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Abstract

Computer vision can be considered a highly specialized data collection and data analysis problem.

We need to understand the special properties of image data in order to construct statistical models

for representing the wide variety of image patterns. One special property of vision that distinguishes

itself from other sensory data such as speech data is that distance or scale plays a profound role in

image data. More specifically, visual objects and patterns can appear at a wide range of distances

or scales, and the same visual pattern appearing at different distances or scales produces different

image data with different statistical properties, thus entails different regimes of statistical models.

In particular, we show that the entropy rate of the image data changes over the viewing distance

(as well as the camera resolution). Moreover, the inferential uncertainty changes with viewing

distance too. We call these changes information scaling. From this perspective, we examine both

empirically and theoretically two prominent and yet largely isolated research themes in image

modeling literature, namely, wavelet sparse coding and Markov random fields. Our results indicate

that the two models are appropriate on two different entropy regimes: sparse coding targets the

low entropy regime, whereas the random fields are suitable for the high entropy regime. Because

of information scaling, both models are necessary for representing and interpreting image intensity

patterns in the whole entropy range, and information scaling triggers transitions between these two

regimes of models. This motivates us to propose a full-zoom primal sketch model that integrates

both sparse coding and Markov random fields. In this model, local image intensity patterns are

classified into “sketchable regime” and “non-sketchable regime” by a sketchability criterion. In the

sketchable regime, the image data are represented deterministically by highly parametrized sketch

primitives. In the non-sketchable regime, the image data are characterized by Markov random fields

whose sufficient statistics summarize computational results from failed attempts of sparse coding.

The contribution of our work is two folded. First, information scaling provides a dimension to chart

the space of natural images. Second, the full-zoom modeling scheme provides a natural integration

of sparse coding and Markov random fields, thus enables us to develop a new and richer class of

statistical models.
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1 Introduction

Computer vision can be considered a highly specialized data collection and analysis prob-

lem, where existing concepts and methods in statistical theory and information theory can

in principle be used to interpret, model, and learn from the image data (Mumford, 1994;

Grenander, 1993). However, vision also proves to be a highly specialized data collection and

analysis task. We must understand the special characteristics of the image data in order to

design adequate models and efficient algorithms.

a b

Figure 1: Image patterns at different distances and scales. (a) Tree leaves at different distances.

(b) Twigs and branches of different distances and scales.

One special property of vision that distinguishes itself from other sensory data such as

speech data is that distance or scale plays a profound role in image data. More specifically,

visual objects and patterns can appear at a wide range of distances or scales. The same visual

pattern appearing at different distances or scales produces different image data with different

appearances. See Figure (1.a) for an example. It shows tree leaves in four different distance

ranges. In region A at near distance, the individual leaves can be perceived. In region B at

intermediate distance, the image becomes more complex, and we cannot perceive individual

leaves any more. Instead, we only perceive a collective foliage impression. In region C of

still farther distance, the image looks like noise. In region D of very far distance, the image
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appears to be a smooth region. These local regions have different appearances because the

tree leaves appear at different distances, and thus have different sizes on the image. Figure

(1.b) shows another example, where tree trunks, branches and twigs appear at different

distances and scales, causing different impressions. These two examples show that viewing

distance or scale is a key factor in visual perception. In terms of computer vision, the change

of distance or scale causes the change of statistical properties of the image intensities, and

the change of statistical properties may demand different regimes of statistical models for

the image intensities.

In this paper, we study the change of statistical properties, in particular, some informa-

tion theoretical properties (e.g., Hansen and Yu, 2000), over distance or scale. In particular,

we show that the entropy rate, defined as entropy per pixel, of the image data changes over

the viewing distance (as well as the camera resolution). Moreover, the inferential uncertainty

of the underlying visual pattern changes with viewing distance too. We call these changes

information scaling.

From this perspective, we examine both empirically and theoretically two prominent and

yet largely isolated research themes in image modeling literature, namely, wavelet sparse

coding (Mallat and Zhang, 1993; Olshausen and Field, 1996; Candes and Donoho, 1999) and

Markov random fields (Besag, 1974; Geman and Geman, 1984; Grenander and Miller, 1993).

Wavelets originated from harmonic analysis. The key principle is sparsity, where the goal is

to find a system of linear basis, so that the class of functions or the ensemble of images can in

general be represented or approximated by a small number of linear bases. Markov random

fields originated from statistical physics. Instead of coding the image data deterministically

with a linear basis, Markov random fields characterize the image data by a set of sufficient

statistics.

Our results indicate that the two models are appropriate on two different entropy regimes:

sparse coding targets the low entropy regime, whereas the random fields characterize the high

entropy regime. Because of information scaling, both models are necessary for representing

and interpreting image intensity patterns in the whole entropy range, and information scaling
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triggers transitions between the two regimes of models.

This motivates us to propose a full-zoom primal sketch model that integrates both sparse

coding and Markov random fields. The term “full-zoom” means that we seek to model image

intensity patterns in the full range of scale. The terms “primal sketch” comes from Marr

(1982), who, in his monumental book on vision, proposed a symbolic representation of image

intensities for the initial stage of visual computation, or low-level vision. In our model,

local image intensity patterns are classified into “sketchable regime” and “non-sketchable

regime” by a sketchability criterion. In the sketchable regime, the image data are represented

deterministically by highly parametrized sketch primitives. In the non-sketchable regime, the

image data are characterized by Markov random fields whose sufficient statistics summarize

or recycle failed attempts to sketch the image. We fit the full-zoom primal sketch model on

natural images, and our experiments suggest that the model captures considerable amount

of low-level essence of image data.

The contribution of our work is as follows.

First, the change of image data over distance or scale has been well understood in the

literature of scale space theory (Lindeberg, 1994; Mumford and Gidas, 2001). However, the

change of statistical properties of the image data over distance or scale, i.e., information scal-

ing, has not been thoroughly studied. Our work on information scaling provides a dimension

to chart the space of natural images. Moreover, our work is different from existing results on

the statistics of natural images in the literature (Ruderman and Bialek, 1994; Field, 1994;

Chi, 2001; Simoncelli and Olshausen, 2001; Sirvastava, Lee, Simoncelli, and Zhu, 2003).

Existing results are concerned with the marginal statistics while integrating over the scales.

Our work, however, is concerned with the conditional statistics give the scale, as well as the

change of the conditional statistics over scale.

Second, the two important regimes of image models, i.e., sparse coding and Markov

random fields, have largely been isolated from each other, even though both have been

used extensively in image modeling and processing. Information scaling provides a unique

perspective to bridge the two regimes of models, and the full-zoom modeling scheme provides
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a natural integration of these two regimes of models. In our modeling scheme, the random

fields summarize the failed attempts of sparse coding.

This paper is intended for the statistical audience. The models, methods, and results

reviewed and proposed in this paper are entirely statistical, even though they are mostly

developed by researchers in computer vision, neural science and applied mathematics. The

plan of the paper is as follows. In Section 2, we will study a simple model treated by Lee,

Mumford and Huang (2001) in the context of information scaling. In Section 3, we will prove

some theoretical properties on information scaling for general images. Section 4 examines

wavelet sparse coding and Markov random fields from the perspective of information scaling.

Section 5 presents a full-zoom modeling scheme to cover the whole range of information

scaling. Section 6 discusses the limitations of our work, and some directions for future work.

2 Information Scaling of Dead Leaves Model

2.1 The model and the assumptions

To convey the basic idea, we would like to start from the dead leaves model (Matheron, 1975)

that has been treated extensively by Lee, Mumford, and Huang (2001) in their investigation

of image statistics of natural scenes. The model was also previously used to model natural

images by Ruderman (1997) and Alvarez, Gousseau, and Morel (1999), etc. Our use of this

model is different from theirs. For our purpose, we may consider that the model describes

an ivy wall covered by a large number of leaves of similar sizes.

We assume that the leaves are of squared shape, uniformly colored. Each leaf is repre-

sented by:

1) Its length (or width) r, which follows a distribution f(r) ∝ 1/r3 over a finite range

[rmin, rmax].

2) Its color or shade a, which follows a uniform distribution over [amin, amax].

3) Its positions (x, y, z), with the wall serves as the (x, y)-plane, and z ∈ [0, zmax] is the

distance of the leaf from the wall. We assume that zmax is very small, so that z matters only
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for deciding the occlusion between the leaves.

For the collection of leaves {(ri, ai, xi, yi, zi)}, we assume that ri are independent of each

other, and so are ai. (xi, yi, zi) follow a Poisson process in R2 × [0, zmax]. We assume that

the intensity of the Poisson process λ is large enough so that the leaves completely cover

the wall. {(ri, ai, xi, yi, zi)} can be considered a marked point process (Stoyan, Kendall,

and Mecke, 1995; Cressie, 1993), where each point (xi, yi, zi) is marked by (ri, ai). As

noted by Lee et al. (2001), it can also be regarded as Poisson process in the joint domain

[rmin, rmax] × [amin, amax] × R2 × [0, zmax] with respect to measure f(r)drdaλdxdydz.

Lee et al. (2001) assume that [rmin, rmax] → [0,∞]. Under scaling transformation, x′ =

x/s and y′ = y/s, where s is a scaling parameter, then r′ = r/s. The Poisson process will

be distributed in [rmin/s, rmax/s] × [amin, amax] × R2 × [0, zmax] with respect to a measure

f(sr′)sdr′daλsdx′sdy′dz. Under the assumption that rmin → 0 and rmax → ∞, and f(r) ∝

1/r3, the Poisson process is invariance under scaling. This assumption seems to apply to

most of the studies of statistics of natural images, such as Ruderman (1994), Field (1994),

Chi (2001), Simoncelli and Olshausen (2001), Sirvastava, Lee, Simoncelli, and Zhu (2003),

Mandelbrot (1982) and many others.

However, in our experiment, we restrict [rmin, rmax] to a relatively narrow range. Under

scaling transformation, the range will change to [rmin/s, rmax/s], which is far from being

invariant. From this perspective, we may consider that Lee et al. (2001) and the above

mentioned authors are concerned with the marginal statistics by integrating over the whole

range of scale. So the marginal statistics are invariant under scaling transformation. Our

work, however, is concerned with the conditional statistics given a particular scale. The

conditional statistics depend on scale, and change over scale. While it is important to look

at the marginal statistics of the whole image, it is perhaps even more important to study the

conditional statistics in order to model specific image patterns, and the whole range of the

conditional statistics may have to be accounted for by different regimes of statistical models.
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2.2 Image formation process

Let Ti ⊂ R2 be the squared area covered by leaf i in the (x, y) domain of the wall. Then the

pattern can be represented by a function W (x, y) = ai(x,y), where i(x, y) = arg maxi:(x,y)∈Ti
zi,

i.e., the most forefront leaf that covers (x, y). W (x, y) is a piecewise constant function defined

on R2. For now, we shall assume the wall is infinitely large for convenience.

Figure 2: Illustration of image formation: each pixel (i, j) corresponds to a squared window Ωij

in the continuous domain Ω. The size of the window is dσ, where d is the distance between the

pattern and the camera, and σ is the resolution of the camera.

Now let’s see what happens if we take picture of W (x, y) from a distance d. Suppose

the scope of the domain covered by the camera is Ω ⊂ R2, where Ω is a finite rectangular

region. As noted by Mumford and Gidas (2001), a camera (or human eye) only has a finite

array of sensors or photoreceptors, each sensor captures lights from a small neighborhood of

Ω. As a mathematical model of the image formation process, we may divide the continuous

domain Ω into a rectangular array of squared windows of length σd, where σ is decided by

the resolution of the camera. Let {Ωij} be these windows, with (i, j) ∈ Λ, where Λ is a

rectangular lattice. See Figure (2) for an illustration, where the domain is covered by 4 × 4

squared windows, so Λ in this case is 4 × 4.

The image I is defined on Λ, with

I(i, j) =
∫

W (x, y)κij(x, y)dxdy = 〈W,κij〉, (1)
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where κij(x, y) is a uniform measure over the squared window Ωij. One may also replace this

uniform density by some other smoothing kernels of bandwidth σd, for instance, a Gaussian

kernel whose standard deviation is proportional to σd. See Mumford and Gidas (2001) for

more discussions on this issue. In their more general setup, W is a functional, acting on κij,

which is a test function or a sensor.

Let s = dσ be the scale parameter in the above image formation process, which can be

written as Is = γs(W ) for a functional γs. s can be changed by either changing the distance

or zooming the camera. If we increase s, the scope Ω and the size of the window will also

increase. So the resulting image Is will change. Let Ws(x, y) = W (x/s, y/s), then clearly,

Is = γ1(Ws), i.e., instead of changing the window size, we can also fix the window size for

the pixel, but scale the signal W .

Equation (1) can also be written as

us(x, y) =
∫

W (x′, y′)g((x − x′)/s, (y − y′)/s) = W ∗ gs, (2)

Is(i, j) = us(x0 + is, y0 + js), (3)

where gs is a smoothing kernel with bandwidth s, and it corresponds to κij in equation (1).

There are two operations involved. Equation (2) is smoothing: us is a smoothed version of

the signal W . Equation (3) is sub-sampling: Is is a discrete sampling of us.

If gs is a Gaussian kernel (which is infinitely divisible) with standard deviation s, then

the set of {us(x, y), s > 0} forms a scale space (e.g., Linderberg, 1994). If s+ > s, then us+
=

us∗gs+−s, i.e., low resolution image can be obtained from the high resolution image. The scale

space has been extensively used in image analysis, where for an image I, we obtain a sequence

of smoothed versions by convolving it with Gaussian kernels. This smoothing operation gets

ride of small scale details, so that we can concentrate on larger scale structures. The multi-

resolution analysis in wavelet theory (Mallat, 1989) also has this smoothing operation and

the sub-sampling operation.

The scale space theory can account for the change of image intensities due to scaling.

But it does not explain the change of statistical properties of the images under scaling, as

well as the change of statistical models for the image data.
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2.3 Empirical observations

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Images of the simulated ivy wall taken at 8 distances, each time, the distance is doubled.

Figure (3) shows a sequence of images taken at 8 distances according to equation (1).

Each time we double the distance, so the largest distance is 256 times the smallest distance.

Within this wide range of distance, the images show widely different properties even though

they are generated by the same signal W . The key is that in Ws(x, y) = W (x/s, x/y), the

sizes of leaves changes from ri to ri/s, so the distribution of the sizes changes over s.

1) For an image taken at near distance, such as image a), the window size of a pixel is

much less than the average size of the leaves, i.e., s ≪ r. The image can be represented

deterministically by a relatively small number of occluding squares, or by local geometric

structures such as edges, corners, etc. The constituent elements of the image are squares or

local geometrical structures, instead of pixels.

2) For an image at intermediate distance, the window size of a pixel becomes comparable

to the average size of leaves, i.e., s ≈ r. The image becomes more complex. For images (d)
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and (e), they cannot be represented by a small number of geometrical structures anymore.

The constituent elements have to be pixels themselves. If a simple interpretation of the

image is sought after, then this interpretation has to be some sort of simple summary that

cannot code the image intensities deterministically. The summary can be in the form of

some spatial statistics of image intensities.

3) For an image at far distance, the window size of a pixel can be much larger than the

average size of the squares, i.e., s ≫ r. Each pixel may cover a large number of leaves, and

its intensity value is the local average of the colors of many leaves. The image is approaching

the white noise.

(a) (b)

Figure 4: The change of statistical properties over scale. (a) JPEG compression rate. (b) Entropy

of marginal histogram of ∇xI.

We perform some empirical studies on the change of statistical properties of the image

data over distance or scale. What we care most is the complexity or randomness of the

image, and we measure the randomness empirically by JPEG 2000 compression rate. We

compress the image using JPEG 2000, which is based on wavelet decomposition. Then we

compute the number of bits we need to compress the image, and divide it by the number of

pixels. That gives us the compression rate in terms of bits per pixel, and it can serve as an

indicator of complexity or randomness of the image. We plot this indicator over distance.

See Figure (4.a). We can see that at near distance, the randomness is small, meaning that
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the image is quite regular. Then the randomness starts to increase over distance, because

more and more leaves are covered by the scope of the camera. At far distance, however, the

randomness begins to decrease, because the local averaging effect takes over. In this plot,

there are three curves, they correspond to three different rmin in our simulation study, while

rmax is always fixed at the same value. For smaller rmin, the corresponding curve shifts to

the left, because the average size of the leaves is smaller.

We also use a simple measure of smoothness as an indicator of randomness. We compute

pairwise differences between intensities of adjacent pixels ∇xI(i, j) = I(i, j) − I(i − 1, j)

and ∇yI(i, j) = I(i, j) − I(i, j − 1). Then ∇I(i, j) = (∇xI(i, j),∇yI(i, j)) is the gradient of

I at (i, j). The gradient is a very useful local feature, and can be used for edge detection

(Canny, 1986). In our simulation study, we look at the statistics of ∇xI. We make a marginal

histogram of {∇xI(i, j), (i, j) ∈ Λ}. We then compute the entropy of the histogram. We plot

this entropy over distance. See Figure (4.b). We can see that the plot behaves similarly as

the plot of the JPEG 2000 compression rate.

Figure 5: The change of kurtosis over scale.

The local averaging operation in equation (1) pushes the marginal distribution of the

image intensities towards the Gaussian distribution because of the central limit theorem.

See a recent paper of Johnson (2004) on an information-theoretical centeral limit theorem of

random fields, which applies to the situation here. We compute the kurtosis of the marginal

empirical distribution of the image intensities to measure how close the marginal distribution
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is to the Gaussian distribution. We can see that the kurtosis is decreasing. Meaning that

the image feature becomes closer to Gaussian distribution.

The local averaging operation reduces the variance. If we normalize the marginal variance

of the image intensities to 1, then both the compression rate and the smoothness increase over

the entire distance range. In fact, the image will eventually become white noise, which is the

maximum entropy distribution under fixed marginal mean and variance of image intensities.

Figure 6: The 7 × 7 local patches taken from the images at different scales.

Computer vision algorithms always start from local processing and representation (Ge-

man and Koloydenko, 1999). We take some local 7 × 7 image intensity patches from the

images at different scales. These local image patches exhibit very different characteristics.

Patches from near distance images are highly structured, corresponding to simple regular

structures such as edges and corners, etc. As the distance increases, the patches become

more irregular and random. So the local operators in a computer vision system should be

prepared to deal with such local image patches with different regularities and randomness.
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Figure 7: Natural images taken at different distances from the trees.

We also did some experiments on natural images. Figure (7) shows a sequence of images

taken at increasing distances from the tree. Figure (8) displays the change of randomness

measured by three indicators. The red dashed line is the JPEG compression rate. The blue

solid line is the smoothness, i.e., the entropy of ∇xI. For the black dotted line, we code the

image as the linear expansion of a set of local linear bases selected from a vocabulary. We

then record the number of bases we need to include in order to reduce the mean squared

error to 30% of the variance of the original image. See Section 4 for more details. We linearly

normalize the three indicators so that they fit into the same plot. We can see that the change

of randomness in Figure (7) is consistent with the simulated example.

We also did the same experiment for the pictures in Figure (9). Here we have an image
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Figure 8: The change of the randomness over distance in Figure 7.

Figure 9: The figure on the left displays the original image of ivy wall and its downscaled versions.

The plot on the right shows the change of randomness over the order of downscaling.

of ivy wall and its downscaled versions. We can see that the randomness keeps increasing,

because the sequence of images does not cover the whole range of scale.
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Figure 10: A scale invariant image and the change of randomness over the order of downscaling.

Finally, we repeat the same experiment for the picture in Figure (10) and its downscaled

versions (not shown). The picture appears to be scale invariant, and the randomness does

not change much across the scale.

In Figure (9), [rmin, rmax] is very small, so we see clear change of randomness over scale.

In Figure (10), [rmin, rmax] is much larger, and the image is a mixture of objects and patterns

of different distances or scales. So we need to be able to model the image patterns in the

whole range of distances or scales in order to model images like the one in Figure (10).

3 Information Scaling

3.1 Notation

In this article, we will make use of the following information theoretical concepts (see Cover

and Thomas, 1994; Rissanen, 1989; Hansen and Yu, 2000):

1) Entropy: for a distribution p(x), its entropy is

H(p) = −E[log p(x)] = −
∫

p(x) log p(x)dx.

If p(x) is a discrete distribution, then the integral becomes sum. The entropy measures

the randomness of p. It also measures the average description length if we are to code the
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instances generated by p(x). This entropy is called Shannon entropy.

2) Conditional entropy: for a joint distribution p(x, y), let p(x|y) be the conditional

distribution of x given y. The conditional entropy of x given y is defined as

H(p(x|y)) = −E[log p(x|y)] = −
∫

p(x, y) log p(x|y)dxdy,

where the integral (or sum in discrete case) is over both x and y.

3) Kullback-Leibler divergence: for any two distributions p(x) and q(x), the Kullback-

Leibler divergence or distance is

D(p‖q) = Ep[log p(x)/q(x)] =
∫

log
p(x)

q(x)
p(x)dx ≥ 0.

If the random variables are discrete, then the integral should be replaced by the sum.

4) Mutual information: if X = (x1, ..., xd), then the mutual information among the d

components are

M(x1, ..., xd) = D(p(X)‖
d

∏

i=1

pi(xi)) = Ep

[

log
p(X)

∏d
i=1 pi(xi)

]

≥ 0,

i.e., the Kullback-Leibler distance between the joint distribution p(X) and the product of

the marginal distributions p1(x1), ..., pd(xd).

The book by Rissanen (1989) discusses other notions of complexity, and describes the

minimum description length for statistical modeling. See also Hansen and Yu (2000) and

Lee (2001).

3.2 Complexity scaling

For simplicity, let’s study what happens if we double the distance between the camera and the

visual pattern. Suppose the image of the visual pattern at near distance is I(i, j), (i, j) ∈ Λ.

If we double the distance, according to our previous discussions, the window of a pixel will

also double its length and width. So the original I will be reduced to a smaller image I−

defined on a reduced lattice Λ−, and each pixel of I− will be the average of four pixels of I

(assuming the windows are aligned at the two distances). We call this process downscaling,

and we can account for it by two steps, similar to equations (2) and (3).
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1) Local smoothing. Let the smoothed image be J, then J(i, j) = [I(i, j) + I(i + 1, j) +

I(i, j + 1) + I(i + 1, j + 1)]/4. In general, we can convolve I with a smoothing kernel g (or a

density function such as Gaussian in the scale space theory) to get J, i.e., J = I ∗ g.

2) Subsampling. I
(tx,ty)
− (i, j) = J(2i+tx, 2j+ty), where (tx, ty) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Any of the four I
(tx,ty)
− can be regarded a downsampled version of J.

We use entropy rate to quantify the randomness of an image (or a part of an image).

For an image I ∼ p(I) defined on lattice domain Λ, its entropy rate is defined as H(p(I)) =

H(p(I))/|Λ|, i.e., entropy per pixel.

Let’s first study the effect of local smoothing, J = I ∗ g.

Theorem 1 Smoothing effect: As the lattice Λ → Z2,

H(p(J)) −H(p(I)) →
∫

log |ĝ(ω)|dω ≤ 0, (4)

where ĝ is the Fourier transform of the kernel g, ω ∈ [−π/2, π/2]× [−π/2, π/2] is the spatial

frequency.

Proof: In the Fourier domain, we have Ĵ(ω) = Î(ω)ĝ(ω), where Ĵ and Î are Fourier trans-

forms of J and I respectively. For finite rectangular lattice Λ, the spatial frequency ω takes

values in a finite grid. Since the Fourier transform is orthogonal, we have H(p(I)) = H(p(Î)),

and H(p(J)) = H(p(Ĵ)). Thus

1

|Λ|
H(p(J)) =

1

|Λ|
H(p(I)) +

1

|Λ|

∑

ω

log |ĝ(ω)|.

As Λ → Z2, the second term on the right hand side goes to
∫

log |ĝ(ω)|dω.

A smoothing kernel g is a probability distribution function, ĝ is the characteristic function

of g, and ĝ(ω) =
∑

x g(x)e−iωx = Eg[e
−iωx], with x ∼ g(x). So |ĝ(ω)|2 = |Eg[e

−iωx]|2 ≤

Eg[|e
−iωx|2] = 1. Thus,

∫

log |ĝ(ω)|dω ≤ 0. QED

Remark: the above theorem tells us that we always lose information under the smoothing

operation. This is consistent with the intuition in scale space theory, which holds that

increasing the scale in the scale space will result in the loss of fine details in the image.
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Next, let’s study the effect of subsampling. According to our discussion before, there are

four sub-sampled versions, I
(tx,ty)
− (i, j) = J(2i + tx, 2j + ty), where (tx, ty) ∈ {(0, 0), (0, 1),

(1, 0), (1, 1)}. For simplicity, let’s denote them by I
(k)
− , k = 1, 2, 3, 4, each defined on a

subsampled lattice Λ−, with |Λ−| = |Λ|/4. See Figure (11) for an illustration.

Figure 11: The four subsampled versions of the original image.

Theorem 2 Subsampling effect: The entropy rate of I
(k)
− is no less than the entropy rate of

J,

1

4

4
∑

k=1

H(p(I
(k)
− )) −H(p(J)) =

1

|Λ|
M(I

(k)
− , k = 1, ..., 4) ≥ 0, (5)

where M() = E
[

log p(J)/
∏

k p(I
(k)
− )

]

denotes mutual information among the four down-

sampled versions.

Proof:

4
∑

k=1

H(p(I
(k)
− )) −H(p(J)) = E



log
p(J)

∏

k p(I
(k)
− )





= M(I
(k)
− , k = 1, ..., 4) ≥ 0. QED

The complexity scaling is a combination of equations (4) and (5):

{

1

4

4
∑

k=1

H(p(I
(k)
− )) −H(p(I))

}

−

{

1

|Λ|
M(I

(k)
− , k = 1, 2, 3, 4) +

∫

log |ĝ(ω)|dω

}

→ 0.

For regular image patterns, the mutual information per pixel can be much greater than

−
∫

log |ĝ(ω)|dω, so the entropy rate increases with distance, or in other words, the image
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becomes more random. For very random patterns, the reverse is true. When the mutual

information rate equals to −
∫

log |ĝ(ω)|dω, we have scale invariance. More careful analysis

is needed to determine when this is true.

Since local averaging reduces the marginal variance of the image intensities, if we renor-

malize the image intensities to keep the marginal variance constant, we will increase the

entropy rate of the image. Therefore, renormalization cancels the effect of local averaging.

So for renormalized image, we expect that the entropy rate keeps increasing.

There is another important notions of entropy, the Kolmogorov algorithmic complexity.

For an image I (properly discretized), its algorithmic complexity Halg(I) can be defined as

the shortest binary code of a Turing machine to generate I. See Rissanen (1989) for more

details. Then we can also defined the algorithm complexity rate Halg(I) = Halg(I)/|Λ|.

Obviously, the length of the shortest code for J is equal to or smaller than the sum of the

lengths of the shortest codes for I
(k)
− , k = 1, ..., 4, so we have the following

Proposition 1 The algorithmic complexity rate increases with sub-sampling, i.e.,

1

4

4
∑

k=1

Halg(I
(k)
− ) ≥ Halg(p(J)).

One can define mutual algorithmic information as the difference between the left hand

side and the right hand side.

The change of entropy rate of the image data over distance can be used to explain the

transition from a deterministic interpretation to statistical interpretation of the image inten-

sities. We only need to postulate a bound on the complexity of the allowable interpretation.

If a local image patch has a low entropy rate, we can code this pattern with a small number

of parameters deterministically. But if the local image patch has a high entropy rate, a

small number of parameters will not be able to account for the image intensities determinis-

tically, and we have to interpret the image pattern statistically, by leaving the unaccounted

complexity to randomness.

20



3.3 Perceptibility scaling

The above analysis on complexity is only about the observed image I alone. The goal of

computer vision is to interpret the observed image in order to recognize the objects and

patterns in the outside world. In this section, we shall go beyond the statistical properties

of the observed image itself, and study the interaction between the observed image and the

outside world that produces the image.

Again, we would like to use the dead leaves model in Section 2 to convey the basic idea.

Suppose our attention is restricted to a finite range D ⊂ R2, and let W = ((xi, yi, ri, ai), i =

1, ..., N) be the leaves in D that are not completely occluded by other leaves. Then we have

W ∼ p(W), and Is = γs(W), where s = dσ is the scale parameter in the image formation

process.

For convenience, assume that both W and Is are properly discretized. Then the marginal

distribution of Is is p(Is) =
∑

W:γs(W)=Is
p(W). The posterior distribution of W given Is is

p(W|Is) = p(W)/p(Is) because Is is fully determined by W. We can define the entropy of

p(W|Is) as the imperceptibility of W from the image Is.

Proposition 2 In the above notation, H(p(W|Is)) = H(p(W))−H(p(Is)). That is, imper-

ceptibility = scene entropy - image entropy.

Remark: Here we may consider the inference of W as inverting Is = γs(W) under the

prior knowledge W ∼ p(W). The imperceptibility can be considered a measure of how

ill-posed the inversion problem is.

If we have images of W at two scales, Is+
and Is with s+ > s, according to scale space

theory, Is+
can be obtained from Is by a deterministic downscaling transformation. Since

Is+
is of lower dimension than Is, this transformation is a many to one reduction. During

the process of image scaling, the overall entropy of the image will decrease (even though the

entropy per pixel can increase as we show in the previous subsection). Therefore, we have

the following result.
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Proposition 3 Imperceptibility increases with downscaling, i.e., H(p(W|Is+
) ≥ H(p(W|Is))

for s+ > s, if Is+
= R(Is) for a many to one reduction R().

What does this result tell us in terms of interpreting image Is? Although the model

W ∼ p(W), and Is = γs(W) is the right physical model over all the scale s, this model

is meaningful in interpreting Is only within a limited range, say s ≤ sbound, so that the

imperceptibility H(p(W | Is) is below a small threshold. In this regime, the representation

Is = γs(W) is good for both recognition and description (or coding) purposes. For recogni-

tion, H(p(W | Is)) is small, so W can be accurately determined from Is. For description, we

can first code W according to p(W), with a coding cost H(p(W)). Then we code Is using

Is = γs(W) without any coding cost. The total coding cost would be just H(p(W)). If the

imperceptibility H(p(W | Is)) is small, H(p(W)) ≈ H(p(Is)), so coding W will not incur

coding overhead, and this is the best coding scheme.

But if s is very large, the imperceptibility H(p(W | Is)) can also be large. In that

case, the representation Is = γs(W) is not good for either recognition or description. For

recognition, W cannot be estimated with much certainty. For description, if we still code

W first, and code Is by Is = γs(W), then this will not be an efficient coding, since H(p(W))

can be much larger than H(p(Is)), and the difference is imperceptibility H(p(W | Is)).

Then what should we do? The regime of s > sbound proves to be most baffling for vision

modeling. Our knowledge about geometry, optics, and mechanics enables us to model every

phenomenon in our visual environment. Such models may be sufficient for computer graphics

to generate physically realistic images. For instance, researchers in graphics can generate a

garden scene by placing billions of leaves and grass strands under perspective geometry. They

can generate a river scene, a fire scene or smoke scene using computational fluid dynamics.

They can generate clothes using a set of particles under the law of mechanics. They can

generate sophisticated lighting using ray tracing and optics. But such models are hardly

meaningful for vision, because the imperceptibilities of the underlying elements or variables

are intolerable. When we look at a garden scene, we never really perceive every leaf or

every strand of grass. When we look at a river scene, we do not perceive the constituent
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elements used in fluid dynamics. When we look at a scene with sophisticated lighting and

reflection, we do not trace back the light rays. In those situations where physical variables

are not perceptible due to scaling or other aspects of image formation process, it is a big

challenge to come up with good models for the observed images. Such models do not have

to be physically realistic, but they should generate visually realistic patterns, so that the

computer vision system can interpret the observed image with comparable sophistication to

human vision.

The following are some of our simple theoretical considerations of this problem from the

perspectives of recognition and description. We shall get into more depth on the modeling

issue in later sections.

For recognition, instead of pursuing a detailed description W, we may choose to estimate

some rough summary of W. For instance, in the simulated ivy wall example, we may

care about properties of the overall distribution of colors of leaves, as well as the overall

distribution of their sizes, etc. Let’s call it W− = ρ(W), with ρ being a many to one

reduction function. It is possible that we can estimate W− because of the following result.

Proposition 4 For W ∼ p(W), Is = γs(W), and W− = ρ(W), we have

1) H(p(W−|Is)) ≤ H(p(W|Is)).

2) p(Is|W−) =

∑

W:ρ(W)=W−;R(γ(W))=Is
p(W)

∑

W:ρ(W)=W−
p(W)

.

Result 2) tells us that although W defines Is deterministically via Is = γs(W), W−

may only define Is statistically via a probability distribution p(Is|W−). While W represents

deterministic structures, W− may only represent some statistical properties. Thus, we have

a transition from a deterministic representation of the image intensities Is = γs(W) to a

statistical representation Is ∼ p(Is|W−).

It is also possible that for an image Is of large s, we may just summarize it by some

F (Is), so that the summary F (Is) contains as much information about Is as possible as far

as W or W− is concerned.
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Proposition 5 Let F = F (Is) be a summary of Is,

1) If W ∼ p(W), Is = γs(W), then

D(p(W|Is)||p(W|F )) = EW

[

log
p(W|Is)

p(W|F )

]

= H(W|F ) −H(W|Is) = H(Is|F ).

2) If W− ∼ p(W−) and [Is|W−] ∼ p(I|W−), then

D(p(W−|Is)||p(W−|F )) = EW−,Is

[

log
p(W−|Is)

p(W−|F )

]

= H(p(W−|F )) −H(W−|Is) = M(W−, Is|F ).

Here D() denotes Kullback-Leibler divergence, and M() denotes mutual information.

Remark: Result 1) tells us that for F (Is) to contain as much information about W as

possible, we want to make H(Is|F ) as small as possible. Result 2) tells us that if we want

to estimate some W−, then we want F to be sufficient about Is as far as W− is concerned.

M(W−, Is|F ) can be considered a measure of sufficiency.

Now let’s study this issue from the description or coding perspective. Suppose we use

a model w ∼ f(w), and [Is | w] ∼ f(Is | w) to code Is ∼ p(Is). Here the variable w is

augmented solely for the purpose of coding. It might be some w = W− = ρ(W), or it

may not have any correspondence to “reality”. In the coding scheme, for an image Is, we

first estimate w by a sample from the posterior distribution f(w|Is), then we code w by

f(w) with coding length − log f(w). After that, we code Is by f(Is|ws) with coding length

− log f(Is|w). So the average coding length is −Ep

[

Ef(w|Is)(log f(w) + log f(Is|w))
]

.

Proposition 6 The average coding length is Ep[H(f(w|Is))]+D(p||f)+H(p). That is, coding

redundancy = imperceptibility + error. Here H(f(w|Is)) is the entropy of f(w|Is) conditional

on Is, and D(p||f) is the Kullback-Leibler distance.

Remark: The above proposition provides a selection criterion for models with latent vari-

ables. It can be considered a generalization of the minimum description length of Rissanen

(1989), see also Hansen and Yu (2000), and Lee (2001). The imperceptibility term comes
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up because we assume a coding scheme where w must be coded first, and then Is is coded

based on w. Given the latent variable structure of the model, it is very natural to assume

such a coding scheme.

4 Two modeling schemes and entropy analysis

4.1 Modeling natural image patterns

The reason we study information scaling is because we want to model natural image patterns.

In natural scene images, there are bewildering varieties of patterns. Just like the wide

varieties of physical phenomena can be described by simple and unified physics laws, one

may ask whether we can find simple and unified mathematical and statistical models to

describe the wide variety of visual patterns in natural environmental scenes.

In the last section, we show that changing the distance between the camera and the

visual pattern will cause the change of the entropy rate of the resulting observed image

intensities, which in turn may trigger the transition between deterministic representation

and statistical interpretation of the image intensities. In this section, we will get more

concrete in terms of modeling, and examine existing image models and their empirical and

theoretical properties from the perspective of entropy. Before doing that, we shall first

briefly describe the mathematical models of simple neuron cells in primitive visual cortex.

Since these cells perform the first step of visual computation, they will shed light on image

modeling at the early stage of visual processing, or low-level vision.

4.2 Simple visual cells and Gabor wavelets

Hubel and Wiesel (1962), in their Nobel prize winning work, discovered that simple neuron

cells in cat’s primitive visual cortex (or what is called V1 area) selectively respond to visual

stimuli such as bars and edges at different locations, scales, and orientations. Daugmann

(1980) proposed a mathematical model for the response properties of these simple cells using
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Gabor wavelets. These wavelets are translated, dilated and rotated versions of the following

functions:

G(x, y) ∝
1

σxσy

exp{−
x2

2σ2
x

}eiωx, (6)

which is essentially a pair of local sine and cosine waves propagating along the x-axis, where

the localization is achieved by multiplying the waves with Gaussian functions. Such Gabor

functions fit the observed data on neuron cells reasonably well. In the fitted model, the σy

is larger than σx, so it is elongated along the y-axis. ωx and σx are such that the amplitude

of the sine or cosine wave decays to 0 very quickly, so essentially only one cycle of the wave

survive.

Another model (e.g., Malik and Perona, 1989) is the derivatives of Gaussian filters,

G(x, y) ∝
∂k

∂xk

1

σxσy

exp{−
x2

2σ2
x

}, (7)

where k = 1 and 2, i.e., the first and second derivatives of an elongate Gaussian. The function

(7) is similar to Gabor function in (6), in particular, the first derivative in (7) is similar to

Gabor sine component, and the second derivative is similar to Gabor cosine component. The

derivative of Gaussian filter is essentially a gradient operator.

Figure 12: Gabor functions of different scales and orientations.
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We can dilate and rotate the Gabor function with scale s and orientation θ,

Gs,θ(x, y) = G ([x cos θ + y sin θ]/s, [−x sin θ + y cos θ]/s) .

See Figure (12) for an illustration of a set of Gabor filters of different scales and orientations.

Finally, we can translate Gs,θ to make it centered at (x, y), Bx,y,s,θ(x
′, y′) = Gs,θ(x

′−x, y′−y).

For a function I(x, y) defined on R2, one can define the inner product or filter response

as

rx,y,s,θ = 〈I, Bx,y,s,θ〉 =
∫ ∫

I(x′, y′)Bx,y,s,θ(x
′, y′)dx′dy′. (8)

That is, we project I on Bx,y,s,θ, which can be considered a linear base in the image space.

For an image I defined on a discrete lattice, we can discretize the (x, y) domain of Bx,y,s,θ,

and replace the integral by sum. In what follows, we will stick to the notation (x, y) instead

of (i, j) for labeling the pixels.

These linear operators detect elongate local image structures such as edges and bars.

Also, they are overcomplete, in the sense that the number of filters {Bx,y,s,θ} is much larger

than the dimensionality of the image I. Lee (1996) designed an overcomplete set of Gabor

bases {Bx,y,s,θ} that form a so-called tight frame. That is, for rx,y,s,θ computed as equation

(8), we can reconstruct the image I by

I =
∑

x,y,s,θ

rx,y,s,θBx,y,s,θ, (9)

even though {Bx,y,s,θ} is overcomplete, and does not form an orthogonal basis. There is

biological evidence that the visual cells in cat’s primitive visual cortex are close to a tight

frame.

One may ask, what is the purpose of these visual cells? Whether we can make use of

them for constructing low-level models for computer vision?

4.3 Sparse coding

Field and Olshausen (1996) proposed an elegant explanation for Gabor wavelets. In their

work, these functions are estimated as parameters in a statistical model for natural image
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data. The principle they adopt is the sparsity principle. The question they ask is: for an

ensemble of natural image data, can we find a vocabulary of linear bases, so that for every

image in that ensemble, we can almost always find a small number of linear bases from this

vocabulary to represent this image?

Field and Olshausen (1996) collected an ensemble of natural image patches (of size 12×

12), I1, ..., IM . Then they estimate image bases B1, ..., BK (which are also images of 12× 12,

with K > 12 × 12, i.e., the basis is overcomplete) by minimizing

M
∑

m=1

{

min
{cm,k}

[

‖Im −
K

∑

k=1

cm,kBk‖
2 + λ

K
∑

k=1

S(cm,k)

]}

, (10)

over all possible basis {Bk}, where S() is a measure of sparsity, and λ is a tuning constant. In

objective function (10), the first term requires that the linear explanation
∑

k cm,kBk should

be close to the observed image Im. The second term requires that only a small number of cm,k

are significantly different from 0. The simplest measure of sparsity is to count the number of

non-zero {cm,k}, i.e., S(c) = 1 if c 6= 0, and S(c) = 0 if c = 0. But this measure does not allow

for very small c. Moreover, it is not differentiable, making it hard for optimization. So it can

be replaced by some continuous measure such as lp norm of the sequence {cm,k, k = 1, ..., K},

with p ≤ 1. Using a simple gradient algorithm, Field and Olshausen (1996) were able to

learn localized, scaled, and oriented base functions very similar to the Gabor wavelets shown

in Figure 12. That is, one can write k = (x, y, s, θ) where (x, y) is the location (on the 12×12

lattice), s is the scale, and θ is the orientation.

Lewki and Olshausen (1999) and Olshausen and Millman (2001) posed this problem

explicitly in a statistical model

cm,k ∼ p(c) independently, (11)

Im =
∑

k

cm,kBk + ǫm, (12)

where p(c) is assumed to be a long tailed distribution. The model used by Olshausen and

Millman (2001) for p(c) is a mixture of two Gaussian distributions ρN(0, σ2
1)+(1−ρ)N(0, σ2

0).

The two mixture components represent two states of the coefficients. One is the active state,
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with probability ρ, which is very small, and the variance σ2
1 is very large. The other state is

inactive state, with probability 1− ρ, which is very large, and the variance σ2
0 is very small,

meaning that most of the times, the coefficient is close to 0. See also Pece (2002).

In this two-level hierarchical model, cm,k are latent variables or missing data. Olshausen

and Millman (2001) used a stochastic approximation type of algorithm (similar to the EM

algorithm) to compute the maximum likelihood estimate of {Bk}. The above model is also

similar to the Bayesian variable selection problem in linear regression (e.g., George and

McCullogh, 1997), except that {Bk}, the set of regressors themselves, need to be estimated

from the data. See also Chipman, Kolaczyk, and McCulloch (1997).

The independence assumption in (11) is only for convenience. In general, one can write

the wavelet sparse coding model in the following form:

C = {ck} ∼ p(C), (13)

I =
∑

ckBk + ǫ, (14)

where C = {ck} are coefficients, and ǫ is assume to be Gaussian white noise. We can rewrite

the model (13) and (14) in matrix form C ∼ p(C), I1 = BC, and I = I1 + ǫ, where I and I1

become vectors, B is the matrix collecting all the bases {Bk}, and C is the vector collecting

all the {ck}.

The uncertainty caused by the overcompleteness can be easily seen via the singular value

decomposition of B = U(D, 0)(V1, V0)
′. B is a N ×K matrix, where N is the dimensionality

of I, and K is the total number of bases. Because of overcompleteness, N < K. U is

an N × N orthogonal matrix. D is N dimensional diagonal matrix of singular values.

V = (V1, V0) is the K × K orthogonal matrix, where V1 is K × N , and V0 is K × (K − N).

Let C̃ = (C̃1 = V ′
1C, C̃0 = V ′

0C), then clearly, I1 = BC = UDC̃1. That is, only C̃1 can be

decided from I1, while C̃0 cannot be determined.

For an analysis of entropy,

H(p(C)) = H(p(C̃)) = H(p(C̃1)) + H(p(C̃0|C̃1)).

H(p(I1)) = log |det(D)| + H(p(C̃1)) =
1

2
log |det(BB′)| + H(p(C̃1)).
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Therefore,

Proposition 7 In the above notation,

H(p(I1)) = H(p(C)) −H(p(C̃0|I1)) +
1

2
log |det(BB′)|.

If p(C) is very sparse, for instance, the parameter ρ in the mixture model ρN(0, σ2
1)+(1−

ρ)N(0, σ2
0) is very small, then H(p(C)) is small, and thus H(p(I1)) is also small. Therefore, if

the image I comes from a high entropy distribution such as random texture, the sparse coding

model may not be able to account for the high entropy by the signal part I1. As a result,

all the remaining entropy will be absorbed by the white noise ǫ, but the white noise model

cannot capture texture information. If we force ǫ to be close to 0, then the representation

will not be sparse any more, and H(p(C̃0|I1)), which can be considered imperceptibility for

this model, can become large. That is, the uncertainty caused by overcompleteness can be

large.

Olshausen and Field (1996) worked with small image patches. For large images, even if

we design the bases {Bx,y,s,θ} beforehand, it is still a computational challenge to estimate

the coefficients by minimizing the posterior distribution of coefficients according to model

(11) and (12), or minimizing an objective function (10).

Mallat and Zhang (1993) proposed a greedy algorithm called matching pursuit algorithm

for finding a sparse representation of an image I given an overcomplete set of bases {Bk, k =

1, ..., K}. In the language of variable selection in linear regression, the matching pursuit

algorithm is essentially the forward stepwise regression. We start from an empty set of

bases. Each time, we select a base that gives us the largest reduction in the l2 norm of error.

The algorithm stops when the error is smaller than a threshold. Wu, Zhu, and Guo (2002)

proposed a Markov chain Monte Carlo version of the matching pursuit algorithm of Mallat

and Zhang (1993) that rigorously samples from the posterior distribution of model (11) and

(12).

Now let’s examine the sparse coding model emiprically by some experiments. In the

experiments, we use an overcomplete set of Gabor wavelets as those depicted in Figure (12).
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(a) (b) (c) (d)

Figure 13: Sparse coding. (a) and (c) are observed images of 128 × 128 pixels. (b) and (d) are

respectively the reconstructed images using 300 bases.

At each pixel, there are localized Gabor wavelets of different scales and orientations. So the

set of bases are highly overcomplete. We use the matching pursuit algorithm to construct

the sparse coding of the observed images.

Figure (13) shows two examples of sparse coding. (a) and (c) are observed images of

128 × 128 pixels, (b) and (d) are images reconstructed by 300 bases. We can see that

sparse coding is very effective for images with sparse structures, such as image (a). However,

the texture information is not well represented. We can continue to add more bases in the

matching pursuit process if we want to code texture, but then the representation will not be

sparse any more.

There are two more problems with sparse coding model with independent prior distribu-

tion, as illustrated by Figure (14), where (a) is the observed image of 300 × 200 pixels. (b) is

the image reconstructed using 500 bases. (c) is a symbolic representation where each base in

the sparse coding is represented by a bar at the same location, with the same elongation and

orientation as the corresponding base. As shown by this experiment, one problem of wavelet

sparse coding is that the edges can become quite blurry, indicating that wavelet bases are

not sharp enough to describe the edges. The other problem is that the bases do not line up

very well, indicating that we need stronger prior model for the spatial organization of the

local bases, so that they line up into more regular structures.

The wavelet theory started from harmonic analysis, for representing functions in various
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(a) (b) (c)

Figure 14: Sparse coding. (a) is the observed image. (b) is the image reconstructed using 500

bases. (c) is a symbolic representation where each base is represented by a bar at the same location,

with the same elongation and orientation.

functional classes by localized and self-similar base functions. For functional classes, there

is also a concept of entropy, called Kolmogorov ǫ-entropy. See Donoho, Vetterli, Devore,

and Daubechies (1998) for a review of this concept as well as the applications of wavelets to

image compression. Following the definition of their paper, for a compact functional class Π

with norm ‖ ‖, let a net Nǫ = {f ′} be such that

sup
f∈Π

min
f ′∈Nǫ

‖f − f ′‖ ≤ ǫ,

then the Kolmogorov ǫ-entropy is defined as the logarithm of the minimum cardinality of

such a net. Intuitively, it can be imagined as the Shannon entropy of the uniform distribution

over the functional class Π that are discretized with precision ǫ. The Kolmogorov entropy

has been connected to the decaying rate of the coefficients of orthogonal wavelet transform.

Olshausen and Field (1996) learned the local image basis empirically from natural images.

Candes and Donoho (1999) designed a set of basis they called curvelets based on theoretical

considerations under the slogan that “natural images have edges”. They study the class of

two dimensional functions with discontinuities on smooth curves in R2, and showed that

curvelet basis gives sparse coding for such functions. We would like to point out that the

scenario of their revealing investigation is the low entropy or near distance situation.
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4.4 Markov random fields and feature statistics

The Markov random fields originated in statistical physics, and they were first introduced

to statistics by Besag (1974). Geman and Geman (1984) and many other researchers have

used Markov random fields for image processing and modeling. Zhu and Mumford (1997)

connected Markov random fields to partial differential equations and variational approaches

for image processing (Aubert and Kornprobst, 2002). See the book of Winkler (1995) for a

comprehensive treatment to Markov random fields and related topics.

The Markov property of a Markov random field is defined with respect to a neighborhood

system, where for each pixel (x, y) ∈ Λ, there is a set of neighboring pixels ∂(x, y) ⊂ Λ. The

neighborhood relationship is a mutual relationship, that is, if (x, y) is a neighbor of (x′, y′),

then (x′, y′) is also a neighbor of (x, y). From the neighborhood system ∂ = {∂(x, y) : (x, y) ∈

Λ}, one can define the set of cliques. A clique A is a set of pixels so that any two pixels in

A are neighbors.

p(I) is a Markov random field with respect to the neighborhood system ∂, if for all

(x, y) ∈ Λ,

p(Ix,y | I(Λ\(x, y))) = p(Ix,y | I(∂(x, y)). (15)

By convention, for A ⊂ Λ, we define I(A) as the intensities of all the pixels in A. Λ\(x, y)

means all the pixels except (x, y). The Markov property (15) means that the distribution of

the pixel intensity only depends on the intensities of neighboring pixels.

According to Hammersley-Clifford (1968) theorem, a Markov random field with respect

to the neighborhood system ∂ can be written as the Gibbs distribution:

p(I) =
1

Z
exp{−

∑

A

UA(I(A))},

where UA() is a potential function defined on the clique A, and Z is the normalizing constant

to make p(I) sum or integrate to 1.

For modeling purpose, if A has many pixels, then UA will be a high dimensional function,

and it can be difficult to specify it and estimate it from the image data. In statistical physics
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as well as in early research in image processing, people often assume pairwise potentials, that

is, all the UA with the cardinality of the clique |A| > 2 are set to 0. However, for natural

images, pairwise relationship can hardly be an adequate description.

Zhu, Wu, and Mumford (1997) proposed a modeling strategy to get around this problem:

replace the high dimension I(A) by low dimensional features. Suppose we have a set of

feature extractors, {φx,y,k}, so that φx,y,k(I) extract local feature at a clique around (x, y).

One example of feature extractors is φx,y,k =< I, Bx,y,s,θ >, with k = (s, θ). Then we can

model the image I by the following Gibbs distribution

f(I | β) =
1

Z
exp{

K
∑

k=1

∑

x,y

βx,y,k(φx,y,k(I))}, (16)

where β = {βx,y,k()} is a set of a low-dimensional functions of features, and Z is the nor-

malizing constant depending on {βk()}. This is essentially the model proposed by Zhu, Wu,

and Mumford (1997) for modeling textures, where they assume φx,y,k =< I, Bx,y,s,θ >.

We can prove the following information-theoretical results.

Proposition 8 Suppose the true distribution of I is p(I), and let px,y,k() be the distribution

of φx,y,k(I) under I ∼ p(I). Suppose there exists a β∗, such that under f ∗(I) = f(I | β∗),

the marginal distribution of φx,y,k is px,y,k() for all (x, y, k), then D(p||f ∗) ≤ D(p||f) for any

f = f(I | β).

Proof

D(p||f) −D(p||f ∗) = log
Z(β)

Z(β∗)
Ep

{

K
∑

k=1

∑

x,y

(β∗
x,y,k(φx,y,k(I)) − βx,y,k(φx,y,k(I)))

}

= log
Z(β)

Z(β∗)
Ef∗

{

K
∑

k=1

∑

x,y

(β∗
x,y,k(φx,y,k(I)) − βx,y,k(φx,y,k(I)))

}

= D(f ∗||f) ≥ 0. QED.

Remark: f ∗ can be considered the best approximation to p among all possible f(I | β). It

can also be regarded as the “maximum likelihood estimate” , since minimizing D(p||f(I|β))

amounts to maximizing Ep[log f(I | β)], which can be considered the likelihood function with

p serving as the “data”.
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Proposition 9 In the above notation, let q(I) be any distribution such that the marginal

distribution of φx,y,k(I) under q(I) is px,y,k() for all (x, y, k). Then H(f ∗)−H(q) = D(q||f ∗).

Proof

H(f ∗) −H(q) = Eq[log q(I)] − Ef∗ [log f ∗(I)]

= Eq[log q(I)] − Eq[log f ∗(I)] = D(q||f ∗). QED.

The above proposition has the following implications:

1. Maximum entropy. Among all the q(I) that reproduces the marginal distributions

px,y,k(), f ∗ has the maximum entropy. Therefore, f ∗ can be considered the most un-

prejudiced fusion of the statistical properties represented by px,y,k().

2. f ∗ always approaches the true distribution p from above in terms of entropy. That

is, f ∗ is always more random than p. So Markov random field model may be used to

model high entropy patterns.

3. Minimum entropy. If we want to find the best set of features {φx,y,k}, we need to

minimize the entropy f ∗ over all possible sets of features, since that will give the best

approximation to the true distribution p in terms of D(p‖f).

To model observed images, we may assume that the images are locally stationary. Let’s

still use I to denote a spatially stationary image patch. Then we can assume that βx,y,k() =

βk(), i.e., the β-function does not depend on (x, y). One can further parametrize βk() by

step functions or low order polynomials. If we parametrize βk() by a step function over a set

of bins Rl, l = 1, ..., L, so that βk(φx,y,k(I)) = βkl if φx,y,k(I) ∈ Rl, then we can write model

(16) as

f(I | β) =
1

Z
exp{

∑

k

∑

x,y

∑

l

βklδφx,y,k(I)∈Rl
}

=
1

Z
exp{

∑

k

∑

l

βklHkl(I)} =
1

Z
exp{

∑

k

〈βk, Hk(I)〉},
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where Hkl(I) =
∑

x,y δφx,y,k(I)∈Rl
, i.e., the number of φx,y,k(I) falling into bin Rl, and Hk =

(Hkl,∀l) is the marginal histogram of {φx,y,k(I),∀x, y}.

Clearly, the above model is an exponential family model, where the spatial feature statis-

tics Hk(I) are the sufficient statistics. As a well-known fact about exponential family model,

if we want to find the maximum likelihood estimate of β from the observed image Iobs, we

only need to solve the following estimation equation

Eβ[Hk(I)] = Ĥk = Hk(Iobs),∀k, (17)

that is, we need to match the model and the data in terms of the spatial statistics. Or in

other words, the fitted model is decided by Hk(Iobs). Eβ[Hk(I)] is called the mean parameter

of the model, and β is called natural parameter.

There is something much deeper than that, and it is produced by a most fundamental

insight in statistics physics: the equivalence of ensembles. Borrowing this insight, Wu, Zhu,

and Liu (2000) considered the following ensemble, which is called micro-canonical ensemble

in statistical physics (Chandler, 1987):

Π = {I : Hk(I) = Ĥk,∀k}, (18)

where Ĥk can be estimated from observed image. This is a deterministic concept of equivalent

class, where all the images in that ensemble produce the same spatial statistics.

One can show that under the uniform distribution over Π, if the image domain Λ → Z2,

then the image intensities defined on any fixed local lattice Λ0 follows

p(IΛ0
| I∂Λ0

) =
1

Z
exp{

∑

k

∑

x,y∈Λ0

βk(φx,y,k(I))}, (19)

where ∂Λ0 are the neighboring pixels of Λ0 so that pixels in ∂Λ0 and pixels in Λ0 can be

covered by the same filters. β can be solved from equation (17).

One may imagine that we put all the large images in the micro-canonical ensemble (18)

on top of each other. Then we only look at these images through the window Λ0, we will see

a lot of image patches. The frequency distribution of these image patches is given by (19).
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Figure 15: The deterministic concept of micro-canonical ensemble defined on Λ → Z
2 produces

the probabilistic concept of Markov random field on a fixed patch Λ0, according to the equivalence

of ensemble in statistical physics.

Conversely, as Λ → Z2, the Markov random field model (16) is equivalent to the uniform

distribution over the micro-canonical ensemble (18), and one can show that the entropy of

the Markov random field model is log |Π|, where |Π| is the volume of Π. log |Π| is also called

combinatorial entropy by Kolmogorov (see Rissanen, 1989), and it appears to be related to

Kolmogorov ǫ-entropy. So the entropy can be considered a measure of the dimensionality of

Π. In terms of this micro-canonical ensemble and combinatorial entropy,

1. Maximum entropy means that we should put the uniform distribution over the micro-

canonical ensemble.

2. Minimum entropy means that we should choose the set of local feature extractors

{φx,y,k}, so that the corresponding micro-canonical ensemble has the smallest volume.

Zhu, Wu, and Mumford (1997) proposed a filter pursuit procedure to add one filter at a

time, so that the added filter leads to the maximum reduction of the entropy in the fitted

model. Figure (16) displays an example of filter pursuit procedure on homogeneous texture.

With K = 0 filters, the sampled image is white noise. With K = 7 filters, the sampled

image in (e) is perceptually equivalent to the input image. This method is similar to the

projection pursuit density estimation (Friedman, 1987). The difference is that we have an
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explicit maximum entropy model in the form of exponential family Markov random field,

and the linear filters overlap with each other.

(a) observed (b) K = 0 (c) K = 2 (d) K = 3 (e) K = 7

Figure 16: Filter pursuit: adding one filter at a time to reduce the entropy. The filters pool the

statistical information (histograms) to yield a texture impression.

The following are some experiments with φx,y,k(I) = 〈I, Bx,y,s,θ〉, with k = (s, θ). These

experiemnts show that the filter statistics are quite effective in representing stochastic tex-

tures. Figure (17) shows two examples. (a) and (c) are observed images, and (b) and (d) are

respectively the “reconstructed” images. Here the reconstruction is of a statistical nature:

(b) and (d) are sampled from the respective micro-canonical ensembles (18) by matching

feature statistics. See Heeger and Bergen (1995), Srivastava, Grenander, and Liu (2002),

Portilla and Simoncelli (2000) for more discussions on feature statistics.

(a) (b) (c) (d)

Figure 17: Feature statistics. (a) and (c) are observed images. (b) and (d) are “reconstructed” by

matching feature statistics.

We need to stress that, under the Markov random field model or equivalently the micro-
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canonical ensemble, the filter responses φx,y,k(I) = 〈I, Bx,y,s,θ〉 are not independent of each

other, because the number of bases Bx,y,s,θ far exceeds the number of pixels. Although

only marginal distributions are specified, the dependencies among adjacent responses from

the same filter can be accounted for implicitly by the distributions of the responses from

other filters. Sometimes, the long range patterns can emerge by matching statistics of local

features.

But still, since the model only specifies the marginal distributions of filter responses, it

cannot represent large regular structures very well. See Figure (18) for two examples with

line structures. In order to model regular structures, we need to represent these structures

explicitly. Moreover, we also need to model the spatial organizations of these structure.

(a) (b) (c) (d)

Figure 18: Feature statistics. (a) and (c) are observed images. (b) and (d) are “reconstructed” by

matching feature statistics.

In the end, we would like to mention that if the linear bases form a complete system, i.e.,

the number of bases is the same as the number of pixels, then both the wavelet model (11)

and (12) (with ǫ = 0) and the Markov random field model (16) (with φx,y,k(I) = 〈I, Bx,y,s,θ〉)

reduce to the independent component analysis model (Bell and Sejnowski, 1997).
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(a) (b) (c) (d)

Figure 19: From sparse coding to feature statistics. (a) Observed near-distance image. (b) Recon-

structed by sparse coding with 1,000 bases. (c) Observed far-distance image. (d) “Reconstructed”

by matching feature statistics.

5 Full-Zoom Primal Sketch Model

5.1 Integrating two regimes of models

Because of information scaling, image data may have different entropy rates, and the under-

lying geometric structures that produce the image data may have different perceptibilities.

Our examination of the wavelet sparse coding and Markov random fields indicates that the

wavelet sparse coding model is appropriate for low entropy regime, and the Markov random

fields or feature statistics are appropriate for high entropy regime. For instance, Figure (19)

displays results for two images of leaves. (a) is the observed 300 × 200 image of leaves at

near distance. (b) is the image reconstructed by the matching pursuit algorithm using 1,000

Gabor wavelets. (c) is the observed image at far distance. (d) is obtained by matching the

histograms of filter responses from a set of Gabor wavelets. (d) is not an exact reconstruction

of (a), but it captures the texture appearance of (c).

Therefore, we may combine the two regimes of models into a full-zoom primal sketch

model to account for the whole range of scale and entropy.

However, as shown by Figure (14) as well as Figure (19.b), the wavelet bases are not

sparse enough for coding geometric structures such as edges and bars, neither do they align

into lines, curves, junctions, and corners. For such geometric structures, we need more
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(a) Original image (b) Sketch graph

(c) Sketchable part (d) Synthesized image

Figure 20: Full zoom primal sketch model. (a) The observed image. (b) The “sketchable” part

is described by a geometric sketch graph. (c) The sketch part of the image. (d) Fill in the “non-

sketchable” part by matching feature statistics.
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sophisticated local parametric models with explicit geometric parameters such as length,

width, scale, orientation for edges and bars. These local models should also have photometric

parameters in order to generate the image intensities. We call these local parametric models

the sketch primitives. These primitives line up into lines and curves, and their joints and

intersections form corners and junctions etc.

See Figure (20) for an example. Figure (20.a) is the observed image, the same as the

observed image in Figure (14). It is represented by a small number of sketch primitives,

which form a sketch graph, see Figure (20.b). The nodes are end points, corners, junctions.

The nodes are connected by edges and bars. These sketch primitives generate what we call

the “sketchable” part of the image, see Figure (20.c). The image intensities generated by

these primitives are very close to the corresponding image intensities of the original image.

That is, we seek a sparse deterministic coding for the sketchable part of the image, which

gives us most of the information in the image data.

Since these local primitive models are much more flexible and sophisticated than the

wavelet sparse coding model, they are also much more computationally expensive to fit than

the wavelet model. So we still need to start from local wavelet sparse coding to detect

the geometric structures, and then fit the sparser non-linear primitive models to sketch the

image.

Then how about the “non-sketchable” part of the image? The fact that no clear geometric

structures are identified in this part of the image indicates that the underlying constituent

elements are of very small scales or at far distances. They are not perceptible, and there

can be a large number of them. So instead of coding them deterministically, we can only

summarize them statistically if we want a parsimonious description of this part of the image.

Then what statistics should we use for non-sketchable part of the image? The answer

seems to come from the effort of sketching the image. In order to detect the sketchable

part of the image, we have to apply some local detectors, such as local wavelet sparse

coding, everywhere in the image. Even if these detectors fail to report any structures that

deserve further model fitting by sketch primitives, these detectors must have performed some
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computations and extracted some features from local image intensities. These features must

be quite informative about the local image intensity patterns, especially when the local image

intensities are close to the borderline of being sketchable. Computationally, these extracted

features should not be thrown away if the local image intensities are not sketchable. Instead,

we should pool these features within a local area into statistics for describing the non-

sketchable part of the image. Since no clear structures are identified in this part of the

image, we may only need to find the marginal statistics of the extract features, without

worrying about the spatial organizations of these features.

So our proposal is that the non-sketchable statistics summarize the features extracted

by the failed sketch detectors. Or in other words, the effort of sketching the image is like

putting the image through a mesh. What is left on the mesh is the sketch graph of the

image. The part of the image that falls through the mesh is recycled into local marginal

statistics of failed sketches.

In our work, we still use the marginal histograms of filter responses as the non-sketchable

statistics. These statistics imply a Markov random field model. See Figure (20.d) for a

synthesized image which is obtained by filling in the blank part of Figure (20.c) by matching

the non-sketchable statistics of the observed images. Mathematically, the non-sketchable

statistics play the role of regularizing the interpolation of the sketchable part of the image.

Graphically, filling in the non-sketchable part of the image is a matter of inpainting. From

this perspective, we may consider our modeling approach as “sketching and inpainting”. See

Chan and Shen (2001) for more details on the issue of inpainting.

5.2 The sketch primitives and sketchability

A most prominent sketch primitive is an oriented and elongate structure such as an edge or

a bar:

Φ(x, y) = h(−(x − x0) sin θ + (y − y0) cos θ), (x, y) ∈ S,

where h() is a one-dimensional profile function, and S is an oriented rectangle set of pixels

along direction θ. The low entropy is achieved by the fact that the two-dimensional image
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patch I(S) is represented by one-dimensional profile h() along a direction θ. Moreover, the

profile h() can be further modeled by some parameteric functions. For edges, Elder and

Zucker (1998) proposed the following profile. We start from a step edge h0(x) = 1/2 for

x ≤ 0, and h0(x) = −1/2 for x > 0. We let h(x) = a + bh0(x) ∗ g(s), where g(s) is a

Gaussian kernel with bandwidth s. Here the parameter of such an edge primitive includes

(x0, y0, l, w, s, θ, a, b) with location (x0, y0), length l, width w, scale s, orientation θ, local

intensity level a, edge magnitude b. The convolution with Gaussian kernel of scale s is

used to reflect the blurred transition of intensity values across the edge, caused by the three

dimensional shape of the underlying physical structure that produces the edge, as well as

the resolution and focus of the camera.

For a bar, it is a composition of two scaled edges. The junctions and corners are compo-

sition of edges and bars.

For an image I defined on lattice Λ, let Λsk be the sketchable part of the lattice. Let

{Φi(x, y | αi), i = 1, ..., n} be the set of sketch primitives that describes I(Λsk), and let Si be

the pixels covered by Φi(x, y | αi). Then Λsk = S1 ∪ ... ∪ Sn, and

I(x, y) = Φ1(x, y|α1) + ...Φn(x, y|αn) + ǫ(x, y), (x, y) ∈ Λsk,

and ǫ(x, y) ∼ N(0, τ 2
i ) for (x, y) ∈ Si.

As a provisional working model, we temporally assume that for (x, y) ∈ Λ\Λsk, I(x, y) ∼

N(µx,y, σ
2
x,y) independently, where µx,y and σ2

x,y are slowly varying. This part of model is

going to be replaced after we sketch the image.

The sketch primitives {Φi(x, y | αi), i = 1, ..., n} form a sketch graph G, where G collects

the geometric aspects of the primitives. The prior model for G is of the following form

p(G) =
1

Z
exp{−

∑

j

ηjFj(G)},

where Fj(G) are some features computed from the graph G, including the number of sketch

primitives and the number of end points. The parameter ηj are chosen to favor graphs with

extended and connected primitives, so that the number of primitives and the number of end

points are small.
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In order to fit the model, we can minimize the following sketchability criterion

∑

i

1

2
|Si| log

‖I(Si) − Φ(x, y|αi)‖
2

|Si|Var(I(Si))
+

∑

j

ηjFj(G). (20)

This is the penalized likelihood for image I, with τ̂ 2
i = ‖I(Si) − Φ(x, y|αi)‖

2/|Si|, and for

(x, y) ∈ Si, µ̂x,y = E(I(S)), σ̂2
x,y = Var(I(Si)), i.e., the empirical marginal mean and variance

of I(Si). One may also use a more strict Bayesian method for model fitting. We consider

this a minor point.

The sketchability criterion (20) can also be interpret as description length of the sketch-

able part of the image. The first term is the coding cost for residual error (relative to white

noise model). The second term can be interpreted as the cost for coding the primitives.

As we discussed above, we still need to use wavelet bases as a precursor to minimize (20).

We first compute rx,y,s,θ = 〈I, Bx,y,s,θ〉 for all (x, y, s, θ). Then we identify the local maxima,

where rx,y,s,θ is a local maximum if it is greater than other rx,y,s,θ within a predefined local

neighborhood in the space of (x, y, s, θ). These local maxima can produces a sparse coding of

the image using the corresponding Bx,y,s,θ. Moreover, they give us important information as

to where to fit the sketch primitives. These local maxima behave similarly to Canny (1986)

edge detector.

We then use a sketching pursuit process to identify a sketch graph. The process starts to

fit a single primitive at the global maximum of rx,y,s,θ. Then we use a set of moves to reduce

the sketchability criterion (20). This set of moves includes: 1) extend a primitive, or shrink

a primitive; 2) add a new primitive, or remove an existing primitive; 3) join two primitives

to form a corner, or break a corner; 4) extend one primitive to touch another primitive to

form a junction, or break a junction. More technical details are reported in Guo, Zhu, and

Wu (2004). The computation is quiet efficient, taking less than 30 seconds for an 200 × 200

image.
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5.3 The non-sketchable statistics

In the ideal case, we can fit the sketch model I(x, y) = Φ(x, y|α)+ ǫ at every location (x0, y0)

of the image lattice, and let φx0,y0
(I(S)) = (α̂, τ̂ 2), i.e., the local model fitting result. For

those non-sketchable (x0, y0), the model does not fit very well, that is, the sketch Φ(x, y|α̂)

does not give an accurate account of local image intensities around (x0, y0). For those failed

sketches, there is not way for them to form any conspicuous sketch graph structures. As a

result, we can pool the marginal distributions of the model fitting results to form the feature

statistics, by throwing out all the position information. That is, the ideal non-sketchable

statistics can be the marginal statistics of failed model fitting results.

Since we cannot afford to fit local model everywhere, we may just pool the marginal

distributions of local sketch detectors φx,y,k(I). Let Nx,y ⊂ Λnsk = Λ\Λsk be a non-sketchable

local image patch around pixel (x, y). We summarize I(Nx,y) by

fx,y,k(z) =
1

|Nx,y|

∑

(x′,y′)∈Nx,y

δφx′,y′,k(I)(z),∀k,

i.e., the local empirical distribution (or histogram if we discretize the range of z) of features

{φx′,y′,k(I)} for all the (x′, y′) around (x, y). We can further group pixels (x, y) into several

regions based on {fx,y,k(z)}, so that each region is stationary in {fx,y,k(z)}.

According to the equivalence of ensembles, the above statistics imply a Markov random

field, which interpolates the I(Λsk) in the form of the conditional distribution of I(Λnsk) given

I(Λsk),

f(I(Λnsk)) | I(Λsk) =
1

Z
exp{

∑

(x,y)∈Λnsk

∑

k

βx,y,k(φx,y,k(I))}.

In our current experiments, we use φx,y,k = 〈I, Bx,y,s,θ〉, with k = (s, θ), because these

results are the initial computations of the effort of sketching the image. It can also be other

feature extractors for detecting sketch primitives.

Figure (21) shows more experiments of full-zoom primal sketch model.

For a theoretical understanding of the pooling of local model fitting results, we have the

following proposition.
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(a) (b) (c)

Figure 21: Examples of full-zoom primal sketch model. (a) observed image; (b) sketch graph; (c)

synthesized image from the fitted model.
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Proposition 10 For a stationary random field f defined on Z2, let S ⊂ Z2 be a local squared

patch, and let Λ ⊂ Z2 be a large squared patch whose length or width is the multiple of that

of S. Then H(f(I(Λ))) ≤ H(f(I(S))).

The local model fitting targets small patches such as I(S). These local patches overlap

with each other. By fusing the local model fitting results together into a micro-canonical

ensemble or a Markov random field f , we are able to achieve a smaller entropy rate. In some

sense, these local model fittings tighten each other since they cover overlapping patches.

6 Limitations and future work

The experiments with full-zoom primal sketch model suggest that it can capture considerable

amount of low-level essence of natural images. However, the current form of the model cannot

handle the large number of objects and their parts at the small and non-sketchable scales,

such as faces, hand-written characters, many man-made objects. For these objects, we need

more sophisticated detection algorithms and representation schemes.

In our current experiments, we still use histograms of filter responses as spatial statistics

for non-sketchable part of the image. According to our proposal that the non-sketchable

statistics should recycle failed local sketches, we could use more sophisticated local features

that are built on filter responses. In our future work, we shall search for more powerful

statistics along this line of thinking, and eventually catalog the wide variety of non-sketchable

patterns.

A visual object or pattern generates a scale space of images at different viewing distances.

So there should also correspond a scale space of models or representations. Since the viewer

can move in a visual scene, we should track the change of the topology of the sketch graph,

the transition between sketchable primitives and non-sketchable statistics, as well as the

change of non-sketchable statistics over scale. In addition, visual patterns, such as a grass

ground or brick wall, can appear in perspective. We should model the changes caused by

the view perspective as well.
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Our prior model on the spatial configuration of the sketch primitives only reflects some

simple regularities. We need more sophisticated model to account for local geometry and

spatial organization.

In our current work, we only deal with static images. For motion images, there are also

issues of complexity and perceptibility. Some motion patterns are very simple, for instance,

the motion of ridge body. Some motion patterns are complex, for instance, the motion

of fluid. The simple patterns are often trackable, whereas the complex patterns are often

not trackable. Downsampling in both spatial and temporal dimensions can increase the

complexity and reduce the trackability. We shall extend our method to motion patterns in

future work.

In terms of modeling, we would like to raise the following points.

There seem to be two notions of simplicity. One is simple regularity, such as the simulated

ivy wall image at very near distance. The other is simple randomness, such as the simulated

ivy wall image at very far distance, where the image is white noise. While the notion of

sparsity or dimension reduction captures the first notion of simplicity, it does not capture

the second notion of simplicity, which is the simplicity of the underlying probability model

instead of the simplicity of the data. Deeper thinking is needed to define the precise meaning

of simplicity.

Our model is essentially a parametric model. For computer vision, parametric modeling

seems the right approach given the specific tasks of vision, our knowledge of the physical

world, and the large amount of training data. This is different from many other classification

and function estimation situations where no much domain-specific knowledge is available.

In these situations, non-parametric classification methods and wavelet analysis can be more

appropriate than parametric models.

The goal of vision is to interpret the image data in terms of what is where (that is,

recognize objects and geometry) instead of synthesizing images. The result from our model-

based analysis is represented by the sketch graph as well as non-sketchable statistics. The

synthesized images are used for model checking to see if our model captures the essence of
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the observed images to the extend that synthesized images generated by the fitted models are

judged realistic by human vision. In many cases, this is still the harshest criterion to pass,

especially for the regime where a physical description of the scene is not entirely perceptible.

Moreover, the synthesis mode of the model can also be useful for computer graphics.
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