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Learning Gaussian graphical models with latent confounders

Ke Wang∗ Alexander Franks Sang-Yun Oh

Department of Statistics and Applied Probability, University of California Santa Barbara

Abstract

Gaussian Graphical models (GGM) are widely used to estimate network structure in domains
ranging from biology to finance. In practice, data is often corrupted by latent confounders which
biases inference of the underlying true graphical structure. In this paper, we compare and contrast
two strategies for inference in graphical models with latent confounders: Gaussian graphical models
with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these
two approaches have similar goals, they are motivated by different assumptions about confounding.
In this paper, we explore the connection between these two approaches and propose a new method,
which combines the strengths of these two approaches. We prove the consistency and convergence
rate for the PCA-based method and use these results to provide guidance about when to use each
method. We demonstrate the effectiveness of our methodology using both simulations and two
real-world applications.

1 Introduction

In many domains, it is useful to characterize relationships between features using network models. For
example, networks have been used to identify transcriptional patterns and regulatory relationships
in genetic networks and applied as a way to characterize functional brain connectivity and cognitive
disorders Fox and Raichle (2007); Van Dijk et al. (2012); Barch et al. (2013); Price et al. (2014). One of
the most common methods for inferring a network from observations is the Gaussian graphical model
(GGM). A GGM is defined with respect to a graph, in which the nodes correspond to joint Gaussian
random variables and the edges correspond to the conditional dependencies among pairs of variables. A
key property of the GGM is that the presence or absence of edges can be obtained from the precision
matrix for multivariate Gaussian random variables Lauritzen (1996). Similar to LASSO regression
Tibshirani (1996), we can infer the sparse graph structure via sparse precision matrix estimation with
l1-regularized maximum likelihood estimation. This family of approaches is called graphical lasso
(Glasso) Friedman et al. (2008); Yuan and Lin (2007).

In practice, however, network inference may be complicated due to the presence of latent confounders.
For example, when characterizing relationships between the stock prices of publicly trade companies,
the existence of overall market and sector factors induces extra correlation between stocks Choi et al.
(2011), which can obscure the underlying network structure between companies.

We focus on estimating Ω = Σ−1, the precision matrix encoding the graph structure of interest Yuan
and Lin (2007); Friedman et al. (2008); Cai et al. (2011); Parsana et al. (2019). When latent confounders
are present, the covariance matrix for the observed data, Σobs can be expressed as

Σobs = Σ+LΣ, (1)

where the positive semidefinite matrix LΣ reflects the effect of latent confounders. One approach,
which we will call PCA+GGM, is motivated by confounders that affect the marginal correlation
between observed variables Parsana et al. (2019) and uses principal component analysis (PCA) as a
preprocessing step to remove the effect of these confounders Jolliffe (2005); Bartholomew et al. (2011).
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PCA removes the leading eigencomponents from Σobs which are assumed to be LΣ, then a second
stage of standard GGM inference follows. PCA+GGM has shown to be useful in estimating gene
co-expression networks, where correlated measurement noise and batch effects induce large extraneous
marginal correlations between observed variables Geng et al. (2018); Leek and Storey (2007); Stegle
et al. (2011); Gagnon-Bartsch et al. (2013); Freytag et al. (2015); Jacob et al. (2016).

Alternatively, equation (1) can be reparametrized as the observed precision matrix by applying the
Sherman-Morrison identity Horn and Johnson (2012) as,

Ωobs = Σ−1
obs = Ω−LΩ, (2)

where LΩ again reflects the effect of unobserved confounding, i.e., unobserved nodes in a graph
Chandrasekaran et al. (2011). One such approach, known as latent variable Gaussian Graphical Models
(LVGGM), uses parameterization (2) and involves joint inference for Ω and LΩ. The motivation behind
LVGGM is to address the effect of unobserved variables in the complete data graph, which affect
the partial correlations of the variables in the observed precision matrix Ω. This perspective can be
particularly useful when the unobserved variables would have been included in the graph, had they
been observed.

In previous work, either parameterization (1), e.g., PCA+GGM, or (2), e.g., LVGGM, has been used,
depending on the source of confounding and motivations as described earlier. Typically, LVGGM is
appropriate when confounding is induced by unobserved nodes in a complete data graph of interest,
whereas PCA+GGM is more appropriate when confounding corresponds to nuisance variables, e.g.,
from batch effects.

In practice, the selection between these two methods will depend on user’s belief about the type of
confounding present in the observed data. In this paper, our goal is to explore a way to address the
effect of confounders in order to obtain the graph structure encoded in Ω without making such selection.

To achieve this goal, we generalize two seemingly different methods, PCA+GGM and LVGGM, into a
common framework for addressing the effect of LΣ in order to obtain the graph structure encoded in
Ω = Σ−1. Based on the generalization, We propose a new method, PCA+LVGGM, to address two
different sources of confounding. The combined approach is more general, since PCA+LVGGM contains
both LVGGM and PCA+GGM as special cases. To our knowledge, the two methods of addressing
confounding have not been discussed together in the literature.

In summary, in this paper,

• we carefully compare PCA+GGM and LVGGM, and illustrate the connection and difference
between these two methods. We first theoretically characterize the performance of PCA+GGM.
Different from Parsana et al. (2019) who derives asymptotic results, we provide a non-asymptotic
convergence result for the performance of PCA+GGM. We observe that the performance of
PCA+GGM are largely determined by the spectral structure of Σ and LΣ.

• we propose PCA+LVGGM, which combines elements of PCA+GGM and LVGGM. In simulation,
PCA+LVGGM can outperform PCA+GGM or LVGGM when the data is corrupted by multiple
confounders. We perform extensive numerical experiments to validate the theory, compare the
performance of the three methods, and demonstrate the utility of our approach in two applications.

The remainder of this paper is organized as follows: In Section 2, we introduce the problem definition
for GGM, LVGGM and PCA+GGM followed by a brief literature review. Next, we introduce our
hybrid method, PCA+LVGGM, and present a novel theoretical results for PCA+GGM in Section 3.
We use these result to analyze the similarities and differences between LVGGM and PCA+GGM. In
Section 4, we compare the utility of the various approaches in the simulation setting. Finally, in Section
5 we apply the methods on two real world data sets.

We introduce some general notation used throughout the rest of the paper. For a vector v = [v1, · · · , vp]T,

define ∥v∥2 =
√∑p

i=1 v
2
i , ∥v∥1 =

∑p
i=1 |vi| and ∥v∥∞ = maxi |vi|. For a matrix M , let Mij be its
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(i, j)-th entry. Define the Frobenius norm ∥M∥F =
√∑

i

∑
j M

2
ij , the element-wise ℓ1-norm ∥M∥1 =∑

i

∑
j |Mij | and ∥M∥∞ = max(i,j) |Mij |. We also define the spectral norm ∥M∥2 = sup∥v∥2≤1 ∥Mv∥2

and ∥M∥L1 = maxj
∑

i |Mij |. The nuclear norm ∥M∥∗ is defined as the sum of the singular values of
M . When M ∈ Rp×p is symmetric, its eigendecomposition is M =

∑p
i=1 λiviv

T
i , where λi is the i-th

eigenvalue of M , and vi is the i-th eigenvector. We assume that λ1 ≥ · · · ≥ λp. We call λiviv
T
i the

i-th eigencomponent of M .

2 Problem setup and review

2.1 Gaussian graphical models

Consider a p-dimensional random vector X = [X1, · · · , Xp]
T with covariance matrix Σ and precision

matrix Ω. Let G = (V,E) be the graph associated with X, where V is the set of nodes (or vertices)
corresponding to the elements of X, and E is the set of edges connecting nodes. The graph shows
the conditional independence relations between elements of X. For any pair of connected nodes,
the corresponding pairs of variables in X are conditionally independent given the rest variables, i.e.,
Xi |= Xj |X\i,j , for all (i, j) /∈ E. If X is multivariate Gaussian, then Xi and Xj are conditionally
independent given other variables if and only if Ωij = 0, and thus the graph structure can be recovered
from the precision matrix of X.

Without loss of generality, we assume the variable X has mean zero in this paper. Assuming that the
graph is sparse, given a random sample {X(1), · · · ,X(n)} following the distribution of X, the Glasso
estimate Ω̂Glasso Yuan and Lin (2007); Friedman et al. (2008) is obtained by solving the following
log-likelihood based ℓ1-regularized function:

minimize
Ω ≻ 0

Tr(ΩΣn)− lndet(Ω) + λ∥Ω∥1, (3)

where Tr denotes the trace of a matrix and Σn = (1/n)
∑n

k=1X
(k)X(k)T is the sample covariance

matrix. Many alternative objective functions for sparse precision matrix estimation have been proposed
Cai et al. (2011); Meinshausen et al. (2006); Peng et al. (2009); Khare et al. (2015). The behavior and
convergence rates of these approaches are well studied Bickel et al. (2008b,a); Rothman et al. (2008);
Lam and Fan (2009); Ravikumar et al. (2011); Cai et al. (2016).

In presence of latent confounders, Glasso and other GGM methods would likely recover a more dense
precision matrix owing to spurious partial correlations introduced between observed variables. In other
words, even when the underlying graph is sparse conditioned on the latent variables, the observed graph
is dense marginally.

2.2 Latent variable Gaussian graphical models

One method for controlling the effects of confounders is the Latent Variable Gaussian Graphical Model
(LVGGM) approach first proposed by Chandrasekaran et al. (2012). They assume that the number
of latent factors is small compared to the number of observed variables, and that the conditional
dependencies among the observed variables conditional on the latent factors is sparse. Consider a (p+ r)
dimensional mean-zero normal random variable X = [XO,XH ]T, where XO ∈ Rp is observed and
XH ∈ Rr is latent. Let X have precision matrix Ω ∈ R(p+r)×(p+r) , and the submatrices ΩO ∈ Rp×p,
ΩH ∈ Rr×r and ΩO,H ∈ Rp×r specify the dependencies between observed variables, between latent
variables and between the observed and latent variables respectively. By Schur complement, the inverse
of the observed covariance matrix satisfies:

Ωobs = Σ−1
obs = ΩO −ΩO,HΩ−1

H ΩT
O,H = Ω−LΩ. (4)

where Ω = ΩO encodes the conditional independence relations of interest and is sparse by assumption.
LΩ = ΩO,HΩ−1

H ΩT
O,H reflects the low-rank effect of latent variables XH . Based on this sparse plus
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low-rank decomposition, Chandrasekaran et al. (2012) proposed the following problem:

minimize
Ω,LΩ

− ℓ(Ω−LΩ;Σn) + λ∥Ω∥1 + γ∥LΩ∥∗

subject to LΩ ⪰ 0, Ω−LΩ ≻ 0,
(5)

where Σn is the observed sample covariance matrix and ℓ(Ω,Σ) = ln(det (Ω))−Tr(ΩΣ) is the Gaussian
log-likelihood function. The ℓ1-norm encourages sparsity on Ω and the nuclear norm encourages low-rank
structure on LΩ.

The sparse plus low-rank decomposition is ill-posed if LΩ is not dense. If LΩ is sparse, then it is
indistinguishable from Ω, that is, the sparse plus low-rank decomposition works well only when the
sparse component is not low-rank and the low-rank component is not sparse Chandrasekaran et al.
(2011). In practice, LΩ is dense if the latent variables have widespread effects.. Identifiability of Ω
coincides with the incoherence condition in the matrix completion problem Candès and Recht (2009)
which requires that |vT

k ei| is small for all k ∈ {1, · · · , r} and i ∈ {1, · · · , p} where vk is the k-th
eigenvector of LΩ and ei is the i-th standard basis vector. More analysis on LVGGM can be found in
Agarwal et al. (2012); Meng et al. (2014).

Finally, Ren and Zhou (2012) shows that the standard GGM approaches can still recover Ω in the
presence of latent confounding as long as the spectral norm of the low-rank component is sufficiently
small compared to that of Σ. This is also verified in our simulations.

2.3 PCA+GGM

Unlike LVGGM, which involves a decomposition of the observed data precision matrix, PCA+GGM
involves a decomposition of the observed data covariance matrix:

Σobs = Ω−1
obs = (Ω−LΩ)

−1 = Ω−1 +LΣ. (6)

Motivated by confounding from measurement error and batch effects, Parsana et al. (2019) proposed
the principal components correction (PC-correction) for removing LΣ. Consider observed data Xobs,
such that

Xobs = X +AZ, (7)

where X ∼ N(0,Σ) and Z ∼ N(0, Ir). Matrix A ∈ Rp×r is non-random so that LΣ = AAT. In
general, additional structural assumptions are needed to distinguish LΣ from Σ. As we will discuss
in Section 3, one of our contributions is to show that if the spectral norm of LΣ is large relative to
that of Σ, then under mild conditions, LΣ is close to the sum of the first few eigencomponents of
Σobs. Therefore, one can remove the first r eigencomponents from Σobs Parsana et al. (2019). This
PCA+GGM method is described in Procedure 1. Note that the number of principal components needs
to be determined a priori, which we discuss in subsequent sections.

2.4 Combining PCA+GGM and LVGGM

As previously mentioned, while LVGGM and PCA+GGM solve the same problem, they are motivated
by different sources of confounding. In applications, the observed data may be corrupted by multiple
sources of confounding, and thus elements from both methods are needed. For example, in the biological
application discussed in Section 5.1, both batch effects and unmeasured biological variables likely
confound estimates of graph structure between observed variables. This motivates us to propose the
PCA+LVGGM strategy described below.

As (4) illustrated, the observed precision matrix Ω
′
may have been corrupted by a latent factor LΩ:

Ω
′
= Ω−LΩ. (8)

Now, rewriting (8) in terms of Σ = Ω−1 and Σ
′
= Ω

′−1
, applying the Sherman-Morrison identity on

Ω
′
gives,

Σ
′
= Σ+L

′
Ω, (9)
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Procedure 1 PCA+GGM
Input: Sample covariance matrix, Σ̂obs =

(1/n)
∑n

k=1X
(k)
obsX

(k)
obs

T
; rank of L̂Σ, r

Output: Precision matrix estimate, Ω̂
1: Estimate L̂Σ from eigencomponents:

Σ̂obs =

p∑
i=1

λ̂iθ̂iθ̂
T
i , L̂Σ =

r∑
i=1

λ̂iθ̂iθ̂
T
i

2: Remove L̂Σ:

Σ̂ = Σ̂obs − L̂Σ.

3: Using Σ̂, compute Ω̂ as solution to (3)

Procedure 2 PCA+LVGGM
Input: Sample covariance matrix, Σ̂obs; rank
of L̂Σ, rP ; rank of L̂Ω, rL
Output: Precision matrix estimate, Ω̂

1: Estimate L̂Σ from eigencomponents:

Σ̂obs =

p∑
i=1

λ̂iθ̂iθ̂
T
i , L̂Σ =

rP∑
i=1

λ̂iθ̂iθ̂
T
i

2: Remove L̂Σ:

Σ̂ = Σ̂obs − L̂Σ.

3: Using Σ̂, compute Ω̂ as solution to (5) with γ
such that rank(L̂Ω) = rL

where L
′
Ω is still a low-rank matrix. If Σ

′
is further corrupted by an additive latent factor represented

by LΣ, the following equation described the observed matrix Σobs:

Σobs = Σ
′
+LΣ = Σ+L

′
Ω +LΣ (10)

In the above example, following our theoretical analysis in Section 3, if the spectral norm of LΣ is
much larger than that of Σ and L

′
Ω, then removing LΣ using the PC-correction is likely to be effective.

If the spectral norm of L
′
Ω is not much larger than that of Σ, then PC-correction is not a good choice

to remove L
′
Ω. If L

′
Ω is dense, then Ω and LΩ can be well estimated by LVGGM. In (10), the overall

confounding L
′
Ω +LΣ is the sum of two low-rank components with different norms, we can consider

using both methods: first remove LΣ via eigendecomposition, then apply LVGGM to estimate Ω and
LΩ. We call this procedure PCA+LVGGM and it is shown in Procedure 2. We discuss methods for
setting the ranks for LΣ (defined as rP ) and L

′
Ω (defined as rL) in Section 3.5.

3 Theoretical analysis and model comparisons

In this section, we investigate the theoretical properties of PCA+GGM. Our results reveal precisely
how the eigenstructure of the observed covariance matrix affects the the performance of PCA+GGM.
The theoretical analysis provides practical insights into when each graph estimation method should (or
should not) be applied. Specifically, we derive the convergence rate of PCA+GGM and compare it to
that of LVGGM. As shown in theoretical analysis by Parsana et al. (2019), the low-rank confounder can
be well estimated by PC-correction if the number of features p → ∞ with the number of observations
n fixed. We provide a non-asymptotic analysis depending on p and n and our result shows that the
graph can be recovered exactly when n → ∞ with fixed p. When additional assumptions are satisfied,
e.g. spiky covariance structure and incoherent eigenvectors, the convergence rate can be improved to
O(

√
lnp/n).

3.1 Convergence analysis on PCA+GGM

Without loss of generality, we consider the case of a rank-one confounder. Assume that we have a
random sample of p-dimensional random vectors:

X
(i)
obs = X(i) + σvZ(i), i ∈ {1, · · · , n}, (11)

where Cov(X(i)) = Σ and Z(i) is a univariate standard normal random variable. v ∈ Rp is a non-
random vector with unit norm, and σ is a non-negative scalar constant. Without loss of generality, we
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assume that X(i) |= Z(i). To see how v affects estimation, we assume that v is the k-th eigenvector of
Σ. The discussion on general v is deferred to Section 3.2. Therefore, the covariance matrix of X(i)

obs is:

Σobs = Σ+ σ2vvT = Σ−k + (λk(Σ) + σ2)vvT, (12)

where Σ−k is the matrix Σ without the k-th eigencomponent and λk(Σ) is the k-th eigenvalue of Σ.
When σ2 > λ1(Σ), λk(Σ) + σ2 becomes the first eigenvalue of Σobs, and v is the corresponding first
eigenvector. We remove the first principal component from the sample covariance matrix Σ̂obs:

Σ̂ = Σ̂obs − λ̂1θ̂1θ̂
T
1 , (13)

where λ̂1 is the first eigenvalue of Σ̂obs and θ̂1 is the first eigenvector of Σ̂obs. Then we use Σ̂ to
estimate Ω. We first show that under mild conditions, Σ̂ is close to Σ. Following (Bickel et al., 2008b,
3.1), we assume that Σobs is well-conditioned such that:

0 < ϵ ≤ λp(Σobs) ≤ λ1(Σobs) ≤
1

ϵ
, (14)

where ϵ is independent of p.

Theorem 1. Let λi be the i-th eigenvalue of Σobs, θi be the i-the eigenvector of Σobs, and ν = λ1 − λ2

be the eigengap of Σobs. Suppose Σobs satisfies condition (14) and X
(i)
obs is generated as (11). Further

assume that σ2 > λ1(Σ). Suppose n ≥ p and ∥Σ∥2
√
(ν + 1)/ν2

√
p/n ≤ 1/128, then:

∥Σ̂−Σ∥∞ ≤ C1

√
lnp
n

+ C2

√
ν + 1

ν2

√
p

n
+ C3

√
p

n
+ λk(Σ)∥θ1θ

T
1 ∥∞,

with probability greater than 1− C4/p for constants Ci’s > 1.

Proof: Recall when σ2 > λ1(Σ), λk(Σ) + σ2 becomes the first eigenvalue of Σobs, and v becomes its
first eigenvector. By (12) and (13),

Σ̂−Σ = (Σ̂obs − λ̂1θ̂1θ̂
T
1 )− (Σobs − λ1θ1θ

T
1 + λk(Σ)θ1θ

T
1 )

= (Σ̂obs −Σobs) + (λ1θ1θ
T
1 − λ̂1θ̂1θ̂

T
1 )− λk(Σ)θ1θ

T
1 .

At a high level, we bound ∥Σ̂−Σ∥∞ by bounding the norms of Σobs − Σ̂obs, λ1 − λ̂1 and θ1 − θ̂1. The
details of the complete proof is in Appendix A.

The bound in Theorem 1 can be further simplified as Cs

√
p/n+λk(Σ)∥θ1θ

T
1 ∥∞ for some large constant

Cs. We express it in the above form because it provides more insight on how each term affects the
result. Now we analyze the bound in Theorem 1 in detail.

The error bound in Theorem 1 depends on the largest eigenvalue of Σobs, the eigengap ν = λ1(Σobs)−
λ2(Σobs), the eigenvector of the confounder and n and p. The term

√
(ν + 1)/ν2 shows that if the

eigengap ν is larger, the estimation error bound will be smaller. Recall that when σ2 > λ1(Σ),
λk(Σ) + σ2 becomes the first eigenvalue of Σobs. Hence if σ2 ≫ λ1(Σ), then the eigengap ν is large.
The fact that a larger eigengap leads to a better convergence rate is closely related to the concept
of “effective dimension” (also known as “effective rank”). The effective rank, r(M), of any positive
semidefinite matrix M ∈ Rp×p, is defined as:

r(M) :=
Tr(M)

λ1(M)
=

∑p
i=1 λi(M)

λ1(M)
≤ C, (15)

where C ≥ 1 can be viewed as the effective dimension of M Meng et al. (2014); Koltchinskii and
Lounici (2017); Wainwright (2019). M is approximately low-rank if the first few eigenvalues are much
larger than the rest, and r(M) will be much smaller than the observed dimension p. In this case, we
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can significantly reduce the magnitude of the dependence on O(
√
p/n) by replacing p with effective

dimension C, in (15). We provide a sharper bound for matrices with small effective rank in Theorem 2.

Next, we reason about the last term in the error bound, λk(Σ)∥θ1θ
T
1 ∥∞. In practice, in many sparse

graphs inferred from real world data, the first few eigenvalues of Σ are much larger than the rest, i.e.,
λ1(Σ) ≫ λk(Σ) for large enough k > 1. This is also true for many common graph data generating
models (see Appendix C). This means that if the eigenvector of the low-rank component is one of the
first few eigenvectors of Σ, then the error bound will be much larger. This result shows that the first few
eigencomponents play a more important role in determining the structure of Σ and its inverse. Thus,
the error of the PCA+GGM estimator will be large if those first few eigencomponents are removed by
PC-correction.

Note that ∥θ1θ
T
1 ∥∞ is upper bounded by 1, since θ1 is the eigenvector of some matrix, and thus has

unit Euclidean norm; however, ∥θ1θ
T
1 ∥∞ can be much smaller than 1 when θ1 is incoherent with

standard basis, e.g. dense. One extreme case is when all the elements of θ1 are 1/
√
p, in which case

∥θ1θ
T
1 ∥∞ = 1/p. This setup corresponds to a scenario in which the confounder has a widespread effect

over all the p variables in the signal, which is in accordance with one requirement in LVGGM. LVGGM
requires the low-rank component to be dense. For both PCA+GGM and LVGGM, more "widespread"
confounding implies smaller estimation error. Based on these observations, we provide a tighter bound
under small effective rank and incoherent θ1.

Theorem 2. Following the same notations and assumptions for Σobs in Theorem 1 and again assume
that σ2 > λ1(Σ). Further assume that the effective rank of Σobs (defined in (15)) r(Σobs) ≍ p/λ1, the
eigengap ν satisfies λ1 ≍ ν ≫ p

√
lnp/n, and θ1 is incoherent, i.e. ∥θ∥∞ ≤ C1/

√
p. Then:

∥Σ̂−Σ∥∞ ≤ C2(

√
lnp
n

+
1

p
),

with probability greater than 1− C3/p for some Ci’s > 1.

Proof: The complete proof is in Appendix A.

After obtaining Σ̂, we can use Glasso, CLIME Cai et al. (2011) or any sparse GGM estimation approach
to estimate Ω. We can have a good estimate of Ω when ∥Σ̂ −Σ∥∞ is small. With the same input
Σ̂, the theoretical convergence rate of the estimate obtained from CLIME is of the same order as the
Glasso estimate. The derivation of the error bound of Glasso requires the irrepresentability condition
and restricted eigenvalue conditions (see Ravikumar et al. (2011)). Due to the length of the article,
we only show the proof of the edge selection consistency for CLIME, meaning that for the theoretical
analysis, we apply CLIME method after obtaining Σ̂.

The CLIME estimator Ω̂1 is obtained by solving:

minimize
Ω

∥Ω∥1, subject to ∥Σ̂Ω− I∥∞ ≤ λn. (16)

Since Ω̂1 might not be symmetric, we need the symmetrization step to obtain Ω̂.

Following Cai et al. (2011), we assume that Ω is in the following class:

U(s0,M0) = {Ω = ωij : Ω ≻ 0, ∥Ω∥L1 < M0, max
1≤i≤p

p∑
i=1

I{ωij ̸=0} ≤ s0(p)}, (17)

where we allow s0 and M0 to grow as p and n increase. With Σ̂ obtained from equation (13) as the
input of (16), we have the following result.
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Theorem 3. Suppose that assumptions in Theorem 1 hold, Ω ∈ U(s0,M0), and λn is chosen as

M0(C1

√
lnp
n

+ C2

√
p

n
+ C3

√
ν + 1

ν2

√
p

n
+ λk(Σ)∥θ1θ

T
1 ∥∞),

then:

∥Ω− Ω̂∥∞ ≤ 2M0λn,

with probability greater than 1− C4/p. Ci’s are defined the same as in Theorem 1.

When assumptions in Theorem 2 hold, Ω ∈ U(s0,M0), and λ
′
n is chosen as M0(C5

√
lnp/n), then:

∥Ω− Ω̂∥∞ ≤ 2M1λ
′
n,

with probability greater than 1− C6/p for Ci’s > 1.

Proof: The main steps follow the proof of Theorem 6 in Cai et al. (2011). The complete proof is in
Appendix A.

Therefore, if the minimum magnitude of Ω is larger than the error bounds above, then we can have
exact edge selection with high probability.

3.2 Generalizations

The analysis in previous sections assumes that the low-rank confounder has rank 1, is independent of
X and the eigenvector of the covariance of the LΣ is one of the eigenvectors of Σ. We now comment
on more general settings.

• Higher rank: For ease of interpretation, we assume that the confounder can be expressed as∑r
i=1 σivi. If mini σ

2
i > λ1(Σ), then when running PCA+GGM, the low-rank component can be

removed due to its larger norm compared to that of Σ. According to Theorem 1, PCA+GGM
can still perform well if vi’s are not the top eigenvectors of Σ.

• Arbitrary v: In Theorem 1, v is assumed to be an eigenvector of Σ, but the result in Theorem
1 provides insights about the bound with an arbitrary v. Assume that v1 is the eigenvector
of confounder 1 and v2 is the eigenvector of confounder 2. v1 is the i-th eigenvector of Σ and
v2 is the j-th eigenvector of Σ. In Theorem 1, we show that the bound for estimating Σ with
confounder 1 is larger than thr bound with confounder 2 if i < j because v1 is associated with a
larger eigenvalue. If a confounder’s eigenvector v is a linear combination of v1 and v2, the bound
should be between the bound with confounder 1 and the bound with confounder 2. Following this
idea, we now show how our analysis works for an arbitrary v in more detail. When the eigenvector
of the low-rank component is not one of the eigenvectors of Σ, we can express that vector using
the eigenvectors of Σ as basis. For example, we assume that in (11), v =

∑p
i=1 aiθi, where θi

means the i-th eigenvector of Σ. We say v is closely aligned with θ1 if |a1| is significantly large
compared with other |ai|’s. Equivalently, |vTθ1| ≫ |vTθi| for i ̸= 1, if v is closely aligned with θ1.
In this case, the first eigencomponent of Σ will be removed, thus leading to a poor estimate of Σ
using PC-correction. If the eigenvector of the low-rank component is not closely aligned with the
first few eigenvectors of Σ, then we won’t lose too much useful information when removing the
top principal components and PCA+GGM can still perform well. In general, v can hardly be
closely aligned with the first few eigenvectors of Σ. We verify this with simulations in Section
4.2. We randomly generate multiple confounders and notice that their eigenvecors are not closely
aligned with the top eigenvectors of Σ. Thus, PCA-based methods are effective to remove the
confounders.
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3.3 Comparison with LVGGM

Now we compare LVGGM to PCA+GGM in more detail. We observe that PCA+GGM can be viewed as
a supplement to LVGGM. The assumptions of PCA+GGM can be well satisfied when the assumptions
of LVGGM cannot be satisfied. In (12), now let v be the k-th eigenvector of Ω (thus the (p− k + 1)-th
eigenvector of Σ), the Sherman-Morrison identity gives

Σ−1
obs = Ω− λk(Ω)2

λk(Ω) + (1/σ2)
vvT = Ω−LΩ. (18)

We can see that as σ increases, λk(Ω)2/(λk(Ω) + (1/σ2)) increases. In the simulations in Section 4, we
observe that LVGGM performs poorly when v is closely aligned with the first few eigenvectors of Ω
(thus the last few eigenvectors of Σ). One way to interpret why LVGGM does not work well under this
setting is because the nuclear norm penalty in LVGGM will shrink large eigenvalues. Specifically, when
k is small and σ2 is large, λk(Ω)2/(λk(Ω) + (1/σ2)) is large. Therefore, the nuclear norm regularization
in LVGGM introduces larger bias. Additionally, when k is small, v is one of the top eigenvectors of
Ω. We empirically observe that the top eigenvectors of Ω can be coherent with standard basis. This
observation coincides with the identifiability issue of LVGGM, i.e., a sparse low-rank component worsens
the performance of LVGGM.

This observation is consistent with the conclusion in Agarwal et al. (2012). They impose a spikiness
condition, which is a weaker condition than the incoherence condition in Chandrasekaran et al. (2012).
The spikiness condition requires that ∥LΩ∥∞ is not too large. (18) shows that LΩ tends to have a
larger spectral norm when v is aligned with the first few eigenvectors of Ω and σ is large, since in
this case, λk(Ω)2/(λk(Ω) + (1/σ2)) is close to λ1(Ω). The large norm of LΩ implies that the spikiness
condition is not well satisfied, thus the error bound of LVGGM is large. Note, however, that the first
few eigenvectors of Ω are the last few eigenvectors of Σ. Our analysis shows that the error bound of the
estimate of PCA+GGM is small when v is aligned with the first few eigenvectors of Ω and σ is large.

3.4 PCA+LVGGM

In this section we discuss the PCA+LVGGM method briefly. We use the same formulation as (8) to
(10). We claim that PCA+LVGGM outperforms using PCA+GGM or LVGGM individually when
LΣ’s spectral norm is large compared to that of L

′
Ω and Σ, LΣ’s vectors are not aligned with the first

few eigenvectors of Σ, and the spectral norm of L
′
Ω is not significantly larger than that of Σ. This

is because based on Theorem 1 and 3, PCA+GGM is effective only when the spectral norm of the
low-rank confounding is larger than that of the signal. PC-correction, however, can only effectively
remove LΣ but not L

′
Ω because the norm of L

′
Ω is not significantly larger than that of Σ. In contrast,

LVGGM can estimate L
′
Ω well, but not LΣ because it has a larger spectral norm and its eigenvectors

might be aligned with the first few eigenvectors of Ω.

3.5 Tuning parameter selection

In both LVGGM and PCA+GGM there are crucial tuning parameters to select. For LVGGM, recall
that λ controls the sparsity of Ω and γ controls the rank of LΩ. Chandrasekaran et al. (2012) argues
that λ should be proportional to

√
p/n, the rate in the convergence analysis, and choose γ among a

range of values that makes the graph structure of Ω̂ stable (see Chandrasekaran et al., 2011, for more
detail).

When using PCA+GGM, we need to determine the rank first (i.e., how many principal components
should be removed). Leek and Storey (2007); Leek et al. (2012) suggest using the sva function from
Bioconductor, which is based on parallel analysis Horn (1965); Buja and Eyuboglu (1992); Lim and
Jahng (2019). Parallel analysis compares the eigenvalues of the sample correlation matrix to the
eigenvalues of a random correlation matrix for which no factors are assumed. Given the number of
principal components to remove, we can use model selection tools such as AIC, BIC or cross-validation
to choose the sparsity parameter in Glasso. One may also decide how many principal components to

9



remove by considering the number of top eigenvalues of the observed covariance matrix (see Section 3.1
and Section 3.2). Note that these rank selection approaches perform well when the low-rank confounding
has large enough spectral norm compared to the norm of signal (more details on these conditions
are discussed in Leek et al. (2012); Lim and Jahng (2019)). We will see in later sections that these
conditions can be satisfied in many real-world applications. When the spectral norm of the latent
confounder is small, approaches which do not account for confounding, such as Glasso and CLIME, are
actually robust enough to perform well even when confounding exists. This is theoretically proved by
Ren and Zhou (2012) and our simulations in next section also confirm this.

The PCA+LVGGM method has three tuning parameters: the rank of LΣ, γ and λ. To start, we first
look at eigenvalues or use the sva package to determine the total rank of the low-rank component,
LΣ + L

′
Ω. We think it is natural to determine the rank of confounder first because we will see in

later applications, we can have some domain knowledge on the ranks of coufounders, e.g. in finance
applications, some financial theory suggests the number of latent variables in the market. We then need
to partition the total rank between LΣ and L′

Ω. If we determine that rank(LΣ + L′
Ω) = k, we look

for an eigengap in the first k eigenvalues and allocate the largest m < k eigenvalues for PC-removal.
Our experiments in Section 5 show that domain knowledge can be used to motivate the number of
components for PC-removal. After removing the principal components, we choose γ in LVGGM so tha
L′

Ω is approximately rank k −m . We observe that when running LVGGM, the rank won’t change
for a range of λ values when using a fixed γ. Thus, it suffices to fix γ first to control the rank, then
determine λ to control the sparsity.

Practically, network estimation is often used to help exploratory data analysis and hypothesis generation.
For these purposes, model selection methods such as AIC, BIC or cross-validation may tend to choose
models that are too dense Danaher et al. (2014). This fact can also be observed by our experiments.
Therefore, we recommend that model selection should be based on prior knowledge and practical
purposes, such as network interpretability and stability, or identification of important edges with low
false discovery rate Meinshausen and Bühlmann (2010). Thus, we recommend that the selection of
tuning parameters should be driven by applications. For example, for biological applications, the
model should be biologically plausible, sufficiently complex to include important information and sparse
enough to be interpretable. In this context, a robustness analysis can be used to explore how edges
change over a range of tuning parameters.

4 Simulations

In this section, numerical experiments illustrate the utility of each sparse plus low rank method. In
Section 4.1 we illustrate the behavior of Glasso, LVGGM and PCA+GGM under different assumptions
about rank-one confounding. In Section 4.2, we show the efficacy of PCA+LVGGM in a variety of
simulation scenarios. In all experiments, we set p = 100 and use the scale-free and random networks
from huge.generator function in R package huge Zhao et al. (2012). To generate random networks, each
pair of off-diagonal elements are randomly set, while the graph is generated using B-A algorithm under
scale-free structures Albert and Barabási (2002). Due to space limit, we only include results on the
scale-free structure.

4.1 The efficacy of LVGGM and PCA+GGM

We compare the relative performance of PCA+GGM, LVGGM and Glasso in the presence of a rank-one
confounder, L. Guided by our analysis in Section 3, we show that the relationship between L and the
eigenstructure of Σ determines the performance of these three methods. We first generate the data with

X
(i)
obs = X(i) +L(i), L(i) = σV Z(i), i ∈ {1, · · · , n},

where X(i) ∈ Rp is normally distributed with mean zero and covariance matrix Σ. Z(i) ∈ Rr, the
low-rank confounder, follows a normal distribution with mean zero and identity covariance matrix.
V ∈ Rp×r is a non-random semi-orthogonal matrix satisfying V TV = I, and σ ∈ R represents the
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magnitude of the confounder. Without loss of generality, we assume that X(i) and Z(i) are independent.
We illustrate the performance of different methods under various choices for, V , the eigencomponents
of L.

We first set r = 1, p = 100 and n = 200. The largest eigenvalue of Σ is around 5. We use vi to denote
the i-th eigenvector of Σ. When examining the effect of σ, we choose the 95-th eigenvector of Σ as V
to ensure that V is not closely aligned with the first few eigenvectors of Σ. We then compare the cases
with σ2 = 20 and 3. Next, we examine the effect of eigenvectors. We fix σ2 as 20, and use the i-th
eigenvector of Σ as V , where i ∈ {1, 60, 95}. Following previous notation, we use v1, v60 and v95 as V .
1 is chosen as the rank for PC-correction and LVGGM. We generate ROC curves (Hastie et al., 2009,
9.2.5) for each method based on 50 simulated samples and use the average to draw the ROC curves
(Fig. 1). We truncate the ROC curves at FPR=0.2, since the estimates with large FPR are typically
less useful in practice.
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Figure 1: n = 200. The low-rank component has rank 1. σ2 is the magnitude of the low-rank component,
vi is the i-th eigenvector of Σ. The first row illustrates the effect of σ: we use the 95-th eigenvector of
Σ as V , and set σ2 to 20 and 3 from left to right. The second row illustrates the effect of V : we fixed
σ2 as 20, and use the 60-th and first eigenvector of Σ as V from left to right. PCA+GGM works the
best when σ2 is large and V is not aligned with the first eigenvector of Σ. LVGGM works the best
when σ2 is large and V is not aligned with the last eigenvector of Σ. When σ2 is small, Glasso works
as well as the other two.

From Fig. 1, we observe that when the confounder has large norm and its eigenvectors are not closely
aligned with the first few eigenvectors of Σ, PCA+GGM performs better than LVGGM and Glasso.
LVGGM preforms the best when the confounder has large norm and its eigenvectors are not aligned with
the last few eigenvectors of Σ (also the first few eigenvectors of Σ−1). When the low-rank component
does not have a large norm, Glasso also performs well. This reaffirms the fact that Glasso can be robust
enough to address the low-rank confounding with small norm.
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4.2 The efficacy of PCA+LVGGM

In this section, we use multiple examples to demonstrate the efficacy of the PCA+LVGGM. We introduce
corruption of the signal with two low-rank confounders. The data is generated as follows:

X
(i)
obs = X(i) + V 1D1Z

(i)
1 + V 2D2Z

(i)
i , i ∈ {1, · · · , n},

where Xi ∈ Rp is normally distributed with mean zero and covariance matrix Σ. Z
(i)
1 ∈ Rd1 ,

corresponding to the first source of low-rank confounder, has a normal distribution with mean zero and
covariance matrix Id1 . V 1 ∈ Rp×d1 is a non-random, semi-orthogonal matrix satisfying V T

1 V 1 = I,
and D1 ∈ Rd1×d1 is a diagonal matrix, measuring the magnitude of the first confounder. Similarly,
Z

(i)
2 ∈ Rd2 , corresponding to the second source of low-rank confounder, has normal distribution with

mean zero and covariance matrix Id2 . V 2 ∈ Rp×d2 is a semi-orthogonal matrix satisfying V T
2 V 2 = I,

and D2 ∈ Rd2×d2 is a diagonal matrix, measuring the magnitude of the second low-rank confounder.
Without loss of generality, we assume that X(i), Z(i)

1 and Z
(i)
2 are three pairwise independent vectors.

Hence the observed covariance matrix is

Cov(Xobs) = Σobs = Σ+ V 1D
2
1V

T
1 + V 2D

2
2V

T
2 = Σ+L1 +L2. (19)

Our first simulation setup (case 1) shows an ideal case for PCA+LVGGM, meaning that PCA+LVGGM
method performs much better than using PCA+GGM, LVGGM, or Glasso. Let d1 = d2 = 3. We set
p = 100 and n = 100. In our first example, the columns of V 1 and V 2 come from the eigenvectors of
Σ. We expect that PC-correction removes L2, so we set the diagonal elements of D2

2 all 50, and use
the last 3 eigenvectors of Σ as V 2. This can guarantee that PC-correction performs much better than
LVGGM and Glasso when removing L2. Then we use LVGGM to estimate L1, so we need a moderately
large magnitude. We set all diagonal elements of D2

1 to 20, and use the first 3 eigenvectors of Σ as V 1.
This ensures that LVGGM performs better than PC-correction and Glasso when estimating L1.

Using the sva package, we estimate the rank of L1 +L2 to be 6. Then we look at the eigenvalues of
the observed sample covariance matrix and we can see the first 3 eigenvalues are much larger than the
4-th to 6-th eigenvalues (shown in the top row of Fig. 2). We therefore allocate 3 to PC-correction,
and 6 − 3 = 3 to LVGGM. We also try allocating 1 to PC-correction and 5 to LVGGM. Then we
compare more approaches, including using PC-correction individually by removing only 3 principal
components or 6 principal components, using LVGGM with rank 6 for the low-rank component as
well as the uncorrected approach Glasso. We still use 50 datasets and draw the ROC curve for the
averages with varying sparsity parameters λ. The ROC for the scale-free example is in the bottom
row of Fig. 2. We also include the AUC (area under the ROC curve) for each method. We compare
PCA+LVGGM with rank 3 in PC-correction with other methods. For each data set, we calculate
(AUC of PCA+LVGGM)/(AUC of one other method), then compute the sample mean and sample
standard deviation of that ratio over 50 data sets to compare the average performance and the variance
of different methods. The results for the scale-free graph are shown in the first column of Table 4.2.
We can see that PCA+LVGGM with rank 3 for PC-correction and 3 for LVGGM do perform much
better than other methods for both graph structures, indicating that if the assumptions are satisfied,
our method and parameter tuning procedure are useful.

Finally, we try setups that are more similar to real world data. We still use (19) to generate the
data and set p = 100 and n = 100. Differently from previous settings, we now use some randomly
generated eigenvectors as columns of V 1 and V 2. We look at the distribution of eigenvalues of gene
co-expression and stock return data covariance matrices, and try to make simulation settings similar
to those examples. We run two setups - the first is called a large-magnitude case (case 2), with D2

1

a diagonal matrix with diagonal elements (7, 6, 6) and D2
2 a diagonal matrix with diagonal elements

(20, 10, 10). The second setup is referred to a moderately large magnitude case (case 3), in which the
low-rank component has the same eigenvectors as the large-magnitude case, but the elements of D1

and D2 become smaller, with diagonal elements of D2
1 (3, 3, 3) and diagonal elements of D2

2 (10, 8, 6).

Using the sva package, we estimate the rank of L1 +L2 to be 6 for both case 2 and case 3. We observe
that the first 3 eigenvalues are larger than the rest, so we allocate 3 to PC-correction and use 6− 3 = 3
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as the rank for the low-rank component for LVGGM. We also try allocating 1 to PC-correction and
5 to LVGGM, using PC-correction by removing only 3 PC-components and 6 PC-components, using
LVGGM with rank 6 and using Glasso. Again, we run over 50 datasets and include ROC curves and
AUC tables.

0

10

20

30

40

50

0 25 50 75 100
index

ei
ge

nv
al

ue

Case 1

0

5

10

15

20

0 25 50 75 100
index

ei
ge

nv
al

ue

Case 2

0

3

6

9

0 25 50 75 100
index

ei
ge

nv
al

ue

Case 3

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
FPR

T
P

R

Case 1

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
FPR

T
P

R

Case 2

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
FPR

T
P

R

Case 3

Method

glasso

LVGGM

PC(1)+LV

PC(3)

PC(3)+LV

PC(6)

Figure 2: We use the scale-free structure when generating graphs. The first row shows the eigenvalues
of Σobs under 3 setups, and the second row shows the corresponding ROC curves with different
methods. PC(k) means that we use k as the rank in PC-correction and PC(k)+LV means that we use
PCA+LVGGM with k as the rank for PC-correction.

Method Case 1 Case 2 Case 3
PCA(3)+LVGGM 1 1 1

Glasso 1.58(0.073) 1.25(0.080) 1.07(0.048)
LVGGM 1.64(0.088) 1.06(0.044) 1.01(0.036)

PCA(Full) 2.46(0.22) 1.01(0.12) 1.36(0.14)
PCA(3) 1.08(0.017) 1.05(0.027) 0.99(0.018)

PCA(1)+LVGGM 1.47(0.11) 1.04(0.038) 1.01(0.035)

Table 1: We use the scale-free structure when generating graphs. We compute the ratio of AUC
between PCA+LVGGM with rank 3 in PC-correction and other methods, using PCA+LVGGM as the
numerator. The table shows the sample mean and sample standard deviations of that ratio (in the
parenthesis) over 50 data sets. In case 3, the magnitude of the confounding is not as large as other
cases, so PC-correction with rank 3 has the best performance.

From Fig. 2 and Table 4.2, we can see that other approaches considered hardly outperform PCA+LVGGM.
Actually, using PCA+GGM or LVGGM can be viewed as a special case of the PCA+LVGMM methods.
To see that, we can have LVGGM from PCA+LVGGM by allocating a rank of 0 to PC-correction.
From the simulation and real data examples, we observe that using PCA+GGM with higher ranks
often removes some useful information, resulting in more false negatives. On the other hand, if the
effect of multiple confounders exists in the data that are not well represented by the first few principal
components, using PCA+GGM alone might not be enough to remove the additional sources of noise.
Note that LVGGM may not be enough to remove the confounding with large norm, leading to spurious
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connections between nodes. In this case, we would suggest PCA+LVGGM as a default setting and a
starting point for problems with low-rank confounding. We can adjust different rank allocations based
on the specific problems and goals of interest.

5 Applications

5.1 Gene co-expression networks

Our first application is to reanalyze the gene co-expression networks originally analyzed by Parsana
et al. (2019). The goal of gene co-expression network analysis is to identify transcriptional patterns
indicating functional and regulatory relationships between genes. In biology, it is of great interest
to infer the structure of these networks; however, the construction of such networks from data is
challenging, since the data is usually corrupted by technical and unwanted biological variability known
to confound expression data. The influence of such artifacts can often introduce spurious correlation
between genes; if we apply sparse precision matrix inference directly without addressing confounding,
we may obtain a graph including many false positive edges. Parsana et al. (2019) uses PCA+GGM
to estimate this network and shows that PC-correction can be an effective way to control the false
discovery rate of the network. In practice, however, some effects of confounding may not be represented
in the top few principal components. This motivates the more flexible PCA+LVGGM approach. The
PC-correction effectively removes high variance confounding, and then LVGGM subsequently accounts
for any remaining low-rank confounding. We consider gene expression data from 3 diverse tissues: blood,
lung and tibial nerve, with sample sizes between 300 to 400 each. 1000 genes are chosen from each
tissue. More detail about the source of the data and pre-processing steps are introduced in Appendix D.
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Figure 3: Precision-recall plots for gene expression data. TP represents number of true positives.
PCA+LVGGM(L) means larger γ in LVGGM and PCA+LVGGM(S) means small γ in LVGGM. We
can see that PCA+LVGGM performs the best or equivalently well compared to other approaches for
almost all 3 tissues.

We observe that all of the sample covariance matrices are approximately low-rank by looking at the
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eigenvalues of the covariance matrices of genes, indicating the potential existence of high variance
confounding. Then we use sva package to estimate the rank for PC-correction and call this the full
sva rank correction. Parsana et al. (2019) suggests that the rank estimated by sva might be so large
that some useful network signal is removed. To reduce the effect of over-correction, we apply the
PC-correction with half and one quarter of the sva rank, which we refer to as half sva rank correction
and quarter sva rank correction, respectively. For many tissues, the first eigenvalue is much larger
than the rest, this motivates us to try rank-1 PC-correction. We include the results with half sva
rank, quarter sva rank and rank 1 PC-corrections in Fig. 3. After running the above PC-corrections
to remove high-variance confounding, we run LVGGM as an additional step to further estimate and
remove the low-rank noise with moderate variance. We use two different values as the γ parameters in
LVGGM. Larger γ leads to removing lower-rank confounding and smaller γ leads to remove higher-rank
confounding. We show the results for both choices of γ. We use different λ to control sparsity of
the estimated graph. Specifically, following Parsana et al. (2019), we use 50 values of λ between 0.3
and 1. We draw Fig. 3 similar to the precision recall plot. The y-axis represents the precision (True
Positives/(True Positives + False Positives)), and the x-axis is the number of true positives. We can see
that PCA+LVGGM can yield better or equivalently good results compared to other methods, indicating
that it can be useful to run LVGGM after the PC-correction when estimating gene co-expression
networks.

5.2 Stock return data

In finance, the Capital Asset Pricing Model (CAPM) states that there is a widespread market factor
which dominates the movement of all stock prices. Empirical evidence for the market trend can be
found in the first principal component of the stock data, which is dense and has approximately equal
loadings across all stocks (Fig. 5, left). In fact, the first few eigenvalues of the stock correlation matrix
are significantly larger than the rest Fama and French (2004), which suggests that only a few latent
factors are mainly driving stock correlations.

In this section, we posit that the conditional dependence structure after accounting for these latent
effects is more likely to reflect direct relationships between companies aside from the market and,
perhaps, sector trends. Our interest is in recovering the undirected graphical model (conditional
dependence) structure between stock returns after controlling for potential low rank confounders.

We compare networks inferred by PCA+LVGGM, PCA+GGM, LVGGM and Glasso by analyzing
monthly returns of component stocks in S&P 100 index between 2008 and 2019 Hayden et al. (2015).
The 49 chosen companies are in 6 sectors: technology (10 companies), finance (11), energy (7), health
(8), capital goods (7) and non-cyclical stocks (6). For PCA+GGM, we remove the first eigenvector
which corresponds to the overall market trend. For the other latent variable methods we use the sva
package to identify a plausible rank. For PCA+LVGGM, we remove the first principal component
corresponding to the overall market trend and use LVGGM to estimate remaining latent confounders
and the graph. Fig. 4 shows the networks obtained by each approach.

For each method, the sparsity-inducing tuning parameter was chosen to minimize negative log-likelihood
using a 6-fold cross-validation procedure, and the number of low rank components are chosen manually.
Specifically, in cross-validation, we use negative log-likelihood to measure the out-of-sample error and
choose the parameters that minimize the average out-of sample error over 6 validation sets. We observe
that when using LVGGM, allocating rank 1 or 2 to the low-rank component won’t make the estimates
very different from Glasso, while allocating ranks higher than 6 to the low-rank component leads to
higher out-of-sample error, so 5, the rank picked by sva, is among the best choices. For PCA-based
methods, removing more than 1 principal components leads to higher out-of-sample error. As expected,
the Glasso result is denser than the networks learned with sparse plus low rank methodology with
PCA+LVGGM yielding the sparsest network.

For LVGGM, we note that the method effectively controls for sector effect but is less effective in
controlling for the effect of the overall market trend. Let Σ̂obs be the empirical observed covariance
matrix and v̂i be its i-th eigenvector. We have the following observations: first, the first principal
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Figure 4: Stock connections between 2008 and 2019 learned by different methods. The following sectors
are included: Tech, Finance, Energy, Health, Capital goods and Non-cyclical (NC) from left to right.

component is closely aligned with the overall market trend, because the absolute value of the inner
product between the first eigenvector of Σ̂obs and the normalized “all ones” vector is 0.98. Second,
the observed empirical covariance matrix has an approximately low-rank structure, because the first
eigenvalue of Σ̂obs is 18.25 and the second is 3.5 and all other eigenvalues are close or smaller than 1.
Third, LVGGM does not capture the full effect of the market trend. Let L̂

′

Ω be the estimate of LΩ
′
in

(9). When we apply LVGGM on Σ̂obs, the inner product between the first eigenvector of L̂
′

Ω and v̂1 is
close to 1 but the first eigenvalue of L̂

′

Ω is only 0.55, much smaller than the first eigenvalue of Σ̂obs.

We argue that PCA+LVGGM is the most appropriate method for this application because it appro-
priately controls for both market and sector effects. Let L̂Σ and L̂

′

Ω be the estimates of the low-rank
components defined in (10). For PCA+LVGGM, we remove LΣ by removing the first eigencomponent
of Σobs, then run LVGGM to estimate LΩ and Ω. We claim that PCA+LVGGM can remove the
confounding effect fully in the market trend direction, as well as the remaining confounding effect in
other directions. To see that, first, v̂1 is removed in PC-correction. Second, the inner product between
the first eigenvector of L̂

′

Ω and v̂2, the second eigenvector of Σ̂obs, is 0.99. The first eigenvalue of L̂
′

Ω is
0.4 and the second eigenvalue of Σ̂obs is 3.5. This shows that when applying LVGGM, only part of the
information in the direction of v̂2 has been removed. We know that the direction of v̂1 reflects the
market trend, but v̂2 might include both true graph information and some latent confounding effect,
hence using LVGGM might be a good choice for capturing the confounding effect in the direction of v̂2.
Overall PCA+LVGGM, therefore, might be a better choice than LVGGM and the PCA-based method.

Fig. 5 shows heat maps of L̂Σ obtained via PCA and L̂
′

Ω obtained with LVGGM (rank 5). As
expected, the elements of L̂Σ are roughly equal in magnitude, reflect the market trend and the large
first eigenvalue of Σ̂obs. In contrast, L̂

′

Ω shows a block-diagonal structure and its elements have smaller
magnitudes, which suggests that LVGGM does not adequately account for the overall the market trend.
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(a) (b)

Figure 5: (a) Rank one approximation to L̂Σ obtained with PCA. (b) L̂
′

Ω obtained with LVGGM with
rank 5. The rank-one approximation to L̂Σ is close to a constant matrix. In contrast, L̂

′

Ω reflects sector
effects but does not reflect the strong effect due to overall market trends.

On the other hand, the block diagonal structure of L̂
′

Ω reflects inferred sector effects. PCA+GGM
is most effective at reducing confounding from overall market trends and LVGGM is more effective
at accounting for remaining confounding, such as the sector effect. Therefore, PCA+LVGGM, which
combines the benefits of PCA and LVGGM is arguably the most appropriate choice for addressing the
latent confounding in this context.

6 Conclusion

We have studied the problem of estimating the graph structure under Gaussian graphical models when
the data is corrupted by latent confounders. We compare two popular methods PCA+GGM and
LVGGM. One of our contributions is to show the connection and difference between these two approaches,
both theoretically and empirically. Based on that, we propose a new method, PCA+LVGGM. The
effectiveness of this method is supported by theoretical analysis, simulations and applications. Actually,
our analysis provides guidance on when to use which approach to estimate GMM in the presence of
latent confounders. We believe that this guidance can help researchers in many fields, such as finance
and biology, when there exist problems of graph estimation with confounders.

There are several future directions. First, we can extend the current framework to other distributions,
such as the transelliptical distributions Liu et al. (2012) and the Ising model Ravikumar et al. (2010);
Nussbaum and Giesen (2019). Secondly, we can consider more structures - for example, we are interested
in what will happen if the principal components of the observed data are sparse. Given the distributions
of eigenvalues or eigenvectors of Σ, we can provide more precise bounds. Deriving sharper bounds to
more general settings is a useful extension. We can also extend LVGGM based on our observations in
this work. For instance, it is interesting to consider replacing the nuclear norm penalty in LVGGM
with some unbiased regularization such as SCAD Fan and Li (2001) and MCP Zhang (2010) to avoid
shrinking too much on large eigenvalues. Other future works include applying our current methods and
analysis in more applications, such as the functional magnetic resonance imaging (fMRI) in neuroscience.
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Appendix A Proofs

Proof outline: To prove Theorems 1 and 2, we first write Σ̂−Σ as below:

Σ̂−Σ = (Σ̂obs − λ̂1θ̂1θ̂
T
1 )− (Σobs − λ1θ1θ

T
1 + λkθ1θ

T
1 ) = (Σ̂obs −Σobs) + (λ1θ1θ

T
1 − λ̂1θ̂1θ̂

T
1 )− λkθ1θ

T
1 ,

(20)

where λk is the k-th eigenvalue of Σobs, and θk is the k-th eigenvector of Σobs. To bound Σ̂ − Σ,
we need to bound the norms of Σobs − Σ̂obs, λ1 − λ̂1 and θ1 − θ̂1, and the lemmas below show these
bounds.

Lemma 1. Assuming that Σ−1
obs satisfies the maximum and minimum eigenvalue condition in (14), then

P (∥Σ̂obs −Σobs∥∞ ≥ t) ≤ C1p
−1, t = C2

√
lnp
n

,

where C1 and C2 depends on the eigenvalue bound M in (14).

Proof: The proof follows (Bickel et al., 2008b, Lemma A.3).

The next two lemmas provide bounds for |λ1 − λ̂1|.

Lemma 2. Under the assumptions of Theorem 1, we have

|λ1 − λ̂1| ≤ C1λ1

√
p

n
,

with probability at least 1− 2e−p/C2 for some constants Ci’s > 1.

Proof: By Weyl’s lemma Horn and Johnson (2012)

max
j=1,...,p

|λj(Σobs)− λj(Σ̂obs)| ≤ ∥Σ̂obs −Σobs∥2.

The bound on ∥Σ̂obs −Σobs∥2 is then obtained from (Wainwright, 2019, Theorem 6.5).

Following (Koltchinskii and Lounici, 2017, Theorem 5), a tighter bound can be obtained using the
effective rank r(Σobs) defined in (15).

Lemma 3. Under the assumptions of Theorem 2, we have

|λ1 − λ̂1| ≤ ∥Σ̂obs −Σobs∥2 ≤ C1(

√
pλ1

n
∨ p

n
),

with probability at least 1− e−p/C2 for some constants Ci’s > 1.

Proof: Theorem 5 in Koltchinskii and Lounici (2017) shows that

|λ1 − λ̂1| ≤ ∥Σ̂obs −Σobs∥2 ≤ Cλ1(

√
r(Σobs)

n
∨ r(Σobs)

n
).

The bound above is at the same order as
√

(pλ1)/n ∨ (p/n) because r(Σobs) ≍ (p/λ1).
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Then the two lemmas below provide bounds for ∥θ1 − θ̂1∥∞.

Lemma 4 (adapted from Wainwright 2019, Corollary 8.7). Under the assumptions of Theorem 1,
suppose n ≥ p and ∥Σ∥2

√
(ν + 1)/ν2

√
p/n ≤ 1/128, then

∥θ1 − θ̂1∥2 ≤ C1

√
ν + 1

ν2

√
p

n
,

with probability at least 1− C2e
−p/C3 for some Ci’s > 1, where ν = λ1(Σobs)− λ2(Σobs) .

The lemma below shows a tighter bound with a large eigengap ν = λ1(Σobs)− λ2(Σobs) following (Fan
et al., 2018, Section 3.1).

Lemma 5. Under the assumptions of Theorem 2,

∥θ1 − θ̂1∥∞ ≍ Op(
p ∨ λ1

νp

√
lnp
n

) ≍ Op(

√
p

λ1

√
lnp
n

),

with probability at least 1− C/p for some constant C.

Before moving to the proofs of Theorem 1 and 2, we first show an upper bound for ∥Σ̂−Σ∥∞ using
(20).

∥Σ̂−Σ∥∞ ≤ ∥Σobs − Σ̂obs∥∞ + ∥λ1θ1θ
T
1 − λ̂1θ̂1θ̂

T
1 ∥∞ + ∥λkθ1θ

T
1 ∥∞. (21)

The term ∥λ1θ1θ
T
1 − λ̂1θ̂1θ̂

T
1 ∥∞ can be expressed as:

∥λ1θ1θ
T
1 − λ̂1θ̂1θ̂

T
1 ∥∞ =∥λ1θ1θ

T
1 − λ1θ1θ̂

T
1 + λ1θ1θ̂

T
1 − λ̂1θ1θ̂

T
1 + λ̂1θ1θ̂

T
1 − λ̂1θ̂1θ̂

T
1 ∥∞

≤∥λ1θ1θ
T
1 − λ1θ1θ̂

T
1 ∥∞ + ∥λ1θ1θ̂

T
1 − λ̂1θ1θ̂

T
1 ∥∞ + ∥λ̂1θ1θ̂

T
1 − λ̂1θ̂1θ̂

T
1 ∥∞

≤|λ1|∥θ1∥∞∥θ1 − θ̂1∥∞ + |λ1 − λ̂1|∥θ1∥∞∥θ̂1∥∞ + |λ̂1|∥θ̂1∥∞∥θ1 − θ̂1∥∞.
(22)

We can then use the bounds for |λ1 − λ̂1| and ∥θ1 − θ̂1∥∞ in previous lemmas to bound ∥λ1θ1θ
T
1 −

λ̂1θ̂1θ̂
T
1 ∥∞.

Proofs of Theorems 1 and 2: Now we are ready to prove Theorem 1. We first plug in the bounds
in Lemmas 1, 2 and 4 to (22). Since θ1 is the eigenvector of a matrix, ∥θ1∥∞ ≤ 1. Combining these
two results completes the proof.

To prove Theorem 2, we need to plug in the bounds in Lemmas 1, 3 and 5 to (22). Given Lemmas 3
and 5, we can bound the second term in (22),

|λ1 − λ̂1|∥θ1∥∞∥θ̂1∥∞ = Op(

√
λ1

np
∨ 1

n
) = Op(

√
lnp
n

).

Similarly, the first and third terms in (22) have the convergence rate of

Op(λ1∥θ1∥∞(

√
p

λ1

√
lnp
n

)) = Op(

√
lnp
n

).

Then with incoherent ∥θ1∥∞ = O(1/
√
p), the last term in (21) ∥λkθ1θ

T
1 ∥∞ has the convergence rate of

Op(1/p).
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Proof of Theorem 3: The proof follows the proof of (Cai et al., 2011, Theorem 6). First we know,

∥Σ̂Ω− I∥∞ = ∥(Σ̂−Σ)Ω∥∞ ≤ ∥Σ̂−Σ∥∞∥Ω∥L1 .

Then we have,

∥Σ̂(Ω− Ω̂1)∥∞ = ∥Σ̂Ω− I + I − Σ̂Ω̂1∥∞ ≤ ∥Σ̂Ω− I∥∞ + ∥I − Σ̂Ω̂1∥∞ + ∥Σ̂−Σ∥∞∥Ω∥L1 + λn.

We know,

∥Ω− Ω̂1∥∞ = ∥ΩΣ(Ω− Ω̂1)∥∞ ≤ ∥Σ(Ω− Ω̂1)∥∞∥Ω∥L1 .

To bound the terms above, we need,

∥Σ(Ω− Ω̂1)∥∞ ≤ ∥Σ̂(Ω− Ω̂1)∥∞ + ∥Σ̂−Σ∥∞∥Ω∥L1 .

We know ∥Ω∥L1 ≤ M0 from (17) and combining the relations above with the result of Theorem 1 or
Theorem 2, with the choice of λn specified in Theorem 3, we can obtain the bound for Ω̂1. The bound
of the same order can be obtained for Ω̂, the symmetric version of Ω̂1.

Appendix B Generalization of Section 3

The analysis in Section 3 assumes that the low-rank confounder is independent of X and the eigenvector
of the covariance of the low-rank confounding is one of the eigenvectors of Σ, the covariance of X.
Those two assumptions can be extended to the more general setups. In equation (11), when X and Z
are not independent, the convariance matrix for Xobs becomes

Σobs = Σ+ σCov(X,Z)vT + σvCov(X,Z)T + σ2vvT,

where Cov(X,Z) is a p-dimensional column vector. We can see that σCov(X,Z)vT+σvCov(X,Z)T+
σ2vvT has rank at most 3, hence Σobs can still be expressed as the sum of Σ and a low-rank matrix.
Here, to ensure that the confounding can be identified in PCA-based approach, we assume that both σ
and σ2 are large compared to the eigenvalues of Σ. Then, our analysis in Section 3 can still be applied
here, but the eigenvectors of the low-rank matrix are not necessarily the eigenvectors of Σ.

Appendix C Eigenvalues of sparse graphs
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Figure 6: The distribution of the top 25 eigenvalues created by scale-free, random and cluster graphs
using huge package with p = 100 and n = 10000.

Fig. 6 shows the first 25 eigenvalues of sparse graphs. We use huge package Zhao et al. (2012) to
generate the sparse graphs with three different structures: scale-free, random and clustered. We set
p = 100, n = 10000 and assume default for all other parameters (see Zhao et al. (2012) for more detail).
We generate 10 realizations for each graph structure and show the distribution of the first 25 eigenvalues
of Σ in Fig. 6. We notice that the top eigenvalues are typically larger than the rest, especially for the
scale-free graphs.
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Appendix D Gene co-expression networks data

Now we briefly introduce the data and the pre-processing procedure of gene co-expression networks
in Section 5.1. More detail can be found from Parsana et al. (2019). We use the RNA-Seq data from
the Genotype-Tissue Expression (GTEx) project v6p release. We consider three diverse tissues with
sample sizes between 300 to 400 each: blood, lung and tibial nerve. We first filter the non-overlapping
protein genes and perform a log transformation with base 2 to scale the data following (Parsana et al.,
2019, Appendix 2.4). Since the underlying true network structure is generally unknown, we obtain the
interaction information from some canonical pathway databases including KEGG, Biocarta, Reactome
and Pathway Interaction Database. To make better use of those information, we pick 1000 high-variance
genes which are included in all these databases, thus p = 1000 in this example.
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