b). Indeed, by rearranging

equation (6) it is clear that hybrids will tend to be fitter than

parental line P1 (such that f < fP1) on the condition that p12 >

β1h(1 − β2h).

It is also useful to consider equation (6) in a few special cases.

First, let us assume that all of the divergence between the parents

is maladaptive, without any tendency for coadaptation between

their alleles. In this case, the parental phenotypes can be treated as

unconstrained random walks away from the optimum. Each fixed

mutation, in homozygous state, will contribute an expected 4vi to

the variance on each trait, and so, from equations (4) and (5), we

have E( fP1) = E( fP2) = 2 (see also Appendix 1). With this high

level of parental maladaptation, the expected breakdown score of

the hybrids is

f = 2 − p12, fP1, fP2 = 2 (8)

The fitness landscape implied by equation (8) is illustrated in

Figure 2 A. With these extreme levels of parental maladaptation,

hybrid breakdown depends only on the heterozygosity. Indeed,

this result is closely related to Wright’s (1922) single-locus the-

ory of inbreeding, which was developed to analyze crosses be-

tween closely related inbred lines, where all divergence between

the parental lines comprises deleterious alleles. Wright’s theory

therefore appears as a special case of Fisher’s geometric model,

when parental alleles show no coadaptation (see below).

Now let us consider the other extreme case, where the

parental alleles are completely coadapted, such that P1 and P2

both have optimal fitness, but realized by different combinations

of alleles. In this case, we find

f = 4h(1 − h) − p12, fP1, fP2 = 0 (9)

The fitness landscape implied by equation (9) is illustrated in

Figure 2 B. With well-adapted parents, the hybrid index is under

symmetrical diversifying selection.

As with equation (8), equation (9) can also be derived via an

alternative route, using a model of speciation genetics. In partic-

ular, we show in Appendix 2 that equation (9) can be obtained

from a general model of “Dobzhansky–Muller incompatibilities,”

each involving a small number of loci (Orr 1995; Turelli and Orr

2000; Gavrilets 2004; Welch 2004; Fraı̈sse et al. 2016b). The

agreement between the two models depends on a particular set

of assumptions about the dominance of incompatibilities, namely

(i) partial recessivity on average, and (ii) greater reduction in fit-

ness when they contain homozygous alleles from both parental

lines. However, we show in Appendix 2 that these assumptions are

biologically realistic, and implied by a number of well-established

empirical patterns (Turelli and Orr 2000). The result is that equa-

tion (9) can be interpreted as a model of genetic incompatibilities,

but without the large number of free parameters that these models

can require.

Equation (9) is expected to apply to many cases of wild

hybridization, because it should provide a good approximation

even if the parental populations are not truly optimal. The only

requirement is that they be much better adapted than the worst

possible class of hybrid, such that fP1, fP2 � 1.

Nevertheless, the general form of equation (6) also allows

us to explore intermediate cases. For example, if only P2 is mal-

adapted, then we find

f = 4h

(
1 −

(
1 − 1

4
fP2

)
h

)
− p12, fP1 = 0 (10)

In this case, as illustrated in Figure 2 C, selection on hybrid index

is skewed toward the fitter parent. Below, we will show how all

three of these special cases (Fig. 2 A–C) can be used in data

analysis.

TESTING THE PREDICTIONS WITH BIPARENTAL

INHERITANCE

Fitness differences between crosses
The simplest predictions from equation (6) assume standard bi-

parental inheritance at all loci. In this case, the standard cross types

can be easily located on our fitness landscapes. This is shown in

Figure 1 A.

With well-adapted parental lines (Fig. 2 B) hybrids of high

fitness are expected only for the initial F1 cross (P1 × P2) and

breakdown is predicted for later crosses, such as the first backcross

(BC1: F1 × P1 or F1 × P2) or the F2 (F1 × F1). This pattern

of F1 hybrid vigor (high F1 fitness) followed by breakdown in

later crosses, has widespread empirical support (see references in

Table S1 of Fraı̈sse et al. 2016b and Rosas et al. 2010).

With highly maladapted parents, by contrast, hybrids of all

types can be fitter than their parents (see Fig. 2 A). Plentiful

data of this kind come from highly inbred lines of Zea mays

(Neal 1935; Wright 1977; Melchinger 1987; Hinze and Lamkey

EVOLUTION LETTERS OCTOBER 2018 4 7 7
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2003; Hallauer et al. 2010). To analyze these data, a widely used

proxy for fitness is the excess yield of a cross (i.e., its increase

in yield relative to the parental lines), scaled by the excess yield

of the F1. From equations (1)–(2), and using a Taylor expansion,

we find

w − wP

wF1 − wP
≈ f α/2

P − f α/2

f α/2
P − f α/2

F1

(11)

= p12, fP = 2, α = 2 (12)

where the subscript P refers to both parental lines, which are

assumed to have similar yields. For later crosses, these values

will vary between individuals within a cross, due to segrega-

tion and recombination, but in this section we ignore this vari-

ation, and assume that p12 and h take their expected values for

a given cross type (Fig. 1 A). A fuller treatment is outlined in

Appendix 3.

Equation (12) confirms that Fisher’s model can produce

Wright’s (1922) single-locus predictions for inbreeding, but only

when all divergence between the parental lines is deleterious

( fP = 2), and when increases in breakdown score act indepen-

dently on log fitness (α = 2). These single-locus predictions have

strong support in Zea mays (Neal 1935; Wright 1977; Melchinger

1987; Hinze and Lamkey 2003; Hallauer et al. 2010). For exam-

ple, as shown in Figure 3 A, the excess yield of the F2 is often

around 50%, which is equal to its expected heterozygosity (Wright

1977; Hallauer et al. 2010). It is also notable that the two outlying

points (from Shehata and Dhawan 1975), are variety crosses, and

not inbred lines in the strict sense.

Despite this predictive success, Wright (1977) noted a pattern

that single-locus theory could not explain. In Wright’s words:

“the most consistent deviation from expectation [...] is the low

yield of F2 in comparison with the first backcrosses” (Wright

1977, p. 39). Because E(p12) = 1
2 for both crosses, this cannot be

explained without epistasis, or coadaptation between the alleles

in the parental lines. In fact, the pattern is predicted by Fisher’s

model, when there is a small amount of coadaptation, such that

1 < fP < 2. This yields a fitness surface with a small amount of

curvature, which is intermediate between those shown in Figure 2

A and 2 B.

Figure 3 B plots the four relevant datasets collated by Wright,

and compares the results to predictions from equations (6) and

(11), with fP = 1.5 and α = 3. The model predicts the roughly

linear increase in yield with mean heterozygosity, as with single

locus theory, but also predicts the consistent difference between

BC1 and the F2.

Selection on heterozygosity within crosses
In the previous section, we ignored between-individual variation

in heterozygosity within a given cross type. In this section, we
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Figure 3. Data on hybrid vigor (i.e., increased yield), from crosses

of inbred Zea mays. The original data were collated by Wright

(1977; see his Table 2.23), and Hallauer et al. (2010; see their Ta-

ble 9.13), including only data from single crosses, where there

was hybrid vigor in the F2, and yield measured in quintals per

hectare. Panel (A) plots the excess yield of the F2 (eq. 11). Results

are shown for variety crosses (black triangles), as well as crosses

of inbred lines in the strict sense (all other points). The dashed line

shows the prediction of 0.5 from single-locus theory (eq. 12). Panel

(B) shows the four datasets collated by Wright (1977), which allow

us to compare the F2 and various backcrosses. These crosses, cho-

sen to yield different levels of heterozygosity, are the parental

type (P1), the second backcross (BC2 = (F1 × P1) × P1); the first

backcross (BC1 = F1 × P1), the F2 (F1 × F1), second backcross to

the other parent (BC2∗ = (F1 × P1) × P2), and the F1 (P1 × P2) (The

data of Stringfield (1950), shown as gray triangles, replace BC2∗
with an F2 between two distinct F1, involving three distinct strains,

but the predictions are unchanged). The gray symbols for the four

datasets correspond to those used in panel (A). The dotted line

in panel (B) shows predictions from Fisher’s model, assuming that

the between-strain divergence contains limited coadaptation. The

prediction uses equations (13), (14), and (11), with fP = 1.5, and

α = 3. The model predicts both the roughly linear increase in vigor

with heterozygosity, and the systematic difference between BC1

and F2.
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show how natural selection is predicted to act on this heterozy-

gosity.

First, let us consider the F2. In this case, we have 4h(1 −
h) ≈ 1 with relatively little variation between individuals (see

Appendix 3 for details). Therefore, if both parents have similar

levels of maladaptation, equation (6) is well approximated by

fF2 ≈ 1 + 1

2
fP − p12 (13)

The prediction is that p12 will be under directional selection in

the F2, favoring individuals with higher heterozygosity. This is

illustrated in Figure 1 B.

Now let us consider a backcross: F1 × P1. In this case, all

of the homozygous alleles must come from P1, such that 4h(1 −
h) = p12(2 − p12), and so equation (6) becomes

fBC = fP + (1 − fP)p12 −
(

1 − 1

2
fP

)
p2

12 (14)

= p12(1 − p12), fP = 0 (15)

So backcrosses will tend to be least fit when they have interme-

diate levels of heterozygosity. When parents are well adapted,

heterozygosity is under symmetrical disruptive selection, favor-

ing heterozygosities that are either higher or lower than p12 = 0.5

(eq. 15). This is illustrated in Figure 1 B .

To test these predictions, we used a new set of genetic data

from hybrids of the mussel species: Mytilus edulis and Mytilus gal-

loprovincialis (Bierne et al. 2002, 2006). These species fall at the

high end of the continuum of divergence during which introgres-

sion persists among incipient species (Roux et al. 2016). We used

experimentally bred F2 and BC1, with selection imposed implic-

itly, by the method of fertilization, and by our genotyping only

individuals who survived to reproductive age (Bierne et al. 2002,

2006; see Methods and Fig. S6 for full details).

To estimate heterozygosity in each hybrid individual, we used

the 43 markers that were heterozygous in all of the F1 hybrids

used to make the subsequent crosses (see Fig. S6). We then asked

whether the distribution of p12 values in recombinant hybrids

was symmetrically distributed around its Mendelian expectation

of p12 = 0.5, or whether it was upwardly biased, as would be

expected if directional selection were acting on heterozygosity. As

shown in the first column of Table 2, Wilcoxon tests found that

heterozygosities in surviving hybrids were significantly higher

than expected, in both the F2 and backcross. These results may

have been biased by the inclusion of individuals with missing

data, because they showed higher heterozygosity (see Table S2).

We therefore repeated the test with these individuals excluded.

As shown in the second column of Table 2, results were little

changed, although the bias toward high heterozygosities was now

weaker in the backcross.

Interpreting these results is complicated by the ongoing gene

flow between M. edulis and M. galloprovincialis in nature (Fraı̈sse

et al. 2016a). To test for this, we genotyped 129 pure-species in-

dividuals, and repeated our analyses with a subset of 33 markers

that were strongly differentiated between the pure species (see

Methods, Fig. S6 and Table S3 for details). With these mark-

ers, there was evidence of elevated heterozygosity in the F2, but

not the backcross (Table 2 third column). We also noticed that

many of our backcross hybrids, though backcrossed to M. gal-

loprovincialis, carried homozygous alleles that were typical of

M. edulis. We therefore repeated our analysis after excluding these

“F2-like” backcrosses. Results, shown in the fourth column of

Table 2, showed that the reduced BC dataset showed no tendency

for elevated heterozygosity. However, the bias toward higher het-

erozygosities remained in the F2, even when we subsampled to

equalize the sample sizes.

Despite the problems of interpretation due to introgres-

sion and shared variants, the results support the prediction of

equations (13)–(15): that directional selection on heterozygosity

should act in the F2, but weakly or not at all in the backcross.

PREDICTIONS OF FISHER’S GEOMETRIC MODEL

WITH SEX-SPECIFIC INHERITANCE

Results above assumed exclusively biparental inheritance. But

the predictions of Fisher’s model are easily extended to include

heteromorphic sex chromosomes, or loci with strictly uniparental

inheritance, such as organelles (Coyne and Orr 1989; Turelli and

Orr 2000; Turelli and Moyle 2007; Fraı̈sse et al. 2016b). In this

section, we introduce the approach, and demonstrate its flexibility,

while the full derivations are collected in Appendix 4. The basic

method of introducing sex-specific inheritance is to write p12 and

h as weighted sums of contributions from different types of locus.

For example, to focus on the contribution of the X chromosome

versus the autosomes, we can write

p12 = gX p12,X + gA, p12,A

h = gX h X + gA h A (16)

where the subscripts denote the chromosome type (so that p12,A

is the proportion of divergent sites on the autosomes that are

heterozygous), and gX and gA are weightings, which sum to one

(Turelli and Orr 2000).

We can now predict differences in hybrids of different sexes.

For example, previous authors have shown that Fisher’s model

predicts Haldane’s Rule: the tendency of sex-specific breakdown

to appear in the heterogametic sex (Haldane 1922; Turelli and

Orr 2000; Barton 2001; Fraı̈sse et al. 2016b; Schiffman and

Ralph 2017; see Fig. 1 C). Using equations (16) and (6), this

basic insight can easily be extended to give formal conditions for
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Table 2. Tests for selection on heterozygosity in F2 and Backcrosses of Mytilus mussels.

Markers: 43 43 33 33
Dataset: All No missing data No missing data Subsampled
Cross p̂12 (N ) P-value p̂12 (N ) P-value p̂12 (N ) P-value p̂12 (N ) P-value

F2 0.57 (132) 1.5 × 10−6∗∗∗ 0.56 (88) 6.4 × 10−4∗∗∗ 0.55 (91) 0.0033∗∗ 0.56 (56) 0.0020∗∗

BC 0.57 (144) 1.3 × 10−5∗∗∗ 0.53 (94) 0.0282∗ 0.53 (105) 0.0569 0.52 (56) 0.5815

p̂12, the estimated median heterozyosity; N, the number of hybrid individuals sampled; P -value, result of a Wilcoxon test of the null hypothesis median

p12 = 0.5 (∗ P < 0.05; ∗∗ P < 0.01; ∗∗∗ P < 0.001). F2, random mating of F1 between M. galloprovincialis and M. edulis; BC, Backcross of the F1 to M.

galloprovincialis. No missing data, all individuals with missing data for any of the markers were excluded; Subsampled, for the BC, any individual carrying a

marker that was homozygous for the major allele carried by wild M. edulis populations was excluded; for the F2, we downsampled by sequencing order to

equalize sample sizes.

Haldane’s Rule, with different levels of parental maladaptation,

and uniparental inheritance (see Appendix 4).

Sex chromosomes also complicate predictions about selec-

tion on heterozygosity within crosses. Consider, for example,

male backcrosses in an XY species, where the X chromosome is

large, the Y chromosome is small or degenerate, and the parental

lines are reasonably fit. These backcross males will vary in their

autosomal heterozygosity (p12,A), but the selection on this het-

erozygosity will vary with the alleles carried on the X. This is

illustrated in Figure 1 C. If the backcross is made to P1, but hX is

large (i.e. divergent X-linked alleles come mainly from P2), then

heterozygosity will tend to be under positive selection (see darker

arrow in Fig. 1 C); but if h X is small, then heterozygosity will

tend to be under negative selection (see lighter arrow in Fig. 1 C,

Appendix 4 and Fig. S8 for details).

To test this prediction, we used data from Noor et al. (2001)

(Fig. S7). These authors generated male backcrosses between

Drosophila pseudoobscura and Drosophila persimilis. These

species are ideal for our test, because the X carries ∼37% of

the coding sequence, the Y is degenerate, and the hybrids can

be fully sterile (see Table 1, Methods, and Noor et al. 2001).

Each backcross male was scored for sterility, and multiple ge-

netic markers, including two markers on the X (see Table 1).

We characterized the X as low-h X if both markers carried the

P1 allele, and as high-h X if both markers carried the P2 al-

lele; we excluded intermediate individuals, for which we have

no clear prediction. We then regressed sterility on heterozygos-

ity, p12,A, but allowed the intercept and the slope to vary with

h X . Results, shown in Table 3, show that both h X and p12,A are

important predictors of sterility in these backcrosses, and that

their effects interact. With low h X , sterility is generally rarer,

but positively correlated with p12,A. With high h X , by contrast,

sterility is more common, and negatively correlated with p12,A.

The predictions of Fisher’s model are therefore supported, in both

cross directions.

The interaction between h X and p12,A may also help to ex-

plain a broader set of patterns observed by Moehring (2011)

in multiple datasets of Drosophila backcrosses (Macdonald and

Goldstein 1999; Noor et al. 2001; Moehring et al. 2006a, 2006b

and see Table 1). Moehring found that male fertility correlated

strongly and negatively with h X , while correlations with p12,A

were weak and inconsistent. This pattern was not consistent with

predictions of a simple model of X-autosome incompatibilities

(Moehring 2011), but it is consistent with Fisher’s geometric

model (see Fig. 1 C, Fig. 2 B, and Appendix 4).

Female backcrosses in Teleogryllus
Fisher’s model can help to explain more complex patterns. To

illustrate this, we will consider the data of Moran et al. (2017)

from the field crickets Teleogryllus oceanicus and T. commodus.

These species have XO sex determination, and a large X chromo-

some (gX ≈ 0.3, from Moran et al. 2017). They are also a rare

exception to Haldane’s Rule, with F1 sterility appearing solely

in XX females (Hogan and Fontana 1973). Moran et al. (2017)

hypothesized that female sterility might be caused by negative in-

teractions between heterospecific alleles on the X, which appear

together in F1♀, but not in F1♂.

To test this hypothesis, they generated backcross females

with identical recombinant autosomes, but different levels of het-

erozygosity on the X, p12,X . The hypothesis of X–X incompati-

bilities predicts that fertility will decrease with p12,X , but this was

not observed. This is shown in Figure 4 A.

To try and explain the patterns that were observed, let us

note two clear asymmetries in the data. First, there are strong

differences between the fitness levels of the two parental species

in lab conditions, with T. commodus (labeled P2 in Fig. 4) pro-

ducing around half the eggs and offspring of T. oceanicus (P1

in Fig. 4). This suggests that equation 10 might apply to these

data. Figure 4 shows a second asymmetry in the data: the re-

ciprocal F1 (female–male vs. male–female) have very different

fitness (Turelli and Moyle 2007; Fraı̈sse et al. 2016b). Because

the X and autosomes will be identical for both cross directions,

this implies some sort of parent-of-origin effect on the phenotype.

This could be either uniparental inheritance, or selective silencing
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Table 3. Regressions of male sterility on autosomal heterospecificity in Drosophila backcrosses.

Backcross to N Model intercept (low h X ) intercept (high h X )
Best-fit coefficients
for p12,A AIC

D. persimilis 577 two intercepts −1.071 1.797 – 596.79
two intercepts

+ one slope
−2.165 0.764 2.147 580.41

two intercepts
+ two slopes

−3.033 2.871 3.746 (low-h X );
−1.973 (high-h X )

558.91

D. pseudoobscura 610 two intercepts −0.197 2.962 – 603.53
two intercepts

+ one slope
−2.031 1.219 3.620 558.18

two intercepts
+ two slopes

−2.485 4.034 4.505 (low-h X );
−1.876 (high-h X )

545.87

AIC, Akaike Information Criterion; preferred model shown in bold.

A B

Figure 4. Data on female fertility, from crosses of the field crickets Teleogryllus oceanicus (P1), and T. commodus (P2), from Moran et al.

(2017), compared to theoretical predictions from Fisher’s geometric model. Plotting styles denote the level of X-linked heterozygosity:

high (circles and darker shading); intermediate (triangles and lighter shading) or low (squares and no shading). To plot the data (column

A), we used the mean number of offspring per pair (upper panel), or mean number of eggs per pair (lower panel), each normalized by

the value for P1 (see the supplementary information of Moran et al. 2017 for full details). The theoretical predictions (column B) are listed

in Table S4. In the upper panel, we assume gX = 0.3, as estimated from the chromosome sizes, and complete silencing of the paternal X

(such that π = 1 in Table S4). In the lower panel, we assume gX = 0.7, and incomplete silencing of the paternal X (π = 0.8), to improve

fit to the egg data. While predictions apply to the rank order of fitnesses, to aid visualization, we plot w = e−6 f2
(see eq. 1), and set the

parameter fP2 via 0.5 = e−6 fP2 , to reflect the lower fertility of this species under lab conditions.

(Turelli and Moyle 2007; Fraı̈sse et al. 2016b). One possibility

is the speculation of Hoy and collaborators (see e.g., Hoy et al.

1977; Butlin and Ritchie 1989; Dr. Peter Moran pers. comm.),

that dosage compensation in Teleogryllus involves silencing of the

paternal X.

We can now use the foregoing assumptions to predict the

levels of breakdown for each of the crosses produced by Moran

et al. (2017). The predictions for each cross are listed in Ta-

ble S4, and plotted in the upper panel of Figure 4 B. This sim-

ple model explains several striking aspects of the Teleogryllus

data.

Adjusting the parameter values can further improve the fit.

For example, if we increase gX (as would be case if divergent

sites affecting female fecundity were clustered on the X), and

assume that paternal X silencing is incomplete (affecting 80% of

the divergent sites), then the results, shown in the lower panel of

Figure 4 B, agree well with the data on Teleogryllus egg number,

as shown in the lower-left-hand panel (only the high fitness of

P2 × F112 is poorly predicted).

Further adjustments are possible, but these soon become ad

hoc, at least without further knowledge of the true nature of parent-

of-origin effects in Teleogryllus. The important point here is that
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Fisher’s geometric model explains several key features of these

hybrid data, while using only a single parameter derived from

the data themselves; and even this parameter ( fP2), was estimated

from the parental control lines.

ESTIMATING THE FITNESS SURFACE

Across a diverse collection of hybrids, equation (6) predicts that

the hybrid index will be under disruptive selection, and heterozy-

gosity under directional selection. This prediction can be tested

with datasets containing estimates of fitness, h and p12 for many

hybrid individuals. Exactly such an analysis was presented by

Christe et al. (2016), for families of wild hybrids from the forest

trees, Populus alba and P. tremula (Lindtke et al. 2012, 2014;

Christe et al. 2016). These authors scored survival over four

years in a common-garden environment, and fit a generalized

linear model to their binary data (binary logistic regression, with

“family” as a random effect), and predictors including linear and

quadratic terms in p12 and h. Model selection favored a four-term

model, with terms in p12, h, and h2 (see Table S6, and Supple-

mentary information of Christe et al. 2016 for full details). For

comparison with our theoretical predictions, we can write their

best fit model in the following form:

y = const + β0 (β1h (1 − β2h) − p12) (17)

where y is the fitted value for hybrid breakdown. In its gen-

eral form, equation (6) should hold and Fisher’s model predicts

that β0 > 0, 0 ≤ β1 ≤ 4, and 1
2 ≤ β2 ≤ 2. Additionally if parental

maladaptation is not highly asymmetrical then it predicts β2 ≈ 1.

The best-fit model of Christe et al. (2016) corresponds

to β̂0 = 2.963, β̂1 = 2.777 and β̂2 = 0.934, which supports the

predictions of directional selection toward higher heterozygos-

ity, and near-symmetrical diversifying selection on the hybrid

index.

To obtain confidence intervals on these parameters, we fit

equation (17) to the raw data of Christe et al. (2016). We also

searched for other data sets, from which we could estimate

the hybrid fitness surface. After applying some quality controls

(see Methods and Table S2), we identified one other dataset of

wild hybrids, from the mouse subspecies Mus musculus muscu-

lus/domesticus, where male testes size was the proxy for fertility

(Turner and Harr 2014). We also found four datasets of con-

trolled crosses: F2 from the same mouse subspecies (White et al.

2011), and the ragworts Senecio aethnensis and S. chrysanthemi-

folius (Chapman et al. 2016); and the Drosophila backcrosses

discussed above (Macdonald and Goldstein 1999; Moehring et al.

2006a, 2006b). Unlike the data from wild hybrids, these single-

cross datasets leave large regions of the fitness surface un-

sampled (see Fig. 1); nevertheless, they each contain enough

variation in h and p12 for a meaningful estimation. Details of
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Figure 5. Best fit parameter estimates for the GLM of equa-

tion (17), with fitness and genomic data from six sets of hybrids

(see Table 1 for details). The upper panel shows estimates of the

coefficient β2 that determines the form of selection acting on the

hybrid index, h. Estimates of β2 = 1 are consistent with symmet-

rical diversifying selection. The lower panel show estimates of

the coefficient β1 that determine the relative strength of selec-

tion acting on the hybrid index. Estimates of β1 = 4 are predicted

when the parental types are well adapted (eq. 9), while estimates

0 < β1 < 4 are predicted when the parental types are maladapted

(eq. 6). Confidence intervals are defined as values that reduce the

AIC by 2 units. These measures of uncertainty were not obtained

for the F2 data, where variation in the hybrid index contributed

little to the model fit, as predicted by equation (13). Full details of

the model fitting are found in the Methods and Tables S5 and S6.

all six datasets are shown in Table 1, and they are plotted in

Figures S9–S11.

Figure 5 shows a summary of the estimated parameters, and

full results are reported in Tables S5 and S6, and Figures S9–S11.

Taken together, the results show good support for the predictions

of equation (6). For all six datasets there was evidence of signif-

icant positive selection on heterozygosity (β̂0 > 0 was preferred

in all cases). Furthermore, for all six datasets, we inferred di-

versifying selection acting on the hybrid index. Estimates of β2,

shown in the upper panel of Figure 5, show that this selection

was near-symmetrical in all cases, such that β̂2 ≈ 1. The poorest

fit to the predictions was found for the Drosophila backcrosses,

where estimates of β1 were significantly greater than the predicted

upper bound of β1 = 4 (Fig. 5 lower panel). But these datasets

were least suited to our purpose, because estimates of h and p12

depend strongly on our rough estimate of the relative contribu-

tions of the X and autosomes (see Methods), and because they lack
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F2-like genotypes, from the center of the fitness surface (Fig. 1

A; Fig. S11). By contrast, results for the Mus musculus F2 (White

et al. 2011), are remarkably close to the predictions of equation (9)

(Fig. 5; Fig. S10).

Two other features of the results deserve comment. First, for

the two F2 datasets, it was not possible to provide meaningful

confidence intervals for β1 and β2. This is because, for these two

datasets, the terms in h and h2 did not make a significant con-

tribution to model fit, and so the preferred model contained only

selection on p12 (see Table S6). This is consistent with our earlier

prediction of equation (13), and stems from the low variation in

4h(1 − h) among F2 hybrids (see Appendix 3 and Figs. S9 and

S10).

Second, for two of the datasets, Populus and Senecio, the

estimates of β1 are substantially lower than 4 (Fig. 5; Fig. S9). This

is suggestive of parental maladaptation, creating true heterosis in

the hybrids (see eq. 6). Consistent with this inference, there is

independent evidence of parental load and F1 hybrid vigor in

both species pairs (Populus: Caseys et al. 2015; Christe et al.

2017; Senecio: Abbott and Brennan 2014).

Discussion
In this article, we have used Fisher’s geometric model to de-

velop predictions for the relative fitness of any class of hybrid.

The modeling approach is simple, with few free parameters,

and it generates a wide range of testable predictions. We have

tested some of these predictions with new and published datasets

(Table 1), and the major predictions of the model are well sup-

ported.

We emphasize that our approach is designed for coarse-

grained patterns in the data, and typical outcomes of hybridiza-

tion, without considering the particular set of substitutions that

differentiate the parental lines, or the particular combination of

alleles in an individual hybrid. The limitations of such an ap-

proach are seen in the low r2 values associated with our model

fitting (Table S5). Nevertheless, our approach should enable novel

and complementary uses of genomic datasets, which do not de-

pend on identifying individual loci with anomalous effects. In this

approach, all alleles, and not just a handful of “speciation genes”

might contribute to hybrid fitness.

A second goal of the present work was to show how Fisher’s

model can interpolate between previous modeling approaches,

namely the classical theory of inbreeding (Wright 1922; Crow

1952), and models of genetic incompatibilities, each involving

a small number of loci (Dobzhansky 1937; Orr 1995; Gavrilets

2004; Welch 2004). We have also shown that Fisher’s model can

account for empirical patterns that each approach has struggled

to explain (Wright 1977; Moehring 2011; Moran et al. 2017).

Though we have stressed their similarities, we should also

stress that Fisher’s model and the model of incompatibilities re-

main different in two ways. First, as shown in Appendix 2, the

two models agree only when the dominance relations of incom-

patibilities take a particular set of values (eq. A36)—albeit a

biologically realistic set (Appendix 2; Turelli and Orr 2000).

Second, even when predictions are identical for the quantity f

(eq. 2), the two approaches still make different predictions for

other kinds of data, which were not considered in the present

work. The most important difference is the dependency of log

fitness on d , the genomic divergence between the species. Under

Fisher’s geometric model, the log fitness of hybrids declines with

−dα/2 (eqs. 1–2 and 5–6). By contrast, with the simplest models

of incompatibilities, log fitness declines with −d�α/2 where � is

the number of loci involved in each incompatibility (Orr 1995;

Welch 2004; Appendix 2, eq. A22). This is due to a snowball

effect, where the number of incompatibilities grows explosively

with d�. This is a genuine difference between the modeling ap-

proaches, although truly discriminatory tests may be difficult. For

example, it may not always be possible to distinguish between a

snowballing model with a low value of α (equivalent to strong

positive epistasis between incompatibilities), or a model where

α is higher, but where the number of “incompatibilities” does

not snowball, because they appear and disappear as the genetic

background changes (Welch 2004; Fraı̈sse et al. 2016b; Guerrero

et al. 2017; Kalirad and Azevedo 2017). Furthermore, Fisher’s

model can generate an “apparent snowball effect,” when intro-

gressed segments contain multiple divergent sites (Fraı̈sse et al.

2016b), and this is true of the strongest empirical demonstrations

of the effect (Matute et al. 2010; Moyle and Nakazato 2010; Wang

et al. 2015).

Finally, given the simplicity and flexibility of the modeling

approach explored here, and its predictive successes with a range

of data, it should be readily extendable to address other outstand-

ing questions in the study of hybridization. These include the puta-

tive role of hybridization in adaptive evolution (e.g., Mendez et al.

2012; Fraı̈sse et al. 2016b, 2016a; Duranton et al. 2017), the effects

of recombination in shaping patterns of divergence (Aeschbacher

et al. 2017; Schumer et al. 2018), the analysis of clines (Barton and

Gale 1993; Macholán et al. 2011; Baird et al. 2012), and the roles

of intrinsic versus extrinsic isolation (Chevin et al. 2014, Fig. S4).

Given its ability to interpolate between models of different and ex-

treme kinds, it should also be particularly useful for understanding

hybridization in intermediate regimes, where parental genomes

are characterized by both maladaptation and allelic coadaptation,

or where the architecture of isolation involves many genes of

small or moderate effect. Data—including those analyzed here—

suggest that such architectures might be quite common (Davis

and Wu 1996; Maside and Naveira 1996; Rosas et al. 2010;
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Morán and Fontdevila 2014; Baird 2017; Buerkle 2017; Boyle

et al. 2017).

Methods
Mytilus DATA

Conserved tissues from the mussel species, Mytilus edulis and

Mytilus galloprovincialis, and their hybrids, were retained from

the work of Bierne et al. (2002, 2006). As reported in those

studies, M. edulis from the North of France were crossed with

M. galloprovincialis from the French Mediterranean coast to pro-

duce F1 hybrids (five males and one female; Bierne et al. 2002).

The F1 were then used to produce an F2, and sex-reciprocal back-

crosses to M. galloprovincialis (which we denote here as BC12

and BC21; Bierne et al. 2006). In particular, oocytes from the F1

female were fertilized by the pooled sperm of the five F1 males

producing F2 individuals, from which 132 individuals were sam-

pled; oocytes from the F1 female were fertilized by pooled sperm

of five M. galloprovincialis males to produce BC12, from which

72 individuals were sampled; and five M. galloprovincialis fe-

males were fertilized by pooled sperm from the five F1 males,

producing BC21, from which 72 individuals were sampled. In ad-

dition to these hybrids, we also genotyped 129 individuals from

“reference” populations of the two species, found in regions with

relatively little contemporary introgression. In particular, we sam-

pled M. galloprovincialis from Thau in the Mediterranean Sea;

and sampled M. edulis from four locations in the North Sea and

English Channel (The Netherlands, Saint-Jouin, Villerville and

Réville). Full details of these reference populations are found in

Table S3.

In each case, gill tissues were conserved in ethanol at −20°C.

DNA was extracted using a NucleaMag 96 Tissue kit (Macherey-

Nagel) and a KingFisherTM Flex (ThermoFisher Scientific). We

then genotyped all samples for 98 Mytilus markers that were

designed from the data of Fraı̈sse et al. (2016a). The flanking se-

quences of the 98 SNPs are provided in Table S7. Genotyping was

subcontracted to LGC-genomics and performed with the KASPTM

chemistry (Kompetitive Allele Specific PCR, Semagn et al. 2014).

Results are shown in Figure S6. Many of the 98 markers are not

diagnostic for M. edulis and M. galloprovincialis, and so we re-

tained only the 43 that were scored as heterozygous in all six of the

F1 hybrids. To obtain a reduced set of strongly diagnostic mark-

ers, we measured sample allele frequencies in our pure species

M. edulis and M. galloprovincialis samples (pooling M. edulis

individuals across the four sampling locations; Table S3), and

retained only markers for which the absolute difference in allele

frequencies between species was > 90%. This yielded the set of

33 markers used for the right-hand columns in Table 2. The “sub-

sampled” data shown in the fourth column of Table 2, excluded

any BC hybrid who carried the major allele typical of M. edulis

in homozygous form. This yielded 56 BC hybrids. Because se-

quencing order was haphazard, to equalize the sample sizes, we

retained the first 56 F2 to be sequenced.

COLLATION OF PUBLISHED DATA

We searched the literature for published datasets combining mea-

sures of individual hybrid fitness, with genomic data that could

be used to estimate p12 and h. We rejected any datasets where the

measure of fecundity or fertility took an extreme low value for

one of the pure species, suggesting that it is not a good proxy for

fitness (e.g., Orgogozo et al. 2006), data where the fitness proxy

correlated strongly with a measure of genetic abnormality such as

aneuploidy (Xu and He 2011), or data where the states of many

markers could not be unambiguously assigned, for example, due

to shared variation. Before estimating the fitness surface, we also

excluded any dataset where there was a highly significant rank

correlation between the proportion of missing data in an individ-

ual, and either their heterozygosity, or fitness. For this reason,

we did not proceed with reanalyses of the excellent datasets of

Li et al. (2011), or Routtu et al. (2014) (see Table S2 for full

details). For our reanalysis of the Teleogryllus data of Moran

et al. (2017), we did not consider data from the second back-

cross, to avoid complications due to selection on heterozygosity

during the first backcross, and because of an anomalous hatching

rate in the T. oceanicus controls. For our reanalysis of the Mus

musculus F2 (White et al. 2011), we used a conservative subset

of these data; we excluded any individual where any X-linked

marker was scored as heterozygous (indicative of sequencing er-

rors in heterogametic males; White et al. 2011), and controlled

for variation in the uniparentally inherited markers, by retaining

only individuals carrying M. m. domesticus mitochondria, and the

M. m. musculus Y. However, results were little changed when

we used all 304 individuals with fertility data (Table S6). Results

were also unaffected when we used alternative proxies for fitness

(Table S6). For the wild Mus musculus hybrids data (Turner and

Harr 2014), fixed markers and their orientation between species

were determined using previously published data of Staubach

et al. (2012) and Yang et al. (2009). See details in the Dryad data

package.

ESTIMATION OF gX FROM ANNOTATED GENOMES

To fit the generalized linear models (GLM) to data from species

with XY sex determination (Table 1), we needed to account for the

different marker densities on the X and autosomes. Accordingly,

we estimated the overall values of p12 and h from equation (16).

We estimated the weightings, gX and gA, from the total length

of coding sequences associated with each chromosome type, ig-

noring the small contributions from the Y and mitochondria. In

each case, we obtained the longest protein product for each unique

gene, and then summed their lengths, using a custom R script. The
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gX values, shown in Table 1, were calculated as the total length of

X-linked CDS divided by the total CDS length. For Mus muscu-

lus, we used the reference genome assembly “GRCm38.p5.” For

Drosophila simulans, we used the assembly “GCA_000754195.3

ASM75419v2,” and for Drosophila yakuba “GCA_000005975.1

dyak_caf1.” For Drosophila pseudoobscura, the current annota-

tion was downloaded from FlyBase release 3.04 (Gramates et al.

2017). The .gtf file was then sorted and merged (combining over-

lapping coding sequences on each chromosome) using BEDTools

(Quinlan and Hall 2010). Coding sequence lengths were calcu-

lated and summed over each chromosome, using custom awk

commands.

GLM METHODS

The linear model results shown in Table 3, Figure 5, Tables S5 and

S6, and Figures S9–S11, were all fit in R v. 3.3.2 (R Core Team

2016). For datasets with quantitative fitness measures (White et al.

2011; Turner and Harr 2014; Fig. S10) we used the standard gen-

eral linear models, with Gaussian errors, and chose data transfor-

mations to reduce heteroscedasticity. For binary fitness data (Noor

et al. 2001; Christe et al. 2016; Chapman et al. 2016; Table 3;

Fig. S9), we used binomial regression with a logit link imple-

mented in the glm function; and with ordinal fitness data (Mac-

donald and Goldstein 1999; Moehring et al. 2006b; Fig. S11) we

used proportional odds logistic regression (Agresti 2003), imple-

mented in the polr function. In these cases, the P-values shown in

Table S6 were calculated by comparing the t-value to the upper

tail of normal distribution, as in a Wald test. For the non-Gaussian

models, we also report McFadden’s pseudo-r2, defined as one

minus the ratio of log likelihoods for the fitted and null models

(McFadden 1974).

DATA ARCHIVING
All data and analysis scripts have been deposited in the Dryad
repository (DOI: https://doi.org/10.5061/dryad.2hb2br7). Source code
used for the simulations is available here https://github.com/
alxsimon/Hybrid_fitness_Fisher_geometric_model.

AUTHOR CONTRIBUTIONS
A.S. and J.W. worked on the mathematical models and derivations. All
authors designed the study, collected the data and wrote the manuscript.

ACKNOWLEDGMENTS
We are very grateful to all of the authors of the original data reanalyzed
here and especially to the following, who provided clarifications or refor-
matting: Luisa Bresadola, Charlie Brummer, Mark A. Chapman, Camille
Christe, Eric Hagg, Xionglei He, Christian Lexer, Xuehui Li, Amanda
Moehring, Bret Payseur, Michael White, and Gavin Woodruff. We are
also grateful to Andrea Betancourt for advice on processing the genome
annotations, and to Peter Moran, who spotted a serious mistake in an
earlier draft. Stuart Baird, Jon Slate, David Waxman, and anonymous re-
viewers, provided helpful comments that led to substantial improvements.
This work was partly funded by the Agence Nationale de la Recherche

(HYSEA project, ANR-12-BSV7-0011). NB acknowledges a fellowship
of the French Embassy in the United Kingdom, with Churchill College
Cambridge. A.S. acknowledges a fellowship of the Labex CeMEB and
the doctoral school GAIA. J.W. acknowledges Joanna Weinert.

The authors declare no conflicts of interests.

LITERATURE CITED
Abbott, R. J., and A. C. Brennan. 2014. Altitudinal gradients, plant hybrid

zones and evolutionary novelty. Philos. Trans. R. Soc. B Biol. Sci. 369:
20130346.

Abbott, R. J., D. Albach, S. Ansell, J. W. Arntzen, S. J. E. Baird, N. Bierne,
J. Boughman, A. Brelsford, C. A. Buerkle, R. Buggs, et al. 2013. Hy-
bridization and speciation. J. Evol. Biol. 26: 229–246.

Aeschbacher, S., J. P. Selby, J. H. Willis, and G. Coop. 2017. Population-
genomic inference of the strength and timing of selection against gene
flow. Proc. Natl. Acad. Sci. 114: 7061–7066.

Agresti, A. 2003. Categorical data analysis. 2nd ed. John Wiley & Sons, Inc.,
Hoboken, New Jersey.

Baird, S. J. E. 2017. The impact of high-throughput sequencing technol-
ogy on speciation research: maintaining perspective. J. Evol. Biol. 30:
1482–1487.

Baird, S. J. E., A. Ribas, M. Macholán, T. Albrecht, J. Piálek, and J.
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Appendix 1: The Brownian Bridge
Approximation
In this Appendix, we derive the Brownian bridge approximation

for the breakdown score of hybrid genotypes, under Fisher’s ge-

ometric model. The Appendix is in three parts. First, we state

our approximation without much justification. We will also as-

sume haploid genomics, which makes the approximation simpler

to explain, and also helps to draw connections with a previous

model of epistasis introduced by Barton and Gale (1993). In the

second section, we justify the approximation, by showing how it

relates to explicit models of genetic and phenotypic divergence.

We also show that the approximation is quite robust to varying

assumptions about the divergence process. Third, and finally, we

introduce the full, diploid version of the approximation, which is

used for the results in the main text.

Results with haploid genetics
In this section, and the following section, we will assume that the

parental species P1 and P2 are haploid. In this case, of course,

there is no heterozygosity (p12 = 0) and the hybrid index is h =
p2 = 1 − p1.

We can now consider the d substitutions that differentiate

P1 and P2 as a chain of vectors, in the n-dimensional phenotypic

space, which connect one of the parental phenotypes to the other.

Our approximation is to treat this path, on each of the n traits, as

describing a Brownian bridge, that is, a random walk constrained

at its start and end points (Revuz and Yor 1999, Ch. 1 for details).

This approximation will be justified by appealing to the random

combinations of alleles that appear together in hybrid genotypes

(see below).

To derive our approximation, let B(t) denote a Brown-

ian bridge, taking place over a single unit of time, and with

a rate σB . B(t) is normally distributed, with the following

mean:

E(B(t)) = (1 − t)B(0) + t B(1), 0 ≤ t ≤ 1 (A1)

where B(0) and B(1) are the fixed points at the beginning

and end of the walk. The covariance at two time points is

given by

Cov(B(t1), B(t2)) = σ2
B(1 − t2)t1, 0 ≤ t1 ≤ t2 ≤ 1 (A2)

(Revuz and Yor 1999, Ch. 1). For our purposes, the start and end

points of the walk are given by the trait values of the parental

lines, so that, for trait i , B(0) = zP1,i and B(1) = zP2,i . The total

length of the walk represents the complete path of d substitu-

tions, each with typical effect vi , so that σ2
B = dvi . Finally, to

determine the trait value for a hybrid carrying dh alleles that

come from P2, we just “stop” the random walk at the intermedi-

ate “time” h. As such, using equations (A1) and (A2), the trait

value zi will be a normal random variable with the following

properties:

zi ∼ N (μi , σ
2
i )

μi ≡ E(zi ) = (1 − h)zP1,i + hzP2,i (A3)

σ2
i ≡ Var(zi ) = dvi h(1 − h) (A4)

The expectations and variances in these expressions involve

two sorts of averaging. First, there is averaging over different

realizations of evolutionary process, that is, the different sets of

substitutions that might differentiate P1 and P2. Second, there is

averaging over the subset of substitutions that might appear in a

hybrid with a given value of h. Only this second averaging process

will apply to real datasets, and it helps to explain the connection

between our approximation and explicit models of divergence

(see below).
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To complete the results for haploidy, we note that the break-

down score, S, depends on the squared trait value (see eq. 4 of the

main text). From normal theory, we then have:

E
(
z2

i

) = σ2
i + μ2

i (A5)

Var
(
z2

i

) = 2σ2
i

(
σ2

i + 2μ2
i

)
(A6)

and so S will be approximately gamma distributed, with a mean

and variance given by the weighted sum of these quantities (see

also Rosas et al. 2010). The key quantity f , as defined in equa-

tion (2), is then found to be

f ≡ E(S)

E (S†)
= d

∑n
i λivi h(1 − h) +∑n

i λi

(
(1 − h)zP1,i + hzP2,i

)2

d
∑n

i λivi

= h(1 − h) + fmal (A7)

where

fmal =
∑

i λi
(
(1 − h)zP1,i + hzP2,i

)2

d
∑

i λivi
(A8)

The term fmal comes from the μ2
i in equation (A5), and

describes the contribution to hybrid breakdown from parental

maladaptation. The value of fmal depends on the relative positions

in phenotypic space of the two parental types. It is useful to

consider a few simple cases, which are summarized in Table S1,

and which we also use in the main text. First, let us consider

the case where maladaptation accrues independently in the two

parental lines. In this case, shown in Table S1b, we expect no

covariance between their phenotypic deviations, and so fmal is

just a weighted sum of the relative breakdown scores for the two

parental lines

fmal = (1 − h)2 fP1 + h2 fP2, zP1,i zP2,i = 0 (A9)

where fP1 = ∑
i λi z2

P1/
∑

i λi dvi . The assumption of indepen-

dent maladaptation should apply to many real datasets, and so

equation (A9) is used in the main text, as the basis of equa-

tions (6)–(9) (see below for details). Independent maladaptation

need not apply in every case, however, and it might be the case

that P1 and P2 are identically maladapted, perhaps because of

a shared unsuitability to a lab environment. This case, however,

turns out to be comparable to the case with no parental adaptation.

As shown in Table S1c, when both parental phenotypes are sub-

optimal, but identical, all genotypes suffer an additional constant

contribution to their maladaptation. Finally, we can imagine a

case where the two populations tend to become maladapted in op-

posite directions, such that the midparental phenotype is optimal.

Results for this case are shown in Table S1d, but it is probably the

least realistic of the three scenarios.

When parental lines are well adapted, such that fmal ≈ 0,

then our haploid model is closely connected to a simple model

of epistasis introduced by Barton and Gale (1993). They provide

results for cline shape and linkage disequilibrium under this model

(Barton and Gale 1993; p. 18).

Comparison to simple models of divergence
The approximation introduced above includes only two fixed

points—the parental phenotypes—and ignores their common an-

cestor, and all of the intermediate steps in their divergence. Nev-

ertheless, we can be fairly confident that all of these intermediates

had reasonably high fitness. The reason it is possible to ignore

these intermediate steps is that mutations fix in a particular order

during divergence, but in hybrids, they appear in random com-

binations, due to recombination and segregation. This makes the

Brownian bridge approximation robust to a wide range of different

assumptions about population divergence.

In this section of the Appendix, we illustrate this point, and

explore the robustness of the approximation. For simplicity, we

continue to assume haploid genetics, and consider only one phe-

notypic trait (hence, we write zi = z throughout). We will also

limit ourselves to models with a low mutation rate, such that fix-

ations occur one at a time. Given this last assumption, we can

order the d fixations that differentiate P1 and P2 in a single chain,

starting at P1, and then going back in time to the most recent com-

mon ancestor, and then forwards in time again toward P2. This

is illustrated in Figure S1. We will denote as z( j), the trait value

in the j th step of this chain, such that z(0) is the trait value for

P1, and z(d) is the trait value for P2. Each genotype will contain

a different number of alleles from P2, and the hybrid index of

phenotype z( j) is simply h = j/d . Finally, the phenotypic effect

of the j th substitution in the chain is defined by

m j ≡ z( j) − z( j − 1) (A10)

Figure S1 illustrates these quantities.

Now, let us first consider the case where both populations

remain well adapted, or close to the optimum, throughout the

divergence process. We can then model the phenotype at step j

as a normal random variable.

z( j) ∼ N (0, v/2) (A11)

From equations (A10) and (A11), it follows that the effects

of neighboring substitutions in the chain will negatively covary,

implying that maladapted populations will tend to fix mutations

that return them closer to the optimum:

Cov(mi , m j ) =

⎧⎪⎨
⎪⎩

v, i = j

−v/2, i = j ± 1

0, otherwise

(A12)
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Now let us consider the phenotype that contains dh alleles from

P2, namely z(dh). This phenotype can be written as the sum of

substitutional changes, starting from the initial P1 phenotype:

z(dh) = z(0) +
dh∑

i=1

mi (A13)

We define the relative breakdown of this genotype as fh ≡
z2(dh)/(dv), and the expected value of this quantity is

E( fh) ≡ E(z2(dh))

dv
= 1

dv

[
Var(z(0)) + 2Cov

(
z(0),

dh∑
i=1

mi

)

+ Var

(
dh∑

i=1

mi

)]

= 1

dv

[
Var(z(0)) + 2Cov

(
z(0),

dh∑
i=1

mi

)

+ dhVar (mi ) + 2
∑

i< j≤dh

Cov
(
mi , m j

)⎤⎦

= 1

2d
+ h

(√
2ρz(0),mi + 1

+ (dh − 1)ρmi m j

)
(A14)

where ρz(0),mi is the average correlation between the initial P1

phenotype, and the effect of each substitution; and ρmi m j is the

average correlation between each distinct pair of substitutions. Let

us first evaluate equation (A14) when the dh mutations are added

to the hybrid in the same fixed order that they appear in the chain

of fit intermediates (Fig. S1). In this case, from equation (A12),

only the first of the dh substitutions will covary with the initial

phenotype, and so we have ρz(0),mi = −1/(
√

2dh). Similarly, each

substitution will only covary with its preceding and subsequent

substitutions, such that ρmi m j = − 1
2

2(dh−1)
dh(dh−1) = −1/(dh). As such,

when mutations are added in this fixed order, equation (A14)

yields:

E( fh) = 1

2d
= E( fP ) (A15)

So the expected breakdown of all genotypes, regardless of their

hybrid index, is equal to that of the parental lines. Equation (A15)

reflects the fact that each of these “hybrid” genotypes is one of

the fit intermediates, and all will be very fit compared to the

worst class of hybrid, unless the divergence, d , is very small.

This result can be contrasted with the result for real hybrids,

where segregation and recombination will bring together collec-

tions of alleles that fixed at different times. If the dh substitutions

in equation (A13) are chosen at random, without replacement,

from the complete set of d substitutions, then the correlation

terms in equation (A14) are both reduced by a factor h, reflecting

the fact that consecutive substitutions in the chain will only ap-

pear together with probability h. With ρz(0),mi = −1/(
√

2d), and

ρmi ,m j = −1/d , equation (A14) becomes

E( fh) = h(1 − h) + E( fP ) (A16)

Even without conditioning on the parental phenotypes, equa-

tion (A16) is now very close to the Brownian bridge approxima-

tion of equation (A7). This is illustrated in Figure S2a. In this

simulation run, the diverging populations remained close to the

optimum throughout (as indicated by the jagged black line). By

contrast, hybrids, which contain a randomized collection of al-

leles, can be very unfit on average (as shown by the smoother

black curves). Their expected deviation from the optimum is well

described by the Brownian bridge approximation (see colored

dotted lines, which show eq. A7). Because the maladaptation of

the parental lines is small, the analytical predictions are little af-

fected if we explicitly account for the observed maladaptation,

by calculating fmal from equation (A8) (see red dotted lines in

Fig. S2a), or if we ignore parental maladaptation altogether, by

setting fmal to zero (see blue dotted lines in Fig. S2a).

The model discussed above assumed that the effects of fixed

mutations were normally distributed (see eqs. A10 and A11 and

Fig. S2a), but the effect sizes of real substitutions might show

substantial deviations from normality. To investigate the effects of

nonnormal effect sizes, Figure S2b shows results when divergence

included a few substitutions of very large effect (simulated by

drawing the trait values, z(i), from a Cauchy distribution). The

results show that the Brownian bridge continues to give a very

good fit. This is because the approximation follows from robust,

central-limit-type behavior, and so it does not depend strongly on

the normality of the allelic effects.

The approximation is also robust if we assume more com-

plicated patterns of divergence. For example, Figure S2c shows

results where we have assumed that both populations adapted

independently to a shifting optimum. This was modeled by gen-

erating the z(i) from an Ornstein–Uhlenbeck process, where the

ancestral population (characterized by an intermediate value of

h), was strongly maladapted.

All of the examples above assume well-adapted parental

lines. By contrast, under strong inbreeding, or mutation accumula-

tion, divergence might be entirely maladaptive, with no tendency

for populations to revert to the optimum. To model this, we can

generate the allelic effects, mi , as uncorrelated normal variables,

starting from an optimal ancestral state. In this case, if we assume

that the parental lines each contain d/2 substitutions, then their

phenotypes are distributed as z(0), z(d) ∼ N (0, vd/2), such that

E( fP) = 1/2. As shown in Figure S2d, the Brownian bridge ap-

proximation remains accurate in this case. For a single trait, the
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accuracy does depend strongly on knowing the true parental trait

values (dotted red lines), and the approximation that uses their ex-

pected squared values (dotted blue lines) can be quite inaccurate.

Nevertheless, over multiple traits, we can expect the errors of this

approximation to cancel out. A clear feature of this approxima-

tion, is that the expected levels of breakdown are constant for all

haploid hybrids (the blue line in Fig. S2d is flat). This reflects the

fact that, without natural selection, both the parental lines, and all

possible hybrid genotypes are simply random assemblies of alle-

les, without any coadaptation. This echoes the result for diploids

with maximal parental maladaptation, where breakdown levels

depend solely on heterozygosity, and not on the hybrid index (see

eq. 8 and Fig. 2A).

Examples illustrated in Figure S2 use simple heuristic sim-

ulations, where the phenotypes z( j) were drawn from a known

distribution. In Figures S3 and S4 we show results when these

phenotypes were generated by explicit population genetic simu-

lations, including multiple phenotypic traits, and the appearance,

fixation, or loss of new mutations. The full simulation procedure

is described in Fraı̈sse et al. (2016b), but all simulations assumed

allopatric divergence between P1 and P2, haploid genomics, and

a low mutation rate, such that fixation or loss events could be

tracked one mutation at a time. In the simulations shown in

Figure S3, we began with a core set of parameters (Fig. S3a),

and then varied these one at a time. Specifically, we varied the

curvature of the fitness function, α, with a core set of parameters

(eq. 1; Fig. S3b), the size of the parental populations (Fig. S3c),

the total number of traits, n (eq. 4; Fig. S3d), and the shape

of the distribution of mutant effects (Fig. S3e). These different

parameter regimes led to very different levels of genetic diver-

gence between the parents (i.e., different values of d), and dif-

ferent distributions of fixed phenotypic effects. Nevertheless, the

Brownian bridge approximation remained very accurate in all

cases. Finally, we moved the phenotypic optima during the sim-

ulation, so that much of the divergence took place by positive

selection (see Fraı̈sse et al. 2016b; Fig. S3f). This sometimes led

to an increase in the variance in breakdown score (Fig. S3f),

but otherwise, the Brownian bridge approximation remained

accurate.

Figure S4 shows further simulations, where the optima can

move in discrete jumps (as in Orr 1998; Barton 2001). For

n = 2 traits, we compare divergence with a stable, fixed optimum

(Fig. S4a), optima that vary identically for the two diverging popu-

lations (Fig. S4b), and optima that move in different directions in

the environments experienced by P1 and P2 (Fig. S4c). These sce-

narios correspond, roughly, to mutation-order speciation via drift

(Fig. S4a) or selection (Fig. S4b), and to ecological speciation

(Fig. S4c), where reproductive isolation evolves as a byproduct

of adaptation to different environments (Mani and Clarke 1990;

Coyne and Orr 2004; Gavrilets 2004; Chevin et al. 2014).

When the optima can vary, we can also distinguish between

intrinsic reproductive isolation, which involves maladaptation in

traits that are under identical selection in all environments, and

extrinsic isolation, which involves maladaptation in traits whose

optima vary (Chevin et al. 2014). To illustrate this, the right-hand

columns in Figure S4 compare the breakdown caused by selection

on both traits, measured in the environment to which P1 has

adapted, and the breakdown due to one trait only, corresponding to

the vertical axis on the fitness landscapes, for which the optimum

never varies. This shows how the approach can be used to model

breakdown that is caused by the correlated effects of adaptation to

distinct environments (due to pleiotropy or linkage), even when

hybrid fitness is measured in a benign environment, where these

divergent selection pressures do not apply.

Extension to diploidy
In this final section of the Appendix, we extend the results above

to diploid genetics, as described in the main text. In this case, we

must explicitly consider heterozygosity, p12, and the hybrid index

must include contributions from both homozygous and heterozy-

gous alleles: h = p2 + p12/2.

To apply the Brownian bridge approximation to diploidy, we

will assume that the chain of random vectors applies to alleles in

their heterozygous state. Because all mutations are assumed to be

additive on the phenotype, this means that the random walk, which

begins at the phenotype of P1, will now end at the midparental

phenotype, instead of the phenotype of P2. It also means that, to

deal with alleles that appear in homozygous state, some sections

of the walk must be counted twice. In particular, we need to study

the following quantity:

Bdip(t1, t2) ≡ B(t1 + t2) + B(t1) − B(0) (A17)

where B(·) is a Brownian bridge, as described in equations (A1)

and (A2) above. From these equations, we find:

E(Bdip(t1, t2)) = (1 − 2t1 − t2)B(0) + (2t1 − t2)B(1) (A18)

Var(Bdip(t1, t2)) = Var(B(t1 + t2)) + Var(B(t1))

+ 2Cov(B(t1), B(t1 + t2))

= σ2
B{(t1 + t2)(1 − t1 − t2)

+ t1(1 − t1) + 2(1 − t1 − t2)t1}
= σ2

B{t2(1 − t2) + 4t1(1 − t1 − t2)} (A19)

For our diploid problem, we start the walk at the P1

phenotype: B(0) = zP1,i , but end it at the midparent B(1) =
(zP1,i + zP2,i )/2. The total walk length is σ2

B = d vi , just as with
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haploidy, but now vi is understood as the typical effect of an allele

in heterozygous state. Finally, we take the intermediate “times” as

t1 = p2 (this section of the walk is counted twice, to account for

homozygous alleles), and t2 = p12 (this section is counted once,

to account for heterozygous alleles). This results in

zi ∼ N (μi , σ
2
i )

μi ≡ E (zi ) = (1 − 2p2 − p12)zP1,i + (2p2 + p12)
zP1,i + zP2,i

2
= (1 − h)zP1,i + hzP2,i (A20)

σ2
i ≡ Var (zi ) = dvi (p12(1 − p12) + 4p1 p2)

= dvi (4h(1 − h) − p12) (A21)

We note that equation (A20) is identical to the haploid re-

sult of equation (A3). This shows that, once the hybrid index is

correctly defined, all of the results concerning parental maladap-

tation (as shown in eqs. A8 and A9 and Table S1) apply equally

to diploids and haploids. Combining equations (A20)–(A21) with

equations (A5)–(A6), and equation (A9), leads directly to the

diploid results shown in the main text.

The only other difference to note is that maladaptive diploid

substitutions now contribute a possible 22vi = 4vi to the trait

variance. This implies that highly maladapted parents, who have

fixed ∼ d/2 such mutations, will have a breakdown score of

E(SP) ∼ d
2 4
∑n

i λivi , such that E( fP) = 2 under diploidy (as op-

posed to E( fP) = 1/2 under haploidy). The diploid result is used

in the main text, to explore data from highly inbred lines of Zea

mays.

Appendix 2: Fisher’s Model and
Dobzhansky-Muller Incompatibilities

In this Appendix, we show that a major prediction of Fisher’s

geometric model, assuming well-adapted parents (eq. 9), can also

be derived from a model of genetic incompatibilities, each involv-

ing a small number of loci. Such models stem from the classic

work of Dobzhansky 1937 and have been important in the study

of speciation genetics (Fraı̈sse et al. 2014; Orr 1995; Turelli and

Orr 2000; Gavrilets 2004; Welch 2004; Demuth and Wade 2005;

Fraı̈sse et al. 2016b). We begin by introducing the model in general

form, and then explore different ways of assigning the parameters,

which determine the contribution of individual incompatibilities

to the overall level of breakdown.

A general model of incompatibilities
Following Orr (1995), let us assume that certain combinations

of alleles, at � ≤ d of the divergent loci, can be intrinsically

incompatible, while all other combinations confer high fitness.

By assumption, the pure species genotypes, and their ancestral

states, must be fit, but all other combinations have a fixed proba-

bility ε� of being incompatible.

The worst class of hybrid will contain all of the possible

incompatibilities, and so its expected breakdown score will be

proportional to the expected number of incompatibilities. This

was calculated by Welch (2004, eqs. 1–2):

E(S†,I ) ∝ ε�

(
d

�

)
(2� − � − 1) (A22)

Here, and below, we use the subscript I to indicate a model

of incompatibilities. To derive f I (eq. 2), we note that hybrids

will have higher fitness when some of the incompatibilities are

absent from their genomes (Turelli and Orr 2000). The probability

that an incompatibility is present depends on how many of the �

loci are heterozygous. For a genotype comprising i loci that are

homozygous for the P1 allele, j loci homozygous for the P2 allele,

and k loci that are heterozygous, the probability required is:

πi jk = 2k − u(i) − u( j)

2� − 2
, with u(x) =

{
0 if x > 0

1 i f x = 0
(A23)

which is the proportion of the possible combinations of heterospe-

cific alleles that are present in an “i jk” genotype.

Incompatibilities may also have reduced effects due to reces-

sivity, when their negative effects are masked by the presence of

alternative, compatible alleles (Turelli and Orr 2000). To model

this, we introduce the free parameter si jk , which is the expected

increase in breakdown when an incompatibility appears in an

i jk genotype. Finally, in a hybrid genome characterized by p1,

p2, and p12, the trinomial expansion of (p1 + p2 + p12)�, tells

us how many �-locus genotypes of each type it is expected to

contain. Putting these together, we have

f I =
∑

i+ j+k=�

(
�

i, j, k

)
pi

1 p j
2 pk

12πi jksi jk (A24)

where (
�

i, j, k

)
≡ �!

i! j!k!

Equations (A23) and (A24) extend results with � = 2 and

� = 3 from Turelli and Orr (2000), and represent a general model

of breakdown caused by incompatibilities. A notable feature of

these equations is their large number of free parameters. Even with

symmetry between P1 and P2 (such that si jk = s jik), we will still

require a total of ��(1 + �/4)� different si jk values to specify the

model (i.e., three extra parameters for two-locus incompatibilities,

five parameters for three-locus incompatibilities etc.). There is

good empirical evidence for, at least, two-, three-, and four-locus

incompatibilities (Fraı̈sse et al. 2014), and so with the si jk and the
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ε�, the full model would depend on at least 17 free parameters. By

contrast, equation (9), from Fisher’s geometric model, has no free

parameters. The incompatibility-based model is therefore much

more flexible, but also much more difficult to explore.

In the following section, we examine different ways of as-

signing the si jk . We will show that a particular set of values

make the model identical to Fisher’s geometric model (eq. 9). We

will also follow Turelli and Orr (2000), and show that these val-

ues are biologically plausible, given well-established empirical

patterns, and especially Haldane’s Rule (see Haldane 1922 and

Appendix 4).

The dominance relations of incompatibilities
Let us begin by assigning the following functional form for the

si jk :

si jk ∝
(

1

2

)δk

(A25)

where below, we will use a constant of proportionality such that

si jk = (1/2)δk · 2(2� − 2), to simplify the final results. In equa-

tion (A25), the parameter δ allows us to tune the dominance of

incompatibilities, measured in terms of breakdown score, rather

than fitness.

When δ = 1, then each heterozygous locus halves the effects

of incompatibility. This is equivalent to assuming that incompati-

bilities act multiplicatively, since each heterozygous locus halves

the number of times that the incompatible combination of alleles

is present in the genome. The si jk under multiplicative selection

(δ = 1) are illustrated by the green points in Figure S5.

To determine the predictions of this model, let us substitute

equation (A25) into equation (A24), and set δ = 1. After some

algebra, we find:

f I = 2
[
1 − (

p2 + 1
2 p12

)� − (
p1 + 1

2 p12
)�]

, δ = 1 (A26)

≡ 2
[
1 − h� − (1 − h)�

]
, δ = 1 (A27)

= 4h(1 − h), � = 2, δ = 1 (A28)

where h is the hybrid index (eq. 3). As such, when incompat-

ibilities act multiplicatively, breakdown will depend solely on

the hybrid index, and not on the heterozygosity. When pairwise

incompatibilities are considered (eq. A28), the model becomes

equivalent to the haploid version of Fisher’s geometric model

(see eq. A7), and also to the model of Barton and Gale (1993).

More importantly, equation (A28) predicts that breakdown

should not change between the F1 and F2 crosses (both of which

have h = 1
2 ), and that homogametic F1 will have the highest pos-

sible breakdown score. As such, this multiplicative model cannot

predict hybrid breakdown between the F1 and F2, nor Haldane’s

Rule, and both patterns have widespread empirical support (see

Table A1 of Fraı̈sse et al. 2016b).

Now let us consider another extreme assumption. We assume

that incompatibilities are fully recessive, such that no breakdown

appears unless all incompatible alleles appear in homozygous or

hemizygous form. We model this by making δ very large, such

that si jk = 0 unless k = 0. These values are illustrated by the red

points in Figure S5. With the assumption of complete recessivity,

we find:

f I = 2
[
(p1 + p2)� − p�

1 − p�
2

]
, δ → ∞ (A29)

= 4h(1 − h) − 2p12 + p2
12, � = 2, δ → ∞ (A30)

Equation (A29) also fails to predict Haldane’s Rule, unless

there is substantial uniparental inheritance from both the male

and female parents (see Appendix 4). This is because f I = 0 if

p1 p2 = 0, and so both male and female F1 will have identical

and optimal fitness. For similar reasons, equation (A29) predicts

that the fitness of heterogametic backcrosses will decrease with

p12,A, and this prediction is not supported by the relevant data

(Moehring 2011).

We have shown that both extreme regimes (no recessivity,

and complete recessivity) yield unsupported predictions. But what

values of δ are biologically plausible? To answer this question,

let us consider Haldane’s Rule under an incompatibility-based

model, and ignoring uniparental inheritance. Assuming that males

are heterogametic, Haldane’s Rule will hold when

f I,F1♂ > f I,F1♀ (A31)

(see Appendix 4). If we use gX and 1 − gX to denote the propor-

tions of the parental divergence that is found on the X and auto-

somes (as in eq. 16 of the main text), then using equations (A24)

and (A25), equation (A31) is found to be equivalent to:

(
2(1 − gX ) + 2δgX

)� − (1 − gX )� −
(

1 − gX + 2δgX

)�

> 2� − 2 (A32)

This condition is most difficult to satisfy when incompat-

ibilities involve two loci (� = 2), and in this case, we find the

solution:

δ > ln

(
2 − gX

1 − gX

)
/ ln(2). (A33)

The value of δ that is required to yield Haldane’s Rule will

therefore increase with gX . Toward the limit of the biologically

plausible range, when two-thirds of the between-species diver-

gence is X-linked (gX = 2/3) Haldane’s Rule will hold only if

δ > 2. As such, setting δ = 2, such that each heterozygous locus

reduces the breakdown score by a factor of four, will yield Hal-

dane’s Rule in most cases. The si jk values from equation (A25)

with δ = 2 are shown as yellow points in Figure S5. Another
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feature of the model with δ = 2 is that it produces parameter

dependencies that are very close to those predicted by Fisher’s

geometrical model (see also Manna et al. 2011). The similarity is

clearest with two-locus incompatibilities, where we find

f I =
(

1

2

)δ−2

p12

(
1 − p12

[
1 −

(
1

2

)δ
])

+ 4p1 p2, � = 2 (A34)

= 4h(1 − h) − p12 + 1

4
p2

12, � = 2, δ = 2 (A35)

Comparing equation (A35) to equation (9), shows that f I ≈ f

when we use equation (A25) with δ = 2.

We can then go further, and find a set of si jk values that yield

exactly the same dependencies as Fisher’s model. To do this, we

set f I = f , using equations (9) and (A24), and then solve for the

si jk . After some algebra, we find

si jk = (� − k)� − (i − j)2

�(� − 1)πi jk
(A36)

These values are shown as blue points in Figure S5. Equa-

tion (A36) looks unwieldy, and it was derived solely to make

the models agree. Nevertheless, it embodies biologically plausi-

ble assumptions about incompatibilities. First, the similarities be-

tween the blue and yellow points in Figure S5 show that Fisher’s

model corresponds to the assumption of partial recessivity, at lev-

els sufficient to produce Haldane’s Rule. Second, equation (A36)

states that incompatibilities will have stronger effects when alle-

les from both parental species appear in homozygous state. For

example, if the three alleles ABc form an incompatibility (with

upper and lower case letters distinguishing alleles from P1 and

P2), then equation (A36) predicts that the genotype Aa/BB/cc

(with i jk = 111) will tend to have lower fitness than the geno-

type AA/BB/Cc (with i jk = 201) even though both genotypes

contain the incompatibility, and both comprise two homozygous

loci and one heterozygous locus.

This section has shown that Fisher’s geometric model implies

assumptions about “incompatibilities,” that yield well supported

predictions. However, it remains true that the full incompatibility-

based model (eqs. A22–A24) is much more flexible. While that

model is very parameter rich, the results above also suggest a

family of models that might combine the flexibility and simplicity.

When we assume only pairwise incompatibilities (� = 2), then

equations (A28), (A30), (A35), and the result from Fisher’s model

(eq. 9), are all special cases of

f = 4h(1 − h) + (2 fhet − r − 2)p12 + (1 + r − fhet)p2
12 (A37)

where fhet is the breakdown experienced by the global heterozy-

gote (the genotype with p12 = 1), and r is the rate of change in

breakdown with p12.

Appendix 3: Segregation and
Recombination

In this Appendix, we consider the effects of segregation and

recombination on the expected levels of breakdown. For a recom-

binant cross, such as the F2 or backcross, p12 and h might vary

between individuals, and so we must treat f as a random variable.

To see this, let us write equation (9) as

f = 4h(1 − h) − p12

= p12(1 − p12) + 4p1 p2

= p12 − p2
12 + 4p1 − 4p2

1 − 4p1 p12 (A38)

and so its expected value is:

E( f ) = p̄12(1 − p̄12) + 4 p̄1 p̄2 − Var(p12) − 4(Var(p1)

+ Cov(p12, p1)) (A39)

where overbars represent expected values. The variances and co-

variances in equation (A39) will depend on the distribution of

the divergence across the genome, and on patterns of segregation

and recombination. However, we can derive simple and useful

predictions if we assume that the divergence is equally distributed

among m freely recombining regions. In this case, we can use

results from a multinomial distribution.

Var(p12) = p̄12(1 − p̄12)

m
(A40)

Var(p1) = p̄1(1 − p̄1)

m
(A41)

Cov(p12, p1) = − p̄1 p̄12

m
(A42)

These results also apply to estimators from m independently segre-

gating markers. As an example, let us compare the first backcross

and the F2, in a population with strictly biparental inheritance.

For the first backcross, we have p̄12 = 1
2 and p1 p2 = 0, and so

E( fBC1) = 1

4

(
1 − 1

m

)
(A43)

For the F2, we have p̄12 = 1
2 and p̄1 = p̄2 = 1

4 , and so

E( fF2) = 1

2

(
1 − 1

m

)
= 2E( fBC1) (A44)

and so the predicted breakdown in the F2 is always double that

of the first backcross. By the same method, we can also calculate

the variance of f , but this requires higher order moments of the

multinomial distribution (Newcomer et al. 2008), and this can

yield lengthy expressions. However, the following results for the
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F2 are required to justify the approximation of equation (13) from

the main text.

E(4h(1 − h)) = 1 − 1

2m
≈ 1, p̄12 = 1

2
, p̄1 = 1

4
(A45)

Var(4h(1 − h)) = 2m − 1

4m3
≈ 1

2m2
, p̄12 = 1

2
, p̄1 = 1

4
(A46)

Comparing equation (A46) to equation (A40) shows that

most of the variance in F2 breakdown will be due to variation in

heterozygosity.

Appendix 4: Predictions of Fisher’s
Geometric Model with Sex-Specific
Inheritance
In this Appendix, we will develop some predictions of Fisher’s ge-

ometric model, after relaxing the assumption of strictly biparental

inheritance. These results justify claims in the main text, and also

provide analytical support for some assertions in Fraı̈sse et al.

(2016b).

Additional notation and basics
As described in the main text, the basic strategy for incorporating

sex-specific inheritance is to write the genome-wide measures

as weighted sums of contributions from loci of different types.

For example, if we have a system with an X chromosome and

autosomes, and a subset of loci that are strictly maternally or

paternally inherited, then we could write:

p12 = gX p12,X + gA p12,A + g♀ p12,♀ + g♂ p12,♂
p1 = gX p1,X + gA p1,A + g♀ p1,♀ + g♂ p1,♂
p2 = gX p2,X + gA p2,A + g♀ p2,♀ + g♂ p2,♂
h = gX h X + gA h A + g♀ h♀ + g♂ h♂ (A47)

where gX + gA + g♀ + g♂ = 1. The weightings will vary with

the proportion of the divergence found at loci of each type, and

with the typical effect sizes of the fixed differences. Following

equation (3), the hybrid index for the X chromosome, can also be

written as

h X = p2,X + p12,X

2
(A48)

and similarly for the other quantities. Here, as in the main text, we

have assumed an XO system, such that females are homogametic,

and males heterogametic. However, the equations are flexible

enough to model a range of biological situations. For example,

haplodiploidy might be modeled by setting gX = 1, and the uni-

parentally inherited loci (included via g♀ and g♂) might include

the Y (or W) chromosome, organelles, selectively silenced re-

gions of the X (or Z), or other imprinted loci (Turelli and Moyle

2007).

With sex-specific inheritance, we also require assumptions

about sex-specific selection, and this can be incorporated in sev-

eral ways (Connallon and Clark 2014; Fraı̈sse et al. 2016b). For

example, sexual conflict can be modeled by assuming that there

are differences in the optimal trait values for each sex (Connallon

and Clark 2014). Alternatively, we could assume that some subset

of the traits is under selection in only one sex, for example traits

involved in spermatogenesis or oogenesis (Wu and Davis 1993;

Coyne and Orr 2004). Finally, we could assume that sexes are

under identical selection, which will usually require assumptions

about dosage compensation (see below and Fraı̈sse et al. 2016b).

Patterns in the F1: Haldane’s rule
and asymmetry
This section presents results for the initial F1 cross (P1 × P2),

and particularly the findings of Haldane’s Rule, and parental sex

asymmetry (Haldane 1922; Turelli and Orr 2000; Turelli and

Moyle 2007; Fraı̈sse et al. 2016b).

Haldane’s Rule applies to offspring of different sexes, in

species with chromosomal sex determination. It states that, when

F1 breakdown is stronger in offspring of one sex, it will tend to be

the heterogametic sex (Haldane 1922; Turelli and Orr 2000). Pre-

vious authors have noted that Fisher’s model predicts this pattern

(Barton 2001; Fraı̈sse et al. 2016b; Schiffman and Ralph 2017),

and here, we extend this insight to give formal conditions for Hal-

dane’s Rule. We will assume identical selection in both sexes, and

that pure-species individuals of both sexes have the same fitness.

This implies a form of dosage compensation, such that X-linked

alleles have identical effects in homozygous or hemizygous state

(Mank et al. 2011; Fraı̈sse et al. 2016b). Assuming an XO or XY

system, we expect greater breakdown in the heterogametic (male)

sex on the condition that:

fF1♀ < fF1♂. (A49)

In homogametic females, all divergent sites on the X and

autosomes will be heterozygous, such that p12 = gA + gX , while

by definition, uniparentally inherited loci will come from one

parent alone, such that p1 p2 = g♀g♂. In heterogametic males,

by contrast, only autosomal sites will be heterozygous, such that

p12 = gA, and X-linked sites will be hemizygous and maternally

inherited, such that p1 p2 = (g♀ + gX )g♂. Putting these results

together with equation (6), and using

� ≡ g♀ − g♂ (A50)
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to denote the difference in the contributions of exclusively mater-

nally and paternally inherited sites, we find:

fF1♀ = g♀ + g♂ − �2 + fP♀ (1 + �)2

4
+ fP♂ (1 − �)2

4
(A51)

= fP♀ + fP♂
4

, g♀, g♂ = 0 (A52)

fF1♂ = g♀ + g♂ + gX − (� + gX )2 + fP♀ (1 + � + gX )2

4

+ fP♂ (1 − � − gX )2

4
(A53)

= gX (1 − gX ) + (1 + g2
X )

fP♀ + fP♂
4

+ gX
fP♀ − fP♂

2
, g♀, g♂ = 0 (A54)

where we have used fP♀ and fP♂ to denote the initial maladap-

tation of the maternal and paternal lines used to make the F1. We

can now combine equations (A49)–(A54) to give formal condi-

tions for Haldane’s Rule. We find that the heterogametic sex will

tend to show more breakdown if

0 < gX < g∗
X (A55)

where

g∗
X ≡ 2

2 − �(4 − ( fP♀ + fP♂)) + fP♀ − fP♂
4 − ( fP♀ + fP♂)

(A56)

= 1 − 2�, fP♀, fP♂ = 0 (A57)

= 2
1 − �(2 − fP)

2 − fP
, fP♀ = fP♂ ≡ fP (A58)

= 4 − 2 fP♂
4 − fP♂ , �, fP♀ = 0 (A59)

Several observations follow from the results above. First,

the conditions for Haldane’s Rule are always harder to satisfy as

� increases, and so, from equation (A50), the presence of loci

with exclusively maternal inheritance makes Haldane’s Rule less

likely, while paternal inheritance makes it more likely. Second,

Haldane’s Rule is usually more likely when the parental lines

are maladapted. This is an effect of heterosis, that is an intrinsic

advantage to heterozygosity, because the homogametic sex will

tend to be more heterozygous. Third, the sole exception to this

pattern is where the paternal line is much less fit than the maternal

(i.e., if fP♂ � fP♀ as in eq. A59). In this case, Haldane’s Rule

is less likely, because male F1 carry less of the unfit paternal

genome.

The patterns above also clarify the broader role of uni-

parental effects in determining F1 fitness (Fraı̈sse et al. 2016b).

For example, when there is no strictly uniparental inheritance,

such that g♀, g♂ = 0, then the homogametic F1 will always

be fitter than the average of the parental lines (eq. A52). By

contrast, when uniparental inheritance is present (eq. A51), then

the relative breakdown remains roughly constant. This implies

that the absolute breakdown score will decline steadily with d ,

the genetic divergence between the parental lines (see eqs. 2

and 5). As such, Fisher’s model requires uniparental inheritance

to explain the observation of an “F1 speciation clock” (Edmands

2002; Fraı̈sse et al. 2016b). This also helps to determine to the

conditions for rare exceptions to Haldane’s Rule (as observed,

e.g., in Teleogryllus Moran et al. 2017). We predict such ex-

ceptions only when uniparentally inherited loci act on traits that

are subject to selection only in the homogametic sex (Fraı̈sse

et al. 2016b).

Uniparental inheritance is also required, by definition, to

explain another widespread phenomenon: the strong asymmetry

in fitness between the reciprocal F1, that is male–female versus

female–male crosses of the same species pair (Turelli and Moyle

2007; Fraı̈sse et al. 2016b). Such asymmetry is found even in

species without sex chromosomes, or even separate sexes, and

so it cannot be connected to Haldane’s Rule in any rigid sense

(Bouchemousse et al. 2016; Fraı̈sse et al. 2016b). The results

above (eqs. A51–A54) predict such asymmetry only in special cir-

cumstances: when there are uniparental effects of different sizes

(� �= 0), and parental lines with different levels of maladaptation

( fP♂ �= fP♀). These are the assumptions that we used to analyze

the Teleogryllus data of Moran et al. (2017) (see below). How-

ever, the observations of F1 asymmetry are very widespread, and

apply even to species pairs that are both well adapted (Turelli and

Moyle 2007; Fraı̈sse et al. 2016b). The reason for this apparent

discrepancy is that the present work considers the expected break-

down, conditioned only on the levels of parental maladaptation

( fP♀ and fP♂), and so expectations for the reciprocal F1 must be

identical when fP♂ = fP♀. If, by contrast, we condition on the

phenotypic effects of uniparentally inherited alleles, then Fisher’s

geometric model can account for the asymmetries observed; this

was demonstrated by Fraı̈sse et al. (2016b).

Patterns in backcrosses
In this section, we provide further details of the analyses of back-

cross data. These include the male backcrosses from Drosophila

(Noor et al. 2001; Macdonald and Goldstein 1999; Moehring et al.

2006a, 2006b), that were reanalyzed by Moehring (2011), and the

female backcrosses from Teleogryllus presented by Moran et al.

(2017). In both cases, the data come from hybrids of a single sex,

and the fitness traits are components of fertility that are plausibly

sex-specific (i.e., spermatogenesis and oogenesis; see Table 1).
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As such, we treat the predictions of Fisher’s geometric model as

applying to a single sex.

The Drosophila data (Macdonald and Goldstein 1999;

Noor et al. 2001; Moehring et al. 2006a, 2006b) come from

three pairs of reciprocal backcrosses. The species pairs are D.

simulans/sechellia (Macdonald and Goldstein 1999); D. san-

tomea/yakuba (Moehring et al. 2006a, 2006b); and D. pseu-

doobscura/persimilis (Noor et al. 2001). In all three cases, the

crosses can produce sterile hybrids, and so it is safe to assume

that the parental lines are well adapted, compared to the worst

possible class of hybrid, so that we can derive predictions from

equation (9). Our analyses will also neglect loci with exclusively

uniparental inheritance, because they do not qualitatively alter

the predictions in this case. With these assumptions, as noted

by Moehring (2011), hybrids can be characterized by two mea-

sures of “heterospecificity,” namely, the autosomal heterozy-

gosity, p12,A, and the hybrid index of the X, h X . All datasets

scored fertility in each hybrid fly as a binary, or ordinal trait (see

Table 1), and so Moehring (2011) asked whether fertility prob-

lems varied systematically with p12,A and h X . She found, in all

six crosses, that backcross fertility problems correlated strongly

and positively with h X , but correlations with p12,A were weak and

inconsistent. This is shown in Figure S7, and Table 3 of Moehring

(2011). To show how Fisher’s geometric model might account for

these patterns, we can write equation (9) as

fBC♂ = 4h(1 − h) − p12

= p12(1 − p12) + 4p2 p1

= a(1 − a) + 4x(1 − x − a)

= a − a2 + 4x − 4x2 − 4ax (A60)

where

a ≡ (1 − gX )p12,A

x ≡ gX h X (A61)

Figure S8a depicts the fitness surface of equation (A60) as

a function of x and a. Each dataset of hybrid males could oc-

cupy a rectangular region of this surface, as determined by the

its value of gX , and this is how the data are plotted in Figure S7.

The regions also correspond to a region of Figure 1 C, compris-

ing the parallelogram delimited by the dotted horizontal line and

the two arrows. From annotated Drosophila genomes, we esti-

mated that gX = 0.17 might characterize the simulans/sechellia

and yakuba/santomea pairs, and that gX = 0.37 might character-

ize the pseudoobscura/persimilis pair (Table 1; see Methods for

details). The regions of parameter space for these values of gX are

marked on Figure S8a, while panels b-e show slices through the

fitness surface for these values. In both cases, breakdown increases

steadily with h X , except in the improbable case that the recombi-

nant autosomes were completely heterozygous (Fig. S8b–c). This

is consistent with the positive correlations observed by Moehring

(2011). By contrast, the dependencies on p12,A (Fig. S8d–e) vary

in sign. This is consistent with the lack of consistent correlations

with p12,A observed by Moehring (2011) (Fig. S7). Figure S8e

also shows how, when gX is large, the correlations with p12,A re-

verse in sign, for extreme values of h X . Figure S7e–f shows how

the data of Noor et al. (2001) divide naturally into individuals with

high, medium and low values of h X , and together, this explains

the rationale of the test presented in Table 3.

To analyze the female backcross data of Moran et al. (2017)

for Teleogryllus, we used equation (10), which assumes that P1

is well adapted, while P2 is maladapted. We also assume that a

proportion π of the paternal X chromosome is silenced. In this

case, the quantities p12 and h are calculated without considering

silenced alleles, because these make no contribution to the phe-

notype. This rich dataset contains a wide variety of cross types,

and so the full predictions for all of the relevant hybrids are listed

in Table S4.
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Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1: A schematic representation of a phenotype evolving over time in two populations, labeled P1 and P2, starting from their most recent common
ancestor (MRCA).
Figure S2: The breakdown associated with haploid hybrid genotypes, under simple models of phenotypic divergence.
Figure S3: The breakdown associated with haploid hybrid genotypes, under explicit population genetic simulations of phenotypic divergence.
Figure S4: The breakdown associated with haploid hybrid genotypes, under explicit population genetic simulations of phenotypic divergence, in scenarios
involving discrete jumps in the optimal value for one of n = 2 traits.
Figure S5: The effects of an incompatibility on hybrid breakdown score, si jk (eq. 41), when the incompatibility appears in a genotype comprising i loci
that are homozygous for alleles from one parental species, j loci that are homozygous for alleles from the other parental species, and k loci that are
heterozygous.
Figure S6: Genotype plot for the raw Mytilus data.
Figure S7: Plots of the Drosophila male backcross data reanalyzed here (see Table 1 and Moehring 2011).
Figure S8: Predictions of Fisher’s geometric model for heterogametic male hybrids.
Figure S9: Estimation of the fitness surface for interspecific hybrids from plants (Table 1), namely wild hybrids of the genus Populus (row (a); Christe
et al. 2016), and an F2 cross of the genus Senecio (row (b); Chapman et al. 2016).
Figure S10: Estimation of the fitness surface for subspecific hybrids from Mus musculus (Table 1, White et al. 2011; Turner and Harr 2014).
Figure S11: Estimation of the fitness surface for backcross male hybrids from Drosophila species pairs (Table 1, Macdonald and Goldstein 1999; Moehring
et al. 2006a, b).
Table S1: The contribution of parental maladaptation to hybrid breakdown.
Table S2: Checks for appropriateness for genomic data sets.
Table S3: The reference populations for Mytilus crosses.
Table S4: Expected breakdown scores for homogametic female hybrids with paternal X silencing.
Table S5: Inferring the hybrid fitness surface from genomic data sets.
Table S6: The significance of individual regression coefficients.
Table S7: Information on the 98 markers used for the Mytilus genotyping.
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