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EFFECTS OF WIGGLERS AND UNDULATORS ON BEAM DYNAMICS*

Lloyd Smith
Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720, USA

Summary

Synchrotron light facilities are making ever increasing
use of wigglers and undulators, to the extent that these
devices are becoming a significant part of the beam optical
system of the storage ring itself. This paper presents a
theoretical formulation for investigating the effect of
wigglers and undulators on beam dynamics in the
approximation that the wiggler parameter, K, divided by ¥
is a small number and that the number of wiggler periods in
one device Is large. In addition to the linear forces which
must be taken into account when tuning and matching the
ring, non-linear stop bends are created, with even orders
more serious than odd orders. Some numerical examples are
given for devices similar to those proposed for the 1-2 GeV
Synchrotron Radiation Source at Lawrence Berkeley
L_aboratory.

Introduction

For the next generation of synchrotron light storage
rings, it Is planned to make extensive use of wigglers and
undulators; current designs consist primarily of long straight
sections connected by bending and facusing sections. Thus
the effects, linear and non-linear, of the insertion devices
on beam dynamics become Iimportant questions. It has
already been found! that the single (superconducting)
wiqgler inserted in the KEK Photon Factory introduces new
non-linear resonances and seriously restricts the choice of
working point in the tune diagram. This paper presents an
analytic treatment of insertion devices consisting of many
cells, for which the cell length is short enough to neglect
variations of the B-functions in a cell length and for which
the wiggler parameter, K, divided by y is a small
quantity. Radiation effects, if any, are not considered.

Equilibrium Orbit

The expressions used for the magnetic field are those
suggested by K. Halbach:2

B =B cosh k x cosh ky cos kz
y o X y

X
B = Bo sinh k‘x sinh kyy cos kz (1)

k_
Bz i 80 cosh kxx sinh kyy sin kz

where
2
2 2 2 2%
kx+ky=k =(l) (2)

and & is the cell length.

Here y Is the vertical direction, x the horizontal
and z the beam direction. As will be seen presently, 8
increasing with x for kyx # 0 provides horizontal focusing;
the falling field occurring for a flat pole piece can be
represented by the substitution Kk, + tk,. A single
harmonic-in z is appropriate for closely spaced magnets or
can be regarded as the lowest harmonic if the occupancy is
less than unity.
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T Hereafter, a prime denotes differentiation with respect to s.

The equation of motion in the horizontal plane, with
cosh kyx ~ 1, is:

dx _1dz
2" " 5 ds °OS kz , (3)

where
p = radius of curvature in the field Bo, and
ds = vdt

The first integral of Eq. (3) is:

—e . _ 1
ds kp sin kze (4)

where the subscript (e) refers to the equilibrium orbit,
which has zero slopeat s = z = 0.

By using the relation, T

2 2 1 2
zé =1 - xé =1 ~ kzpz sin kze (5)

the second integration can be done exactly; however, to
good approximation,

DA

—L..

X =
e k2p2

cos kle (6)

. The quantity, 1/kp, is equal to the wiggler
parameter, K, divided by y and is taken to be small,
typically 10-3 to 10-2 for 1-2GeV electrons. Xe s
measured in microns, but the modulation of x. combined
with the modulation of the field components gives rise to
significant first order focusing.

A Hamiltonian for Betatron Motion

Since mass and velacity are constant for motion in a
magnetic field, a Hamiltonian giving the correct equations
of motion can be written in what appears to be a
non-relativistic form:

11.2 ~ 2 ~ 2
H = 2 [pz + (px Ax sin kz)~ + (py A\y sin kz) ](7)

where:

1
Ax = kp cosh kxx cosh kyy

k sinh k x sinh k y
X Y

A = -

y (8)

ke

"
< Ix

H is dimensionless, with pz = z/v, etc. and vt is
the independent variable. It can be easily verified that the
vector potential chosen vyields the fields of Eqs. (1).
Following the procedure given in Appendix B of Courant and
5nyder,3 a canonical transformation is required to change




variables from (x,y,z) to (xB.y »S) where s s
distance along the equilibrium orbit, x, "is a displacement in
the (x,z) plane perpendicular to the equilibrium orbit and
y?l = y is vertical displacement from the equilibrium orbit.
The relations between variables are:

x!
= = -
X Xg * zéxB . Py = zé Pe. ¥ T Py
8 B
zl
- - e -
z Zq xéxn P, T+ix, Ps xépxa (9)
y yﬁ Dy = IJyﬁ

where xq,z .xé.zé are regarded as functions of s, as

described” in ethe previous section, and Q = (1/p)cos kz

is the local curvature of the equilibrium orbit. €
The Hamiltonian becomes:

1P 2 2
H = 2 v - xéAx stn kz) + (px - zéAx sin kz)

2
(py - A, sn kz) ] (10)

where the B8-subscript has been dropped. Then, since H is a
constant of the motion, the independent variable can be
changed from time to distance, s, along the equilibrium
orbit by solving (11) for -Ps, which is then the Hamiltonian
describing x and y as functions of s:

H = -ps ] % [(px"zé Ax sin kz)2 + (py—Ay sin kz)z]

- QX - x;A,‘ sin kz (1)

The next step will be to take averages over a wiggler
period, keeping only terms of lowest order in (ko)-1.
Since Ay and A, are of order (ke)-!,z4 ~1 ‘from
Eq. (5). The argument of the hyperbolic functions of x is

k_cos kze
kx(xea»zéx) * kxx * _T;_ ~ kxx

The average of x¢é sin kz in the last term of the
Hamiltonian is given by:

————— e e s
-y
Xa sin kz =

L !
A o sin kze sin k(ze xex)
kp £ e z:!
]
2%
1 ¢ X
~ kp 2x J do sin o sin[ﬂ + P sin O]
0
2% 2%

1 X . . X .

= = - [: 26 + = sin 0

akp Ido cospsin [¢] Jd)cos[ > ]
(] 0

< (- ().

where 15,1, are Bessel functions. Since x/p < 10-2,

H z

-x, sin kz  ~ -x' sin kz =
‘ e e e
Similarly, 2ke
2 2 1
sin” kz ~ sin kze ~3
The Hamiltonian can then be written:
= 1 2+ 2
-2 px py +
1 2 ks
2 X 2 2
cosh®k -
4k2p2 xX cosh kyy + kz sinh kxx sinh kyy
_ y
sin ks
kp px(cosh kxx cosh kyy—l)
kx
- g py sinh kxx sinh kyy (12)

The term in sin ks is retained because it will give
rise to odd-order resonances and therefore may not be
negligible. The averaged potential leads only to even-order
resonances, except for a feed-down from closed orbit errors.

Linear Motion

In linear approximation,

27 2

K K
R i ek TR

2p°7K 20" k

If the pole piece is shaped to- provide horizontal
focusing,” It  would be reasopable to make
kg = k§ = k2/2. In that case there (would be a phase
advance in both planes of L/2p through the device (of
length L) if the lattice were matched to the 8 function,
equal to 2p. This phase advance could be as large as
60°-90° for a super-conducting wiggler. The tune shift due
Lo a device being turned on would of course depend on what
the lattice configuration might be with the device turned
off. In any event, the lens action must be considered in
lattice design, including dynamic changes as devices might
be turned off and on during operation.

As mentioned earlier, if the vertical field decreases
transversely from the center of the magnets, the sign of
ka is reversed. In this case, an ‘insertion is mildly
defocusing in the horizontal plane, with

2 2 (AB>
k ~~-—\ .
x a2 8
where aB/B is the fractional drop in field at {x| = a.

Non-Linear Effects

The Hamiltonian for the entire ring is, to fourth order,

(.2 2 2 2
H = 2 [pxwyﬂ(xx +Kyy:]

N 1 [k4x4+k4y4+3k2k2x2y2]
2 2 X y X
12k%p
sin ks 22 22 2
- iln ks , - s 14
2Kp [px(kxx +kyy ) kapyxy] (s) (14)




where Ky and Ky are the linear focusing functions for the
entire ring, including wigalers, and S(s) is unity where
wigglers exist and zero elsewhere. Resonances occur at
integral values of 3v,, vxt2uy, 4uy, 4vy and 2vy+2uy,.
Following standard perturbation theory, angle and action
variables, (3,9) and independent. variable,
¢ = (1/v) (ds/8) are introduced and the nonlinear
terms averdged in ¢.

The average can be done analytically in two limiting
cases. According to Eq. (14), an insertion device has a
"natural” B8 = /2 p. If it is required that B in the insertion
region should not exceed a few meters, the lattice could be
matched to this value for high field devices, whereas for low
field devices, the .focusing strength would be negligible
compared to that of the adjacent quadrupoles and B would
be “unmatched":

2

B=p"+5,

with 8* determined by other considerations.
At 3vy = n, the total stopband width is:

Matched: av

SB 2« 03 28
(15)
k2
Unmatched: byy = ﬁ' - —,L. (8 5)1/2
k"o B

The fourth order terms in (15) lead to a tune
dependence on amplitude as well as a driving term for
fourth order resonances. In both limiting cases, the
magnitude of the driving term is less than the other.
Therefore, resonance occurs only for 4v < n and the phase
space pattern consists of islands surrounded by stable
orbits. The tune dependence on emittance, which is
suspected to play @ significant role in determining dynamic
aperture, is given by:

d 2
Auy = oe ky Le matched
(16)
k4 2 2 4
B A 2 (L 1.t
= LB 1+ + =) €
16w k2,2 3 28* 5 28
£ unmatched
and similarly for vy with ky + ky. The emittance

contalned inside the ring of islands at resonance is obtained
by equating the expressions (l16) to (n/4)-v. The
half-width of the islands, relative to the emittance at which
they occur is given by:

2
% (%) éif lsin 28L matched
a7)
2 4
1 -2 <-—L;> + -]5- (—L;)
= % 28 28 unmatched

- g(_L_>2 . 1(.;.)4
k4 *
3\2s 5\2s

It is of interest to note .t.hat the islands disappear if
B = (2L/#) (matched) or B" = (L//2) (unmatched).

Table | gives numerical values for a typical undulstor
(weak field) and a super-conducting wiggler (strong field)
with B = 3 meters. The emittance used corresponds to
the admittance of the device itself; k, = k/v2 for the 3fd
order resonance and K, = k(ky = 0) for the 4th order. 1If
several devices are being used sirnultaneously, the tune

dependences ;on amplitude add arithmetically and the
resonance driving terms add weighted by suitable phase
factors.

Table I. Equilibrium orbit amplitude, betatron
amplitude tune dependence, stop-band widths
and island half-widths for a typical undulator
(unmatched) and a super-conducting wiggler
(matched) at E = 1.3 GeV.

a) Parameters

Peak Half
Field Period Length Aperture kp

M  (cm) (m) (cm)
Undulator .54 5.0 5 .88 1100
Wiggler 5.0 14.0 2 1.75 42.3
b) Beam Dynamic Properties
AE
1) 4 3 _ ¥y
Xo 3e Auaxxlo Au4yX]0 5
(um) (m-rad)”!
Undulator 1.2 295 2.5 5.9 .35
Wiggler 525 161 1.5 32.8 A7
Conclusion

S
The, linear-optical effects appear to be large enough
to be considered in the lattice design. Shaping the poles to

make kg > 0 provides horizontal focusing, but further
complicates the linear optics and introduces additional

. _non-linear resonances; the gain may not be worth the cost.
““The perturbation analysis of non-linear effects indicates

that tracking studies should be invoked to determine the
true dynamic aperture.
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