Lawrence Berkeley National Laboratory Recent Work

Title
CALCULATION OF SCATTERING WITH THE BETHE-SALPETER EQUATION
Permalink
https://escholarship.org/uc/item/6dk6s6n1
Authors
McInnis, B.C.
Schwartz, C.

Publication Date

1968-09-10

UCRL- 18465
radiation laguratory

LIBRARY AND

DUCUMENTS SECTION

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a. Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 5545
B. C. McInnis and C. Schwartz

September 10, 1968

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 AEC Contract No. W-7405-eng-48

CALCULATION OF SCATTERING WITH THE BETHE-SALPETER EQUATION
B. C. McIrmis and C. Schwartz

September 10, 1968

CAICULATION OF SCATMETIG WITH THE BELPS-SAUPEIER FQUATION*
 B. C. McImist and C. Schvartz
 Lavrence Radiation Iaboratory
 University of California Berkeley, California
 September 10, 1963

ABSTRACT.

An error in the wort of Senvartz and Zemech is corrected.

In their analysis of the scatiering problem with the BetheSalpeter equation Schwartz and Zerach showed the distorted contour (their Fig. 2) along which one must integrate the varisole p_{4} after performing the Wick rotation $p_{0} \rightarrow i p_{4}$. However, arter changing to polar coordinates in this Euclidean space and perrorming the angular integration they were left with a single radial integrel (their Eq. B15) which showed no contour distortion. The integrel in question contains the ractor

$$
S(p)=\left[\left(p^{2}-\omega^{2}+n^{2}\right)^{2}+4 \omega^{2} p^{2}\right]^{1 / 2} ; \quad p^{2}=|p|^{2}+p_{4}^{2}
$$

This is neven singular along the real axis or p and so it was earlier thought that there wes no question about how to evaluate this squere root. This is wrong since there was given the prescripuion to contime the result from the region $\omega<m$. One can easily see thet as we let ω go from just below m to just ebove m a branch point on S moves across the real axis at $p=0 \div$ and so the proper analytic continustion implies a distorted contour for the p integrel as shown in the figure:

$-2-$

Thus the previous evaluations of these integrals must be corrected by adiang the piece along the domward loop, which extends a distance ($\omega-m$). We heve made this correction and redone all the calculations reported in I. The bound state results are not afiected and the corrections vanish at the elastic threshold; the numerical corrections to the phase shirts at finite energies tumed out in general to be extremely smill. For example at $k^{2}=0.4$ for $\lambda=1$ the old s-weve result (see Table III of I) was $\frac{\omega}{\mathrm{K}} \tan \varepsilon_{0}=3.5639$ which is now corrected to be 3.4946 , or 2% lover. The corrections to
.. the data in Fiss. 3, 4, 5 and pable IV of I are all too small to be seen. For the repulsive potentials the corrections to the results of Pig. 6 of I are more noticeable; the largest change is at $\lambda=-10$ at the highest energy where δ / π changes irom 0.91 to 1.13 . The corrections wece also mone noticeable at larger values for the mass h of the exchenged particle, but becane much smaller for the higher partial waves.

Several authors ${ }^{2}$ have reported calculations by other methods which yielded numbers in agreement with the old (rrong) Schweriz-zemach phase shifts. Only in the case of Haymaer's work vere these other calculations sufficientiy accurate in themselves to werrant a reconcarison with our corrected resvils; and we have found an improved agreement between our new numbers and raymaker's. ${ }^{3}$

FOOTNOTES AIND RHERHCES

This work was performed under the auspices of the U.S. Atomic Energy Commission.
\dagger Present adaress: Pnysies Depertment, Monmouth College, Monmouth, Illinois.

1. C. Schwariz and C. Zemach, Phys. Rev. 141, 1454 (1966) hereafter referrea to as I.
2. M. Ievine, J. Rion, and J. Wright, Phys. Rev. Letters 16, 962 (1966) and Phys. Rev. 154, 1433 (1967): R. Seenger, J. Math. Phys. 8, 2366 (1967) ; H. Cohen, A. Pagnamenta, and J. G. Taylor, Iuovo Cimento 50A, 796 (1967); R. Heymaker, Phys. Rev. Letters 18, 958 (1967) and Phys. Rev. 165, 1790 (1968).
3. R. Haynaker (University of Califomia, Santa Parbara), private communication.

XBL 689-3331

Fig. 1. Correct contour.

