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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a progressive condition of the liver
encompassing a range of pathologies including steatosis, non-alcoholic steatohepatitis (NASH),
cirrhosis, and hepatocellular carcinoma. Research into this disease is imperative due to its rapid
growth in prevalence, economic burden, and current lack of FDA approved therapies. NAFLD
involves a highly complex etiology that calls for multi-tissue multi-omics network approaches
to uncover the pathogenic genes and processes, diagnostic biomarkers, and potential therapeutic
strategies. In this review, we first present a basic overview of disease pathogenesis, risk factors,
and remaining knowledge gaps, followed by discussions of the need and concepts of multi-tissue
multi-omics approaches, various network methodologies and application examples in NAFLD
research. We highlight the findings that have been uncovered thus far including novel biomarkers,
genes, and biological pathways involved in different stages of NAFLD, molecular connections between
NAFLD and its comorbidities, mechanisms underpinning sex differences, and druggable targets.
Lastly, we outline the future directions of implementing network approaches to further improve our
understanding of NAFLD in order to guide diagnosis and therapeutics.

Keywords: network modeling; integrative genomics; NAFLD; NASH; steatosis; systems biology;
multi-omics

1. Introduction

The liver is a central organ involved in vital biological processes including synthesis of key
products such as cholesterol, bile acids, triglycerides and glycogen, immune processes, detoxification,
and serum homeostasis. Pathological changes within these key liver pathways are a common healthcare
issue, accounting for around 2 million deaths per year globally [1]. One specific subset, non-alcoholic
fatty liver disease (NAFLD) is becoming an increasingly common issue affecting around 25% of the
world’s population on average [2]. This disease encompasses an array of pathological conditions
starting from benign steatosis (i.e., fat accumulation in the liver) to non-alcoholic steatohepatitis (NASH)
which features inflammation and cell damage, to mild scarring of the liver (fibrosis), widespread
scarring and distortion (cirrhosis), and hepatocellular carcinoma (HCC) (Figure 1). Currently there
are no FDA-approved therapeutic options, partly due to the limited knowledge we have of the
mechanisms involved in the progression of the disease, as well as the differing environmental and
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genetic contributions that each individual may possess [3]. As a result, there has been an ever-increasing
demand for liver transplantation, which is now the second most common form of organ transplantation,
with NASH predicted to overtake Hepatitis C as the main cause of transplantation between 2020 and
2030 [4,5].

Genes 2019, 10, 966 2 of 33 

 

there has been an ever-increasing demand for liver transplantation, which is now the second most 
common form of organ transplantation, with NASH predicted to overtake Hepatitis C as the main 
cause of transplantation between 2020 and 2030 [4,5]. 

 
Figure 1. Overview of our current understanding of Non-alcoholic fatty liver disease (NAFLD) 
progression from a healthy liver to hepatocellular carcinoma (HCC). The red items indicate the 
different potential contributors towards NAFLD as well the progression from a healthy liver to HCC. 
The green items indicate potential disease reversibility from non-alcoholic steatohepatitis (NASH) to 
a healthy liver, through different methods such as exercise and better glucose control. The blue items 
showcase the various tests that can be utilized to investigate liver health. The black items represent 
the omics approaches and use of network modeling to address various knowledge gaps for NAFLD. 

To understand NAFLD pathogenesis, one must explore the multidimensional complexities of 
the disease where clinical differences and similarities have been spotted in disease manifestations 
between individuals, and explore the intricate molecular details involved in disease progression. First 
of all, NAFLD has distinct genetic and environmental determinants. The genetic heritability estimates 
of NAFLD range from about 20% to 70% [6]. Recent Genome-wide Association Studies (GWAS) have 
identified several genetic loci that are significantly associated with NAFLD susceptibility. These loci 
include PNPLA3, TM6SF2, MBOAT7, and GCKR, each of which have been replicated across studies 
with ethnic, geographic, and methodological variations [7,8]. In terms of environmental 

Figure 1. Overview of our current understanding of Non-alcoholic fatty liver disease (NAFLD)
progression from a healthy liver to hepatocellular carcinoma (HCC). The red items indicate the different
potential contributors towards NAFLD as well the progression from a healthy liver to HCC. The green
items indicate potential disease reversibility from non-alcoholic steatohepatitis (NASH) to a healthy
liver, through different methods such as exercise and better glucose control. The blue items showcase
the various tests that can be utilized to investigate liver health. The black items represent the omics
approaches and use of network modeling to address various knowledge gaps for NAFLD.

To understand NAFLD pathogenesis, one must explore the multidimensional complexities of the
disease where clinical differences and similarities have been spotted in disease manifestations between
individuals, and explore the intricate molecular details involved in disease progression. First of all,
NAFLD has distinct genetic and environmental determinants. The genetic heritability estimates of
NAFLD range from about 20% to 70% [6]. Recent Genome-wide Association Studies (GWAS) have
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identified several genetic loci that are significantly associated with NAFLD susceptibility. These loci
include PNPLA3, TM6SF2, MBOAT7, and GCKR, each of which have been replicated across studies
with ethnic, geographic, and methodological variations [7,8]. In terms of environmental contributions,
previous studies have heavily indicated obesity and its role in accelerating the epigenetic age of the
liver [9], as well as sleep deprivation [10], diet composition [11], maternal high fat intake [12], and
type 2 diabetes as risk factors [13]. These risk factors likely interact with genetic susceptibility loci
to culminate in disease incidence. It is currently unclear what contributes to the interindividual
differences in NAFLD progression and overall outcomes in patients, as only around 40% of them
progress to liver fibrosis, and of those, 20% continue to develop advanced fibrosis and cirrhosis [14].

Secondly, although the liver is the focal organ which manifests the disease burden, one must
not disregard the crosstalk between additional organs in the development of NAFLD. Current
understanding suggests that gene mutations in the hypothalamus, particularly leptin signaling,
can contribute to NAFLD and obesity [15]; gut permeability differences can result in the leak of
pro-inflammatory signals that contribute to NAFLD [16,17]; resistance to insulin in adipose tissue can
result in the redistribution of fat to other organs, including the liver [18]; and the release of adipokines
and cytokines among others contributing to NAFLD [19]. Given the connections of the adipose tissue,
hypothalamus, and the gut with the liver, we can delve deeper into each organ’s potential contribution
to further dissect key tissue-tissue interactions and the underlying molecular mechanisms [15,20].

The third complexity of NAFLD is that numerous comorbidities exist, such as metabolic syndrome
(MetS), type 2 diabetes (T2D), obesity and cardiovascular pathologies. Moreover, there are also
documented changes in brain physiology as evidenced by micro and macro cerebrovascular alterations,
and an increased likelihood of stroke, lesions and cognitive impairment [21]. Given these connections,
we can explore the overlaps in pathogenic pathways across diseases as well as the “chicken and egg”
idea to discover if one disease is causal to the other and identify shared causal drivers and networks in
disease progression [22]. Additionally, NAFLD exhibits sexual dimorphism, with a greater NAFLD
predisposition in men and post-menopausal women [23]. In animal models of NAFLD, a higher degree
of proinflammatory/profibrotic cytokines are identified in males [24]. The mechanistic underpinnings
of sexual dimorphism remain underexplored.

Given the complexities discussed above, NAFLD is a multifactorial disease that poses challenges
within the context of the path towards biological understanding and therapy. Uncovering the
perturbation of genes and their molecular counterparts within particular tissues, which lead to a
pathological disruption of biological homeostasis, is progressively becoming a key focus of scientific
research. Traditional approaches that examine one gene or factor at a time have become less efficient
for addressing the multidimensional complexities of NAFLD.

With the advancement of high throughput omics technologies and analytical pipelines, network
modeling has emerged as a powerful tool to help integrate multidimensional information to elucidate
the complex molecular systems within and between tissues in the pathogenesis of NAFLD and other
associated diseases. Moreover, the rise of high throughput single-cell sequencing technologies is
enabling a better dissection of distinct cell populations to reveal more elusive molecular regulatory
interactions within and between cell types. Both tissue and cell level molecular networks have the
capacity to better capture the molecular underpinnings of disease. This is particularly relevant with
the increasing recognition of the omnigenic disease model, which predicts that numerous genes that
are highly connected in molecular networks underlie the functions of each biological system and when
dysregulated, will lead to complex diseases such as NAFLD [25].

In this review, we will first present our current knowledge of NAFLD via non-network approaches
and the remaining gaps from these more traditional methods. We will then briefly cover the principles
behind the common network modeling methods and focus on summarizing their applications to
understanding NAFLD through the integration of multi-omics datasets as well as their potential
to delve into possible preventative and therapeutic strategies. Lastly, we will outline the current
limitations and future directions of the network applications in NAFLD research.
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2. Current Understanding of NAFLD and Remaining Gaps

The progression of NAFLD is highly heterogeneous, and therefore, solving the mechanisms
behind the development from mild to severe fatty liver disease is not a straightforward process
(Figure 1). Many pathogenic drivers of NAFLD are unlikely to be the same across patients but it is
thought that the liver at some point is overwhelmed with lipid build up which subsequently causes
hepatocellular stress and results in fibrogenesis [26–28]. Specifically, free fatty acids (FFAs) are thought
to be key to the pathogenesis of NASH, whereby they are delivered to the liver via the blood from
triglyceride lipolysis and de novo lipogenesis from excess carbohydrates [29,30]. FFAs are commonly
reduced by two processes: re-esterification into triglycerides and mitochondrial beta-oxidation [31].
However, when these processes are perturbed and FFAs accumulate, they form lipotoxic lipids, causing
inflammasome activation, oxidative stress, and ER stress leading to apoptosis and cytokine/chemokine
release, and eventually leading to fibrosis via hepatic stellate cell activation and increasing Kupffer cell
density [32–34]. Some of the most common contributing factors to FFA overload is insulin resistance
within adipose tissue (common in T2D), excess dietary sugars, and to a lesser extent cholesterol, uric
acid, the gut microbiome, and sleep apnea [35–38].

Recent genetic studies of NAFLD have offered clues to the potential causal genes and pathways
involved. The heritability estimates of NAFLD generally range from 20% to 70% depending on
the ethnicity of those tested and overall study design [6]. When considering the indices of disease
severity, the heritability estimate measured via twin studies was 0.52 for hepatic steatosis based on
MRI proton-density fat fraction and 0.5 for liver fibrosis based on liver stiffness [39]. To more clearly
define individual genetic risks of diseases, GWAS is a powerful tool that has been implemented
over the years to find associations between genetic regions (loci) and certain traits/diseases, in this
case NAFLD. Several genetic variants have been identified via GWAS to have a strong effect size
and thus are likely to significantly contribute to NAFLD heritability. These loci include PNPLA3,
TM6SF2, MBOAT7, and GCKR [7,8]. These candidate genes are involved in lipid homeostasis and
metabolic pathways. Of these, associations have been found particularly with PNPLA3 (patatin-like
phospholipase domain–containing 3) [40,41] and TM6SF2 (transmembrane 6 superfamily member
2) [42]. PNPLA3 encodes for a protein that is involved in glycerolipid hydrolysis and lipase activity, as
well as the metabolism of monoacylglycerol, diacylglycerol, and triglycerides. There are implications
that changes to the morphology of this protein may lead to the inability of substrate binding, resulting
in the disruption of triglyceride hydrolysis, lipid droplet accumulation, and thus liver disease. TM6SF2
has been shown to regulate hepatic triglyceride and serum low density lipoprotein levels, while also
being a marker for fibrosis/cirrhosis [42,43]. Moreover, in vivo studies report that knocking down
TM6SF2 in the livers of mice resulted in a threefold increase in hepatic steatosis and a reduction in the
circulating levels of cholesterol and plasma triglycerides [42]. More recently a splice variant in the
gene HSD17B13 that encodes the hepatic lipid droplet protein has shown an association with reduced
Alanine Transferase (ALT) and Aspartate Aminotransferase (AST), implying less inflammation/injury
due to producing a nonfunctional protein. Overall, the significant GWAS loci uncovered to date only
explain a small fraction (<5%) of the total genetic heritability for NAFLD, implying that numerous
additional loci and genes with moderate to subtle effects as well as epistasis and interactions with
environmental factors are yet to be discovered. Thus, major advances can still be made within the
context of this disease at the genetic level.

Studies of the interactions between genetic risk factors and environmental risk factors such as high
fat and atherogenic diets in mouse models also revealed genes and pathways underlying diet-induced
liver steatosis and NASH. Using inbred mouse strains, Hui et al. first investigated hepatic triglyceride
accumulation in ~100 genetically divergent mouse strains fed a high fat and high sugar diet, observing
large variations in liver steatosis across the mouse strains of different genetic background [44]. Via a
GWAS, they identified three genetic regions with potential causality and highlighted GDE1 as a
previously unknown mediator of triglyceride homeostasis. Expressional modulation of this gene
confirmed this locus as a regulator of hepatic triglyceride accumulation, with overexpression increasing
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triglyceride content and knockdown having an opposite effect. GDE1 encodes glycerophosphodiester
phosphodiesterase 1, an enzyme involved in the degradation of glycerophosphoethanolamine and
glycerophophocholine. One of the products of GDE1 is glycerol-3-phosphate, a substrate for triglyceride
biosynthesis. GDE1 overexpression led to an increase in Cd36 expression in the liver, which can enhance
lipid transport. These observations suggest that GDE1 may regulate triglyceride accumulation by
increasing substrate availability and triglyceride flux. In another study, the same group examined
western diet fed mice carrying hemizygous transgenes for human apolipoprotein E*3-Leiden and
cholesteryl ester transfer protein to model human NASH progression [45]. Again, they noted significant
differences among mouse strains in the transition from simple steatosis to NASH, and via a GWAS they
highlighted several genetic loci and candidate genes including PHACTR2, involved in inflammation
and cell cycle control, and FUCA1 which regulates cell growth and signaling. Moreover, they identified
several pathways shared between mice and human NASH subjects, including innate and adaptive
immune system, cell cycle, Notch signaling, TGFβ signaling, and Wnt signaling. Together, these two
studies highlight the complex interactions between environmental factors (diet in this case) and causal
genetic loci underlying different stages of NAFLD.

Despite some basic understanding of the cellular and molecular mechanisms in NAFLD progression
and potential targets of NAFLD, the following questions have not been thoroughly addressed: What
are the overall genetically, as opposed to environmentally driven mechanisms for the development
and progression of NAFLD? Which tissues, genes, and processes differentiate the different stages
of NAFLD? Are there sex-specific pathogenic processes? Are these mechanisms tissue-specific and
are there inter-tissue interactions? What explains the interconnections between NAFLD and other
cardiometabolic diseases? Given the lack of sensitivity of imaging or existing biomarkers, what are
the biomolecular predictors of NAFLD? Addressing these knowledge gaps will significantly improve
our ability to design new diagnostic, preventative, and therapeutic strategies against NAFLD and its
associated complications.

3. Importance of Omics Data in Offering Integrated Network Views of Complex Diseases

To provide comprehensive answers to the above questions, traditional approaches that examine
one factor at a time have become less efficient. With the ever-increasing omics technologies available, we
now have the essential tools to unravel the hidden complexities of this multifactorial disease (Figure 2).
Omics datasets range from genomics, epigenomics, transcriptomics, proteomics, metabolomics and
metagenomics [46–48].
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Figure 2. Overview of the methodological workflow in applying network approaches to study NAFLD.
Step 1. Through collecting various tissues from multiple species across multiple disease backgrounds,
we can run different omics analysis to provide a useful but one-dimension view of what is occurring in
the disease state. However, by combining multiple omics datasets, we can provide a holistic picture.
Step 2. We can build networks through various calculations of connectivity and regulatory information
to elucidate hub genes in disease networks. Step 3. Once networks are built, we can utilize them to
address the gaps in disease understanding and therapeutic discovery.

Genomics, the study of the genome (the DNA sequence), enables us to understand the structures,
regulation, organization, and functions of different genes. It also can provide insights into how genetic
variants can contribute to disease or differing levels of function of a particular process. Epigenomics
examines the non-genetic contributions towards cellular function, traits, or phenotypes. These can
occur through processes such as DNA methylation, histone modification, chromatin organization,
and non-coding RNAs (such as microRNAs (miRNAs) or long non-coding RNAs (lncRNAs)), which
can downregulate or upregulate gene expression and functions. Transcriptomics, the study of the
transcriptome, measures mRNA levels to understand gene expression changes that occur in cells
or tissues in response to genetic or environmental stress. This component is the culmination of the
genetic and epigenetic landscape which determines whether a specific locus is capable of undergoing
transcription. While this data may give some indication of the key genes involved in the pathogenesis,
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transcriptome data represents changes in gene expression levels, and thus does not necessarily portray
protein and metabolic fluxes within a tissue accurately.

At one level above transcriptomics, proteomics aims to measure protein expression levels as well
as various types of post-translational modifications that determine tissue functions. The proteome is
particularly important as proteins execute biological functions and are a major class of pharmaceutical
targeting and can thus be advantageous in drug development. Whereas metabolomics investigates
the low molecular weight compounds that are substrates, intermediates, or products of metabolic
reactions in our biological system, such as inorganic ions, organic acids, amino acids, sugars, nucleotide
and nucleosides, vitamins, carbohydrates, peptides, aromatic amines, and lipids. Many proteins
are key enzymes catalyzing metabolic reactions, and metabolites can in turn participate in diverse
molecular and cellular functions ranging from epigenetic regulation of gene expression to protein
modification to metabolic reactions. Finally, metagenomics, the genome of microbial communities, is
another important area of investigation as the link between the microbiome and health is increasingly
evident. The microbiome can form symbiotic relationships with the host, participating in nutrient
digestion, absorption, immune response, and even neuronal regulation.

As indicated above, each omics layer only reflects a specific aspect of the molecular cascades and
most studies that examine a single omics layer will only reveal fragmented views. Thus, consideration
of the interplays between these different components constituting our physiological systems is critical.
Only by integrating data across omics domains (multi-omics integration), can a holistic understanding
of how a disease may develop be derived (Figure 2).

One particularly powerful approach to integrate multi-omics data to better understand the
pathophysiology of NAFLD and to pinpoint pharmacological targets for treatment is network modeling
(Figure 2) [49]. Networks form a natural framework to elucidate the relationships between the large
number of molecules measured by multi-omics methodologies. In a network, biological components
such as genes, proteins, or phenotypes are depicted as nodes and the relationship between these
nodes as edges. The edges confer information regarding gene regulatory interactions, enzymatic
reactions, or statistical relationships between the nodular components. In essence, the collection of
nodes and edges graphically display a gene network and can be used to express both networks within
a particular tissue/cell type or between two or more tissues/cell types of interest. Therefore, networks
informed by different factors, such as genetic versus environmental risks, males versus females,
steatosis versus NASH, and NAFLD versus other diseases, can be compared to address fundamental
questions governing this disease and the complex molecular mechanisms modulating the initiation
and progression of pathology. More importantly, networks exhibit graphical topologies and most
biological networks are arguably considered to possess a scale-free topology, meaning that the fraction
of nodes with degree (number of connections) k follows a power law k-α. In a scale-free topology, a few
important nodes, termed “hubs”, have many connections, or a high degree of connectivity, whereas
most other non-hub nodes have few connections and form the peripheral nodes around the central
node. Network nodes that bridge high numbers of shortest path connections between other nodes
are considered “bottleneck hubs”. Such topological features thus can potentially help prioritize novel
druggable targets. In particular, hub genes are likely more pathologically relevant as they have a
higher degree of connectivity, and thus likely have a larger effect on phenotypes.

4. Commonly Used Network Models

There are numerous types of molecular networks that capture different types of molecular
interactions. The commonly used ones include gene regulatory networks (GRNs) that focus on
regulatory relations among genes, protein-protein interaction (PPI) networks that depict physical
interactions among proteins, metabolic networks that illustrate metabolic cascades, and hybrid
networks that combine different types of interactions.
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4.1. Tissue and Single Cell GRNs

GRNs generated using bulk tissue analyses can be classified into the following methods as detailed
in a previous review: regression, correlation, mutual information, ordinary differential equations,
Bayesian approaches and Gaussian graphical models [49]. We will focus on the methods found in
NAFLD studies. Correlation-based methodologies such as WGCNA [50] and MEGENA [51] are gene
co-expression networks used to identify clusters of highly coregulated genes, termed “modules”, that
can then be used to highlight the pathways and predict hub genes for therapeutic targeting [50–52].
Of the two, WGCNA has been more commonly implemented but the more recent MEGENA has
the benefit of assigning a gene to more than one cluster and defining smaller and more coherent
clusters rather than large sized modules built with WGCNA. Gene co-expression networks are
straightforward, efficient, and valuable tools to broadly partition the transcriptome into subsets of
genes that are coregulated and involved in similar functions. However, co-expression does not directly
indicate directional regulatory relations between genes within or between modules, thereby limiting
the dissection of detailed gene-gene regulation. Gaussian graphical models (GGMs) uses partial
correlation of one gene in relation to another gene conditioning on other network members to estimate
undirected, linear relationships between two genes to represent gene-gene interactions [53,54]. GGMs
are computationally efficient and can infer potential interactions between genes but lack directional
information. Finally, Bayesian Network (BN) approaches use the conditional dependency values
of genes in respect to its parent nodes to create directed acyclic graphs (DAGs), which effectively
visualizes regulatory relationships between genes [49]. The main limitations of BNs include higher
computation cost and that optimal topology may not be detected. Therefore, each network method
comes with unique advantages and disadvantages. There have been various iterations or adjustments
to these network principles catering for the needs of particular labs, to help answer certain questions
or improve the speed of analysis [55].

With the heterogeneous nature of tissues, single cell sequencing technologies have increased over
the years to capture how cells interact to perform higher level functions within the tissue. As summarized
in Blencowe et al., there has been a recognized need for new GRN modeling approaches required for
single cell data [56], due to the lack of success in the common bulk tissue based network models [57].
Gene networks within a cell population or between cell-cell communication networks can be built
based on various algorithms or assumptions. The most commonly used approaches to infer cell-cell
interactions build on known ligand-receptor pairs, assuming cells expressing a ligand will interact
with another cell expressing the corresponding receptor. Single cell network modeling is in its infancy
in general, and improved methods are still greatly needed to deal with the novel biological questions
asked by single-cell data.

4.2. Protein-Protein Interaction (PPI) Networks

PPI networks are defined as physical contacts between two or more protein molecules. They
are often modeled through graphs where nodes represent proteins and edges represent undirected
and potentially weighted physical contact. These contacts can be binary, which measure interaction
between pairs of proteins or co-complex, in which both the direct and indirect interactions between
groups of proteins are measured. Reliability information linked with corresponding interactions can
be incorporated through edge weights. These networks can be constructed from a variety of sources,
the majority of which are either manually constructed from known interactions (e.g., MINT [58],
HPRD [59], BioGRID [60]), computationally constructed associations, or a combination of the two
(STRING [61]) which combine known and predicted interactions to maximize the quality and quantity
of coverage [58–62].
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4.3. Metabolic Networks

Genome Scale Metabolic Models (GEMs or GSMMs) describe stoichiometry based metabolic
reactions through the construction of gene-protein-reaction associations via both experimental and
genome annotations data [63]. These associations may include assigning localization, energy estimation,
identifying linked reactions and determining stoichiometry. These models enable metabolic flux
predictions for an entire series of metabolic cascades via flux balance analysis and the use of linear
programming. Another important feature of GEMs is that they can integrate various omics data
types with kinetics/PPI networks, thus generating a more comprehensive biological picture. To date
comprehensive networks have been built for specific areas of research and can continue to improve with
increased data. Generic human GEMs include the Human Metabolic Reaction database (HMR) [64],
HMR2 [65], and Recon2 [66]. Importantly, a number of liver specific GEMs have been constructed
including HepatoNet1 [67] and iHepatocytes2322 [65], which are useful for liver focused research such
as NAFLD.

4.4. Literature-based Pathways and Networks

Ingenuity Pathway Analysis (IPA), a commercial tool, takes advantage of the rising availability
of high throughput gene-expression data and prior biological knowledge to create comprehensive
molecular networks [68]. Rather than conventional network models that only infer interactions, IPA
utilizes algorithms based on Ingenuity Knowledge Base (IKB), an immense collection of experimental
data, curated literature, and third-party databases to create nodes and linking edges that denote
directionality. Through the use of a series of stepwise algorithms applying an asymptotic Gaussian
approximation of Z scores, statistically significant upstream regulators to downstream inducers of
biological function/disease can be inferred [68].

4.5. Hybrid Networks

STITCH (Search Tool for Interactions of CHemical) is a unified database which employs Pearson
correlation to understand the interactions of small molecules (i.e., drugs/chemicals) and corresponding
proteins at the molecular/cellular level, thereby gaining information on metabolic pathways and drug
efficacy [69]. Subsequently, protein-chemical interactions are made by combining chemical-chemical
interactions with protein interactions (such as STRING networks) and text-mining imported
protein-chemical interactions (PDSP Ki Database and Protein Data Bank). Moreover, additional
proteins/metabolites can be extrapolated by intersecting resultant protein-chemical interactions with
annotated pathway databases (KEGG, Reactome, etc.). Metacore is another commercial integrative tool
that allows the functional analysis of multiple omics data (metabolomics, proteomics, transcriptomics,
and genomics) to generate network models [70]. Metacore’s own curated knowledge database is
also more extensive (1,662 vs. IPA’s 662) and selective as it only consists of human protein-protein,
protein-DNA interactions, transcription factors, signaling and metabolic pathways, disease and toxicity,
and the effects of bioactive molecules [70,71]. Another hybrid model, Minimal Network Enrichment
Analysis (MiNEA), uses transcriptomic, proteomic, and metabolomic data to isolate deregulated
minimal networks corresponding to metabolic groups and associated metabolites, thus enabling the
comparison of two experimental conditions. By constructing metabolic tasks which contain a set
of disease-associated metabolites and utilizing thermodynamic constraints, the MiNEA algorithm
can be used to identify pathogenic variations in metabolites [72]. Finally, Mirwalk aims to capture
miRNA-target interactions and provide a framework for pairing these regulatory interactions with
pathways, diseases, and gene/protein data. Additionally, while miRNAs regulate gene expression by
affecting the intergenic regions, they also interact with lncRNAs, thus this framework also includes
targets and non-targets for these interactions [73].



Genes 2019, 10, 966 10 of 32

4.6. How to Determine What Type of Networks to Use

As discussed, these various types of network models can reveal different molecular interactions
and hence serve as complementary methodologies and resources for addressing the various biological
questions of NAFLD (Figure 2). In general, what type of network to use depends on several factors,
including the overall goal of the study, the data types at hand, and the computational capacity.
For instance, if genetic and transcriptomic data and gene-gene interactions are the main focus, GRNs
will be the most appropriate. For proteomics data, PPI networks are necessary. When metabolomics
data are included, GEMs should be considered. Literature-based and hybrid networks are applicable
in many cases, but they are usually very dense and may lack specificity or relevance to a particular
study. For instance, when tissue specific interactions are investigated, use of non-tissue specific
hybrid network models may add irrelevant interactions from other tissues. Ideally, multiple types
of networks should be considered for a given study. For example, to explore gene-gene interactions,
we have found that two complementary types of GRNs are particularly informative and deliver
experimentally validated gene-gene relations. The first category is gene co-expression networks such
as WGCNA [50,74] and MEGENA [51]. The second category is Bayesian networks that can flexibly
incorporate various types of prior information such as genetic causality, genetic regulation of gene
expression (expression quantitative trait loci or eQTLs), transcription factor binding, and epigenetic
regulatory information to model directional but sparse regulatory networks [75–80]. Combination
of these two types of networks is particularly powerful in revealing novel mechanistic insights, as
one offers a global view of gene co-regulation and the other provides sparse but directional granular
regulatory relations to elucidate many different contributors to disease pathogenesis [75–77,81–96].

5. Use of Network models to understand the pathogenic mechanisms in NAFLD development
and progression

5.1. Modeling of single tissue networks in NAFLD

Several network methods have been applied to resolve the pathogenic alterations in molecular
processes and biological pathways involved in the various stages of NAFLD progression (Table 1).
These network applications have identified several key pathways that are perturbed during NAFLD
progression, particularly including changes in extracellular matrix (ECM) structure, metabolic processes,
and immune signaling (Figure 3).
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Table 1. Application examples of network approaches to NAFLD. Shared pathways and genes across studies are highlighted in bold.

Application
categories Paper Network Method Omics Data Tissue Pathways Key Drivers/ Findings

Prediction

Maldonado et al. [97]
ODE, GEM, and

QSSPN Stochastic
Simulation

Transcriptomics and
Proteomics Liver (human) Lipid metabolism

No significant difference between
glucose and fructose on

lipogenesis.
PPARα activation implicated in

steatosis

Zhu et al. [98] STRING and
miRWalk Transcriptomics Liver (rat)

Lipid metabolism (steroid
synthesis, fat digestion, bile

secretion)
Inflammatory/Immune response

(NF-κB, cytokine signaling)

Abcg8, Cyp1a1, Cyp51, Hmgcr,
Acat2, Cyp7a1, Cyp7b1, Cd36,
Cd44, RT1-Da, RT1-Ba, RT1-Bb,

RT1-Db1

Ma et al. [99] Bayesian N/A N/A N/A
Bayesian network provides

screening and predictive value for
NAFLD

Pathogenesis

Pandey et al. [72] MiNEA and GEM
Metabolomics,

Proteomics and
Transcriptomics

Liver (mouse and
human)

Inflammatory/Immune response
(ceramide synthesis, oxidative

stress)
Lipid metabolism (cholesterol

synthesis)

Identified deregulation in
metabolic networks of ceramide

and hydrogen peroxide synthesis
for NASH in both mice and

humans

Mardinoglu et al. [65] GEM Metabolomics and
Proteomics Liver (human)

Lipid metabolism (peroxisome,
steroid biosynthesis, FA

biosynthesis)
Protein metabolism (amino acid

turnover)
Inflammatory/Immune response

Mitochondrial stress

Constructed a consensus GEM for
hepatocytes termed

iHepatocytes2322, which was used
to identify serine deficiency in

NASH and possible therapeutic
targets PSPH, SHMT1 and BCAT1

Shubham et al. [100] WGCNA and GEM Transcriptomics Visceral Adipose
Tissue (human)

Lipid
metabolismInflammatory/Immune

response (hypoxia)
ECM remodeling

Protein metabolism

FOSL1, HIF1A, CHSY1, NAMPT,
NAMP, NCOR2, SUV39H1,

SUV420H1, CHD9, CAT, ALDH2,
HADH, ETFA, ETFB, PPRC1,

CYP2C8, ADH4, DAPK1



Genes 2019, 10, 966 12 of 32

Table 1. Cont.

Application
categories Paper Network Method Omics Data Tissue Pathways Key Drivers/ Findings

Pathogenesis

Mardinoglu et al. [101] GEM Metabolomics and
Proteomics

Liver and
Adipose (human)

Lipid metabolism
Carbohydrate metabolism

GSH biosynthesis
NAD+ repletion

Dietary supplementation of GSH
and NAD+ precursors are possible

NAFLD treatment options

Hou et al. [102] STRING Transcriptomics Liver (mouse)

Lipid metabolism (steroid
synthesis, FA activation)

Cell cycle (PI3K–Akt signaling)
Inflammatory/Immune response

(phagocytosis)

Itgb2, Hck, Rac2, CD48
Ptprc, Jun, Cd68, Tyrobp, Ctss,

Itgax, Hsd3b5, Cyp2c44
Cyp2c54, Cyp1a2, Cyp2c70,
Ugt2b1, C8b, Egfr, Gyp7b1,

Slco1a1

Lou et al. [103] WGCNA Transcriptomics Liver (human)

Lipid metabolism
Inflammatory/Immune response

(fibrosis)
Cell cycle (PI3K-Akt signaling)

Cell adhesion
ECM remodeling

LUM, THBS2, FBN1, EFEMP1,
SELENBP1

Liu et al. [104] STRING Transcriptomics and
Metabolomics

Liver and Blood
(rat)

Lipid metabolism
Inflammatory/Immune response

(TNF, cytokine signaling, TLR
signaling)

Cell cycle (NF-κB, p53 signaling)
ECM remodeling

Mitochondrial stress

Jun, Ccl2, Ccl12, Icam1, Cxcl2,
Cdkn1a, Serpine1, Rprm, Fabp4,

Fabp5, Bcl2a1, Cxcl10, Olr1

Krishnan et al. [82] WGCNA, MEGENA
and Bayesian

Genomics and
Transcriptomics

Liver and
Adipose (mouse)

Lipid metabolism
Cell cycle Inflammatory/Immune
response (peroxisomal pathways)

Insulin signaling
Carbohydrate metabolism (TCA

cycle)
Apoptosis

Fasn, Pklr, Chchd6, Thrsp, Cd36,
Acly, Hmgcr, Acaca, Acacb, Col1a2,

Elovl6, Ptpn6, Echs1
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Table 1. Cont.

Application
categories Paper Network Method Omics Data Tissue Pathways Key Drivers/ Findings

Pathogenesis

Xiong et al. (Single cell)
[105]

Ligand-Receptor
Interaction (Fantom 5)

Transcriptomics and
Proteomics Liver (mouse)

Lipid metabolism
Inflammatory/Immune response

(cytokine signaling)
Cell adhesion

ECM remodeling

Hepatic stellate cells serve as a hub
of intrahepatic cell signaling.

Identification of novel Trem2+
NASH-associated macrophages

(NAMs) linked to disease severity

Sahini et al. [106] STRING Genomics and
Transcriptomics Liver (human)

Lipid metabolism (lipogenesis,
lipid droplet growth)

Inflammatory/Immune response
Carbohydrate metabolism

Mitochondrial stress

PLIN2, CIDEC, HILPDA, STAT1

Qi et al. [107] PPI (HPRD) Transcriptomics Liver (human)
Inflammatory/Immune response

(cytokine activity)
Cell adhesion

UBQLN4, APP, SHBG, CTNNB1,
COL1A1

Chan et al. [108] MetaCore Transcriptomics Liver (human)

Lipid metabolism Carbohydrate
metabolism

Inflammatory/Immune response
Cell cycle ECM remodeling

(fibrosis)

Identified 87 “significant” genes
(not hub genes) associated with

cirrhosis

Chen et al. [109] miRWalk and
STRING Transcriptomics Liver (human)

ECM remodeling (focal adhesion,
fibrosis)

Cell cycle (PI3K-Akt signaling)

COL6A1, COL6A2, COL6A3,
PIK3R3, COL1A1, CCND2

Lee et al. [110] Co-expression, PPI,
TR and GEM

Metabolomics,
Proteomics and
Transcriptomics

Liver, Adipose,
and Muscle

(human)

Lipid metabolism (FASN enzyme
activity)

Inflammatory/Immune response
Mitochondrial stress (transport)

Cell Cycle

FASN, PKLR, PNPLA3, PCSK9
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Table 1. Cont.

Application
categories Paper Network Method Omics Data Tissue Pathways Key Drivers/ Findings

Comorbidities

Karbalaei et al. (AD)
[111] STRING (DisGeNet)

Genomics,
Transcriptomics and

Proteomics

Not specified
(human)

Lipid metabolism
Carbohydrate metabolism

Insulin signaling
Regulation of JAK-STAT

Inflammatory/Immune response
(IL signaling)

IL6, AKT1, TP53, TNF JUN,
VEGFA, PPARG, MAPK3, IGF1,

LEP

Haas et al. (Obesity)
[112] WGCNA Transcriptomics Liver (human) Inflammatory/Immune response

CXCL9, CXCL10, and LYZ higher
expression in patients with NASH

than steatosis

Wang et al. (Obesity)
[113] PPI (HPRD) Transcriptomics Liver (human)

Cell cycle
Cell adhesion

Protein metabolism
Inflammatory/Immune response

(phagocytosis)

PRKCA, EGFR, CDC42, VEGFA,
CRK

Gawrieh et al. (Obesity)
[114]

Ingenuity Pathway
Analysis (IPA) Transcriptomics Liver (human)

Lipid metabolism
Cell cycle (development,

movement)
Apoptosis (ubiquitination)

Inflammatory/Immune response
(cell death)

COL1A1, IL10, DCN, IGFBP3,
HSPA5, USP25, FABP4, PPFIBP1,
ZAK, RGN, SMUG1, CYP4F22,

CSN2

Zhang et al. (MetS)
[115] Bayesian N/A N/A

Inflammatory response (oxidative
stress)

Insulin signaling
Lipid metabolism (dyslipidemia)

The effect of MetS on NAFLD is
significantly greater than that of

NAFLD on MetS

Sex Differences Kurt et al. [116] WGCNA, MEGENA
and Bayesian

Genomics and
Transcriptomics

Liver and
Adipose (mouse

and human)

Lipid metabolism
Protein metabolism

Insulin signaling
Inflammatory/Immune response

Cell cycle
Apoptosis

ECM remodeling

AHSG, FASN, RBP4, SREBF1,
ACOT2, DECR1, DHCR7, SQLE,

INSIG1, ACSS2, BCKDHA, MCCC1,
ECHS1, DCA8, MKI67, CCNA2,
FBN1, COL1A2, CCDC80, RELB,
IFNG, CXCL10, PTPRO, SH3BP2,

TYROBP, C8B, CD36, CPT2,
CHCHD6, GYS1, INPP5D, FCER1G,

NCKAP1L, ANXA2, CIDEC,
PNPLA3, TRIB1, CY7B1, HCK,

FGL2, SLC2A3
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Table 1. Cont.

Application
categories Paper Network Method Omics Data Tissue Pathways Key Drivers/ Findings

Drugs

Hong et al. (PTFC)
[117]

WGCNA and
STRING

Transcriptomics and
Toxicogenomics Liver (mouse)

Lipid metabolism
Cell cycle (activation)

Cell adhesion
Inflammatory/Immune response
(Toll-like receptor, cytokine and

chemokine signaling)
Apoptosis

VEGF-C and COL4A1 may play a
regulatory role in NAFLD

development and are possible
targets of PTFC

Barbosa et al. (GLP-1
Receptor Agonist -
Liraglutide) [118]

STRING and STITCH Transcriptomics and
Proteomics Liver (mouse)

Insulin signaling
Cell cycle

Inflammatory/Immune response
Lipid metabolism

AKT1, RPS6KB1/S6K1; Liraglutide
decreases liver fat content and
improves metabolic conditions

Singh et al. (Vitamin E,
Pentoxifylline,

Obeticholic Acid and
TZDs) [119]

Bayesian N/A N/A N/A

Pentoxifylline and Obeticholic
Acid improve fibrosis. Vitamin E,

TZDs, and Obeticholic Acid
improve ballooning degeneration

in NASH patients



Genes 2019, 10, 966 16 of 32

Genes 2019, 10, 996 17 of 33 

 

 

Figure 3. Summary of findings from network-based studies to elucidate NAFLD progression 
mechanisms, comorbidities, sex differences, biomarkers and druggable targets. 

5.1.1. ECM Structure in Liver Tissue 

Through the use of WGCNA, a co-expression network modeling approach, to identify top 
modules and genes in NAFLD via transcriptomics, Lou et al. found several top hub genes including 
LUM, THBS2, FBN1, and EFEMP1, all of which were significantly upregulated in advanced fibrosing-
NAFLD across several human cohorts and in ApoE−/− mice [103]. Upregulated LUM expression is 
associated with hepatic fibrosis involving collagen fibrillogenic and increased ECM turnover [117]. 
Although not directly linked to advanced NAFLD, under expressed EFEMP1 has been implicated in 
HCC [118], and both FBN1 and THBS2 are constituents in cellular adhesion and ECM that are 
essential for healthy liver physiology [119,120]. Interestingly, ECM and PI3K were the top pathways 
identified in the fibrosis driver module and PI3K signaling is known to regulate ECM deposition, 
collagen synthesis and the expression of pro-fibrogenic factors, all of which can drive disease 
progression via ECM remodeling in a feed-back manner [103]. 

In another study focusing on the cause of liver fibrosis, Zhan et al. utilized gene expression data 
from the Gene Expression Omnibus (GEO [121]) from patients with hepatitis B/C and NAFLD to 
identify differentially expressed genes (DEGs) [122]. In order to analyze the connections from the 

Figure 3. Summary of findings from network-based studies to elucidate NAFLD progression,
mechanisms, comorbidities, sex differences, biomarkers and druggable targets.

5.1.1. ECM Structure in Liver Tissue

Through the use of WGCNA, a co-expression network modeling approach, to identify top modules
and genes in NAFLD via transcriptomics, Lou et al. found several top hub genes including LUM,
THBS2, FBN1, and EFEMP1, all of which were significantly upregulated in advanced fibrosing-NAFLD
across several human cohorts and in ApoE−/−mice [103]. Upregulated LUM expression is associated
with hepatic fibrosis involving collagen fibrillogenic and increased ECM turnover [120]. Although not
directly linked to advanced NAFLD, under expressed EFEMP1 has been implicated in HCC [121], and
both FBN1 and THBS2 are constituents in cellular adhesion and ECM that are essential for healthy liver
physiology [122,123]. Interestingly, ECM and PI3K were the top pathways identified in the fibrosis
driver module and PI3K signaling is known to regulate ECM deposition, collagen synthesis and the
expression of pro-fibrogenic factors, all of which can drive disease progression via ECM remodeling in
a feed-back manner [103].

In another study focusing on the cause of liver fibrosis, Zhan et al. utilized gene expression
data from the Gene Expression Omnibus (GEO [124]) from patients with hepatitis B/C and NAFLD
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to identify differentially expressed genes (DEGs) [125]. In order to analyze the connections from the
proteins encoded by the DEGs, the STRING database was used to construct the PPI network. Here,
they identified 25 hub genes that were shared across hepatitis and NAFLD that involve fibrogenesis,
many of which have been previously suggested including LUM, FBN1, THBS2 in the study discussed
above [103], COL1A1, and COL6A3, which were implicated in a previous miRNA-gene regulatory
network analysis [109]. Utilizing the LINC1000 drug repositioning tool they further predicted that
Zosuquidar compound and its target gene ABCB1, may have antifibrotic activity [125]. A similar
analysis by Qi et al [107]. utilizing the HPRD-derived PPI liver network construction of mild and
severe NAFLD patients also identified pathways and hub genes critical in ECM structuring and
tissue connectivity, particularly ubiquitin 4 (UBQLN4), which regulates epithelial cell formation and
survival [107]. Moreover, the finding of sex-hormone binding globulin (SHBG), a player in male-sex
hormone deficiency, as a candidate gene is interesting as it reaffirms NAFLD overlap with endocrine
processes as well as suggesting a sex-specificity that is discussed later in the review [107].

5.1.2. Metabolic Pathways in Liver and Adipose Tissues

Metabolic disruption is a significant factor in NAFLD, with a wide breadth of individual pathways
identified through network modeling. To better understand the molecular pathophysiology of NAFLD
with respect to FFAs and lipids in general, Sahini et al. examined the differences in gene expression
involved in lipid droplet formation of patients with bland steatosis (without hepatocyte ballooning,
inflammation or fibrosis) versus hepatosteatosis and modeled these DEGs via a STRING PPI network
construction. Of the 146 lipid droplet-linked DEGs, 51 were associated with liver-receptor homolog-1
(NR5A2), a key regulator in cholesterol homeostasis, bile synthesis, and triglyceride metabolism [106].
Particularly regarding fatty acids, an in vitro hepatocyte culture comparison of NASH versus bland
steatosis hepatocytes revealed DEGs associated with mitochondrial carnitine palmitoyltransferase 1A
(CPT1A), the enzyme that initiates fatty acid oxidation [126]. Moreover, these steatotic primary human
hepatocyte cultures demonstrated induction of lipid droplet-associated PLIN2, CIDEC, DNAAF1
and suppressed expression of CPT1A, ANGPTL4, and PKLR (Table 1) all of which are implicated in
mitochondrial metabolism and functionality [106].

Another study by Pandey et al. recently implemented a multi-omics (transcriptome, proteome,
and metabolome) based Minimum Network Enrichment Analysis (MiNEA) on mouse and human
liver samples [72]. Their aim was to find all minimal subnetworks in liver from a given metabolic
process and then by using deregulated genes between two conditions, the analysis can provide minimal
deregulated networks. They found similarities between mouse and human networks for NASH key
regulators in ceramide and hydrogen peroxide synthesis, as well as differences in the deregulation
networks of NASH in phosphatidylserine synthesis [72]. This tool may be useful in exploring the
many different metabolic phenotypes categorized under NAFLD to help elucidate species-specific
processes for the best translational value.

Additionally, several liver specific GEMs have been constructed to facilitate the study of the
pathophysiology of hepatic disease within the context of metabolic variation [67,127]. One of the
more prominent findings via the use of these liver specific GEMs comes from a series of studies by
Mardinoglu et al. in which hepatocyte specific data from the Human Metabolic Reaction 2.0 database
and proteomics data (Human Protein Atlas) were used to construct iHepatocytes2322 [65]. Using
this computational system, they created personalized GEMs based on metabolic data from patients
with varying degrees of hepatic steatosis revealing several key metabolic loci which are perturbed
in these patients. In particular, they report decreased serine and glycine levels as a result of NAD+

and glutathione insufficiency, which was confirmed further with additional evidence [65,101]. First,
decreased glutathione/glutathione disulfide ratios were indicated in NAFLD patients [128]. Secondly,
serine supplementation improved hepatic steatosis and reduced plasma levels of markers for liver
damage (ALT, AST, and alkaline phosphatase) after supplementation [101,129].
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To achieve a more comprehensive understanding of inter-tissue dynamics at play in NAFLD
progression, Shubham et al. studied Visceral Adipose Tissue (VAT) [100]. Here, they implemented
the WGCNA method to organize the disease transcriptome data from the VAT of NAFLD patients
into co-expression modules of different processes and pathways. To delve further into the metabolic
processes behind the disease, they built a network of metabolic genes in the Human Metabolic Network
HMR2 and then compared this to the co-expression network built based from the varying genes.
Additionally, they used previous information from adipocyte metabolism as a form of verification
for reporter metabolites. Through this analysis, it was found that there was overlap between
metabolic processes and inflammatory activity in NAFLD patients with sphingolipid and arachidonic
acid metabolism genes being co-expressed in inflammatory pathways. Interestingly, they suggest
potential fibrosis biomarkers of NASH being sphingosine, ceramide and their metabolites due to the
time-dependent gene changes arising in NASH with fibrosis patients [100]. The findings on ceramides
agree with previous evidence that adipose tissue ceramides are increased in equally obese individuals
with higher liver fat content [130,131].

5.1.3. Immune System in Liver and Adipose Tissues

Several network modeling studies have implicated immune dysregulation as a potential causal
factor in NAFLD. In the study by Haas et al. both immune cell profiling and WGCNA were used to
provide empirical evidence for cellular changes and capture hepatic gene sets associated with NASH
in obese patients with certified NASH [112]. Their computational analysis showed that coregulated
gene groups involved in antigen presentation, inflammation, T cell activation and cytotoxic responses
are involved in NASH progression [112]. Similar results were seen in Sahini et al. in which PPI
(STRING) and transcription factor networks coupled with DEG analysis were used to identify the
importance of TLR4 signaling, B-lymphocyte chemokine and activator, CXCL13 and STAT4, and
the lipid phosphohydrolase PPAP2B, thus further linking transcriptional dysregulation of immune
signaling and liver disease [106].

STRING PPI networks were also used to identify key markers of specific immune cells, where
hub genes upregulated in the liver of NAFLD mice included CD68 and CTSS in macrophages and
leukocyte markers PTPRC and ITGAX, suggesting that cell adhesion processes play an important role
in NAFLD within the context of the pathogenic immune response [102]. Additionally, other network
models have uncovered loci associated with immune pathway perturbation particularly in the VAT as
a large amount of fat that accumulates here has the potential to migrate to the liver via the portal vein.
Shubham et al. utilized transcriptome-based Bayesian modeling to find strong inflammatory links
including PTGS2 and ALOX5, which indirectly contribute to inflammatory chemotaxis and further
the progression from steatosis to NASH [100,132,133]. Clinical studies have previously shown that
inhibitors of PTGS2 and ALOX5 could be an effective treatment in NAFLD [134]. Focusing on the later
stage of disease, Chan et al. aimed to determine the differences between a cirrhotic liver and a healthy
liver through DEG microarray analysis and utilized a hybrid network model (MetaCore) to determine
the function and pathway of the DEGs [108]. They found unique gene expression patterns related to
cell growth, inflammation, and the immune response, including 18 upregulated genes such as ITGA2,
ELF3 and OAS2, and one down regulated gene, IL1RAP, which is important in initiating the activation
of interleukin 1 responsive genes [108].

5.1.4. Coordination of ECM, Metabolism, and Immune Pathways in Liver

Coupling bulk tissue and cutting-edge single cell transcriptomic studies, Xiong et al. revealed
the coordinated activities of the pathways/processes discussed above [105]. They found that the
expression of genes involved in lipid metabolism and oxidative reactions was suppressed following
diet-induced NASH in mice, while NASH-induced genes were highly enriched for the pathways
responsible for ECM remodeling (Col1a1, Mmp12), cell adhesion, phagocytosis, and immune response
(Ccr2, H2-ab1, and Lcn2). Single cell RNA sequencing of non-parenchymal cells in NASH mice revealed
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NASH-associated macrophages (NAMs) which showed elevated Trem2, encoding triggering receptors
expressed on myeloid cells 2 and linked with both mouse and human NASH with increased disease
severity [105]. To date we only note one single cell analysis for NAFLD, and this landmark study opens
a new research direction which will enable a higher resolution understanding of the role of individual
cell types in the heterogeneous progression of the disease.

5.2. Network Modeling of Multiple Tissues

To understand NAFLD at a more macroscopic scale, another method using network approaches
can come using multi-omics datasets to investigate the molecular cascades behind the potential
multi-tissue contributions towards disease. To understand the causal mechanisms underlying NAFLD,
Krishnan et al. carried out a multi-tissue multi-omics integrative study using the Hybrid Mouse
Diversity Panel (HMDP [135]), consisting of ~100 strains of mice with various degrees of steatosis [82].
By integrating GWAS, tissue-specific transcriptome, multiple types of network modeling approaches
(WGCNA, MEGENA, Bayesian networks), and corresponding tissue-specific expression quantitative
trait loci (eQTLs), they identified pathogenic processes that are liver specific (peroxisome, oxidative
phosphorylation, Notch signaling), adipose specific (innate immunity, insulin signaling) or involving
both liver and adipose (adaptive immune system, diverse lipid metabolism processes, apoptosis/cell
cycle). Using the Bayesian network topology, they then predicted candidate regulatory genes of these
NAFLD processes, including THRSP, PKLR, and CHCHD6 in the liver, and FASN in both adipose and
liver tissue. In vivo knockdown experiments of the candidate regulatory genes in liver improved both
steatosis and insulin resistance. Further ex vivo testing demonstrated that downregulation of two novel
regulators predicted, PKLR and CHCHD6, lowered mitochondrial respiration and led to a shift toward
glycolytic metabolism in the liver mitochondria, thus highlighting mitochondria dysfunction as a key
mechanistic driver of NAFLD in the liver [82]. Interestingly, human NAFLD GWAS genes were found
to be peripheral genes rather than hub genes in these tissue-specific gene networks, suggesting that
common genetic variations contributing to human NAFLD are not essential network genes but more
likely to be disease modifiers as implicated in the omnigenic disease model.

Similarly, in a study by Lee et al. where they integrated PPI and transcriptome data to model
co-expression networks in human liver, adipose, and muscle tissues that are associated with NAFLD,
PKLR was identified as a potential target gene involved in liver fat accumulation [110]. They additionally
found that PNPLA3 (a top human GWAS hit) and PCSK9 were important in contributing to liver
steatosis and more acutely to HCC and can serve as druggable targets for NAFLD given the disease’s
wide spectrum (Figure 1) [110]. Interestingly, PCSK9 is a druggable target for cholesterol control and
cardiovascular disease found from GWAS and the highest cause of death for NAFLD is heart disease,
thereby pointing to a connection between the two diseases [136,137].

Another study by Liu et al. explored a gene-metabolite network analysis across non-alcoholic fatty
liver, NASH and NAFLD with T2D in rat models [104]. Metabolomics and transcriptomics were carried
out for rat liver and blood to identify DEGs and differential metabolites, followed by the construction
of protein-protein and protein-compound interaction networks using STRING as the basic framework.
With this method they found overlap between the three tested phenotypes for key regulators such as
CCL2 and JUN, which regulate genes mainly involved in inflammation and metabolism. Furthermore,
the different NAFLD phenotypes also contained unique pathways, specifically lipid and fatty acid
metabolism in the steatosis models, inflammatory and immune response in NASH models, and AMPK
signaling pathway and insulin response in models involving T2D [104]. These results support the
presence of both pathway perturbations fundamental to NAFLD across stages and pathways which
may influence specific stages or conditions in NAFLD progression.

5.3. Network Modeling of NAFLD Comorbidities

NAFLD is tightly associated with obesity, which is supported by various studies, with the
supposed progression beginning with obesity which then develops into steatosis and subsequently
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NASH, and these developments are governed by multi-tissue changes (Figure 1). Gawrieh et al.
carried out a global hepatic gene expression study on 53 morbidly obese individuals of which 27 had
NAFLD and the remaining 26 acting as controls to identify DEGs [114]. To explain the connections
amongst the DEGs in NAFLD, they implemented the Ingenuity Pathways Analysis to identify the
interaction pathways between genes and their biological importance in NAFLD. In brief, significant
DEGs were algorithmically linked based on an extensive IPA knowledge base into networks that
were systematically ranked for relevance and analyzed to understand the biological function of the
gene/disease. These DEGs showed importance in cellular movement, cell death, immunological disease,
and lipid metabolism. Hub genes in the network included COL1A1, important in ECM restructuring
(Table 1), and IL10, an important immune regulator also previously implicated in NAFLD by other
studies [138].

Further investigation into the interconnection of obesity and NAFLD was carried out by Wang
et al. in which their HPRD-based PPI networks revealed that compared to control, healthy-obese
and steatotic subjects showed high degree of differential expression for the hub gene PRK-CA, which
interacts with EGFR and CDC42 [113]. Previous studies have implicated EGFR in stimulating the
proliferation of stellate cells, which are heavily involved in the deposition of ECM in the liver. CDC42
is involved in saturated fatty acid-induced c-JNK in hepatocytes, found in NASH. Overall, PRK-CA,
EGFR, CDC42, and VEGF-A were found to be upregulated in this study and imply a role of focal
adhesion in NAFLD development and obesity [113].

Another fundamental question regarding NAFLD is resolving the potential bidirectional
relationship between NAFLD and MetS and identifying whether one is the consequence of the
other or if both arise independently. Zhang et al. implemented a simplified BN model to measure the
reciprocal causality of these diseases, in which epidemiological and health measurement data were
imputed to create a network defining the relationships between the experimental variables (NAFLD,
obesity, dyslipidemia etc.) [115]. With this unorthodox approach, they carried out the first bidirectional
longitudinal study showcasing the reciprocal causality between MetS and NAFLD, with MetS having a
greater effect on NAFLD than vice versa [115]. It was also indicated that obesity and dyslipidemia were
key factors linking NAFLD and MetS, which corroborates many of the pieces discussed throughout
this review.

Network approaches have also been explored to investigate the interconnectivity between NAFLD
and Alzheimer’s Disease (AD), both being degenerative diseases that are significantly affected by
lifestyle. In the study by Karbalaei et al., 332 and 1200 genes associated with NAFLD and AD
respectively were extracted from the DisGeNet database [111]. The shared genes between diseases were
then modeled using the STRING database to construct a PPI network. Among the forty-two enriched
pathways in the network, carbohydrate metabolism, long fatty acid metabolism, and interleukin (IL)
signaling pathways were assessed. Seven nodes which strongly linked gene modules (bottleneck hubs)
were identified as possible therapeutic targets which include IL6, AKT1, TP53, TNF, JUN, VEGFA,
and PPARG. Elevated levels of IL6 have been previously documented in patients with NAFLD [139]
and AD [140]. Interestingly, increased expression of TP53 has been implicated in AD, whereas p53
inhibition attenuates liver injury in NAFLD mouse models, which suggests an inverse relationship [111].
JUN is a documented therapeutic target of AD [141] and is shown to have increased expression in
NAFLD, while also being identified as a therapeutic target in the Liu et al. network paper discussed
above [104]. Additionally, Qi et al. also found the Amyloid Beta Precursor (APP) gene to be important
in NAFLD, which is a key and well known gene in AD [107]. With both obesity and diabetes commonly
intersecting AD and NAFLD separately, it is no surprise that AD and NAFLD share protein networks
and pathways.

Despite studies investigating the connections between NAFLD and its commonalities such as T2D,
obesity, MetS and AD, more comprehensive multi-tissue multi-omics modeling of network connections
between diseases is still needed. As exemplified by Shu et al., novel pathways can be found and
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potential key regulators of multiple diseases can be pinpointed when multi-omics datasets across tens
of tissues are integrated [88].

5.4. Network Modeling for Sex Differences in NAFLD

Network approaches have also been applied to examine the similarities and differences between
sexes in the development of disease to help elucidate potential protection or exacerbation due to sex
differences between gonadal males and females. To this end, Kurt et al. explored the sexual dimorphism
present in NAFLD via a rigorous multi-tissue multi-omics study to find causal gene networks and
key drivers (regulator genes) within these networks [116], using the Mergeomics pipeline [142,143].
Here, reconstruction of tissue specific co-expression modules/networks were built via complementary
network methods—WGCNA [50] and MEGENA [51] utilizing gene expression data from liver and
adipose tissues extracted from females and males in the HMDP cohort. The benefit of using both
methods allows for one to cover for the other for potential missed biology and therefore captures more
information to understand disease progression. Integrating these modules with sex specific GWAS
data for liver steatosis as well as eQTLs for liver and adipose, they captured numerous pathways which
were then mapped on Bayesian networks to predict key drivers of the disease. Among genetically
perturbed pathways shared between the sexes, are immune system and metabolic pathways (branched
chain amino acid metabolism/oxidative phosphorylation). For females, the perturbed sex-specific
pathways were vitamin/cofactor metabolism and ion channel transport, while male pathways were
related to phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling.
Regulatory genes found to be sex-specific included CHCHD6 in the male liver, which was also found as
a key gene target in several previous studies (Table 1) [82,104,106,110] and was also recently validated
to be important for the inhibition of glucose uptake and decreased mitochondrial activity in HepG2
cells [144]. For females they found tissue-specific genes such as NCKAP1L, an estrogen receptor target,
and TYROBP (protein tyrosine kinase binding protein) as top key drivers for immune regulation in the
female liver. Additionally, in female adipose tissue, the innate immunity linked genes SH3BP2 and
C8B were highlighted, thus in both tissues immune dysfunction was implicated in females [116,145].

Sexual dimorphism in NAFLD was also exampled in a recent study by Tomaš et al. in which
they created a sex-based liver metabolism model called LiverSex derived from the SteatoNet liver
computational model [146]. By modeling both cellular responses to sex hormones and the sex dependent
variation in growth hormone release, the study helped identify key regulatory factors which confer
the largest difference between sexes in hepatic triglyceride accumulation and are associated with the
progression of NAFLD. Specifically, these include the more female specific PGC1A and FXR, and the
more male specific PPAR-alpha and LXR. These studies made strides in the determination of sexual
dimorphisms in pathologically relevant pathways and regulatory genes, thus pointing to potential
avenues for sex specific NAFLD treatment in the future.

5.5. Use of Network Models as Predictive and Diagnostic Tools for NAFLD development

In addition to improving mechanistic understanding of NAFLD, a network-based approach can
also provide us with the opportunity to detect biomarkers, which can aid in a faster and non-invasive
option for diagnosis of potential NAFLD patients. For detection of an unhealthy liver we have basic
serum tests which look for abnormalities in markers to do with cell integrity ALT and AST, biliary
tract function (Gamma GT and Alkaline Phosphatase) and functionality (Albumin). However, these
detection methods, although indicating poor liver health, do not advise on the form of liver damage
or severity of NAFLD progression accurately without a biopsy (Figure 1). Therefore, it is of key
importance to find new biomarkers specific to NAFLD and its separate stages, which will assist with
more accurate diagnosis and precision medicine. There have now been a few studies implementing
differing network approaches to predict new biomarkers.

To this end Mardinoglu et al. utilized GEM modeling of hepatocytes via the incorporation of the
HMR2 database, proteomics, literature and clinical data to identify biomarkers in NASH [98]. Here,
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they found blood concentrations of heparin sulfates, chondroitin and serine deficiency of potential
diagnostic use. Moreover, they provide insight into druggable targets for NASH such as the metabolism
related BCAT1 and SHMT1 genes and the serine linked PSPH gene [65]. Zhu et al. implemented
another variant of network modeling for new biomarkers of NAFLD via transcriptomics of rat liver by
constructing miRNA-mRNA networks as well as constructing PPI (STRING) and pathway interaction
networks, finding hub genes playing key roles in metabolism such as Cyp1a1, Cyp51, and Hmgcr, which
have been previously correlated with NAFLD [98].

Network models can additionally be integrated to predict how certain environmental contributions
such as diet may affect disease progression. Maldonado et al. used a combination of quantitative kinetic
regulatory networks with qualitative GRNs via the quasi-steady state Petri nets (QSSPN) method [147]
to investigate whether glucose or fructose was worse for NAFLD progression [97]. They found that
there was no difference in lipogenic consequences between fructose and glucose and increasing either
sugar enhanced lipid generation. Additionally, they aimed to predict the impact of activating PPARα
by lipids and showed that PPARα activation appears to have a significant role in hepatic steatosis
progression, suggesting issues with PPARα agonists as treatment options [97].

Overall, these different approaches showcase the flexibility of network modeling to be applied
to NAFLD predictions. Notably, the use of different types of data and network approaches yielded
different biomarkers, thereby calling for comprehensive comparison and validation efforts.

5.6. Network Insights into Drug Repositioning for NAFLD Treatment

Drug repositioning has proven useful for numerous diseases and computational packages have
been developed to predict the possibility of repositioning drugs with known safety profiles hence
providing a better chance for translational success. With no current pharmacological options for
NAFLD but a large association with other diseases such as obesity and T2D, it begs the question
that perhaps treatments for such diseases may provide significant therapeutic benefits for NAFLD.
Although direct predictions for drug repositioning based on NAFLD molecular networks are yet to be
carried out, various recent studies have used network modeling to understand how drugs already
tested may provide a therapeutic benefit for NAFLD [148].

Barbosa et al. investigated the potential benefits of the T2D drug liraglutide (GLP-1 receptor
agonist) on hepatic steatosis treatment [118]. Specifically, the group assayed levels of key blood
parameters such as cholesterol and triglycerides, carried out a transcriptomic analysis to provide
potential target genes for liraglutide and liver steatosis to assess interaction networks. By treating
NAFLD model mice with liraglutide and comparing the gene network between these and control, the
study identified S6K1 as being central to steatosis. Moreover, the study showed therapeutic promise
with the drug bettering key metabolic parameters and reducing the content of liver fat compared to
controls [118].

Singh et al. explored a T2D drug, thiazolidinedione (TZD) and other drug treatments
(cardiovascular treatment drug pentoxifylline, obeticholic acid, and vitamin E with placebo) [119]. They
implemented a Bayesian network meta-analysis to investigate the effectiveness of these pharmacological
agents in the treatment of NASH patients via direct (comparing between treatments) and indirect
(comparing treatments of interest with a common comparator, such as placebo) comparisons. Their
findings implicate that these therapeutics had positive results in reducing fibrosis and ballooning
degeneration in NASH patients [119].

The effectiveness of pure total flavonoids from citrus (PTFC) particularly the components naringin,
neohesperidin and narirutin, in the treatment of NASH has been recently tested via a combination of
WGCNA, STRING, and the CTD (comparative toxicogenomics database) analyses [117]. The study
revealed one of the underlying core genes targeted by PTFC in NAFLD progression through the
analysis of high fat diet mice groups with or without PTFC treatment. Based on the common nodes
between networks, VEGF-C, a component of cytokine-cytokine receptor interaction and focal adhesion
pathways, was implicated to play an important role in disease progression and is a target of PTFC.
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Despite showing some promise, these specific therapeutics show low efficacy overall with limited
progress in clinical testing. They are also based on prior hypotheses that certain drugs may be useful for
NAFLD rather than based on data-driven approaches that may shed light on novel drug predictions,
thus highlighting the further need for integrated systems biology models [149]. Particularly, by better
elucidating the species- and tissue-specific network models of NAFLD and leveraging species- and
tissue-specific drug signatures, computational models may be able to create networks that more
accurately link causal disease networks to drug targets, thereby making better predictions concerning
drug repositioning for NAFLD.

5.7. NAFLD Insights Learned From Network Modeling so Far

When viewing the outcomes of the various network modeling methods in a generalized manner
one can begin to isolate some key mechanisms which drive NAFLD (Figure 3). In particular, many of the
GRN-based studies identify pathways closely associated with ECM remodeling, immune activation, and
mitochondrial function, particularly within the context of lipid metabolism. Furthermore, GEM based
models have identified specific metabolites such as cholesterol, glutathione and NAD+ as dysregulated
in NAFLD, indicating the pathogenic role of specific metabolic loci. The major pathways identified
consistently in single tissue network studies, are also indicated in multi-tissue studies, particularly
metabolism and inflammation, which are likely to be systematically dysregulated in NAFLD.

Numerous regulatory genes have been identified which fall under the scope of metabolic regulators,
including NR5A2, a key regulator in cholesterol homeostasis, and PLIN2, CIDEC, and DNAAF1
which suppressed expression of PKLR and CPT1A, genes involved in mitochondrial metabolism and
functionality. Additionally, in vivo studies further implicate dysregulation of PKLR in mitochondrial
dysfunction. Several groups also indicate genes directly involved in lipid metabolism, immune
function, and cell cycle such as PCSK9, PNPLA3, CCL2, and JUN, as mechanistic drivers of NAFLD.
Moreover, metabolic and immune pathways are also heavily implicated in the sexual dimorphism
of NAFLD, as males are indicated to associate more strongly than females with pathways related to
phospholipid, lysophospholipid, phosphatidylinositol metabolism, and insulin signaling, and females
and males demonstrated differential tissue specificity for various immune pathways.

Continuing the discussion of sex differences in NAFLD, network studies, particularly the study
by Kurt et al. have identified several sexually dimorphic pathways in liver and adipose tissue of
mice. Specifically, alterations in vitamin/cofactor metabolism and ion channel transport in females.
This study and others also identify key genomic loci which show sex biased expressional patterns
in relevant tissues, thus providing further suggestive loci for future study. In a broader attempt to
categorize these changes, LiverSex is a promising tool which enables users to computationally identify
sex dependent expressional variations in disease, thus providing further resources for research along
this path.

Network modeling has not only furthered the mechanistic understanding of NAFLD, but also
provided insights into the disease specific biomarkers which may be utilized to assist healthcare
professionals in earlier screening and more specific predictions regarding disease progression such as
analysis of heparin sulfates, chondroitin and serine deficiencies.

Overall, network studies have revealed the importance of numerous tissue-specific and cross-tissue
pathways, regulatory molecules, and predictive markers. However, the coverage for tissues and omics
domains remains limited and few of the findings have led to translation in ameliorating the incidence
or progression of NAFLD, thus there is ample room for discovery. Additionally, many of the network
studies of NAFLD show a lack of consistency in terms of species used, stage of disease examined,
omics data types included, and network approach used, which adds to the challenge of finding definite
trends across studies.
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6. Future Directions for Network Modeling in NAFLD

As highlighted above, many of the current methods utilize a diverse set of computational tools
and different omics datasets to elucidate the genes and pathways contributing to NAFLD. While this
has a potential strength of increasing the odds of capturing diverse causal mechanisms, this disjointed
approach hinders straightforward comparison between results. Thus, there is a need for comprehensive
tissue and omics data collection across studies and systematic method comparison to derive unification
algorithms which can be applied across studies to facilitate reproducible and comparable research.

Given that both strong genetic and environmental factors are major contributors to NAFLD,
understanding the relative contributions of these risks, the divergence and similarities in the networks
and pathways perturbed by these risks, and establishing network connections between these two major
components will be a key future area of focus. Furthermore, as NAFLD disease progression is classified
into distinct stages, future studies are needed to identify either the distinct network perturbations under
each stage which drives the sequential evolution of the disease or highlight fundamental molecular
changes which are a common denominator across all stages of this disease. Such predictions will offer
essential insight into how NAFLD progresses and what components of that progression encompass
the genetic, epigenetic, or environmental factors influencing pathogenesis.

As NAFLD has been examined in both human populations and animal models, a systematic
comparison between species is also needed to assess the translational potential of animal model
studies. Such comparison will require similar study designs targeting genetic or environmental factors,
inclusion of similar sets of tissues and multi-omics datasets, and similar network modeling approaches
to enable tissue-specific comparisons between species at the gene network level.

Finally, significant progress can be made within the scope of multi-tissue interplay, single cell
analysis, and drug repositioning. To date we only identify a few studies that investigate tissues outside
of the liver, which currently neglects the interplay and dynamics of other tissues contributing to
NAFLD progression. Moreover, single cell multi-omics is the next frontier in this area due to the
heterogeneous nature of tissues as well as disease progression. Single cell analyses can reveal cellular
mechanisms at a much higher resolution than at the bulk tissue level but to date only one single cell
study has been conducted in this area. As the specificity of data regarding disease mechanism grows,
a more systematic drug repositioning effort leveraging existing omics information of approved drugs
with known safety profile and molecular pathways of NAFLD is required. Success within this realm
will provide the potential to supply treatment options for NAFLD at a much faster pace.

7. Concluding Remarks

NAFLD is a common complex disorder that engulfs many stages of disease. It is commonly
associated with other metabolic syndromes and multiple tissues, which implies the holistic setting that
is required for disease progression. With a multifactorial disease, we need to examine the multiple
contributions leading to the pathogenic endpoint. A multi-tissue multi-omics systems biology approach
can provide us with information of the many facades of the disease and we can examine these omics
sets using network modeling algorithms to predict biomarkers, hub genes, pathogenic pathways
and potential therapeutic targets. The benefits of this systems approach are overwhelming as it
offers a more comprehensive understanding of the pathophysiology accounting for both internal and
external contributors at multiple scales, which is critical for guiding novel therapeutics for NAFLD,
an alarmingly growing health concern.

Author Contributions: M.B., T.K., J.W., N.H., and X.Y. drafted and edited the manuscript.

Funding: This research was funded by the National Institutes of Health Grants R01 DK104363 and R01 DK117850
(to X.Y.).

Conflicts of Interest: The authors declare no conflict of interest.



Genes 2019, 10, 966 25 of 32

References

1. Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70,
151–171. [CrossRef]

2. McCullough, A.J. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease.
Clin. Liver Dis. 2004, 8, 521–533. [CrossRef]

3. Bottcher, K.; Pinzani, M. Pathophysiology of liver fibrosis and the methodological barriers to the development
of anti-fibrogenic agents. Adv. Drug Deliv. Rev. 2017, 121, 3–8. [CrossRef]

4. Charlton, M. Nonalcoholic fatty liver disease: A review of current understanding and future impact.
Clin. Gastroenterol. Hepatol. 2004, 2, 1048–1058. [CrossRef]

5. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or
cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [CrossRef]

6. Sookoian, S.; Pirola, C.J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2017,
23, 1–12. [CrossRef]

7. Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.;
Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet.
2008, 40, 1461–1465. [CrossRef]

8. Buch, S.; Stickel, F.; Trepo, E.; Way, M.; Herrmann, A.; Nischalke, H.D.; Brosch, M.; Rosendahl, J.; Berg, T.;
Ridinger, M.; et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7
as risk loci for alcohol-related cirrhosis. Nat. Genet. 2015, 47, 1443–1448. [CrossRef]

9. Horvath, S.; Erhart, W.; Brosch, M.; Ammerpohl, O.; von Schonfels, W.; Ahrens, M.; Heits, N.; Bell, J.T.;
Tsai, P.C.; Spector, T.D.; et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA
2014, 111, 15538–15543. [CrossRef]

10. Trovato, F.M.; Martines, G.F.; Brischetto, D.; Catalano, D.; Musumeci, G.; Trovato, G.M. Fatty liver disease
and lifestyle in youngsters: Diet, food intake frequency, exercise, sleep shortage and fashion. Liver Int. 2016,
36, 427–433. [CrossRef]

11. Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.;
Sato, Y.; Kang, D.H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol.
2018, 68, 1063–1075. [CrossRef]

12. Bruce, K.D.; Cagampang, F.R.; Argenton, M.; Zhang, J.; Ethirajan, P.L.; Burdge, G.C.; Bateman, A.C.;
Clough, G.F.; Poston, L.; Hanson, M.A.; et al. Maternal high-fat feeding primes steatohepatitis in adult mice
offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009, 50,
1796–1808. [CrossRef]

13. Portillo-Sanchez, P.; Bril, F.; Maximos, M.; Lomonaco, R.; Biernacki, D.; Orsak, B.; Subbarayan, S.; Webb, A.;
Hecht, J.; Cusi, K. High Prevalence of Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes
Mellitus and Normal Plasma Aminotransferase Levels. J. Clin. Endocrinol. Metab. 2015, 100, 2231–2238.
[CrossRef]

14. Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic
fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies.
Clin. Gastroenterol. Hepatol. 2015, 13, 643–654. [CrossRef]

15. Zhang, X.; Ji, X.; Wang, Q.; Li, J.Z. New insight into inter-organ crosstalk contributing to the pathogenesis of
non-alcoholic fatty liver disease (NAFLD). Protein Cell 2018, 9, 164–177. [CrossRef]

16. Stojsavljevic, S.; Gomercic Palcic, M.; Virovic Jukic, L.; Smircic Duvnjak, L.; Duvnjak, M. Adipokines and
proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World
J. Gastroenterol. 2014, 20, 18070–18091. [CrossRef]

17. Meng, X.; Li, S.; Li, Y.; Gan, R.-Y.; Li, H.-B. Gut Microbiota’s Relationship with Liver Disease and Role in
Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018, 10, 1457. [CrossRef]

18. Zhang, H.; Zhang, C. Adipose “talks” to distant organs to regulate insulin sensitivity and vascular function.
Obesity (Silver Spring) 2010, 18, 2071–2076. [CrossRef]

19. Khan, R.S.; Bril, F.; Cusi, K.; Newsome, P.N. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver
Disease. Hepatology 2019, 70, 711–724. [CrossRef]

20. Loria, P.; Carulli, L.; Bertolotti, M.; Lonardo, A. Endocrine and liver interaction: The role of endocrine
pathways in NASH. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 236–247. [CrossRef]

http://dx.doi.org/10.1016/j.jhep.2018.09.014
http://dx.doi.org/10.1016/j.cld.2004.04.004
http://dx.doi.org/10.1016/j.addr.2017.05.016
http://dx.doi.org/10.1016/S1542-3565(04)00440-9
http://dx.doi.org/10.1038/nrgastro.2013.41
http://dx.doi.org/10.3350/cmh.2016.0109
http://dx.doi.org/10.1038/ng.257
http://dx.doi.org/10.1038/ng.3417
http://dx.doi.org/10.1073/pnas.1412759111
http://dx.doi.org/10.1111/liv.12957
http://dx.doi.org/10.1016/j.jhep.2018.01.019
http://dx.doi.org/10.1002/hep.23205
http://dx.doi.org/10.1210/jc.2015-1966
http://dx.doi.org/10.1016/j.cgh.2014.04.014
http://dx.doi.org/10.1007/s13238-017-0436-0
http://dx.doi.org/10.3748/wjg.v20.i48.18070
http://dx.doi.org/10.3390/nu10101457
http://dx.doi.org/10.1038/oby.2010.91
http://dx.doi.org/10.1002/hep.30429
http://dx.doi.org/10.1038/nrgastro.2009.33


Genes 2019, 10, 966 26 of 32

21. Lombardi, R.; Fargion, S.; Fracanzani, A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD):
A systematic review. Dig. Liver Dis. 2019, 51, 1214–1222. [CrossRef] [PubMed]

22. Fan, J.G.; Farrell, G.C. Epidemiology of non-alcoholic fatty liver disease in China. J. Hepatol. 2009, 50, 204–210.
[CrossRef] [PubMed]

23. Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual
Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of
Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326.
[CrossRef] [PubMed]

24. Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A.
Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps.
Hepatology 2019, 70, 1457–1469. [CrossRef]

25. Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell
2017, 169, 1177–1186. [CrossRef]

26. Neuschwander-Tetri, B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis:
The central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52, 774–788. [CrossRef]

27. Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology
and clinical implications. Gastroenterology 2012, 142, 711–725. [CrossRef]

28. Hirsova, P.; Ibrahim, S.H.; Gores, G.J.; Malhi, H. Lipotoxic lethal and sublethal stress signaling in hepatocytes:
Relevance to NASH pathogenesis. J. Lipid Res. 2016, 57, 1758–1770. [CrossRef]

29. Lomonaco, R.; Ortiz-Lopez, C.; Orsak, B.; Webb, A.; Hardies, J.; Darland, C.; Finch, J.; Gastaldelli, A.;
Harrison, S.; Tio, F.; et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver
histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012, 55, 1389–1397. [CrossRef]

30. Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids
stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin. Invest.
2005, 115, 1343–1351. [CrossRef]

31. Sanyal, A.J.; Campbell-Sargent, C.; Mirshahi, F.; Rizzo, W.B.; Contos, M.J.; Sterling, R.K.; Luketic, V.A.;
Shiffman, M.L.; Clore, J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial
abnormalities. Gastroenterology 2001, 120, 1183–1192. [CrossRef] [PubMed]

32. Csak, T.; Ganz, M.; Pespisa, J.; Kodys, K.; Dolganiuc, A.; Szabo, G. Fatty acid and endotoxin activate
inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology
2011, 54, 133–144. [CrossRef] [PubMed]

33. Han, J.; Kaufman, R.J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 2016, 57,
1329–1338. [CrossRef] [PubMed]

34. Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol.
2017, 14, 397–411. [CrossRef]

35. Loomba, R.; Abraham, M.; Unalp, A.; Wilson, L.; Lavine, J.; Doo, E.; Bass, N.M.; Nonalcoholic Steatohepatitis
Clinical Research. Association between diabetes, family history of diabetes, and risk of nonalcoholic
steatohepatitis and fibrosis. Hepatology 2012, 56, 943–951. [CrossRef]

36. Ioannou, G.N. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol. Metab. 2016, 27,
84–95. [CrossRef]

37. Trevaskis, J.L.; Griffin, P.S.; Wittmer, C.; Neuschwander-Tetri, B.A.; Brunt, E.M.; Dolman, C.S.; Erickson, M.R.;
Napora, J.; Parkes, D.G.; Roth, J.D. Glucagon-like peptide-1 receptor agonism improves metabolic,
biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest.
Liver Physiol. 2012, 302, G762–G772. [CrossRef]

38. Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.;
Rawls, J.F.; David, L.A.; et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis
and shift in the metabolic function of the gut microbiota. Hepatology 2016, 63, 764–775. [CrossRef]

39. Loomba, R.; Schork, N.; Chen, C.H.; Bettencourt, R.; Bhatt, A.; Ang, B.; Nguyen, P.; Hernandez, C.;
Richards, L.; Salotti, J.; et al. Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study.
Gastroenterology 2015, 149, 1784–1793. [CrossRef]

40. Pirazzi, C.; Valenti, L.; Motta, B.M.; Pingitore, P.; Hedfalk, K.; Mancina, R.M.; Burza, M.A.; Indiveri, C.;
Ferro, Y.; Montalcini, T.; et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells.
Hum. Mol. Genet. 2014, 23, 4077–4085. [CrossRef]

http://dx.doi.org/10.1016/j.dld.2019.05.015
http://www.ncbi.nlm.nih.gov/pubmed/31176631
http://dx.doi.org/10.1016/j.jhep.2008.10.010
http://www.ncbi.nlm.nih.gov/pubmed/19014878
http://dx.doi.org/10.1007/s12325-017-0556-1
http://www.ncbi.nlm.nih.gov/pubmed/28526997
http://dx.doi.org/10.1002/hep.30626
http://dx.doi.org/10.1016/j.cell.2017.05.038
http://dx.doi.org/10.1002/hep.23719
http://dx.doi.org/10.1053/j.gastro.2012.02.003
http://dx.doi.org/10.1194/jlr.R066357
http://dx.doi.org/10.1002/hep.25539
http://dx.doi.org/10.1172/JCI23621
http://dx.doi.org/10.1053/gast.2001.23256
http://www.ncbi.nlm.nih.gov/pubmed/11266382
http://dx.doi.org/10.1002/hep.24341
http://www.ncbi.nlm.nih.gov/pubmed/21488066
http://dx.doi.org/10.1194/jlr.R067595
http://www.ncbi.nlm.nih.gov/pubmed/27146479
http://dx.doi.org/10.1038/nrgastro.2017.38
http://dx.doi.org/10.1002/hep.25772
http://dx.doi.org/10.1016/j.tem.2015.11.008
http://dx.doi.org/10.1152/ajpgi.00476.2011
http://dx.doi.org/10.1002/hep.28356
http://dx.doi.org/10.1053/j.gastro.2015.08.011
http://dx.doi.org/10.1093/hmg/ddu121


Genes 2019, 10, 966 27 of 32

41. Smagris, E.; BasuRay, S.; Li, J.; Huang, Y.; Lai, K.M.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Pnpla3I148M
knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015, 61,
108–118. [CrossRef] [PubMed]

42. Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjaerg-Hansen, A.; Vogt, T.F.;
Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility
to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46, 352–356. [CrossRef] [PubMed]

43. Liu, Y.L.; Reeves, H.L.; Burt, A.D.; Tiniakos, D.; McPherson, S.; Leathart, J.B.; Allison, M.E.; Alexander, G.J.;
Piguet, A.C.; Anty, R.; et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with
non-alcoholic fatty liver disease. Nat. Commun. 2014, 5, 4309. [CrossRef]

44. Hui, S.T.; Parks, B.W.; Org, E.; Norheim, F.; Che, N.; Pan, C.; Castellani, L.W.; Charugundla, S.; Dirks, D.L.;
Psychogios, N.; et al. The genetic architecture of NAFLD among inbred strains of mice. Elife 2015, 4, e05607.
[CrossRef] [PubMed]

45. Hui, S.T.; Kurt, Z.; Tuominen, I.; Norheim, F.; Davis, R.C.; Pan, C.; Dirks, D.L.; Magyar, C.E.; French, S.W.;
Chella Krishnan, K.; et al. The Genetic Architecture of Diet-Induced Hepatic Fibrosis in Mice. Hepatology
2018, 68, 2182–2196. [CrossRef] [PubMed]

46. Arneson, D.; Shu, L.; Tsai, B.; Barrere-Cain, R.; Sun, C.; Yang, X. Multidimensional Integrative Genomics
Approaches to Dissecting Cardiovascular Disease. Front. Cardiovasc. Med. 2017, 4, 8. [CrossRef]

47. Meng, Q.; Makinen, V.P.; Luk, H.; Yang, X. Systems Biology Approaches and Applications in Obesity,
Diabetes, and Cardiovascular Diseases. Curr. Cardiovasc. Risk Rep. 2013, 7, 73–83. [CrossRef]

48. Zhao, Y.; Barrere-Cain, R.E.; Yang, X. Nutritional systems biology of type 2 diabetes. Genes Nutr. 2015, 10,
481. [CrossRef]

49. Chai, L.E.; Loh, S.K.; Low, S.T.; Mohamad, M.S.; Deris, S.; Zakaria, Z. A review on the computational
approaches for gene regulatory network construction. Comput. Biol. Med. 2014, 48, 55–65. [CrossRef]

50. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.
2008, 9, 559. [CrossRef]

51. Song, W.M.; Zhang, B. Multiscale Embedded Gene Co-expression Network Analysis. PLoS Comput. Biol.
2015, 11, e1004574. [CrossRef] [PubMed]

52. Li, J.; Zhou, D.; Qiu, W.; Shi, Y.; Yang, J.J.; Chen, S.; Wang, Q.; Pan, H. Application of Weighted Gene
Co-expression Network Analysis for Data from Paired Design. Sci. Rep. 2018, 8, 622. [CrossRef] [PubMed]

53. Edwards, D. Introduction to Graphical Modelling; Springer: Berlin, Germany, 2012.
54. Bernal, V.; Bischoff, R.; Guryev, V.; Grzegorczyk, M.; Horvatovich, P. Exact hypothesis testing for shrinkage

based Gaussian Graphical Models. Bioinformatics 2019. [CrossRef] [PubMed]
55. Xing, L.; Guo, M.; Liu, X.; Wang, C.; Wang, L.; Zhang, Y. An improved Bayesian network method for

reconstructing gene regulatory network based on candidate auto selection. BMC Genom. 2017, 18, 844.
[CrossRef] [PubMed]

56. Blencowe, M.; Arneson, D.; Ding, J.; Chen, Y.-W.; Saleem, Z.; Yang, X. Network modeling of single-cell omics
data: Challenges, opportunities, and progresses. Emerg. Top. Life Sci. 2019, 3, 379–398. [CrossRef]

57. Chen, S.; Mar, J.C. Evaluating methods of inferring gene regulatory networks highlights their lack of
performance for single cell gene expression data. BMC Bioinform. 2018, 19, 232. [CrossRef]

58. Chatr-Aryamontri, A.; Ceol, A.; Palazzi, L.M.; Nardelli, G.; Schneider, M.V.; Castagnoli, L.; Cesareni, G.
MINT: The Molecular INTeraction database. Nucleic Acids Res. 2007, 35, D572–D574. [CrossRef]

59. Peri, S.; Navarro, J.D.; Amanchy, R.; Kristiansen, T.Z.; Jonnalagadda, C.K.; Surendranath, V.; Niranjan, V.;
Muthusamy, B.; Gandhi, T.K.; Gronborg, M.; et al. Development of human protein reference database as an
initial platform for approaching systems biology in humans. Genome Res. 2003, 13, 2363–2371. [CrossRef]

60. Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository
for interaction datasets. Nucleic Acids Res. 2006, 34, D535–D539. [CrossRef]

61. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.;
Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of
life. Nucleic Acids Res. 2015, 43, D447–D452. [CrossRef]

62. Xenarios, I.; Fernandez, E.; Salwinski, L.; Duan, X.J.; Thompson, M.J.; Marcotte, E.M.; Eisenberg, D. DIP:
The Database of Interacting Proteins: 2001 update. Nucleic Acids Res. 2001, 29, 239–241. [CrossRef] [PubMed]

63. Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current status and applications of genome-scale metabolic
models. Genome Biol. 2019, 20, 121. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/hep.27242
http://www.ncbi.nlm.nih.gov/pubmed/24917523
http://dx.doi.org/10.1038/ng.2901
http://www.ncbi.nlm.nih.gov/pubmed/24531328
http://dx.doi.org/10.1038/ncomms5309
http://dx.doi.org/10.7554/eLife.05607
http://www.ncbi.nlm.nih.gov/pubmed/26067236
http://dx.doi.org/10.1002/hep.30113
http://www.ncbi.nlm.nih.gov/pubmed/29907965
http://dx.doi.org/10.3389/fcvm.2017.00008
http://dx.doi.org/10.1007/s12170-012-0280-y
http://dx.doi.org/10.1007/s12263-015-0481-3
http://dx.doi.org/10.1016/j.compbiomed.2014.02.011
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1371/journal.pcbi.1004574
http://www.ncbi.nlm.nih.gov/pubmed/26618778
http://dx.doi.org/10.1038/s41598-017-18705-z
http://www.ncbi.nlm.nih.gov/pubmed/29330528
http://dx.doi.org/10.1093/bioinformatics/btz357
http://www.ncbi.nlm.nih.gov/pubmed/31077287
http://dx.doi.org/10.1186/s12864-017-4228-y
http://www.ncbi.nlm.nih.gov/pubmed/29219084
http://dx.doi.org/10.1042/etls20180176
http://dx.doi.org/10.1186/s12859-018-2217-z
http://dx.doi.org/10.1093/nar/gkl950
http://dx.doi.org/10.1101/gr.1680803
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1093/nar/gku1003
http://dx.doi.org/10.1093/nar/29.1.239
http://www.ncbi.nlm.nih.gov/pubmed/11125102
http://dx.doi.org/10.1186/s13059-019-1730-3
http://www.ncbi.nlm.nih.gov/pubmed/31196170


Genes 2019, 10, 966 28 of 32

64. Agren, R.; Bordel, S.; Mardinoglu, A.; Pornputtapong, N.; Nookaew, I.; Nielsen, J. Reconstruction of
genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS
Comput. Biol. 2012, 8, e1002518. [CrossRef] [PubMed]

65. Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Uhlen, M.; Nielsen, J. Genome-scale metabolic modelling
of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun.
2014, 5, 3083. [CrossRef]

66. Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.;
Rolfsson, O.; Stobbe, M.D. A community-driven global reconstruction of human metabolism. Nat. Biotechnol.
2013, 31, 419. [CrossRef]

67. Gille, C.; Bölling, C.; Hoppe, A.; Bulik, S.; Hoffmann, S.; Hübner, K.; Karlstädt, A.; Ganeshan, R.; König, M.;
Rother, K. HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis
of liver physiology. Mol. Syst. Biol. 2010, 6, 411. [CrossRef]

68. Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway
Analysis. Bioinformatics 2014, 30, 523–530. [CrossRef]

69. Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting
protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384.
[CrossRef]

70. Ekins, S.; Bugrim, A.; Brovold, L.; Kirillov, E.; Nikolsky, Y.; Rakhmatulin, E.; Sorokina, S.; Ryabov, A.;
Serebryiskaya, T.; Melnikov, A.; et al. Algorithms for network analysis in systems-ADME/Tox using the
MetaCore and MetaDrug platforms. Xenobiotica 2006, 36, 877–901. [CrossRef]

71. Cirillo, E.; Parnell, L.D.; Evelo, C.T. A Review of Pathway-Based Analysis Tools That Visualize Genetic
Variants. Front. Genet. 2017, 8, 174. [CrossRef]

72. Pandey, V.; Hatzimanikatis, V. Investigating the deregulation of metabolic tasks via Minimum Network
Enrichment Analysis (MiNEA) as applied to nonalcoholic fatty liver disease using mouse and human omics
data. PLoS Comput. Biol. 2019, 15, e1006760. [CrossRef]

73. Dweep, H.; Gretz, N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat. Methods
2015, 12, 697. [CrossRef]

74. Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl.
Genet. Mol. Biol. 2005, 4. [CrossRef]

75. Chen, Y.; Zhu, J.; Lum, P.Y.; Yang, X.; Pinto, S.; MacNeil, D.J.; Zhang, C.; Lamb, J.; Edwards, S.; Sieberts, S.K.;
et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008, 452, 429–435.
[CrossRef]

76. Yang, X.; Deignan, J.L.; Qi, H.; Zhu, J.; Qian, S.; Zhong, J.; Torosyan, G.; Majid, S.; Falkard, B.; Kleinhanz, R.R.;
et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.
Nat. Genet. 2009, 41, 415–423. [CrossRef]

77. Yang, X.; Zhang, B.; Molony, C.; Chudin, E.; Hao, K.; Zhu, J.; Gaedigk, A.; Suver, C.; Zhong, H.; Leeder, J.S.;
et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome
Res. 2010, 20, 1020–1036. [CrossRef]

78. Zhu, J.; Sova, P.; Xu, Q.; Dombek, K.M.; Xu, E.Y.; Vu, H.; Tu, Z.; Brem, R.B.; Bumgarner, R.E.; Schadt, E.E.
Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks
that modulate cell regulation. PLoS Biol. 2012, 10, e1001301. [CrossRef]

79. Zhu, J.; Wiener, M.C.; Zhang, C.; Fridman, A.; Minch, E.; Lum, P.Y.; Sachs, J.R.; Schadt, E.E. Increasing the
power to detect causal associations by combining genotypic and expression data in segregating populations.
PLoS Comput. Biol. 2007, 3, e69. [CrossRef]

80. Zhu, J.; Zhang, B.; Smith, E.N.; Drees, B.; Brem, R.B.; Kruglyak, L.; Bumgarner, R.E.; Schadt, E.E. Integrating
large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 2008,
40, 854–861. [CrossRef]

81. Chan, K.H.; Huang, Y.T.; Meng, Q.; Wu, C.; Reiner, A.; Sobel, E.M.; Tinker, L.; Lusis, A.J.; Yang, X.; Liu, S.
Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in
women across diverse ethnicities. Circ. Cardiovasc. Genet. 2014, 7, 911–919. [CrossRef]

82. Chella Krishnan, K.; Kurt, Z.; Barrere-Cain, R.; Sabir, S.; Das, A.; Floyd, R.; Vergnes, L.; Zhao, Y.; Che, N.;
Charugundla, S.; et al. Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial
Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Syst. 2018, 6, 103–115. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pcbi.1002518
http://www.ncbi.nlm.nih.gov/pubmed/22615553
http://dx.doi.org/10.1038/ncomms4083
http://dx.doi.org/10.1038/nbt.2488
http://dx.doi.org/10.1038/msb.2010.62
http://dx.doi.org/10.1093/bioinformatics/btt703
http://dx.doi.org/10.1093/nar/gkv1277
http://dx.doi.org/10.1080/00498250600861660
http://dx.doi.org/10.3389/fgene.2017.00174
http://dx.doi.org/10.1371/journal.pcbi.1006760
http://dx.doi.org/10.1038/nmeth.3485
http://dx.doi.org/10.2202/1544-6115.1128
http://dx.doi.org/10.1038/nature06757
http://dx.doi.org/10.1038/ng.325
http://dx.doi.org/10.1101/gr.103341.109
http://dx.doi.org/10.1371/journal.pbio.1001301
http://dx.doi.org/10.1371/journal.pcbi.0030069
http://dx.doi.org/10.1038/ng.167
http://dx.doi.org/10.1161/CIRCGENETICS.114.000676
http://dx.doi.org/10.1016/j.cels.2017.12.006
http://www.ncbi.nlm.nih.gov/pubmed/29361464


Genes 2019, 10, 966 29 of 32

83. Huan, T.; Meng, Q.; Saleh, M.A.; Norlander, A.E.; Joehanes, R.; Zhu, J.; Chen, B.H.; Zhang, B.; Johnson, A.D.;
Ying, S.; et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation.
Mol. Syst. Biol. 2015, 11, 799. [CrossRef]

84. Huan, T.; Zhang, B.; Wang, Z.; Joehanes, R.; Zhu, J.; Johnson, A.D.; Ying, S.; Munson, P.J.; Raghavachari, N.;
Wang, R.; et al. A systems biology framework identifies molecular underpinnings of coronary heart disease.
Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1427–1434. [CrossRef] [PubMed]

85. Makinen, V.P.; Civelek, M.; Meng, Q.; Zhang, B.; Zhu, J.; Levian, C.; Huan, T.; Segre, A.V.; Ghosh, S.; Vivar, J.;
et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease.
PLoS Genet. 2014, 10, e1004502. [CrossRef] [PubMed]

86. Meng, Q.; Ying, Z.; Noble, E.; Zhao, Y.; Agrawal, R.; Mikhail, A.; Zhuang, Y.; Tyagi, E.; Zhang, Q.; Lee, J.H.;
et al. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.
EBioMedicine 2016, 7, 157–166. [CrossRef] [PubMed]

87. Meng, Q.; Zhuang, Y.; Ying, Z.; Agrawal, R.; Yang, X.; Gomez-Pinilla, F. Traumatic Brain Injury Induces
Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting
Neurological Disorders. EBioMedicine 2017, 16, 184–194. [CrossRef] [PubMed]

88. Shu, L.; Chan, K.H.K.; Zhang, G.; Huan, T.; Kurt, Z.; Zhao, Y.; Codoni, V.; Tregouet, D.A.; Cardiogenics, C.;
Yang, J.; et al. Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple
populations of diverse ethnicities in the United States. PLoS Genet. 2017, 13, e1007040. [CrossRef] [PubMed]

89. Shu, L.; Meng, Q.; Diamante, G.; Tsai, B.; Chen, Y.W.; Mikhail, A.; Luk, H.; Ritz, B.; Allard, P.; Yang, X. Prenatal
Bisphenol A Exposure in Mice Induces Multitissue Multiomics Disruptions Linking to Cardiometabolic
Disorders. Endocrinology 2019, 160, 409–429. [CrossRef]

90. Zhao, Y.; Blencowe, M.; Shi, X.; Shu, L.; Levian, C.; Ahn, I.S.; Kim, S.K.; Huan, T.; Levy, D.; Yang, X. Integrative
Genomics Analysis Unravels Tissue-Specific Pathways, Networks, and Key Regulators of Blood Pressure
Regulation. Front. Cardiovasc. Med. 2019, 6, 21. [CrossRef]

91. Zhao, Y.; Chen, J.; Freudenberg, J.M.; Meng, Q.; Rajpal, D.K.; Yang, X. Network-Based Identification and
Prioritization of Key Regulators of Coronary Artery Disease Loci. Arterioscler. Thromb. Vasc. Biol. 2016, 36,
928–941. [CrossRef]

92. Zhao, Y.; Jhamb, D.; Shu, L.; Arneson, D.; Rajpal, D.K.; Yang, X. Multi-omics integration reveals molecular
networks and regulators of psoriasis. BMC Syst. Biol. 2019, 13, 8. [CrossRef] [PubMed]

93. Arneson, D.; Zhang, G.; Ying, Z.; Zhuang, Y.; Byun, H.R.; Ahn, I.S.; Gomez-Pinilla, F.; Yang, X. Single Cell
Molecular Alterations Reveal Target Cells and Pathways of Concussive Brain Injury. Nat. Commun. 2019, 9,
3894. [CrossRef] [PubMed]

94. Narayanan, M.; Huynh, J.L.; Wang, K.; Yang, X.; Yoo, S.; McElwee, J.; Zhang, B.; Zhang, C.; Lamb, J.R.; Xie, T.;
et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative
diseases. Mol. Syst. Biol. 2014, 10, 743. [CrossRef] [PubMed]

95. Zhang, G.; Byun, H.R.; Ying, Z.; Blencowe, M.; Zhao, Y.; Hong, J.; Shu, L.; Krishnan, K.C.K.; Gomez-Pinilla, F.;
Yang, X. Differential Metabolic and Multi-tissue Transcriptomic Responses to Fructose Consumption among
Genetically Diverse Mice. bioRxiv 2019, 439562. [CrossRef] [PubMed]

96. Ying, Z.; Byun, H.R.; Meng, Q.; Noble, E.; Zhang, G.; Yang, X.; Gomez-Pinilla, F. Biglycan gene connects
metabolic dysfunction with brain disorder. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 3679–3687.
[CrossRef]

97. Maldonado, E.M.; Fisher, C.P.; Mazzatti, D.J.; Barber, A.L.; Tindall, M.J.; Plant, N.J.; Kierzek, A.M.; Moore, J.B.
Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver
disease. NPJ Syst. Biol. Appl. 2018, 4, 33. [CrossRef]

98. Zhu, M.; Wang, Q.; Zhou, W.; Liu, T.; Yang, L.; Zheng, P.; Zhang, L.; Ji, G. Integrated analysis of hepatic
mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD. Sci. Rep.
2018, 8, 7628. [CrossRef]

99. Ma, H.; Xu, C.F.; Shen, Z.; Yu, C.H.; Li, Y.M. Application of Machine Learning Techniques for Clinical
Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China. BioMed Res. Int.
2018, 2018, 4304376. [CrossRef]

100. Shubham, K.; Vinay, L.; Vinod, P.K. Systems-level organization of non-alcoholic fatty liver disease progression
network. Mol. Biosyst. 2017, 13, 1898–1911. [CrossRef]

http://dx.doi.org/10.15252/msb.20145399
http://dx.doi.org/10.1161/ATVBAHA.112.300112
http://www.ncbi.nlm.nih.gov/pubmed/23539213
http://dx.doi.org/10.1371/journal.pgen.1004502
http://www.ncbi.nlm.nih.gov/pubmed/25033284
http://dx.doi.org/10.1016/j.ebiom.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27322469
http://dx.doi.org/10.1016/j.ebiom.2017.01.046
http://www.ncbi.nlm.nih.gov/pubmed/28174132
http://dx.doi.org/10.1371/journal.pgen.1007040
http://www.ncbi.nlm.nih.gov/pubmed/28957322
http://dx.doi.org/10.1210/en.2018-00817
http://dx.doi.org/10.3389/fcvm.2019.00021
http://dx.doi.org/10.1161/ATVBAHA.115.306725
http://dx.doi.org/10.1186/s12918-018-0671-x
http://www.ncbi.nlm.nih.gov/pubmed/30642337
http://dx.doi.org/10.1038/s41467-018-06222-0
http://www.ncbi.nlm.nih.gov/pubmed/30254269
http://dx.doi.org/10.15252/msb.20145304
http://www.ncbi.nlm.nih.gov/pubmed/25080494
http://dx.doi.org/10.1016/j.bbadis.2019.165569
http://www.ncbi.nlm.nih.gov/pubmed/31669422
http://dx.doi.org/10.1016/j.bbadis.2018.10.002
http://dx.doi.org/10.1038/s41540-018-0070-3
http://dx.doi.org/10.1038/s41598-018-25743-8
http://dx.doi.org/10.1155/2018/4304376
http://dx.doi.org/10.1039/C7MB00013H


Genes 2019, 10, 966 30 of 32

101. Mardinoglu, A.; Bjornson, E.; Zhang, C.; Klevstig, M.; Soderlund, S.; Stahlman, M.; Adiels, M.;
Hakkarainen, A.; Lundbom, N.; Kilicarslan, M.; et al. Personal model-assisted identification of NAD(+) and
glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 2017, 13, 916. [CrossRef]

102. Hou, C.; Feng, W.; Wei, S.; Wang, Y.; Xu, X.; Wei, J.; Ma, Z.; Du, Y.; Guo, J.; He, Y.; et al. Bioinformatics
Analysis of Key Differentially Expressed Genes in Nonalcoholic Fatty Liver Disease Mice Models. Gene Expr.
2018, 19, 25–35. [CrossRef] [PubMed]

103. Lou, Y.; Tian, G.Y.; Song, Y.; Liu, Y.L.; Chen, Y.D.; Shi, J.P.; Yang, J. Characterization of transcriptional modules
related to fibrosing-NAFLD progression. Sci. Rep. 2017, 7, 4748. [CrossRef] [PubMed]

104. Liu, X.L.; Ming, Y.N.; Zhang, J.Y.; Chen, X.Y.; Zeng, M.D.; Mao, Y.M. Gene-metabolite network analysis in
different nonalcoholic fatty liver disease phenotypes. Exp. Mol. Med. 2017, 49, e283. [CrossRef] [PubMed]

105. Xiong, X.; Kuang, H.; Ansari, S.; Liu, T.; Gong, J.; Wang, S.; Zhao, X.Y.; Ji, Y.; Li, C.; Guo, L.; et al. Landscape
of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis.
Mol. Cell 2019, 75, 644–660. [CrossRef]

106. Sahini, N.; Borlak, J. Genomics of human fatty liver disease reveal mechanistically linked lipid
droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl. Res. 2016, 177,
41–69. [CrossRef]

107. Qi, S.; Wang, C.; Li, C.; Wang, P.; Liu, M. Candidate genes investigation for severe nonalcoholic fatty liver
disease based on bioinformatics analysis. Medicine 2017, 96, e7743. [CrossRef]

108. Chan, K.M.; Wu, T.H.; Wu, T.J.; Chou, H.S.; Yu, M.C.; Lee, W.C. Bioinformatics microarray analysis and
identification of gene expression profiles associated with cirrhotic liver. Kaohsiung J. Med. Sci. 2016, 32,
165–176. [CrossRef]

109. Chen, W.; Zhao, W.; Yang, A.; Xu, A.; Wang, H.; Cong, M.; Liu, T.; Wang, P.; You, H. Integrated analysis of
microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.
Gene 2017, 636, 87–95. [CrossRef]

110. Lee, S.; Zhang, C.; Liu, Z.; Klevstig, M.; Mukhopadhyay, B.; Bergentall, M.; Cinar, R.; Stahlman, M.; Sikanic, N.;
Park, J.K.; et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol.
2017, 13, 938. [CrossRef]

111. Karbalaei, R.; Allahyari, M.; Rezaei-Tavirani, M.; Asadzadeh-Aghdaei, H.; Zali, M.R. Protein-protein
interaction analysis of Alzheimer’s disease and NAFLD based on systems biology methods unhide common
ancestor pathways. Gastroenterol. Hepatol. Bed Bench 2018, 11, 27–33.

112. Haas, J.T.; Vonghia, L.; Mogilenko, D.A.; Verrijken, A.; Molendi-Coste, O.; Fleury, S.; Deprince, A.; Nikitin, A.;
Woitrain, E.; Ducrocq-Geoffroy, L.; et al. Transcriptional network analysis implicates altered hepatic immune
function in NASH development and resolution. Nat. Metab. 2019, 1, 604–614. [CrossRef] [PubMed]

113. Wang, R.; Wang, X.; Zhuang, L. Gene expression profiling reveals key genes and pathways related to the
development of non-alcoholic fatty liver disease. Ann. Hepatol. 2016, 15, 190–199. [CrossRef] [PubMed]

114. Gawrieh, S.; Baye, T.M.; Carless, M.; Wallace, J.; Komorowski, R.; Kleiner, D.E.; Andris, D.; Makladi, B.;
Cole, R.; Charlton, M.; et al. Hepatic gene networks in morbidly obese patients with nonalcoholic fatty liver
disease. Obes. Surg. 2010, 20, 1698–1709. [CrossRef] [PubMed]

115. Zhang, Y.; Zhang, T.; Zhang, C.; Tang, F.; Zhong, N.; Li, H.; Song, X.; Lin, H.; Liu, Y.; Xue, F. Identification
of reciprocal causality between non-alcoholic fatty liver disease and metabolic syndrome by a simplified
Bayesian network in a Chinese population. BMJ Open 2015, 5, e008204. [CrossRef]

116. Kurt, Z.; Barrere-Cain, R.; LaGuardia, J.; Mehrabian, M.; Pan, C.; Hui, S.T.; Norheim, F.; Zhou, Z.; Hasin, Y.;
Lusis, A.J.; et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic
fatty liver disease. Biol. Sex Differ. 2018, 9, 46. [CrossRef]

117. Hong, W.; Li, S.; Wu, L.; He, B.; Jiang, J.; Chen, Z. Prediction of VEGF-C as a Key Target of Pure Total
Flavonoids From Citrus Against NAFLD in Mice via Network Pharmacology. Front. Pharmacol. 2019, 10, 582.
[CrossRef]

118. Barbosa, I.A.; Santos, E.M.; Paraíso, A.F.; Ferreira, P.V.; Oliveira, L.P.; Andrade, J.M.O.; Farias, L.C.;
de Cravalho, B.M.; de Paula, A.M.B.; Guimarães, A.L.S.; et al. Liraglutide alters hepatic metabolism in
high-fat fed obese mice: A bioinformatic prediction and functional analysis. Meta Gene 2019, 20, 100553.
[CrossRef]

http://dx.doi.org/10.15252/msb.20167422
http://dx.doi.org/10.3727/105221618X15341831737687
http://www.ncbi.nlm.nih.gov/pubmed/30135001
http://dx.doi.org/10.1038/s41598-017-05044-2
http://www.ncbi.nlm.nih.gov/pubmed/28684781
http://dx.doi.org/10.1038/emm.2016.123
http://www.ncbi.nlm.nih.gov/pubmed/28082742
http://dx.doi.org/10.1016/j.molcel.2019.07.028
http://dx.doi.org/10.1016/j.trsl.2016.06.003
http://dx.doi.org/10.1097/MD.0000000000007743
http://dx.doi.org/10.1016/j.kjms.2016.03.008
http://dx.doi.org/10.1016/j.gene.2017.09.027
http://dx.doi.org/10.15252/msb.20177703
http://dx.doi.org/10.1038/s42255-019-0076-1
http://www.ncbi.nlm.nih.gov/pubmed/31701087
http://dx.doi.org/10.5604/16652681.1193709
http://www.ncbi.nlm.nih.gov/pubmed/26845596
http://dx.doi.org/10.1007/s11695-010-0171-6
http://www.ncbi.nlm.nih.gov/pubmed/20473581
http://dx.doi.org/10.1136/bmjopen-2015-008204
http://dx.doi.org/10.1186/s13293-018-0205-7
http://dx.doi.org/10.3389/fphar.2019.00582
http://dx.doi.org/10.1016/j.mgene.2019.100553


Genes 2019, 10, 966 31 of 32

119. Singh, S.; Khera, R.; Allen, A.M.; Murad, M.H.; Loomba, R. Comparative effectiveness of pharmacological
interventions for nonalcoholic steatohepatitis: A systematic review and network meta-analysis. Hepatology
2015, 62, 1417–1432. [CrossRef]

120. Krishnan, A.; Li, X.; Kao, W.-Y.; Viker, K.; Butters, K.; Masuoka, H.; Knudsen, B.; Gores, G.; Charlton, M.
Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Lab. Investig. 2012, 92,
1712. [CrossRef]

121. Nomoto, S.; Kanda, M.; Okamura, Y.; Nishikawa, Y.; Qiyong, L.; Fujii, T.; Sugimoto, H.; Takeda, S.;
Nakao, A. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1, EFEMP1, a novel
tumor-suppressor gene detected in hepatocellular carcinoma using double combination array analysis.
Ann. Surg. Oncol. 2010, 17, 923–932. [CrossRef]

122. Vestentoft, P.S.; Jelnes, P.; Andersen, J.B.; Tran, T.A.T.; Jørgensen, T.; Rasmussen, M.; Bornholdt, J.;
Grøvdal, L.M.; Jensen, C.H.; Vogel, L.K. Molecular constituents of the extracellular matrix in rat liver
mounting a hepatic progenitor cell response for tissue repair. Fibrogenesis Tissue Repair 2013, 6, 21. [CrossRef]
[PubMed]

123. Agostini, J.; Benoist, S.; Seman, M.; Julié, C.; Imbeaud, S.; Letourneur, F.; Cagnard, N.; Rougier, P.; Brouquet, A.;
Zucman-Rossi, J. Identification of molecular pathways involved in oxaliplatin-associated sinusoidal dilatation.
J. Hepatol. 2012, 56, 869–876. [CrossRef] [PubMed]

124. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Res. 2002, 30, 207–210. [CrossRef]

125. Zhan, Z.; Chen, Y.; Duan, Y.; Li, L.; Mew, K.; Hu, P.; Ren, H.; Peng, M. Identification of key genes, pathways
and potential therapeutic agents for liver fibrosis using an integrated bioinformatics analysis. PeerJ 2019, 7,
e6645. [CrossRef] [PubMed]

126. Lee, K.; Kerner, J.; Hoppel, C.L. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer
membrane fatty acid transfer complex. J. Biol. Chem. 2011, 286, 25655–25662. [CrossRef] [PubMed]

127. Jerby, L.; Shlomi, T.; Ruppin, E. Computational reconstruction of tissue-specific metabolic models: Application
to human liver metabolism. Mol. Syst. Biol. 2010, 6, 401. [CrossRef]

128. Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma
metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011, 60, 404–413. [CrossRef]

129. Bjornson, E.; Adiels, M.; Taskinen, M.R.; Boren, J. Kinetics of plasma triglycerides in abdominal obesity. Curr.
Opin. Lipidol. 2017, 28, 11–18. [CrossRef]

130. Kolak, M.; Westerbacka, J.; Velagapudi, V.R.; Wagsater, D.; Yetukuri, L.; Makkonen, J.; Rissanen, A.;
Hakkinen, A.M.; Lindell, M.; Bergholm, R.; et al. Adipose tissue inflammation and increased ceramide
content characterize subjects with high liver fat content independent of obesity. Diabetes 2007, 56, 1960–1968.
[CrossRef]

131. Blachnio-Zabielska, A.U.; Pulka, M.; Baranowski, M.; Nikolajuk, A.; Zabielski, P.; Gorska, M.; Gorski, J.
Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J. Cell. Physiol. 2012, 227,
550–557. [CrossRef]

132. Masoodi, M.; Kuda, O.; Rossmeisl, M.; Flachs, P.; Kopecky, J. Lipid signaling in adipose tissue: Connecting
inflammation & metabolism. Biochim. Biophys. Acta 2015, 1851, 503–518. [CrossRef]

133. Chakrabarti, S.K.; Wen, Y.; Dobrian, A.D.; Cole, B.K.; Ma, Q.; Pei, H.; Williams, M.D.; Bevard, M.H.;
Vandenhoff, G.E.; Keller, S.R.; et al. Evidence for activation of inflammatory lipoxygenase pathways in
visceral adipose tissue of obese Zucker rats. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E175–E187.
[CrossRef] [PubMed]

134. Martinez-Clemente, M.; Claria, J.; Titos, E. The 5-lipoxygenase/leukotriene pathway in obesity, insulin
resistance, and fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 347–353. [CrossRef] [PubMed]

135. Lusis, A.J.; Seldin, M.M.; Allayee, H.; Bennett, B.J.; Civelek, M.; Davis, R.C.; Eskin, E.; Farber, C.R.; Hui, S.;
Mehrabian, M. The Hybrid Mouse Diversity Panel: A resource for systems genetics analyses of metabolic
and cardiovascular traits. J. Lipid Res. 2016, 57, 925–942. [CrossRef] [PubMed]

136. Shu, L.; Blencowe, M.; Yang, X. Translating GWAS Findings to Novel Therapeutic Targets for Coronary
Artery Disease. Front. Cardiovasc. Med. 2018, 5, 56. [CrossRef] [PubMed]

137. VanWagner, L.B. New insights into NAFLD and subclinical coronary atherosclerosis. J. Hepatol. 2018, 68,
890–892. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/hep.27999
http://dx.doi.org/10.1038/labinvest.2012.121
http://dx.doi.org/10.1245/s10434-009-0790-0
http://dx.doi.org/10.1186/1755-1536-6-21
http://www.ncbi.nlm.nih.gov/pubmed/24359594
http://dx.doi.org/10.1016/j.jhep.2011.10.023
http://www.ncbi.nlm.nih.gov/pubmed/22200551
http://dx.doi.org/10.1093/nar/30.1.207
http://dx.doi.org/10.7717/peerj.6645
http://www.ncbi.nlm.nih.gov/pubmed/30923657
http://dx.doi.org/10.1074/jbc.M111.228692
http://www.ncbi.nlm.nih.gov/pubmed/21622568
http://dx.doi.org/10.1038/msb.2010.56
http://dx.doi.org/10.1016/j.metabol.2010.03.006
http://dx.doi.org/10.1097/MOL.0000000000000375
http://dx.doi.org/10.2337/db07-0111
http://dx.doi.org/10.1002/jcp.22745
http://dx.doi.org/10.1016/j.bbalip.2014.09.023
http://dx.doi.org/10.1152/ajpendo.00203.2010
http://www.ncbi.nlm.nih.gov/pubmed/20978234
http://dx.doi.org/10.1097/MCO.0b013e32834777fa
http://www.ncbi.nlm.nih.gov/pubmed/21587068
http://dx.doi.org/10.1194/jlr.R066944
http://www.ncbi.nlm.nih.gov/pubmed/27099397
http://dx.doi.org/10.3389/fcvm.2018.00056
http://www.ncbi.nlm.nih.gov/pubmed/29900175
http://dx.doi.org/10.1016/j.jhep.2018.01.023
http://www.ncbi.nlm.nih.gov/pubmed/29410378


Genes 2019, 10, 966 32 of 32

138. Paredes-Turrubiarte, G.; Gonzalez-Chavez, A.; Perez-Tamayo, R.; Salazar-Vazquez, B.Y.; Hernandez, V.S.;
Garibay-Nieto, N.; Fragoso, J.M.; Escobedo, G. Severity of non-alcoholic fatty liver disease is associated with
high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients.
Clin. Exp. Med. 2016, 16, 193–202. [CrossRef] [PubMed]

139. Jorge, A.S.B.; Andrade, J.M.O.; Paraíso, A.F.; Jorge, G.C.B.; Silveira, C.M.; de Souza, L.R.; Santos, E.P.;
Guimaraes, A.L.S.; Santos, S.H.S.; De-Paula, A.M.B. Body mass index and the visceral adipose tissue
expression of IL-6 and TNF-alpha are associated with the morphological severity of non-alcoholic fatty liver
disease in individuals with class III obesity. Obes. Res. Clin. Pract. 2018, 12, 1–8. [CrossRef]

140. Cojocaru, I.M.; Cojocaru, M.; Miu, G.; Sapira, V. Study of interleukin-6 production in Alzheimer’s disease.
Rom. J. Intern. Med. 2011, 49, 55–58.

141. Sclip, A.; Tozzi, A.; Abaza, A.; Cardinetti, D.; Colombo, I.; Calabresi, P.; Salmona, M.; Welker, E.; Borsello, T.
c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death Dis.
2014, 5, e1019. [CrossRef]

142. Shu, L.; Zhao, Y.; Kurt, Z.; Byars, S.G.; Tukiainen, T.; Kettunen, J.; Orozco, L.D.; Pellegrini, M.; Lusis, A.J.;
Ripatti, S.; et al. Mergeomics: Multidimensional data integration to identify pathogenic perturbations to
biological systems. BMC Genom. 2016, 17, 874. [CrossRef] [PubMed]

143. Arneson, D.; Bhattacharya, A.; Shu, L.; Makinen, V.P.; Yang, X. Mergeomics: A web server for identifying
pathological pathways, networks, and key regulators via multidimensional data integration. BMC Genom.
2016, 17, 722. [CrossRef] [PubMed]

144. Liu, Z.; Zhang, C.; Lee, S.; Kim, W.; Klevstig, M.; Harzandi, A.M.; Sikanic, N.; Arif, M.; Stahlman, M.;
Nielsen, J.; et al. Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metab.
Eng. 2019, 52, 263–272. [CrossRef] [PubMed]

145. Almanza, D.; Gharaee-Kermani, M.; Zhilin-Roth, A.; Rodriguez-Nieves, J.A.; Colaneri, C.; Riley, T.;
Macoska, J.A. Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular
Signature. Dig. Dis. Sci. 2019, 64, 1257–1269. [CrossRef] [PubMed]

146. Cvitanovic Tomas, T.; Urlep, Z.; Moskon, M.; Mraz, M.; Rozman, D. LiverSex Computational Model: Sexual
Aspects in Hepatic Metabolism and Abnormalities. Front. Physiol. 2018, 9, 360. [CrossRef] [PubMed]

147. Fisher, C.P.; Plant, N.J.; Moore, J.B.; Kierzek, A.M. QSSPN: Dynamic simulation of molecular interaction
networks describing gene regulation, signalling and whole-cell metabolism in human cells. Bioinformatics
2013, 29, 3181–3190. [CrossRef]

148. Boeckmans, J.; Natale, A.; Buyl, K.; Rogiers, V.; De Kock, J.; Vanhaecke, T.; Rodrigues, R.M. Comment to
Letter to the editor: Human-based systems: Mechanistic NASH modelling just around the corner? Pharmacol.
Res. 2018, 137, 282–283. [CrossRef]

149. Cassidy, S.; Syed, B.A. Nonalcoholic steatohepatitis (NASH) drugs market. Nat. Rev. Drug Discov. 2016, 15,
745–746. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10238-015-0347-4
http://www.ncbi.nlm.nih.gov/pubmed/25894568
http://dx.doi.org/10.1016/j.orcp.2016.03.009
http://dx.doi.org/10.1038/cddis.2013.559
http://dx.doi.org/10.1186/s12864-016-3198-9
http://www.ncbi.nlm.nih.gov/pubmed/27814671
http://dx.doi.org/10.1186/s12864-016-3057-8
http://www.ncbi.nlm.nih.gov/pubmed/27612452
http://dx.doi.org/10.1016/j.ymben.2019.01.001
http://www.ncbi.nlm.nih.gov/pubmed/30615941
http://dx.doi.org/10.1007/s10620-018-5398-4
http://www.ncbi.nlm.nih.gov/pubmed/30519850
http://dx.doi.org/10.3389/fphys.2018.00360
http://www.ncbi.nlm.nih.gov/pubmed/29706895
http://dx.doi.org/10.1093/bioinformatics/btt552
http://dx.doi.org/10.1016/j.phrs.2018.09.029
http://dx.doi.org/10.1038/nrd.2016.188
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Current Understanding of NAFLD and Remaining Gaps 
	Importance of Omics Data in Offering Integrated Network Views of Complex Diseases 
	Commonly Used Network Models 
	Tissue and Single Cell GRNs 
	Protein-Protein Interaction (PPI) Networks 
	Metabolic Networks 
	Literature-based Pathways and Networks 
	Hybrid Networks 
	How to Determine What Type of Networks to Use 

	Use of Network models to understand the pathogenic mechanisms in NAFLD development and progression 
	Modeling of single tissue networks in NAFLD 
	ECM Structure in Liver Tissue 
	Metabolic Pathways in Liver and Adipose Tissues 
	Immune System in Liver and Adipose Tissues 
	Coordination of ECM, Metabolism, and Immune Pathways in Liver 

	Network Modeling of Multiple Tissues 
	Network Modeling of NAFLD Comorbidities 
	Network Modeling for Sex Differences in NAFLD 
	Use of Network Models as Predictive and Diagnostic Tools for NAFLD development 
	Network Insights into Drug Repositioning for NAFLD Treatment 
	NAFLD Insights Learned From Network Modeling so Far 

	Future Directions for Network Modeling in NAFLD 
	Concluding Remarks 
	References



