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Abstract

Acute stress triggers a cascade of physiological and psycho-
logical changes including heightened cortisol levels, perspi-
ration, and anxiety. Existing research has focused on acute
stress’s effect on cognition in basic tasks of executive func-
tioning, but its effect on computationally harder tasks is not
well understood. Here, in a within-participants laboratory ex-
periment (n=42, mostly college students), we test for an effect
of acute stress on decision-making at varying levels of compu-
tational hardness in the 0-1 Knapsack Decision Problem. We
find that acute stress, induced via the Trier Social Stress Test,
leads to impaired decision quality irrespective of the level of
computational hardness. Among cortisol responders, higher
cortisol levels were associated with lower decision quality and
higher time on task. Our findings help bridge the gap between
research on executive functioning tasks and ‘real-world deci-
sions’, building a more nuanced understanding of how acute
stress affects decision-making.
Keywords: Acute stress; decision-making; computational
hardness; complexity; experimental psychology

Introduction
Stress is a ubiquitous experience occurring when a situ-
ation’s demands exceed an organism’s regulatory capac-
ity (Starcke & Brand, 2012). Acute, or ‘in the moment’
stress, triggers substantial physiological and psychological
changes (Sapolsky, Romero, & Munck, 2000). Physiolog-
ically, the sympathetic-adrenal-medullary (SAM) axis acti-
vates the fight-or-flight response, with the likes of heart rate
and perspiration increasing within seconds of stress onset and
returning to baseline within minutes post-stressor (Starcke &
Brand, 2012). In parallel, the hypothalamic-pituitary-adrenal
(HPA) axis instigates a slower stress response, releasing glu-
cocorticoids, such as cortisol, to mobilise energy stores and
inhibit non-essential functions (Rodrigues, LeDoux, & Sapol-
sky, 2009). Cortisol levels increase within minutes of stress
onset and remain elevated for 40-60 minutes post-stressor
(Starcke & Brand, 2012). Psychologically, acute stress can be
accompanied by states such as heightened alertness or anxiety
(Grace et al., 2022; Sandi, 2013).

Behavioural studies show decision-making under acute
stress is often impaired, but there is substantial variation.
Most studies tend to focus on basic cognitive tasks, such as
those assessing the three domains of executive functioning
(EF): working memory, inhibition, and cognitive flexibility.
There is a growing consensus that acute stress impairs work-
ing memory (Schoofs, Preuß, & Wolf, 2008; Shields, Bonner,

& Moons, 2015) cognitive flexibility, and planning (Johnson,
Dariotis, & Wang, 2012), while enhancing inhibition (Shields
et al., 2015) and learning from negative feedback or stress-
relevant contexts (Schwabe, Wolf, & Oitzl, 2010; Yu, 2016).

Similar trends have been found in other popular task
paradigms, including risky (Duque, Cano-López, & Puig-
Pérez, 2022) and two-stage choice tasks (Otto, Raio, Chiang,
Phelps, & Daw, 2013), while evidence is mixed in domains
such as choice consistency (Nitsch, Sellitto, & Kalenscher,
2021). Given the mixed results and the importance of often
task-specific moderating variables, it is difficult to generalise
from these studies to higher-order decision-making. We hy-
pothesise that one major confounding factor of existing stud-
ies that may explain the mixed results is the lack of control
for the computational hardness of existing tasks.

In our study, we address the issue. Our central contribution
is to study the effect of acute stress on the quality of decisions
at different levels of computational hardness. We have de-
signed a task that allows us to quantify and manipulate com-
putational hardness of decisions, that is, the amount of time
and memory needed to decide correctly (Cheeseman, Kanef-
sky, & Taylor, 1991), in a precise and theoretically sound
way. Our task is based on the 0-1 knapsack decision problem
(KP). It recruits several cognitive processes, such as work-
ing memory and cognitive flexibility, and it can represent any
decision scenario involving costs and benefits: from grocery
shopping to investment management (Murawski & Bossaerts,
2016). However, our theoretical framework is independent of
the specific task used. Prior work has shown the our mea-
sures of complexity used here affect human behaviour in the
KP (Franco, Yadav, Bossaerts, & Murawski, 2021; Yadav,
Murawski, Sardina, & Bossaerts, 2018), as well as tasks re-
quiring abilities as diverse as spatial navigation and proposi-
tional logic (Franco, Doroc, Yadav, Bossaerts, & Murawski,
2022). Thus, our use of computational problems does not
simply apply stress research to a novel setting. Rather, it is
an altogether more appropriate setting, relative to alternatives
such as EF or probabilistic tasks, for cognitive scientists in-
terested in measuring and manipulating a decision’s compu-
tational hardness in a generalisable, theoretically sound, and
empirically validated way. Our design allows us to modulate
both the computational resource requirements of the decision
environment, via these complexity measures, and decision-
makers’ stress levels, via the Trier Social Stress Test (TSST).
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Figure 1: Experimental task. Trial: A set of 8 items is shown, each with a value and weight. A capacity constraint, target
profit, and timer are shown at the screen’s center. The goal is to decide whether there exists a subset of items for which (1) the
sum of weights is lower or equal to the capacity constraint; and (2) the sum of values is at least the target profit. Nothing on the
screen could be moved, selected or highlighted. Response: Participants selected YES or NO as their solution.

We expected that acute stress would have a more detrimental
effect on decision quality at higher levels of computational
hardness, that is, in situations in which the computational re-
source constraints are more binding.

Methods
Participants
The experimental protocol was approved by the University
of Melbourne Human Research Ethics Committee (Ethics ID
23412). We recruited 42 participants (21 female, mean age
21.5 with standard deviation (SD) 3.6), predominantly col-
lege students, for an in-person laboratory experiment. Of the
female participants, 16 were in the luteal phase, 3 in the fol-
licular phase, and 2 in the menstrual phase of their menstrual
cycle. To avoid anticipatory stress the study was described
as assessing “physiological and emotional responses to per-
formance and decision-making tasks” (Wemm & Wulfert,
2017). Each participant satisfied the standard exclusion cri-
teria (Shields, Trainor, Lam, & Yonelinas, 2016) and did not
eat, smoke, exercise, or drink anything besides water within
two hours of the session. Participants were paid a A$10 show-
up fee and A$0.7 for each correct response in the knapsack
task. The average total payment was A$98.8 per participant.

Materials
Physiological and psychological measurements We col-
lected three primary stress measures: five salivary cortisol
samples (HPA-axis response), five samples of the Positive Af-
fect Negative Affect Schedule (PANAS; subjective response)
(Watson, Anna, & Tellegen, 1988), and electrodermal activ-
ity (EDA), collected with a Shimmer3+ device fitted on par-
ticipants’ non-dominant hand, sampled at 64 Hz (SAM re-
sponse). Further, every 9 trials the participants rated how
they were feeling on a scale from 0 (relaxed) to 5 (stressed),
which we denote perceived stress (subjective response). Eye-
tracking data were collected, but are not reported here.

Experimental task: the 0-1 Knapsack Decision Problem
An instance of the KP consists of a set of items I = 1, . . . ,N
with weights w1, . . . ,wN and values v1, . . . ,vN , and two posi-
tive numbers c and p denoting the capacity and target profit
of the knapsack. The problem is to decide, yes or no, whether
there exists a set S ⊆ I such that ∑

i∈S
wi ≤ c and ∑

i∈S
vi ≥ p; see

Figure 1 for more details. All weights, values, capacities, and
target profits used were integers.

In each session participants completed 72 unique KP tri-
als (see Figure 1). The order of trials, and the locations of
items and response buttons on a given trial, were randomised
for each participant. Each trial had two measures of perfor-
mance: accuracy ({0, 1}) and time on task, operationalised as
the proportion of the maximum available time used ([0,1]).

Instance sampling Instances were sampled based on their
instance complexity (IC), as defined in Franco et al. (2021).
IC measures the amount of computational resources an algo-
rithm requires to solve an instance, where harder instances
require more computational resources to solve. Formally, IC
is the normalised distance between the target profit, p, and
the maximum attainable profit, p∗: IC = | p−p∗

∑vi
|

IC was used to measure computational hardness for three
reasons. First, IC is highly correlated with Typical Case Com-
plexity (TCC), a theoretically grounded, task-independent
measure of computational hardness (Cheeseman et al., 1991)
which has been shown to empirically affect behaviour in
the knapsack task and other computationally hard problems
(Franco et al., 2022). Second, IC is a more precise mea-
sure for the computational hardness of individual instances.
While TCC is defined on average in relation to a random en-
semble of instances, IC is defined precisely for an individual
instance (Franco et al., 2021). Third, IC predicts performance
equally well on satisfiable (solution is yes) and unsatisfiable
(solution is no) instances, unlike more intuitive measures like
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the number of item combinations that satisfy the constraints
or whether choosing the highest value-to-weight ratio items
leads to the correct solution.

The value of IC is inversely proportional to the diffi-
culty of the instance, and we randomly sampled 36 hard
instances, IC ∈ [|0.0268|, |0.0321|], and 36 easy instances,
IC ∈ [|0.0971|, |0.105|]. These parameters were chosen fol-
lowing pilot testing to target an average accuracy of 90% for
easy instances and 70% for hard instances. For both easy
and hard instances, half of the instances were satisfiable (un-
satisfiable). The task was programmed in Unity3d (version
2020.3.28f1) and administered on a desktop computer.

Procedure
Participants completed a stress and a control session on sepa-
rate days, on average 4 days apart, but at the same time of day.
Sessions began either at 1pm or 4pm as natural cortisol levels
are relatively stable in the afternoon (Allen, Kennedy, Cryan,
Dinan, & Clarke, 2014). The location, experimenter, equip-
ment, procedure, and tasks were identical across sessions, ex-
cept for the stress manipulation. In the stress session, partic-
ipants underwent the TSST (Kirschbaum, Pirke, & Hellham-
mer, 1993), considered the gold standard for eliciting acute
stress responses in the laboratory (Bali & Jaggi, 2015). In
the control session, participants underwent the placebo TSST
(Het, Rohleder, Schoofs, Kirschbaum, & Wolf, 2009). Ses-
sion order was counterbalanced across participants and sex.

The timeline of a typical session is detailed in Figure 2
and in total a session lasted up to 150 minutes. To improve
salivary cortisol data reliability, participants were adminis-
tered with 30g of dextrose powder dissolved in 200ml of wa-
ter immediately prior to the rest period (Labuschagne, Grace,
Rendell, Terrett, & Heinrichs, 2019). Once consumed, par-
ticipants were administered with 100ml of plain water. After
the second session, participants were debriefed by the exper-
imenter, including a pre-recorded video where the confeder-
ates in their stress session explained the purpose of the TSST.

Stress manipulation
The TSST procedure was primarily adapted from the canon-
ical version (Kudielka, Wüst, Kirschbaum, & Hellhammer,
2007), as well as from a recent guide (Labuschagne et al.,
2019). The anticipatory, speech, and arithmetic phases each
lasted 5 minutes. The speech topic was “imagine you are ap-
plying for your dream job, persuade the hiring panel to hire
you”. In the placebo TSST, it was “What are your hobbies?”.
The TSST arithmetic task was counting down from 2047 in
steps of 17. In placebo, it was counting from 0 in steps of 15.

Data analysis pipeline
Salivary cortisol Salivary cortisol was analysed by Royal
Melbourne Hospital Pathology using a Roche Cobas instru-
ment and the Cobas e411 analyser (Chiu, Collier, Clark, &
Wynn-Edwards, 2003; Vogeser et al., 2017). Participants
were excluded from analysis if their baseline salivary corti-
sol levels were more than 3 SDs from the mean (Sandner,

Zeier, Lois, & Wessa, 2021). Participants were classed as
cortisol responders if their cortisol level exceeded baseline by
at least 1.5 nmol/L (Miller, Plessow, Kirschbaum, & Stalder,
2013; Vogeser et al., 2017). As the distribution of cortisol val-
ues was highly skewed, a natural log transformation was ap-
plied. Our main stress measure, which has been used in sev-
eral other stress and decision-making studies (Lenow, Con-
stantino, Daw, & Phelps, 2017; Lighthall, Gorlick, Schoeke,
Frank, & Mather, 2013; Otto et al., 2013), was:

logcort∆ = logcort3+logcort4+logcort5
3 − logcort1+logcort2

2 (1)

An exploratory cortisol measure, log predicted cortisol,
was constructed to approximate the cortisol level on a given
trial. To compute this we used cortisol samples 2-5 and re-
gressed cortisol onto time using a loess regression. The pre-
dicted cortisol level at the time a trial began was stored. As
loess regressions cannot extrapolate, for trials after the final
cortisol sample we estimated a linear trend based on the last
3 loess predictions. We then applied a natural log transforma-
tion and z-scored the variable for analysis.

EDA An 8-minute window from both the rest period and
the stress intervention was used to compute skin conductance
level (SCL). The windows were identical for each participant,
namely from T-10 to T-2 minutes, where T is the end of the
period. Analysis was based on Taylor et al. (2015) and the
corresponding code available on GitHub. The raw signal was
passed through a 1Hz, fifth order, low-pass Butterworth fil-
ter. The median SCL for the rest period was treated as a
baseline and subtracted from each point in the intervention
period. The median of the baseline-adjusted intervention was
then z-scored and used as a session-level variable. Upon vi-
sual inspection of the data, 12 participants’ EDA data needed
to be discarded due to recording quality problems.

Other measures Negative affect (NA) scores were square
root transformed to reduce skewness. Mean change from
baseline was then computed and z-scored for analysis.

Main analysis To account for individual differences in cor-
tisol levels and task performance, we used hierarchical mod-
elling with random effects on the intercept for each partic-
ipant. We used three classes of regression models. Linear,
logistic, and beta regressions were used to predict unbounded
continuous variables, binary variables, and bounded continu-
ous variables, respectively. If multiple models were consid-
ered the AIC was used for model selection. The main focus
of the analysis was the full sample and cortisol responders.
The independent variable used to assess stress was log cort ∆.

Behavioural analyses included complexity and satisfiabil-
ity as binary variables, with 0 denoting easy (unsatisfiable)
and 1 hard (satisfiable) instances, respectively. They capture
separate features of the decision environment: computational
hardness (complexity) and whether one must search for a so-
lution or verify the absence of one (satisfiability).

After removing one cortisol outlier, we had 41 participants,
of which 27 were classed as cortisol responders. To estimate
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Figure 2: Timeline of a typical experimental session. Reading from top to bottom, the blue timeline corresponds to the
salivary cortisol samples, orange to the PANAS, pink to SCL, and green to eye-tracking. The stress intervention was either the
TSST (stress session) or placebo TSST (control session). All timings, except where noted, were identical across all participants
and sessions. ˆSelf-paced with a fixed start time. *Self-paced with a fixed end time.

an upper bound on effect sizes, we computed marginal effects
among the 6 participants, the ‘high- stress’ group, with signif-
icant increases in each of log cort ∆, NA, and SCL. EDA pre-
processing was done in Python (version 3.9.12) and statistical
analyses were done in R (version 4.1.2) using RStudio.

Results
Efficacy of acute stress manipulation
To verify that the acute stress manipulation was successful
we performed paired t-tests for each stress measure collected.
As shown in Table 1, all stress measures, but perceived stress,
were higher in the stress condition than the control condition.
This was the case for the full sample and cortisol responders.

To verify that log cort ∆ was representative of a broader
stress response we correlated it with our other stress mea-
sures. For the full sample we found significant correla-
tions with the binary stress condition variable (r = 0.45, p <
0.001), log predicted cortisol (r = 0.89, p < 0.001), and the
area under the cortisol response curve with respect to ground
(r = 0.52, p < 0.001) and increase (r = 0.95, p < 0.001),
respectively (Pruessner, Kirschbaum, Meinlschmid, & Hell-
hammer, 2003). There was no significant correlation with
NA, perceived stress, or SCL. These results were qualitatively
similar among cortisol responders.

To verify that the changes in cortisol persisted through-
out the session, we estimated a linear mixed effects model
regressing cortisol levels onto cortisol sample number, ses-
sion number, session start time, sex, stress condition, and a
stress condition × sample number interaction. Reporting the
effects relevant to the stress condition, among the full sam-
ple we found a significant negative effect for sample num-
ber (β = −0.26,CI95 = [−0.47,−0.04], p = 0.019), a signif-
icant positive effect for a stress condition × sample number
interaction (β = 0.56,CI95 = [0.25,0.86], p < 0.001), and no
main effect for stress condition. Among cortisol responders
we found a significant and positive stress condition× sample

number interaction (β = 0.80,CI95 = [0.41,1.18], p < 0.001),
with the respective main effects not significant. Thus, corti-
sol levels increased over time in the stress session, over and
above any corresponding changes in the control session.

Table 1: Effect of acute stress manipulation.

Mean difference in stress measures (prior to z-scoring) be-
tween conditions for the full sample and cortisol responders.
P-values computed via two-sided paired t-tests, except for
SCL which was unpaired. AUCi and AUCg are the area un-
der the cortisol response curve with respect to increase and
ground, respectively. PA is positive affect. Per. stress is
perceived stress. When comparing across stress conditions,
†p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, NS p > 0.1.

Full Sample Cort. Responders

Measure Stress Control Stress Control

log cort ∆ 0.31∗∗∗ -0.11 0.56∗∗∗ -0.04
Cortisol 6.24∗∗∗ 4.70 6.84∗∗∗ 4.54
AUCi 117.26∗∗∗ -30.40 204.94∗∗∗ -6.48
AUCg 436.13∗∗∗ 311.60 485.95∗∗∗ 301.93
SCL 1.03∗∗∗ 0.85 1.04∗∗∗ 0.85
NA 14.58∗∗∗ 12.98 14.9∗∗∗ 12.9
PA 21.61∗ 23.07 19.9∗∗ 21.9
Per. stress 2.60NS 2.55 2.68† 2.47

Effect of acute stress on behaviour
41 participants completed all 144 trials, with one completing
143. Averaged across sessions, mean accuracy was 78.3%
(SD = 8.2%) for all trials, 88.1% (SD = 9.2%) for easy trials,
and 68.5% for hard trials (SD = 10.5%). Mean time on task
was 31.3 seconds (SD = 5.3) for all trials, 29.7 seconds (SD =
5.5) for easy trials, and 33 seconds (SD = 5.4) for hard trials.
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Effect of acute stress on accuracy in the KP To test the ef-
fect of acute stress on accuracy we estimated a logistic mixed
effects model regressing accuracy onto log cort ∆, complex-
ity, a log cort ∆ × complexity interaction, satisfiability, sex,
trial number, and session number (AIC: 5,743.3). Time on
task was omitted due to confounds with the complexity and
stress measures. There was no significant effect for the in-
teraction term or trial number and the AIC improved when
these variables were removed (AIC: 5,740.6). For the full
sample, we found a significant negative effect of complex-
ity (β = −1.26,CI95 = [−1.40,−1.12], p < 0.001). The ef-
fect of log cort ∆ was not significant (β = −0.08,CI95 =
[−0.16,0.01], p = 0.069). We also found significant positive
effects for sex (males were coded as 1s) (β = 0.40,CI95 =
[0.12,0.68], p = 0.004) and session number (the second ses-
sion was coded as 1s) (β = 0.21,CI95 = [0.08,0.34], p =
0.002). There was no significant effect for satisfiability.

Among cortisol responders, there was no effect of sex
(AIC: 3,644.7), and the AIC improved when this was omit-
ted from the model (AIC: 3,644.4). We observed a signif-
icant positive effect for session number (β = 0.20,CI95 =
[0.03,0.36], p = 0.019) and negative effects for complexity
(β = −1.37,CI95 = [−1.55,−1.20], p < 0.001), log cort ∆

(β = −0.13,CI95 = [−0.23,−0.03], p = 0.008), and satisfi-
ability (β = −0.31,CI95 = [−0.47,−0.15], p < 0.001). This
implies a marginal effect whereby a one standard deviation
increase in log cort ∆ is associated with a 1.7 percentage
point reduction in accuracy (see Figure 3). To estimate an
upper bound on this effect size, we estimated a correspond-
ing regression for the high-stress group. Log cort ∆ was
not significant for this group. Replacing log cort ∆ with
the binary stress variable yielded a significant negative effect
(β = −0.47,CI95 = [−0.81,−0.13], p = 0.008). This trans-
lates into a marginal effect of a 7.2 percentage point reduction
in accuracy under stress.

Effect of acute stress on time on task in the KP To ex-
amine the effect of acute stress on time on task we esti-
mated a mixed-effects beta regression, regressing time on
task onto log cort ∆, complexity, a log cort ∆ × complex-
ity interaction, satisfiability, sex, trial number, and session
number (AIC: -29,499.5). There was no significant effect
of the interaction term or sex and the AIC improved when
these variables were removed (AIC: -29,503.4). For the full
sample, we found a significant positive effect of complex-
ity (β = 0.43,CI95 = [0.37,0.49], p < 0.001) and log cort ∆

(β = 0.08,CI95 = [0.04,0.12], p < 0.001). We found sig-
nificant negative effects of satisfiability (β = −0.28,CI95 =
[−0.33,−0.22], p< 0.001), trial number (β=−0.008,CI95 =
[−0.009,−0.006], p < 0.001), and session number (β =
−0.14,CI95 = [−0.19,−0.08], p < 0.001).

The same model fit best among cortisol responders, where
we observed significant and positive effects of complex-
ity (β = 0.47,CI95 = [0.40,0.54], p < 0.001) and log cort
∆ (β = 0.07,CI95 = [0.03,0.11], p = 0.001), while signifi-
cant and negative effects of satisfiability (β = −0.29,CI95 =

70%

80%

90%

−1 0 1 2 3
Log cort 

M
ea

n 
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Figure 3: Marginal effect of acute stress on accuracy.
Change in mean accuracy conditional on the mixed-effects
logistic regression for cortisol responders, plotted as a func-
tion of log cort ∆. The regression line is computed from the
group-level intercept and log cort ∆ fixed effects. Shaded area
shows the 95% confidence interval.

[−0.36,−0.22], p< 0.001), trial number (β=−0.008,CI95 =
[−0.010,−0.006], p < 0.001), and session number (β =
−0.19,CI95 = [−0.26,−0.12], p < 0.001). The effect size
implies a marginal effect of a 0.8 percentage point increase
in time on task (equivalent to 0.3 seconds) for a one standard
deviation increase in log cort ∆. To estimate an upper bound
on this effect size we estimated a corresponding regression
for the high-stress group. Log cort ∆ yielded a significant
positive effect (β= 0.24,CI95 = [0.11,0.36], p< 0.001). This
translates into a marginal effect of a 2.6 percentage point (or
1.1 second) increase in time on task for a one standard devia-
tion increase in log cort ∆.

Exploratory results Post-hoc we repeated our earlier anal-
ysis and replaced log cort ∆ with our trial-level measure,
log predicted cortisol. The estimated models were other-
wise identical to the main analysis. Among cortisol re-
sponders, there was a significant negative main effect (β =
−0.26,CI95 = [−0.44,−0.07], p < 0.006) and no interaction
effect with complexity. There was no significant main or in-
teraction effect of log predicted cortisol on accuracy for the
full sample, or on time on task for either sample.

Discussion
Our central finding is that, in response to an acute psychoso-
cial stressor, higher levels of cortisol impaired performance
on the KP, independent of the level of computational hard-
ness. While others have argued that acute stress has an in-
creasingly impairing effect on performance as the complex-
ity of the task increases (Arnsten, 2009; Plieger & Reuter,
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2020; Sandi, 2013), these arguments have been limited in
three ways. Firstly, these studies tend to have a narrow focus
on cognitive tasks that isolate specific executive functions.
Secondly, these studies lack a formal framework with which
to measure within-task task complexity in a task-independent
manner. Thirdly, there is mixed evidence for the effects of
stress among the tasks considered (Lai, Yeh, Lin, Hsu, &
Wu, 2017; Long & Mo, 1971). Here, we offer the first evi-
dence that acute stress impairs the quality of human decision-
making at both low and high levels of computational hard-
ness. We believe that our study helps to bridge the gap be-
tween basic EF tasks and real-world decisions.

Decision-making research across different disciplines has
increasingly used a framework of ‘cognitive resources’ to de-
scribe the cognitive demands on decision-makers (Lieder &
Griffiths, 2020; Shenhav et al., 2017). In this framework,
constructs like energy, memory, and attention are cast as re-
sources that are deployed in order to solve a problem or make
a decision, with good decisions coming when the available
cognitive resources meet or exceed those required by the task
at hand. Along similar lines, the lens of a decision-maker
engaging in information processing and/or computation has
become widely adopted in cognitive science (Piccinini &
Scarantino, 2010; Richards & Lillicrap, 2022). To the ex-
tent that stress can be considered a tax on cognitive resources
(Vecchio, 1990), research on stress and computational prob-
lems such as the KP provide a promising avenue to test for a
relationship between cognitive resources on the one hand and
the computational resource requirements of the task environ-
ment on the other.

Our ability to use precise, theory-driven, and generalisable
metrics of complexity at the trial level left us uniquely placed
to test for an interaction effect between acute stress and com-
plexity on performance. Surprisingly, we found no evidence
for such an interaction. While we cannot rule out that a more
precise measure of complexity would have captured an inter-
action effect, it would be surprising if IC could near perfectly
capture the expected effect of complexity, but not the dimen-
sion of complexity relevant to acute stress. As we observed
modest cortisol-related effect sizes, one possible explanation
is a lack of statistical power. We also find no evidence for
an inverse-U shaped relationship between cortisol and per-
formance. Our data does not support the proposition that
the acute stress response’s increase of arousal levels trades
off benefits from enhanced attention with costs to reasoning
abilities, with an optimal level of arousal maximising perfor-
mance (Plieger & Reuter, 2020; Yerkes & Dodson, 1908). In-
deed, time on task results suggest that differences in effort and
cognitive control may not explain the observed differences in
behaviour, leaving open the mechanism by which acute stress
affected decision-making performance in our experiment.

To our knowledge, we are the first to show that acute stress
affects performance on a nondeterministic polynomial time
complete (NP-complete) decision-making task. For our pur-
poses, NP-complete problems have four key features: they

are ubiquitous, they are computationally hard at the prob-
lem level but computational hardness varies considerably at
the individual instance level, and NP-complete problems are
mathematically related to each other, which suggests that
findings in relation to one such problem are likely to gen-
eralise to all other NP-complete problems (Arora & Barak,
2009). Indeed, empirically, measures such as instance com-
plexity, whilst first tested on humans in the KP, have been
found to generalise to a diverse set of NP-complete prob-
lems requiring skills as varied as spatial navigation or propo-
sitional logic to solve (Franco et al., 2022). Examples of real-
world NP-complete settings include scheduling, budgeting,
route planning, and event planning. Thus, the implications
of understanding how stress affects such complex cognitive
processes are vast, with potential applications including im-
proved design of work environments, educational programs,
and therapeutic interventions.

Our study has several limitations. Data quality issues with
the EDA data limited our effective sample size for EDA anal-
yses. Our sample primarily consisted of undergraduate col-
lege students and, while our non-stress related results were
consistent with other studies using the KP (Murawski &
Bossaerts, 2016), we cannot be sure that the effects of acute
stress observed here will generalise to other populations.

Future work could test the generality of our findings with
extensions employing a between-subjects design, more re-
fined computational complexity measures, a more diverse
participant pool, and other computationally hard tasks such
as the Travelling Salesperson Problem. More broadly, the
framework employed here could be applied to other set-
tings which may affect the cognitive resources available to
a decision-maker, such as chronic stress, mental illness, and
ageing. Finally, our results suggest that log predicted cortisol
may be a promising trial-level measure for stress, suitable for
experimental designs with more frequent cortisol sampling.

In conclusion, our study looked at the intersection of two
crucial areas of decision-making research. Firstly, acute
stress is known to be highly prevalent in our everyday
lives and to significantly affect performance on a variety
of decision-making tasks; however, the direction and size
of these effects depends upon numerous moderating factors.
Secondly, many decisions we have to make, including many
important decisions, are computationally hard and often have
enormous impacts on our well-being in areas such as finance
and health. It is thus critical to understand how acute stress
affects decision-making not only in easy cognitive tasks but
also in computationally hard decisions. Our study addressed
these gaps, providing empirical evidence that higher cortisol
levels impaired decision performance in the KP, but that there
was no interaction effect between acute stress and task com-
plexity. While there is much work to be done to understand
the generality of this result and the cognitive processes un-
derpinning it, our study provides a first step towards a better
understanding of how stress affects complex decisions.
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