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Machine Learning Predicts Biogeochemistry from Microbial
Community Structure in a Complex Model System

Avishek Dutta,a Thomas Goldman,b Jeffrey Keating,b Ellen Burke,b Nicole Williamson,b Reinhard Dirmeier,b Jeff S. Bowmana,c

aIntegrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA
bBP Biosciences Center, San Diego, California, USA
cCenter for Microbiome Innovation, UC San Diego, La Jolla, California, USA

ABSTRACT Microbial community structure is influenced by the environment and in
turn exerts control on many environmental parameters. We applied this concept in a
bioreactor study to test whether microbial community structure contains information
sufficient to predict the concentration of H2S as the product of sulfate reduction.
Microbial sulfate reduction is a major source of H2S in many industrial and environ-
mental systems and is often influenced by the existing physicochemical conditions.
Production of H2S in industrial systems leads to occupational hazards and adversely
affects the quality of products. A long-term (148 days) experiment was conducted in
upflow bioreactors to mimic sulfidogenesis, followed by inhibition with nitrate salts
and a resumption of H2S generation when inhibition was released. We determined
microbial community structure in 731 samples across 20 bioreactors using 16S rRNA
gene sequencing and applied a random forest algorithm to successfully predict dif-
ferent phases of sulfidogenesis and mitigation (accuracy = 93.17%) and sessile and
effluent microbial communities (accuracy = 100%). Similarly derived regression mod-
els that also included cell abundances were able to predict H2S concentration with
remarkably high fidelity (R2 . 0.82). Metabolic profiles based on microbial community
structure were also found to be reliable predictors for H2S concentration (R2 = 0.78).
These results suggest that microbial community structure contains information suffi-
cient to predict sulfidogenesis in a closed system, with anticipated applications to
microbially driven processes in open environments.

IMPORTANCE Microbial communities control many biogeochemical processes. Many of
these processes are impractical or expensive to measure directly. Because the taxo-
nomic structure of the microbial community is indicative of its function, it encodes in-
formation that can be used to predict biogeochemistry. Here, we demonstrate how a
machine learning technique can be used to predict sulfidogenesis, a key biogeochemi-
cal process in a model system. A distinction of this research was the ability to predict
H2S production in a bioreactor from the effluent bacterial community structure with-
out direct observations of the sessile community or other environmental conditions.
This study establishes the ability to use machine learning approaches in predicting sul-
fide concentrations in a closed system, which can be further developed as a valuable
tool for predicting biogeochemical processes in open environments. As machine learn-
ing algorithms continue to improve, we anticipate increased applications of microbial
community structure to predict key environmental and industrial processes.

KEYWORDS biogeochemical state, machine learning, random forest, sulfidogenesis
potential, microbial community analysis

Microorganisms are important contributors to biogeochemical cycles and also play
an important role in determining elemental fluxes in a system. Environmental con-

ditions, substrate, and nutrient availability are often the key players in determining the
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microbial community structure and function, which in turn control the biogeochemical
transformations and fluxes in a system. These transformations can be either beneficial or
detrimental to specific members of the microbial community, leading to a shift in com-
munity composition. The bilateral link between biogeochemistry and microbial commu-
nity composition suggests that either state should inform the other, e.g., that a specific
microbial community suggests a particular biogeochemical state (1).

The sulfur cycle is one of the most complex microbially mediated biogeochemical
cycles because sulfur has a broad range of oxidation states from 22 (completely
reduced) to 16 (completely oxidized) and can undergo both biotic and abiotic trans-
formation (2). Often, these sulfur transformations are coupled to the carbon and nitro-
gen cycle. This makes carbon and nitrogen compounds important determinants of sul-
fur transformations in a system. One such process is dissimilatory sulfate reduction by
sulfate-reducing bacteria (SRB); SRB use sulfate as a terminal electron acceptor for the
degradation of organic compounds resulting in the production of H2S (2). H2S produc-
tion adversely affects different industrial processes and can pose health and safety con-
cerns (3–5). This makes it imperative to understand the sulfidogenesis potential of a
system to pursue proper mitigations.

Interestingly, the introduction of nitrate in the system inhibits the production of sul-
fidogenesis and is often used in oil recovery and wastewater treatment processes to
suppress sulfidogenesis (3, 4, 6–10). The addition of nitrate salts stimulates the growth
of nitrate-reducing bacteria (NRBs) (3, 11). The heterotrophic NRBs outcompete SRBs
by drawing down the pool of volatile fatty acids and other electron donors, while che-
molithotrophic nitrate-reducing sulfur-oxidizing bacteria (NR-SOBs) have the additional
benefit of reducing the H2S concentration (3, 11, 12). This study evaluates a machine
learning (ML)-based method to predict biogeochemical state and H2S concentrations
of a complex system from microbial community structure, where interplay among dif-
ferent sulfur, carbon, and nitrogen compounds creates a dynamic system.

Considering the broad applications of ML techniques in other fields, relatively few
studies have applied ML techniques to problems in microbial ecology. Changes in envi-
ronmental conditions shape the microbial community in a unique manner that affects
the emergent geochemical properties of the system. These properties are represented
not only by a specific functional guild (e.g., the SRBs) but also by other populations of
microbes that are directly or indirectly influenced by changing conditions. Hence, the
microbial community in aggregate can be considered a meta-indicator of conditions in
an ecosystem. One recent study demonstrated the application of machine learning
models in classifying healthy and Fusarium wilt-diseased soils based on microbial com-
munity data (13). Another study demonstrated the use of a deep learning approach in
predicting microbial interactions from self-organized spatiotemporal patterns (14).
Though several studies have applied ML-based approaches in the field of microbiology
(15), the application of ML for predicting microbial community function is limited.
Bowman et al. (16) used self-organizing maps to predict bacterial production based on
bacterial community structure along the western Antarctic Peninsula. Thompson et al.
(17) used neural networks and random forest (RF) approaches to predict dissolved or-
ganic carbon based on soil microbiome in a plant litter decomposition experiment.
These studies indicate that ML approaches can be used as a tool for understanding
high-dimensional microbial data sets. Among different ML algorithms, the RF model
has been proven to be one of the most efficient ML approaches with high classification
accuracy for exploring various 16S rRNA data sets to predict habitats, hosts, health sta-
tus, and community functions (13, 17, 18). Moreover, the nonparametric nature of RF
models and their ability to assess the contributions of specific features (19) make them
suitable for many problems in microbial ecology.

Here, we applied RF to predict microbial community state and a key geochemical
parameter (H2S concentration) in a lab-scale microcosm experiment representing a
complex natural system. Forty-nine distinct RF models were constructed from random
subsamples of 731 observations from a 148-day-long ex situ experiment, which
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mimicked different phases of sulfidogenesis and mitigation. We explored the robust-
ness of RF models in predicting sulfidogenesis and mitigation phases, the sulfidogene-
sis potential of a microbial community, and microbial community source (sessile or
planktonic) by using different sets of microbial taxa as independent variables. We
anticipate that this approach can be generalized to predict many biogeochemical proc-
esses in different systems, even if the observed microbial community is only indirectly
related to the process. Because a microbial assemblage typically consists of many thou-
sands of members, it is sensitive to or causative of many environmental parameters.
This sensitivity allows it to serve as a hypersensitive indicator of environmental change.
Given adequate training data, we anticipate that many different environmental param-
eters can be predicted from community structure data in a given microbial system.

RESULTS
Shift in microbial community structure across different phases of sulfidogenesis

andmitigation. Twenty upflow bioreactors were used to understand the shift in micro-
bial diversity across sulfidogenesis and mitigation phases. Out of 20 bioreactors, nitrate
salts were added in 10 columns (referred to as treated columns) to suppress sulfido-
genesis, whereas the other 10 were used as controls where no nitrate salts were added
(referred to as nontreated columns). Three main phases were observed in the treated
columns, viz, sulfidogenic, mitigation, and rebound sulfidogenesis (referred to as
rebound in the manuscript). The mitigation phase was achieved when nitrate salts
were added to the system to suppress sulfidogenesis, whereas the rebound phase was
achieved when nitrate treatment was stopped (Fig. 1). Generalized additive models
(GAMs) based on average H2S concentration across different time points in the treated
columns indicated a decrease in average H2S concentration when nitrate salts were
added and an increase in average H2S concentration when nitrate treatment was
stopped. Comparison of GAMs based on average H2S concentrations in treated and
nontreated columns indicated that nitrate treatment led to suppression of sulfidogene-
sis. A transition to the mitigation phase (referred to as transition in this study) between
sulfidogenesis and mitigation was determined where the H2S concentration was
.1 mM even after the nitrate treatment. Average cell abundances also shifted across
different phases (Fig. 2). GAMs based on average cell abundances across treated

FIG 1 Shift in average sulfide concentration across different phases in treated and nontreated columns. Shaded regions for generalized additive models
(GAM) indicate 62 standard error, whereas shaded regions for average plot indicate standard deviation.
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columns suggested an increase in cell abundance during nitrate addition, followed by
a decrease in cell abundance when nitrate treatment was stopped.

We applied principal coordinates analysis (PCoA) to see if the experimental results
met our initial assumption that mitigation induces dynamic shifts in microbial commu-
nity structure. PCoA showed that the microbial community shifted across different
phases (Fig. 3), with distinct clusters observed for sulfidogenesis and mitigation phases.
Samples from the sulfidogenic phase on the PCoA plot were found to be widely dis-
tributed. The samples from the transition phase clustered with the samples from the
sulfidogenic phase, whereas the rebound phase samples grouped closer to the mitiga-
tion phase samples, which indicates that microbial community shifts are gradual and
not instantaneous in this system. The PCoA plots also indicated that sessile and efflu-
ent microbial populations were similar for a particular phase.

Microbial community composition as a determinant of phases and a predictor
for H2S concentration. An approach based on the RF algorithm was developed to pre-
dict sulfidogenesis potential in upflow bioreactors based on microbial community
structure across different phases of sulfidogenesis and mitigation (Fig. 4). Briefly, the
bioreactors were sampled at different time points to yield 674 effluent samples (see
Table S1 in the supplemental material). Microbial community structure was described
from 16S rRNA gene sequencing using phylogenetic placement with the paprica pipe-
line. The relative abundances of unique bacterial sequences across different samples
were used as independent variables, whereas phases and H2S concentration measured
during the sample collection time points were used as dependent variables for predic-
tion with RF models. To further enhance and compare the RF models, cell abundances
of different microbial taxa determined by flow cytometry were used as independent
variables. To generalize and increase the applicability of the models, predicted meta-
bolic structure (in the form of pathway abundances) for each sample as inferred from
paprica based on microbial community structure was also used as an independent
variable.

Classification-based RF models were used for the prediction of phases, whereas
regression-based RF models were used for the prediction of H2S concentration. For
classification-based models predicting phases, we used 674 observations of relative
abundance of unique bacterial sequences and predicted metabolic pathways (termed
relative abundance models), whereas 535 observations were used for the absolute

FIG 2 Shift in average cell abundances across different phases in treated and nontreated columns. Shaded regions for generalized additive models (GAM)
indicate 62 standard error.
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models based on relative abundance multiplied by cell count (termed absolute abun-
dance models) (Table 1). For regression-based models, the data set was filtered based
on H2S data availability, outliers, and other inconsistencies. A total of 593 observations
were used for relative abundance data sets (both unique and pathway abundances),

FIG 3 Principal coordinates analysis (PCoA) of Bray-Curtis dissimilatory based on the relative abundance of all unique sequences. (A) PCoA plot showing
samples from all the phases. (B) Facet plots of the same PCoA emphasizing sessile and effluent communities across different phases in treated and
nontreated columns.
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whereas 475 observations were used for the absolute abundance data set for predict-
ing H2S concentrations using regression-based models. Since out-of-bag (OOB) error
(for classification models) and percentage variance explained (for regression models)
statistics provided in RF show the goodness of model fit, but not necessarily predictive
performance (20, 21), 30% of the observations in all the regression and classification
models were randomly withheld (the validation data set) and were used to perform
more precise model validation. We refer to the remaining 70% of the observations as
the training data set. For regression models, the variations in H2S concentrations in the
validation data set and the training data set were kept similar to minimize the chance
of underfitting the model.

FIG 4 Overall pipeline for random forest prediction of H2S production. The green arrows depict treated
columns, whereas the yellow arrows depict nontreated columns in the experimental setup. (A) Sample
collection and DNA extraction from effluent samples from different phases. (B) High-throughput 16S rRNA gene
sequencing followed by paprica analysis. (C) Preparing data set for random forest modeling. (D) Classification
and regression-based random forest modeling depending on the dependent variables. (E) Integrating cell
count data to calculate the absolute abundance of unique sequences and using them as independent variables
for predicting phases and H2S concentration. (F) Evaluating the predictive performance of the data using linear
models (for regression models) and confusion matrix (for classification).
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Since H2S concentration varied across phases, it was essential to understand the
accuracies of the RF models in predicting phases from the microbial community data
set before the models were used for the prediction of H2S concentration. RF models for
predicting phases were highly accurate (Table 1). OOB estimate of error for all the
phase-predicting models (CM1, CM2, CM3) was lower than 10%. A confusion matrix
was further used to assess the accuracies of the RF models in predicting phases based
on training and validation data set (Table S2 to S4). All the classification models had
100% accuracy in predicting the phases from the training data set. Accuracies for pre-
dicting phases from the validation data set for all the phase prediction models were
similar (93.17%, 92.11%, and 92.2% for CM 1, CM 2, and CM 3, respectively). It was inter-
esting to note that the pathway-based model (CM 3) performed equally well compared
to the relative (CM 1) and absolute (CM 2) abundance models, even when CM 3 had a
number of independent variables notably lower than that of CM 1 and CM 2. The OOB
estimate of error for CM 3 was also found to be the lowest among the three phase-pre-
dicting models (Table 1). For these three phase-predicting models, all the phases
except for the transition phase were predicted with high accuracy (Table S2, S3, and
S4). Most of the transition phase observations were predicted as sulfidogenesis phase
by these three phase-predicting models.

Five models were built to assess the applicability of RF in predicting H2S concentra-
tion (Table 2, Fig. 5). Though goodness of fit and predictive performance varied among
the different models, all the models predicted H2S concentration with high accuracy.
The percentage variance explained (which can also be considered pseudo-R2) was
lower for RM 1 (relative abundance model) than for RM 2 (absolute abundance model).
Linear regression of actual and predicted H2S was used to determine the accuracies
(from R2) and the predictive performance of the models (Fig. 5). Both RM 1 and RM 2
had high accuracies in predicting H2S concentration from the validation data set (R2 =
0.8378 for RM 1 and R2 = 0.8273 for RM 2). For comparison, a subset of the RM 1 data

TABLE 1 Details of classification-based random forest models showing accuracies for training and validationa

Random
forest model Data used

No. of
observations Prediction NIV No. of trees mtry OOB

Accuracy
training

Accuracy
validation

CM 1 Relative abundance of
unique sequences

674 Phases 12,713 300 112 8.96% 1 0.9317

CM 2 Absolute abundance
of unique
sequences

535 Phases 10,887 300 104 9.92% 1 0.9211

CM 3 Relative abundance of
pathways

674 Phases 809 300 28 8.74% 1 0.922

CM 4 Relative abundance of
unique sequences

114 Sessile-effluent 5,300 300 72 0.00% 1 1

aNIV, number independent variables; OOB, out-of-bag estimate of error rate.

TABLE 2 Details of regression-based random forest models for predicting sulfide concentrationsa

Random
forest
models Data used

No. of
observations

No. of
trees mtry NIV MSR PVE

R2

training
RSE
training

R2

validation
RSE
validation

RM 1 Relative abundance of
unique sequences

593 300 3,879 11,637 0.5737 79.11 0.9736 0.27 0.8378 0.715

RM 2 Absolute abundance of
unique sequences

475 300 3,352 10,058 0.3766 80.99 0.9763 0.2174 0.8273 0.6124

RM 3 Relative abundance of
unique sequences

475 300 3,352 10,058 0.3666 81.49 0.9768 0.2152 0.8258 0.615

RM 4 Relative abundance of
pathways

593 300 266 799 0.6768 75.36 0.9706 0.2847 0.7692 0.853

RM 5 Relative abundance of
pathways (VSURF)

593 300 11 33 0.5813 78.83 0.9716 0.2799 0.7776 0.8372

aNIV, number of independent variables; MSR, mean of squared residuals; PVE, percentage variance explained; RSE, residual standard error.
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set was taken to match the absolute abundance data set of RM 2 in terms of observa-
tions. This subset was used for model RM 3, and it was found that the predictive per-
formance of RM 2 (R2 = 0.8273) was marginally better than that of RM 3 (R2 = 0.8258).

Assessment of feature contribution to the RF models was explored to understand
the taxa that best predict the H2S concentration in this system. RM 1 was found to
have the best predictive performance (R2 = 0.8378 for the validation data set) and was
explored further to understand the most deterministic taxa. The 10 most deterministic
taxa (based on unique sequence taxonomy) were selected based on the percentage

FIG 5 H2S concentration prediction with random forest regression models. (A) Scatterplot of predicted versus actual H2S concentration from validation set
(n = 174) of RM 1 (based on relative percentage abundance of bacterial unique sequence). (B) Scatterplot of predicted versus actual H2S concentration from
validation set (n = 135) of RM 2 (based on the absolute abundance of bacterial unique sequence). (C) Scatterplot of predicted versus actual H2S concentration
from validation set (n = 135) of RM 3 (based on relative percentage abundance of bacterial unique sequence). (D) Scatterplot of predicted versus actual H2S
concentration from validation set (n = 174) of RM 4 (based on relative percentage abundance of pathways). (E) Scatterplot of predicted versus actual H2S
concentration from validation set (n = 174) of RM 5 (based on relative percentage abundance of feature-selected pathways).
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increase in mean squared error (Table 3). Canonical Analysis of Principal coordinates
(CAP) was done to determine the differential presence of the 10 most deterministic
taxa across different phases (Fig. 6). CAP constraining the top 10 taxa displayed distinct
clusters for samples from mitigation and sulfidogenic phases. The samples from the
sulfidogenic phase were more widely distributed than the mitigation phase samples.
The taxonomic affiliations of the unique sequences as determined by paprica were
confirmed using the RDP classification of paprica edges (ROPE) pipeline (https://github
.com/avishekdutta14/ROPE) and used for CAP analyses. ROPE uses the RDP classifier
(22) trained with RDP 16S rRNA training set for taxonomic affiliation of the unique
sequences obtained from paprica. Four (Denitrovibrio, Cohaesibacter, Halarcobacter,
and Maritalea) of the top 10 taxa were relatively more abundant in the mitigation
phase samples, whereas 5 (Phaeobacter, Amylibacter, Formosa, Shimia, and Candidatus
Parcubacteria genera incertae sedis) of the top 10 taxa were relatively more abundant
in the sulfidogenic phase samples. Though the majority of the top 10 taxa were found
to be higher in the sulfidogenic phase, it was interesting to note that out of the top 5

TABLE 3 Top 10 important taxa (based on unique sequence taxonomy) critical for the
prediction of H2S concentrationa

CCG/CEG ROPE taxonomy %IncMSE
Denitrovibrio acetiphilus DSM 12809 Denitrovibrio_genus_0.99 15.87
Phaeobacter inhibens Phaeobacter_genus_0.97 15.58
Hartmannibacter diazotrophicus Cohaesibacter_genus_1.0 14.64
Campylobacteraceae Halarcobacter_genus_0.58 13.36
Maritalea myrionectae Maritalea_genus_0.9 10.35
Octadecabacter Amylibacter_genus_0.97 9.80
Formosa sp. Hel3_A1_48 Formosa_genus_0.93 9.12
Tateyamaria omphalii Shimia_genus_0.73 9.11
Not detected Parcubacteria_genera_incertae_

sedis_genus_0.51
7.27

Euzebyella marina Neptunitalea_genus_0.22 6.82
aCCG, closest completed genome; CEG, closest estimated genome; %IncMSE, percent increase in mean squared
error; ROPE-based taxonomic affiliation is in the following format, taxon name_taxonomic rank_confidence of
taxonomic affiliation.

FIG 6 Canonical Analysis of Principal coordinates (CAP) of Bray-Curtis dissimilarity based on the relative abundance of unique
sequences across all the effluent samples and constraining the 10 most important taxa, which are determinants for H2S
concentration. I, Denitrovibrio, II, Phaeobacter, III, Cohaesibacter, IV, Halarcobacter, V, Maritalea, VI, Amylibacter, VII, Formosa, VIII,
Shimia, IX, Parcubacteria_genera_incertae_sedis, X, Neptunitalea. Detailed taxonomic affiliations are mentioned in Table 3.
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most deterministic taxa, 4 of the taxa were found to be higher in the mitigation phase,
whereas only 1 taxon was found to be higher in the sulfidogenic phase.

Relative percentage abundances of pathways were also used as independent vari-
ables (RM 4) in H2S-predicting RF models to improve the generalizability. A large
reduction in the number of independent variables (from 11,637 unique sequences to
799 predicted pathways) was observed in the pathway-based model (RM 4) com-
pared to that in relative (RM 1) and absolute (RM 2) abundance-based models. The
prediction accuracy of RM 4 (R2 = 0.7692 for validation data set) was found to be
lower than that of RM 1 and RM 2. To further improve the pathway-based model and
to achieve a parsimonious model, feature selection was conducted using the VSURF
package (23). Feature selection from the pathway data set not only reduced the num-
ber of independent variables from 799 (RM 4) to 33 (RM 5) but also increased the per-
centage variance explained (PVE) and prediction accuracy and at the same time
decreased the mean of squared residual (MSR) of the pathway-based model
(Table 2).

Cross-validation for determining the robustness of random forest models for
predicting H2S concentrations. The robustness of the RF models and their generaliz-
ability to a pseudoindependent data set were tested with a cross-validation approach.
In this approach, samples from a particular column were used as a validation set,
whereas the observations from the remaining 19 columns were used as a training set.
Since the microbial communities experienced different dynamics in different columns,
this analysis was made to analyze RF model robustness and to predict the shift in H2S
concentration of a particular column which was excluded from the training data.
Twenty different RF models were constructed and evaluated based on the relative
abundance of unique sequences (Table 4, Fig. S1). Percent variance explained was high
for all 20 models (mean = 82.143, standard deviation [SD] = 0.828). Assessment of pre-
dictive performance from the validation data set yielded variable results. R2 values
were high for the columns where nitrate treatment was applied (mean R2 = 0.843,
SD = 0.089), whereas R2 values were much lower for the control columns where nitrate
treatment was not applied (mean R2 = 0.452, SD = 0.184). Percent residual standard
error (RSE %) was calculated based on the average H2S concentration in each column
to compare all 20 models. RSE % for the treated columns (mean RSE % = 34.732,

TABLE 4 Details of cross-validation models for predicting sulfide concentrations based on relative abundance of unique sequencesa

Random
forest model

Validation set
(column no.) NIVT NOST NOV mtry MSR PVE

R2

training
RSE
training

R2

validation
RSE
validation

ASC of
VS RSE%

CV 1 1 11,127 553 40 3,709 0.499 81.9 0.976 0.256 0.800 0.787 1.675 46.967
CV 2 2 11,224 554 39 3,741 0.520 82.59 0.978 0.256 0.529 0.600 3.254 18.441
CV 3 3 11,060 562 31 3,686 0.534 80.29 0.976 0.257 0.962 0.386 1.460 26.451
CV 4 4 11,297 572 21 3,765 0.511 81.95 0.977 0.253 0.930 0.517 2.376 21.758
CV 5 5 11,249 572 21 3,749 0.505 82.59 0.977 0.257 0.601 0.739 3.410 21.680
CV 6 6 11,332 574 19 3,777 0.490 82.68 0.978 0.252 0.683 1.137 2.406 47.251
CV 7 7 11,315 576 17 3,771 0.506 82.42 0.977 0.257 0.650 0.742 3.648 20.344
CV 8 8 11,394 575 18 3,798 0.530 81.68 0.976 0.264 0.703 0.532 3.665 14.513
CV 9 9 11,300 576 17 3,766 0.504 82.44 0.978 0.253 0.142 1.087 3.800 28.605
CV 10 10 11,191 574 19 3,730 0.506 81.9 0.977 0.253 0.861 0.852 3.078 27.670
CV 11 11 11,162 561 32 3,720 0.509 82.83 0.978 0.256 0.305 0.739 3.223 22.925
CV 12 12 11,050 553 40 3,683 0.513 82.68 0.978 0.254 0.531 0.773 3.196 24.174
CV 13 13 11,190 561 32 3,730 0.522 81.22 0.977 0.254 0.852 0.799 2.367 33.745
CV 14 14 11,269 573 20 3,756 0.482 82.84 0.978 0.251 0.810 0.945 2.543 37.180
CV 15 15 10,971 555 38 3,657 0.533 80.91 0.975 0.263 0.938 0.445 1.900 23.398
CV 16 16 11,204 553 40 3,734 0.520 82.29 0.978 0.258 0.316 0.701 3.770 18.593
CV 17 17 11,356 561 32 3,785 0.483 83.28 0.978 0.250 0.471 0.844 3.737 22.589
CV 18 18 10,979 556 37 3,659 0.529 81.23 0.976 0.263 0.738 0.801 1.723 46.494
CV 19 19 11,061 553 40 3,687 0.505 81.51 0.977 0.251 0.858 0.797 2.190 36.406
CV 20 20 11,115 553 40 3,705 0.487 83.63 0.979 0.252 0.270 0.877 3.232 27.124
aTraining set for all 20 random forest models is the rest of the 19 columns. NOST, number of samples in training set; NIVT, number of independent variables in training set;
NOV, number of observations in validation set; MSR, mean of squared residuals; PVE, percentage variance explained; RSE, residual standard error; ASC, average sulfide
concentration; VS, validation set.
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SD = 9.831) were significantly higher (t = 3.796, P = 0.002) than those for the non-
treated columns (mean RSE % = 21.899, SD = 4.202).

To determine how well community metabolic structure predicts H2S concentra-
tion, a similar cross-validation was performed using feature-selected pathways
(Table 5, Fig. S2). Results indicated that all the models were properly trained (mean
percent variance explained = 79.179, SD = 0.815). Similar to the previous cross-valida-
tion models (based on unique sequence abundance), predictive performances for the
treated columns (mean R2 = 0.814, SD = 0.077) were better than those for the non-
treated columns (mean R2 = 0.421, SD = 0.224). The pathway-based RF models also
displayed higher RSE % (t = 5.025, P = 0.0002) for treated columns (mean RSE % =
39.197, SD = 9.534) than for the nontreated columns (mean RSE % = 22.332,
SD = 4.665). Comparison of both the cross-validation setups (based on community
structure and metabolic profile) indicated that predictive performance of RF models
based on community structure (mean R2 = 0.647, SD = 0.245) and that of RF models
based on metabolic profile (mean R2 = 0.617, SD = 0.260) were not significantly differ-
ent (t = 0.376, P = 0.7092).

Prediction of microbial community source based on microbial community
structure. Prediction of microbial community sources can be important to evaluate for
some systems since it is often hard to access the biofilms/sessile communities in inac-
cessible locations. A classification-based RF model was used to predict the source of
the observed microbial community. Sessile communities were harvested for 19 col-
umns at the end of the experiment. Three sand samples (from the top, middle, and
bottom sections) from each column and three effluent samples from three time points
before harvesting were used in this model. The RF model (CM 4) based on the 114
observations (Table 1) had a very low OOB estimate of error (0%) and high accuracies
in predicting the sources (effluent or sessile) of the community (100% accuracies for
prediction for both training and validation data set) (Table S5).

The top 10 taxa critical for the prediction of sessile and effluent communities were
selected based on the mean decrease in accuracy (Table 6). CAP analyses constraining
the top 10 taxa displayed distinct clusters for effluent and sessile samples for most of the
samples irrespective of the phases (Fig. 7). One (Cupriavidus) of the top 10 taxa was
found to be higher in the effluent sample, whereas the rest of the 9 taxa among the top

TABLE 5 Details of cross-validation models for predicting sulfide concentrations based on relative abundance of feature-selected pathwaysa

Random forest
model

Validation
set (column no.) NIVT NOST NOV mtry MSR PVE

R2

training
RSE
training

R2

validation
RSE
validation ASC of VS RSE%

PVS 1 1 33 553 40 11 0.571 79.29 0.971 0.283 0.715 0.939 1.675 56.072
PVS 2 2 33 554 39 11 0.598 79.98 0.972 0.291 0.313 0.725 3.254 22.267
PVS 3 3 33 562 31 11 0.578 78.68 0.971 0.280 0.908 0.603 1.460 41.290
PVS 4 4 33 572 21 11 0.578 79.55 0.971 0.287 0.871 0.703 2.376 29.578
PVS 5 5 33 572 21 11 0.571 80.3 0.972 0.284 0.675 0.666 3.410 19.543
PVS 6 6 33 574 19 11 0.566 79.99 0.973 0.278 0.727 1.055 2.406 43.843
PVS 7 7 33 576 17 11 0.579 79.87 0.972 0.283 0.738 0.642 3.648 17.609
PVS 8 8 33 575 18 11 0.578 80.02 0.973 0.282 0.634 0.591 3.665 16.117
PVS 9 9 33 576 17 11 0.570 80.16 0.973 0.279 0.207 1.045 3.800 27.500
PVS 10 10 33 574 19 11 0.592 78.82 0.970 0.291 0.885 0.776 3.078 25.211
PVS 11 11 33 561 32 11 0.567 80.86 0.973 0.284 0.055 0.862 3.223 26.732
PVS 12 12 33 553 40 11 0.595 79.91 0.972 0.290 0.517 0.784 3.196 24.540
PVS 13 13 33 561 32 11 0.578 79.19 0.971 0.283 0.799 0.930 2.367 39.292
PVS 14 14 33 573 20 11 0.568 79.77 0.973 0.277 0.727 1.133 2.543 44.562
PVS 15 15 33 555 38 11 0.589 78.89 0.972 0.281 0.778 0.838 1.900 44.117
PVS 16 16 33 553 40 11 0.570 80.57 0.974 0.279 0.494 0.603 3.770 15.993
PVS 17 17 33 561 32 11 0.563 80.51 0.973 0.278 0.312 0.963 3.737 25.765
PVS 18 18 33 556 37 11 0.610 78.34 0.971 0.289 0.915 0.457 1.723 26.508
PVS 19 19 33 553 40 11 0.589 78.4 0.970 0.287 0.816 0.909 2.190 41.498
PVS 20 20 33 553 40 11 0.557 81.28 0.975 0.275 0.264 0.881 3.232 27.251
aTraining set for all 20 random forest models is the rest of the 19 columns. NOST, number of samples in training set; NIVT, number of independent variables in training set;
MSR, mean of squared residuals; PVE, percentage variance explained; RSE, residual standard error; ASC, average sulfide concentration; VS, validation set; NOV, number of
observations in validation set.
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10 were found to be higher in abundance in the sessile microbial community. It was
interesting to note that the top five important taxa (Desulfoluna, Maribellus,
Hyphomonas, Alkalibacter, Rhodococcus) were found to be higher in abundance in the
sessile microbial community than in the effluent microbial community.

DISCUSSION

The application of machine learning (ML)-based models is a relatively new frontier
in the field of microbial ecology. Though there are several studies where ML-based
approaches were applied in the field of microbiology for the prediction of microbial
species, diseases caused by microorganisms, interactions and associations among
microorganisms, and environmental source of microorganisms (13–15), the application
of ML for predicting biogeochemical processes is surprisingly limited (16, 17). Though
many biogeochemical processes can be measured directly, transformations of com-
pounds in a dynamic system often hinder the ability to measure the actual concentra-
tion of a product. This study described an approach that uses high-throughput phylo-
genetic placement and random forest models to predict H2S concentration from
microbial community structures. This setup, which emphasizes the processes of sulfi-

TABLE 6 Top 10 important taxa (based on unique sequence taxonomy) critical for the
prediction of sessile-effluent communitiesa

CCG/CEG ROPE taxonomy MDA
Desulfatibacillum aliphaticivorans Desulfoluna_genus_0.89 4.39
Draconibacterium Maribellus_genus_0.83 4.28
Hyphomonas Hyphomonas_genus_1.0 4.15
Christensenella minuta Alkalibacter_genus_0.25 3.89
Rhodococcus fascians D188 Rhodococcus_genus_1.0 3.74
Cupriavidus necator N-1 Cupriavidus_genus_1.0 3.65
Lutibacter profundi Lutibacter_genus_0.99 3.64
Qipengyuania flava Erythrobacter_genus_1.0 3.63
Desulfovibrionales Halodesulfovibrio_genus_1.0 3.35
Labilibaculum antarcticum Mangrovibacterium_genus_0.48 3.32
aCCG, closest completed genome; CEG, closest estimated genome; MDA, mean decrease in accuracy; ROPE-
based taxonomic affiliation is in the following format, taxon name_taxonomic rank_confidence of taxonomic
affiliation.

FIG 7 Canonical Analysis of Principal coordinates (CAP) of Bray-Curtis dissimilarity based on the relative abundance of unique
sequences across 114 samples (used in model CM 4) and constraining the 10 most important taxa which are determinant for
sessile-effluent classification. I, Desulfoluna, II, Maribellus, III, Hyphomonas, IV, Alkalibacter, V, Rhodococcus, VI, Cupriavidus, VII,
Lutibacter, VIII, Erythrobacter, IX, Halodesulfovibrio, X, Mangrovibacterium. Detailed taxonomic affiliations are mentioned in Table 6.
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dogenesis and inhibition with nitrate salts, provides a good model system to evaluate
the utility of machine learning for determining key environmental processes.

We first applied a PCoA analysis to identify major differences in community structure
between phases. Although the PCoA plot (Fig. 3) represented the separation of the samples
based on different phases, the samples from the sulfidogenic phase were found to be more
widely distributed along axis 1. This suggests that different microbial communities can
evolve in a system even if the environmental setting is similar and complicates the process
of determining biogeochemical processes in a system from measurements of physicochemi-
cal parameters alone. Our results suggest that microbial community structure may be a
more sensitive indicator of environmental transitions because it is more tightly coupled to
biogeochemical processes than commonly measured physicochemical parameters. Despite
reflecting many of the key dynamics, the PCoA was unable to separate the sessile and efflu-
ent communities. In contrast, the classification-based RF models were able to accurately pre-
dict the phases and sessile or effluent communities in the system. An additional key advant-
age over ordination is that RF can be used to develop a regression model to predict a
continuous variable. Following the work of Thompson et al. (17), which accurately predicted
DOC concentration from microbial community structure with RF, our RF models could pre-
dict H2S concentration with surprisingly high fidelity.

Variations in cell abundances across phases suggested that they can be an impor-
tant tool for feature modification of microbial community data sets. However, RF
regression models incorporating cell abundance did not perform significantly better
than those based on relative abundance alone. Since the total cell abundances for
each sample were distributed only among bacterial taxa and used for RF, abundance-
based models could likely be improved by a better representation of archaeal commu-
nity structure (limited here by the efficacy of the selected primer pair).

We have demonstrated that RF regression models can accurately predict biogeochemistry
in a model system. This work is motivated by the need to predict biogeochemistry in field
conditions, particularly for settings where the target geochemistry is very labile or highly tran-
sient in nature and thus difficult or impossible to observe directly. Under those conditions,
the geochemistry may be reflected in the composition of the microbial community and suc-
cessfully modeled from these data. This approach has several challenges, including the need
to develop highly curated models for different geographical locations that may host taxo-
nomically distinct communities. Because we expect the metabolic potential of the microbial
community to be conserved more highly than the taxonomic structure, models based on pre-
dicted metabolic potential may be less sensitive to confounding factors such as geography or
time. We made predictions of the metabolic structure for each bacterial community and used
these data for the prediction of phases and H2S concentrations. This conversion of microbial
community structure to metabolic profile is a form of feature engineering. Using this tech-
nique, we observed high accuracies for the prediction of phase and H2S concentration, sug-
gesting that metabolic profiles are a reliable predictor of biogeochemical processes.

The proposed RF approach using pathway-based independent variables has an im-
portant limitation. Since the pathway abundances are predicted based on the closest
estimated/completed genomes (24), strains not having a representative genome in the
database may contribute to over-/underrepresentation of a specific pathway. Though
this can be a limitation, the advantages of using pathway abundance models in com-
parison to the microbial community structure models are clear. In particular, the path-
way-based models are expected to perform better across different sites than the mi-
crobial community structure models due to functional redundancy across different
microbial communities associated with similar biogeochemistries. Moreover, the con-
version of community structure into metabolic structure reduces the number of inde-
pendent variables and generates parsimonious machine learning models. Improved
performance of feature-selected pathway models further suggests that they are more
parsimonious and may be more applicable to the real world. In this experiment, RF
models also proved to be robust and generalizable based on the cross-validation
experiment. Both the cross-validation setups (based on relative abundances of unique
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sequences and feature-selected pathways) had similar predictive performance, indicat-
ing that microbial community structures and metabolic profiles are equally reliable in
predicting biogeochemical processes.

The RF-based models also have an advantage over ordination analyses, particularly
when dealing with a huge number of independent variables. RF helps in selecting impor-
tant features which are the main determinants of the dependent variables, at times provid-
ing us a new perspective on a dynamic system. In the present study, the closest completed
genome (CCG) of the most important taxon for determining H2S concentration
(Denitrovibrio acetiphilus DSM 12809) was found to be an NRB (25). Surprisingly, no known
SRBs were observed among the 10 most important taxa for determining H2S concentration
in this system. This indicates that nitrate reduction is a higher determinant factor for sulfido-
genesis than sulfate reduction in a system where sulfidogenesis and mitigation (via nitrate
addition) are taking place. This may result from the ubiquity of SRBs in the sulfidogenic and
mitigation phases, in contrast to the much greater abundance of NRBs in the mitigation
phase. The presence of NRBs is evidence of suppressed sulfidogenesis, but the presence of
SRBs does not necessarily indicate enhanced sulfidogenesis since, under limiting conditions,
SRBs can switch from sulfate reduction to fermentation or even nitrate reduction depend-
ing on their genomic repertoire (3, 9, 26).

Determining important variables can also be useful for determining sessile microbial
community members since it is often hard to assess the biofilms/sessile communities in
inaccessible locations. This study demonstrated the use of RF followed by constrained ordi-
nation in determining the microbial members of sessile and effluent communities. The ses-
sile and effluent community members as suggested from this study can also be supported
by their phenotypic traits. The presence of Hyphomonas, Rhodococcus, Lutibacter, and
Erythrobacter (among the top 10 deterministic features for effluent/sessile prediction) in
sessile communities in higher abundance can be supported by their biofilm-forming abil-
ities (27–30), whereas the presence of Cupriavidus necator N-1 in higher abundance in the
effluents can be supported by their cellular motility abilities (31).

The machine learning approach demonstrated in this paper can easily be applied to a mi-
crobial community data set for predicting the biogeochemical state of a system. This study
also demonstrated that the conversion of microbial community structure into metabolic pro-
files could be used as a method for feature engineering in microbial ecology for predicting
biogeochemical processes. In addition to predictive analytics, this study illustrates the applic-
ability of random forest models in understanding the underlying microbial processes in a
system. However, it is important to recognize that system-specific models will be needed for
optimum predictive performance. Moreover, though it is possible to predict biogeochemical
rates and standing stocks from microbial community structure, predicting biogeochemical
state is a far easier task, particularly in dynamic systems with limited training data. We envi-
sion that ML-based models, along with high-throughput sequencing and analyses, will de-
velop further as a valuable tool for determining biogeochemical processes and microbial
ecosystem function in future microbiome research.

MATERIALS ANDMETHODS
Experimental setup. As described in Dutta et al. (32), 20 upflow bioreactors (2.5 cm inside diameter

15 cm length, 74 cm3 volume, acrylic-jacketed glass columns) filled with ASTM graded sand, unground
silica (U.S. Silica) were used to understand the shift in microbial diversity across different phases of sulfi-
dogenesis and mitigation. Seawater was injected into all 20 bioreactors at a flow rate of 1 mL hr21.
Souring was initiated in all the columns under anoxic conditions. H2S concentrations were quantified in
the system using the Cline assay (33). For H2S measurement, collection tubes were screwed onto the
effluent line of the bioreactors for 1 h to collect samples, and the sample aliquot was withdrawn for fur-
ther analysis. Volatile fatty acids were added to each column to promote sulfidogenesis and mitigation.
A stock solution of 33 mM volatile fatty acids (VFAs; equimolar of acetate, butyrate, formate, and propio-
nate) was fed to the influent flowline at a rate of 100 mL h21 where it mixed with seawater flowing at
1 mL hr21, leading to a column influent of 1.1 mL hr21 with a total VFA concentration of 3 mM. Among
20 columns, 3.3 mM nitrate salts were applied to 10 columns (for mitigation of sulfidogenesis), whereas
no nitrate treatment was involved in the remaining columns (Table S1). Four bioreactors (columns 7, 9,
10, and 14) were operated at ambient lab temperature (;19°C), and the remaining 16 columns were
operated at 30°C (Table S1).

Three main phases were observed in the treated columns, viz, sulfidogenic, mitigation, and rebound
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sulfidogenesis (referred to as rebound in this study). A transition to the mitigation phase (referred to as
transition in this study) between sulfidogenesis and mitigation was determined where the H2S concen-
tration was .1 mM even after the nitrate treatment. Small volumes (5 to 100 mL) of effluent samples
were collected from each column over different time points and filtered through a Pall MicroFunnel filter
funnel with 47 mm, 0.2mm Supor filter. The filters were stored at280°C until DNA extraction. The micro-
bial diversities of the samples were determined to explore the shift in community structure across differ-
ent time points and phases (Table S1). Nineteen columns were sacrificed at different time points, and
the sessile communities from three different sections (top, middle, and bottom) of the columns were
harvested under anaerobic conditions to understand the microbial diversity of the stationary phase
(Table S1). The details of the experimental design are described in the supplemental material.

DNA extraction, sequencing, and bioinformatics analysis. For effluent samples, DNA was extracted
from 674 filters (covering different columns across different time points) (Table S1) using the MagMAX
microbiome ultra nucleic acid isolation kit, following the manufacturer’s protocol. Ninety-six-well standard
plates were used for isolation of DNA using the KingFisher Flex bead handling robot. The MagMAX_
Microbiome_Liquid_Buccal_Flex program provided by the manufacturer was used for DNA extraction.
Columns were sacrificed and harvested during different phases (Table S1) to assess the sessile microbial
community. Three sand samples (top, middle, and bottom) from each column (a total of 57 samples from
19 columns) were used for DNA extraction. For sand samples, the whole sections were harvested under an-
aerobic conditions and resuspended in DNA/RNA Shield (Zymo Research R1100-250) to preserve the sam-
ples and serve as a lysis buffer for homogenization. Subsequent processing for DNA extraction from sessile
samples was conducted using ZymoBIOMICS DNA miniprep kit. A total of 731 samples (674 effluent sam-
ples and 57 sessile samples) were sequenced to an average depth of 40,709 paired-end reads (standard
deviation [SD] = 10,527) on the Illumina MiSeq platform. Specifically, the V4 region of the 16S rRNA gene
was PCR amplified with 515F-806R primers (34) that included sequencer adapter sequences used in the
Illumina flowcell (35). Amplicon library preparations and sequencing were conducted at Argonne National
Laboratory. The details of the sequencing are mentioned in the supplemental material. The sequence
reads were submitted to the NCBI sequence read archive (SRA) under BioProject ID PRJNA714273 as
reported previously (32).

Reads generated from the Illumina MiSeq were filtered, denoised, and merged using dada2 (36). The sam-
ples were split across three runs, and each run was denoised separately, considering different error profiles for
different runs. The merged reads were inflated to redundant fasta files using the in-house script deunique_dad-
a2.py (https://github.com/bowmanlab/seq_data_scripts/blob/master/deunique_dada2.py) for analysis with
paprica. The output from deunique_dada2.py (*.exp.fasta) was analyzed using paprica v0.7.0 (https://github
.com/bowmanjeffs/paprica/releases/tag/paprica_v0.7.0) for the determination of bacterial community and pre-
dicted metabolic structure (24). In brief, paprica placed each read on a phylogenetic reference tree created
from complete 16S and 23S rRNA genes from all completed genomes in GenBank. Placements to terminal
branches on the reference tree are referred to as CCG, while placements to internal branches are referred to as
closest estimated genomes (CEG). The output of the paprica metabolic inference is an estimate of the enzymes
and metabolic pathways contained in each member of the community. Further analyses were carried out using
16S rRNA gene copy number corrected abundances of unique sequences (can also be referred as amplicon
sequence variant) generated using paprica. The paprica pipeline depends on RAxML-ng for reference tree con-
struction (37) and Infernal (38) and EPA-ng (39) for phylogenetic placement. It further makes use of gappa (40)
and pathway tools (41). The taxonomic affiliations of the unique sequences were confirmed using ROPE
(https://github.com/avishekdutta14/ROPE). The detailed pipeline for paprica and ROPE is mentioned in the sup-
plemental material.

Cell counts. Flow cytometry analysis of 553 samples was performed to determine effluent cell abun-
dance across different phases in all 20 columns. One milliliter of effluent samples was collected during
the same time points for DNA extractions from all the columns for cell counting using a Guava easyCyte
11HT Benchtop flow cytometer. The samples were fixed with 25% glutaraldehyde to a final concentra-
tion of 0.25% and stored at 280°C for further analysis. Before analysis, the samples were prefiltered
using 60-mm filters to remove any larger debris. A 200-mL aliquot of each sample was transferred to a
96-well plate, stained with SYBR green (Molecular Probes), and spiked with a known number of
123count eBeads (Fisher Scientific). Cell abundance was determined from green fluorescence (excitation
488 nm/emission 525 nm) versus forward scatter using custom R scripts (https://github.com/
bowmanlab/flow_cytometry_scripts). For further analyses, outliers (18 observations) for cell abundances
from each phase were determined using Tukey’s method (42) and removed from the data set. An obser-
vation was considered to be an outlier when its value was outside the range Q1 2 1.5 � (Q3 2 Q1),
Q3 1 1.5 � (Q3 2 Q1), where Q1 and Q3 are the first and third quartiles, respectively. Cell abundances
for different bacterial taxa were generated using relative abundance data for each bacterial unique
sequence (U) and total cell count per milliliter of a sample using the following equation:

absolute abundance of U ðper mLÞ ¼ relative % abundance of U
100

� total cell count per mL

Random forest model and statistical analysis. All the statistical and random forest model analyses
were carried out in R and R Studio (43). GAMs based on average H2S concentrations and average cell abundan-
ces were constructed using the mgcv package (44). PCoA of Bray-Curtis dissimilatory based on the relative
abundance of unique sequences across different samples was performed using phyloseq (45) to understand
the shift in microbial diversity across time and phase. Random forests (RF) (46) classification and regression
models were created using the randomForest package (47). Accuracies for classification models were
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determined using the confusionMatrix function from the caret package in R (48). For regression-based RF mod-
els, actual H2S concentration versus predicted H2S concentrations was plotted, and the R linear model function
(lm) was used to determine the accuracies (from R2) and residual standard error (RSE) for the predictions. For all
the models, 300 trees were generated, and the default mtry parameter (number of features randomly picked
to split the tree at each node) was used for the classification and regression tasks, which is the square root of
the number of features for classification and one-third of the number of features for regression. For both classi-
fication and regression models, 30% of the observations were randomly withheld for the validation and the
remaining 70% were kept for training. For regression models, the variations in H2S concentrations in the valida-
tion data set and the training data set were kept similar to minimize the chance of underfitting the model. The
codes used for RF classification and regression are present in https://github.com/avishekdutta14/Random
_Forest.

For regression-based RF models, two time points and outliers based on H2S concentrations were
removed. After filtering the data set based on inconsistencies and data availability, 609 effluent samples
(out of 674 effluent samples) were left for further analyses. Outliers for H2S concentration from each
phase were determined using Tukey’s method (42) and removed from the data set. An observation was
considered to be an outlier when its value was outside the range Q1 2 1.5 � (Q3 2 Q1),
Q3 1 1.5 � (Q3 2 Q1), where Q1 and Q3 are the first and third quartiles, respectively. After the outliers
were removed, 593 effluent samples were present in the data set for further analysis. In order to mini-
mize problems due to overfitting and to achieve parsimonious models, feature selection using the
VSURF package (23) was used for pathway-based regression models. This package allows feature selec-
tion following three steps: step 1 eliminates irrelevant variables from the data set, step 2 selects varia-
bles related to the response, and step 3 refines the variable selection by eliminating redundancy in the
set of variables selected in the second step for prediction purpose. Important variables were obtained
from the random forest models based on percentage increase in mean squared error and mean
decrease in accuracy for regression- and classification-based models, respectively. Canonical Analysis of
Principal coordinates (CAP) of Bray-Curtis dissimilarity based on the relative abundance of the bacterial
unique sequences across different samples and constraining the 10 most important taxa (determinant
for H2S concentration/determinant for sessile-effluent classification) was performed using phyloseq and
vegan packages (49). For the cross-validation experiment, RSE % was calculated using the following
equation:

RSE % ¼RSE ðcalculated from linear models for validation data setÞ
mean of actual sulfide concentration of validation data set

� 100

Detailed description for random forest model construction is mentioned in the supplemental
material.

SUPPLEMENTAL MATERIAL
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