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a b s t r a c t

Prior studies of multichannel ECoG from animals showed that beta and gamma oscillations carried percep-
tual information in both local and global spatial patterns of amplitude modulation, when the subjects were
trained to discriminate conditioned stimuli (CS). Here the hypothesis was tested that similar patterns
could be found in the scalp EEG human subjects trained to discriminate simultaneous visual-auditory
CS. Signals were continuously recorded from 64 equispaced scalp electrodes and band-pass filtered. The
Hilbert transform gave the analytic phase, which segmented the EEG into temporal frames, and the ana-
lytic amplitude, which expressed the pattern in each frame as a feature vector. Methods applied to the
ECoG were adapted to the EEG for systematic search of the beta–gamma spectrum, the time period after
CS onset, and the scalp surface to locate patterns that could be classified with respect to type of CS. Spatial
ynchronization
lobal

ntermittent

patterns of EEG amplitude modulation were found from all subjects that could be classified with respect
to stimulus combination type significantly above chance levels. The patterns were found in the beta range
(15–22 Hz) but not in the gamma range. They occurred in three short bursts following CS onset. They were
non-local, occupying the entire array. Our results suggest that the scalp EEG can yield information about
the timing of episodically synchronized brain activity in higher cognitive function, so that future studies

acing
ith ve
in brain–computer interf
data from dense arrays w

. Introduction

Studies of the neural correlates of cognition in experimen-
al animals (Freeman and Grajski, 1987; Freeman and Van Dijk,
987; Barrie et al., 1996; Freeman and Barrie, 2000; Freeman
nd Burke, 2003; Freeman, 2005) have provided a candidate for
he neural “code” used by sensory cortex to express the content
f a percept. This code is carried by a brief burst of oscillatory
ctivity in the beta or gamma frequency range. During such a
urst or “frame” of activity, oscillations become phase synchro-
ized at a shared instantaneous frequency. This synchrony is not
ecessarily zero-lag (i.e., the oscillations are not necessarily per-

ectly in-phase) but during this time period the phase relationships

etween different spatial sites remain constant. Within this syn-
hronized spatial domain (frame), the content of the subjective
ercept is encoded as a spatial pattern of amplitude. Thus the
ode can be considered as a form of spatial amplitude modula-

∗ Corresponding author. Tel.: +53 281157; fax: +53 281157.
E-mail address: yuselyr@uclv.edu.cu (Y. Ruiz).

165-0270/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2010.05.021
can be better focused. Our methods may be most valuable for analyzing
ry high spatial and temporal sampling rates.

© 2010 Elsevier B.V. All rights reserved.

tion (AM) of a temporal carrier frequency carried in intermittent
frames.

By means of ECoG records from animals trained to respond to
conditioned stimuli (CSs), this “code” has been identified in the
olfactory bulb, (Freeman and Grajski, 1987) and neocortex of rabbit
(Barrie et al., 1996), monkey (Freeman and Van Dijk, 1987), ger-
bil (Ohl et al., 2000), cat (Freeman and Burke, 2003), and human
(Freeman et al., 2006a,b; Panagiotides et al., 2008). The brain activ-
ity patterns have been classified with respect to conditioned stimuli
using animal ECoG signals (Freeman and Barrie, 2000; Freeman,
2005, 2006). In every species the classification was maximal when
all ECoG channels were used. Deletion of any subset diminished the
goodness of classification in proportion to the number removed,
irrespective of which channels were deleted (Barrie et al., 1996),
showing that the synchronized neural activity sustaining the AM
pattern was uniformly distributed with respect to information den-
sity. This finding held also for experiments in which the channels

were divided into sub-arrays that were fixed on the visual, auditory,
somatic, and entorhinal cortices and the olfactory bulb (Freeman
et al., 2003b; Freeman and Rogers, 2003), showing that the inter-
mittent phase-locked synchrony encompassed all areas of cortex
examined.

dx.doi.org/10.1016/j.jneumeth.2010.05.021
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:yuselyr@uclv.edu.cu
dx.doi.org/10.1016/j.jneumeth.2010.05.021
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The spatial amplitude patterns identified in this work had a rel-
tively fine ‘grain’ or spatial density, determined by the relatively
lose spacing of recording electrodes on the surface of the cor-
ex. However the multicortical distribution seen engendered the
ypothesis that a similar “code” of intermittently synchronized
eural activity may occur at a sufficiently large spatial scale to
ake AM patterns accessible from scalp EEG, despite the obvi-

us distortions introduced by gyrification, distance from cortex to
calp, pattern attenuation by the shunting effects of the fluid layers
mbedding the brain, and corruption by scalp EMG. Three exist-
ng lines of evidence supported this hypothesis. (a) Suggestions
hat multiple modules perform cognitive functions by coordinat-
ng their dynamics (Pribram, 1971; Baars, 1998; Bressler and Kelso,
001; Fingelkurts and Fingelkurts, 2001; Breakspear et al., 2004;
elso and Tognoli, 2007). (b) Multichannel recordings showing
idespread intermittent synchrony of oscillations in the beta and

amma range of the EEG (Freeman et al., 2003a; Pockett et al., 2009)
nd MEG (Stam et al., 2003; Bassett et al., 2006). (c) Numerous
eports on the correlation of EEG oscillations, particularly in the
amma range, with a variety of cognitive functions (Tallon-Baudry
t al., 1998; Miltner et al., 1999; Rodriguez et al., 1999; Bertrand
nd Tallon-Baudry, 2000; Haig et al., 2000).

Based on these diverse findings a preliminary search was under-
aken to extract from scalp EEG temporal frames containing AM
atterns in the beta range. Initially control data from the free avail-
ble EEG database on the UCI Machine Learning Repository were
sed, in which subjects were performing a simple sensory discrimi-
ation task (Ingber, 1999). The results from applying the techniques
eveloped for extraction of AM patterns from ECoG were posi-
ive (Ruiz et al., 2009a). The present report is based on data from
xperiments designed to facilitate the search for scalp correlates of
ensory perception (Pockett et al., 2009) by having subjects engage
n multisensory discrimination, in order to optimize the likelihood
f multicortical synchronization (Dumenko, 2000).

. Materials and methods

.1. Experimental design and signal pre-processing

Data from six male subjects between 23 and 44 years old were
nalyzed. One of the six subjects was left handed (subject JL). Data
ere collected in the Psychology Dept. of the University of Cali-

ornia Berkeley and the study was approved by the UC Berkeley
nstitutional Review Board. All subjects gave informed consent.

EEG was recorded using BioSemiTM amplifiers with a 64-
lectrode cap using Ag/AgCl electrodes. The sampling rate was
12 Hz and the analog filter was set from DC to 134 Hz. The ref-
rence was a point between the CMS and DRL electrodes of the
ioSemiTM system, to which the closest approximation is electrode
Oz.

Continuous records were taken, with the times of various sorts
f paired visual and auditory stimuli and responses marked in a
5th recording channel. The experimental design and recording
rocedure have been documented elsewhere (Pockett et al., 2009).
he visual stimuli consisted of a 125 ms flash during which a com-
uter screen turned either entirely red or entirely blue. The auditory
timulus was either a comfortably loud or a much softer 100 ms
urst of white noise from two computer speakers. Stimuli were
elivered in the following combinations: Red-Loud, Blue-Soft or
lue-Loud. The subject’s task was to learn by trial and error which

omputer key they should press in response to which combination
f stimuli. For the first 180 stimuli presentations, positive or neg-
tive feedback was delivered at random (Block1). For the next 200
resentations, “Correct” feedback was delivered lawfully (Block2).
or the present analysis, data from Red-Loud and Blue-Soft stimu-
Methods 191 (2010) 110–118 111

lus combinations were selected to perform the classification assays.
Red-Loud was defined as class1 and Blue-Soft as class2. 60/70 tri-
als of each class from Block1 or Block2 were analyzed separately.
A notch filter was applied to remove 60 Hz line noise prior to the
extraction of specific data epochs from the continuous recording.
Each data trial consisted of four seconds of signal, covering one sec-
ond before stimulus onset and three seconds after stimulus onset.

Thus far there is some experimental evidence that supports
the idea that the sequence formation of frames begins with the
abrupt resetting of phase values on every channel, followed by re-
synchronization and spatial pattern stabilization within the frame
(Freeman, 2006). The phase resetting in ECoG and EEG signals
had been studied by the use of the Hilbert Transform (Freeman
et al., 2003a, 2006a; Ruiz et al., 2009b) showing that the time lapse
between phase resetting showed properties similar to a “Rice dis-
tribution” (Rice, 1944; Freeman, 2009).

Before the application of the Hilbert transform a temporal filter
is desirable in order to select the range of frequency under study (Le
Van Quyen et al., 2001; Pikovsky et al., 2002; Freeman and Rogers,
2003). In this work ten temporal filters centered at 16 or 64 Hz
with bandwidth was varying from 2 to 30 Hz were used to study
the effects of the bandwidth on the distribution of the time lapse
between phase resetting. Histograms of the time lapse between
phase resetting were constructed and the modal frequency, in Hz,
was estimated as the inverse of the modal interval, in ms, which
was determined from the histogram maxima.

2.2. Location of the AM patterns

Ten steps were required to localize temporal frames in which to
calculate amplitude feature vectors for classification.

Step 1: The offset of each channel was removed using the MAT-
LAB “detrend” function; this function fits a linear polynomial to the
data and then subtracts it from the data.

Step 2: The EEG was normalized by dividing by the global stan-
dard deviation of each trial.

Step 3: EEG signals were bandpass filtered by convolution in the
time domain with finite impulse response (FIR) filters estimated
using the Parks-McClellan algorithm (Matlab “firpm”). Different
filter were designed covering the beta (12–25 Hz) and gamma
(25–50 Hz) frequencies. The cutoff frequencies of the filters were
varied in 3 Hz steps and in 5 Hz steps for the beta and gamma range
respectively.

Step 4: The Hilbert Transform (Matlab “hilbert”) was applied to
the filtered signal in order to obtain the real and imaginary parts of
the analytic signal (Barlow, 1993; Pikovsky et al., 2002; Freeman,
2004). Analytic power was squared sum of the real and imaginary
parts of the analytic signal. Analytic amplitude was the square root
of analytic power. Analytic phase was the ratio of the arctangent
of the imaginary part of the analytic signal to the arctangent of the
real part of the analytic signal. The analytic phase was unwrapped
using the MATLAB “unwrap” function.

Step 5: Instantaneous frequency, the rate of change in phase with
time (Hz), was estimated as the successive differences of the mean
unwrapped analytic phase divided by the digitizing step and 2�
(Freeman, 2004; Freeman et al., 2006a). The instantaneous gra-
dient, the rate of change in phase with distance (rad/mm), was
estimated as the slope of the line between the points of minimum
and maximum phase for each time sample, where “x” coordinate
was the position of the electrode and “y” coordinate the value of
phase (Ruiz et al., 2009a). The EEGLAB toolbox was used to generate

and store the channel location coordinate map.

Step 6: An initial set of frames candidates were detected in the
time series for which (a) the instantaneous frequency was within
the temporal band used, (b) the sign of the instantaneous gradient
did not change from one time sample to the next and (c) the spatial
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osition of the maximum or the minimum analytic phase did not
hange from one sample to the next. After that, frame frequency
FN in Hz) and gradient (�N in rad/mm) were calculated by Eqs. (1)
nd (2):

N = 1
N

n∑
Fi(tn) (1)

N = 1
N

n∑
�(tn) (2)

here n was the number of time steps across which a frame candi-
ate was defined, Fi was the instantaneous frequency and � was the

nstantaneous gradient (step 5). Other physiological parameters,
uch as frame phase velocity (B in m/s) analog to the conduc-
ion velocity of action potentials on pre-synaptic axons, and frame
iameter (Dx in mm), the spatial size of the frame (see Eqs. (3)
nd (4)) (Freeman, 2004; Freeman et al., 2006a), were derived from
hese parameters. The frame duration was given by the number of
igitizing steps multiplied by the digitizing step in s over which the
requency, the phase gradient, and the location of the maximum or
he minimum analytic phase remained within the specified limits.

= 2� FN

1000|�N | (3)

x = �

2
1

|�N | (4)

Step 7: Then supplemental anatomical and physiological evalua-
ions were made of the acceptable frame parameter rank in order to
xclude spurious frames from the analysis. The phase velocity had
o be within the range of conduction velocities of cortical axons
1–10 m/s), the frame had to be stable for more than 3 time sam-
les, and frame diameter had to be smaller than the width of the
erebrum, here taken as 200 mm (Freeman, 2004; Freeman et al.,
006a).

Step 8: For each time sample, covariance over the 64 channels of
oth analytic amplitude and analytic phase were estimated (Ruiz et
l., 2008). Analytic amplitude and analytic phase were computed
s in step 4. Covariance was calculated using the MATLAB “cov”
unction. After an optimization assay, upper and lower covariance
hresholds (te2 and te1) were fixed at the values that maximized the
umber of correctly classified patterns. The final set of stable frames
ere selected as those frames that fulfilled all of the technical cri-

eria (steps 5 and 6), all of the physiological criteria (step 7) and
ontained only time samples with analytic amplitude covariance
igher than te1 and analytic phase covariance lower than te2.

Step 9: The spatial ensemble average (SEA) of the 64 time series
f analytic power was calculated, by taking the mean of the ana-
ytic power over all the channels at each time sample. The time
ample of maximum SEA analytic power was identified for each
rame. Patterns were then extracted as the 64 individual channel
alues of analytic power at the identified time sample, normalized
y dividing each of the 64 values by the mean value for that time
ample. This vector defined a point in 64-space. Spatial maps of the
entroid of these vectors for each class were generated using the
EGlab function “topoplot”.

Step 10: Vectors from each class were divided in two subsets,
ne for training and the other for testing. The center of gravity
r centroid for each class was calculated as the mean value of all
4 × 1 vectors in the training subset for each class. Classification

f patterns as class1 or class2 was determined by calculating the
uclidean distances of all patterns in the testing set to the centroid
f the training set. This procedure was repeated by cross-classifying
ll patterns in both subsets. A spatio-temporal pattern was classi-
ed correctly if the distance between that pattern and the centroid
Methods 191 (2010) 110–118

of its own class was less than the distance between the same pattern
and the centroid of the opposite class.

The probability (p) that the number of patterns classified cor-
rectly, on each subject and block, with respect to the type of
stimulation was significantly different from chance was tested
using a binomial distribution. Classification rates from all subjects
and blocks were pooled for statistical testing. Statistical signifi-
cance of the differences in the mean classification rates across the
12 observations (two blocks for each of 6 subjects) and between
initial, control and test frames was evaluated by ANOVA. The statis-
tics supplied by ANOVA were analyzed using the MATLAB function
“multcompare” in order to search for frames that carried more
information, which is reflected in a mean classification rate sig-
nificantly higher than the others.

During the frame detection procedure some parameters were
optimized in order to maximize the number of correctly classified
post-stimulus patterns. The parameters to be optimized were (a)
the temporal passband cut-off frequencies and (b) the threshold
of the analytic amplitude covariance (te1) and (c) the threshold of
the analytic phase covariance (te2). Optimal values were found by
varying a selected parameter in steps across an appropriate range
and searching for the maximum number of correctly classified pat-
terns. Some trials showed channels with movements of the base
line or noise artifacts in which usually no frames were detected, so
any trial in which there were no frames was omitted from the clas-
sification attempt. If more than 10 trials were defective in this way,
the value of the parameter producing this situation was disallowed.

2.3. Locating the classificatory information in the spatial patterns

In order to analyze which channels (if any) were more or less
important for classification, and how the goodness of classifica-
tion was affected by the number of channels deleted each channel
was removed independently and subsets of channels also were
removed. Groups of 4, 8, 16, 24, 32, 40, 48 and 56 random channels
to be removed were generated by the “rand” function of MATLAB.
The relevance of each channel to the spatial AM pattern was tested
by the changes on the achieved classification rate when (a) each
channel was removed one by one, (b) one channel (as a subset of
other randomly deleted channels) was absent. This analysis was
iterated 80 times for a 4 channel deletion and 40 times in the other
cases. Each channel was removed at least twice during the 80/40
iterations.

The influence of the reference on the spatial distribution of the
patterns was also studied, by changing the reference site from the
occipital position (electrode POz) to the frontal position (electrode
FPz). The original signal was re-referenced by subtracting the signal
from the new reference channel from the original signal.

3. Results

In the time domain, intermittent peaks and valleys of analytic
amplitude were observed in all channels, at all frequencies. The
top panel of Fig. 1 shows that very small values of analytic ampli-
tude were concomitant with large phase jumps (phase resetting),
for both beta (12–25 Hz) and low gamma (20–50 Hz, not shown)
ranges. Analytic frequency usually remained within the temporal
band used, except at time samples where phase resetting occurred.
The middle panel of Fig. 1 shows that, while these phase resetting
were not completely simultaneous over large numbers of channels,

they were clustered in time. The peaks of mean analytic power were
coextensive with plateaus of relatively constant analytic phase dif-
ferences (white areas in the middle frame or low values of spatial
standard deviation of analytic phase differences (SDx) in the bottom
frames).



Y. Ruiz et al. / Journal of Neuroscience Methods 191 (2010) 110–118 113

Fig. 1. Relationship between analytic amplitude and phase jumps. Top: analytic amplitudes (black) and unwrapped analytic phase differences (grey dash) for one channel.
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epresent phase jumps, where the value of analytic frequency was outside the pas
ean analytic power, normalized by the standard deviation (gray dash). For all pan

, the other subjects, frequency band and block showed similar results.

The quantity of the phase resetting and its modal frequency
ere proportional to the filter bandwidth but without any relation
ith the center frequency (Fig. 2 top). As for ECoG signals, the dis-

ribution and rate of the phase jumps showed properties similar to
“Rice distribution” (Rice, 1944; Freeman, 2009) with small devia-

ions from the 0.641 value in the ratio between filter bandwidth vs.
odel frequency at bandwidths narrower than 12 Hz (Fig. 2 bot-

om). Thus far, it had been argued that the deviations from 0.641 at
ider bandwidths could be introduced by the non-ideal frequency

esponse of the FIR filters (Freeman, 2009).
During the classification-directed optimization process, differ-

nt temporal filter settings in the beta and low gamma ranges
ere explored in the search for stable frames carrying AM pat-

erns. Covariance thresholds were varied from 2.5% to 25% or from
0% to 50% of the maximum value of analytic amplitude or ana-

ytic phase covariance respectively, searching for the values that
aximized the number of correctly classified post-stimulus pat-

erns. The optimized covariance thresholds were slightly different
or each subject; so the optimized value of te1 was from 0.0375 to
.05, representing 3–5% of the maximum amplitude covariance and
he optimized value of te2 was from 1 to 2, representing 12.5–25%
f the maximum phase covariance, depending on the subject.

Numerous frames fulfilled the initial technical criteria (Meth-
ds step 6, Figure S1 top). The application of physiological criteria

Methods step 7, Figure S1 middle) reduced the number of qual-
fying frames. Finally the optimization of covariance threshold
evealed the final set of frames (Methods step 8, Figure S1 bottom).
he frames shortly after stimulus onset carried enough information
se differences producing analytic frequency within the pass band used. Dark areas
used. Bottom: spatial standard deviation of analytic phase differences (black) and
imulus onset was at 0 ms. Data from the beta band (12–25 Hz) of Block1 of subject

related to the stimulus to achieved classification rates well above
chance level. The hypotheses were tested that (a) the AM patterns
of analytic power following Red-Loud stimulus arrival would differ
from those following Blue-Soft stimulus arrivals (b) the patterns in
the pre-stimulus period for both stimulus combinations would not
differ significantly.

A subset of frames in the pre- and post-stimulus periods was
selected to extract the patterns to be classified and test the
hypotheses. In the pre-stimulus period the first three frames at the
beginning of each trial (initial frames I) and the last three frames
before the stimulus onset (control frames C) were selected. During
the post-stimulus period, six consecutive frames (test frames T),
starting from 50 ms after the stimulus onset, were selected. In the
post-stimulus interval some frames showed up before the 50 ms,
but they were dropped from the classification assays because the
evoked potentials related to the stimulus started at around 50 ms
in almost all subjects.

Frame gradient, frequency, velocity and diameter in the pre-
and post-stimulus interval were estimated from Eqs. (1)–(4). None
showed any important differences between pre- and post-stimulus
periods, between blocks or between stimulus types. Top panel of
Fig. 3 illustrates the results of the classification optimization proce-
dure. It can be seen that analytic power features (extracted in step
9 and classified according to step 10) gave statistically significant

classifications in the 15–22 Hz band for the first three frames after
stimulus onset (T1, T2 and T3), for both blocks of each subject. T1,
T2 and T3 frames always occurred in the first 500 ms after the stim-
ulus onset. Initial (I1, I2 and I3), control (C1, C2 and C3) and late test
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ig. 2. Dependence of phase jump frequency on filter bandwidth. Top: histograms o
bove histograms show bandwidth in Hz. Bottom: modal frequency of histograms
entre frequencies, Black * centre frequency 16 Hz, Gray � centre frequency 64 Hz.

T4, T5 and T6) frames showed classification rates at chance levels
around 50%) in all cases. The same procedure was repeated in the
ther pass bands, according to the filters designed in step 3, but the
esults did not show statistical significance.

The ANOVA analysis over the 12 groups (one for each frame)
evealed a p = 4.3299e−015 which demonstrated that at least one
roup was significantly different from the others. Bottom panel of
ig. 3 show the results of the multiple comparison test in order to
nd which means are significantly higher.

The mean classification of all subjects and blocks for patterns
xtracted from T1, T2 and T3 frames were significantly higher than
he mean classification rates for the other frames (p = 0.01). There
as no significant difference between the mean classification val-
es of T1, T2 and T3. Table S1 shows the classification rate of each
ubject and block independently in the 15–22 Hz band and the cor-
esponding threshold values. Fig. 4 shows the spatial maps of the
entroid of the features extracted from T2 frames; the areas of high
ctivity were similar for each stimulus class but the overall pattern
ver the 64 electrode was different.

The contribution of each electrode to the patterns classifica-
ion was explored by deleting each channel or group of channels
or every subject and block and then re-computing the cross-
lassification analysis for T1, T2 and T3 features. The results for the
1, T2 and T3 vector were qualitatively similar. The classification
ate after each individual channel was removed remained within

he 95% confidence limit on all subject and blocks. When groups
f channels were removed, the mean classification rate dropped
elow the 95% confidence limit in only some subjects, when more
han 8 channels were removed (Fig. 5). Classification rate decreased
n proportion to the increasing number of channels were removed.
intervals between phase jumps for 10 bandpass; filters centered at 16 Hz. Numbers
ated as the reciprocal of the modal interval in seconds vs. filter pass band for two
rom Block1 of subject F, the other subjects and block showed similar results.

When the signal was re-referenced to the frontal position, the
maximal and minimal values of analytic power changed from the
frontal position to the occipital position. Phase resetting was also
dependent on the reference (Ruiz et al., 2009b) so the frame loca-
tions were also slightly different. However the classification rates
were similar for the two references using their respective frames
located by the optimization process. Fig. 6 shows an example of
the centroid pattern of the analytic power of the features extracted
from T2 frames using the two references; the classification rate
achieved in both cases was similar, at 71.42% for the original ref-
erence and 72.31% for the frontal reference. Fig. 7 shows the effect
on the analytic phase of changing the reference from the occipital
location to a frontal electrode. Some channels in the near vicinity
of the reference electrode gave phase values that were 180◦ (�rad)
out of phase with the spatial average, but that were in phase prior
to the change in reference. This result emphasizes no channel lies
outside the fields to be classified, but that the location of the refer-
ence has no significant effect on the multivariate classification. The
phase reversal indicates that the signal oscillation is lower than the
reference oscillation. The power from the reference oscillation is
the same on every channel, and it is removed by the normalization
procedure in step 9.

4. Discussion
Both theory and experimental findings have led to the con-
cept that the brain is a self-organized system, which continuously
reorganizes its activity under the influence of internal and exter-
nal stimuli (Lehmann et al., 1998; Ohl et al., 2000; Breakspear et
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ig. 3. Classification levels for pre- and post-stimulus periods in the 15–22 Hz pass
xtracted from the three initial frames (I1, I2 and I3), the three pre-stimulus contr
ach subject (F, J, JL, K T, and Z) and block (B1, B2) independently, dashed line p = 0.0
eviation of the ANOVA test.

l., 2004; Fingelkurts and Fingelkurts, 2004; Freeman and Holmes,
005; Freeman, 2006, 2007; Kelso and Tognoli, 2007). Previous
ork on ECoG data has demonstrated that stable states or frames,

arrying AM patterns related to cognition, emerge after sudden
umps in cortical activity called state transitions (Freeman and Van
ijk, 1987; Barrie et al., 1996; Ohl et al., 2000; Freeman, 2006;
anagiotides et al., 2008). Each state transition begins with an
brupt change in phase, followed by synchronization at a new fre-
uency and the stabilization of a new AM pattern. Abrupt phase
esetting has also been observed in the scalp EEG (Freeman et al.,
003a; Ruiz et al., 2009b), and although these phase resettings were
ot simultaneous over large numbers of channels, they were clus-
ered in time, suggesting that the phase discontinuities necessary
or the emergence of brain activity patterns related to cognition can
lso be studied using EEG signals, despite the difference in scale,
orruption by electromyographic noise, distortions by gyrification,
istance, etc. The phase resettings are independent of the central
requency of the temporal filter, but dependent on the bandwidth of
he filter in a proportion close to 0.641 as predicted by Rice (1944).

he selection of the optimal temporal filter is a key point to extract
he patterns. In our case the favored bandwidth was 7 Hz cover-
ng the 15–22 Hz. According to the proportionality claim by Rice
1944) the bandwidth of 7 Hz correspond to a modal frequency of
.5, demonstrating that the repetition rate of the frames is on the
Top: summary of the binomial probability of the classification rate of the features
es (C3, C2 and C1) and 6 post-stimulus test frames (T1, T2, T3, T4, T5 and T6) for

tom: mean classification rate for same frames, vertical bars represent the standard

theta range (Freeman et al., 2003a; Freeman, 2006, 2009). During
the optimization procedure other bandwidth from 5 Hz to 12 Hz
were studied but the results did not show statistical significance.

In the present work, a classification-directed optimization
procedure was used to locate frames carrying stimulus-related
information within the frequency spectrum and in time. In the
15–22 Hz band the AM patterns linked to the frames which showed
up shortly after the stimulus onset became reorganized in a new
pattern carrying enough stimulus-related information to achieve
a classification rate above chance level. At the same time, the
classification rate of frames in the pre-stimulus period or late post-
stimulus period was not statistically different from chance.

Despite the common finding that perception is associated with
gamma band oscillations (Tallon-Baudry et al., 1998; Miltner et
al., 1999; Bertrand and Tallon-Baudry, 2000; Lachaux et al., 2005;
Wyart and Tallon-Baudry, 2008; Luo et al., 2009), in our results
only the beta 15–22 Hz band provided spatial patterns allowing
significant classification of the data as following either a Red-Loud
stimulus or a Blue-Soft stimulus. The lack of classification in the

gamma band may be due to contamination of the present data by
scalp muscle activity at frequencies above 20 Hz (Whitham et al.,
2007). This suggestion is supported by the fact that previous work
using intra-cranial data showed significant classification in both
beta and gamma ranges (Barrie et al., 1996; Freeman, 2005, 2006),
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ig. 4. Spatial map of the centroid of each class for each subject and block in the 15

aking advantage of the greater spatial resolution of ECoG signal,

nd the lack of contamination by electromyography noise (Freeman
t al., 2003c; Goncharova et al., 2003; Whitham et al., 2007).

The classification rates achieved in the present study were com-
arable to those for ECoG (Freeman, 2005, 2006), but not as high as

ig. 5. Effects on classification rate of removing increasing numbers of channels in all su
ines p = 0.05 and p = 0.01.
z band. The color bar represents the amplitude of the normalized analytic power.

in previous works on EEG (Ruiz et al., 2009a). The differences can

be attributed in part to differences in experimental design. In pre-
vious work, all subjects were exposed to either a single stimulus in
order to familiarize them to that stimulus, or two stimuli in order to
perform a discrimination task (Ingber, 1999). In the present study,

bject (F, J, JL, K T, and Z) and block (B1, B2). Example taken from T2 frames, dashed
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ig. 6. Example of the spatial ensemble average patterns of the analytic power (c
nd the frontal references locations (gray circle). The centroid patterns changed t
lassification rate is similar in both cases. Data from Block1 of subject F, 15–22 Hz b

ombinations of two stimulus modalities, auditory and visual, were
sed, on the grounds that such stimuli would engage more asso-
iation areas of the brain, as revealed by the work of Dumenko
2000).

The original experiment for which the data studied here were
ollected (Pockett et al., 2009) was designed to investigate trial
nd error learning—in particular, to look for any perceptual or cog-

itive differences that might emerge when subjects experienced
he ‘aha’ realization of which key should be pressed in response
o each bimodal stimulus. In the present study we limited our
earch to the EEG patterns directly following two of the stimulus

ig. 7. Example of the change in analytic phase with the shift of the reference lead
n referential recording of EEG from an occipital location to a frontal location (as in
ig. 6). White is in phase with the spatial average; black is 180◦ (�rad) out of phase.
ata from Block1 of subject F, 15–22 Hz band, the other subjects and block showed

imilar results.
id patterns) of the features extracted from T2 frames using the original reference
aximal and minimal values according to the reference position but the achieved

he other subjects and block showed similar results.

types, and found no difference in classification rates between pre-
insight data (Block1) and post-insight data (Block2). This suggests
that there was no major change in perception of the stimuli after
insight. However, trial and error learning is likely to be an inter-
nally driven, cognitive process rather than an externally driven,
perceptual one and it remains possible that later patterns, perhaps
those immediately preceding responses rather than those imme-
diately following stimuli, may show differences between pre- and
post-insight data.

Overall, given the similarity of the stimulus pairs studied here,
the remarkable finding was that scalp EEG data could be classi-
fied with respect to stimulus type at all. The second remarkable
result was that all electrodes contributed information to the spa-
tial patterns which served to classify the EEG epochs with respect
to the stimuli class, regardless of amplitude or variance. No one
channel’s data were vital, but the deletion of an increasing num-
ber of channels impaired the classification rate, demonstrating that
the classificatory information density was uniform all over the
electrode array. Our finding is consistent with the evidence from
widespread intermittent synchronization of ECoG patterns in rab-
bits and cats (Freeman and Burke, 2003; Freeman and Rogers, 2003)
and intermittent synchronization of EEG patterns from a 1D array
extending over 189 mm of the scalp (Freeman et al., 2003a,c).

Our results showed that AM patterns of brain activity that are
classified well above chance levels can also be extracted from
the scalp EEG signal. The methods include spectral localization
by narrow band-pass filtering over a range of center frequencies;
the Hilbert transform to calculate the analytic phase for temporal
localization; and multivariate pattern classification of the analytic
amplitudes as feature vectors for spatial localization. Our algorithm
could provide new data inexpensively and non-invasively for mod-
eling the global cerebral dynamics of learning, and it may enable
new advances in brain-computer interfacing. Our results also high-
light the major impediment to further advances, which is the scalp

EMG. Some preliminary results (Freeman et al., 2010) suggest that
scalp EMG can be attenuated by low-pass spatial filtering, using
presently available arrays of 256 electrodes (Poolman et al., 2008)
and foreseeable arrays with exceptionally high density of recording.
Sampling rates of 5000/s or more will also be necessary to measure
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dequately the analytic phase of gamma frequencies in the large
umber of EEG signals.
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