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ABSTRACT OF THE DISSERTATION

Privacy in Control over the Cloud

and Learning to Control From Expert Demonstrations

by

Alimzhan Sultangazin

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Paulo Tabuada, Chair

In this thesis, we consider two problems relevant to the control of complex closed-loop

systems. In the first chapter, we focus on the implications that control over the cloud has for

privacy of control systems and propose a method that protects privacy without sacrificing

control performance. In the second chapter, we revisit the problem of learning a controller

from a finite number of demonstrations, while guaranteeing stability.

The first chapter considers the following question: ”Given the need to offload control of

a system to a third-party (i.e., a cloud), can we still guarantee the privacy of information

about the said system and its control objective?” Cloud computing platforms are being

increasingly used for closing feedback control loops [1–3], especially when computationally

expensive algorithms, such as model-predictive control, are used to optimize performance.

Outsourcing of control algorithms entails an exchange of data between the control system

and the cloud, and, naturally, raises concerns about the privacy of the control system’s

data (e.g., state trajectory, control objective). Moreover, any attempt at enforcing privacy

needs to add minimal computational overhead to avoid degrading control performance. We

ii



propose several transformation-based methods for enforcing data privacy. We also quantify

the amount of provided privacy and discuss how much privacy is lost when the adversary has

access to side knowledge. We address three different scenarios: a) the cloud has no knowledge

about the system being controlled; b) the cloud knows what sensors and actuators the system

employs but not the system dynamics; c) the cloud knows the system dynamics, its sensors,

and actuators. In all of these three scenarios, the proposed methods allow for the control

over the cloud without compromising private information (which information is considered

private depends on the considered scenario).

The second chapter addresses the problem of learning control from expert demonstrations.

Learning control from expert demonstrations is useful for control tasks, where providing

examples of the desired behaviour is easier than defining such behaviour formally (e.g.,

driving a car comfortably). This problem has been addressed in the literature by using

tools from statistical machine learning [4–6]. However, many of the methods proposed in

the literature lack formal guarantees on stability and safety. Using tools from control theory

and by first focusing on feedback linearizable systems, we show how to combine expert

demonstrations into a stabilizing controller, provided that demonstrations are sufficiently

long and there are at least n+1 of them, where n is the number of states of the system being

controlled. When we have more than n + 1 demonstrations, we discuss how to optimally

choose the best n+1 demonstrations to construct the stabilizing controller. We then extend

these results to a class of systems that can be embedded into a higher-dimensional system

containing a chain of integrators. The feasibility of the proposed algorithm is demonstrated

by applying it on a CrazyFlie 2.0 quadrotor.
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CHAPTER 1

Using isomorphisms for privacy in control over the

cloud

1.1 Introduction

1.1.1 Motivation

The recent advances in reliability and speed of communication have led to an increased use

of cloud-based services, which provide computation and data storage capabilities to clients.

Control over the cloud [1–3] has numerous advantages, which include easier installation and

maintenance [9], and the availability of global information from all of the cloud’s clients

when making control decisions. However, the main advantage of control over the cloud

is that it allows control systems to outsource expensive computational tasks to the cloud,

thus potentially improving the speed of computation and freeing the local computational

capabilities for other tasks.

An illustrative example of the benefits of outsourcing computing can be observed in

Model Predictive Control (MPC). MPC is a conceptually simple, yet powerful scheme that

was adopted in industry for multivariable control [10]. MPC inherently involves solving

complex constrained optimization problems on-line (i.e., within one sampling interval). The

work in [1] presents an experimental study that shows feasibility of MPC over the cloud for

robot control. Another work (see [2]) considered the practicality and benefits of cloud-based

MPC for a large-scale solar plant. The availability of global information provided by control

1



over the cloud can have many practical benefits, as shown in [3]. There, the authors propose

a solution to the problem of traffic flow estimation via the cloud.

However, relying on a third-party to perform computation is not without its dangers.

Despite the benefits of control over the cloud, a number of studies have shown that expos-

ing existing systems to connectivity may lead to security vulnerabilities in a vast variety

of applications [11–14], including control of process plants, traffic infrastructure, and smart

meter systems. Cyber-security attacks vary based on the amount of resources the attacker

possesses [15]. One of the most basic attacks that requires little resources is eavesdropping.

It can often serve as a stepping stone in the implementation of more complex attacks [16]. In

control over the cloud, eavesdropping involves the adversary listening in to the communica-

tion channel between sensors, controllers, and actuators to leak valuable information about

the model, the controller, and trajectories [17]. The client is expected to disclose all of this

sensitive information to the cloud if it intends to receive valid control inputs from it. For

example, we would expect drivers to share their locations, final destinations and, perhaps,

dynamics to successfully allow traffic control over the cloud.

Eavesdropping attacks are usually prevented with encryption - the plant and the cloud es-

tablish a shared key with which they encrypt transmitted messages and decrypt the received

ones. However, if the adversary manages to undermine the security of the cloud (e.g., gain

unauthorized access to its memory), this technique can no longer protect the system since

the cloud accesses the decrypted data. As stated in [18], traditional IT security provides

only a partial solution. Therefore, there is a pressing need for development of control-over-

the-cloud methods that do not rely on decryption of the incoming data. Although much

effort has been directed to this problem, a universally secure scheme for control over the

cloud that could support any client functionality has not yet been created [19, 20]. When

solving the problem of private control over the cloud, two other important concerns need to

be accounted for: efficiency and safety. Privacy cannot come at the cost of degradation of

control performance either due to delays in the feedback loop or inaccurate control inputs.
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1.1.2 Related work

The body of work on privacy in control over the cloud can be categorized into methods based

on homomorphic encryption, differential privacy, and algebraic transformations.

When using homomorphic encryption techniques, the cloud is able to perform the com-

putations on encrypted data without the need to decrypt it [21]. Homomorphic encyption

can be classified into fully homomorphic encryption (FHE), which allows arbitrary compu-

tations on encypted data, and partially homomorphic encryption (PHE), which only allows

for a subset of operations (e.g., modular multiplication) on encrypted data. Using PHE for

control over the cloud with encrypted controllers was proposed in [22, 23]. In an effort to

reduce communication with the cloud, in [24] the authors suggest using FHE for controller

encryption. However, longer execution times of FHE [21] make it less practical than PHE

when using optimization for control over the cloud. While PHE methods are shown to be

feasible and are able to provide privacy guarantees [9,17,20,25–27], the execution time, which

grows disproportionally with an increase in key length [17, 20], remains a valid concern in

these methods. A consequence of this is that using homomorphic encrypion may potentially

lead to instability in the controlled system due to processing delays. To address this prob-

lem, some works (see [17]) have shown that encryption parameters can be chosen to ensure

stability of the closed-loop performance, thus providing a natural trade-off between security

and control performance. The practical feasibility of encrypted control systems has been

validated in [28] by considering control of a DC motor in real time.

Inspired by studies in privacy of databases, the problem of privacy in control over the

cloud has also been approached from the standpoint of differential privacy (see [29,30]). This

technique ensures that the risk of losing privacy of a single user's data by means of data

queries is low. The main idea of these methods is to perturb the response to a data query with

appropriate noise [31]. However, to achieve more privacy, the user must sacrifice accuracy

(i.e., add more noise), which, in the context of control, degrades the control performance.
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The ideas behind algebraic transformation methods have initially stemed from works on

privacy in optimization. The idea is to use algebraic transformations to produce a different,

but equivalent optimization problem. In other words, although the cloud does not know

the original optimization problem, it can provide the client with an optimal solution to an

equivalent optimization problem from which the client is able to recover the optimal solution

to the original problem. Although initially these methods found application exclusively in

linear programs [32, 33], several efforts have been directed to providing a unified framework

and generalizing them to convex optimization problems (see [34, 35]). The work in [34] also

shows one of the first attempls to define and quantify privacy of transformation-based meth-

ods. Algebraic transformation methods found applications in control due to their efficiency

and guaranteed optimality of the solution [35]. For example, in [36] the authors propose a

hybrid transformation-based method to preserve privacy of an MPC controller in networked

control systems. In [37], transformation-based methods are used to provide privacy in a

specific problem AC Optimal Power Flow.

1.1.3 Contributions

This chapter focuses on the use of transformation-based methods to preserve privacy of the

system dynamics, control objective and constraints, and system trajectories. The contribu-

tions of this chapter are fourfold:

1. we propose using isomorphisms and symmetries of control systems as a source of trans-

formations so as to keep data private;

2. we quantify the privacy guaranteed by these methods via the dimension of the set that

describes the uncertainty experienced by the adversary;

3. we quantify how much privacy is lost when the adversary is assumed to have access to

side knowledge;
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4. we show that the proposed method is computationally light as it only requires matrix

multiplications.

The method proposed in this chapter was initially introduced in [38]. In [39], it was extended

to networked control systems with several agents requesting control input from a single cloud.

In [40], the dimension of the set describing the uncertainty experienced by the adversary was

proposed as a measure of privacy for this method and was evaluated for the special case

of free group actions. This chapter provides a unified presentation of the results in [38, 40]

with simpler proofs and several new results, such as the bounds on privacy when the group

action is not free and an exact quantification of privacy for prime systems. The content of

this chapter has been published in [41].

While privacy quantification in optimization has been studied in [35], this work considers

how much privacy is preserved in the more challenging context of control. Moreover, the

measure of privacy proposed in this work has been chosen to be suitable for problems of

optimization in control systems and, therefore, is different from any of those proposed in [35].

Although the application of transformation-based methods in control has been previously

discussed in [36], the scheme proposed there only considers a special case, where the cloud

optimizes the weighted sum of the norms of the input and state, and the state is taken to be

the output of the system. Our algorithm can be applied to a wider class of problems as we

allow for arbitrary quadratic costs, linear constraints and outputs different from the state.

The proposed results do not address the case where the adversary has some belief about

the structure or the range of values of the system parameters. Addressing the adversary’s

beliefs is likely to be more natural in a probabilistic/information-theoretic setup that is

outside of the scope of this chapter, where we only employ deterministic techniques.
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1.2 Problem Definition

1.2.1 Plant dynamics and control objective

We consider discrete-time affine plants, denoted by Σ, and described by:

Σ :
x̄k+1 = Āx̄k + B̄uk + c̄

ȳk = C̄x̄k + d̄,
(1.1)

where Ā ∈ Rn×n, B̄ ∈ Rn×m, C̄ ∈ Rp×n, c̄ ∈ Rn, and d̄ ∈ Rp describe the dynamics of the

system, and x̄k ∈ Rn, uk ∈ Rm and ȳk ∈ Rp denote the state, input and output of the system

at time k, respectively. We assume that system Σ is controllable and observable. We also

assume, without loss of generality, that ker B̄ = {0} and Im C̄ = Rp, since we can always

eliminate linearly dependent columns (resp. rows) from B̄ (resp. C̄).

To simplify notation, we lift every affine mapWx+v to a linear map through the following

construction:

Wx+ v 7→

W v

0 1

x
1

 . (1.2)

Applying (1.2) to (1.1):

xk+1 ≜

x̄k+1

1

 =

Ā c̄

0 1

x̄k
1

+

B̄
0

uk
≜ Axk +Buk

yk ≜

ȳk
1

 =

C̄ d̄

0 1

x̄k
1

 ≜ Cxk.

(1.3)

In the remainder of the chapter we suppress the inner structure for simplicity and rep-

resent all the systems in the linear form (1.3). However, the reader is advised to remember

that we are dealing with affine maps. This is also true for the affine maps we will use to

define isomorphisms.
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We refer to system (1.3) as the triple Σ = (A,B,C). We call a triple {xk, uk, yk}k∈N a

trajectory of Σ if it satisfies (1.1) for all k ∈ N.

Additionally, we define a cost function J : Rn × (Rm)N+1 → R for N ∈ N ∪ {+∞} that

allows to compare trajectories and, thus, to formulate different control objectives. In align-

ment with the linear framework, we consider quadratic cost functions given by:

J(x, u) =
N∑
i=0

∆ηTi M∆ηi, (1.4)

where ∆ηi =
[
xi − x∗i ui − u∗i

]T
, x = {x0, ..., xN} and u = {u0, ..., uN}. The sequences

x∗ = {x∗0, ..., x∗N} and u∗ = {u∗0, ..., u∗N} denote the reference trajectories to be tracked. We

define M ∈ R(n+m+1)×(n+m+1) to be a positive-definite matrix. Due to the lift (1.2), this cost

includes not only quadratic, but also linear terms.

In addition to a cost, we also consider control objectives that require certain constraints

to be satisfied at all times. These constraints are defined as:

Dηi ≤ 0, ∀i ∈ {0, 1, ..., N}, (1.5)

where ηi =
[
xi ui

]T
and D ∈ Rh×(n+m+1). Note that, despite appearing to be linear

constraints, the constraints above are in fact affine, in view of the construction (1.2).

1.2.2 Attack model and privacy objectives

The cloud is treated as a curious but honest adversary: the cloud adheres to the computa-

tions prescribed by an agreed-upon protocol, but may seek to extract and leak confidential

information by keeping record of all computations and communicated messages.

The interaction between the plant and the cloud is performed in two steps. During the

first step, called the handshaking, the plant provides the cloud with a suitably modified

version of the plant model, cost, and constraints. In exchange, the cloud agrees to compute

7



the input minimizing the provided cost, subject to the constraints and plant dynamics.

During the second step, called plant execution, the plant repeatedly sends a suitably modified

version of its measurements to the cloud. The cloud computes a new input based on the

received measurements and sends it to the plant, where it is suitably modified before being

applied to the plant.

In the previous paragraph we purposely used the vague expression “suitably modified”.

Making this expression more concrete requires that we first define the knowledge available

to the plant. We consider the following three scenarios.

Problem 1.2.1 (Scenario 1). Assuming the cloud has no knowledge about the plant:

1. how to modify the plant (A,B,C), cost J , and constraint matrix D before sending them

during the handshaking step,

2. how to modify the measurements sent to the plant, and

3. how to modify the inputs received from the plant,

so that the plant’s trajectory minimizes cost J in (1.4), while preventing the cloud from

learning the plant (A,B,C), the cost J , the constraint matrix D, and the plant’s trajectory

{xk, uk, yk}k∈N?

Problem 1.2.2 (Scenario 2). Assuming the cloud has no knowledge about the plant except

for knowing what are its sensors and actuators:

1. how to modify the plant (A,B,C), cost J , and constraint matrix D before sending them

during the handshaking step;

2. how to modify the measurements sent to the plant, and

3. how to modify the inputs received from the plant,
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so that the plant’s trajectory minimizes cost J in (1.4), while preventing the cloud from

learning the plant (A,B,C), the cost J , the constraint matrix D, and the plant’s trajectory

{xk, uk, yk}k∈N?

Problem 1.2.3 (Scenario 3). Assuming the cloud has complete knowledge about the plant

dynamics, including its sensors and actuators:

1. how to modify cost J , and constraint matrix D before sending them alongside the plant

(A,B,C) during the handshaking step;

2. how to modify the measurements sent to the plant, and

3. how to modify the inputs received from the plant,

so that the plant’s trajectory minimizes cost J in (1.4), while preventing the cloud from

learning the cost J , the constraint matrix D, and the plant’s trajectory {xk, uk, yk}k∈N?

These problems are solved in Section 1.4 by utilizing isomorphisms and symmetries of

control systems we define next in Section 1.3.

1.3 Isomorphisms and symmetries of control systems

In this section, we introduce the notions of isomorphism and symmetry of control systems

along with several technical results used in Section 1.4 to provide a solution to the problems

described in Section 1.2.

Let us denote by Sn,m,p the set of all controllable and observable linear control systems

with state, input and output dimensions n, m, and p, respectively.

Definition 1.3.1. An isomorphism of control systems in Sn,m,p is a quadruple ψ = (P, F,G, S)

consisting of a change of state coordinates P : Rn → Rn, state feedback F : Rn → Rm, a

change of coordinates in the input space G : Rm → Rm, and a change of coordinates in the

9



output space S : Rp → Rp. Transformations P and S are affine invertible maps, F is an

affine map and G is a linear invertible map.

Recall that, to simplify notation, we lift the affine maps to linear maps using the trans-

formation (1.2).

Let us also denote the set of isomorphisms of Sn,m,p described in Definition 1.3.1 as Gn,m,p.

The set Gn,m,p forms a group under function composition as the group operation1. This allows

us to define a group action of Gn,m,p on the set of linear control systems Sn,m,p.

Definition 1.3.2. Each element ψ ∈ Gn,m,p acts on Σ ∈ Sn,m,p to produce ψ∗Σ given by:

ψ∗Σ = (P, F,G, S)∗(A,B,C)

= (P (A−BG−1F )P−1, PBG−1, SCP−1)

≜ (Ã, B̃, C̃) ≜ Σ̃.

(1.6)

The map ψ∗ is called an isomorphism action. We also say that systems Σ and Σ̃ are equiv-

alent.

An isomorphism maps the state xk, input uk, and output yk of system Σ to the state x̃k,

input ũk, and output ỹk of system Σ̃ as follows:

x̃k = Pxk (1.7)

ũk = Fxk +Guk (1.8)

ỹk = Syk. (1.9)

Similarly, an isomorphism induces transformation on the control objectives — i.e., the cost

and constraints. The effect of ψ on ηk can be represented by:

η̃k =

x̃k
ũk

 =

P 0

F G

xk
uk

 ≜ Lηk. (1.10)

1A composition of two isomorphisms is given by ψ2 ◦ψ1 = (P2P1, G2F1+F2P1, G2G1, S2S1), the identity
is ψe = (I, 0, I, I) and the inverse is given by ψ−1 = (P−1,−G−1FP,G−1, S−1).
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Therefore, the cost function J can be expressed as a function of the sequence of modified

states x̃ = {x̃0, ..., x̃N} and the sequence of modified inputs ũ = {u0, ..., ũN} as follows:

J̃(x̃, ũ) =ψ∗J (x, u) =
N∑
i=0

∆η̃Ti M̃∆η̃i, (1.11)

where M̃ = L−TML−1. Applying the isomorphism action to the constraints in (1.5) yields:

D̃η̃i ≤ 0, ∀i ∈ {0, 1, ..., N}, (1.12)

where D̃ = ψ∗D = DL−1.

The effect of an isomorphism on the system, trajectory, cost and constraints will be used

in Section 1.4 to prevent the cloud from learning them.

For a given system Σ, there is a special subgroup of Gn,m,p called the symmetry group of

Σ, which is defined by the following property.

Definition 1.3.3. Let Σ ∈ Sn,m,p. An isomorphism ψ ∈ Gn,m,p is said to be a symmetry of

Σ if ψ∗Σ = Σ. The subgroup of symmetries of Σ is denoted here as Kn,m,p(Σ).

The notion of isomorphism was crafted to preserve properties of control systems. Among

these, trajectories have a special significance. A simple induction argument can be used to

establish the following result.

Lemma 1.3.4. Let Σ ∈ Sn,m,p and ψ ∈ Gn,m,p. If Σ̃ = ψ∗Σ and {xk, uk, yk}k∈N is a trajectory

of Σ, then {x̃k, ũk, ỹk}k∈N, as given by (1.7) - (1.9), is a valid trajectory of Σ̃.

This means that if the cloud receives Σ̃ during the handshaking step, then the received

sequence of measurements ỹ and the produced sequence of control inputs ũ in the subse-

quent execution step are compatible with the plant Σ̃. To elaborate, both the modified

measurements ỹ and modified control inputs ũ would be compatible with modified dynamics

Σ̃.
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Let us now define S̄n,m,p to be a set of quadruples Ω ≜ {Σ, J,D, {xk, yk, uk}}k∈N such

that {xk, yk, uk} is a trajectory of a linear system Σ ∈ Sn,m,p minimizing cost function J

under constraints D.

Lemma 1.3.5. The set S̄n,m,p is a smooth manifold.

Proof. We can see that S̄n,m,p is, in fact, the Cartesian product of Sn,m,p with the set of cost

functionsM++(m+n+1,R), defined by positive-definite matrices, with the set of constraints

Md(h×(m+n+1),R), defined by the set of full-rank matrices, where d = min{h,m+n+1}.

It is known that the product space is a smooth manifold if its constituents are smooth

manifolds [42, p. 21]. It remains to show that these constinuents are indeed smooth manifolds.

Let us construct the map:

fS :Rn×(n+1) × Rn×m × Rp×(n+1) → R2

(A,B,C) 7→ (det C, det O) ,
(1.13)

where C and O are the controllability and observability matrices of the dynamics (A,B,C).

It can be seen that Sn,m,p = f−1
S (R2 \ (0, 0)). The function fS is continuous since each of its

elements is defined by a polynomial function of the elements of (A,B,C). Given that for

continuous functions the preimage of every open set is an open set, we have that Sn,m,p is an

open subset of the domain of fS. Seeing that the domain of fS is a smooth manifold, Sn,m,p

is a smooth manifold of dimension n(n+ 1) + nm+ p(n+ 1).

The set of positive-definite matricesM++(m+n+1,R) is shown to be a smooth embedded

submanifold of R(m+n+1)×(m+n+1) of dimension (m+ n+ 1)(m+ n+ 2)/2 in [43].

The set of full-rank matrices Md(h× (m+ n+ 1),R) is a smooth manifold of dimension

h(m+ n+ 1) [42, p. 19].

Similarly to Sn,m,p, we can define a group action of Gn,m,p on S̄n,m,p in view of the previous

discussion.
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Therefore, we can use the isomorphism action of Gn,m,p to define an equivalence relation

on S̄n,m,p.

Definition 1.3.6. Let Ω = (Σ, J,D, {xk, uk, yk}k∈N) and Ω̃ = (Σ̃, J̃ , D̃, {x̃k, ũk, ỹk}k∈N) be

elements of S̄n,m,p. The equivalence relation ∼G on S̄n,m,p denoted by:

Ω ∼G Ω̃, (1.14)

is defined by the existence of ψ ∈ Gn,m,p such that:

Ω̃ = ψ∗Ω; (1.15)

i.e., Σ̃ = ψ∗Σ, J̃ = ψ∗J , D̃ = ψ∗D, and {x̃k, ũk, ỹk}k∈N is given in terms of {xk, uk, yk}k∈N as

in (1.7) - (1.9).

The equivalence relation ∼G, in turn, defines equivalence classes in S̄n,m,p. The equiva-

lence class of Ω ∈ S̄n,m,p defined by the action of Gn,m,p is the set:

[Ω] ≜ {Ω′ ∈ S̄n,m,p|∃ψ ∈ Gn,m,p such that Ω′ = ψ∗Ω}

= {ψ∗Ω|ψ ∈ Gn,m,p}. (1.16)

This equivalence class is also called the orbit of Ω under action of Gn,m,p.

To facilitate further results, let us show that Gn,m,p is a Lie group acting on S̄n,m,p.

Lemma 1.3.7. The group Gn,m,p is a Lie group of dimension n(n+1)+m(n+1)+m2+p(p+1)

acting smoothly on S̄n,m,p.

Proof. It was previously established that Gn,m,p is a group. It is a Lie group because it

is a Cartesian product of smooth manifolds (i.e., general linear groups and vector spaces

of various dimensions) and its multiplication and inversion maps are smooth. Moreover,

since the dimension of a product of smooth manifolds is equal to the sum of the factors’

dimensions, the dimension of Gn,m,p is n(n + 1) + m(n + 1) + m2 + p(p + 1) [42, p. 21].
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The group Gn,m,p acts smoothly on S̄n,m,p since its action involves matrix multiplication and

matrix inversion: the former results in every element of the product being a polynomial

function of the elements of the factors, while the latter is smooth by Cramer’s rule [42].

The next result shows that when the cloud optimizes J̃ and the plant replaces each yk

with output ỹk, the resulting sequence of inputs ũ can be used to reconstruct a sequence of

inputs u that optimizes J . Its proof amounts to using the change of variables (1.7)-(1.9).

Lemma 1.3.8. Let Ω ∈ S̄n,m,p and ψ ∈ Gn,m,p. Suppose the cloud solves the optimization

problem:

min
ũ

J̃(x̃, ũ)

subject to D̂η̂i ≤ 0, ∀i ∈ {0, ..., N},

for the plant Σ̃ = ψ∗Σ and the sequence ũ∗ is a unique solution of this optimization problem.

Then, the unique solution of the optimization problem:

min
u

J(x, u)

subject to Dηi ≤ 0, ∀i ∈ {0, ..., N}

for the plant Σ is the sequence u∗ such that u∗i = G−1(ũ∗i − Fxi) for all i ∈ {0, ..., N}.

1.4 Solving the control-over-the-cloud privacy problem

1.4.1 Enforcing privacy

The main reason for using isomorphisms is to preclude the cloud from distinguishing between

isomorphic systems. We now formalize the notion of indistinguishability.

Definition 1.4.1. A protocol renders two quadruples Ω and Ω̃ indistinguishable by the

cloud if the exchanged messages, when using the protocol between the cloud and the plant

Ω, and the exchanged messages, when using the protocol between the cloud and the plant

Ω̃, can be made the same.
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The results from Section 1.3 allow us to construct a communication protocol between the

plant and the cloud that, as will be further shown, solves Problems 1.2.1-1.2.3. We start by

detailing this protocol.

Algorithm 1 Secure communication

Input: Plant: ψ, Σ, J , D, ũk;

Cloud: ỹk, Σ̃, J̃ , D̃

Output: Plant: Σ̃, J̃ , D̃, ỹk;

Cloud: ũk

Phase 1: Handshaking :

1: Plant: Encode Σ, J , D into Σ̃ = ψ∗Σ, J̃ = ψ∗J and D̃ = ψ∗D;

2: Plant: Send Σ̃, J̃ , and D̃ to the cloud;

Phase 2: Execution :

3: Plant: Encode measurement yk into ỹk = Syk and send ỹk to the cloud;

4: Cloud: Use the received ỹk to estimate x̃k and compute ũk minimizing J̃ subject to the

constraints D̃ and the dynamics Σ̃;

5: Cloud: Send ũk to the plant;

6: Plant: Use the isomorphism ψ to decode ũk and produce uk using (1.8);

7: Plant: Apply uk to the actuators.

From Lemma 1.3.8, we see that Algorithm 1 provides the plant with the inputs uk that

satisfy the original control objective — i.e., the plant’s trajectory minimizes cost J under

affine constraints D.

Let us note how all the required computations in this algorithm are matrix multiplica-

tions, which means that both handshaking and execution can be performed in O(k3) time,

where k = max{n,m, p}. However, performing matrix multiplications of constant matrices

(e.g., G−1F ) in advance would reduce the complexity of the execution to O(k2). Both of

these complexities were calculated only for the client side (i.e., Plant) of the algorithm.
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Let us now show that applying this protocol indeed makes any two systems in the same

equivalence class indistinguishable from each other.

Theorem 1.4.2. Algorithm 1 renders isomorphic systems Ω = (Σ, J,D, {xk, uk, yk}k∈N) and

Ω̃ = (Σ̃, J̃ , D̃, {x̃k, ũk, ỹk}k∈N) indistinguishable by the cloud.

Proof. Since Ω and Ω̃ are isomorphic, there exists an isomorphism ψ such that ψ∗Σ = Σ̃,

ψ∗J = J̃ , and ψ∗D = D̃. Indistinguishibility of Ω and Ω̃ will be shown by running two

instances of Algorithm 1: one with Ω and ψ as inputs, the other - with Ω̃ and the identity

isomorphism ψe. Let us denote the communication algorithm described in Algorithm 1

applied to Ω ∈ S̄n,m,p with the selected isomorphism ψ ∈ Gn,m,p by Alg(Ω, ψ). During

handshaking:

• when Alg(Ω, ψ) is executed, the plant sends ψ∗Σ, ψ∗J , and ψ∗D;

• when Alg(Ω̃, ψe) is executed (ψe is the identity of Gn,m,p), the plant sends Σ̃, J̃ , and

matrix D̃ unprotected.

Thus, the communicated dynamics and optimization problems are the same. During execu-

tion:

• when Alg(Ω, ψ) is executed, ψ takes trajectories {xk, uk, yk}k∈N of Σ to trajectories

{x̃k, ũk, ỹk}k∈N of ψ∗Σ;

• when Alg(Ω̃, ψe) is executed, the trajectories are {x̃k, ũk, ỹk}k∈N.

Therefore, the cloud receives the same measurements from both plants. In response, since

both plants communicated the same optimization problem, the cloud sends the same control

inputs to both plant Ω and Ω̃.

The result described in Theorem 1.4.2 states that the cloud cannot differentiate between

any two plants, costs, constraints or trajectories contained in the same equivalence class
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of the ∼G-equivalence relation, thereby protecting the privacy of the system. In the next

section, we quantify the amount of privacy provided by Algorithm 1.

1.4.2 Quantifying privacy

Privacy is created by preventing the cloud from knowing which quadruple Ω in its equivalence

class [Ω] it is interacting with. Clearly, the larger the equivalence class, the more privacy

is ensured. Since each equivalence class has infinitely many elements, cardinality cannot be

used as a measure of privacy. In this section, we show that each equivalence class is a smooth

manifold and we quantify privacy using the dimension of this manifold.

1.4.2.1 Preliminaries: stabilizer subgroups and their dimensions

The stabilizer subgroup of Gn,m,p for any Ω ∈ S̄n,m,p, denoted by Kn,m,p(Ω), is defined by:

Kn,m,p(Ω) = {ψ ∈ Gn,m,p|ψ∗Ω = Ω}. (1.17)

The subgroup Kn,m,p(Ω) must be a subset of the symmetry subgroup Kn,m,p(Σ) since it

must preserve the dynamics.

In [44], Respondek gives a characterization of the symmetries of controllable pairs (A,B).

Since when considering pairs (A,B) the output is not relevant, the isomorphisms of (A,B)

degenerate into the form ϕ = (P, F,G), where the matrices P , F and G are defined to be the

same as their counterparts in Definition 1.3.1. We denote the group of these isomorphisms

by Gn,m. The group action of Gn,m is given by:

ϕ∗(A,B) = (P (A−BG−1F )P−1, PBG−1). (1.18)

Let us define the symmetry subgroup of controllable systems (A,B) as:

Kn,m(A,B) = {ϕ ∈ Gn,m|ϕ∗(A,B) = (A,B)}. (1.19)
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The next proposition uses the results from [45] and the notion of controllability indices

(see [46] for a definition) to estimate the dimension of Kn,m(A,B):

Proposition 1.4.3. Let (A,B) be a controllable pair. Then:

m(n+ 1)− s ≤ dim Kn,m(A,B) ≤ n(m+ 1)− s,

where:

s =
m∑
i=2

ri−1ri,

r1 = rank B,

ri = rank Si−1(A,B)− rank Si−2(A,B), i = 2, ...,m,

Sj(A,B) =
[
B AB ... AjB

]
, j = 1, ...,m− 1.

and {κi}mi=1 are controllability indices of (A,B).

Proof. The symmetry subgroup Kn,m(A,B) consists of solutions to the following system of

equations: 
A = P (A−BG−1F )P−1

B = PBG−1,

(1.20)

which is equivalent to: 
AP +BF = PA

BG = PB.

(1.21)

Recall that elements of the pair (A,B) and transformations (P, F,G) are, in fact, affine

maps. If we express (1.21) using the inner structure of the maps, we get:
ĀP̄ + B̄F̄ = P̄ Ā

B̄G = P̄ B̄

(Ā− I)p̄+ B̄f̄ = P̄ c̄− c̄,

(1.22)

18



where P =

P̄ p̄

0 1

 and F =
[
F̄ f̄

]
. Finding elements of Kn,m(A,B) is equivalent to

finding (P̄ , p̄, F̄ , f̄ , G). According to Theorem 2.2 in [45], the dimension of solution space S

of (P̄ , F̄ , G) satisfying the first and second equations in (1.22) is equal to:

dim S = m(n+m)−
m∑
i=1

ri−1ri

= m(n+m)− r0r1 −
m∑
i=2

ri−1ri

= mn−
m∑
i=2

ri−1ri, (1.23)

because r0 = r1 = m, κ1 = m and (A,B) is a controllable pair. Fixing (P̄ , F̄ , G), one can

find the dimension of the solution space of the third equation in (1.22). It can be observed

that the dimension of the solution space is equal to dim ker
[
Ā− I B̄

]
. Since rank B̄ = m,

it follows that:

m ≤ dim ker
[
Ā− I B̄

]
≤ n. (1.24)

The result then follows from (1.23) and (1.24).

This result can be used to estimate the dimension of Kn,m,p(Σ). If Σ = (A,B,C), then,

from Proposition 1.4.3, we know the dimension of Kn,m(A,B) and that any ϕ ∈ Kn,m(A,B)

satisfies ϕ∗(A,B) = (A,B). Given ϕ = (P, F,G) ∈ Kn,m(A,B), finding a corresponding

ψ = (P, F,G, S) ∈ Kn,m,p(Σ) requires finding S such that C = SCP−1. Since we assume

C has linearly independent rows, for a given P , this equation has at most one solution. A

solution exists if and only if Im CT ⊂ Im P−TCT [47]. Let Q(A,B,C) be the subset of

Kn,m(A,B) defined by the elements (P, F,G) for which a unique solution to C = SCP−1

exists. It can be seen that there is a one-to-one correspondence between Q(A,B,C) and

Kn,m,p(Σ). Since Q(A,B,C) ⊂ Kn,m(A,B), this gives an upper bound on the dimension of

the symmetry subgroup:

dim Kn,m,p(Σ) ≤ dim Kn,m(A,B). (1.25)
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Lemma 1.4.4. For any Ω = (Σ, J,D, {xk, uk, yk}k∈N) ∈ S̄n,m,p,

dim Kn,m,p(Ω) ≤ dim Kn,m,p(Σ) ≤ dim Kn,m(A,B),

where dim Kn,m,p(A,B) is given by Proposition 1.4.3.

Let us consider a special case, in which the dimension of Kn,m,p(Σ) can be computed

exactly.

Definition 1.4.5. A system Σ ∈ Sn,m,p is said to be a prime system if it is ∼G-equivalent

to the system of the form:

Σ :



x
(i,1)
k+1 = x

(i,2)
k ,

...

x
(i,κi)
k+1 = u

(i)
k ,

y
(i)
k = x

(i,1)
k , 1 ≤ i ≤ m,

(1.26)

where xk =
[
x
(1,1)
k , ..., x

(1,κ1)
k , ..., x

(m,1)
k , ..., x

(m,κm)
k

]T
∈ Rn and {κi}mi=1 are controllability in-

dices of (A,B).

For prime systems we have the following characterization of the dimension of Kn,m,p(Σ).

Lemma 1.4.6. Let Σ ∈ Sn,m,p be a prime system. Then,

m∑
i=1

rκi +m ≤ dim Kn,m,p(Σ) ≤
m∑
i=1

rκi + n, (1.27)

where

r1 = rank B,

ri = rank Si−1(A,B)− rank Si−2(A,B), i = 2, ...,m,

Sj(A,B) =
[
B AB ... AjB

]
, j = 1, ...,m− 1,

and {κi}mi=1 are controllability indices of (A,B).
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Proof. Without loss of generality, let us consider a prime system of the form (1.26). From

Proposition 2 in [44], we can see that if a system is prime, a symmetry ψ = (P, F,G, S) is

uniquely defined by a transformation on its outputs (i.e., by transformation S).

We want to show that, in order to define a symmetry, transformation S needs to be

constructed in such a way that each transformed output ỹ
(i)
k is an affine function of outputs

y
(j)
k with relative degrees greater or equal than that of y

(i)
k . To simplify notation, we prove

this claim for the example with controllability indices κ1 = κ2 = 2, κ3 = 1, although the

employed arguments apply to any prime system:

x
(1,1)
k+1 = x

(1,2)
k x

(2,1)
k+1 = x

(2,2)
k x

(3,1)
k+1 = u

(3)
k

x
(1,2)
k+1 = u

(1)
k x

(2,2)
k+1 = u

(2)
k (1.28)

y
(1)
k = x

(1,1)
k y

(2)
k = x

(2,1)
k y

(3)
k = x

(3,1)
k .

We will show, by contradiction, that if S produces a transformed output based on outputs

of a smaller relative degree, then S cannot be part of a symmetry. In other words, there

exist no matrices P , F , and G such that the quadruple (P, F,G, S) satisfies the equations:

A = P (A−BG−1F )P−1 (1.29)

B = PBG−1 (1.30)

C = SCP−1. (1.31)

Assume that (1.29)-(1.31) are satisfied and that S contains non-zero elements Sij if κi > κj

(i.e., the transformed output uses outputs of a smaller relative degree). From (1.31), we have

that:

SCAqB = CPAqB, ∀ 0 ≤ q < κ1. (1.32)

By using (1.29) and (1.30), the following relation can be shown:

PA = AP + PBG−1F = AP +BF. (1.33)
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Recursively substituting (1.33) into (1.32) results in:

SCAqB = C(PA)Aq−1B = C(AP +BF )Aq−1B

= CBFAq−1B + CAPAq−1B

= CBFAq−1B + CA(PA)Aq−2B

= . . .

=

q−1∑
l=0

CAlBFAq−l−1B + CAqPB.

Equation (1.30) implies that PB = BG and, thus, leads to:

SCAqB =

q−1∑
l=0

CAlBFAq−l−1B + CAqBG. (1.34)

Note that CAlB is a diagonal matrix such that:

[CAlB]ii =


1, if κi = l + 1

0, otherwise.

(1.35)

In other words, this diagonal matrix marks the indices corresponding to the outputs of equal

relative degree. In addition, the expression FAq−l−1B is an m×m matrix composed out of

elements of F (recall that A and B are in the form (1.26)).

The left-hand side of (1.34) selects the columns of S corresponding to the outputs of

relative degree κi = q + 1. For the example in (1.28), taking q = 0 gives:

SCB =


0 0 S13

0 0 S23

0 0 S33

 . (1.36)

The right-hand side of (1.34) fills the rows corresponding to the outputs of relative degree

smaller or equal than κi = q + 1 with values from G. In case of example in (1.28), the right-
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hand side, given q = 0, is:

CBG =


0 0 0

0 0 0

× × ×

 . (1.37)

Thus, the equality in (1.34), which was derived using the definition of symmetry, forces

Sij to zero if κi > κj. In the example in (1.28), this leads to S13 = S23 = 0. This contradicts

the assumption that S produces a transformed output based on outputs of a smaller relative

degree.

This idea can be generalized to any prime system and, therefore, each transformed output

ỹ
(i)
k can only be an affine function of outputs y

(j)
k with relative degrees greater or equal than

that of y
(i)
k .

The number of outputs y
(j)
k with a relative degree greater or equal to that of y

(i)
k (i.e.,

greater or equal than ki) is equal to rki [45]. Therefore, each modified output y
(i)
k is an affine

function with rki arguments. The constant terms of transformations P , F , and S, denoted

by p̄, f̄ , and s̄, respectively, need to satisfy the following equalities:
(Ā− I)p̄+ B̄f̄ = P̄ c̄− c̄

s̄ = C̄p̄+ d̄− S̄d̄,

where P =

P̄ p̄

0 1

, F =
[
F̄ f̄

]
, and S =

S̄ s̄

0 1

. Similarly to the proof of Proposition

1.4.3, the dimension of the solution space of this system is given by the dimension of the

kernel of the linear map defining the left-hand side of the system of equations as:

m ≤ dim ker

Ā− I B̄ 0

0 0 I

 ≤ n, (1.38)

thereby leading to the result of this lemma.
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1.4.2.2 Main results

Consider the scenario from Problem 1.2.1, in which the cloud does not know anything about

the system. In this scenario, the plant encodes Ω using an isomorphism ψ = (P, F,G, S)

that can be regarded as a private key used to encode and decode the information exchanged

with the cloud. This isomorphism ψ is chosen from Gn,m,p, the group of all isomorphisms.

Proposition 1.4.7. Let Ω ∈ S̄n,m,p. Then, under the scenario described in Problem 1.2.1,

the cloud cannot distinguish between Ω and any other system in the uncertainty set [Ω]G (i.e.,

the equivalence class of Ω defined by the action of Gn,m,p) of dimension:

dim Gn,m,p − dim Kn,m,p(Ω), (1.39)

if Algorithm 1 is used.

This implies that the dimension of [Ω]G is greater or equal than:

n2 +m(m+ 1) + p(p+ 1) +
m∑
i=2

ri−1ri, (1.40)

where ri is given in Lemma 1.4.3.

For Ω ∈ S̄n,m,p such that its corresponding Σ ∈ Sn,m,p is prime, this implies that the

dimension of [Ω]G is greater or equal to:

n2 +m(n+ 1) +m2 + p(p+ 1)−
m∑
i=1

rκi , (1.41)

where rκi is given in Lemma 1.4.6.

Proof. From Theorem 1.4.2, we know that Algorithm 1 renders isomorphic systems indis-

tinguishable by the cloud. Therefore, the uncertainty set is the set of systems isomorphic to

[Ω]G - namely, the equivalence class of Ω defined by the action of Gn,m,p.

Let us define a map:

θΩ : Gn,m,p → S̄n,m,p

ψ 7→ ψ∗Ω.
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Here, θΩ is smooth because, as shown in Lemma 1.3.7, Gn,m,p acts smoothly on S̄n,m,p. The

stabilizer set can be defined by:

Kn,m,p(Ω) = (θΩ)
−1(Ω) = {ψ|ψ∗Ω = Ω}.

Since θΩ and its inverse are smooth and, therefore, continuous, the subgroup Kn,m,p(Ω) is

closed.

By Theorem 21.17 in [42], the quotient space Gn,m,p/Kn,m,p(Ω) is a smooth manifold of di-

mension dim Gn,m,p−dim Kn,m,p(Ω) such that the quotient map π : Gn,m,p → Gn,m,p/Kn,m,p(Ω)

is a smooth submersion.

Now, let us define a map:

ΘΩ : Gn,m,p/Kn,m,p(Ω) → S̄n,m,p

ψKn,m,p(Ω) 7→ ψ∗Ω,

where ψKn,m,p(Ω) is a left coset of Kn,m,p(Ω). It can be shown that ΘΩ is well-defined.

By Theorem 4.29 in [42], ΘΩ is smooth because θΩ = ΘΩ ◦π is smooth and π is a smooth

submersion.

It can be shown that the map ΘΩ is equivariant (see [42, p. 164]) and, therefore, by the

equivariant rank theorem [42, p. 165], we have that ΘΩ has a constant rank.

Let us show that ΘΩ is injective. If ΘΩ(ψ1Kn,m,p(Ω)) = ΘΩ(ψ2Kn,m,p(Ω)), then (ψ1)∗Ω =

(ψ2)∗Ω. This implies that (ψ1)
−1ψ2 ∈ Kn,m,p(Ω) and, therefore, ψ1Kn,m,p(Ω) = ψ2Kn,m,p(Ω).

Therefore, ΘΩ is a smooth immersion.

By Proposition 5.18 in [42], the image of ΘΩ (i.e., the equivalence class [Ω]G) is an

immersed submanifold such that ΘΩ : Gn,m,p/Kn,m,p(Ω) → [Ω]G is a diffeomorphism and,

therefore, the dimension of [Ω]G is equal to the dimension of Gn,m,p/Kn,m,p(Ω).

A more concrete quantification of privacy can be given for various special cases. Using

the results of Proposition 1.4.3 and Lemma 1.4.4, we have that, for any Ω ∈ S̄n,m,p, the
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uncertainty sets under the scenario described in Problem 1.2.1 are smooth manifolds of

dimension greater or equal to the value in (1.40)

The dimension of the uncertainty sets for prime systems can be shown to be greater or

equal to the value in (1.41) using Lemma 1.4.6.

We can determine the knowledge the cloud can extract about the plant by considering

what properties remain invariant under isomorphisms. Since controllability, observability,

and the relative degree remain invariant, the cloud will not learn anything else beyond

knowing that the plant is controllable, observable, and has a certain relative degree.

Example 1.4.8. To illustrate how different the systems produced by the proposed encoding

scheme can be, consider a system with the following dynamics:

A =


0 1 0

0 0 0

0 0 0

 , B =


0 0

1 0

0 1

 , C =

1 0 0

0 0 1

 .
We arbitrarily choose two sets of isomorphisms ψ1, ψ2 ∈ Gn,m,p such that the elements of their

constituent matrices are between 0 and 1 (i.e., we pick isomorphisms from a bounded set of

Gn,m,p). We will not be explicitly writing these isomorphisms here due to space limitations.

Applying these isomorphisms to the system above, we arrive at completely different systems

Σ̃1 = ψ1∗Σ and Σ̃2 = ψ2∗Σ:

Ã1 =


35 9.4 −40

−3 0.1 2.9

28 8.3 −33

 , Ã2 =


−4.06 5.35 1.48

4.87 −4.0 −2.33

0.68 2.40 −0.88

 ,

B̃1 =


16 −7.7

−2.2 1.5

13 −6.1

 , B̃2 =


0.16 0.95

1.03 −1.27

0.70 −0.31

 ,

C̃1 =

2.4 0.02 −1.8

1.5 0.01 −1.1

 , C̃2 =

−0.33 −1.68 1.56

3.39 −4.58 −0.97

 .
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Proposition 1.4.7 can be used to quantify privacy of other scenarios presented in Section

1.2.

Consider the scenario in Problem 1.2.2, where the cloud does not know the dynamics but

knows which sensors and actuators will be used. An arbitrary isomorphism can no longer

be used for encoding since it could lead to inputs and outputs that are inconsistent with

existing sensors and actuators. This inconsistency would signal the cloud that the plant

is being dishonest about its measurements and provide the cloud with an opportunity to

exploit this fact to gather additional knowledge. Therefore, we need to restrict the group

of isomorphisms used for encoding. These isomorphisms are given by any composition of

ψ1 = (P, 0, I, I) for any P ∈ GL(n,R) and ψ2 ∈ Kn,m,p(Σ). It can be shown that this set of

isomorphisms forms a subgroup that we denote by Hn,m,p(Σ) ⊂ Gn,m,p.

Corollary 1.4.9. Let Ω ∈ S̄n,m,p. Then, under the scenario described in Problem 1.2.2, the

cloud cannot distinguish between Ω and any other system in the uncertainty set [Ω]H (i.e.,

the equivalence class of Ω defined by the action of Hn,m,p) of dimension:

dim Hn,m,p(Σ)− dim Kn,m,p(Ω), (1.42)

if Algorithm 1 is used. This implies that the dimension of [Ω]H is greater or equal to n(n+1).

Proof. From Theorem 1.4.2, we know that Algorithm 1 renders isomorphic systems indis-

tinguishable by the cloud. However, the uncertainty set is no longer the equivalence class

under the entire group of isomorphisms Gn,m,p, but the equivalence class under a smaller

group Hn,m,p(Σ) denoted by [Ω]H.

It can be shown that Hn,m,p(Σ) is a Lie subgroup of Gn,m,p. This subgroup Hn,m,p(Σ)

can be thought of as a product manifold of Kn,m,p(Σ) and a space of invertible affine maps.

Since the dimension of a product manifold is a sum of its factors’ dimensions, we have:

dim Hn,m,p(Σ) = dim Kn,m,p(Σ) + n(n+ 1).
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The result follows by applying Proposition 1.4.7 to Hn,m,p(Σ). Using the result from Lemma

1.4.4, we can see that the dimension of the uncertainty set for any Ω ∈ S̄n,m,p is greater or

equal to n(n+ 1).

Since in this scenario the plant can no longer change the input, the cloud will learn the

transfer function, but not the particular realization of the plant. The cloud would still be

unable to learn the trajectory of the state.

Finally, in the scenario described in Problem 1.2.3, where the cloud possesses the complete

knowledge of dynamics, only the isomorphisms from the symmetry subgroup ψ ∈ Kn,m,p(Σ)

can be used. To provide privacy guarantees for this scenario, let us assume that we have

n + 1 linearly independent constraints on the state xk expressed by the constraint matrix

D. This is a reasonable assumption because systems often have an operational envelope

bounding the states. Therefore, any ψ ∈ Kn,m,p(Ω) must satisfy:

DL−1 = D ⇐⇒ DL = D

⇐⇒

D11 0

D21 D22

P 0

F G

 =

D11 0

D21 D22


=⇒ D11P = D11.

Given that D11 ∈ Rh1×(n+1) is injective, the last equality is satisfied if and only if P = I.

Since P uniquely defines F , G and S, we also have that the only isomorphism that keeps

(A,B,C,D11) invariant is ψ = ψe = (I, 0, I, I) . Therefore, the only element of Kn,m,p(Ω) is

ϕe = (I, 0, I, I) and dim Kn,m,p(Ω) = 0.

Corollary 1.4.10. Let Ω ∈ S̄n,m,p. Then, under the scenario described in Problem 1.2.3, the

cloud cannot distinguish between Ω and any other system in the uncertainty set [Ω]K (i.e.,

the equivalence class of Ω defined by the action of Kn,m,p(Σ)) of dimension:

dim Kn,m,p(Σ)− dim Kn,m,p(Ω), (1.43)

if Algorithm 1 is used.
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When the constraint matrix D contains n + 1 linearly independent constraints on the

state, the dimension of the uncertainty set is equal to dim Kn,m,p(Σ), which is less or equal

to:

n(m+ 1)−
m∑
i=2

ri−1ri,

where ri is given in Lemma 1.4.3.

Moreover, for any Ω ∈ S̄n,m,p such that its corresponding Σ ∈ Sn,m,p is prime, the dimen-

sion of [Ω]K is greater or equal to
m∑
i=1

rki +m

.

Proof. The proof of this statement is similar to that of Corollary 1.4.9. The dimensions of

equivalence classes for prime and general systems were evaluated using results of Proposition

1.4.3 and Lemma 1.4.6.

In this scenario, by applying Algorithm 1, the plant would be able to conceal the state

trajectory from the cloud.

To illustrate the main results of this section, consider the following example.

Example 1.4.11. Consider a drone with linearized dynamics given in [48] and a bounded

operational envelope (i.e., constraints on the extreme values of its state). From the linear

model in [48] we observe that n = 12, m = 4, p = 4 and r1 = 4, r2 = 4, r3 = 2, r4 = 2.

Suppose we decide to offload the control of this drone to the cloud. Let us evaluate the

privacy guarantees Algorithm 1 can provide in each of the scenarios described in Section 1.2.

In the first scenario, when the cloud has no prior knowledge about the drone, we can

choose any ψ ∈ Gn,m,p. Therefore, using Propositon 1.4.7, we estimate the dimension of the

uncertainty set to be greater than 212.

In the second scenario, when the cloud knows what sensors and actuators the drone

has, we must choose an isomorphism ψ ∈ Hn,m,p(Σ) to keep inputs and outputs consistent.

29



A practical example of this could be if the cloud was owned by a company that provides

computations specifically for drones. In this case, we use Corollary 1.4.9 and estimate the

dimension of the uncertainty set to be greater than 156.

Finally, when the cloud has complete knowledge about the plant, we are forced to choose a

symmetry ψ ∈ Kn,m,p(Σ) to keep the dynamics unchanged. This scenario could, for example,

occur if the cloud belongs to the drone’s manufacturer. Using Corollary 1.4.10, we estimate

the dimension of the uncertainty set to be less or equal than 32. Unfortunately, we generally

cannot provide a guarantee for the lower bound in this scenario. The dimension of the

uncertainty set, however, can be found exactly by determining Kn,m,p(Σ) for a given Σ.

1.5 Side knowledge

The privacy guarantees derived in Section 1.4 are compromised when the adversary has

partial information about the encoding isomorphism. In our problem formulation, we assume

that the cloud may have learned those through some external channels or through some prior

knowledge about the system.

Recall that by Lemma 1.3.7, Gn,m,p is a Lie group of dimension n(n + 1) +m(n + 1) +

m2 + p(p + 1). In this section, we assume that the constraint matrix D has n + 1 lin-

early independent constraints on the state and, therefore, as shown in the previous section,

Kn,m,p(Ω) = {ψe}, where ψe is the identity element of Gn,m,p.

Suppose the cloud has partial knowledge about the encoding isomorphism. We shall

represent the partial knowledge available to the cloud as a projection from Gn,m,p onto a

k-dimensional vector space. Let us define ρ : Gn,m,p → Rk to be a surjective map of constant

rank k, providing side knowledge about the encoding isomorphism. Then, we can say that

the cloud knows some vector l ∈ Rk, where:

l = ρ(P, F,G, S). (1.44)
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Note that this map is not known to us, and the results that follow do not require the

knowledge of this map.

Side knowledge does not change the result of Theorem 1.4.2, however the privacy guar-

anteed by the scheme changes. It is obvious that the size of the uncertainty set defined

by isomorphisms that satisfy (1.44) is no greater and, in general, smaller than if no side

knowledge is available. Moreover, the uncertainty set is no longer neither an orbit nor an

equivalence class because the preimage of ρ does not necessarily have a group structure.

Let us show that the object defined by (1.44) on Gn,m,p is still a manifold.

Lemma 1.5.1. Let Gn,m,p be the group of all isomorphisms, ρ : Gn,m,p → Rk be a surjective

map of constant rank k and assume the cloud knows that l = ρ(P, F,G, S). Then, ρ−1(l),

representing the possible encoding isomorphisms used by the client, is a properly embedded

submanifold of Gn,m,p. Its dimension is dim Gn,m,p − k.

Proof. By the global rank theorem [42, p. 83], since ρ is a surjective map of constant rank

k, it is a smooth submersion. From the submersion level set theorem [42, p. 105], since both

Gn,m,p and Rk are smooth manifolds and ρ is a smooth submersion, we have that ρ−1(l) is a

properly embedded submanifold of dimension dim Gn,m,p− dim Rk = n(n+1)+m(n+1)+

m2 + p(p+ 1)− k.

Let us now consider the map ΘΩ defined earlier in Proposition 1.4.7. Since Kn,m,p(Ω) =

ψe, we have that Gn,m,p/Kn,m,p(Ω) is equivalent to Gn,m,p. Therefore, the map ΘΩ is equivalent

to the orbit map θΩ. It was shown in Proposition 1.4.7 that ΘΩ is injective. The image of

ΘΩ(ρ
−1(l)) constitutes the uncertainty set, between the elements of which the cloud is not be

able to distinguish. Therefore, the main result of this section requires finding the dimension

of ΘΩ(ρ
−1(l)).

Proposition 1.5.2. Assume Ω ∈ S̄n,m,p is such that the constraint matrix D has n + 1

linearly independent constraints on the state. Suppose that Algorithm 1 is used and the cloud
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has the following side knowledge about the selected isomorphism ψ:

ρ(P, F,G, S) = l ∈ Rk,

where ρ : Gn,m,p → Rk is a surjective map of constant rank k. Then, under the scenario

described in Problem 1.2.1, the cloud cannot distinguish between Ω and any other system in

the uncertainty set U = ΘΩ(ρ
−1(l)) of dimension:

dim Gn,m,p − k = n(n+ 1) +m(n+ 1) +m2 + p(p+ 1)− k. (1.45)

Proof. By Theorem 1.4.2, Algorithm 1 renders isomorphic systems indistinguishable by the

cloud. However, the cloud knows that we use an isomorphism ψ ∈ ρ−1(l) and, therefore,

the uncertainty set is no longer the equivalence class under the entire group of isomorphisms

Gn,m,p, but the subset of this equivalence class U = ΘΩ(ρ
−1(l)).

By the property of the orbit map [42, p. 166], for each Ω, the orbit map ΘΩ is smooth

and has constant rank. Since ΘΩ is also injective, we have, by the Global Rank Theorem,

that it is a smooth immersion [42, p. 83]. As it was shown in Lemma 1.5.1, the set ρ−1(l) is

an embedded submanifold of Gn,m,p and, therefore, the inclusion map i : ρ−1(l) → Gn,m,p is a

smooth embedding.

The map ΘΩ ◦ i is a smooth immersion because it is a composition of smooth immersions.

Since images of smooth immersions are smooth immersed submanifolds (by Proposition 5.18

from [42]), the uncertainty set U = ΘΩ(ρ
−1(l)) is a smooth immersed submanifold of S̄n,m,p

diffeomorphic to ρ−1(l) and, hence, has the same dimension (refer to Lemma 1.5.1).

Using Lemma 1.3.7, the dimension of the uncertainty set is evaluated to be:

n(n+ 1) +m(n+ 1) +m2 + p(p+ 1)− k.

Remark: although Proposition 1.5.2 was proved under the assumption that D has n+ 1

linearly independent constraints on the state, this assumption can be dropped if we assume

the intersection of ρ−1(l) and the left cosets of Kn,m,p(Ω) in G is well-behaved.
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This result shows that the proposed scheme degrades gracefully with side knowledge —

i.e., side knowledge allows the cloud to reduce the dimension of the uncertainty set only by

the amount of side knowledge and not more. Moreover, this result can be generalized for

other scenarios considered in Section 1.4.2.2 using similar proofs.

Corollary 1.5.3. Assume Ω ∈ S̄n,m,p is such that the constraint matrix D has n+1 linearly

independent constraints on the state. Suppose that Algorithm 1 is used and the cloud has the

following side knowledge l ∈ Rk about the selected isomorphism ψ:

l = ρ(P, F,G, S),

where ρ : Gn,m,p → Rk is a surjective map of constant rank k. Then, under the scenario

described in Problem 1.2.2, the cloud cannot distinguish between Ω and any other system in

the uncertainty set U = ΘΩ(ρ
−1(l)) of dimension:

dim Hn,m,p(Σ)− k. (1.46)

Under the scenario described in Problem 1.2.3, the dimension of the uncertainty set is:

dim Kn,m,p(Σ)− k. (1.47)

1.6 Conclusions and future work

In this chapter, we proposed a transformation-based method to preserve privacy in control

over the cloud. In addition to its low computational overhead, we have formally shown that

this method precludes the adversary from inferring the private data by eavesdropping on the

messages exchanged between the plant and the cloud. We quantified the guaranteed privacy

via the dimension of the set that describes the uncertainty experienced by the adversary.

The problem of computing the dimension of the stabilizer set Kn,m,p(Ω) remains open,

and its solution requires a detailed analysis of system-theoretic properties. As future work, it

would also be interesting to investigate other measures of privacy that may lead to a deeper
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insight into the proposed method. Moreover, similar techniques can be proposed for protect-

ing privacy of non-linear control systems when controlling over the cloud. This will, however,

likely involve expanding the isomorphism set beyond the set of affine transformations and

require a different metric for privacy.
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CHAPTER 2

Learning to control from expert demonstrations

2.1 Introduction

2.1.1 Motivation

The usefulness of learning from demonstrations has been well-argued in the literature (see [4–

6]). In the context of control, imagine that we need to design a controller for an autonomous

car that prioritizes comfort of its passengers. It is not obvious how to capture the idea of

comfortable driving in a mathematical expression. It is fairly straightforward, however, to

collect demonstrations of comfortable driving from human drivers. There are many other

control tasks where providing examples of the desired behaviour is easier than defining such

behaviour formally (e.g., teaching a robot to manipulate objects). The growing research

interest in learning from demonstrations (LfD) for robot control [6] reflects the need for

a well-defined controller design methodology for such tasks. In this work, we propose a

methodology that uses expert demonstrations to construct a stabilizing controller.

There are many examples in the literature, where various LfD methodologies have been

applied to robots [6]. The most popular application of LfD so far is in robotic manipulators.

More specifically, LfD is used to teach manipulators skills to perform tasks in manufacturing

[49], health-care [50, 51], and human-robot interaction [52, 53]. In addition, LfD has been

applied with significant success to ground vehicles [54, 55], aerial vehicles [56, 57], bipedal

robots [58, 59], and quadrupedal robots [60, 61]. These examples illustrate that, for these

platforms, there exist control tasks for which LfD techniques are preferable to traditional
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control approaches.

2.1.2 Related work

In this section, we describe the previous work in learning from demonstrations to indicate

where our approach lies within the existing landscape. This is in no way a comprehen-

sive account of the literature on learning from demonstrations, but rather an overview of

approaches related to ours (please refer to [6] or [62] for a description of the literature on

LfD).

Policy-learning LfD methods, to which this work belongs, assume that there exists a

mapping from state (or observations) to control input that dictates the expert’s behaviour.

This mapping is referred to as the expert’s policy. The goal of these methods is to find (or

approximate) the expert’s policy given expert demonstrations. In many machine-learning-

based LfD methods, policy learning is viewed as a supervised-learning problem where states

and control inputs are treated as features and labels, respectively. We refer to these methods

as behavioural cloning methods. Pioneered in the 80s by works like [63], this class of methods

is still popular today. Behavioural cloning methods are typically agnostic to the nature of

the expert — demonstrations can be provided by a human (see [54, 64]), an offline optimal

controller (see [65,66]), or a controller with access to privileged state information (see [56,67]).

They do, however, require a large number of demonstrations to work well in practice and,

if trained solely on data from unmodified expert demonstrations, generate unstable policies

that cannot recover from drifts or disturbances [54]. The latter problem can be fixed using

online meta-algorithms like DAgger [68] which ensure that training data includes observations

of recoveries from perturbations. Using such algorithms, however, comes at the expense of

enlarging the training dataset. Moreover, the works on behavioural cloning typically provide

few formal stability guarantees and, instead, illustrate performance with experiments.

Currently, there is a concerted effort to develop policy-learning LfD methods that improve

on existing techniques using tools from control theory. In that context, the work that is
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closest to ours is described in [69], where the authors use convex optimization to construct

a linear policy that is both close to expert demonstrations and stabilizes a linear system.

They guarantee that the resulting controller is optimal with respect to some quadratic cost

by adding an additional set of constraints (originally proposed in [70]) to the optimization

problem. This work has been extended in [71] to enforce other properties, such as stability,

optimality, and H∞-robustness. Our methodology is different from those in [69] and [71]

because we do not assume the expert to be a linear time-invariant controller.

2.1.3 Contributions

In this chapter, we propose a methodology for constructing a controller for a known nonlinear

system from a finite number of expert demonstrations of desired behaviour, provided their

number exceeds the number of states and the demonstrations are sufficiently long. Our

approach consists of two steps:

• use feedback linearization to transform the nonlinear system into a chain of integrators;

• use affine combinations of demonstrations in the transformed coordinates to construct

a control law stabilizing the original system.

The expert demonstrations are assumed to be of finite-length, whereas the resulting con-

troller is expected to control the system indefinitely, making this a non-trivial problem to

address. In this chapter, we formally prove the learned controller asymptotically stabilizes

the system. Furthermore, in case there are more demonstrations than states, we determine

which subset of demonstrations needs to be chosen to minimize the error between the tra-

jectory of the learned controller and the trajectory of the expert controller. To demonstrate

the feasibility of this methodology, we apply it to the problem of quadrotor control. Un-

like [69], our methodology produces a controller that is time-varying and not linear in the

original coordinates. This reflects our belief that, in many cases, the expert demonstration

is produced by a nonlinear controller. We also extend the proposed methodology beyond the
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class of feedback linearizable systems by using the embedding technique described in [72]

and demonstrate its feasibility on the classical example of the ball-and-beam system.

A preliminary version of this methodology was introduced in [73]. In [74], it was combined

together with the data-driven control results from [75] to learn to control unknown SISO

systems from demonstrations. This chapter provides a unified presentation of the results

from [73], as well as several new results, such as the discussion on the optimality of the

controller approximation error and the extension of the results beyond the class of feedback

linearizable systems. The content of this chapter has been published in [76].

2.2 Problem Statement and Preliminaries

2.2.1 Notations and basic definitions

The notation used in this chapter is fairly standard. The integers are denoted by Z, the

natural numbers, including zero, by N0, the real numbers by R, the positive real numbers by

R+, and the non-negative real numbers by R+
0 . We denote by ∥ · ∥ (or by ∥ · ∥2) the standard

Euclidean norm or the induced matrix 2-norm; and by ∥ · ∥F the matrix Frobenius norm.

A set of vectors {v1, . . . , vk} in Rn is affinely independent if the set {v2 − v1, . . . , vk − v1} is

linearly independent.

A function α : R+
0 → R+

0 is of class K if α is continuous, strictly increasing, and α(0) = 0.

If α is also unbounded, it is of class K∞. A function β : R+
0 ×R+

0 → R+
0 is of class KL if, for

fixed t ≥ 0, β(·, t) is of class K and β(r, ·) decreases to 0 as t→ ∞ for each fixed r ≥ 0.

The Lie derivative of a function h : Rn → R along a vector field f : Rn → Rn, given

by ∂h
∂x
f , is denoted by Lfh. We use the notation Lkfh for the iterated Lie derivative, i.e.,

Lkfh = Lf (L
k−1
f h), with L0

fh = h. Given open sets U ⊆ Rn and V ⊆ Rn, a smooth map

Φ : U → V is called a diffeomorphism from U to V if it is a bijection and its inverse

Φ−1 : V → U is smooth.
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Consider the continuous-time system:

ẋ = f(t, x), (2.1)

where x ∈ Rn is the state and f : R+
0 × Rn → Rn is a smooth function. The origin of

(2.1) is uniformly asymptotically stable if there exist β ∈ KL and c > 0 such that, for all

∥x(t0)∥ < c, the following is satisfied [77]:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t ≥ t0 ≥ 0. (2.2)

Consider the continuous-time control system:

ẋ = f(t, x, u), (2.3)

where x ∈ Rn is the state, u ∈ Rm is the input, and f : R+
0 × Rn × Rm → Rn is a smooth

function. The system (2.3) is said to be input-to-state stable (ISS) if there exist β ∈ KL and

γ ∈ K such that for any x(t0) ∈ Rn and any bounded input u : [t0,∞) → Rm, the following

is satisfied:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ

(
sup
t0≤τ≤t

∥u(τ)∥
)
. (2.4)

Let X = {x1, . . . , xk} be a set of points in Rn. A point x =
∑k

i=1 θixi with
∑k

i=1 θi = 1

is called an affine combination of points in X . If, in addition, θi ≥ 0 for all i ∈ {1, . . . , k},

then x is a convex combination of points in X .

2.2.2 Problem Statement

Consider a known continuous-time control-affine system:

Σ : ẋ = f(x) + g(x)u, (2.5)

where x ∈ Rn and u ∈ Rm are the state and the input, respectively; and f : Rn → Rn,

g : Rn → Rn×m are smooth functions. Assume that the origin is an equilibrium point of
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(2.5). We call a pair (x, u) : R+
0 → Rn ×Rm a solution of the system (2.5) if, for all t ∈ R+

0 ,

the equation (2.5) is satisfied. Furthermore, we refer to the functions x and u as a trajectory

and a control input of the system (2.5).

We say that a controller k : Rn → Rm is asymptotically stabilizing for the system (2.5)

if the origin is uniformly asymptotically stable for the system (2.5) with u = k(x). Suppose

there exists an unknown asymptotically stabilizing controller k, which we call the expert

controller. We assume that k is smooth. Our goal is to learn a controller k̂ : R+
0 ×Rn → Rm

such that having u = k̂(t, x) asymptotically stabilizes the origin of the system (2.5). Towards

this goal, we use a set of M finite-length expert solutions D = {(xi, ui)}Mi=1 of (2.5), where:

for each i, the trajectory xi : [0, T ] → Rn and the control input ui : [0, T ] → Rm are smooth

and satisfy ui(t) = k(xi(t)) for all t ∈ R+
0 ; T ∈ R+

0 is the length of a solution; andM ≥ n+1.

We also ascertain that the “trivial” expert solution, wherein x(t) = 0 and u(t) = 0 for all

t ∈ [0, T ], is included in D.

Remark 2.2.1. In practice, we can record the values of continuous solutions provided by

the expert only at certain sampling instants. In this work, however, we choose to work

in continuous-time to simplify the theoretical analysis. We can do this without sacrificing

practical applicability because it is well-known that continuous-time controller designs can

be implemented via emulation and still guarantee stability [78].

We make the assumption that the system (2.5) is feedback linearizable on an open set

U ⊆ Rn containing the origin and the expert demonstrations xi(t) belong to U for all

t ∈ [0, T ]. To avoid the cumbersome notation that comes with feedback linearization of

multiple-input systems, we assume that m = 1, that is, the system (2.5) only has a single

input. Readers familiar with feedback linearization can verify that all the results extend to

multiple-input case, mutatis mutandis (refer to [79, Ch. 4-5] for a complete introduction to

feedback linearization). In the single-input case, the system (2.5) is feedback linearizable on

the open set U ⊆ Rn if there is an output function h : Rn → R that has relative degree n,

i.e., for all x ∈ U , LgL
i
fh(x) = 0 for i = 0, . . . , n − 2 and LgL

n−1
f h(x) ̸= 0. Moreover, the
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map:

z = Φ(x) =
[
h(x) Lfh(x) · · · Ln−1

f h(x)
]T
, (2.6)

is a diffeomorphism from U to its image Φ(U), i.e., the inverse Φ−1 : Φ(U) → U exists and

is also smooth. We further assume, without loss of generality, that h(0) = 0.

2.3 Learning a stabilizing controller from n+1 expert demonstra-

tions

Here, we describe the methodology for constructing an asymptotically stabilizing controller

when M = n+ 1. We consider the case when M ≥ n+ 1 in Section 2.4.

2.3.1 Feedback linearization

Recall that using the feedback linearizability assumption, we can rewrite the system dynamics

(2.5) in the coordinates given by (2.6) resulting in:

ż1 = z2,

...

żn−1 = zn,

żn = a(z) + b(z)u,

(2.7)

where a =
(
Lnfh

)
◦ Φ−1 and b =

(
LgL

n−1
f h

)
◦ Φ−1. The feedback law:

u = b(z)−1(−a(z) + v), (2.8)

further transforms the system (2.5) into the system given by:

ż = Az +Bv, (2.9)

where (A,B) is a Brunovsky pair.

Remark 2.3.1. The expert controller κ : Rn → R in the (z, v)-coordinates is given by κ(z) =

a(z) + b(z)k(Φ−1(z)). The smoothness of k implies that the function κ is also smooth.
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2.3.2 Expert demonstrations

Recall that the set of demonstrations D consists of solutions of the system (2.5). Using

(2.6) and (2.8), we can represent the demonstrations D in (z, v)-coordinates. We denote the

resulting set by D(z,v) = {(zi, vi)}Mi=1, where functions zi : [0, T ] → Rn and vi : [0, T ] → R

are given by:

zi(t) ≜ Φ(xi(t)) (2.10)

vi(t) ≜ Lnfh(x
i(t)) + LgL

n−1
f h(xi(t))ui(t), (2.11)

for all i ∈ {1, · · · ,M} and for all t ∈ [0, T ]. We define the set of demonstrations D(z,v)

evaluated at time t as:

D(z,v)(t) = {(zi(t), vi(t))}Mi=1.

It can be easily verified that the demonstrations in D(z,v) satisfy the dynamics (2.9) and

vi(t) = κ(zi(t)).

2.3.3 Constructing the learned controller

We denote by κ̂(t, z) the controller learned from the expert demonstrations. We begin by

partitioning time into intervals of length T and indexing these intervals with p ∈ N0. Let us

construct the following matrices for t ∈ [0, T ]:

Z(t) ≜
[
z2(t)− z1(t) · · · zn+1(t)− z1(t)

]
(2.12)

V (t) ≜
[
v2(t)− v1(t) · · · vn+1(t)− v1(t)

]
. (2.13)

Our first attempt at constructing the learned controller, which we improve upon later, is to

use the piecewise-continuous controller v(t) = κ̂(t, z(pT )) for all t ∈ [pT, (p+ 1)T ], where:

κ̂(t, z(pT )) = V (t− pT )ζ(p), (2.14)

with ζ(p) = Z−1(0)z(pT ), and Z(t), V (t) defined in (2.12) and (2.13), respectively.
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The next lemma formally shows that an affine combination of trajectories of (2.9) is a

valid trajectory for (2.9).

Lemma 2.3.2. Suppose we are given a set of finite-length solutions {(zi, vi)}n+1
i=1 of the

system (2.9), where each (zi, vi) is defined for 0 ≤ t ≤ T , T ∈ R+. Assume that {zi(0)}n+1
i=1

is an affinely independent set. Then, under the control law v(t) = V (t − t0)ζ with ζ =

Z−1(0)z(t0), the solution of the system (2.9) is z(t) = Z(t− t0)ζ, for t0 ≤ t ≤ T + t0, where

Z(t) and V (t) are defined in (2.12) and (2.13), respectively.

Proof. This lemma can be verified by substitution.

Remark 2.3.3. Affine independence of the set {zi(0)}n+1
i=1 is a generic property, i.e., this is

true for almost all expert demonstrations. In practice, if this set is not affinely independent,

a user can eliminate the affinely dependent demonstrations and request the expert to provide

additional demonstrations.

We note, however, that the control law (2.14) samples the state z with a sampling time

T and essentially operates in open loop in between these samples. To allow for closed-loop

control, we propose the improved controller that has, for all t ∈ [pT, (p+1)T ], the following

form:

v(t) = κ̂(t, z(t)) = V (t− pT )ζ(p, t),

ζ(p, t) = Z−1(t− pT )z(t).
(2.15)

In the absence of uncertainties and disturbances, by Lemma 2.3.2, the coefficients ζ

satisfy:

ζ(p, t) = Z−1(t− pT )z(t) = Z−1(0)z(pT ), (2.16)

i.e., the controller (2.15) applies the input equal to that applied by the controller (2.14).
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2.3.4 Stability of the learned controller

Assuming (2.16) holds, the system (2.9) in closed loop with (2.15) has the following form:

ż = Az +BV (t− pT )Z−1(0)z(pT ), (2.17)

for all t ∈ [pT, (p+ 1)T ]. Integrating the dynamics, we show that the sequence {z(pT )}p∈N0

satisfies:

z((p+ 1)T ) = Ψ(T )z(pT ), (2.18)

where:

Ψ(T ) ≜ eAT +

∫ T

0

eA(T−τ)BV (τ)Z−1(0)dτ. (2.19)

By adopting a term from Floquet’s theory, we refer to Ψ(T ) in (2.19) as the closed-loop

monodromy matrix [80].

This section’s main result provides sufficient conditions for asymptotic stability of system

(2.5) in closed loop with (2.8)-(2.15).

Theorem 2.3.4. Consider the system (2.5) and assume it is feedback linearizable on an

open set U ⊆ Rn containing the origin. Let T ∈ R+ and suppose we are given a finite set of

demonstrations D = {(xi, ui)}n+1
i=1 generated by the system (2.5), in closed loop with a smooth

asymptotically stabilizing controller k : Rn → R, and satisfying xi(t) ∈ U for all t ∈ [0, T ].

Assume that {Φ(xi(t))}n+1
i=1 is affinely independent for all t ∈ [0, T ]. Then, there is a T̃ ∈ R+

such that for all T ≥ T̃ , the origin of system (2.5) in closed-loop with controller (2.8)-(2.15)

is uniformly asymptotically stable.

Proof. The asymptotic stability of (2.5) and (2.9) are equivalent on U and Φ(U) [81], and,

therefore, the set D(z,v) given by (2.10) and (2.11) also consists of asymptotically stable

solutions, i.e., there exists β ∈ KL such that for all i ∈ {1, ..., n+ 1}:

∥zi(t)∥ ≤ β(∥zi(0)∥, t), ∀t ∈ R+
0 . (2.20)
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Consider the closed-loop system (2.17). By Lemma 2.3.2:

z((p+ 1)T ) = Z(T )Z−1(0)z(pT ), ∀T ∈ R+
0 .

Combining this with (2.18) implies that:

Ψ(T ) = Z(T )Z−1(0). (2.21)

We claim that, for any constants a, b, c > 0, there exists t ∈ R+ such that β(r, t) < c

for all r ∈ [a, b]. This claim will be shown using an argument similar to that of the proof

of Lemma 16 in [82]. Using Lemma 4.3 from [83], there exist class K∞ functions σ1, σ2 such

that β(r, t) ≤ σ1(σ2(r)e
−t) for all r, t ∈ R+

0 . Let 0 < ε < c. Define, for all r ∈ R+, t(r) to be

the solution of σ1(σ2(r)e
−t) = c− ε and obtain:

t(r) = − log
σ−1
1 (c− ε)

σ2(r)
.

Since t(r) is a continuous function and [a, b] is compact, the extreme value theorem implies

that t∗ = maxr∈[a,b] t(r) is well-defined. For all r ∈ [a, b], it is true that:

β(r, t∗) ≤ σ1(σ2(r)e
−t∗) ≤ c− ε < c.

Using the previous claim with a = mini∈{1,...,n+1} ∥zi(0)∥, b = maxi∈{1,...,n+1} ∥zi(0)∥ and

c = 1/ (2
√
n ∥Z−1(0)∥), we conclude the existence of T̃ ∈ R+ such that, for all T ≥ T̃ , the

following inequality holds:

β(∥zi(0)∥, T ) < 1

2
√
n∥Z−1(0)∥

,

for all i ∈ {1, . . . , n + 1}. Therefore, by (2.20), for all i ∈ {1, . . . , n + 1} and for all T ≥ T̃ ,

we have:

∥zi(T )∥ < 1

2
√
n∥Z−1(0)∥

. (2.22)
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Using (2.21) and (2.22), for all T ≥ T̃ , we have:

∥Ψ(T )∥ ≤ ∥Z(T )∥
∥∥Z−1(0)

∥∥ ≤ ∥Z(T )∥F
∥∥Z−1(0)

∥∥
=

(
n+1∑
i=2

∥zi(T )− z1(T )∥2
) 1

2 ∥∥Z−1(0)
∥∥

<

√
n√

n ∥Z−1(0)∥
·
∥∥Z−1(0)

∥∥ < 1.

(2.23)

According to stability conditions for linear discrete-time systems (see Theorem 10.9

in [46]), the equation (2.23) implies that, for all T > T̃ , the system (2.18) is uniformly

exponentially stable. From [80], we know that uniform exponential stability of the sampled-

data system (2.18) implies uniform exponential stability of the system (2.9)-(2.15) because

the matrices Ψ(t) are bounded for t ∈ [0, T ]. Uniform asymptotic stability of the origin for

the system (2.9)-(2.15) in the (z, v)-coordinates implies uniform asymptotic stability of the

origin for the feedback equivalent system (2.5)-(2.8)-(2.15) in (x, u)-coordinates [81].

Remark 2.3.5. Theorem 2.3.4 shows the existence of T̃ ∈ R+ such that ∥Ψ(T )∥ < 1 for all

T ≥ T̃ . In practice, a user can determine T ∈ R+ satisfying this condition by directly

computing ∥Ψ(t)∥ = ∥Z(t)Z−1(0)∥ for various t ∈ R+
0 .

Remark 2.3.6. The fact that we assume feedback linearizability on some open set U ⊆ Rn

presents the user with the opportunity to use either local or global feedback linearization

results, depending on what their application allows for. We recommend [79] as a good

starting point to find conditions for both local (see Theorem 4.2.3 in [79]) and global (see

Theorem 9.1.1 in [79]) feedback linearizability.

Remark 2.3.7. In Theorem 2.3.4, we provide a guarantee the learned controller k̂ stabilizes

the system at the origin. This result can also be useful when the objective of the learned

controller is to track a trajectory. The key idea is to recast the problem of trajectory

tracking into that of stabilizing the error dynamics (see Section 4.5 in [79]). We consider this

generality of the learned controller to be a strength of this approach. We will experimentally

illustrate this in Section 2.6.1.
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Remark 2.3.8. Although we assume in this work an exact knowledge of the state, in most

applications, the state is estimated via an observer. Depending on the design of the observer,

the stability results of our methodology may also vary. To give an example, using Lemma

III.8 from [74], we can show that, with a well-designed sampled-data observer providing

state estimates of both the expert demonstrations and the current state, we can still retain

asymptotic stability. In general, however, a persistent error between the state estimate and

the current state can weaken the guarantee of asymptotic stability guarantee of the closed-

loop system to that of practical stability.

2.4 Learning from more than n+ 1 expert demonstrations

Here, we extend the previous results to the case where more than M > n + 1. For every

interval of length T , we show how to select a subset of n+ 1 demonstrations that results in

the best approximation of the expert controller.

2.4.1 Preliminaries

We begin by reviewing several key concepts from multivariate linear interpolation. Let

X = {x1, . . . , xk} be a finite set of points in Rn. The convex hull of a set X , denoted

convX , is the set of all convex combinations of points in X [84]. For any I ⊂ {1, . . . , k},

we define the subset XI = {xi ∈ X | i ∈ I}. A Cartesian product of two sets X × Y has a

natural left projection map π1 : X × Y → X (resp., right projection map π2 : X × Y → Y)

given by π1(x, y) = x (resp., π2(x, y) = y). An n-simplex S is the convex hull of a set

X ′ = {x′1, . . . , x′n+1} of n + 1 affinely independent points. A triangulation of points in

X , denoted T (X ), is a collection of n-simplices such that their vertices are points in X ,

their interiors are disjoint, and their union is convX . We denote the n-simplex in T (X )

containing x ∈ convX by ST (x) and define a vertex index set associated with x in T (X ),

denoted IT (x), as to satisfy ST (x) = convXIT (x). The Delaunay triangulation of X , denoted
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DT (X ), is a triangulation with the property that the circum-hypersphere of every n-simplex

in the triangulation contains no point from X in its interior. It is unique if no n+ 1 points

are on the same hyperplane and no n+ 2 points are on the same hypersphere [85].

Let ψ : Rn → Rm be an unknown function. Given a finite set of points X = {x1, . . . , xk} ⊂

Rn and a set of function values Y = {y1, . . . , yk} ≜ {ψ(x1), . . . , ψ(xk)}, an interpolant

ψ̂X ,Y : convX → Rm is an approximation of ψ that satisfies ψ̂(x) = ψ(x) for all x ∈ X . We

define an interpolant ψ̂X ,Y
T : convX → Rm, called a piecewise-linear interpolant based on

T (X ), as:

ψ̂X ,Y
T (x) =

∑
i∈IT (x)

θiyi,

where θi ≥ 0 satisfy:

x =
∑

i∈IT (x)

θixi,
∑

i∈IT (x)

θi = 1.

2.4.2 Constructing the learned controller

Let us describe the construction of the controller v = κ̂(t, z) for M ≥ n + 1. Define Z(t) =

π1
(
D(z,v)(t)

)
and V(t) = π2

(
D(z,v)(t)

)
. We partition time into intervals of length T , indexed

by p ∈ N0. For each [pT, (p+ 1)T ], we propose using the piecewise-continuous control law

v(t) = κ̂(t, z(t)), where κ̂(τ, ξ) is defined as follows:

(i) For ξ ∈ convZ(τ − pT ), the value of κ̂(τ, ξ) is given by the value at ξ of a piecewise-

linear interpolant ψ̂
Z(τ−pT ),V(τ−pT )
T . Since a piecewise-linear interpolant is determined

by an associated triangulation T (Z(τ − pT )) [85], this implies that there is a family of

possible learned controllers we can construct from D(z,v). Moreover, the value of the

interpolant depends only on the values of ZIT (ξ)(τ − pT ) and VIT (ξ)(τ − pT ), where

IT (ξ) is a vertex set associated with ξ in T (Z(τ − pT )).

(ii) For ξ /∈ convZ(τ − pT ), let ξ∗ be the Euclidean projection of ξ onto convZ(τ −

pT ). Define the index set IT (ξ) = IT (ξ
∗) and express ξ as an affine combination
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ξ =
∑

i∈IT (ξ) θiz
i(0). Then, the value of κ̂(τ, ξ) is given by κ̂(τ, ξ) =

∑
i∈IT (ξ) θiv

i(τ −

pT ).

In both cases, the controller can be concisely expressed if, given a vertex index set

I = {i1, . . . , in+1} for Z(t) and V(t), we construct the following matrices:

ZI(t) ≜
[
zi2(t)− zi1(t) · · · zin+1(t)− zi1(t)

]
(2.24)

VI(t) ≜
[
vi2(t)− vi1(t) · · · vin+1(t)− vi1(t)

]
, (2.25)

for t ∈ [0, T ]. Then, using (2.24) and (2.25), the proposed control law, for all t ∈ [pT, (p +

1)T ], is given by:

v(t) = κ̂T (t, z(t)) = VIT (z(t))(t− pT )ζ(p, t)

ζ(p, t) = Z−1
IT (z(t))(t− pT )z(t).

(2.26)

Note that, in the absence of uncertainties and disturbances, by Lemma 2.3.2, the coeffi-

cients satisfy:

ζ(p, t) = Z−1
IT (z(t))(t− pT )z(t)

= Z−1
IT (z(pT ))(0)z(pT ).

(2.27)

Therefore, for all t ∈ [pT, (p+ 1)T ], the controller (2.26) applies the input equal to that

applied by the following controller:

v(t) = κ̂T (t, z(pT )) = VIT (z(pT ))(t− pT )ζ(p)

ζ(p) = Z−1
IT (z(pT ))(0)z(pT ).

(2.28)

Incidentally, this corresponds to the value of the piecewise-linear interpolant ψ̂T
Z(0),V(t−pT ) at

z(pT ).

2.4.3 Stability of the learned controller

Let us define the collection of index sets P = {I1, . . . , IP}, where each Ij selects vertices of

an n-simplex in T (Z(0)) and P = |T (Z(0))|. Note that P is a finite set because there are
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only finitely many n-simplices in T (Z(0)). Suppose the index set associated with z(pT ) in

T (Z(0)) is IT (z(pT )) = Ij(p) for some j(p) ∈ {1, . . . , P}. Assuming (2.27) holds, the system

(2.9) in closed loop with (2.26) is given by:

ż = Az +BVIj(p)(t− pT )Z−1
Ij(p)(0)z(pT ), (2.29)

for all t ∈ [pT, (p + 1)T ]. Integrating the dynamics shows that the sequence {z(pT )}p∈N0

satisfies:

z((p+ 1)T ) = Ψj(p)(T )z(pT ), (2.30)

where

Ψj(p)(T ) ≜ eAT +

∫ T

0

eA(T−τ)BVIj(p)(τ)Z
−1
Ij(p)(0)dτ.

Note that now, instead of a single monodromy matrix, we have a set of monodromy matrices

{Ψj(T )}Pj=1.

The following result is an extension of Theorem 2.3.4 for M ≥ n+ 1 demonstrations.

Theorem 2.4.1. Consider the system (2.5) and assume it is feedback linearizable on an

open set U ⊆ Rn containing the origin. Let T ∈ R+ and suppose we are given a finite set of

demonstrations D = {(xi, ui)}Mi=1 generated by the system (2.5), in closed loop with a smooth

asymptotically stabilizing controller k : Rn → R, and satisfying xi(t) ∈ U for all t ∈ [0, T ].

Assume that {Φ(xi(t))}Mi=1 is affinely independent for all t ∈ [0, T ]. Then, there exists a

T̃ ∈ R+ such that for all T ≥ T̃ , the origin of system (2.5) in closed-loop with controller

(2.8)-(2.26) is uniformly asymptotically stable.

Proof. The proof of Theorem 2.3.4 implies the existence of T̃j ∈ R such that ∥Ψj(t)∥ < 1

for all t ≥ T̃j. We choose T̃ = maxj∈{1,...,P} Tj. The system (2.9) in closed loop with

controller (2.26) can be represented as a switched system (2.30), where j(p) ∈ {1, . . . , P} is

a switching sequence. By Theorem 3 in [86], the fact that ∥Ψj(T )∥ < 1 for all T ≥ T̃ and

j ∈ {1, . . . , P} implies that, for any switching signal j(p), the system (2.30) is uniformly
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exponentially stable. Since the matrices Ψj(t) are bounded for t ∈ [0, T ], the system (2.9)

in closed loop with controller (2.26) is uniformly exponentially stable. Uniform asymptotic

stability of the origin for the system (2.9)-(2.26) in the (z, v)-coordinates implies uniform

asymptotic stability of the origin for the feedback equivalent system (2.5)-(2.8)-(2.26) in

(x, u)-coordinates [81].

2.4.4 Optimality of the learned controller

Recall that the piecewise-linear interpolant defining the controller κ̂T depends on the choice

of the triangulation T (Z(t− pT )). Assuming (2.27) holds, this choice reduces to the choice

of the triangulation T (Z(0)), which dictates the index set of demonstrations IT (z(pT )) used

to construct the solution for each interval [pT, (p+1)T ]. Without loss of generality, in what

follows we discuss the solutions on the interval [0, T ] only — a solution on [pT, (p+1)T ] can

be represented as a solution on [0, T ] with the initial condition equal to z(pT ).

Typically, there are several triangulations one can define given a set of sample points Z(0).

We want our choice of triangulation to result in closed-loop trajectories that approximate

expert trajectories well for any initial state z0 ∈ convZ(0) distinct from Z(0). More precisely,

we want to find a triangulation T (Z(0)) that best approximates the function ϕ : [0, T ] ×

convZ(0) → Rn, which defines solutions of (2.9) under the expert controller κ, by the

function ϕ̂T : [0, T ]× convZ(0) → Rn, which defines the solutions of (2.9) under the learned

controller κ̂T . That is, we want solution to:

min
T (Z(0))

sup
ϕ∈F

max
t∈[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂T (t, z0)
∥∥∥ , (2.31)

where F is the class of functions to which the expert solutions belong. We can view (2.31)

as a game where we pick T (Z(0)), and the adversary, upon seeing our choice of T (Z(0)),

picks ϕ to maximize the cost.

Let us leverage the properties ϕ(t, z0) has by virtue of describing solutions of (2.9) under

the expert controller κ to determine the class F . We will use the notation ϕt : Rn → Rn for
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ϕt(z0) = ϕ(t, z0). By Theorem 4.1 in [87, Ch. V], since κ is a smooth function, the Hessians

of the coordinate functions of the solution ∂2ϕi
∂z20

(t, z0) are continuous with respect to t and

z0. By the extreme value theorem, compactness of convZ(0) implies that, for every i, there

exists H ∈ R+
0 such that

∥∥∥∂2ϕi∂z20
(t, z0)

∥∥∥ ≤ Hi for all t ∈ [0, T ] and z0 ∈ convZ(0). Thus, the

norms of the Hessians of the coordinate functions can be bounded by H = max{H1, . . . , Hn}.

We denote the class of functions whose coordinate functions have the Hessian norm smaller

or equal to H by F(H). For a fixed t ∈ [0, T ], ϕt ∈ F(H) and, therefore, the function ϕ

belongs to F(H)[0,T ], the set of all functions from [0, T ] to F(H).

Definition 2.4.2. For any z0 ∈ convZ(0) and any learned controller κT , the worst-case

trajectory approximation error on the interval [0, T ] is given by:

sup
ϕ∈F(H)[0,T ]

max
t∈[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂T (t, z0)
∥∥∥ ,

where ϕ : [0, T ] × Rn → Rn is the trajectory of the system (2.9) with the initial condition

z0 under the expert controller κ, ϕ̂T : [0, T ]×Rn → Rn is the trajectory of the system (2.9)

with the same initial condition z0 under the learned controller κ̂T , and F(H)[0,T ] is the set

of all functions from [0, T ] to F(H). The smallest worst-case trajectory approximation error

on the interval [0, T ] is given by:

min
T (Z(0))

sup
ϕ∈F(H)[0,T ]

max
t∈[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂T (t, z0)
∥∥∥ . (2.32)

The following lemma by Omohundro [88] shows that the Delaunay triangulation leads

to the best worst-case piecewise-linear interpolation for functions in F(H). For an efficient

implementation of piecewise-linear interpolation based on the Delaunay triangulation, we

refer the reader to [85].

Lemma 2.4.3 ([88]). Let ψ : Rn → Rm satisfy the bounded Hessian norm property, i.e.,

ψ ∈ F(H), for some H ∈ R+
0 . Given a set of points X = {x1, . . . , xk} ⊂ Rn and a set of

function values Y = {y1, . . . , yk} ⊂ Rm, the piecewise-linear interpolant with the smallest
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maximum approximation error is based on the Delaunay triangulation DT (X ), i.e., for any

point x ∈ convX , the following is true:∥∥∥ψ(x)− ψ̂X ,Y
DT (x)

∥∥∥ = min
T (X )

max
ψ∈F(H)

∥∥∥ψ(x)− ψ̂X ,Y
T (x)

∥∥∥ .
The following proposition uses Lemma 2.4.3 to show that choosing the Delaunay tri-

angulation defines the learned controller that results in closed-loop trajectories that best

approximate the corresponding expert trajectories.

Proposition 2.4.4. Consider the system (2.5) and assume it is feedback linearizable on an

open set U ⊆ Rn containing the origin. Let T ∈ R+ and suppose we are given a finite

set of demonstrations D = {(xi, ui)}Mi=1 generated by the system (2.5), in closed loop with

a smooth asymptotically stabilizing controller k : Rn → R, and satisfying xi(t) ∈ U for

all t ∈ [0, T ]. Assume that {Φ(xi(t))}Mi=1 is affinely independent for all t ∈ [0, T ]. For any

z0 ∈ convZ(0), the controller κ̂DT based on the Delaunay triangulation DT (Z(0)) defined as

in (2.26) results in closed-loop trajectories in z-coordinates that have the smallest worst-case

trajectory approximation error on the interval [0, T ] as defined in Definition 2.4.2.

Proof. Recall that by Lemma 2.3.2 the trajectory of the system (2.9) under the learned

controller (2.26) is given by:

ϕ̂T (t, z0) = ZIT (z0)(t)ζ,

where ζ ∈ Rn is a vector of affine coefficients that we choose ζ at the beginning of the interval

[0, T ] and keep constant.

For a fixed t ∈ [0, T ], we can interpret ϕ̂T (t, ·) as a piecewise-linear interpolant of ϕt

mapping initial conditions to the state reached at time t based on sample points Z(0) and

sample values Z(t). Therefore, since, for any t ∈ [0, T ], the function ϕt ∈ F(H), by Lemma
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2.4.3, the function ϕ̂DT (t, ·) is the best worst-case approximation of the function ϕt, i.e.:

sup
ϕt∈F(H)

∥∥∥ϕt(z0)− ϕ̂DT (t, z0)
∥∥∥ ≤

sup
ϕ∈F(H)

∥∥∥ϕt(z0)− ϕ̂T (t, z0)
∥∥∥ , (2.33)

for any triangulation T (Z(0)) and any z0 ∈ convZ(0). Noting that (2.33) holds for all

t ∈ [0, T ], we have:

max
t∈[0,T ]

sup
ϕ∈F(H)[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂DT (t, z0)
∥∥∥ ≤ max

t∈[0,T ]
sup

ϕ∈F(H)[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂T (t, z0)
∥∥∥ ,

that can be written as:

sup
ϕ∈F(H)[0,T ]

max
t∈[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂DT (t, z0)
∥∥∥ ≤ sup

ϕ∈F(H)[0,T ]

max
t∈[0,T ]

∥∥∥ϕ(t, z0)− ϕ̂T (t, z0)
∥∥∥ .

Remark 2.4.5. While we justify the construction of the controller for z(pT ) ∈ convZ(0)

with optimality in terms of approximation error, we cannot provide a similar justification

for z(pT ) /∈ convZ(0). Therefore, we suggest collecting the expert demonstrations in such

a way that the normal region of operation belongs to the convex hull of the demonstrations.

Remark 2.4.6. Note that the metric we use to formulate the error in (2.32) is expressed

in z-coordinates instead of the original x-coordinates. While we cannot generally have a

guarantee that the best worst-case approximation in the z-coordinates translates to that

in the x-coordinates, the metric used in (2.32) and the Euclidean norm metric in the x-

coordinates are strongly equivalent on convZ(t − pT ) due to the Lipschitz continuity of Φ

and its inverse.

Remark 2.4.7. Similarly to Proposition 2.4.4, one can use Lemma 2.4.3 to show that the

learned controller κ̂DT based on the Delaunay approximation DT (Z(0)) is the best worst-

case approximation of the expert controller κ, i.e., for any z ∈ convZ(0), the Delaunay

triangulation is the solution of:

min
T (Z(0))

max
κ∈F(H′)

∥κ(z)− κ̂T (z)∥ , (2.34)

where H ′ ∈ R is a bound on the Hessian norms of coordinate functions of κ.
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2.5 Learning a stabilizing controller for non-feedback linearizable

systems

In Sections 2.3 and 2.4, we propose a methodology for learning control from expert demon-

strations assuming the system is feedback linearizable. Here, we extend our methodology to

systems outside of the class of feedback linearizable systems using an embedding technique

described in [72].

2.5.1 Embedding technique

First, we describe the embedding technique from [72]. This technique immerses a nonlinear

system of dimension n into an extended system that contains a chain of n integrators via

dynamic feedback. Although in [72] only single-input single-output systems were considered,

it can be shown that a similar technique applies to multiple-input multiple-output systems.

For clarity of exposition, however, we will consider a system (2.5) with m = 1 and the results

extend to multiple-input multiple-output case, mutatis mutandis.

Given constants wj ∈ R, j = 1, . . . , n − 1 and an output map h : Rn → R, we define

Φ : R2n−1 → R2n−1 by:

z
ξ

 = Φ(x, ξ) =

Φz(x, ξ)

ξ

 =



h(x) + ξ1

Lfh(x) + ξ2

L2
fh(x) + ξ3

...

Ln−1
f h(x)−

∑n−1
j=1 wjξj

ξ


, (2.35)
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where ξ ∈ Rn−1. We also define the auxiliary dynamics:

ξ̇1 = ξ2 − Lgh(x)u,

ξ̇2 = ξ3 − LgLfh(x)u,

...

ξ̇n−1 = −
n−1∑
i=1

wiξi − LgL
n−2
f h(x)u,

(2.36)

and the feedback law:

u =
1

r(x)
(s(x, ξ) + v) (2.37)

where:

r(x) = LgL
n−1
f h(x) +

n−1∑
j=1

wjLgL
j−1
f h(x), (2.38)

and:

s(x, ξ) = −Lnfh(x) +
n−1∑
i=1

wiwn−1ξi −
n−2∑
j=1

wjξj+1. (2.39)

We say that the system (2.5) is feedback linearizable through an embedding on the open set

U ⊆ Rn if there exist constants wj, j = 1, . . . , n− 1 and the output map h such that Φ is a

diffeomorphism from U to Φ(U) and r(x) ̸= 0 for all x ∈ U .

If the system (2.5) is feedback linearizable through an embedding, we can rewrite the

dynamics of (2.5) and (2.36) in the (z, ξ)-coordinates given by (2.35) resulting in the system

that consists of the subsystem describing evolution of z given by:

ż1 = z2,

...

żn−1 = zn,

żn = −s(x, ξ) + r(x)u,

(2.40)
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and the subsystem describing the evolution of ξ given by:

ξ̇1 = (ξ2 − Lgh(x)u)(x,ξ)=Φ−1(z,ξ)

...

ξ̇n−1 =

(
−

n−1∑
i=1

wiξi − LgL
n−2
f h(x)u

)
(x,ξ)=Φ−1(z,ξ)

.

(2.41)

Furthermore, when the system (2.5) is feedback linearizable through an embedding, the

feedback law given by (2.37) is well-defined and transforms the z-subsystem (2.40) into the

chain of integrators given by (2.9) and the ξ-subsystem (2.41) into:

ξ̇1 =

(
ξ2 −

Lgh(x)

r(x)
(s(x, ξ) + v)

)
(x,ξ)=Φ−1(z,ξ)

...

ξ̇n−1 =

(
−

n−1∑
i=1

wiξi −
LgL

n−2
f h(x)

r(x)
(s(x, ξ) + v)

)
(x,ξ)=Φ−1(z,ξ)

.

(2.42)

2.5.2 Expert demonstrations

Similarly to the case of fully feedback linearizable systems, we assume that the system (2.5) is

feedback linearizable through an embedding on an open set U ⊆ Rn containing the origin and

the demonstrations xi(t) belong to U for all t ∈ [0, T ]. We first transform the demonstrations

D into (z, ξ, v)-coordinates. For each demonstration (xi, ui), we use (2.35), (2.36), and (2.37)

to transform (xi, ui) into (zi, ξi, vi). More specifically:

• we choose an arbitrary ξ0 ∈ Rn−1 to initialize ξi(0) = ξ0, and solve the equation in

(2.36) using demonstrations (xi, ui) as the input to determine ξi(t) for t ∈ [0, T ];

• for all t ∈ [0, T ], using ξi(t), we determine zi(t) from (2.35) and vi(t) from (2.37) as:

zi(t) = Φ(xi(t), ξi(t)) (2.43)

vi(t) = r(xi(t))ui(t)− s(xi(t), ξi(t)). (2.44)
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We denote the resulting set of demonstrations by:

D(z,ξ,v) = {(z1, ξ1, v1), . . . , (zn, ξn, vn)}, (2.45)

where zi : [0, T ] → Rn, ξi : [0, T ] → Rn−1, and vi : [0, T ] → R.

2.5.3 Constructing the learned controller for the extended class of systems

We now show that, forM = n+1, the controller v = κ̂(t, z) from (2.15) stabilizes the system

(2.5) by stabilizing the chain of integrators (2.9) in the transformed coordinates (z, ξ). Please

note that we focus on the case M = n+1 for ease of exposition, and the proposed extension

is also compatible with the case M ≥ n+ 1 described in Section 2.4.

The following statement provides sufficient conditions for stability of (2.5) under the

control law (2.15).

Theorem 2.5.1. Consider the system (2.5) and assume it is feedback linearizable through

an embedding on an open set U ⊆ Rn containing the origin. Let T ∈ R+ and suppose we are

given a finite set of demonstrations D = {(xi, ui)}n+1
i=1 of the system (2.5) generated by the

system (2.5), in closed loop with a smooth asymptotically stabilizing controller k : Rn → R,

and satisfying xi(t) ∈ U for all t ∈ [0, T ]. Further, suppose the following two conditions hold:

(A1) the matrix:

Aξ =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−w1 −w2 · · · −wn−1

 (2.46)

is Hurwitz;

(A2) the ξ-subsystem in (2.42) is input-to-state stable (ISS) with respect to z and v.
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Assume that the set {Φz(x
1(t)), . . . ,Φz(x

n(t))} is affinely independent for all t ∈ [0, T ]. Then,

there exists a T̃ ∈ R+ such that for all T ≥ T̃ , the origin of system (2.5) in closed-loop with

the auxiliary dynamics (2.36) and controller (2.37)-(2.15) is uniformly asymptotically stable.

Proof. Let us use condition (A1) to show that the expert solutions {(xi, ui)}n+1
i=1 are uniformly

asymptotically stable. Since k(x) is asymptotically stabilizing, the origin of the system

ẋ = f(x) + g(x)k(x) is uniformly asymptotically stable. Because the origin is the equilibrium

point of ẋ = f(x) + g(x)k(x), we have that k(0) = 0. The ξ-subsystem in (2.36) with

u = k(x) can be interpreted as a control system with the input x. Condition (A1) together

with the fact that k(0) = 0 implies that the ξ-subsystem in (2.36) with u = k(x) is uniformly

exponentially stable when x ≡ 0. Uniform exponential stability of the unforced ξ-subsystem

implies that the ξ-subsystem in (2.36) with u = k(x) is ISS with respect to x (see Lemma

4.6 in [77]). By Lemma 4.7 in [77], input-to-state stability of the ξ-subsystem with u = k(x)

with respect to x as input and uniform asymptotic stability of ẋ = f(x) + g(x)k(x) implies

that there is a class KL function β : R+
0 × R+

0 → R+
0 such that for all i ∈ {1, . . . , n}:∥∥∥∥∥∥

xi(t)
ξi(t)

∥∥∥∥∥∥ ≤ β

∥∥∥∥∥∥
xi(0)
ξi(0)

∥∥∥∥∥∥ , t
 . (2.47)

Because the system (2.5) is feedback linearizable through an embedding, we have that Φ

given by (2.35) is a diffeomorphism. Therefore, according to [81], the inequality (2.47)

implies that for all i ∈ {1, . . . , n}:∥∥∥∥∥∥
zi(t)
ξi(t)

∥∥∥∥∥∥ ≤ β1

∥∥∥∥∥∥
zi(0)
ξi(0)

∥∥∥∥∥∥ , t
 , (2.48)

where β1 : R+
0 × R+

0 → R+
0 is a class KL function.

We can use (2.48) to show that there is a T̃ ∈ R+
0 such that:

β1

∥∥∥∥∥∥
zi(0)
ξi(0)

∥∥∥∥∥∥ , T
 <

1

2
√
n∥Z−1(0)∥

,
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for all T ≥ T̃ . Using the argument from the proof of Theorem 2.3.4 allows us to conclude

uniform exponential stability of the origin of the z-subsystem given by (2.9), provided T > T̃ .

The uniform exponential stability of the z-subsystem implies that there is a function

βz ∈ KL such that:

∥z(t)∥ ≤ βz(∥z(0)∥, t). (2.49)

The matrix product V (t)Z−1(t) is continuous with respect to t and defined on [0, T ] that

is compact. By the extreme value theorem, this product has a bounded norm. This fact,

together with the inequality (2.49), implies that the control input vκ̂(t, z) given by (2.15)

satisfies:

∥v(t)∥ ≤ βv(∥z(0)∥, pT ), (2.50)

where βv is also a class KL function.

By condition (A2), the ξ-subsystem in (2.42) is ISS with respect to z and v. Lemma 4.7

in [77] shows that the ISS property, along with the bounds (2.49) and (2.50), allows us to

conclude that the origin of the system (2.9)-(2.42) in closed-loop with the controller (2.15)

is uniformly asymptotically stable. Uniform asymptotic stability of the origin of the system

(2.9)-(2.42)-(2.15) in the (z, ξ)-coordinates implies uniform asymptotic stability of the origin

of the feedback equivalent system (2.5)-(2.36)-(2.37)-(2.15) [81].

Remark 2.5.2. Similarly to Theorems 2.3.4 and 2.4.1, in Theorem 2.5.1, we assume feedback

linearizability through an embedding on some open set U ⊆ Rn without explicitly specifying

under what conditions this occurs. This is done to give the user an opportunity to use either

local or global results, depending on what their application allows for. To show local feedback

linearizability through an embedding, we suggest using the conditions from Proposition 4

in [72], namely that there exist constants wj, j = 1, . . . , n − 1 and an output map h such

that:
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(B1) the matrix

O(x) =
[
dh(x)T dLfh(x)

T . . . dLn−1
f h(x)T

]T
,

has rank n at the origin, implying that Φ given by (2.35) is a diffeomorphism from

some neighborhood U1 of the origin to Φ(U1);

(B2) r(0) ̸= 0, which implies that r(x) ̸= 0 for some neighborhood U2 of the origin.

These conditions imply that the system (2.5) is feedback linearizable through an embedding

on an open set U = U1 ∩ U2. Please note that the condition (B1) is also the sufficient

condition for local observability at the origin. The condition (B2) is violated if and only if

LgL
j−1
f h(0) = 0 for all j = 1, . . . , n − 1, which is equivalent to O(0) · g(0) = 0. Given that

O(0) is full-rank, this condition is, in turn, a consequence of (B1), provided g(0) ̸= 0.

Remark 2.5.3. Note that the class of feedback linearizable systems through an embedding

strictly contains feedback linearizable systems. In Section 2.6.2, we provide an example of a

system belonging to this class which is not feedback linearizable.

Remark 2.5.4. In general, verifying condition (A2) can be a challenging task. Therefore, the

authors of [72] suggest substituting the ISS condition (A2) with the more verifiable condition

that the matrix Aξ + Aw is Hurwitz, where:

Aw = ∇ξ



Lgh(x)
s(x,ξ)
r(x)

∣∣∣∣
(x,ξ)=Φ−1(z,ξ)

LgLfh(x)
s(x,ξ)
r(x)

∣∣∣∣
(x,ξ)=Φ−1(z,ξ)

...

LgL
n−2
f h(x) s(x,ξ)

r(x)

∣∣∣∣
(x,ξ)=Φ−1(z,ξ)


(z,ξ)=(0,0)

. (2.51)

This is because the matrix Aξ + Aw is a linear approximation of the unforced ξ-subsystem

in (2.42) around the origin and its stability implies local ISS of the system (2.42).
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Figure 2.1: Trajectory tracking of the nonlinear controller from [7] (left column) and the

learned controller from (2.15) (right column) under five different initial conditions. Each

experiment is plotted with a different color. The first lap trajectories (top row) are plotted

separately from those in the subsequent laps (bottom row).

2.6 Experiments and simulations

2.6.1 Quadrotor control experiment

We illustrate the performance of our methodology using the example of quadrotor dynamics:

p̈ =
1

m
(τRe3 − [ω]×Jω) , (2.52)

Ṙ = R[ω]×, (2.53)

ω̇ = J−1(η − [ω]×Jω), (2.54)
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Figure 2.2: Comparison of tracking errors in X, Y and Z coordinates of learned controller

from (2.15) (red) and nonlinear controller from [7] (blue) for all five experiments.

where: p ∈ R3, R ∈ SO(3), ω ∈ R3 are the position, orientation, and angular velocity of

the quadrotor, respectively; τ ∈ R and η ∈ R3 are thrust and torque inputs, respectively;

m ∈ R, and J ∈ R3×3 are the mass and the inertia matrix; [ · ]× denotes the matrix form of

the vector cross product, and e3 =
[
0 0 1

]T
is a unit vector.

We split the dynamics (2.52)-(2.54) into two subsystems: one described by (2.52)-(2.53)

with the state x = (p, ṗ, R, τ) and the virtual inputs u = (τ̇ , ω), and the other described

by (2.54) with the state x′ = ω and the virtual inputs u′ = η. Typically, quadrotors have

high-frequency internal controllers that track the desired angular velocity based on state

feedback and, therefore, it is reasonable to assume that we can directly control the angular

velocity [89].

It is known that the dynamics (2.52)-(2.54) are differentially flat with respect to position

and yaw angle [90]. In what follows, we focus on controlling the position p, whereas the

yaw angle is controlled to remain constant. Differential flatness allows us to transform the
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dynamics (2.52)-(2.53) into linear dynamics ż1 = z2, ż2 = z3, ż3 = v via a coordinate

transformation:

z =
[
z1 z2 z3

]T
≜
[
p ṗ p̈

]T
,

and the feedback law:

v =
1

m
(τ̇Re3 − τRω1e2 + τRω2e1) ≜ b(z)u.

We apply the controller design1 from [7] to the dynamics (2.52)-(2.54) in simulation2

and use the resulting solutions as the expert demonstrations. The controller parameters are

chosen as follows: KP = diag(7.0, 7.0, 16.5), KI = diag(0, 0, 15.5), KD = diag(5.0, 5.0, 3.4),

Krp = 6.0, Ky = 2.0. The expert is commanded to stabilize the quadrotor at the origin,

starting from various positions, velocities and accelerations. Given the dimension of the state

z equals 9, we record 10 expert solutions {(zi, vi)}10i=1 from simulations3, including the pair

corresponding to the trivial solution (z1, v1) ≡ (0, 0). Please note that the pairs (zi, vi) in

this context are merely evolutions of position, velocity, acceleration, and jerk. The recorded

data is studied to ensure that the sufficient conditions of Theorem 2.3.4 are satisfied, i.e., the

matrix Z(t) in (2.12) is always invertible and ∥Z(T )Z−1(0)∥ < 1, and a fragment of length

T = 2 s is used to construct a stabilizing controller (2.15).

Next, we compare the learned controller (2.15) and the expert controller from [7] by

using them to control a BitCraze CrazyFlie 2.0 quadrotor. In these experiments, the control

inputs (τ, ω) are supplied by a computer via a USB radio at the average rate of 300 Hz.

The internal PD controller of the CrazyFlie tracks (τ, ω) by controlling angular speeds of

1The only difference of the expert controller used in this work and that used in [7] is that here the low-level
controller is a linear PD controller.

2We collected expert demonstrations in simulation to ensure there is no estimation error affecting the
controller construction. In future work, we aim to construct the controller from expert solutions given by an
observer.

3The initial conditions used are the unit vectors of R9.
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individual rotors. For state estimation, we use a Kalman filter that gets the position and

attitude measurements from an OptiTrack motion capture system.

The experimental benchmark4 we choose to compare the controllers is to track the refer-

ence depicted on Figure 2.1, which consists of two parts: a figure of eight given by:

pR(t) = (sin (4πft), sin (2πft), 0.1 sin (2πft) + 0.7) ,

where f = 0.1 Hz, from t = 0 s to t = 40 s; and a setpoint at the origin after t ≥ 40 s. Note the

reference trajectory is quite different from the collected expert demonstrations. We use the

learned controller κ̂ from (2.15) to control the tracking error with v(t) = κ̂(t, z(t)− zR(t)),

where zR = (pR, ṗR, p̈R), together with the feedback law:

u(t) = (
...
p R(t) + v(t))/b(z(t)).

For both the expert and the learned controllers, we perform five experiments — each from

a different initial position5.

In Figure 2.1, we depict the quadrotor trajectories for both the nonlinear controller

in [7] and the learned controller (2.15) tracking the aforementioned trajectory. We plot

the position trajectories in the first lap separately from those in the subsequent laps to

decouple the transient behaviour of a controller from the steady-state behaviour. In Figure

2.2 we compare the tracking errors of the learned controller with those of the nonlinear

controller from [7] for all five experiments. The initial conditions used during the experiments

are purposefully chosen to be far from the initial conditions used during the simulation.

The learned controller appears to track the trajectory well — the error is of the order of

centimeters. It can be seen qualitatively, however, from Figure 2.1 that, in comparison to

the expert controller, the learned controller takes a longer time to settle — this is especially

noticeable in the experiments where the initial position of the quadrotor does not match that

4Code used in the experiments can be found at https://github.com/cyphylab/cyphy_testbed/tree/LFD.

5The initial positions used are (0, 0, 0.7), (0.3, 0.3, 0.7), (0.3,−0.3, 0.7), (−0.3, 0.3, 0.7), (−0.3,−0.3, 0.7).
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of the reference. From Figure 2.2, we observe that the errors of the learned controller and

the expert controller are comparable, with the errors of the learned controller being slightly

smaller in X and Y coordinates, whereas being slightly larger in Z coordinates. For t ≥ 40

s, the error in position does not tend to zero for neither of the controllers, which appears to

contradict the theoretical results. We attribute this to the several milliseconds of delay with

which the control input is sent to the quadrotor6.

2.6.2 Ball and beam control simulation

Consider the ball and beam model described by [91]:

r̈ = b̄(rω2 − ḡ sin(ϕ))

ϕ̇ = ω

ω̇ = u,

(2.55)

with r ∈ R and v ∈ R denoting the position and the velocity of the ball on the beam,

respectively, while ϕ ∈ R and ω ∈ R denote the angle and the angular velocity of the beam

with respect to the horizontal line, respectively. The constant ḡ is the gravity constant, and

the constant b̄ = m/(Jb/R
2+m), where m is mass, Jb is the moment of inertia, and R is the

radius of the ball. The state of the system (2.55) is given by x = (r, ṙ, ϕ, ω). The values of

the parameters in this simulation are chosen to be b̄ = 0.7143 and ḡ = 9.81.

We choose the stabilizing controller7 proposed in [8] as the expert controller for the

system (2.55). Since dimension of the state is 4, we record simulations of 5 expert solutions

{(xi, ui)}5i=1 starting from various initial conditions8, including the trivial solution (x1, u1) ≡

(0, 0).

6Even in simulation, an introduction of such a delay into the control loop has resulted in the trajectory
stabilizing at a non-zero steady-state error.

7This controller is interesting to study because it is nonlinear, contains nested saturations, and utilizes
backstepping.

8The initial conditions used are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, π/8, 0), (0, 0, 0, 10).
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It can be shown that system (2.55) is not feedback linearizable [91] and, therefore, tech-

niques described in Sections 2.3 and 2.4 cannot be used. Instead, we use the technique de-

scribed in Section 2.5 to approximate the expert controller. To immerse the system (2.55),

we use the map Φ given by (2.35) with:

Φz(x, ξ) =


x1 + ξ1

x2 + ξ2

−b̄ḡ sinx3 + b̄x1x
2
4 + ξ3

b̄x2x
2
4 − ḡx4 cosx3 −

∑3
i=1wiξi

 , (2.56)

and the dynamic control law:
u = 1

r(x)
(s(x, ξ) + v)

ξ̇i = ξi+1, i = 1, 2

ξ̇3 = −w1ξ1 − w2ξ2 − w3ξ3 − 2x1x4u,

(2.57)

where:

r(x) = 2b̄x2x4 − b̄ḡ cosx3 + 2w3bx1x4

s(x, ξ) = −b̄2x24
(
−ḡ sinx3 + x1x

2
4

)
− b̄ḡx24 sinx3 + w1ξ2

+ w2ξ3 − w1w3ξ1 − w2w3ξ2 − w2
3ξ3.

Please note that this map and dynamic control law are only well-defined on an open set

around the origin.

We choose the parameters w = (1, 3, 3). First, we solve the differential equation in

(2.57) for the initial state ξ(0) = 0 using each of the previously collected expert solutions

{(xi, ui)}5i=1 as inputs. Next, we use the transformations (2.43) and (2.44) to transform the

expert solutions into the form {(zi, vi)}5i=1. Then, these solutions are inspected to ensure

that the conditions of Theorem 2.5.1 are satisfied, i.e., the matrix Z(t) is always invertible

and ∥Z(T )Z−1(0)∥ < 1, and a fragment of length T = 8s is used to construct a stabilizing

controller (2.15).
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Figure 2.3: Comparison of stabilization between the learned controller from (2.15) (solid

lines) and nonlinear controller from [8] (dashed lines).
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Figure 2.4: Comparison of tracking errors between the learned controller from (2.15) (blue)

and nonlinear controller from [8] (red).
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We compare the learned controller (2.15) and the expert controller from [8] based on

their performance on two tasks: stabilization and output tracking. We define the position

of the ball to be the output, i.e., y = x1. When using the expert controller from [8] for

output tracking, we use the output regulation method described in [92]. On Figure 2.3,

we compare how both controllers stabilize the system to the origin from the initial state

x(0) = (6, 0, 0.345, 0). The initial conditions used when deploying the learned controller are

purposefully chosen to be far from the initial conditions used during the expert’s deployment.

The closed-loop solutions of the learned controller and the expert controller appear to be

very similar, although the learned controller stabilizes to the origin slightly slower than the

expert. On Figure 2.4, we compare how both controllers follow a reference trajectory given

by yR(t) = 6 · cos 2π
10
t from the initial state x(0) = (6, 0, 0.345, 0) by plotting their tracking

errors. We again observe that the performance of the learned controller and that of the

expert controller are similar, with the learned controller having a slightly larger error.

2.7 Conclusions and future work

In this chapter, we proposed a methodology for constructing a controller for a known non-

linear system from a finite set of expert demonstrations of desired behaviour. Unlike many

works in the literature on LfD, we provide formal guarantees of asymptotic stability of the

closed-loop system. Furthermore, we discuss what choice of demonstrations results in the

best worst-case approximation of the expert controller, given there are more than n + 1

demonstrations. Finally, we verify the methodology by applying it to control the quadrotor

dynamics, which is an example of a feedback linearizable system, and the ball-and-beam dy-

namics, which is an example of a system that is feedback linearizable through an embedding.

The work presented in this chapter immediately leads to the following question: ”How

to learn a stabilizing controller from expert demonstrations when the system dynamics are

unknown?” This question was addressed for single-input single-output feedback linearizable
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systems in [74], but remains an open question for a wider class of systems. The fundamental

property that was a theoretical basis of this work was that an affine combination of solutions

of a linear system is also its solution. It would be interesting to study whether there exists

a similar property for some class of nonlinear systems, i.e., one can express any solution of

a nonlinear system based on a finite set of its solutions. This would allow one to bypass

feedback linearization step and, if this class of systems is distinct from the class feedback

linearizable systems, apply a similar methodology to a wider range of systems.
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