UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Plasticity, gender, and the environment during numerical and spatial development

Permalink

https://escholarship.org/uc/item/6dk0j65f

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Laws, Marissa Cantlon, Jessica

Publication Date

2024

Peer reviewed

Plasticity, gender, and the environment during numerical and spatial development

Marissa Laws

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

Jessica Cantlon

Carnegie Mellon, Pittsburgh, Pennsylvania, United States

Abstract

Cognitive scientists continue to debate gender/sex differences and similarities in basic problem-solving, including numerical and spatial cognition. While gender group differences may exist in these cognitive skills adulthood, it is unclear whether differences are fixed (early-developing, permanent) or plastic (late-developing, malleable). If fixed, they would relate more to gender categories; if plastic, they would relate more to gender socialization and spatial learning environment. To disentangle these hypotheses, we measured brain activity with fMRI in 51 children (4-8y; 20 boys / 31 girls) during numerical (vs. face) and geometric (vs. word) processing tasks. Activity occurred in bilateral superior and inferior parietal cortex during numerical and geometric processing, but activity within these regions was unrelated to gender category, gender socialization, or spatial learning environment. Bayesian analyses also revealed widespread gender similarities in numerical and geometric processing. These findings challenge the hypothesis of early, fixed gender differences in numerical and spatial development.