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Abstract

Since their inception in 2000, the Cancer Intervention and Surveillance Network (CISNET) breast 

cancer models have collaborated to use a nationally representative core of common input 

parameters to represent key components of breast cancer control in each model. Employment of 

common inputs permits greater ability to compare model output than when each model begins 

with different input parameters. Use of common inputs also enhances inferences about the results, 

and provides a range of reasonable results based on variations model structure, assumptions, and 

methods of use of the input values. The common input data are updated for each analysis to ensure 

that they reflect the most current practice and knowledge about breast cancer. The common core of 

parameters includes population rates of births and deaths; age- and cohort-specific temporal rates 

of breast cancer incidence in the absence of screening and treatment; effects of risk factors on 

incidence trends; dissemination of plain film and digital mammography; screening test 

performance characteristics; stage or size distribution of screen-, interval-, and clinically- detected 

tumors by age; the joint distribution of ER/HER2 by age and stage; survival in the absence of 

screening and treatment by stage and molecular sub-type; age-, stage-, and molecular subtype-

specific therapy; dissemination and effectiveness of therapies over time; and competing non-breast 

cancer mortality. In this paper we summarize the methods and results for the common input values 

presently used in the CISNET breast cancer models, note assumptions made because of 

unobservable phenomena and/or unavailable data, and highlight plans for development of future 

parameters. These data are intended to enhance the transparency of the breast CISNET models.

Keywords

Cancer simulation; breast cancer epidemiology; simulation models

INTRODUCTION

A key feature of the Cancer Intervention and Surveillance Network (CISNET) collaborative 

modeling approach is the shared use of a common set of input values. Employment of 

common model inputs permits greater ability to compare model output than when each 

model begins with different parameters. Use of common inputs also enhances the ability to 

more directly compare trends in results across models, strengthens inferences about the 

results, and provides a range of reasonable results based on variations in model structure, 

assumptions, and methods of use of the input values. Further, sharing a common core of 

inputs is efficient and facilitates examination of intermediate outputs to trouble-shoot and 

identify model program or processing errors that can otherwise be difficult to detect. 

Experience from weather and climate predictions has shown that a combination of several 

different models often gives better prediction than any single model.(1) Hence, the median 
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and range of results for several models based on the same input data should provide greater 

confidence in results than those from any single individual model.

In this chapter we summarize the methods and results for the common input values presently 

used in the CISNET breast cancer models to estimate trends in US breast cancer incidence 

and mortality, note how the data is organized, and highlight future parameters being 

developed to expand the library of data to address evolving topics, such as genomics in 

cancer care.

COMMON PARAMETERS

This section summarizes the approach and data used for common data parameters used in 

the most current breast CISNET models. There are presently six models: Model D (Dana-

Farber); Model E (Erasmus), Model GE (Georgetown-Einstein), Model M (MD Anderson), 

Model S (Stanford), and Model W (Wisconsin-Harvard). (2–8)

Common parameters were developed for the majority of model inputs, including: US 

population rates of births and deaths; age- and cohort-specific temporal data for breast 

cancer incidence in the absence of screening and treatment; effects of risk factors on 

incidence trends; dissemination of plain film and digital mammography; screening test 

performance characteristics; stage or size distribution of screening-, interval-, and clinically- 

detected tumors by age; the joint distribution of breast cancer molecular subtype based on 

estrogen receptor (ER) and human epidermal growth factor 2 (HER2) biomarkers by age and 

stage; survival in the absence of screening and treatment by stage and molecular sub-type; 

age-, stage-, and molecular subtype-specific therapy; dissemination and effectiveness of 

treatment modalities over time; and competing non-breast cancer mortality. Based on the 

goals of any given analysis, there are also common inputs available for age- and gender-

specific utilities and costs for model health states. The models either used the common input 

parameters directly, or as a calibration target depending on individual model structures 

(Table 1).

The common inputs are used with model-specific parameters related to unobservable aspects 

of breast cancer history (e.g., tumor growth, proportions and types of tumors that are non-

progressive, sojourn time, lead-time, and how systemic therapy affects survival); these are 

described elsewhere. (2–8)

To ensure that the models reflect current knowledge, common parameters were estimated 

from the highest quality and most current nationally representative data from published 

studies, studies in progress, and current disease registries such as the Surveillance, 

Epidemiology, and End Results (SEER) program. (9) Older studies and registries are used as 

pertinent to informing inputs, especially trends pre-dating widespread mammography use or 

discovery of systemic adjuvant treatments. In this context, when considering data sources for 

common parameters, CISNET uses the hierarchy of evidence promoted by the U.S. 

Preventive Services Task Force to select the highest quality available data for a given 

parameter and research question,(10) including randomized-controlled trials, meta-analyses, 

observational studies, and registries (11) and surveys. Data were selected to derive inputs 

Mandelblatt et al. Page 3

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that were independent of the model outputs. For example, since the models were designed in 

part to estimate the impact of screening on breast cancer mortality, data from randomized 

trials on screening effects were not used as direct parameter inputs.

US Population Births and Deaths

To represent the current female population in the United States, the models incorporate 

population counts by single year of age from 1975 to 2011. Census data is abstracted from 

two sources based on time period: 1975–1989 (12) and 1990–2011.(13) Population counts 

are provided by single year of age (up to age 85) and calendar year.

Incidence in the Absence of Screening and Treatment

In the absence of a non-screened reference population, US breast cancer incidence without 

screening is estimated from the observed time trends before and after screening introduction. 

Breast cancer risk increases with age, and varies by birth cohort (e.g., based on differences 

in life style factors).(14–16) Age–period–cohort (APC) modeling is a statistical approach to 

determine the underlying incidence of disease by age, year of diagnosis (period), and year of 

birth (cohort), considering the effects of use of interventions such as mammography 

screening, and trends in risk factors across time and cohorts. (17–20)

The majority of the CISNET breast models originally used an APC model of breast cancer 

incidence from 1975 to 2000 developed by Holford and colleagues.(21) While observed 

incidence reported to SEER increased over that period, after 2000 there was a substantial 

decline that has been attributed, in part, to changes in patterns of post-menopausal hormone 

use.(22) Thus, the models could not simply continue to use linear extrapolations forward in 

time from the original APC model, so new APC models were developed.

For one of these APC models, the original Holford APC model was revised and extended 

through 2010. A detailed review of the methods has been summarized by Gangnon et al. 

(23) Briefly, beyond temporal extension, the Gangnon APC model accounts for differential 

incidence of invasive and ductal carcinoma in situ (DCIS), the explicit effect of 

postmenopausal hormone use by menopausal status, and varying assumptions about the 

effect of screening by cohort and time period.(23) For practical reasons, variations in 

incidence due to hormone use were included in the time period effect. Since a linear increase 

in incidence over time could be explained by either period or cohort effects, Gangnon et al 

attributed these changes to cohort effects. Mammography screening became widespread in 

the US around 1982 and began to impact the observed breast cancer incidence trends shortly 

thereafter. Therefore, the model added a second period function for women of the various 

birth cohorts who were ages 40 and older in 1982, and would have been exposed to 

screening.

Age, period, and cohort effects are likely to vary gradually by time, and smoothing the year-

to-year variations limits the number of parameters that need to be estimated. Smoothed age, 

period and cohort effects were estimated using natural cubic splines. The degree of 

smoothing was chosen by best fitting values according to the Bayesian Information 

Criterion. With cohort effects estimated separately pre- and post-menopause, a weighted 
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average of the pre- and postmenopause cohort effects was used in the 46 to 54 years age 

span.

The overall (invasive and DCIS) breast cancer incidence in the absence of mammography 

screening for nine SEER registries combined and as estimated by this revised APC model is 

presented in Figure 1. The green line represents observed SEER breast cancer incidence. 

The blue line represents the estimated incidence in the absence of mammography screening 

from the APC model, and the orange line represents the estimated incidence with 

mammography screening from the APC model. The two estimates are identical until 1982, 

the date of introduction of mammography screening in the APC model. The estimated 

incidence in the absence of mammography screening only increased slightly after 1982, 

from 243.1 cases per 100,000 women in 1985 to 259.5 in 2010, while the estimated 

incidence with mammography screening increased dramatically from 274.8 in 1985 to 337.4 

in 2010, with a large proportion of the additional cases (82%) being DCIS. One implication 

of this result is that mammography screening is accompanied by a sizable over-diagnosis 

rate. Another important implication of this result is that the method used by each breast 

model to portray age-period-cohort incidence in the absence of screening affects model 

differences in over-diagnosis rates. (24)

Four of the six models used the Gangnon APC model as an input or calibration target to 

estimate the counterfactual underlying breast cancer incidence rates in the absence of 

screening from 1975 to 2010. Model S developed a similar, but more integrated approach 

combining CISNET model fitting, hormone therapy effects estimation, and APC estimation. 

Model M extended 1975–79 SEER rates forward in time with comparatively lower temporal 

increases.

All six models closely replicate observed US incidence rates regardless of their individual 

method of implementation of this common input parameter. (25, 26) However, differences in 

assumptions about the underlying incidence and the impact of screening on incidence rates 

contribute to variability in model results for the absolute rates of mortality reduction 

attributable to screening and estimates of over-diagnosis.(25, 26) Prediction of future 

incidence trends are accompanied by large uncertainties, but APC models have been shown 

to provide better predictions than assuming a constant incidence rate over time.(27)

Risk Factors Affecting Incidence

The models focus primarily on average US populations. However, in selected analyses two 

to three models have collaborated to examine the impact of breast cancer risk factors and 

changes in their prevalence on incidence rates, mortality outcomes, and/or ranking of 

screening schedules.(24, 25, 28–36) The risk factors that have been considered to date 

include postmenopausal hormone therapy, obesity, family history of a first-degree relative 

with breast cancer, and breast density.

These factors were chosen since they are common exposures (two with secular changes in 

prevalence), are clearly related to breast cancer risk (e.g., obesity increases post-menopausal 

breast cancer rates), and/or related to screening performance (e.g., breast density, hormone 

therapy) and treatment effectiveness (e.g., obesity can reduce effectiveness based on dose 

Mandelblatt et al. Page 5

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reductions). Prevalence estimates of these key breast cancer risk factors over time were 

developed using National Health Interview Survey (NHIS), the Breast Cancer Surveillance 

Consortium (BCSC), and other sources. (28–32) Prevalence estimates were generally 

provided for all four factors by single year of age (25–100) for the calendar years 1970–

2020. Prevalence of body mass index (BMI) according to calendar year and age was 

provided in three categories (<25, 25–29.9, and 30+ kg/m2) from NHANES. (33) Relative 

risks of breast cancer according to these three BMI categories, menopausal status, hormone 

use, and breast cancer subtype were derived from a meta–analysis.(28)

Prevalence of breast density was calculated in four Breast Imaging Reporting and Data 

System (BI–RADS) categories by age and BMI based on data provided by the BCSC 

(unpublished data). Calendar year estimates were not provided since the distribution of 

breast density appears to have remained relatively constant over time within age and BMI 

groups. Relative risk of breast cancer according to breast density and age were based on 

BCSC data (Table 2). (24)

Screening Test Performance

The Breast Cancer Surveillance Consortium (BCSC) provided screening performance data. 

(11) While only covering certain geographic regions, and over-representing women who 

present for screening, the BCSC is the oldest, and largest network of breast imaging 

registries in the US, with data on more than 10.3 million mammography examinations from 

six breast active imaging registries with linked data on demographics, risk factors, 

mammography reports, diagnostic evaluations, tumor and/or pathology registries, and vital 

statistics. As such, the BCSC provides an unprecedented source of data not available from 

any other data source.

Observed film-screen and digital screening mammography performance data from the BCSC 

were used to develop age-specific parameters for the detection of DCIS and invasive cancer 

(Model S uses only data for invasive cancers). Film-screen screening mammography 

performance measures were used up through 2002, and digital screening mammography 

performance measures were used for 2003 and later.

BCSC provided sensitivity, specificity, screen detected cancer, rate and interval invasive 

cancer rate based on BI-RADS® (37) assessment categories for mammography results 

(1=negative, 2=benign, 3=probably benign, 0=needs additional evaluation, 4=suspicious, 

5=highly suggestive of malignancy). A positive screen was considered as a BI-RADS 

assessment of 0, 4, or 5; a negative screen included initial assessments of 1, 2, or 3. Starting 

with the BIRADS 5th edition (38) in late 2013 an assessment of 3, which typically resulted 

in a recommendation for short-interval follow-up, was also considered positive; this change 

will be reflected in future analyses.

A positive screen was defined as a false positive if no breast cancer was diagnosed within 12 

months and as a true positive if cancer was diagnosed within 12 months. A negative exam 

was considered a true negative if no breast cancer was diagnosed within 12 months and a 

false negative if cancer was diagnosed within 12 months. The screen-detected cancer rate 

was the rate of cancers detected within 12 months of a positive exam. An interval invasive 

Mandelblatt et al. Page 6

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer was an invasive cancer diagnosed within 1 year of a negative screen. The follow-up 

period was truncated at the next screen if it occurred within 9–11 months; thus, a cancer 

diagnosis was only associated with the most recent screen for calculating performance 

measures.

Using these definitions, point estimates and 95% confidence intervals for sensitivity, 

specificity, and cancer rates were estimated using logistic regression models including age 

group and screening interval. Separate regression models were used for initial and 

subsequent mammography and for invasive cancer vs. DCIS. Sensitivity and specificity have 

also been calculated by breast density in prior analyses. (25)

The models incorporate these performance data in different manners based on how they 

depict natural history and cancer detection (Table 1). (2–8) Briefly, one model (D) used 

these data directly as input variables. (6) In three models (Models GE, S, and W) these data 

were used as calibration targets to estimate the probability of detection when there is a pre-

clinical detectable cancer present in the sojourn time at the time of screening and the 

probability of a negative screen when there is no pre-clinical detectable cancer present 

within the sojourn time period when screening occurs. (2, 3, 5) Model M used the cancer 

detection rates (4) as a calibration target and the last model, model E, (7) fit estimates of 

tumor size detection thresholds from this and other sources.

Screening Dissemination

When the breast models are evaluating the efficacy of specific screening scenarios, such as 

annual or biennial screening, they assume 100% of women obtain all screening tests as 

prescribed in the scenario. However, in analyses to estimate the impact of screening on 

population incidence and mortality rate, the models use a common input to quantify actual 

US screening practices over time. In previous CISNET analyses, Cronin et al. modeled US 

mammography screening dissemination from 1975 to 2000. (39, 40) Recently, the 

dissemination parameter was extended to 2010. The methods to develop (and extend) the 

estimation of screening dissemination are summarized here; detailed descriptions have been 

published elsewhere. (39, 40) Briefly, the dissemination estimation process was based on 

two distinct statistical models: one to estimate the time of a woman’s first mammography 

exam based on her age and birth cohort and calendar year and another to reflect the patterns 

of use of exams following the initial mammography. The two statistical models were then 

combined to generate screening exam histories for individual women. The CISNET models 

used this screening history until a woman stopped screening, developed breast cancer, or 

died of other causes.

Data from the National Health Information Survey (NHIS) were used to first estimate the 

cumulative distribution for the time to first mammogram for each birth cohort using 

crosssectional estimates of the percentage of the population that reported ever having a 

mammogram from the 1987, 1990, 1992, 1993, 1994, 1998, and 2000 surveys. (41) For 

women born prior to 1948, estimates of the proportion of women in a particular birth cohort 

having their first mammogram between two NHIS surveys was computed by subtracting the 

proportion reporting ever having a mammogram in the earlier survey from the proportion 

reported in the later survey. Since the observed data could be used to construct only a portion 
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of the life history from 1987 to 2000, a dissemination of innovations model was fitted to 

extrapolate the curve for the entire life history of age at first mammography for each birth 

cohort.

NHIS data from 2003, 2005, 2008, and 2010 were recently added to reflect mammography 

dissemination and patterns among birth cohorts born after 1948. These women would have 

turned age 40 in 1988 or later when mammography was commonly used for screening. For 

these cohorts, NHIS data indicated that age rather than birth cohort or calendar year was the 

primary factor that determined when a woman received a first mammogram. Therefore, 

NHIS data from after 2000 was combined to estimate a distribution curve for the age of first 

mammogram.

The statistical models used to develop the mammography dissemination parameter assumed 

that some women never received a mammogram and that no screening occurred before 1980 

or before age 30. It also assumed that women did not obtain a first mammogram after age 

63. Analyses were adjusted for the significant amount of diagnostic mammography prior to 

age 40 since the NHIS data does not distinguish between screening and diagnostic 

mammography. (42) Thus, 48% of women ages 30–34 that reported a first screening exam 

were assumed to have a screening exam (and 52% diagnostic), and 84% of those 35–39 who 

reported a first screening exam were assumed to have a screening exam. No further 

adjustment for screening vs. diagnostic mammography was made for ages 40 and older, 

since at this point a woman was likely to have had multiple screening mammograms and it 

was not possible to estimate an adjustment factor to distinguish screening vs. diagnostic 

examinations. A linear trend was fit to the data for age at first screening examination for 

ages 30–35 and 35–40 and a logistic survival curve for ages 40+. The distribution curve 

included a jump at age 36 and age 40, since the data indicated a large percent of women 

began screening at those specific ages. Distribution curves were estimated for all races 

combined and for white and black women separately.

To model time between screening exams, we used individual-level longitudinal data from the 

BCSC. (39, 40) Three general groups of screeners were defined a priori to represent regular 

annual screeners (women with a mean time between screening exams of ≤ 1.5 years), 

biennial screeners (women with a mean time of 1.5 – 2.5 years), and irregular screeners 

(women with a mean time of >2.5 years) (Figure 2a). These groups represented targets to 

which the dissemination model was fitted, rather than direct inputs.

Next, stratified survival analyses with event times defined as the time between subsequent 

screening mammograms were then performed using gamma frailty models for each group to 

account for correlations between multiple intervals for one woman. Women could maintain a 

schedule or change schedule depending on their age. For example, a woman could be an 

annual screener from ages 40–49, and then a biennial screener after age 50, and become an 

irregular screener at age 75.

Based on observed patterns of care from the FDA Mammography Quality Standards Act and 

Program (43) and the BCSC (unpublished data) for the rapid diffusion of digital 
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mammography, mammograms were assumed to be plain-film until 2002 and digital 

thereafter (Figure 2b).

Characteristics of Cancers by Mode of Detection

To estimate the breast cancer stage of screened and unscreened women, the models 

incorporate data from the BCSC (unpublished data). The stage (American Joint Committee 

on Cancer [AJCC v. 6] (44) and SEER) and tumor size (<2, 2–5, 5+ cm) distribution of 

clinically-, interval- and screen-detected cancers by age group (<50, 50–64, 65+) uses data 

from 1994–2013 for film-screen mammography and 2003–2013 for digital mammography. 

The first year of the transition to digital mammography (2002) was excluded to ensure data 

completeness at reporting facilities. Among screen-detected women, the data are also 

stratified by first vs. subsequent screen and screening interval (e.g., annual, biennial, 

irregular). The definitions of screen, interval, and clinical mode of detection for these 

parameters are summarized on Table 4.

To model the four molecular subtypes of breast cancer characterized by ER and HER2 

status, joint prevalence estimates of ER and HER2 status by age and stage at clinical 

detection were derived from BCSC data. We make the simplifying assumption that screen- 

and interval-detected lesions have the same joint distribution of ER and HER2 as clinically 

detected cases, because HER2 has not been collected in registries until recently, leading to 

insufficient data to determine joint distribution by mode of detection. As more HER2 data 

become available, this parameter will be updated for future analyses.

Treatment Dissemination

The survival data used in the models assume all women receive local treatment by stage 

(surgery and/or radiation) but to date these initial therapies have not been modeled explicitly. 

The models use two common parameters to incorporate the effects of adjuvant 

chemotherapy and/or hormonal therapy. The first depicts temporal changes in availability 

and use of different regimens over time and the second provides the modelers with the 

effectiveness of each potential systemic therapy combination.

Treatment dissemination for the period from 1975–1996 was derived from US adjuvant 

treatment patterns by age, calendar year, ER (and HER2 in 2006) based on SEER special 

patterns of care studies. (45, 46) For analyses that included the period after 1996, the models 

used National Comprehensive Cancer Network (NCCN) data for 1997–2010. (47) These 

data span the first year of aromatase inhibitor (AI) (1997) and the first year of taxane use 

(1998) through guidelines for use of Trastuzamab (2006). The NCCN data was based on 

patterns reported from US academic cancer centers and may represent earlier adoption and 

higher use than general community practice of certain regimens.

Treatment dissemination was based on initiation of therapy; the effectiveness of therapy (see 

below) assumes completion of the regimen. For instance, women who had ER-positive 

invasive tumors who initiated hormonal therapy were modeled to have received 5 years of 

treatment (tamoxifen if age at diagnosis is <50 years and aromatase inhibitors if ≥50 years 

from 1997 to 2010; tamoxifen and other selective estrogen receptor modulating (SERM) 

agents were the only therapies available prior to 1997). In the future, the models can 
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consider longer durations (e.g., 10 years of hormonal therapy) (48) and treatment adherence. 

The input parameter included a zero rate of hormonal therapy for women with ER-negative 

invasive tumors.

Chemotherapy included CMF and anthracycline-based regimens based on calendar year, 

age, ER, and stage. Taxanes and Herceptin could be added to these regimens starting in 1997 

and and 2006, respectively. Trastuzumab was disseminated independently of the other 

treatments and, based on its immediate rapid uptake, all HER2+ patients were assumed to 

receive trastuzumab with 100% probability beginning in year 2006. It was assumed that 

patients diagnosed in Stage IV received the same treatments as those with Stage III breast 

cancer. Additionally, since there were no national data on treatment patterns for DCIS, 

expert opinion was used to make the simplifying assumption that half of ER-positive DCIS 

tumors were treated with hormonal therapy, and that ER-negative DCIS did not receive any 

adjuvant systemic treatment. A summary of major classes of systemic therapies used over 

time for an exemplar age and stage group is included on Figure 3.

In lieu of this treatment dissemination input, models have also used analysis-specific 

assumptions for adjuvant systemic treatment (e.g., every woman receives the most effective 

treatment available at the time for her age and ER/HER2 subtype combination). (25)

Treatment Effectiveness

Systemic treatment effectiveness is based on synthesis of recent clinical trials.(49) The input 

parameter is provided to the modeling groups as a rate of reduction in hazards of breast 

cancer death based on age, stage, and ER/HER2, assuming proportionate hazards. 

Depending on the specific model structure, these data are used directly or as calibration 

targets for depicting cure rates.

DCIS is assumed to have the same treatment benefit as Stage I disease, although, based on 

the dissemination data, this was applied only to ER-positive DCIS that is treated with 

hormonal therapy. Based on expert opinion, because Stage IV is fatal and treatment is not 

thought to affect the hazard of death, we have assumed no treatment benefit for Stage IV, 

HER2-negative disease. This is consistent with our prior assumptions of no treatment benefit 

for Stage IV disease before the year 2000. Trastuzumab does increase the survival of women 

with HER2-positive, Stage IV disease, and accordingly, the hazard ratio for Stage IV, HER2-

positive tumors that receive trastuzumab was adjusted to reflect this based on the literature. 

(50) With the advent of matching tumor molecular profiles with treatments, and discovery of 

new approaches to Stage 4 therapy, future iterations of this parameter will be updated as 

practice changes. Incorporation of improvements in survival associated with treatment of 

distant metastases will also require new model programming, since, as described in the next 

section, the current version of the models only include overall survival from the date of 

diagnosis, and do not consider distant recurrence. Treatment effectiveness for current 

exemplar regimens is presented in Table 5.

Survival in the Absence of Screening and Treatment

To evaluate the relative contributions of ER and HER2 molecularly targeted treatments such 

as tamoxifen, aromatase inhibitors, and Trastuzumab on breast cancer mortality reduction in 
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the presence of screening, it was necessary to first generate ER/HER2-specific survival and 

other inputs for the CISNET breast cancer models in the absence of screening and adjuvant 

treatment. These inputs are not readily accessible in existing databases. In particular, ER/

HER2-specific survival in the absence of screening and adjuvant therapy is not accessible in 

SEER because registry-based collection of ER and HER2 status only began when screening 

and adjuvant treatment were already widespread. This posed a major challenge when 

updating the CISNET models to estimate the relative effects of screening and adjuvant 

treatment by ER and HER2.

To address this problem and incorporate the natural history differences in ER and HER2 

tumor subtypes into the models, the Model S team developed a novel method to “back-

calculate” breast cancer- specific survival by joint ER and HER2-status, age group, and 

AJCC/SEER stage or tumor size in the absence of screening and treatment. This algorithm 

leveraged data on tumor features, age at detection, and screening histories by ER/HER2 

subtypes from the BCSC. The approach incorporated data from two distinct sources: 1) 

SEER survival from 1975–1979 in the absence of screening and treatment (which represents 

a period when screening and adjuvant treatment were not widespread) and; 2) data from 

23,000 women diagnosed with breast cancer between 1996 and 2009 provided by the BCSC 

(unpublished data), which included ER, HER2-status and screening histories.

Full details describing the methods for calculation of this parameter are presented elsewhere 

in this issue. (51) Briefly, BCSC data were used to construct an ER/HER2-specific decision 

tree classifier to infer (“back-calculate”) these molecular markers based on a patient’s 

screening history and age, tumor size, stage and grade at detection. The “back-calculation” 

algorithm consists of leveraging one model (Model S) to simulate a large cohort of women 

and then utilizing the ER/HER2-status classifier to infer their molecular markers. In essence, 

this procedure generated a “virtual database” of women that allowed calculating population-

level parameters by ER and HER2 subtypes as if these were measured directly from the 

general population. Contrary to an actual registry, however, the virtual registry permitted 

assignment of the clinical and screen-detected age, tumor size, stage, grade and ER, HER2-

status of each individual woman. Consideration of the breast tumor’s features at clinical 

detection allowed the estimation of survival in the absence of screening and treatment by 

sampling from the 1975–1981 SEER survival curves. The new parameter includes survival 

by age, tumor size, stage, and ER/HER2 in the absence of screening and treatment. The ER-

specific portion of the input was published in a CISNET analysis of the contributions of 

screening and treatment to ER-specific mortality trends from 1975–2000 (Figure 4).(26)

OTHER PARAMETERS

There are other common model input parameters, such as non-breast cancer mortality. (52) 

Model inputs for non-breast cancer mortality have been updated since prior publication (53) 

to include the period 2000–2010 and mortality by body mass index (BMI), since BMI 

affects risk of postmenopausal breast cancer as well as mortality from other causes, and the 

prevalence of BMI has increased dramatically since 1980. For certain analyses, survival is 

modified using common parameters to reflect quality-adjusted life years using published 

estimates and/costs. (24) Finally, the models have begun using data on other cause mortality 
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among breast cancer patients for analyses that focus on the patient (vs. the general) 

population.

In addition to these common parameters, based on structure and assumptions, each model 

included model-specific parameters such as estimated pre-clinical sojourn times, proportion 

of DCIS or invasive cancer that will not progress, lead times, and dwell times within tumor 

stage. These types of parameters could be estimated for all cancers or separately based on 

ER and HER2 status.

DATA DOCUMENTATION AND MANAGEMENT

A Coordinating Center at Georgetown University has organized input parameter 

development, documentation, dissemination, and archiving. The common input data were 

updated for each analysis to ensure that they reflected the most current practice and 

knowledge about breast cancer. The Coordinating Center worked closely with the modeling 

teams to identify parameters needed, format required to read the parameters into the model 

programs, and discuss the best sources of data for these parameters. Data are generally 

analyzed at the Coordinating Center to provide the modeling groups with the results in a 

flexible format, but some parameters were developed by the modeling teams and results 

were forwarded to the Coordinating Center for distribution and archiving. The Coordinating 

Center developed the associated documentation using standard reporting formats. For every 

analysis, all parameters and supporting documentation were posted on a project webpage 

located on the private CISNET member website. Documentation of all data sources and 

analytic methods was posted to maintain transparency.
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Figure 1. 
Age-adjusted overall breast cancer incidence rates per 100,000 women for ages 25 to 84 

years. Incidence rates from the age-period-cohort (APC) model estimated with (orange line) 

and without (blue line) the mammography screening period effect. The green line is 

observed SEER incidence based on data from nine SEER Registries, 1935–2010. Adapted 

from Gangnon et al. (23)
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Figure 2. Mammography Use of Time
Panel A. The use of screening (annual, every two years, irregular, and never) among women 

ages 30–79 by calendar year. These observed data were used a targets in modeling 

dissemination of screening and intervals between screens. Note that the rate of never 

screened includes women ages 30–39.
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Panel B. The percent of total mammograms performed in the US that were digital vs. plain 

film by calendar year. Source: Breast Cancer Surveillance Consortium (BCSC, unpublished 

data) and the FDA’s Mammography Quality Standards Act and Program. (43)
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Figure 3. 
Treatment dissemination. The figure depicts use of adjuvant systemic treatment 

dissemination from 1975–2010 for an exemplar stage and set of molecular markers (node 

positive stage IIb, ER+/HER2−) among women 50 to 69 years of age at diagnosis. In the 

1980’s and early 1990’s multi-agent chemotherapy (blue line) included primarily CMF 

regimens; starting in the mid-1990’s antracycline-based regimens were included and 

increased in use, and in 1998 taxanes could be added to those regimens. Hormonal therapy 

(red line) began with tamoxifen in the 1980’s and starting in 1997 also included aromatase 

inhibitors. Hormonal therapy could be used alone or in combination with multi-agent 

chemotherapy (“both”, green line). Over time, there was an increasing use of both multi-

agent chemotherapy and hormonal therapy.
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Figure 4. 
Breast cancer survival curves in the absence of screening and treatment effects stratified by 

ER and HER2-status, stage and tumor size. These survival curves were shared across all 

modeling groups.
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Table 2

Relative Risk of Invasive Breast Cancer by Breast Density and Age and Prevalence of Density by Age Group

Age Group BI-RADS Density Breast Density–Related Risk* Prevalence of Density Level within Age Group

40–49 A 0.37 0.05

B 0.72 0.35

C 1.16 0.46

D 1.46 0.13

50–64 A 0.50 0.09

B 0.84 0.46

C 1.25 0.38

D 1.53 0.07

65–74 A 0.61 0.13

B 0.94 0.53

C 1.28 0.31

D 1.45 0.03

Note: the base models include average population density. When density is explicitly included for specific analyses, these data are used to modify 
incidence. In density-specific analyses, density also modifies mammography performance.

*
Referent group is average population density

Density a refers to entirely fatty; b to scattered density; c to heterogeneously dense, and d to extremely dense

Source: Breast Cancer Surveillance Consortium. (24)
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Table 4

Definitions of Breast Cancer Mode of Detection

Mode of Detection Definition

Screen-detected Cancer diagnosed within 12 months after a positive screen and prior to the next screening mammogram (with and 
without self-reported symptoms)

Interval-detected* Cancer diagnosed within 6 months after or 30 days before a diagnostic mammogram, with a screening mammogram 
within 42 months prior to that mammogram

Clinical-detected A diagnostic mammogram between 6 months prior to and 30 days after the cancer diagnosis and no prior mammogram 
within 3.5 years (42 months) of the diagnostic mammogram

*
Note that the definition of interval cancer varies from that used to determine screening performance.
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