Title

Using Cognitive Models to Guide Instructional Design: The Case of Fraction Division

Permalink

https://escholarship.org/uc/item/6dk5t75h

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 23(23)

ISSN

1069-7977

Authors

Rittle-Johnson, Bethany
Koedinger, Kenneth R.
Publication Date
2001
Peer reviewed

U sing cognitive m odels to guide instructionaldesign : The case of fraction division

Bethany R ittleJohnson (br2e@ andrew .am u edu)
K enneth R .K oedinger (koedinger@ am u edu)
H um an-Com puter Interaction Institute, Camegie M ellon U niversity
Pittsourgh, Pa 15213 U SA

Abstract

A.bstract

Cognitive modeling can be used to compare altemative instructional strategies and to guide the design of curriculum m aterials. W e m odeled tw o altemative strategies for fraction division, and the m odels led to specific em pirical predictions of the benefits and drawbacks of each strategy. These insights provided concrete suggestions for developing lessons on fraction division, including a new potential strategy that combines the benefits of the two strategies. This on-going work illustrates the potential of cognitive modeling for inform ing the design ofbetterm athem atics curnicula.

B ackground

A though U S . students are fairly proficient at perform ing routine calculations, they lack a conceptual understanding of m athematics and have difficulty solving non-routine problem s (Lindquist, 1989; Jakw erth, 1999). These findings have spuned m any educators to call for an increasing focus on building understanding and problem solving skill in m athem atics instruction. The N ational Council for Teachers of M athem atics (N CTM) standards state the overarching leaming goal as: "Students must leam mathem atics with understanding, actively building new know ledge from experience and prior know ledge," (p. 16, NCTM, 2000). The standards proposed by NCTM, and curriculum and evaluations based on them, have m et w ith opposition from advocates of "back-to-basics" approach (M athem atically Conect, 2000). M athem aticians, politicians, teachers and parents have raised concems that students are not learning their arithm etic facts and basic com putational skills and are lobbying to abandon these reform efforts. Further, m any teachers have been resistant to changing their teaching practices and doubt the benefils of reform -based curricula.

A though there is agreem ent on the need to im prove the m athem atics curriculum in the US., there is considerable disagreem ent on how the curriculum should be changed. Controversy over how to teach fraction division helps to illustrate this fundamental conflict over whether the curriculum should focus on gaining conceptual understanding or on proficiency in retrieving facts and executing computational procedures. To solve fraction division problems, students are traditionally taught the computational procedure of inverting the divisor and changing the operation to multiplication (invert-andmultiply strategy). As an altemative, the NCTM 2000 standards proposed a picture division strategy where students draw a picture of the starting am ount, repeatedly "cut off" groups of the size specified by the divisor and
count the resulting num ber of groups. For exam ple, to solve six divided by $3 / 4$, students could draw a line six units long, divide each unit into fourths, and then start at six and m ark off groups of three fourths to find how m any $3 / 4$ are in six. A ccording to the standards: "Lacking an understanding of the underlying rationale [for invert and multiply], many students are therefore unable to repair their enors and clear up their confusions about division of fractions.. Carefully sequenced experiences with [picture division] problems such as these can help students build an understanding of division of fractions." (p. 218 N CTM , 2000).

In principle, an ideal approach to inform ing the debate on how best to teach a particular mathem atical topic is to conduct a multi-year, multi-site experinental study com paring a reform -based approach w ith a back-to-basics approach. In addition to the practical lim itations of this approach, an empirical evaluation does not explain the reasons for the results or offer insights into how to apply these results to other topics.

W e have begun to explore the role of cognitive m odels in helping to inform this debate. D eveloping cognitive models offers four key advantages. First, developing cognilive models requires precise and unam biguous specification of problem representations and action sequences and allow s for detailed com parisons of problem solving strategies. Second, the specificity of the m odels leads to generation of specific hypotheses that can be tested through sm aller, focused, em pirical studies. Third, cognitive models can be used to understand and explain empirical results, allow ing researchers to understand the mechanisms undertying the differences and to extrapolate the findings to other dom ains. Finally, inspection and evaluation of these models yield concrete suggestions for better content and methods of teaching a particular topic.

To ilhustrate the potential of cognitive modeling for inform ing the current debate in m athem atics instruction, we describe our use of cognitive modeling to guide the design of lessons on fraction division (as part of a middle-school m ath curriculum we are developing). Rational number concepts and procedures are a comerstone of m iddle-school m athem atics, butU S. students perform poorly on a range of rational number problems, inchuding fraction division problems. (e.g. Lindquist, 1989; Lesh \& Landau, 1983). Fraction division is a representative topic in m athem atics for which the standards-based and back-to-basic movem ents have proposed altemative strategies.

In the current paper, we present cognitive m odels of both fraction division strategies, outline predictions for leaming
and transfer that are revealed by the models, and offer prelim inary implications of the models for instructional design, inchuding a new strategy for fraction division that w as suggested by this w ork

Cognitive M odels

Our cognitive models are based on ACT R theory, which breaks know ledge into tw o m ain categories - a declarative know ledge base of facts and a procedural know ledge base of production rules (A nderson, 1993). D eclarative know ledge includes both prior dom ain know ledge and representation of the cunent problem situation. A production rule is a sim ple IF-THEN statement that manipulates declarative know ledge, and a series of production rules m odel actions forsolving a problem .

M odelof Picture D İision Strategy

W e collected inform al verbal protocols from five sixthgrade students while they solved basic fraction division problem s such as $15 \div 11 / 2$. The students had received no formal instruction on fraction division. One student spontaneously used a picture division strategy, and the other students w ere provided w ith a picture and encouraged to try using the strategy.

The com bination of the task analysis and students' think alouds revealed 4 main sub-goals for implementing this strategy: 1) identify the values in the problem s and draw the appropriate picture, 2) m ark the picture into the

Table 1: Cognitive m odelofpicture division strategy

Productions	Student Exam ple
1. Identify-starting-am ount	H ere's her 8 footlong board
2. D raw -whole-startingam ount	[draw s line w ith 8 sections]
OR	
3. D raw -m ixed-startingam ount	
4. Identify-size-of-groups	A nd she w ants each one [shelf] to be a half,
5. Identify-value-ofdivisions	So, I'd spliteach one in half
6. D raw -divisions	[marks each whole in half]
7. Identify-step-size	[group size $=1$; skip to 9]
8.M ark-first-group	
9.M ark-next-group	
10. Finished-m arkinggroups	
11. Count-w hole-groups	A nd then that's how many shelves. [counts] 16.
12. Identify-rem ainingdivisions	NA
13. Step-size-asdenom inator-of-rem ainder	NA
Note: Extra productions wou where the denom inators of the and one is not a multiple of the	be needed to solve problem s ividend and divisor are different ther (e.g. $3 / 5 \div 1 / 3$).

Table 2 : Exam ple declarative know ledge chunk: Representation of $2 / \beta$

```
QUANTTTY 2/3>
    isa num ber
    whole 0
    top-num ber 2
    bottom -num ber 3
    parts-per-w hole 3 ;PP icture D İvision strategy only
    needed-parts 2 ;;Picture D ivision strategy only
```

appropriate size groups, 3) count the num ber of groups, and 4) convent the rem ainder (if there is one) to a fractional value. These four sub-goals translate into 13 key steps or actions that the problem solver must take (see Table 1; a dotted line designates the beginning of a new sub-goal). These actions were instantiated as productions in an intelligent tutoring system that is based on ACT R theory (A nderson, Corbett, K oedinger \& Pelletier, 1995).

The productions in the picture division model rely on meaningful representation of problem information in declarative m em ory. First, selection of this strategy com es from representing the meaning of division as finding the num ber of groups of a given size in the starting am ount. Second, the productions rely on a quantity-based representation of fractions. Students need to represent fractions as parts of a whole (e.g. $2 / \beta$ is two out of three equal size parts) rather than only as a visual anrangem ent of numbers (e.g. 2 is the top number and 3 is the bottom num ber). Table 2 provides a sam ple declarative chunk used in representing the problem.

M odelof Invert-and-M ultiply-Strategy

The invert-and-m ultiply strategy can be broken into 4 m ain sub-goals: 1) identify the dividend and the divisor, 2) if needed, convert whole numbers and mixed numbers to fractions, 3) invert the divisor and multiply the two fractions, and 4) if needed, simplify the answer by
Table 3 : Cognilive m odel for invert-and-m ultiply strategy

Productions	Student Exam ple
1. Identify-dividend	12
2. Identify-divisor	$11 / 2$
3. W hole-dividend-tofraction	12/1
4. Identify-m İxed-dividend 5. Identify-m Ixed-divisor 6. M ixed-to-fraction	NA $11 / 2$ is $3 / 2$
7. Invert-divisor	So,make it $12 / 1$ * $2 / 3$
8. M ultiply-top-\& -btm \#s	Equals $24 / 3$
9. Im proper-to-m ixed	That is 8
10. ID -whole-\#-answ er	[D one]
11. \mathbb{D}-if-quotient-isreducible	NA
12. Reduce Fraction	NA

converting an im proper fraction to a m ixed num ber and/or by putting the fraction in simplest term s. These four subgoals translate into 11 key steps or actions that the problem solver must take (see Table 3; dotted lines designate the beginning of a new sub-goal).

The declarative know ledge used by the invert-andmultiply strategy differs from that used by the picture division strategy. In the invert and multiply strategy, division is represented as perform ing actions on num bers. Fractions are represented as a visual anangem ent of digits, and quantily-based know ledge is notused (see Table 2).

Em piricalSupport for O ur M odels

W e designed a brief intervention to validate and refine our cognitive m odels. The students had already been taught the invert-and-multiply strategy, and we gave them a brief lesson on the picture division strategy. Thirty-tw o ninthgrade students from two m ath classes for below -average m ath students participated in the study.

On the first day of our study, students received a 10m inute lesson on fraction division from their classroom teacher. The teacher discussed how to solve two types of fraction division problem s using each strategy. Instruction on the picture division strategy focused on form ing a quantily-based representation of the problem without detailed instruction on the actions (productions) for implem enting the strategy. The teacher then review ed the steps for using the invert-and-multiply. A fter this brief lesson, students were random ly assigned to use one of the tw o strategies to solve a set of problem s. Students solved two problems using the assigned strategy and received feedback and help in finding the comect answ er if needed. Students then solved a set of 10 problem s w ithout feedback or help - 4 instructed problems (problems with whole numbers and/or unit fractions), 5 transfer problems (problem swith non-unit fractions and w ith m ixed num bers), and a fraction multiplication problem. Students had approxim ately 20 m inutes to solve the problem s , and their com pliance with the strategy instructions was high. In the invert-and-m ultiply group, there was no trace of students using a pictorial strategy, and in the picture division group, a picture was drawn on 83% of attem pted problem s. Four days later, students w ere asked to solve a parallel set of 10 problem susing any strategy they w anted.

Students had difficulty leaming the picture division strategy from our brief lesson. On D ay 1, they solved 60\% of the instructed problem types conectly, butonly 9\% of the transfer problem s conrectly. M any students got stuck and did not finish the assessm ent; students only attem pted 57\% of the problem s (compared to students attem pting 96% of problem s in the invert-and-m ultiply group).

N ot surprisingly, students who were assigned to use the fam iliar invert-and-m ultiply strategy solved m ore problem s correctly on D ay 1, com pared to the Picture D ivision group (49% vs. 28% conect; $\underline{F}(1,30)=16.96, \mathrm{p}<.01$). They solved 89\% of the instructed problem types comectly, but only 31\% of the transfer problem s comectly (although they
had previously received instruction on these problem types as well.) Student had particular difficulty when the problems involved mixed numbers. Only half of the students solved at least one problem of this type conectly.

W hen students w ere free to choose any strategy on D ay 2, students used the more fam iliar and well practiced invertand -m ultiply strategy on a majority of problem $\mathrm{s} \underline{M}=62 \%$ of trials with a mean accuracy of 60%). The picture division strategy was used on 10\% of problem s, and only by students w ho w ere assigned this strategy on D ay 1.

To help explain the difficulties of each strategy, students' incorrect solutions w ere classified using the productions in the relevant cognitive model. W e distinguished betw een failing to intiate a production and implementing a production incorectly (an error). The ease of coding student solutions is an additional benefit of developing cognitive m odels. W e report solution data from D ay 1, but a sim ilarpattem arises on D ay 2.

Tables 4 and 5 show the distribution of failures and enors over the productions for each strategy. On the picture division strategy, students often did not know how to start the problem. W hen students attem pted the problem, they often did not succeed on the first sub-goal - identifying values and setting up the picture. There were a surprising num ber of errors in identifying the dividend and in draw ing the divisions conrectly (e.g. students added 3 extra divisions perwhole for 1β, thusm aking fourths). Students' errors on identify-parts-per-w hole varied by problem type, suggesting that an additional production was needed in our model. W hen the dividend was a fraction, students som etimes divided the fractional am ount, rather than the whole, into the specified num ber of parts (e.g. for $1 / 2 \div 1 / 10$, dividing the half into 10 sections). Students need an extra production for m apping the parts-per-whole to the parts-per-fraction (e.g. if 10 division in one whole, half as m any (5) in 1/2). W e have very little data on the difficulty of productions that occur later in the sequence because students often abandoned this strategy.

Students using the invert-and-multiply strategy were much more likely to attem pt to solve a problem, and the m ajority of m istakes arose from failing to or incomectly converting m ixed num bers to fractions. H ow ever, this enror did not cause students to abandon the strategy. Rather, students m ade illegitim ate adaptations to the strategy, such as inverting the fractional portion of the divisor and then multiplying the whole number portions and the fraction portions separately (e.g. $82 / 3 \div 21 / \beta=82 / 3 * 23 / 1=16$ $6 / 3)$. Further, students' enrors on the fraction multiplication problem suggested that the conditions for firing the invertdivisor production were overly general for m any students. Half of the students in the invert and multiply group inverted the second fraction before m ultiplying.

Table 4 : C lassification of students' inconect solutions using the picture division strategy on day 1

A ction/Production	N o. of Enors	N O. of Failures
<StartProblem >	NA	64
D /D raw -whole-starting-am t	6	1
D /D raw -m İxed-starting-am t	7	-
Identify-size-of-groups	-	-
Identify-value-of-divisions	6	11
D raw -divisions	10	-
Identify-step-size	7	1
M ark-first-group	-	-
M ark-next-group	1	-
Finished-m arking-groups	-	-
Count-whole-groups	2	1
Identify-rem aining-divisions	NA	NA
Step-size-as-denom inator-of-	NA	NA
rem ainder		

Table 5: C lassification of students' inconrect solutions using the invertand multiply strategy on day 1

A ction/Production	No.of	No.of
	Errors	Failures
<Startproblem >	NA	8
ID D ívidend	-	-
ID D ivisor	-	-
W hole-to-fraction	-	-
D -m İxed-dividend \& M ixed-tofraction	13	15
ID -m İxed-dívisor\& M ixed-tofraction	4	9
Invert-divisor	2	9
M ultiply-top-\& -btm -\#s	4	8
Im proper-to-m ixed	3	9
ID -if-com m on-factor	NA	NA
Reduce Fraction	NA	NA

Im plications of the results for the cognitive m odels The em pirical results revealed a necessary refinem ent to the picture division model and validated the other productions in the two models. Students' errors when using the picture division strategy indicated that an additional production was needed when the dividend was a fraction. O therw ise, the m odels captured students' behaviors quite w ell.

The empirical results also provide information on common buggy rules and on the frequency of conect productions "failing to fire". Students' buggy rules w ill be m odeled as production rules, allow ing us to identify the source of the differences in the conect and inconect productions. This information can be used to target instruction at addressing orpreventing these errors.

These results also highlight the importance of the declarative know ledge structures. The ninth-grade students in this study did not seem to form quantily-based representations of fractions or to represent division as
finding the num ber of groups of a certain size in the starting am ount. W ithout these declarative know ledge structures, students had great difficulty implem enting the initial productions for the picture division strategy. In contrast, the invert-and-multiply strategy only relies on a superficial representation of division and of the position of the digits in fractions, although a quantily-based representation of the values could be used to recognize emors in its execution (e.g. that multiplying the whole numbers will lead to too large of an answ er). A fter m ore than 5 years of instruction on the division operator and on fractions, these students did not seem to be form ing m eaningfulrepresentations of either.

Predictions from the m odels

Cognitive m odels of the picture division and invert-andmultiply strategies can lead to com parative predictions for 1) difficulty of leaming each strategy, 2) efficiency of using each strategy once learned, 3) generality of each strategy to the range of fraction division problem s, 4) retention of the strategies, and 5) transfer.

First, the ease of leaming the two strategies depends on students' prior know ledge. In particular, leaming difficulty should be predicted by tw o factors - how students represent fractions and division and how well they know symbol m anipulation rules for working w ith fractions. If students form quantity-based representations of fractions and attach meaning to the division operation, leaming the picture division strategy should be relatively straightforw ard since a m ajority of the productions are based on fam iliar and well practiced know ledge (e.g. marking sections and counting). However, if students only represent fractions as visual arrangements of digits and division as manipulating symbols, this representation is not compatible with the strategy, so the strategy will be difficult to leam. The invert-and-m ultiply is not dependent on a quantity-based representation of fractions. In contrast, the ease of leaming this strategy depends on how well students already know productions for converting whole and m Ixed numbers to fractions and for converting improper fractions to m ixed num bers.

Second, our m odels support the predictions that the two strategies will not be equally efficient once they are m astered. A lthough the totalnum ber of productions to leam is sim ilar in the two strategies (13 vs .12), the num ber of production firings is often higher for the picture division strategy because some productions must fire m any times. For exam ple, to solve $6 \div 3 / 4$, the draw -divisions production fires 18 tim es and the m ark-next-group production fires 6 times. Thus, to solve this problem, the picture division strategy has 32 production firings whereas the invert-andm ultiply strategy has 6 production firings. On a m ajority of problem s, the invert-and-m ultiply strategy is more efficient than the picture division strategy once the strategy is m astered.

Third, the ease of applying the two strategies to the full range of fraction division problem s is notequivalent. O nce the full set of productions is m astered for the invert-and-
multiply strategy, it can be applied to any fraction division problem. In contrast, the picture division strategy becom es very cum bersome if the dividend is large, the denom inator of the divisor is large, or if the denom inators of the dividend and divisor are not "friendly" (i.e. one denom inator is not a factor of the other, such as 3 and 5). The first two constraints require an unm anageable num ber of firings of the draw-divisions and mark-next-group productions. The third constraint requires a new set of productions for finding equivalent fractions with a common denom inator, thus necessitating extra productions that are notw ell grounded in the simuation. O verall, the picture division and invert-andmultiply strategy can both be used to solve a majority of fraction division problems, but the invert-and-multiply strategy has the advantage of m ore uniform difficulty on all types of problem s.

The fourth prediction concerns the retention of the two strategies and confers an advantage to the picture division strategy. In A CT R, recall is based on spreading activation, so know ledge that is connected to a richer netw ork of know ledge chunks is easier to recall (A nderson, 1993). The picture division strategy utilizes rich know ledge representations of quantities and operations, so this netw ork of relations should facilitate recall. In contrast, the invert-and-multiply strategy utilizes sparse, visual-based representations that are not connected to a rich know ledge base, so this strategy should be harder to recall after a delay. Our results indicate that students have difficulty correctly retrieving all of the relevant productions for invert-andmultiply. In addition, both level-of-processing and dualcode theories of m em ory (Craik \& Lockhart, 1972; Paivio, 1971) suggest that the richer problem representations utilized by the picture division strategy should lead to better recall of this strategy, com pared to the invert-and-m ultiply strategy. Thus, we predict that recall of the picture division strategy w ill.be m ore robust.

Fifth, the models lead to very different transfer predictions. Inspection of the m odels indicates no overlap in the productions that are used by each strategy, so leaming one strategy will not aid leaming of the other. The two strategies also transfer differently to other topics. W hen know ledge chunks are activated, their mem ory trace is strengthened (A nderson, 1993), so quantily-based representations of fractions and a meaning-based representation of division are strengthened (and possibly refined) when students use the picture division strategy. Thus, leaming the picture division strategy should facilitate perform ance on tasks utilizing these representations. Representing fractions as part-whole quantities provides a pow erful declarative know ledge structure for choosing and implementing a variety of strategies for tasks such as comparing magnitudes, estimating, or adding and subtracting fractions. The picture division strategy should also transfer to decimal division since it strengthens a m eaningful representation of division and m any of the productions can be used to solve division problem s with decinals. In contrast, the invert-and-multiply strategy
should facilitate perform ance on problem s involving other fraction operations or algebraic sim plification. This strategy strengthens productions that are also used for adding, subtracting and multiplying fractions, such as converting improper fractions to m ixed numbers, reducing fractions, and multiplying fractions (although students may overgeneralize the strategy and also invert the second fraction when multiplying fractions). Productions from this strategy can also be applied to simplifying algebraic expressions. O verall, the tw o strategies should aid perform ance on very different types of transfer problem s.

D eveloping cognitive models of the tw o strategies leads to precise predictions of the benefils and draw backs to each strategy. The picture division strategy should be easy to leam if students have quantity-based representations of fractions, should be recalled after a delay, and should transfer to tasks such as com paring fractions and dividing by a decim al. In contrast, the invert-and-m ultiply strategy should be easy to leam if students already know productions for m anipulating fractions, should be efficient and broadly applicable once mastered, and should transfer to other fraction operations and to algebra.

Im plications for InstructionalD esign

Com paring the benefits and draw backs of each strategy allows for an inform ed decision on whether and how to teach each strategy. N either of the strategies was strong along all five dim ensions that we considered (difficulty of leaming, efficiency, generality, retention and transfer). Instead, there w ere trade-offs for leaming each strategy.

How the fraction division problems are represented in declarative memory helps to explain the benefils and draw backs to each strategy. The picture division strategy supports a quantily-based representation of fractions as a specified number of parts of a whole. Quantity-based representations provide a unified representation that can be used when solving a large variety of rational number problem s, such as modeling, estim ating, com paring, and doing arithm etic w ith fractions. Thus, retention of the strategy should be high. In contrast, the invert-and-m ultiply strategy relies on a visual, position-based representation, and this representation requires different, special-purpose productions to solve a sim ilar variety of rational num ber problems, and retention of the productions would be relatively low. H ow ever, these specialized productions lead to m ore efficient perform ance.

Ideally, instruction could bridge from the more m eaningful and grounded strategy of picture division to the more abstract and efficient strategy of invert and multiply, while m aintaining high retention. Unfortunately, there is no overlap in the problem representations or the productions used by these two strategies, making it difficult to build from one to the next. Because of this limitation, we developed a third strategy, labeled the comm on denom inator strategy, which builds off the picture division strategy and leads to an efficient and general method for dividing fractions. Because this strategy builds on the picture
division strategy, we first discuss suggestions for teaching the picture division strategy and then outline a m odel of this new strategy.

The cognitive model suggests a careful sequence of lessons for teaching the picture division strategy. Students should first leam to represent fractions as part-whole quantities. Next, students should be taught to use the picture division strategy on problem s that rely on the few est num ber of productions - dividing a whole num ber by a unit fraction. A fter students have leamed this m inim um set of five productions, they will need help identifying the group size of non-unit fractions and m ixed num bers, identifying the num ber of mm aller divisions in bigger divisions if both numbers contain fractions, and converting remainders to fractional values w hen needed.

A fter students have experience with the picture division strategy, the common denom inator strategy can be introduced as a more general and efficient strategy. Initially, the com m on denom inator strategy can be tightly grounded by the picture division strategy, and then it can be abstracted to a m ore efficient algorithm . B oth the grounded and abstract versions of the comm on denom inator strategy are illustrated in Table 6. The strategy has five m ain subgoals: 1) identify the initial values, 2) find the total num ber of divisions in the starting amount (which may involve finding a common denom inator for the dividend and divisor), 3) identify the size of each group (w ith this common denom inator), 4) divide the total number of division by the group size, 5) simplify the answer. A fter identifying the initial values, students must figure out the total num ber of divisions in the starting am ount, which is analogous to marking the divisions and counting the total num ber of divisions. To identify the group size, students m ust m ake sure the divisor is a fraction that has the sam e num ber of parts-per-whole (denom inator) as the dividend. Next, the num ber of groups is found by dividing the total num ber of divisions by the group size (i.e. dividing the two num erators), which is analogous to m arking the groups on the picture and counting the num ber of groups. This leads to an answer in appropriate fractional form, although the answ erm ay need to be converted from an im proper fraction

Table 6: Exam ple of com m on denom inator strategy for solving $11 / 2 \div 3 / 4$

[^0]to a mixed numbers. A fter linking this strategy to the picture division strategy, a more form al, symbol-based strategy can be abstracted, which relies on converting whole and m ixed num bers to fractions and finding fractions w ith a com m on denom inator and then dividing the num erators and denom inators. This strategy retains the quantity-based representations of the picture division strategy while being m ore efficient and general than this strategy. W e have used these analyses to design a set of lessons on fraction division that integrate all three strategies, and we are piloting these lessons with sixth grade students who have no prior experience w ith fraction division.

In sum m ary, cognitive modeling is a prom ising tool for evaluating altemative strategies and techniques that can be leveraged in the developm ent of better curriculum m aterial and instructional approaches.

A cknow ledgm ents

This work was supported by N IM H N RSA training grant 5 T32 M H 19983-02 and by a grant from Camegie Leaming. W e w ould like to thank Jay R aspat and his students atN orth H ills Junior H igh for participating in the em pirical study and Juan Casares, A aron Powers and W illie W heeler for their help w ith the cognitive m odel for the picture division strategy.

R eferences

A nderson, J. R . (1993). Rules of the mind. H illsdale, N J.: Eribaum.
A nderson, J. R ., Corbett, A ., K oedinger, K . R ., \& Pelletier, R . (1995). Cognitive tutors: Lessons leamed. Joumal of the Leaming Sciences, 4,167-207.
Craik, F.IM ., \& Lockhart, R. S. (1972). Levels of processing. A fram ew ork form em ory research. Joumal ofVerbalLeaming and VerbalBehavior, 11, 671-684.
Jakw erth, P. (1999) TIM SS Perform ance Assessment Results: U nited States. Studies in EducationalEvaluation, 25,277-281.
Lesh, R. \& Landau, M . (Eds.) (1983). Acquisition of mathematical concepts and processes. New York: A cadem ic Press.
Lindquist, M M . (1989). Results from the Fourth M athem atics Assessment of the National Assessm ent of EducationalProgress.Reston, VA :NCTM .
National Council of Teachers of M athem atics. (2000). Principles and standards for school mathematics. Reston, Va:NCTM .
Paivio, A. (1971). Im agery and verbal process. N ew Y ork: $\mathrm{H} \circ \mathrm{lt}, \mathrm{R}$ inehart \& W inston.

[^0]: G rounded approach:
 Because $1 / 2=2 / 4$, and 1 whole $=4$ fourths, $11 / 2=6 / 4$. now have: $6 / 4 \div 3 / 4$
 In $6 / 4$, there are 2 groups of $3 / 4$, so the answ er is 2 .
 Abstract approach:
 Equivalent fractions: $1 / 2=2 / 4$
 M ixed to fraction: have $12 / 4: 1$ * $4=4 ; 4+2=6$, so 6/4
 N ow have $6 / 4 \div 3 / 4$
 $6 \div 3=2 ; 4 \div 4=1$
 A nsw er is $2 / 1$, and because any num ber divided by 1 is that num ber, the answ er is 2 .

