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Abstract

On the Construction of a Novel Mean Field Platform and Broadly Applicable Variational

Principle Methods for Electronically Excited States

by

Jacqueline R. Shea

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eric Neuscamman, Chair

Electronic structure theory is an evolving field with abounding potential applications to a

multitude of interesting systems, including atoms and molecules in electronically excited

states. Central to this dissertation are two critical components of excited state electronic

structure methods – the ansatzes that describe a system’s electronic configuration and the

algorithms used to optimize them. In this thesis, advancements on both fronts are presented.

To contextualize this new work, several prominent excited state ansatzes and optimization

methods are reviewed, and their performances in applications to DNA photophysics and

organic photovoltaics are examined. The strengths and weakness of the existing ansatzes

inspired the construction of a flexible, computationally affordable excited state mean field

wave function that is analogous to ground state mean field theory. This qualitatively accu-

rate, state-specific ansatz provides the foundation upon which higher accuracy correlation

methods are built that rival the accuracy of existing excited state theories at lower overall

cost scaling. Further developments detailed in this thesis occur on the optimization side

of electronic structure methods and relate to excited state variational principles. First,

a novel analysis on the lack of size consistency within a class of excited state variational

principles widely used in stochastic quantum chemistry methods is presented. A unique

algorithm that transforms between variational principles on the fly while rigorously main-

taining size consistency and state specificity is shown to eliminate this optimization-induced

source of error. Finally, a generalized variational principle that guarantees state specificity

via a unique global minimum and identifies electronic states based on a list of user-specified

properties is defined, and its ability to resolve even energetically degenerate states in dense

excitation manifolds is realized. From the construction of a novel mean field excited state

wave function, to the analysis and restoration of size consistency in a class of excited state

variational principles, to the development of a generalized variational principle, the research

herein constitutes significant steps towards more robust, efficient, and accurate modelling of

electronically excited states.
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Chapter 1

Introduction

1.1 Vertical Excitations in Quantum Chemistry
Methods for computationally studying excited states have many potential uses such as in-

terpreting spectroscopic data, predicting experimental yields of photochemical processes,

understanding photocatalysis and how the shapes of excited state orbitals can influence re-

action rates, and designing materials with specifically tailored band gaps. A theoretical

study is able to provide detailed information about the involved processes which may not

be accessible through experimental investigations. Turning towards electronic structure the-

ory is particularly enticing in scenarios where a current chemical system is inaccessible to

experimentalists, whether that is due to cost, difficulty of synthesis, or system toxicity. Fur-

thermore, electronic structure theory can expedite molecular design – for example, rather

than synthesizing entire manifolds of novel photocatalysts in a laboratory and studying

each catalyst’s performance spectroscopically, theoretical chemistry can be used to identify

the motifs that are most likely to be successful, thereby filtering out ineffective contending

systems and lessening the work for synthetic chemists and spectroscopists. As theoretical

research requires mainly a computer, paper, and several cups of coffee, it can also be viewed

as a green alternative to laboratory research. The intent of this section is to briefly define

vertical excitations in quantum chemistry and overview two applications (although there

are many more) for which excited state theoretical chemistry can offer innovative solutions

beyond what experiment is capable of.

Vertical excitations
A vertical excitation is a transition between electronic states, such as the ground state and

the first excited state, without displacements in the molecular geometry. As shown in Fig.

1.1, relative to the adiabatic excitation energy, in which the energy difference is taken at fully

relaxed geometries for both electronic states, the vertical excitation energy is larger. The

vertical excitation energy is more representative of the instantaneous change in the system’s

energy upon excitation and is most relevant when the Born-Oppenheimer approximation is
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Figure 1.1: Definitions of the vertical excitation energy �E(ve)
and adiabatic excitation

energy �E(ad)
with respect to geometry coordinate R for an S0 ! S1 excitation

valid. This approximation decouples the motion of the nuclei from the motion of the electrons

under the assumption that due to the relative masses of nuclei and electrons, the time scale of

nuclear motion versus the time scale of electron motion is such that the electrons effectively

experience nuclei that are fixed in space.[1–3] The Born-Oppenheimer approximation is an

appropriate simplification for a significant portion of electronic structure theory, though there

are systems in which it breaks down. For example, the Born-Oppenheimer approximation

is not valid in multi-dimensional systems that have intersecting ground and excited state

potential energy surfaces, that is, a conical intersection. In geometries near and at the

conical intersection, the electron-nuclear coupling is nontrivial and cannot be neglected.[4]

However, this thesis focuses on systems and geometries for which the Born-Oppenheimer

is applicable and thus vertical excitation energies are relevant. It is prudent to note that

even in some systems for which the Born-Oppenheimer approximation is valid, such as

the dye-sensitized solar cells (DSCs) discussed later within this introduction, ignoring the

change in energy due to the relaxation of the molecule in the excited state can lead to

consequential errors when considering dynamics of the system as this reorganization energy

can be appreciable.[5–7] In fact, such approximations could lead to significant errors in the

rates of charge transfer reactions and limit our understanding of these systems, our ability

to simulate experimental observations, and our predictions for novel DSC components.[5–7]
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A B A B+ -

Charge Transfer Excitation

A

Valence Excitation

A

Rydberg Excitation

A A

Figure 1.2: Definitions of valence, Rydberg, and charge transfer excitations

In such cases, computing valence excitation energies accurately and affordably is still critical

and will interplay with further studies, such as excited state geometry optimization, that

would address the reorganization energy.

Three classes of vertical excitations will be discussed in this work – valence excitations,

Rydberg excitations, and charge transfer (CT) excitations – which are depicted in Fig. 1.2.

Valence excited states are excitations from a molecule’s highest (energy) occupied molecular

orbitals, or HOMOs, to its lowest (energy) unoccupied molecular orbitals, or LUMOs. The

first singlet excitation in many organic molecules is dominated by the HOMO!LUMO va-

lence excitation. A Rydberg excitation occurs when an electron is excited into a high energy,

spatially diffuse unoccupied molecular orbital. As the electron occupies a region further from

the nucleus, the wave function and potential energy surface (PES) of a Rydberg state more

closely resembles those of the cationic ground state than those of a valence excited state.

Rydberg excitation energies typically start around 50,000 cm

�1
, or about 6.2 eV.[8] How-

ever, Rydberg states do mix with valence excitations, and Rydberg-valence interactions are

present in both closed- and open-shell molecules.[8–14] These states and their interactions

with the valence states have an important effect on PESs,[11, 13], spectroscopy, and dynam-

ics [9, 11–13]. These interactions typically describe the more general mixing of states with

different characters such as the superposition of covalent and zwitterionic states.[15] Like

Rydberg excitations, there is also a significant change in electron density and thus orbital

relaxation in charge transfer (CT) excitations. However, these excitations involve an exci-

tation between two subsystems, creating a separation of charge. As a positive and negative

charge are created, the energy of a charge transfer excitation scales as

1
R , where R is the

distance between the positive and negative ions, as they are electrostatically attracted to
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sugar phosphate backbone

h!

Figure 1.3: Thymine dimerization in DNA upon photoexcitation

each other. Charge transfer excitations are of particular interest in energy transfer, as the

movement of electrons can be used to generate a current.

Having defined the excitations of interest to this thesis, let us now strengthen the ar-

gument for improving theoretical methods by briefly considering two fields where excited

state chemistry is essential and where electronic structure theory should be able to provide

significant insights.

DNA Photophysics
Understanding the interaction of UV light and DNA as well as its building blocks can provide

us with answers to questions like “What damage does light cause in our genetic code?” and

“How can we intervene before this damage leads to cancer?”.[16] The CDC summarized several

pieces of research that are particularly unnerving. First, approximately 40% of Americans

get sunburned each year. This fact becomes particularly insidious when paired with the

following statistics. Skin cancer is the most common form of cancer in America, affecting

almost 10% of the population, and incidence rates are increasing. Most frighteningly, 90%

of melanoma are caused by skin cell damage from UV radiation.[17, 18] (If there is only one

takeaway from this thesis, the author hopes it is the importance of sunscreen and protective

clothing during periods of sun exposure.) These alarming statistics motivate research in the

field of DNA photophysics as it may lead to new understanding of the disease, more effective

treatments for it, and maybe even the discovery of alternative preventative measures.

The adverse effects of UV radiation can be traced down to the molecular level – the

photoexcitation of nucleotides. UV irradiation of thymine and cytosine excites them to

the singlet ⇡ ! ⇡⇤
state and opens up their carbon-carbon double bond, allowing them to
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dimerize with a neighboring cytosine or thymine on the same sugar backbone.[19–23] These

dimers form a stiff kink in the DNA backbone as shown in Fig. 1.3, which disrupts the

hydrogen bonds at the site of the dimer and at adjacent base pairs[19] and can lead to DNA

polymerase mistranslating the genetic code, causing a mistake in DNA translation.[24] A

single point mutation in the genome can prevent DNA replication and transcription, leading

to cell death.[19] Moreover, if this mutation occurs in a gene that controls cell growth, such

as the p53 tumor suppression gene, it can lead to cancer.[25–28] While the probability of this

reaction is low because the bases are rarely in the correct reactive orientation, pump-probe

spectroscopy indicates that when the nucleobases are positioned in the reactive orientation,

the dimerization is near spontaneous, occurring in less than a picosecond.[29, 30]

The importance of understanding all photoexcited nucleobase mechanisms is self-evident.

However, probing the photophysics of DNA nucleotides via experiment is no easy task. All

nucleotides have a bright singlet ⇡ ! ⇡⇤
state that is overwhelmingly populated when a

nucleotide is excited from the singlet ground state and two dark states – a singlet n ! ⇡⇤
and

a triplet ⇡ ! ⇡⇤
state. Analysis of the dark states requires significantly more complicated

spectroscopic techniques and data analysis since they are reached via internal conversion

(IC).[23, 31, 32] The dark states cannot be neglected either, as they have very interesting

effects on the photophysics. For example, the dark singlet n ! ⇡⇤
state in pyrimidine

bases is considered a long-lived “trap” state, as it traps about half of the population of

pyrimidine bases, preventing them from fully relaxing to the ground state for even more than

100 ps, while the remaining population decays on an ultrafast timescale.[23, 33] Regarding

thymine dimerization specifically, there are competing theories regarding the multiplicity

of the excited state that leads to the dimer; however, the previously described singlet state

mechanism is the predominant viewpoint.[23, 29, 30, 34] As different experimental techniques

seem to deliver different results, these dark states are the cause of many debates including

the de-excitation mechanism from the dark states to the ground state[35–41] and the effect

of the sugar backbone on the lifetimes of excited nucleobases.[23, 33]

In scenarios where experiments disagree or where observations are difficult to make due to

the ultrafast and sometimes metastable character of the reactions, theory is often needed to

interpret the spectra and provide comprehensive insight into the system.[16, 23, 42–45] How-

ever, the level of theory used to characterize the ground and excited state potential energy

surfaces and other electronic properties also leads to different conclusions – different conclu-

sions from theoretical studies,[36, 46, 47] and different conclusions from experiments.[39–41]

Correctly describing DNA interactions via electronic structure theory is quite challenging, as

the level of theory must be able to balance several dichotomous phenomena – bond breaking

and bond formation,[19, 48] hydrogen bonds[48, 49] and ⇡-stacking interactions,[48, 50–52]

and local (valence, Rydberg)[48, 52, 53] and charge transfer excitations.[45, 48, 53] Further-

more, realistic simulations of DNA photophysics also demand the inclusion of environmental

effects from adjacent nucleobases, the sugar backbone, and the solvent.[33, 39, 48, 54, 55]
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Organic Photovoltaics
The field of organic photovoltaics (OVPs) is also a significant area of research where theory

has brought and can bring further insight. OVPs are low cost, easily fabricated[56] solar cells

that are not only flexible, such that they could eventually be incorporated into consumer

goods (think a backpack that charges your cell phone with solar power) but are also semi-

transparent, and progress is being made towards making them clear, such that they could

even be used over windows.[57] With recent groundbreaking advancements, the record power

conversion rate for an organic solar cell is over 12%.[58] Some drawbacks, however, include a

limited lifetime,[57, 59] particularly since they degrade when exposed to the elements.[60–63]

Improving the lifetime of the production materials would be revolutionary, as an efficiency

of 10-15% and a production material lifetime of over 10 years would make OPV-captured

solar energy the cheapest energy source, and green, renewable energy would be economical

for the public.[64, 65]

Figure 1.4: Schematic of a dye-sensitized solar cell
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There are two main types of OVPs – dye-sensitized solar cells (DSCs)[66–69] and het-

erojunction solar cells (HJCs).[70–72] Let us consider the former, while acknowledging that

there are certainly opportunities for electronic structure theory in HJC applications as evi-

denced by the Harvard Clean Energy Project, a large-scale computational project dedicated

to screening and designing new organic photovoltaic materials.[72] As shown in Fig. 1.4,

DSCs work by layering first a transparent, conductive oxide glass, then a semi-porous layer

of (typically TiO2) semi-conducting nanoparticles. A thin monolayer of an organic dye is

then deposited onto the nanolayer surface, forming covalent bonds between the two layers.

Between the glass-nanoparticle-dye photoanode and a counter electrode composed of plat-

inum coated conductive glass is an electrolyte solution containing I

�
and I

�
3 . When sunlight

shines on the photoanode, it travels through the glass and semi-porous nanoparticle layer

and excites an electron on the organic dye. The excited dye electron then is injected into

the nanoparticle’s conduction band, where it flows flows through the semi-conductor to the

photoanode, then through a wire to power the external load, and the circuit is completed as

the wire connects with the platinized cathode. The charges are rebalanced by the electrolytic

solution as I

�
3 reduces the cationic dye molecule, and the positive charge is transferred to

the cathode by I

�
.[66–69]

How can theory assist in developing more efficient DSCs? Electronic structure theory can

be used, for example, to investigate individual dye molecules to identify dyes that strongly

absorb light from the visible range of the spectrum (400-750 nm, or a photon with energy be-

tween 3.11 and 1.65 eV) and for which the electron transfer from the dye to the nanoparticle

is energetically favorable.[73] Not only must this theory get valence excitations right within

a few tenths of an eV, it must also treat charge transfer excitations with equitable accuracy.

While not two formally discrete systems, in these intramolecular charge transfer excitations,

the electron moves from one area of the molecule to a distinctly separate area of the molecule,

causing a significant change in the electron density. Since the most efficient dyes[74] undergo

metal-ligand or ligand-ligand intramolecular charge transfer excitations upon excitation by

the photon,[75–81] the method must be able to accurately capture the significant result-

ing orbital relaxations and ideally compare these dyes to others where valence excitations

dominate. Moreover, these excitations contain many different electron configurations,[75,

77–82] so the theory needs to be able capture this superposition as well. One such example

is the N3 ruthenium dye, which has achieved 10% efficiency in DSCs[83, 84] and is consid-

ered a benchmark to compare new dyes against.[73] The excitation in N3 is dominated by

multiple single valence excitations between its four HOMOs which, as shown in Fig. 1.5

at the HF/LANL2DZ[85–87] level of theory, are localized on the ruthenium center and the

NCS

�1
groups, and its four LUMOs which are localized on the bipyridine ligands, leading

to a significant redistribution of charge upon excitation.[75, 77–81] Finally, current theory

tends to focus on the dye’s ground state LUMO and its energy relative to the energy of the

nanoparticle’s conduction band, suggesting this difference determines whether the electron

injection is thermodynamically favorable.[72, 73, 88, 89] However, the author suggests here

that now that the LUMO has an electron in it, its energy and shape can relax significantly,

and the energy of this excited orbital is more relevant to the kinetics of the electron injection.
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HOMO-3 HOMO-2 HOMO-1 HOMO

LUMO LUMO+1 LUMO+2 LUMO+3

Figure 1.5: The N3 ruthenium dye’s Lewis structure, 3D structure, four highest occu-

pied molecular orbitals and four lowest unoccupied molecular orbitals computed at the

HF/LANL2DZ level of theory

Accurate comparisons of the excited dye’s orbital energies to the nanoparticle’s conduction

band requires fully relaxed excited state orbitals, another goal for the theoretical method

used to study DSCs.

Keeping these two applications in mind, the remaining structure of the introduction is as

follows. First, a brief overview of some fundamentals of modern electronic structure theory

will contextualize the discussion of the author’s viewpoints on the ideal properties of an

excited state method. The next two sections will then review the most prominent ansatzes

and optimization methods used in excited state electronic structure theory, with the final

section outlining the remaining chapters in this thesis.

1.2 An Overview of Modern Electronic Structure
Theory

The time-independent Schrödinger equation

ˆH| i = E| i (1.1)
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where

ˆH is the Hamiltonian operator that describes the physics governing a system, E is the

energy of a system, and | i is a stationary state of the system, is fundamental to the majority

of modern electronic structure theory. As we are operating under the Born-Oppenheimer

approximation (see Sec. 1.1) and approximate wave functions that can be expressed by a

finite set of Nbas orbitals {�} within this thesis, Eq. 1.1 involves the electronic Hamiltonian,

given by[90]

ˆH =

ˆh+

ˆV (1.2)

ˆh =

N
bas

X

pq

X

�2{↵,�}

hpqâ
†
p�âq� (1.3)

ˆV =

1

2

N
bas

X

pqrs

X

�,⌧2{↵,�}

(pq|rs)â†p�â†r⌧ âs⌧ âq�. (1.4)

where indices p, q, r, and s run over all orbitals in the basis, â†p� is the creation operator that

puts an electron of spin � in orbital �p, and âq⌧ is the annihilation operator that removes

an electron with spin ⌧ from orbital �q. The one-electron operator

ˆh in Eq. 1.3 contains

two pieces – the kinetic energy operator for each electron and the Coulomb operator that

accounts for the attraction between each electron and each of the Nnuc nuclei with charges

{Z} – and has corresponding one-electron integrals hpq defined in atomic units by[91]

hpq =

Z

�⇤
p(~r1)

✓

� 1

2

r2
~x1

�
N

nuc

X

M

ZM

|~x1 � ~xM |
◆

�q(~r1) d~r1 (1.5)

where the i-th electron’s position ~xi 2 R3
and spin �i 2 {↵, �} are represented by the

composite variable ~ri = {~xi, �i}. The two-body operator

ˆV in Eq. 1.4 is given by the

Coulombic electron-electron repulsion operator and has corresponding two-electron integrals

(pq|rs) defined by[91]

(pq|rs) =
Z Z

�⇤
p(~r1)�q(~r1)

1

|~x1 � ~x2| �
⇤
r(~r2)�s(~r2) d~r1 d~r2. (1.6)

The total energy of a system is thus given by the sum of the electronic energy E and the

classical Coulombic nuclear repulsion energy Enn.[2] The eigensolution of the Schrödinger

equation with the lowest corresponding energy eigenvalue is the ground state of a system,

while higher energy stationary states of the Hamiltonian are excited states. In the Hilbert

space given by the span of orbitals {�}, the ground state is a global minimum and excited

states are saddle points.[92–94]

Mean Field Theory
Deceptively trivial to write down, the Schrödinger equation is impossible to solve exactly for

systems with more than one electron. The distance-dependence of the strong Coulombic re-

pulsion between the negatively charged electrons leads to the infamous many-body problem,
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in which there are too many interactions to consider simultaneously and thus no analytic

solution to Eq. 1.1 exists for multi-electron systems.[95] Though it seems like we have been

stopped before we even started, don’t fret! One way forward is through mean field theory,

an approximation that reduces the many-body problem down to a one-body problem by

substituting all interacting terms with an average, or effective, potential. Let’s consider the

simplest mean field theory in electronic structure.

Hartree Theory

Taking the simplest non-interacting, N-body Hamiltonian as a sum of currently undefined

one-body operators,

ˆh, which act on the i-th particle,

ˆH0 =

N
X

i

ˆh(i) (1.7)

one can derive that the eigenstates of

ˆH0 are the product of the eigenstates

ˆh(i)|�j(~ri)i = ✏j|�j(~ri)i (1.8)

since the individual electrons are uncoupled. Therefore, the eigensolution to Eq. 1.7 is

| H(~r1,~r2, ...,~rN)i = �1(~r1)�2(~r2)...�N(~rN) (1.9)

E =

N
X

i

✏i. (1.10)

This is, in fact, a notable property of traditional mean field theories – since the particles are

not interacting, the total representation of the system (be this a partition function, wave

function, etc.) is product-factorizable with respect to each particle, and the total energy is

the sum of the one-particle energies.[96, 97]

There is, however, a predicament regarding the Hartree wave function. Upon swapping

two electrons,

| H(~r2,~r1, ...,~rN)i = �1(~r2)�2(~r1)...�N(~rN), (1.11)

we see that the Hartree wave function fails to represent the indistinguishability of electrons

or the fermionic anstisymmetry principle which requires that for a system of N indistin-

guishable fermions, exchanging two particles yields an anti-symmetric wave function, i.e.

 (~r1,~r2, ...,~rN) = � (~r2,~r1, ...,~rN).[2] As this approach fails to take in even the most basic

physics of fermionic systems, let us consider a slightly more involved wave function.

Hartree-Fock Theory

Unlike the product-separable Hartree wave function, the Hartree-Fock (HF) wave function

is antisymmetrized in accordance with fermionic physics. Mathematically, the normalized
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N -particle HF wave function can be expressed compactly via the Slater determinant

| HFi = 1p
N !

�

�

�

�

�

�

�

�

�

�1(~r1) �2(~r1) . . . �N(~r1)
�1(~r2) �2(~r2) . . . �N(~r2)

.

.

.

.

.

.

.

.

.

�1(~rN) �2(~rN) . . . �N(~rN)

�

�

�

�

�

�

�

�

�

(1.12)

which contains N ! unique terms that differ by permutations of the electron coordinates and

is commonly expressed in shorthand by | HFi = |�1�2...�Ni, where the molecular orbital �i

is defined as a linear combination of Nbas atomic orbitals (or basis functions) {�j}.

�i(~r) =
N

bas

X

j

cji�j(~r) (1.13)

From the determinant expression, it is clear how fermionic statistics is maintained –

swapping two columns or rows returns an identical determinant but introduces a negative

sign. Due to the antisymmetrization, the HF wave function does not fit the traditional

definition of a mean field theory where all particles are totally non-interacting, have product-

factorizable wave functions, and have energies that sum to the total system energy, which

makes sense as the HF wave function now includes Pauli correlation. Pauli correlation, based

on the Pauli exclusion principle, prohibits fermions with the same spin from occupying the

same orbital. However, as the Hartree-Fock wave function contains the minimum correlation

required to describe the ground state of an N-electron fermionic system, it is considered the

central mean field wave function in atomic and molecular electronic structure theory and,

conveniently, is an upper bound for the exact ground state energy.[2]

The original Hartree-Fock method used Lagrangian minimization to find the energy of

| HFi via the ground state variational principle (further discussed in Section 1.5) under the

constraint that the final set of molecular orbitals are orthonormal, i.e. the following function

is minimized with respect to the wave function parameters C defined in Eq. 1.13.

L =

h HF| ˆH| HFi
h HF| HFi �

X

ij

✏ij
�h�i|�ji � �ij

�

(1.14)

The optimized Lagrange multipliers {✏} take on physical meaning, where ✏ii is the energy of

the i-th molecular orbital.

The generalized eigenvalue equation is the foundation of the self consistent field (SCF)

method used in most Hartree-Fock calculations to optimize the Hartree-Fock wave function.

Given by

FC = SC✏ (1.15)

where C is the molecular orbital coefficient matrix that defines the HF orbitals relative to

the basis functions as defined in Eq. 1.13, S is the basis function overlap matrix with matrix
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elements Sij = h�i|�ji, ✏ is a diagonal matrix of the orbital energies, and F is the matrix

representation of the Fock operator

ˆF , a one-particle Hamiltonian with an average of the

electron repulsions felt by an electron, i.e.

ˆF =

ˆh+

ˆVHF (1.16)

ˆVHF =

N
bas

X

pq

N
occ

X

i

X

�2{↵,�}

�

(pq|ii) � (pi|iq)�â†p�âq� (1.17)

where

ˆh is defined in Eq. 1.3,

ˆVHF is expressed in the molecular orbital basis, and the index i
runs over the Nocc occupied orbitals (note that, for efficiency, most quantum chemistry codes

work in the atomic orbital basis). Referred to as the self consistent field (SCF) method, the

generalized eigenvalue equation is iteratively solved with respect to C and ✏ until both

matrices stop changing. In ground state HF theory, as the Fock matrix is diagonalized,

the occupied and virtual orbitals are assigned based on the Aufbau principle, that is, the

occupied orbitals are the Nocc molecular orbitals with the lowest orbital energies and the

remaining Nvir orbitals are virtual orbitals.[2, 98]

Due to the O(N4
)[2] scaling of HF theory and its abilities to recover approximately 99%

of the total system energy and describe orbitals with qualitative accuracy for much of atomic

and molecular chemistry,[98] either the HF or the closely related hybrid Kohn-Sham density

functional theory (KS-DFT), which works on very similar principles,[99, 100] are used as a

starting point for the majority of atomic and molecular computations, serving as platforms

upon which one can build higher-order methods that will recover correlation lost in the mean

field approximation.[98] For the rest of this thesis, the reference wave function of a higher

order method will be referred to as |�0i which is synonymous with |�HFi unless otherwise

specified.

Perturbation Theory
One such method is second-order Møller-Plesset perturbation theory (MP2), which utilizes

Rayleigh-Schrödinger perturbation theory[2, 101] to recover correlation originating from con-

nections between the HF wave function and doubly-excited determinants. In this elegant

solution, which requires partitioning the true Hamiltonian given in Eq. 1.2 into a zeroth

order Hamiltonian given by the one-electron Fock operator (Eq. 1.16) and a first-order per-

turbative Hamiltonian representing the difference between the true two-electron Coulomb

potential (Eq. 1.4) and the effective one-electron Fock potential (Eq. 1.17), the zeroth-

order energy and first-order energy correction sum to the HF energy, and the second-order

perturbative energy correction is given by

�E(2)
MP2 = �1

4

N
occ

X

ij

N
vir

X

ab

�

�h�HF| ˆV |�ab
ij i
�

�

2

E(0) � E(0)
ijab

= �1

4

N
occ

X

ij

N
vir

X

ab

�

�

(ia|jb) � (ib|ja)��2
✏a + ✏b � ✏i � ✏j

(1.18)
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where |�ab
ij i is a doubly-excited determinant defined as |�ab

ij i = â†aâ
†
bâj âi|�HFi.[2, 101]

Relatively quite effective for molecules and atomic systems already well-defined by the

HF wave function, such as non-degenerate molecules with large HOMO-LUMO gaps that

are without significant strong electron correlation and at their equilibrium geometry, MP2

is a highly successful, O(N5
) scaling method that recovers a large quantity of the remaining

electron correlation energy, defined as Ecorr = E � EHF. However, since it depends on

the qualitatively accurate description provided by the single-determinant ground HF wave

function, it is unsuitable for applications to excited states.[2, 101]

1.3 Desirable Properties in a Method
A computational method consists of two parts – the ansatz that describes the electronic

configuration of a system, be that the wave function or the electron density, which contains

optimizable parameters and the optimization algorithm used to vary those parameters such

that the ansatz is a Hamiltonian eigenstate. An ultimate goal when developing a method is

to give it predictive power, i.e. the ability to draw reliable and trustworthy conclusions about

materials or molecular systems, so that it can be used with confidence to study novel systems.

The author considers three criteria to be most desirable in a computational method in order

to give it predictive power and broad utility: physical accuracy, computational affordability,

and systematic improvability.

Physical accuracy. In contrast to chemical accuracy, which describes the quantitative

accuracy of measurable observables versus experiment, by physical accuracy the author refers

to the qualitative accuracy of a method’s results. For modelling excited states, important

properties to recover include, but are not limited to, correct asymptotic behavior of the

energy as subsystems are separated, correct scaling behavior as system size increases, rea-

sonable descriptions of orbitals or electron density, correct excitation character descriptions

(i.e. the contribution of single, double, etc. excitations to the electronic configuration), and

spin purity.

Size consistency and size intensivity are two properties of methods that exhibit proper

asymptotic behavior as subsystems are separated and that have proper energy scaling with

respect to system size.[102–105] Consider a system with two non-interacting molecules, A and

B. As depicted in Figure 1.6, in a size consistent method, the resulting energies of treating

each subsystem in independent calculations, EA and EB, must sum to the total energy of

a calculation that includes both systems, EAB, and the resulting wave function from the

combined calculation  AB must product-factorize into wave functions of each subsystem,  A

and  B. In a size intensive method, intensive properties of each subsystem, such as excitation

energies, remain unchanged as non-interacting subsystems are added to the calculation. That

is, if subsystem A has an excitation energy of�EA, the addition of non-interacting subsystem

B to the calculation does not affect the value of �EA. Size consistency and size intensivity

are important properties as the size of a system increases, as errors induced by a lack of

either property are not unique to non-interacting subsystems – they would still be present
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Figure 1.6: Size consistency within two non-interacting subsystems

even in computations of large, contiguous systems (such as a DNA fragment or large organic

dye), and the accuracy of the calculation would degrade as the system size increased.

Touched upon in Sec. 1.1, the shapes and energies of excited state orbitals differ from

those of the ground state. In order to fully understand the photochemistry governing excited

systems such as the photoexcited mechanism of thymine dimerization and the rate of electron

injection in DSCs, accurate representations of orbital overlaps and relative donor-acceptor

orbital energies are critical. Thus, theories that can return fully relaxed, excited-state-specific

orbitals are especially enticing.

Computational affordability. Highlighted by Nobel laureate John Pople, the practi-

cality of a method is related to its ability to be applied to systems of interest “in reasonable

times and at reasonable cost”,[106] which will be referred to as a method’s computational

affordability. The phrase computational affordability is deliberately ambiguous, as com-

puting resources range from a single-core laptop to highly-parallelized supercomputers.[107]

However, even with these powerful machines, some methods such as Full Configuration Inter-

action (FCI) become infeasible even for relatively small molecules and thus have extremely

limited applicability. This is due to the relative scaling of the method, or how the overall

time and computer cost of the method changes with respect to the number of electrons

in a system. FCI, for example, scales combinatorially with respect to the system size[108]

and is rarely used, whereas time dependent density functional theory (TD-DFT) scales as

O(N4
),[109] a significantly more tractable cost as system size increases, and is the most

widely used method for excited state chemistry. However, reducing the computational cost

of a method often goes hand-in-hand with the introduction of approximations to the physics

governing the system and a reduction of the method’s accuracy and predictive power.[110]

While it is necessary to concede some loss of accuracy in order to produce a more computa-

tionally affordable method, there are still highly effective excited state methods that perform

excellently within the domain of systems for which they were designed, meaning the cost
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versus accuracy dilemma is exploitable. This wide range of excited state methods exist in

effectively two categories.[109, 111] With members such as FCI,[108] complete active space

self-consistent field (CASSCF),[112] variational Monte Carlo,[113] density matrix renormal-

ization group (DMRG),[114] and equation-of-motion coupled cluster,[15] the first category is

highly accurate yet only affordable in relatively small systems (while the definition of small

is dependent on computational resources and the implementation of the method, think tens

of atoms). In contrast, the second category consists of more affordable methods with more

aggressive approximations but can be applied to significantly larger systems (think hun-

dreds of atoms). Within this category are methods such as configuration interaction singles

(CIS),[109, 115] time-dependent density functional theory,[109]�-SCF,[109] �-SCF,[116] and

excited state mean field theory.[117] Of course, the holy grail of electronic structure theory

methods is both incredibly fast and incredibly accurate, and in the quest to find it, it is

essential to determine which approximations are acceptable to describe a system, and thus

which physics are most important to preserve, when designing computationally affordable

methods.

Systematic improvability. In order to balance the physical accuracy and computa-

tional affordability of a method, the method should be systematically improvable such that

it is very clear how a calculation can be pushed in order to recover more accurate results.

Demonstrated on the water molecule for configuration interaction (CI) theory, Møller-Plesset

(MP) perturbation theory, and coupled cluster (CC) theory, one can decrease the order of

a relative approximation and recover further electron correlation, however often at a dimin-

ishing return. For example, CISD, which contains contributions from all singly and doubly

excited determinants, recovers 94.5% of the correlation energy missing from RHF. Including

triples in the truncated CI wave function recovers only an additional 1.5% of the correlation

energy, while including all excitations through the quadruply excited excitation manifold

recovers a further 4% of electron correlation energy and is nearly exact. Beyond quadruple

excitations, maximally only 8 meV of correlation energy can be recovered.[118] This trend

is also seen in higher order applications of MP and CC theories, where the lowest order

expansions recover the most significant physics, and higher order expansions systematically

converge to the exact energy.[118] This systematic improvability allows us to understand

how to balance our approximations versus our accuracy, giving us insight in how we can

improve our ansatz in order to achieve better understanding of the system. In contrast,

methods based on density functional theory (DFT) have functional dependence, and there

is not always a well-defined approach to improving the quality of the results. While there is

extensive research into answering the question of “Which functional should I choose?” and

there are certainly functionals that are more reliable in specific contexts,[119, 120] this is

not necessarily the same as systematic improvability, which is particularly valuable when the

correct description of a system is not yet clear or well-understood.
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1.4 Standard Ansatzes for Electronically Excited States
In this section, the author reviews the most widely used ansatzes within excited state elec-

tronic structure theory. Generally, the most prominent ansatzes fit into three categories –

configuration interaction wave functions based on hierarchical excitations of the HF refer-

ence wave function, linear response theories, and non-Aufbau filled single determinant wave

functions. The overall cost and accuracy of each method is contextualized with studies of

systems described in Sec. 1.1 which quite uniformly highlight the same few themes – the

importance of orbital relaxation, the need for equitable treatment of valence, Rydberg, and

charge transfer excitations, and the computational demands of realistic systems.

All of these methods have individual strengths and weaknesses, and together they high-

light potential goals for newly developed ansatzes, including (i) state-specific, fully relaxed

excited state orbitals, (ii) compact representations of correlation in excited state wave func-

tions that still retain the necessary physics of an excited state, such as size consistency and

spin purity, and (iii) systematic improvability.

Configuration Interaction
The full configuration interaction (FCI) wave function is a linear combination of the reference

determinant, most often the Hartree-Fock determinant, and all possible excitations from the

reference determinant

| FCIi = c0|�0i+
N

occ

X

i

N
vir

X

a

cai â
†
aâi|�0i +

N
occ

X

ij

N
vir

X

ab

cabij â
†
aâ

†
bâj âi|�0i

+...+
N

occ

X

ij...k

N
vir

X

ab...c

cab...cij...k â
†
aâ

†
b...â

†
câk...âj âi|�0i

(1.19)

where the first summation is the singles manifold, i.e. the set of all determinants constructed

by exciting one electron in the reference wave function, the second summation is the doubles

manifold, and the excitation order increases by one until terminating at the final summation,

which is the manifold of determinants in which all electrons in the reference wave function

are excited. The FCI wave function is most often solved iteratively to locate only the

first several states. The orbitals of the reference wave function are not optimized in FCI,

leaving just the linear coefficient expansion to solve via iterative eigensystem-solving methods

as diagonalizing the full Hamiltonian is prohibitively expensive except for the smallest of

systems.[108]

Though exact within the Born-Oppenheimer approximation and the selected basis set, as

previously discussed, the FCI wave function scales combinatorially with the size of the sys-

tem,[108] resulting in its limited applicability, with the largest converged FCI calculation to

date consisting of 22 electrons in 22 orbitals, or approximately 500 billion determinants.[121]

Therefore, applications of FCI to even the smallest systems discussed in Sec. 1.1 – a single

nucleotide or chromophore – are infeasible with modern computing resources.
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Truncated Configuration Interaction

One route towards making the FCI wave function more tractable is through hierarchical

truncations of excitation manifolds. For example, configuration interaction singles (CIS)

includes only the reference determinant and all possible singly excited determinants and

scales as O(N4
),[109] while configuration interaction singles and doubles (CISD) includes

the entirety of the CIS wave function as well as the manifold of double excitations and

scales as O(N6
).[108] As in FCI, the orbitals are not optimized in truncated CI, leaving

just the linear coefficient expansion to solve iteratively. Despite the significant reduction

of terms compared to FCI due to the truncation, these CI wave functions are still not par-

ticularly compact, leading to relatively slow convergence although reasonable scaling.[108,

122] With advancements in the use of graphical processing units, CIS calculations on sub-

stantial ⇡-conjugated systems and solvated chromophores with hundreds (and nearly one

thousand) second-row atoms, including oligothiophene dendrimers, the photoactive yellow

protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water

molecules, have been achieved.[123]

These truncated CI wave functions are systematically improvable in that as one increases

the order of excitation manifold included in the wave function, more electron correlation is

recovered.[122] However, that means that the truncated CI wave functions with the most

approximations relative to FCI also have the most degradation in their physical accuracy.

CIS, for example, fails to relax excited state orbitals, resulting in excitation energies that

are typically 0.5-2 eV too large[109, 115, 124–126] (as such, it is interesting to note that

a CIS energy is an upper bound to the exact singly-excited state’s energy within the ba-

sis set).[122] Moreover, CIS does not have equitable performance between valence and CT

excitations, as the latter often involves significant changes in electron density and orbitals,

resulting in CT excitation energy errors that are more than an eV larger than errors in

valence excitations.[127] Thus, despite the incredible system size that can be treated with

CIS, the shortcomings of this method prevent it from accurately treating systems which

need balanced descriptions of these excitations, including the DNA nucleobase dimers and

the organometallic dyes discussed in Sec. 1.1. Higher-order truncated CI methods will also

not be able to reliably model such systems, but for a different reason – these methods lack

the scaling properties of size consistency and size intensivity. Accordingly, the descriptions

of large molecules by CISD and all further truncated CI wave functions will systematically

deteriorate as the number of electrons increases.[108]

Orbital Optimized Configuration Interaction Singles
An interesting method demonstrates how even partially reoptimizing the reference orbitals

in CIS can restore balanced descriptions of CT and non-CT excitation energies at only

twice the cost of a CIS calculation. Orbital optimized CIS (oo-CIS),[128] corrects the CIS

energy and wave function by optimizing the reference orbitals with a single Newton-Raphson

optimization step. To do this, the developers first perform a standard CIS calculation,
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computing ECIS and | CISi. They then consider how unitary rotations of the reference

wave function’s orbitals would affect the CIS energy. As EHF and thus ECIS are invariant

to occupied-occupied and virtual-virtual orbital rotations,[108, 122] expanding ECIS with

respect to occupied-virtual orbital rotation parameters {✓} and solving for the optimal orbital

rotation parameters that minimize ECIS(✓) reveals their dependence on the inverse of the

Hessian HCIS, where

(HCIS)ia,jb =
@2ECIS

@✓ia@✓jb
(1.20)

which is not only expensive to compute, store, and invert, it also is not necessarily positive

definite and thus not necessarily invertible. Avoiding the complications created by HCIS and

keeping the cost-scaling of oo-CIS low, the developers chose to replace the CIS Hessian with

the HF Hessian, resulting in the following expressions for the oo-CIS energy.
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Although the one-shot Newton-Raphson optimization step is incomplete and the orbital

relaxation is partially dependent on ideal rotations for the ground state, this straightfor-

ward one-step orbital optimization led to meaningful corrections to CIS excitation states,

with oo-CIS excitation energies rivaling those of CIS with a perturbative doubles correction

(CIS(D)).[129] Moreover, the accuracy of oo-CIS in charge transfer excitations was equitable

to its accuracy in valence excitations.[128] These results were particularly intriguing as the

oo-CIS method’s cost scaling allows for the method’s treatment of systems with several hun-

dreds of second-row atoms. Additionally, with its balanced description of valence, Rydberg,

and CT excitations, applications to real systems like large chromophoric dyes and solvated

DNA fragments are within reach, although perhaps the overall accuracy still leaves a bit

to be desired. This demonstration that meaningful orbital relaxations can be achieved at

O(N4
) cost inspired the excited state mean field (ESMF) wave function (to be discussed

extensively in Chapter 3) which fully relaxes the excited state orbitals of a CIS-like wave

function.

Complete Active Space Self Consistent Field
The final configuration interaction ansatz to be discussed in this introduction is the complete

active space (CAS) wave function, which takes a different approach to FCI truncation.[112,

130, 131] Rather than selecting only certain orders of excitation to include in the wave func-

tion, the CAS wave function partitions the orbitals in the reference state into three categories:

core orbitals, active orbitals, and virtual orbitals. As depicted in Fig. 1.7, the core orbitals

are low energy, doubly occupied orbitals that are not expected to be significantly involved

in a system’s excited states. In contrast, the active orbitals are the mid-energy orbitals that

are most likely to participate in the system’s excitations and will include the highest energy

occupied molecular orbitals and the lowest energy unoccupied orbitals from the reference
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Figure 1.7: CASSCF wave function

space. The CAS wave function is a linear combination of the reference determinant and all

possible excitations within the active orbitals. Last and certainly least, the virtual orbitals

are high energy orbitals that were unoccupied in the reference wave function and remain as

such within the CAS wave function.

Unlike in FCI and the hierarchically truncated CI methods, the CAS self consistent field

optimization (CASSCF) optimizes the excitation configuration weights in addition to the

molecular orbitals within the reference wave function to obtain the total electronic wave

function with the lowest possible energy. The CAS wave function is given by

| CASi = eX̂
X

µ

cµ| µi (1.22)

where

ˆX is an anti-Hermitian operator and eX̂ thus performs unitary rotations on the molec-

ular orbitals, and where the sum runs over the manifold of all possible determinants within

the active space.[112, 130]

Due to the inclusion of orbital optimization, the resulting CAS wave function is consid-

erably more flexible within the active space than truncated CI methods and, particularly for

strongly correlated systems with degenerate or nearly-degenerate electronic configurations,

is considered a qualitatively correct reference wave function upon which higher order multi-

reference methods can be applied to recover the dynamical correlation lacking in the CAS

wave function.[130] One particular limitation of the orbital rotations, however, is that if mul-

tiple CAS wave functions are optimized simultaneously, the orbitals are most often optimized

such that a weighted average of the sum of the energy of all states is minimized, meaning the

orbitals are not ideal for any specific state and can create imbalances if the changes leading

to the optimal orbitals of one state contradict the changes needed for others. While ame-

liorated by the recently developed state-specific CASSCF optimization method,[132, 133]

state-averaging is still the most common approach to CASSCF optimizations.
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As it still includes the entire excitation manifold within the active space, CAS scales

combinatorially with system size, but the wave function is significantly more compact than

the FCI wave function.[112, 130] Even in the example given in Fig. 1.7, the FCI wave

function consists of 1,225 determinants while the CAS wave function has only 9 determinants.

However, defining the active space actually poses a problem for CASSCF methods as the

end result will vary with respect to active space choice.[134] This is because in the limit

where the active space includes all orbitals and electrons, CASSCF becomes equivalent to

FCI, and in the limit where the active space includes no electrons, CASSCF is equivalent

to the reference method (normally HF). It is thus important to choose the “best” active

space that will include the most important orbitals involved in the excited states and still

be computationally affordable, a choice that is not always apparent.[130]

CASSCF is routinely utilized as the quantum mechanical component of many molecular

dynamics studies of nucleobases. It has been used in QM/MM[135] simulations to investi-

gate the de-excitation pathways of individual,[136, 137] stacked,[51] and hydrogen-bonded[49,

138] nucleobases as well as to provide insight into the excited reaction mechanism of thymine

dimerization.[139] Also employed in mixed quantum-classical surface-hopping methods,[140]

CASSCF is able to bring insight into the relaxation dynamics[141, 142] and intersystem

crossing mechanisms[143] of single nucleobases. Additionally, CASSCF and its higher order

correlation methods CASPT2[144–147] and MRCI[148–150] were used in conjunction with

nonadiabatic trajectory dynamics to determine that there is no single relaxation mechanism

in any of the five DNA and RNA nucleobases, but rather a “pool of reaction pathways.”[151]

Consider, however, that the largest fully-optimized CASSCF calculations to date have a 20

electron, 20 orbital active space and exploit the highest abelian point group symmetry (D2h)

for symmetry simplifications, leading to wave functions containing more than 4 billion deter-

minants.[121] While an incredible feat of software engineering and massive parallelization,

this active space limit is still often inadequate to treat systems with transition metals, which

require at least the valence s, p, and d orbitals (9 total orbitals) to be in the active space to

properly describe static correlation,[152] if there are important contributing ligands or other

metals. While orbital localization procedures can reduce the number of orbitals needed to

capture the static correlation in such systems,[153, 154] the restrictive computational scaling

of CASSCF and the involved nature of the CASPT2/CASSCF approach[155] demand that

the theorist make nontrivial choices about the number of states and their relative weights

in state-averaged CASSCF calculations and what areas of Hilbert space are most important

to include in the active space,[36] as these may lead to different results. For example, a

CASSCF and its higher order correlation method NEVPT2[156–158] study of the electronic

spectra of the N3 organometallic dye (depicted in Fig. 1.5) found that with an active space

of 14 electrons and 12 orbitals, NEVPT2 calculations on wave functions originating from

15-state state-averaged CASSCF calculations were significantly different from NEVPT2 cal-

culations on wave functions originating from 20-state state-averaged CASSCF calculations,

determining that including more roots with different electronic distributions in the state-

averaged CASSCF optimization deteriorated the quality of the zeroth-order wavefunction

and, as a result, the reliability of the NEVPT2 description.[47] Additionally, in a study of
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cytosine’s singlet excited state decay paths, varying the size of the active space led to signif-

icant differences in the character of the lowest singlet n ! ⇡⇤
excitation, with a 12 electron,

12 orbital active space exciting an electron from the oxygen lone pair, while a 12 electron,

11 orbital active space excited an electron from the nitrogen lone pair.[36] Moreover, choices

regarding active space and state-averaging could potentially explain theoretical results that

lead to conclusions counter to what experiment has demonstrated, such as in the disagree-

ment between theory and experiment regarding which singlet excited state of cytosine and

uracil undergoes intersystem crossing to generate the triplet ⇡ ! ⇡⇤
state.[23, 39–41] In

short, while CASSCF has been successful in treating systems such as those described in Sec.

1.1, the choice of the active space and the consequences of state-averaging can significantly

alter final results and conclusions.

Linear Response
In parallel with laboratory experiments where a molecular system’s response to external

fields like electromagnetic fields is probed to better understand properties of the system,

linear response theory utilizes small perturbative potentials to nudge a molecule out of ground

state equilibrium, allowing the wave function to evolve into a superposition of many electronic

states such that properties of excited states can be measured in the virtual environment.

A general prescription for linear response theory that is applicable in both wave function-

based and density-based methods begins with identifying a time-dependent observable hAi
and expressing its evolution through time in response to a frequency-dependent external

perturbation V (!). A critical assumption in response theory is that the external potential is

significantly weaker than the molecule’s internal potential, allowing the applied potential to

be treated perturbatively. Comparing the hydrogen atom, which has a ground state energy

of ⇡ 0.5 Ha and where the most probable distance between the electron and the proton

is given by the Bohr radius, a0 ⇡ 0.5 Å, and thus an internal potential on the order of

10

11
eV/m, to a typical experimental electric field set up of 10

3
eV/m,[159] one sees that

a perturbative treatment of the external potential is reasonable. Therefore, the first order

expansion of the time evolution of hAi is given by

hAi = hAi(0) + hAi(1) (1.23)

hAi(0) = h t=0|A| t=0i (1.24)

hAi(1) =
Z 1

�1
hhA;V (!)ii!e�i!td! (1.25)

hhA;V (!)ii! =

1

~
X

k 6=0

✓h t=0|A|kihk|V (!)| t=0i
! � !k0

� h t=0|V (!)|kihk|A| t=0i
! + !k0

◆

(1.26)

where in the final equation, which is the linear response function and is typically referred to

as the sum-over-states expression or the spectral resolution, !k0 is related to the excitation

energy from the ground state to the k-th excited state via ~!k0 = Ek �E0, where Ht=0|ki =
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Figure 1.8: Breakdown of linear response theory

Ek|ki. Since the idea of linear response theory was to not directly compute the eigenvectors

and eigenvalues of the time-independent Hamiltonian, we are missing information for how

to compute Eq. 1.26. While one could scan over frequencies ! to locate the linear response

function’s poles, i.e. where ! = ±!k0, an alternative route exists that utilizes the linear

response equation, which has the general form of

(H � !S)�(1)(!) = �V (1)
(!) (1.27)

where �(1)(!) is a vector containing the first-order time-dependent parameters of the wave

function (or density), V (1)
(!) is a vector dependent on �(1)(!) and V (!), ! is the pertur-

bation frequency, and H and S are the ground state Hamiltonian and overlap matrices,

respectively.[160]

Naively, one could attempt to directly solve Eq. 1.27 for �(1)(!) by inverting (H � !S), a

task that quickly grows computationally infeasible as the number of elements in each ground

state matrix is equal to the square of the number of parameters in the wave function (or

density) and algebraically impossible at values of ! for which (H � !S) is singular. Alter-

natively, one could use an iterative procedure to solve Eq. 1.27 without matrix inversions,

retrieving the excited states parameters that way and then using that information to solve

for observables as in Eqs. 1.23-1.26.[160]

When linear response is combined with an approximate ansatz whose tangent space (into

which linear response reaches) is limited by the ansatz flexibility, there is often an implicit

assumption of similarity between the excited states and the ground state that is related to

the limitations of this tangent space. However, this is not necessarily a valid assumption.
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For example, excitations of interacting systems generally involve mixtures of multiply excited

determinants, and states with significant multiply excited character could exist outside the

space of singly excited determinants that comprise the ground state’s tangent space (see Fig.

1.8), and linear response theory would break down.

Equation-of-Motion Coupled Cluster Singles and Doubles

A widely adopted method for computing electronically excited states, equation-of-motion

coupled cluster singles and doubles (EOM-CCSD) is an O(N6
)-scaling, well-benchmarked,

linear response method in which one can simultaneously compute many excited states.[15,

161–165] Despite the existence of linear response coupled cluster (LR-CC) methods which

are derived in accordance with traditional response theory, the author chooses to focus on

the EOM-CC formulation as the energies of LR-CC methods are identical to the energies

of the corresponding EOM-CC method,[166] and EOM-CC methods are more widely used

than LR-CC methods.

The ground state CCSD wave function is defined as the following

| CCSDi = eT̂1+T̂2 | 0i (1.28)

ˆT1 =

N
occ

X

i

N
vir

X

a

tai â
†
aâi (1.29)
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1
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X
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X
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tabij â
†
aâ

†
bâj âi (1.30)

where the doubles cluster operator

ˆT2 describes important electron pair interactions and the

singles cluster operator

ˆT1 relaxes the orbitals in response to the field generated by said

interactions.

The EOM-CCSD wave function is given by the follow parameterization.

| EOM-CCSDi = ˆR
⇣

eT̂1+T̂2 | 0i
⌘

= eT̂1+T̂2

⇣

ˆR| 0i
⌘

(1.31)
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rabij â
†
aâ

†
bâj âi (1.32)

In this formulation, R is a linear excitation operator that commutes with eT̂ , and thus can

be considered to either act on the CCSD ground state like the first definition in Eq. 1.31

or to excite the reference state like the second definition in Eq. 1.31. From the second

interpretation of the EOM-CCSD wave function, two potential limitations of the EOM-

CCSD wave function are elucidated. First, since the cluster operator exp[

ˆT ] was optimized

for the ground state, it provides a sub-optimal description of electron correlation for the

excited states generated by

ˆR| 0i.[167] Second, while changing the reference orbitals within
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| 0i may not significantly alter the ground state CCSD energy and wave function, it may

significantly alter EOM-CCSD results. As the linear combination of ground and excited

wave functions generated by

ˆR| 0i is dependent on the many-electron basis functions within

| 0i, the ability of

ˆR| 0i to represent the excited state in question is also dependent on | 0i.
Therefore, the choice of the reference wave function is in and of itself a parameter of the

EOM-CCSD wave function.[168, 169] This reference dependence was highlighted in a study

individual nucleobase monomers where comparing EOM-CCSD’s performance when using a

diffuse versus a non-diffuse basis set led to distinct, nonsystematic errors in the treatment

of valence and Rydberg states.[53]

Furthermore, EOM-CCSD is unable to relax orbitals following a double excitation. Thus,

it overestimates the interaction energy between those doubly occupied orbitals, suppressing

and in some cases drastically underestimating the doubly excited character in a wave func-

tion. This error is mitigated by including the effects of triple excitations.[161, 165] In a

series of benchmarks that investigated individual nucleobases both solvated and in vacuo,

hydrogen bonded guanine-thymine and guanine-cytosine pairs, and stacked adenine-thymine

and guanine-cytosine pairs, comparisons between EOM-CCSD and higher order (and higher

scaling) EOM-CC methods that include effects of triple excitations demonstrated that the

perturbatively-corrected, O(N7
)-scaling EOM-CCSD(T) method lowered EOM-CCSD ex-

citation energies by 0.1-0.3 eV to match experiment within 0.1 eV,[53, 55, 161–165, 170]

with the largest adjustments in CT states.[53] In some cases, including the effects of triple

excitations changed the ordering of CT excitations.[53] It seems, therefore, that for quanti-

tatively accurate descriptions of nucleotide systems, triples contribution is unavoidable.[53,

161, 165] While quite accurate, these triple corrections are rather expensive[53, 165] with

their range of applicability limited to about 20 second-row atoms.[53] While there have been

studies applying EOM-CCSD to relatively large DNA fragments, such as a DNA fragment

consisting of 5 adenine-thymine pairs and no sugar backbone (95 second row atoms),[52]

there are some studies[171, 172] yet few thorough benchmarks of EOM-CCSD applied to the

types of dyes relevant to DSCs due to the need for many virtual orbitals to properly describe

valence and Rydberg states and the relative cost of the method. Based on the previously

discussed benchmarks, one would expect similar results in these systems – a systematic error

of a few tenths of an eV higher than experiment, with a slight bias that artificially raises CT

excitation energies due to the lack of second-order orbital relaxation.

Time-Dependent Density Functional Theory

Doubtlessly the most widely used method for studying singly excited states, time-dependent

density functional theory, or TD-DFT, is a size consistent, spin pure, O(N4
) scaling method

that calculates excitation energies by analyzing the linear time-dependent response of the

time-independent ground state electron density to a time-dependent external electric field.

For an excellent derivation of TD-DFT formalism, the author refers readers to Ref. [109],

a very thorough and comprehensive review of CIS, TD-HF, and TD-DFT by Dreuw and
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Head-Gordon. The critical takeaway is the canonical TD-DFT eigenvalue equation



A B
B⇤ A⇤

� 

X
Y

�

= !



1 0

0 �1

� 

X
Y

�

(1.33)

where X and Y are excitation and de-excitation amplitudes, respectively, ! is the excitation

energy, and elements of A and B are given by

Aia,jb = �ij�ab (✏a � ✏i) + (ia|jb) � cHF(ij|ab) + (1 � cHF) (ia|fxc|jb) (1.34)

Bia,jb = (ia|bj) � cHF(ib|aj) + (1 � cHF) (ia|fxc|bj) (1.35)

where cHF is the amount of HF exchange in the chosen exchange potential, and the terms

involving fxc are the response of said exchange potential.[109]

One common approximation to TD-DFT (and TD-HF) is the Tamm-Dancoff Approxi-

mation (TDA), in which the matrix elements of B are zeroed out, and Eq. 1.33 becomes

simply AX = !X. Interestingly, TDA-TD-HF is equivalent to CIS, and TDA-TD-DFT

and TDA-TD-HF differ only in choice of exchange potential. Further connections between

TD-DFT, TD-HF, and CIS are apparent upon analysis of Eqs. 1.34 and 1.35. Despite being

derived specifically for a hybrid density functional, i.e. one that contains a non-zero percent-

age of HF exchange, the limiting case of cHF = 0 returns the expressions of A and B when

TD-DFT is used with a pure density functional, and the limiting case of cHF = 1 returns the

TD-HF expressions for A and B.[109]

While theoretically exact, TD-DFT parallels ground state Kohn-Sham DFT in that the

exact time-dependent exchange-correlation action functional (also referred to as the exchange

kernel or the density functional) is unknown and must be approximated. Rather than devel-

oping density functionals specifically for excited states, it is most common to assume that the

adiabatic local density approximation (ALDA), which states that the electron density varies

slowly in time, is valid. This allows the exact, non-local in time, time-dependent density

functional to be replaced with a local, time-independent density functional – including those

developed for ground state DFT. One effect caused by adopting the ALDA is TD-DFT’s no-

table sensitivity to choice of density functional. This is because problems with ground state

exchange-correlation functionals, such as issues describing hydrogen bonding and dispersion

interactions[173] and bond breaking and bond formation,[174] carry over into the excited

state method. Therefore, studies that involve these complicated covalent interactions and

bond changes, such as that with TD-DFT/M052X[175] which aimed to elucidate photo-

chemical and photophysical decay routes of the thymine deoxy-dinucleotide[176], are further

complicated as effects of the exchange-correlation functional in both ground and excited

states must be thoroughly understood in order to trust the conclusions. A specific example

highlighting disagreements between density functionals occurs in studies regarding the ultra-

fast de-excitation of singlet adenine, in which a new deactivation pathway was identified at

the TD-DFT/B3LYP level of theory,[37] but TD-DFT/!B97X-D[177] in conjunction with

surface-hopping dynamics completely failed to predict the ultrafast de-excitation.[46] The
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sensitivity of TD-DFT to density functionals is such that experts suggest always compar-

ing its results to wave function-based benchmark calculations when available and performing

multiple calculations with differing density functionals to check for functional sensitivity.[109]

Despite this clear drawback of TD-DFT, the method is incredibly accurate for valence

excited states, with errors typically in the range of 0.1-0.5 eV when using a sufficiently large

basis set. This accuracy is due to the leading term of Eq. 1.34, (✏a � ✏i), which is typically

a good approximation to a valence excitation energy when using Kohn-Sham (KS) orbitals.

However, the accuracy of TD-DFT breaks down severely, with errors of several eV, in a num-

ber of scenarios.[109] Let us first discuss Rydberg states. Since standard density functionals

decay faster than

1
r , where r is the electron-nucleus distance, the total energy of the system

as well as the core and valence KS orbital energies are all upshifted quite significantly relative

to exact KS theory. While the very high-energy, diffuse, Rydberg orbitals are also upshifted

relative to their exact KS counterparts, the shift is significantly smaller than that experi-

enced by the core and valence orbitals. Thus, orbital energy differences between orbitals

within or below the valence range are still good approximations to excitation energies, while

valence-Rydberg orbital energy differences are too small. Since orbital energy differences

dominate in Eq. 1.34, especially when orbital overlaps are negligible, the resulting Rydberg

excitation energies are often severely underestimated.[178–181] Additionally, consider how

Rydberg state orbitals must change relative to ground state orbitals. The electron density

around the nucleus changes drastically in Rydberg excitations compared to how it changes

in valence excitations, meaning the orbitals in Rydberg states are more different from the

ground state orbitals than valence-excited state orbitals are from the ground state orbitals.

Therefore, it can be concluded that the assumptions of linear response theory are more likely

to fail for Rydberg states. The second scenario in which TD-DFT fails is in excitations with

significant doubly excited character. While the exact linear response formalism of TD-DFT

allows for multiplet excitations, ALDA restricts TD-DFT to single excitations exclusively,

and doubly excited character cannot be recovered by TD-DFT unless nonadiabatic correc-

tions are included.[109, 182] Another notable motif of excitations in which TD-DFT fails is

in charge transfer excitations.[183] Consider a CT excitation between two hydrogen atoms,

well-separated at distance R. Assuming a pure density functional and that the hydrogen

atoms’ orbitals do not overlap, Eq. 1.34 reduces to Aia�,jb⌧ = ��⌧�ij�ab (✏a � ✏i) and Eq. 1.35

reduces to 0. Notably, any non-zero terms in A completely lack dependence on the electrons’

positions in the excited state. Therefore, the asymptotic behavior of the energy with respect

to R is not

1
R as expected for the electrostatically attracted hydrogen cation and hydrogen

anion, but is instead a constant and evidence of self-interaction error. While range-separated

density functionals, which replace the DFT exchange potential with HF exchange when elec-

trons are well-separated,[184–192] have partially ameliorated the self-interaction error in CT

excitations, there is still dependence on the parameterization of the range-separation, and

the methods are not systematically improvable.[44, 73, 193–197] Moreover, range-separated

hybrid functionals do not even fully alleviate the problems TD-DFT experiences when treat-

ing CT excitations. Due to the ALDA, while the particle and hole orbitals are relaxed by

TD-DFT, the other orbitals are not. This is because the ALDA, as previously discussed,
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cannot capture double excitations. Therefore, as the leading order term of the Taylor expan-

sion of a fully orbital-relaxed singly excited state is a linear combination of doubly excited

determinants, when using a local-in-time exchange-correlation functional in TD-DFT, the

substantial changes in orbital shape with respect to the ground state that are necessary for

accurate descriptions of CT are absent.[198–200]

Several benchmark comparisons of TD-DFT within nucleobase systems, which as men-

tioned in Sec. 1.1 are characterized by valence, Rydberg, and CT excitations, found that

TD-DFT errors tended to be nonsystematic and significantly larger than those of CASPT2

and EOM-CCSD, often resulting in different orderings of excited states.[53, 55, 170, 201, 202]

For example, within both stacked guanine-cytosine and adenine-thymine nucleobase pairs,

TD-DFT/M06-HF[203] and TD-DFT/CAM-B3LYP[204] overestimate most transition en-

ergies, while others are nonsystematically underestimated, resulting in state orderings that

contradict results from high-level EOM-CC methods accepted as benchmarks.[53, 205] When

other functionals, such as TD-DFT/LC-PBE0,[44] give quite good energetic results for CT

excitations of nucleobase monomers, all other excitation energies are too high,[170, 201, 206,

207], with TD-DFT/B3LYP[208, 209] “not... good enough to predict even the observable UV

spectrum of the [individual] nucleobases”.[170] Similar results were found in dye-sensitized

solar cell benchmarks.[89, 171, 210–212] The performance of TD-DFT/MPW1K[213] in five

different organic dyes deteriorated as CT excitation character increased[210] and “erratic

lowering of the excitation energy” was seen in ruthenium organometallic dyes, which are

characterized by strong charge transfer excited states.[89] Furthermore, no functionals were

able to equitably treat all types of excitations in the trans-(Cl)-Ru(bpy)Cl2(CO)2 dye,[212]

and within a survey of functionals used with TD-DFT to study the N3 dye on a (TiO2)82 slab

(⇠5000 electrons!), no functionals were able to simultaneously reproduce the optical absorp-

tion spectrum and correctly predict the favorability of the electron injection pathway.[89]

Due to the failures of TD-DFT in these scenarios, it is not as broadly applicable as

other methods – a serious frustration for theoretical and computational chemists as TD-

DFT has particularly amicable cost scaling and is able to treat systems of truly impressive

size. Through these benchmarks of systems characterized by charge transfer excitations, it

is evident that fully relaxed excited state Kohn-Sham orbitals are necessary to increase the

dependability of TD-DFT methods.

Non-Aufbau Filled Single Determinant Wave Functions
The general idea governing non-Aufbau filled single Slater determinant wave functions is to

take advantage of the compact, easily interpretable, computationally inexpensive ansatz and

existing code architecture for HF theory or DFT. To model excited states, one takes the

ground state single determinant wave function then singly-occupies the valence orbitals that

participate in the excitation and optimizes the orbitals in this non-Aufbau filled determi-

nant.[93, 198, 214]
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�-SCF

�-SCF is such a single-determinant excited state method that scales as O(N3�4
) depending

on the inclusion of HF exchange,[185, 215] and is a similarly reliable predictor of excitation

energies in organic chromophores as TD-DFT.[198, 216] Unlike TD-DFT, �-SCF solutions

are time-independent, static excited states. The procedure for HF based �-SCF (�-SCF-

HF) is identical to that for DFT (�-SCF-DFT) as the HF and DFT SCF equations are the

same except in their expression of the Fock matrix F which includes effects from the density

functional in the latter. A general �-SCF excited state method begins, like most, with a

ground state HF or DFT SCF optimization. The occupied and virtual orbitals involved in

the desired excitation are then swapped, the resulting non-Aufbau filled determinant then

goes through the HF/DFT SCF cycle, the molecular orbitals are optimized, and the energy

is minimized. Since the �-SCF wave function consists of only a single determinant, the

molecular orbitals are not spin-restricted, nor is the wave function spin pure. If properties

of the spin pure excitations such as, for example, the first open-shell singlet excitation are of

interest, two �-SCF states must be computed – the “mixed-spin” state and one triplet state.

Since the singlet wave function

| Si = 1p
2

⇣

â†aâi + â†āâī
⌘

|�i�ī ...i =
1p
2

(|�a�ī ...i � |�ā�i ...i) (1.36)

is a linear combination of one of the single-determinant “mixed-spin” states

| M,"#i = â†aâi|�i�ī ...i = |�a�ī ...i (1.37)

| M,#"i = â†āâī|�i�ī ...i = �|�ā�i ...i (1.38)

and the two-determinant ms = 0 triplet wave function

| T i = 1p
2

⇣

â†aâi � â†āâī
⌘

|�i�ī ...i =
1p
2

(|�a�ī ...i + |�ā�i ...i) (1.39)

which is degenerate with both of the single-determinant ms = ±1 triplet states,

| T,""i = â†aâī|�i�ī ...i = �|�a�i ...i (1.40)

| T,##i = â†āâi|�i�ī ...i = |�ā�ī ...i (1.41)

the energy of the �-SCF singlet excited state can be expressed as

E��SCF
S ⇡ 2EM [{�M

i }] � ET [{�T
i }]. (1.42)

This spin purification process is only approximate within Kohn-Sham DFT because the

triplet determinant that generated ET was assumed to be degenerate to the ms = 0 triplet

state so was not obtained exactly via spin raising or lowering operators.[216–218] Further-

more, in �-SCF-DFT, as the density is optimized, the spin purity of the ansatz is lost. As
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shown in a �-SCF-DFT study of 16 large organic chromophores, the value of h ˆS2i for the

mixed state and for the triplet states deviated from spin purity with an RMSD of 0.032 and

0.038 a.u., respectively.[217] Since the mixed and triplet states are not spin pure, the spin

purification procedure in Eq. 1.42 is approximate and will not return the excitation energy

of a spin pure singlet.

In large chromophoric dyes such as those that could be used in organic photovoltaics,

while �-SCF-DFT and TD-DFT have statistically similar accuracy for the singlet states, the

methods disagreed significantly in some excitations, with discrepancies in excitation energies

of up to 0.6 eV.[217] These fluctuations can be traced back to the limited single-determinant

�-SCF-DFT ansatz. Relative to TD-DFT, �-SCF-DFT is less flexible in its descriptions

of excitations as the ansatz can only be generated from single orbital replacements.[219]

In excitations strongly dominated by only one excitation however, �-SCF-DFT rivals the

accuracy of TD-DFT, with �-SCF-DFT modelling triplet excitations in small organic chro-

mophores with an RMSD about 0.05 eV closer to the benchmark results than TD-DFT.[198]

This accuracy is explained by �-SCF-DFT’s ability to fully relax the orbitals for the excited

state of interest.[198] For this reason, �-SCF-DFT also successfully models charge transfer

excitations and, unlike TD-DFT, does properly capture the

1
R dependence of CT excitation

energies.[220]

With its ability to fully relax excited state orbitals for systems with hundreds of second

row atoms, �-SCF-DFT is a competitive excited state ansatz. However, its dependence on

density functionals, limited flexibility in the face of systems with multiple contributing single

excitations, and frustrating optimization problems (to be discussed further in Sec. 1.5) leave

a lot to be desired.

Restricted Open-Shell Kohn-Sham Theory

Designed for multiplet states that cannot be represented by a single Slater determinant,

Restricted Open-Shell Kohn-Sham Theory (ROKS) provides a formalism for modelling such

excited spin eigenstates within the DFT formalism without explicitly introducing symmetry

dependence into density functionals or introducing time-dependence.[221, 222] The multiplet

wave function is a linear combination of Slater determinants that share a spin-restricted basis

set and that have doubly occupied core orbitals and fixed-occupation valence orbitals. Since

minimizing the multiplet energy with respect to the density is equivalent to identifying the

fixed-occupancy molecular orbitals that minimize the energy, the ROKS target function for

a singlet state

EROKS
S = 2EM [{�i}] � ET [{�i}] (1.43)

has a very similar form as the �-SCF spin purification formula in Eq. 1.42, with the main

difference being that since the single-determinant “mixed-spin” and triplet states are opti-

mized simultaneously during the ROKS SCF procedure, they share an orbital basis. The

EROKS
S -minimization procedure is also formally an approximation because a Slater determi-

nant is not constructed in ROKS theory – that is, since the KS orbitals are associated with

a non-interacting reference system rather than the true wave function, the evaluation of the
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total spin angular momentum operator (a two-body operator) is not strictly possible in this

one-body picture without further approximations.[223, 224]

One pervasive problem in ROKS theory occurs when seeking the lowest singlet excited

state of the same symmetry as the ground state – orbital mixing between the two open

shell orbitals can result in a singlet excitation that strongly overlaps with the ground state

reference configuration.[216, 222, 223] The result of such mixing is a significantly red-shifted

excitation energy – which has been seen in studies of highly-conjugated polyenes[225], or-

ganic chromophores, and individual nucleobases – and can result in different orderings of

the excited states relative to accepted benchmarks.[216] In these studies, ROKS achieves

multiplet states with similar accuracy as those in �-SCF-DFT without experiencing varia-

tional collapse. However, another dilemma innate to density functional theories is once again

highlighted – the quality of ROKS and �-SCF-DFT singlet excitation energies are still de-

pendent on the chosen density functional.[223] Finally, Van Voorhis and co. highlighted a

strong dependence of ROKS on the basis set, finding that more diffuse basis sets substan-

tially lowered excitation energies for certain transitions, a behavior that was not corrected

by using different classes of density functionals.[216]

With the ability to treat significant systems, including zinc phthalocyanine (40 second

row atoms, one metal atom)[216] due to its competitive O(N3�4
) (depending on the presence

of HF exchange in the density functional) scaling[185, 215] and friendlier optimization than

�-SCF-DFT, ROKS is a competitive excited state ansatz, though its dependence on non-

systematically improvable density functionals and its artificial suppression of first singlet

excited state energies do leave room for improvement on the methodology.

1.5 Optimization Methods
A wave function or density ansatz is rendered impotent if it cannot be converged to an

approximate Hamiltonian eigenstate. Therefore, there are significant efforts being made to

design robust optimization methods that can overcome the complications associated with

finding excited states. Excited states are saddle points on the energy surface in the Hilbert

space,[92–94] and are inherently more complicated to locate with numerical optimization

techniques[92] and more susceptible to variational collapse. This problem is not assisted

by the fact that the Hilbert space hypersurface is extremely difficult to fully map out.[226]

Despite the inherent difficulty of excited state optimization, an assortment of optimization

methods have been developed for excited states. From orbital tracking, to modifications of

the Hilbert space energy surface, to state-targeting variational principles, the approaches

to excited state optimization run the gamut, and each optimization strategy has its own

advantages and drawbacks. For example, while a method need not be so easy to use that

it is considered a “blackbox”, large benchmarks or potential energy surface mappings would

benefit from procedures that are relatively controllable and predictable – not to mention

computationally affordable. Furthermore, strong initial guess dependence could hinder in-

vestigations into novel systems for which specific details about the electronic configuration
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of an excited state are unknown. Finally, locating a specific excited state amid a dense

manifold of potentially degenerate states remains a challenge for many of these optimization

techniques. Within this section, the author discusses several optimization methods, many

of which were taken into consideration in the development of the generalized variational

principle, which is discussed in Chapter 4.

Self Consistent Field Methods
As higher energy solutions to the SCF equations are increasingly being interpreted as mean

field approximations to excited states,[220, 226–231] optimization methods that utilize the

computationally efficient HF and DFT SCF cycles and seek such solutions are prevalent in

excited state optimizations. Two such SCF optimization methods are discussed here.

�-SCF and the Maximum Overlap Method

While the previously described �-SCF ansatz showed promisingly accurate excited state

energetics, the SCF optimization procedure is much easier described than computed. Unlike

in the ground state where orbitals are filled according to the Aufbau principle,[2, 98] the

protocol for selecting which orbitals are occupied in the excited state is less clear, particularly

when orbitals swap in energetic ordering or significantly change shape during the orbital

relaxation.[93, 198, 216, 219, 232–234] This uncertainty can force the user to make choices

about orbital occupations that may lead the optimization down different paths that end at

disparate states, and it is often unclear ahead of time how such decisions will change the final

outcome of the calculation. Additionally, one may experience an optimization phenomenon

known as occupancy sloshing, where the occupancy of orbitals flip in a continuous cycle

without convergence.[235] Thus, converging the �-SCF ansatz to a specific state can be quite

frustrating, and historically, use of the method declined due to the troublesome optimization.

Interest in the method was revitalized by a rather elegant solution for systematically

tracking non-Aufbau electronic occupations through the SCF procedure. This maximum

overlap method, or MOM, proceeds as follows. Consider an SCF procedure on a system

of Nele electrons and Nbas basis functions. At the beginning of each SCF iteration, the

current molecular orbital coefficients, Cold, are used to construct the Fock matrix F , and the

generalized eigenvalue problem

F [Cold]Cnew = SCnew✏ (1.44)

is then solved for the new molecular orbital coefficients Cnew and their energies ✏. Tradi-

tionally, the SCF algorithm would select the Nele orbitals with lowest orbital energies, i.e.

the Aufbau configuration, as the new molecular orbitals. In MOM, however, orbital overlap

matrix O is constructed according to

O = C†
oldSCnew, (1.45)
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where Oij quantifies the overlap between the i-th old orbital and the j-th new orbital. The

orbital overlaps are then used to compute projections, p, of the new orbitals onto the old

occupied orbital space via

pj =
N

ele

X

i

Oij =

N
bas

X

⌫

N
bas

X

µ

N
ele

X

i

(Cold)iµ Sµ⌫ (Cnew)⌫j . (1.46)

At a cost scaling of only O(N2
bas), all Nbas new orbital projection values {p} are computed,

and the Nele new orbitals with the largest projection values are selected for the next round

of the SCF cycle. Thus, MOM has returned the new occupied orbitals that overlap the most

with the span of the old occupied orbitals.[228] More than its history, MOM is not exclusively

a �-SCF-DFT method and can be applied to many types of SCF ansatzes, including �-SCF-

HF,[231] CCSD(T),[236] and CASSCF,[132] and can be integrated into direct-optimization

schemes.[237]

Though it has been successfully used in tandem with�-SCF-DFT to identify atomic Ryd-

berg states,[220] core excitations of small molecules,[228] intermolecular CT excitations,[220]

and the mixed spin and triplet spin excited states of a set of large chromophores that would

be of interest in organic photovoltaics such as �-carotene and phthalocyanine (40 second row

atoms, each),[217] there are systems in which MOM fails. As observed in the boron atom,

during the SCF cycle MOM can allow orbitals to drift through Hilbert space further and

further away from the initial configuration. When this happens, it is possible for the final

state to have very little overlap with the initial guess despite the projection metrics (Eq.

1.46) between each SCF cycle reflecting a very healthy, stable optimization.[227] Further-

more, while MOM reduces the frequency of variational collapse and occupancy sloshing, both

were observed in CASSCF/MOM studies of lithium hydride, ozone, and formaldehyde.[132]

Thus, while MOM is applicable to many types of methods and provides a systematic way to

track orbitals through optimizations, it could be improved by incorporating it with another

method that can target specific excited states.

SCF Metadynamics

Another approach to identifying higher energy HF solutions is SCF metadynamics.[238] In

this method, as new RHF solutions are identified via iterative energy minimizations, the

energy is modified with a Gaussian biasing potential according to

˜E = E +

X

n

Nne
��nd20n

(1.47)

where d20n = h 0|⇢0 � ⇢n| 0i and serves as a distance metric to describe the relative dif-

ferences in density between the present state 0 and the n-th previously located state. The

biasing potential increases the energy in the region surrounding the previously located roots,

effectively “filling-in” the minimum and removing the solution from the energy surface. Fur-

ther SCF optimizations on this modified energy surface should then avoid the roots already
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located and identify a new SCF solution. Designed to increase a user’s confidence that they

have identified the global, rather than local, minimum of the SCF equations, SCF meta-

dynamics can, in theory, be used to exhaustively obtain all solutions of the HF and DFT

SCF equations.[238] While SCF metadynamics has been used in tandem with HF theory to

create a reference wave function for density matrix embedding theory[239–241] and a basis

for nonorthogonal configuration interaction theory,[230, 242] there are perhaps some draw-

backs to this method. First, multiple SCF cycles are typically run in order to identify the

desired state.[238] Second, since SCF metadynamics can locate all SCF solutions, there can

be ambiguity in assigning states, in contrast with optimization methods which are optimized

specifically for one excited state.[241] Though no studies applying SCF metadynamics to the

applications in Sec. 1.1 were found, one might predict its usefulness in organometallic dyes

where there are many degenerate or nearly-degenerate excited states due to the presence

of one or more transition metals.[238] However, for systems with a very large number of

excited states, such as a DNA fragment, this method may not be the optimal choice due to

the rugged nature of the energy landscape.

Variational Principles
The extremization of a target function ⌦( (~⌫)), which is dependent on the wave function’s

variable parameters ~⌫, is the cornerstone of variational principle-based optimization methods.

Once the target function is identified, one typically can construct either a matrix equation

(Ax = b) or an eigenvalue problem (Ax = �x) based on ⌦ or its derivatives that ensure the

final parameterization of  (~⌫) occurs at a critical point of ⌦, i.e. where r~⌫⌦ =

~
0. Typically,

these equations can then be solved efficiently via iterative methods including, but certainly

not limited to, Newton and Quasi-Newton methods[243] or Krylov subspace methods[244,

245] such as the Davidson method.[246]

Energy Minimization

The most widely used variational principle is the ground state variational principle,

E0  h | ˆH| i
h | i (1.48)

⌦E( ) =
h | ˆH| i
h | i (1.49)

where the current wave function is | i and E0 is the exact ground state energy. Based on

the idea that the wave function | i can be described as a linear combination of Hamiltonian

eigenstates, | i =

P

i ci|�ii; ˆH|�ii = Ei|�ii, where the exact ground state energy of the

system E0 is strictly less than or equal to the remaining eigenvalues, one can show that

the current energy of | i must be greater than or equal to the exact ground state energy.



CHAPTER 1. INTRODUCTION 34

Therefore, locating the global minimum of target function ⌦E( ) will return the ground

state energy and wave function within the current ansatz.[2]

While powerful in identifying ground states in HF theory and the lowest few eigenvalues

in CI theories, attempts to use the ground state variational principle to locate higher-energy

excited states are plagued with variational collapse, an occurrence in an optimization in which

the the wave function deviates significantly from its initial state and optimizes to a different

energy stationary state. Consider the energy surface in Fig. 1.9, in which a wave function

dependent on variational parameters ⌫1 and ⌫2 undergoes energy minimization. Despite the

initial guess’s location at the yellow star and its proximity to excited state c, there are many

possible and more probable routes (depicted by yellow arrows) the optimization could take

that would lead the wave function into states a or b rather than c. As the excited state

cannot be the global minimum of ⌦E( ), variational collapse is a very realistic obstacle to

identifying the desired excited state that is quite likely to occur unless the initial guess for

the wave function is already very close to that of the targeted state. Thus, simply minimizing

the ground state variational principle without any other considerations in the optimization

is a particularly poor idea for excited states.

Variance Minimization

An alternative to energy minimization popular in Quantum Monte Carlo (QMC) methods,

variance minimization uses the statistical uncertainty of the energy as a metric to optimize

the wave function. Defined as

⌦�2
( ) = �2

( ) =

h |�E � ˆH
�2| i

h | i =

h | ˆH2| i
h | i � E2

(1.50)

�2
is equal to zero when | i is an exact eigenstate of the Hamiltonian. Therefore, minimizing

⌦�2
( ) with respect to | i provides optimization pathways for both ground and excited

states. However, �2
is at its global minimum of zero for every eigenstate, and this lack of

uniqueness can also result in variational collapse if the initial wave function is not sufficiently

close to the desired state. Although variance minimization has proven to be successful in

excited state optimizations, its utility decreases in scenarios where there are degeneracies or

near-degeneracies in the spectrum or when a “close-enough” initial wave function guess is

not available.[247–252]

Excited State Variational Principles

As a solution to the optimization issues experienced with energy and variance minimization,

excited state variational principles introduce the concept of state targeting or state specificity

to excited state optimizations. These variational principles are designed such that their global

minimum occurs for only one eigenstate which is selected via an identifying energetic target

provided by the user.
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Figure 1.9: Possible routes for variational collapse of E, �2
, and�SGM when targeting excited

state c

The following two excited state variational principles will be overviewed here.

ˆW1( ) = h |�! � ˆH
�2| i (1.51)

ˆW2( ) =
h |! � ˆH| i

h |�! � ˆH
�2| i

. (1.52)

Using energy targeting parameter !, which is set to an approximate value of the desired

eigenstate’s energy, both W1 and W2 essentially quantify the distance between the current

energy of the wave function and the targeted energy. The global minimum of

ˆW1( ) occurs

when the energy of | i is nearest ! and is unique except in cases of energetic degeneracy

or incredibly rare coincidences between the value of ! and the energy of the eigenstates

above and below it.[116, 253–255] In slight contrast, ! is a lower bound for the energy of the

targeted eigenstate when using

ˆW2, for which the global minimum occurs at the eigenstate
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Figure 1.10: Excited state variational principle targeting behavior

with energy nearest but greater than !.[256] The differing behaviors of

ˆW1 and

ˆW2 with

respect to ! are depicted in Fig. 1.10. In this scenario, ! is closer to the energy of | 1i than

that of | 2i. Therefore, the global minimum of

ˆW1 occurs at {E1, | 1i} while the global

minimum of

ˆW2 occurs at {E2, | 2i}.

While unappealing in deterministic quantum chemistry methods due to the expense of

computing h ˆH2i, excited state variational principles that include the square of the Hamilto-

nian are not cost-prohibitive in Quantum Monte Carlo (QMC) algorithms as these can avoid

explicitly squaring

ˆH by resolving the identity 1 =

P

m |mihm| between factors of

ˆH.

h | ˆH2| i =
X

m

h | ˆH|mihm| ˆH| i =
X

m

�

�

�

�

�

hm| ˆH| i
hm| i

�

�

�

�

�

2
�

�

�

hm| i
�

�

�

2

(1.53)

By drawing samples ⇠ from the probability distribution

�

�hm| i��2 via a Metropolis walk,[257]

the variational principle

ˆW1, for example, can be evaluated approximately to a controllable

statistical uncertainty using Monte Carlo integration through the following expression.[249,

255, 256]

ˆW1 ⇡
X

m2{⇠}

�

�

�

�

�

hm|! � ˆH| i
hm| i

�

�

�

�

�

2

(1.54)

Despite their state-targeting capabilities, another drawback of excited state variational

principles that include

ˆH2
and a static targeting parameter is their lack of size consistency.

Traditionally thought of as a property of wave function ansatzes, it is demonstrated in

Chapter 2 that an optimization method can also be a source of size consistency errors. In the
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upcoming chapter, the author presents an optimization algorithm that combines the ideas of

excited state variance principle minimization with variance minimization in order to restore

size consistency while rigorously maintaining state specificity. If not for the large prefactor

expense associated with QMC methods,[258] this algorithm would allow for QMC studies

of specific excited states within large complexes such as DNA fragments and organometallic

dyes. The algorithm does not, however, enable these excited state variational principles

to resolve degenerate eigenstates. As

ˆW1 and

ˆW2 are only dependent on energy-related

properties of the wave function, optimized solutions in the presence of a degeneracy can be

superpositions of states, depending of course on the initial guess and symmetry constraints.

To be discussed further in Chapter 4, these obstacles are completely hurdled by a novel,

broadly applicable, size consistent, generalized variational principle that avoids computing

h ˆH2i altogether, and instead minimizes a property deviation vector.

Energy Gradient Minimization
In a similar vein as variational principal minimization, one can directly search for stationary

points of the energy by minimizing functions dependent on the gradient of the energy such

that at convergence r~⌫E =

~
0.

This approach was used in the initial implementation of the ESMF method[117] as dis-

cussed in Chapter 3. Through the formalism of Lagrangian optimization, the overall goal

of the method was to target a specific state by minimizing an approximation to the excited

state variational principle

ˆW1 under the constraint that critical points of the Lagrangian

target function are also critical points of the energy, i.e.

L( ,~�) = h |�! � ˆH
�2| i + ~� · r~⌫E (1.55)

where

~� are Lagrange multipliers that are optimized in tandem with wave function pa-

rameters ~⌫. As previously mentioned, computing h ˆH2i is costly in deterministic quantum

chemistry methods, so Eq. 1.55 was modified with an approximation to

ˆW1,

L( ,~�) ⇡ �! � E
�2

+

~� · r~⌫E (1.56)

for which derivatives with respect to ~⌫ and

~� are as follows,

r~⌫L( ,~�) = �2

�

! � E
�r~⌫E +HE · ~� (1.57)

r~�L( ,
~�) = r~⌫E (1.58)

where HE is the Hessian of the ESMF energy. Note, however, that excited state solutions of

L( ,~�) are neither minima of L( ,~�), as it is unbounded from above and below due to the

constraint term, nor zeros of L( ,~�), as the first and second terms in Eq. 1.56 could cancel

each other when r~⌫E 6= ~
0, but rather high-index saddle points where rL =

~
0. As finding
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saddle points requires necessarily more complicated optimization procedures than finding

minima, we instead elected to minimize the target function

⌦( ,~�) =
�

�rL( ,~�)
�

�

2
(1.59)

which has a unique global minimum at the Hamiltonian eigenstate with energy closest to !
and is more amenable to Quasi-Newton optimization algorithms such as BFGS.[259–262] In-

corporating state targeting and energy gradient minimization, this approach provides a gen-

eral framework for ensuring that the correct stationary point is found even if a high-quality

initial wave function guess is not available, and further work in which analytic gradients of

the ESMF energy and ⌦( ,~�) were derived resulted in a more efficient implementation of

the optimizer than was realized in our initial pilot code.[263]

Very recently, additional innovations in energy gradient optimization methods have been

developed. The square gradient minimization (SGM) method, which seeks to minimize

�SGM, the squared norm of the gradient of variational principle f( ), with respect to the

wave function parameters ~⌫
�SGM( ) =

�

�rf( )
�

�

2
(1.60)

extends the efficient framework of the geometric direct minimization (GDM) method[264]

via a finite difference formulation that is numerically efficient and applicable to many wave

function ansatzes.[265] In this study, the system energy was used as f , although the authors

posit that the overall optimization algorithm is independent of the choice of the variational

principle of interest.[265] Since rE =

~
0 when the wave function is a eigenstate of the

Hamiltonian, it follows that �SGM is strictly greater than or equal to zero, with equality

occurring for every stationary state of the variational principle.

Just as with the excited state variational principles in Eqs. 1.51 and 1.52, one drawback of

energy gradient minimization methods that are only functions of E, rE, and its higher-order

derivatives is the inability of these methods to resolve energetically-degenerate eigenstates.

We will see in Chapter 4 how incorporating other state-targeting properties in the generalized

variational principle remedies this problem.

1.6 Outline

Chapter 2
Publication: Jacqueline A. R. Shea and Eric Neuscamman. “Size Consistent Excited States

via Algorithmic Transformations between Variational Principles.” J. Chem. Theory Comput.
13 (12), 6078-6088 (2017).

Diving first into optimization methods, the properties of of a prominent class of state

targeting excited state variational principles are explored, and the lack of size consistency

in this subset is proven formally and numerically. The author then details a novel approach

that transforms between variational principles on the fly in a manner that guarantees size
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consistency while also rigorously targeting a specific excited state. Now implemented in

a leading QMC software package,[266] the efficacy of this approach is demonstrated in a

system of non-interacting small molecules as well as in a hydrogen-bonded formaldehyde-

water complex.

Chapter 3
Publication: Jacqueline A. R. Shea and Eric Neuscamman. “Communication: A mean field

platform for excited state quantum chemistry.” J. Chem. Phys. 149, 081101 (2018).

Moving from stochastic quantum chemistry to deterministic quantum chemistry, the

excited state mean field (ESMF) ansatz is presented. With the flexibility to describe states

with multiple contributing excitations, ESMF delivers fully relaxed excited state orbitals at

only O(N4
) cost. In analogy to ground state mean field theory, the ESMF wave function is

a qualitatively correct ansatz that serves as a platform upon which higher order correlation

methods can be built, as demonstrated by the development of excited state Møller-Plesset

perturbation theory (ESMP2).

Chapter 4
Publication: Jacqueline A. R. Shea, Elise Gwin, and Eric Neuscamman. “A Generalized

Variational Principle with Applications to Excited State Mean Field Theory.” J. Chem.
Theory Comput. 16 (3), 1526-1540 (2020).

Returning to optimization methods, a generalization of the variational principle that

can target specific excited states, even when states are energetically degenerate or near-

degenerate, is described. Applied to ESMF theory, the optimization efficiency of the gener-

alized variational principle relative to the previously used Lagrangian target function scheme

is discussed, and the accuracy of ESMP2 theory is tested on a much wider range of small

organic molecules and charge transfer systems than previously accessible. Furthermore,

spin-targeting, partial charge-targeting, and energy-targeting allow for degenerate CT states

in stretched lithium hydride to be resolved, demonstrating the broad applicability of this

optimization strategy.

Chapter 5
Summarizing the novel developments and implications of the discussed works, the author

then looks forward to future methodological developments and demonstrations of the ESMF

as a novel platform for excited state quantum chemistry.
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Chapter 2

Size Consistent Excited States via

Algorithmic Transformations between

Variational Principles

2.1 Abstract
We demonstrate that a broad class of excited state variational principles is not size consis-

tent. In light of this difficulty, we develop and test an approach to excited state optimization

that transforms between variational principles in order to achieve state selectivity, size con-

sistency, and compatibility with quantum Monte Carlo. To complement our formal analysis,

we provide numerical examples that confirm these properties and demonstrate how they

contribute to a more black box approach to excited states in quantum Monte Carlo.

2.2 Introduction
In a large range of chemical and materials applications, including homogeneous catalysis,

liquid-phase light harvesting, and band gap engineering, it is essential that the predictions

made by theoretical methods retain their accuracy as the system size is varied. For example, a

method whose accuracy was highly dependent on the number of solvent molecules included in

a simulation is less useful than a method whose accuracy is not. Likewise, when performing

solid-state calculations on a series of increasingly large simulation cells in order to get a

grip on finite-size effects [267], it is important that a method’s accuracy not be dependent

on the system size, or else it will be difficult to separate real finite size effects from other

methodological artifacts. At the very least, it is desirable that methods used in these contexts

satisfy size consistency, which demands that two separated systems produce the same results

whether they are simulated independently or together.

Famously, not all wave function approximations satisfy size consistency. While the cou-

pled cluster ansatz does, truncated configuration interaction does not [2, 268–271]. Like-
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wise, the single Slater determinant of standard Hartree-Fock theory is size consistent, but

symmetry-projected Hartree-Fock theory is not [2, 272, 273]. The antisymmetric geminal

power (AGP) [274–279] is not size consistent when used alone, but becomes size consistent

when paired with the right type of Jastrow factor (JAGP) [280, 281]. Indeed, when designing

new or improved wave function ansatzes, an important theoretical test is to check whether

or not size consistency is retained.

Like wave function ansatzes, variational principles come in both size consistent and size

inconsistent varieties. The most famous and widely used variational principle, the ground

state energy, is of course size consistent, but others, including some used for the direct

optimization of excited states [255, 256], are not. Indeed, even when paired with a size

consistent wave function (e.g. one that product factorizes) such size inconsistent variational

principles can lead to size inconsistent results. Thus, when designing variational principles

and methods based on them, it is important to consider the consequences that different

choices will have on size consistency.

Of course, many other properties, not least of which is affordability, must be considered

when designing principles and algorithms for use in the optimization of wave functions. For

example, one can imagine incorporating higher powers of the Hamiltonian operator when

constructing a new variational principle, although in practice it is quite rare to see powers

higher than two for the simple reason that higher Hamiltonian powers tend to lead to higher

evaluation costs. As accurate electronic structure methods are already quite computationally

intensive, it is not appealing to raise costs further.

Unfortunately, there is a strong formal problem that arises for excited states when limiting

the functional form of a variational principle to include only the first and second power of the

Hamiltonian. As we prove in this paper, such variational principles cannot simultaneously

target an individual excited state and remain size consistent. In light of this challenge, we

advocate that in practice a wave function optimization method intended for use with excited

states may be best served by amalgamating multiple variational principles. For example, as

was achieved recently by the �-SCF method, [116] an optimizer might begin by minimizing

a size inconsistent but state specific variational principle, but upon approaching convergence

gradually transition to minimizing a size consistent but state nonspecific variational principle.

The idea is for the first variational principle to get the optimization close enough to the

desired eigenstate so that the lack of state specificity in the final variational principle is no

longer an issue.

Following our formal proof, we will present one such amalgamation that works in the

context of wave function optimization via quantum Monte Carlo (QMC).[258] Crucially,

QMC can work with many excited state variational principles for a cost similar to its ground

state cost, [256] and ground state QMC can reach scales up to hundreds of atoms thanks to

its low scaling and easy parallelization.[267, 282] The realization of a state specific and size

consistent excited state optimizer in QMC thus marks an important step towards achieving

more reliable predictions of excited states and spectral properties in complicated molecules

and materials.
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2.3 Theory

Variational Principles
For the purposes of this paper, let us define a state selective variational principle as a smooth

function of a wave function ansatz’s variables with the following property: if the ansatz is

capable of exactly describing the individual Hamiltonian eigenstate of interest, then the

function will have its unique global minimum at the variable values corresponding to that

exact eigenstate. If the state being targeted is the ground state, as occurs for the function

E( ) = h ˆHi = h | ˆH| i
h | i , (2.1)

then we will call the function a ground state variational principle. An excited state variational

principle is, therefore, a state selective variational principle for which the global minimum

corresponds to an excited state.

Note that the energy variance

�2
( ) =

h |( ˆH � E)

2| i
h | i = h ˆH2i � h ˆHi2, (2.2)

can be employed as a variational principle, [247–252] but that it is not state selective, as

its global minimum is not unique. Indeed, any Hamiltonian eigenstate gives the equally low

value of �2
= 0. As we will discuss further in Section 2.4, this lack of state selectivity can

make optimization to the desired eigenstate more difficult than one would prefer.

To be practical, a variational principle must be paired with an efficient method for its

evaluation and minimization. This requirement more or less explains why the energy-based

ground state variational principle has been more successful than variational principles for

excited states. Note that the functional form of E requires an expectation value of only

the first power of the Hamiltonian, in contrast to �2
whose evaluation requires expectation

values of both

ˆH and

ˆH2
, the latter of which is in most circumstances more computationally

demanding. Indeed, the construction of excited state variational principles that work by

measuring a wave function’s “energetic distance” from a desired position ! in the spectrum,

such as [116, 253–255]

W ( ) =

h |(! � ˆH)

2| i
h | i = (! � E)

2
+ �2

(2.3)

or [256]

⌦( ) =

h |(! � ˆH)| i
h |(! � ˆH)

2| i =

! � E

(! � E)

2
+ �2

, (2.4)
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tend to also require

ˆH2
, because computing a distance typically involves taking a square.

In this respect, variational Monte Carlo (VMC) offers the advantage that

ˆH2
expectation

values can be evaluated via Monte Carlo integration [251, 256] of the integral

h ˆH2i = h | ˆH2| i
h | i =

Z |h |~ri|2
h | i

�

�

�

�

�

h~r| ˆH| i
h~r| i

�

�

�

�

�

2

d~r. (2.5)

This approach avoids having to explicitly square the Hamiltonian operator and is thus similar

in difficulty to a VMC evaluation of the energy E. In principle, variational principles that

depend on cubic or higher powers of

ˆH could be constructed, but these are likely to be even

less practical, and so we will for this study limit our attention to quadratic and lower powers

of

ˆH.

The V1,2 set
To begin, let us define V1,2 as the set of all state selective variational principles that have

the following three properties. First, in the interest of generality and affordable evaluation,

we require the functional form of any � 2 V1,2 to depend on the wave function variables only

through the expectation values h ˆHi and h ˆH2i. Using Eqs. (2.1) and (2.2), we see that this

is the same as requiring that � depend on the wave function only through E and �2
,

�( ) = �(E( ), �2
( )). (2.6)

Second, we require that � have a unique global minimum corresponding to a particular

interior and nondegenerate eigenstate of

ˆH, thus limiting the analysis to nondegenerate

excited states and excluding both � = E and � = �2
as possibilities. Finally, we require

� to be real analytic (i.e. real valued and equal to its Taylor series) in a contiguous, open

region around the global minimum (E,�2
) = (Et, 0), where Et is the energy of the targeted

eigenstate. Upon close inspection, one finds that both ⌦ 2 V1,2 and W 2 V1,2 when ! is close

to but below Et.

No Size Consistency in V1,2

Interestingly, one can show that variational principles within V1,2 are not size consistent when

paired with an approximate wave function ansatz, even if that ansatz is product factoriz-

able. Of course, with an exact ansatz, results would be exact, and with a non-factorizable

ansatz, they would contain size inconsistency errors regardless of the variational principle

employed. It is thus the fact that members of the V1,2 set are size inconsistent for factorizable

but approximate ansatzes that makes them fundamentally different from the ground state

variational principle or variance minimization.

Although the formal proof of size inconsistency is somewhat involved (see next section), it

can be motivated by showing that any � in V1,2 must have a nonlinear form. First, note that
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�(E,�2
) can be written as a Taylor series around the energy Et of the targeted eigenstate.

�(E,�2
) =

1
X

m=0

1
X

n=0

amn(�
2
)

m
(E � Et)

n. (2.7)

In order to satisfy properties of the V1,2 set, this Taylor expansion is subject to a number of

restrictions, the most noteworthy of which is that it must contain nonlinear terms. Consider

if instead � took the particularly simple form in which all coefficients are zero except for a10,

� = a10�
2

(2.8)

so that it was proportional to Eq. (2.2). As every Hamiltonian eigenstate has �2
= 0, this

form does not have a unique global minimum and is thus not within the V1,2 set.

Next, imagine that the only nonzero term in the series was

� = a01(E � Et). (2.9)

In this case, � is linear with respect to E, and like the ground state variational principle

(Eq. (2.1)), is not a member of the V1,2 set as it does not target an interior eigenstate of

ˆH. The only other way for � to remain linear in its variables would be for it to be a linear

combination of �2
and (E � Et),

�(E,�2
) = a01(E � Et) + a10�

2. (2.10)

However, as �2
= 0 for any Hamiltonian eigenstate, we find that this form also fails to

target an interior eigenstate, as it will be minimal for either the lowest or highest eigenstate

(depending on the sign of a01).
Concluding that � must be nonlinear if it is to be an element of V1,2, we now consider the

effects that nonlinearity will have on size consistency when working with an approximate

ansatz. Of course, we should not expect results to be size consistent if the ansatz does

not product factorize, and so we assume that we are working with two completely separate

subsystems A and B and that our overall ansatz can be written as a product of separate

ansatzes for the two subsystems,  AB =  A B. In this case, both the energy and variance

will be additive:

EAB = EA + EB, (2.11)

�2
AB = �2

A + �2
B, (2.12)

where EAB = E( AB) is the energy of the system when evaluated as a combined whole and

EA = E( A) is the energy of A when treated alone. Now, if � were linear in E and �2
, then

it would also be additively separable into �AB = �A +�B and size consistency would follow.

However, the fact that � must be nonlinear in order to target a unique interior eigenstate

implies that it will contain cross terms that, in general, can be expected to prevent additive
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separability and thus violate size consistency. Consider the variational principle W , Eq.

(2.3), which when treating systems A and B together will take on the form

WAB = (!A + !B � EA � EB)
2
+ �2

A + �2
B

= WA +WB + 2(!A � EA)(!B � EB). (2.13)

The presence of the cross term means that the minimum of WAB will be different from that

of WA +WB, which is a size consistency violation that will cause the optimal parameters in

our ansatz to differ when treating A and B separately or together. As nonlinear functions

will in general have such cross terms, it is therefore reasonable to expect that variational

principles in V1,2 will violate size consistency. While we do provide a more rigorous proof of

this flaw in the next section, readers who are satisfied with the argument presented above

may wish to skip ahead to Section 2.3, where we present an optimization method that mixes

different variational principles in order to target interior eigenstates while maintaining size

consistency.

Proof of No Size Consistency
We now proceed to formally show that any variational principle within V1,2 is not size consis-

tent. First, note some general properties that the Taylor series of �, Eq. (2.7), must satisfy

if it is to be a member of V1,2. To start, we note that there must be a nonzero coefficient

among the terms with m = 0 and n > 1. If there were not, then either � would not be state

specific or it would not target an interior eigenstate. Similarly, there must be a nonzero

coefficient among the terms with n = 0 and m > 0, or else any state with Et as its energy

expectation value would give the same value for � as the targeted eigenstate. Finally, for

ease of analysis and without loss of generality, we will set a00 = 0, as this does not alter the

nature of the global minimum. With these restrictions and defining � = E � Et, we can

write the Taylor series as

� =

1
X

m=p

am0(�
2
)

m
+

1
X

m=q

1
X

n=r

amn(�
2
)

m
�

n
+

1
X

n=s

a0n�
n

(2.14)

in which p, q r, and s are positive integers, ap0 6= 0, a0s 6= 0, and it is understood that there

exist 1 < s̃ < 1 and 0 < p̃ < 1 such that a0s̃ 6= 0 and ap̃0 6= 0. Note that it is possible

for all the elements in the middle sum to have zero coefficients, but they can in general be

nonzero. In the latter case, aqr 6= 0.

With these qualities of � in mind, consider the stationary condition

0 =

@�

@�

@E

@x
+

@�

@�2

@�2

@x
(2.15)

for minimizing � when system A is treated alone with an ansatz depending on a single variable

x. For any choice of � 2 V1,2, we show in Appendix A that there exist system/ansatz pairs
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for which neither E nor �2
are stationary at the global minimum of �. Choosing this type

of system/ansatz pair for system A and defining the analytic functions

µ(�, �2
) ⌘ @�

@�
=

1
X

m=q

1
X

n=r

namn(�
2
)

m
(�)

n�1
+

1
X

n=s

na0n(�)

n�1
(2.16)

and

⌫(�, �2
) ⌘ @�

@�2
=

1
X

m=p

mam0(�
2
)

m�1
+

1
X

m=q

1
X

n=r

mamn(�
2
)

m�1
(�)

n
(2.17)

we can rewrite the stationary condition as

0 = µ(�, �2
)

@E

@x
+ ⌫(�, �2

)

@�2

@x
. (2.18)

When system A is alone, this condition is satisfied for some x = xA at which � = �A,

�2
= �2

A, @E/@x 6= 0 and @�2/@x 6= 0. Now imagine if we added a system Q that is

completely separated from system A such that

ˆH =

ˆHA +

ˆHQ. Choosing the overall wave

function ansatz to be a product of the ansatzes from A and Q such that Eqs. (2.11) and

(2.12) apply, we see that � and �2
will be the only parts of Eq. (2.18) affected by the addition

of Q so long as x is held fixed at x = xA. Crucially, note that @E/@x and @�2/@x are not

affected.

We now separate V1,2 into two subsets and show that size consistency is violated in both.

First, take the subset in which the middle sum of Eq. (2.14) is absent, p = 1, and am0 = 0

for m > 1. In this case, the right hand side of Eq. (2.18) will not be a function of �2
. If we

were to hold x = xA fixed, then it would be a nonconstant and analytic function of �, and

thus by the principle of permanence its root at � = �A would be isolated. This implies that

upon adding a system Q so that � ! �A+�Q, the stationary condition would for small but

nonzero �Q no longer be satisfied unless the value of x were adjusted. Thus, in this subset of

V1,2, the addition of system Q would change the optimal wave function in system A, despite

the overall wave function product factorizing and the two subsystems not interacting.

Second, take the subset that contains all � 2 V1,2 not in the previous subset. In this

case, if we were to hold x = xA fixed, the right hand side of Eq. (2.18) will be an analytic

function that depends on both � and �2
. By now adding one subsystem of type B and one

of type C (see Appendix B) such that none of the three subsystems interact and the overall

wave function is a product of the three subsystem wave functions, we will have

� = �A +�B +�C (2.19)

�2
= �2

A + �2
B + �2

C (2.20)
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���� ���� ���� ���� ���� ���� ���� ����
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Δ − Δ#

$% − $#%

X

Figure 2.1: A schematic showing values of � and �2
that can be reached by adding systems

of types B and C. The line shows values accessible by the addition of systems of type B.

The shaded region shows values accessible by the addition of systems of types B and C
together. The circle and the X give examples for �’s analytic region and global minimum,

respectively.

in which

�B =

↵2

1 + ↵2
, (2.21)

�2
B =

↵2

(1 + ↵2
)

2
, (2.22)

�C = 0, (2.23)

�2
C =

�2

1 + �2
, (2.24)
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where ↵ and � are real numbers. By choosing different systems B and C, we may vary ↵ and

� to map out a contiguous two-dimensional patch within the region on which � is analytic, as

shown in Figure 2.1. As we can choose the system/ansatz pair in A such that its stationary

point (�A, �2
A) is arbitrarily close to the global minimum, we may assume without loss of

generality that this patch is inside the region within which � is analytic. If the stationary

condition in Eq. (2.18) were satisfied at all points in the patch, then by repeated use of the

principle of permanence, we see that it would also be satisfied at all points in an open region

encompassing the global minimum. As this would violate our assumption of a unique global

minimum, we must conclude that at the vast majority of points in the mapped-out patch,

i.e. for most choices of systems B and C with small ↵ and �, Eq. (2.18) will not be satisfied

when x = xA. In other words, the addition of these completely separate subsystems changes

the optimal wave function in system A. As this will in turn change the energy, we see that

size consistency is violated.

To summarize, we have found that for any � 2 V1,2, it is possible to construct a product

separable ansatz for completely separate subsystems in such a way that the optimal wave

function on one subsystem is changed by the presence of other subsystems. As a result, the

total energy will be different if we treat the systems separately instead of together. We must

thereby conclude that there are no size consistent variational principles in V1,2.

Transformations Between Variational Principles
While individual members of V1,2 are not size consistent, it is nonetheless possible to employ

them as part of an overall optimization scheme that is both state selective and size consistent.

As was achieved for Slater determinants in the �-SCF method [116], the general strategy

is to begin the optimization with a state selective variational principle in order to ensure

the correct state is targeted. Once the wave function was “close” to the desired state, �-

SCF prescribed a transition to state nonspecific variance minimization, which, among other

benefits, ensures size consistency. Here, we present an evolution of this general strategy that

both makes it compatible with VMC and guarantees that state selectivity is maintained

throughout the optimization, even in the final stage in which size consistency is achieved

through variance minimization.

The key to our strategy is to recognize that special choices for ! can make either W
or ⌦ (and likely many other members of V1,2) become akin to variance minimization. For

example, one sees that

W ( )

�

�

�

!!E
= �2

(2.25)

and

⌦( )

�

�

�

!!E��
= � 1

2�
. (2.26)

If, in the final stage of the optimization, we ensure that ! is chosen appropriately and self

consistently, then minimizing W or ⌦ for a particular state will produce the same result as
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Figure 2.2: Example of a large basin shift for ⌦ that may occur if we skip the transitional-!
stage of the optimization.

if variance minimization had been achieved for that state. Crucially, we adopt a strategy

in which  and ! are updated separately in a “tick-tock” fashion, which ensures that ! is

fixed during an update step for  . This choice guarantees that the desired state is targeted,

as it remains the global minimum of W or ⌦ during the  update step. If we instead

simply switched to variance minimization, we would in general have to rely on the state

in question being a stable local minimum of the variance, which does not offer the same

convergence guarantees as a state selective approach in which the desired state is the global

minimum. Between each  update, we adjust ! to its special value (e.g. E or E��) so that

at convergence the result is equivalent to variance minimization and thus size consistent.

Although we have chosen to test this strategy using ⌦ as the variational principle and the

VMC linear method [256, 283–287] as the wave function update method, we expect it to be

effective for other variational principles and updated methods as well.

In practice, one must take care in handling the transition between the initial “fixed-!” and

the final “adaptive-!” stages of the optimization. When ! is changed, the nonlinear function

being optimized is altered. One can imagine that a large alteration made abruptly at the

end of the fixed-! stage (Figure 2.2) could move the function’s minimum far enough that the
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h�| (Ĥ � E)2 |�i

h�|�i

�2 =
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Figure 2.3: Example of a series of small basin shifts that occur during the transitional-!
stage of the optimization.

wave function variables were no longer within the basin of convergence for the chosen update

method. Indeed, we have observed exactly this behavior in some tests involving ⌦ and the

linear method update scheme. To avoid such pathologies, we instead add a “transitional-

!” stage to our optimization, in which ! is gradually interpolated between its initial fixed

value and the value required to achieve variance minimization. In this way, the variational

principle’s minimum is moved only small steps at a time (Figure 2.3) to ensure that the wave

function remains within its basin of convergence. In this study, we use the interpolation

!j = ↵j !0 + (1 � ↵j)(Ej�1 � �j�1) (2.27)

↵j =

8

>

<

>

:

1 j  NF

1
NT

(NF +NT � j) NF < j  NF +NT

0 j > NF +NT

(2.28)

in which j is the linear method iteration number and NF and NT are the number of iterations

in the fixed-! and transitional-! stages, respectively. In the cases tested here, we find that

NF between 5 and 20 and NT between 10 and 20 are effective choices.
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In addition to ensuring both state selectivity and size consistency, this strategy improves

the practical usability of excited state variational principles in VMC. Although the final

wave function’s energy is often not very sensitive to the choice of ! [256], there are likely

to be cases where the user’s choice of ! has a meaningful effect on the results. In previous

work, ! has sometimes been adjusted by hand in order to minimize ⌦. Although this does

make the choice of ! unique, the process is tedious and prevents the overall methodology

from achieving black box operation. With the adaptive approach described here, a user need

only specify the initial value !0 so as to target the desired state.

2.4 Results

Computational Details
In the next few sections, we will present numerical results that complement our formal

analysis. Results for CO and N2 were obtained with our own Hilbert space VMC software in

a STO-3G basis [288], with integrals imported from PySCF[289]. Bond distances were fixed

at 1.19 Å and 1.18 Å for CO and N2, respectively. For the formaldehyde-water system, the

geometry was optimized to a local minimum (see Figure 2.6) using the !-B97X-D density

functional[177] and a 6-311G basis[290] set within QChem[291]. VMC results for this system

were obtained with a development version of QMCPACK[282] with molecular orbitals and

configuration interaction singles (CIS)[109] initial guesses imported from GAMESS.[292]

Equation of motion coupled cluster with singles and doubles (EOM-CCSD) [15] results were

obtained with MOLPRO.[293, 294] The VMC orbitals as well as the CIS and EOM-CCSD

results for the formaldehyde-water system used the pseudopotentials of Burkatzki et al.[295],

replacing core electrons for C and O atoms, and the corresponding valence double zeta (VDZ)

basis set.

Comparison to Variance Minimization
In this section, we use the JAGP ansatz in Hilbert space to compare the results of our

optimization scheme to those that are obtained by a simple minimization of �2
. To begin,

we apply both optimizations (with !0 = �109.00 Hartrees, NF = 8, and NT = 10 for the

adaptive-! method) to the ground state of N2, using the restricted Hartree-Fock (RHF)

determinant with slightly randomized orbital coefficients for the JAGP initial guess. As

seen in Figures 2.4a and 2.4b, the two methods produce the same values for E and �2

upon convergence. We also apply both optimization methods (with !0 = �111.30 Hartrees,

NF = 15, and NT = 10 for the adaptive-! method) to the first excited singlet of CO. In this

case, the initial guess for the JAGP pairing matrix was constructed by adding a HOMO-

LUMO promotion and slight orbital coefficient randomization to the RHF ground state to

produce a crude open-shell singlet representation. Figures 2.4c and 2.4d show that, starting
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(a) (b) 

(c) (d) 

Figure 2.4: Ground state N2 (a) energy and (b) variance and first excited singlet of CO (c)

energy and (d) variance in a.u. with respect to the optimization step of �2
minimization

(gray) and our adaptive-! method (blue).

from this guess, both simple variance minimization and our ⌦-based, adaptive-! method

converge to the same result, as expected.

To compare the state selectivity of our method with that of variance minimization, we

have also performed a series of optimizations for CO in which the initial guess for the

wave function was interpolated between a ground state guess and an excited state guess.

Specifically, we used pairing matrix guesses of the form

M = (1 � µ)M(0)
+ µM(1)

(2.29)

where M(0)
is the pairing matrix corresponding to the RHF ground state, M(1)

is the

open-shell singlet pairing matrix resulting from a HOMO-LUMO promotion, and µ 2 [0, 1].
As shown in Figure 2.5, simple variance minimization converged to the ground state when

µ  0.3. In contrast, our ⌦-based optimization (with !0 = �111.30 Hartrees, NF = 20, and

NT = 10) converged to the (targeted) excited state for all cases except µ = 0. Indeed, we

found that as little as 0.5% excited state character (i.e. µ = 0.005) in the initial guess was
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Figure 2.5: Energies of optimized JAGP wave functions for CO when starting from a range

of different initial guesses that interpolate between a pure ground state guess (µ = 0) and a

pure excited state guess (µ = 1). Results are shown for both �2
minimization (black X) and

our adaptive-! method (gray circles).

sufficient for our method to converge to the excited state, providing a clear example of the

advantage offered by a state selective approach.

Size Consistency
As shown in Section 2.3, optimizing ⌦ with a particular, fixed value of ! can lead to size

consistency issues when working with approximate wave functions. Of course, with exact

wave functions, results will be !-independent and size consistency will be achieved because

in this limit, minimizing ⌦ will produce exact Hamiltonian eigenstates.[256] While it is not

always easy to tell how far from this limit one is, one indication may be how sensitive the

optimized wave function’s energy is to the precise choice of !. In the systems at hand, we find

that N2’s ground state energy is quite insensitive to !, varying by less than 10

�3
Hartrees for
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Table 2.1: Size consistency errors |ECO+N2 � ECO � EN2 | and their statistical uncertainties

for the first singlet excited state of CO when combined with a far away nitrogen molecule.

Method Error (mEh)

fixed-! 2.6 ± 0.2

adaptive-! 0.04 ± 0.2

fixed-! optimizations in which ! is set anywhere between �107.7 to �108.6 Hartrees. The

first excited state of CO is more sensitive, with fixed-! optimizations producing energies that

change by as much as 0.01 Hartrees as ! is varied between �111.10 and �111.35 Hartrees.

Given that the JAGP wave function approximation does produce nontrivial sensitivity

to ! in at least one of these molecules, it is an interesting case in which to investigate size

consistency. We should stress that, although it is an approximate ansatz, the Hilbert-space

JAGP product factorizes and so will produce size consistent energies when paired with a size

consistent variational principle [280]. Thus, any size consistency violation in its use can be

linked to the variational principle. The test we perform is to optimize N2’s ground state and

CO’s first excited state, both separately and when the two molecules are treated together

at a distance of 20 Å. This test provides a simple case in which we may ask whether CO’s

excited state is affected by the presence of a far away molecule.

When we minimize ⌦ with a fixed value of ! chosen in Hartrees as ! =

˜E � 0.26, with

˜E
being the expected energy based on variance minimization results for the separate molecules,

we find that the size consistency error, ECO+N2 �ECO �EN2 , is over 2 milliHartrees. When

instead we employ our adaptive-! method, the results are size consistent to within our

statistical uncertainty, as shown in Table 2.1. Thus, the ability to gradually transform the

variational principle so that it is equivalent to variance minimization at convergence allows

size consistent results to be achieved.

Formaldehyde and Water
To show a slightly more realistic example where having a size consistent optimization method

matters, we turn to a hydrogen-bonded complex between formaldehyde and water, shown as

complex A in Figure 2.6. To evaluate the first singlet excitation energy on the formaldehyde,

we employ the recently-developed variation after response (VAR) approach [296, 297] as

implemented in a development version of QMCPACK for a Slater determinant in real-space.

In this context, VAR uses a finite-difference scheme to allow orbital optimization and a

Jastrow factor to be applied variationally to a CIS-like linear response expansion [297]. By

combining the adaptive-! optimization we’ve presented here with VAR’s ability to start from

the output of a CIS calculation, we intend to show how VMC may deal with an excited state

in a relatively black box fashion.

For the Jastrow-Slater ground state optimization, we chose !0 = �44.175 to be several
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Figure 2.6: Hydrogen-bonded formaldehyde-water complex. [298]

Hartrees below the RHF energy. As shown in Figure 2.7, this resulted in the energy increas-

ing slightly during the transitional-! phase of the optimization, as is to be expected when

converting from a ground-state-energy-like variational principle to something more akin to

variance minimization. For the VAR excited state optimization, we chose !0 = �41.175
Hartrees, which is in between the values �40.8747 and �42.2812 that result for ECIS � �
when � is taken from the optimized Jastrow-Slater ground state or the CIS wave function,

respectively. For both states, we set NF = 10 and NT = 20.

As shown in Table 2.2, the VMC-based excitation energy agrees more closely with that

of EOM-CCSD than with that of CIS. Presumably, this is due to the excited state orbital

optimization lowering the excited state energy as compared to CIS, whereas even in RHF

the ground state already enjoyed state specific orbital optimization and so its energy was

lowered less by VMC. Although complex A is used here for the purposes of demonstration,

the ability of VMC to produce a relatively accurate, nearly black box result for an excited

state in the presence of a hydrogen-bonded solvent molecule is promising. Given QMC’s

low scaling compared to EOM-CCSD (N4
versus N6

), it will be interesting to explore its

prospects in larger and more technologically relevant examples of solvated photo-absorbers.
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Figure 2.7: Energy versus iteration for the ground state (solid black) and excited state (solid

gray) of A. The dotted line marks the end of the transitional-! phase.

Table 2.2: Excitation energies in Eh for complex A.

Method Excitation Energy

CIS 0.1718

EOM-CCSD 0.1511

VMC 0.1439 ± 0.0006
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2.5 Conclusions
We have shown that size consistency is lacking in interior state selective variational principles

that are analytic around their global minima and based on at most the second power of the

Hamiltonian, a set we have denoted as V1,2. In contrast, the well-established approach of

variance minimization is known to be size consistent but not state selective. To achieve the

best of both worlds, we have proposed a general optimization strategy that amalgamates

variance minimization with a state selective variational principle from V1,2. The approach

is size consistent at convergence and maintains rigorous state selectivity at all stages. In

an initial exploration with the ⌦ variational principle, we find that it is important that the

transformation of the variational principle proceed gradually, lest the basin of convergence be

moved away from the current wave function. We note that the overall strategy is applicable

to a wide range of variational principles, including the W function employed recently by

�-SCF, and is readily compatible with the leading wave function optimizers in variational

Monte Carlo.

Having demonstrated a viable path to variational, size consistent excited states, it is

worth considering where such methods may be most useful in future. Thanks to QMC’s

ability to work with either open or periodic boundary conditions, the methodology should

be equally applicable in both solids and molecules. Thus, in addition to its implications for

modeling charge transfer excitations in the presence of explicit solvent, the approach may

also prove useful in modeling defect-centered excitons. Regardless of the specific application,

the removal of ! as a free parameter should make QMC-based excited state investigations

more straightforward. In conjunction with recent variation-after-response developments that

can build atop simple excited state quantum chemistry methods, the optimization approach

presented here presages a more black box route to high-accuracy QMC results in a wide

variety of excited state applications.
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2.7 Appendix A
Here we show that for any state specific target function �(E,�2

) that is real analytic (i.e. can

be written as a convergent power series with real coefficients) in a region around its global

minimum, there exist system/ansatz pairs for which neither E nor �2
is stationary at the �

minimum. We will do so by constructing a particular counterexample, although we suspect

that other counterexamples exist. Consider a system in which three of the Hamiltonian
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eigenvalues are �b, 1, and 2, with normalized eigenvectors

ˆH|�bi = �b|�bi, ˆH|�1i = |�1i, and

ˆH|�2i = 2|�2i. (2.30)

For our approximate ansatz we choose the single-variable wave function

| (x)i = x|�bi + |�1i + (b2 + x)|�2i, (2.31)

in which x is allowed to take on real values. This defines a set of system/ansatz pairs in

which we can control through b how closely the ansatz can come to an exact representation

of the |�1i eigenstate, which we will take to be the state targeted by �.

The energy and variance of this ansatz can be written as

E =

P

D
, (2.32)

�2
=

QD � P 2

D2
, (2.33)

in which we have used the three polynomials

P = 1 � bx2
+ 2(b2 + x)2, (2.34)

Q = 1 + b2x2
+ 4(b2 + x)2, (2.35)

D = 1 + x2
+ (b2 + x)2. (2.36)

Using the properties of the geometric series and the fact that D cannot be zero when b > 0,

we note that both E and �2
are analytic functions of x and b so long as the point (x, b) is

sufficiently close to (0, 0). By inspecting the stationary points of E and �2
, we will find that

we can always choose b positive but small enough that these stationary points are distinct

from the � minimum.

Begin with the stationary point for the energy, at which

@E

@x
= 0, (2.37)

which may be rearranged as

b
⇣

(2b+ b2)x2
+ (1 + 2b3 + b4)x � b

⌘

= 0, (2.38)

from which we see that the energy is always stationary when b = 0. When b is small but

positive, we will have two roots, but only one of them,

xE = b � 2b3 + O(b4), (2.39)

will occur near the origin. The other root,

xF = � 1

2b
+

1

4

+ O(b), (2.40)
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will be far from the origin.

Moving on to the variance, we find that its stationary condition,

@�2

@x
= 0 (2.41)

can be rearranged into a cubic polynomial in x,

0 =2b2(1 � b4) + 2

�

2 + b(2 + b+ 6b4 + 2b5 + 4b7 + 4b8 + b9)
�

x

+ 6b2(1 + b)3
�

2 + b(b2 + b � 2)

�

x2
+ 4

�

2 + 2b+ b4(2 + b)2
�

x3. (2.42)

At small values of b, one can show that the discriminant of this polynomial is negative,

implying that it has one real and two complex roots. As our ansatz does not admit complex

values for x, the variance will have only one stationary point. Using the cubic formula and

assuming b is small, this root can be found to be

xV = �b2

2

+

b3

2

� b4

4

+ O(b6). (2.43)

Having found the energy and variance stationary points, we now consider the target

function as given in Eq. (2.14). For our particular system/ansatz choice, we can see that

� will be a real analytic function of x and b when b is small and x is close to the global

minimum, which we know occurs at x = 0 when b is chosen to be 0. This is because both E
and �2

are analytic in x and b in this region, and by assumption � is real analytic near its

global minimum. Furthermore, for small b and x, we have

� = b ( b3 + 2bx � x2
+ higher order terms ), (2.44)

�2
= b4 + 2b2x+ (2 + 2b+ b2)x2

+ higher order terms, (2.45)

and so at b = 0, the leading order term in � will be an even power of x with degree 2 or

higher. This makes sense as the minimum could not be x = 0 if the leading term were odd.

Let us now express the stationary condition for � as

@�

@x
= Z(x, b) = 0. (2.46)

By the differentiability of analytic functions, Z will be real analytic and thus smooth in the

region surrounding �’s minimum. When b = 0, we know that Z will have an odd power of

x with degree 1 or greater as its leading order term, and so the stationary point that is the

global minimum will occur at x = 0 as expected. As Z is a smooth function of both x and b,
this implies that when b > 0, the value of x that minimizes � can be forced arbitrarily close

to zero by making b sufficiently small. Finally, note that Z(x, 0) is a nonconstant function

of x in the region of small x, as this is required for the global minimum of � to be unique.

As Z is smooth in b, this implies that if we hold b fixed at a positive but small value, Z will

still be a nonconstant function of x. By the principle of permanence, this function will have
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isolated roots, and so there will be only one stationary point of � that approaches x = 0 as

b becomes small. It now remains to show that b can be chosen positive but small enough

so as to prevent this stationary point coinciding with either xE or xV , which are the only

stationary points of the energy and variance that approach 0 as b becomes small.

First consider xE. When b is small and x = xE, we find that

� = b3 + b4 + O(b5) and �2
= 2b2 + 4b3 + O(b4). (2.47)

This implies that for x = xE and small but nonzero b, �2
will be small and nonzero. Further-

more, because xE and xV are distinct for nonzero b, �2
will not be stationary here. We will

now deal with two cases for � separately. First, if the middle sum in Eq. (2.14) is absent,

we have

@�

@x
=

1
X

m=p

mam0 (�
2
)

m�1@�
2

@x
, (2.48)

which, based on what we know about �2
, shows that � will not be stationary at x = xE if b

is positive and sufficiently small. For the second case, in which the middle sum is present, we

have to be more careful. Using the fact that �2
is not stationary at x = xE, the stationary

condition @�/@x = 0 can for this second case be written as

0 =

1
X

m=p

mam0 (�
2
)

m�1
+

1
X

m=q

1
X

n=r

mamn (�
2
)

m�1
�

n. (2.49)

If p  q, this condition cannot be satisfied at small but nonzero b as all the terms in the

right hand sum will be higher order in b than the first term in the left hand sum, because

r > 0 and � is order b3. If instead p > q, we may divide through by (�2
)

q�1
to obtain

0 =

1
X

m=p

mam0 (�
2
)

m�q
+

1
X

m=0

1
X

n=r

(m+ q)a(m+q)n (�
2
)

m
�

n. (2.50)

This equation is analytic in b and has a solution at b = 0. As nonconstant analytic functions

have isolated roots, Eq. (2.50) cannot also have a solution at arbitrarily small but positive

b unless the right hand side is zero for all b. We can show that this is not so by inspecting

the leading order terms in b. Using Eq. (2.47), we see that if the lowest order terms from

the two sums are to be the same order, we must have

2(p � q) = 3r, (2.51)

which implies that there is a positive integer z such that

p � q = 3z and r = 2z. (2.52)
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If so, the leading order terms from Eq. (2.50)’s left hand sum will be proportional to

b6z + 6zb6z+1
(2.53)

while the leading order terms from its right hand sum will be proportional to

b6z + 2zb6z+1. (2.54)

Thus, regardless of the values of p, q, and r, these two sums cannot cancel exactly and so �

will not be stationary at x = xE when b is chosen to be positive and small.

We follow a similar analysis to show that � will not be stationary at x = xV , where

� =

3b5

4

� b7

2

+ O(b8) and �2
=

b4

2

+

b5

2

+ O(b6). (2.55)

As the energy is not stationary at x = xV , the stationary condition @�/@x = 0 can be

written as

0 =

1
X

m=q

1
X

n=r

namn (�
2
)

m
�

n�1
+

1
X

n=s

na0n�
n�1. (2.56)

If the qr sum is not present, then clearly � will not be stationary at x = xV when b is positive

and small. Otherwise, following the same logic we used for xE, we now need to show that

the right hand side of Eq. (2.56) is not zero for all b. If s  r, the leading order term in

the right hand sum will be of a different order in b than that of the left hand sum, and so

the right hand side will be nonzero for b small and positive. If instead s > r, we may divide

through by �

r�1
to obtain

0 =

1
X

m=q

1
X

n=0

(n+ r)am(n+r) (�
2
)

m
�

n
+

1
X

n=s

na0n�
n�r. (2.57)

If the two sums are to cancel, so must their leading order terms. Using Eq. (2.55), we see

that this can only occur if

4q = 5(s � r), (2.58)

which implies that there is a positive integer y such that

q = 5y and s � r = 4y. (2.59)

If q, r, and s have this relationship, we find that the left hand sum is proportional to

b20y + 5yb20y+1
+ O(b20y+2

) (2.60)
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while the right hand sum is proportional to

b20y � 8y

3

b20y+2
+ O(b20y+3

). (2.61)

Thus, regardless of the values of q, r, and s, we see that � will not be stationary at x = xV

when b is positive and small.

To conclude, we find that in this system/ansatz pairing, b can be chosen to be positive

but small enough such that the minimum of �, which will approach x = 0 as b gets small,

does not coincide with either the lone energy stationary point near x = 0 nor the lone

variance stationary point near x = 0. We therefore conclude that for any � 2 V1,2 there

exist system/ansatz pairs in which neither the energy nor the variance is stationary at the

� minimum.

2.8 Appendix B
Here we provide two classes of system that are used in our proof of no size consistency. First,

we define systems of type B in which we target the E = 0 eigenstate. Let this system have

among its eigenstates the two states

ˆH|B0i = 0, ˆH|B1i = |B1i. (2.62)

Let the approximate wave function be

| i = |B0i + ↵|B1i (2.63)

in which ↵ is a nonzero real number. We then find that

�B = E � 0 =

↵2

1 + ↵2
and �2

B =

↵2

(1 + ↵2
)

2
> 0. (2.64)

Second, we define systems of type C, for which � = 0 and �2 > 0 when targeting its

E = 1 eigenstate. Let this system have among its eigenstates the three states

ˆH|C0i = 0, ˆH|C1i = |C1i, ˆH|C2i = 2|C2i. (2.65)

Let the approximate wave function be

| i = �p
2

|C0i + |C1i + �p
2

|C2i, (2.66)

in which � is a nonzero real number. We then find that

�C = E � 1 = 0 and �2
C =

�2

1 + �2
> 0. (2.67)
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Chapter 3

Excited State Mean Field Theory

3.1 Abstract
We present a mean field theory for excited states that is broadly analogous to ground state

Hartree-Fock theory. Like Hartree-Fock, our approach is deterministic, state-specific, applies

a variational principle to a minimally correlated ansatz, produces energy stationary points,

relaxes the orbital basis, has a Fock-build cost-scaling, and can serve as the foundation for

correlation methods such as perturbation theory and coupled cluster theory. To emphasize

this last point, we pair our mean field approach with an excited state analogue of second order

Møller-Plesset theory and demonstrate that in water, formaldehyde, neon, and stretched

lithium fluoride, the resulting accuracy far exceeds that of configuration interaction singles

and rivals that of equation of motion coupled cluster.

3.2 Introduction
In a nutshell, Hartree-Fock (HF) theory [2] applies the ground state variational principle to

a wave function ansatz that includes only those correlations that are absolutely necessary

to produce a qualitatively correct description of the electrons in a simple molecular ground

state. Indeed, HF theory’s Slater determinant hews as closely as possible to a classical mean

field state, in which the particles would be completely uncorrelated, while accommodating the

Pauli correlations that must be included when describing electrons. This simplicity keeps HF

theory (relatively) affordable as it proceeds to minimize its variational principle and make the

energy stationary with respect to changes in the molecular orbital basis. That HF theory has

for decades been the central platform on which high-accuracy weak correlation treatments

are built [268, 299] is a reminder of how valuable a qualitatively correct, minimally correlated

wave function with relaxed orbitals can be. For strongly correlated ground states in which

an unambiguous minimal active space exists, the story is much the same, but with complete

active space self consistent field (CASSCF) [300–303] and its descendants [147, 304–310]

replacing HF theory as the basic platform upon which weak correlation methods are built.
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[156, 311–324] In this paper, we develop an affordable mean field platform for simple excited

states while also providing an initial weak correlation treatment and a discussion of how the

approach can be generalized to strongly correlated excitations.

3.3 Theory
Unlike the situation for ground states, even zeroth order descriptions of most excited states

require more than Pauli correlations. For example, consider the open shell singlet of a

simple HOMO!LUMO excitation. In this state, two opposite-spin electrons are strongly

correlated with each other so as not to occupy the same orbital at the same time, implying

that a minimally correlated excited state ansatz must incorporate correlations not present

in a Slater determinant. An obvious candidate for this job is a configuration interaction

singles (CIS) ansatz [325] which, to stay in line with ground state mean field methods like

HF and CASSCF, has had its energy made stationary with respect to relaxations of the

molecular orbital basis. While this direction has of course been explored before, previous

approaches have tended to approximate the orbital relaxation in order to suppress cost.

[128, 326–328] For example, Subotnik’s OO-CIS approach [128] achieves its efficiency by

employing an incomplete and HF-approximated Newton-Raphson optimization. Inspired by

the need for fully-relaxed excited state orbitals in situations like charge transfer and core

spectroscopy, we seek here to achieve them at the same cost-scaling as CIS by combining

recent progress in excited state variational principles [116, 256, 329, 330] with a compound

application of automatic differentiation. To demonstrate the efficacy of this approach as a

mean field platform on which to build excited state correlation methods, we use it as the

basis for an excited state analogue of second order Møller-Plesset (MP2) theory. [299]

As we are looking to describe an excited state, minimizing the energy

E =

h | ˆH| i
h | i (3.1)

in pursuit of the ground state variational principle will not guarantee convergence to the

desired state. Instead, we will seek to minimize the Lagrangian

L = W + ~µ · @E
@~⌫

(3.2)

in which the excited state variational principle [255]

W =

h |(! � ˆH)

2| i
h | i (3.3)

guarantees that a sufficiently flexible wave function will converge to the exact (excited) energy

eigenstate with energy closest to ! while the Lagrange multipliers ~µ guarantee that an energy

stationary point with respect to the wave function variables ~⌫ will be achieved even when
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working with an approximate ansatz. While we could have done without W if we merely

wished to ensure an energy stationary point was reached, its presence guarantees that in the

limit of a sufficiently flexible wave function, the global minimum of L will be the stationary

point corresponding to the desired excited state. Although we do not pursue it here, one can

imagine augmenting W with functions of the dipole moment or other observables in order

to differentiate between states that are energetically degenerate.

To make the minimization of this Lagrangian affordable, we must deal both with the

difficulty of the

ˆH2
term and with the fact that derivatives of L with respect to the variational

parameters ~⌫ (e.g. the CI coefficients and the orbital rotation variables) lead to second

derivatives of the energy. To avoid

ˆH2
, we can resolve an identity in the basis of Slater

determinants

W =

1

h | i
X

I

h |(! � ˆH)|IihI|(! � ˆH)| i (3.4)

and, following the approach of coupled cluster (CC) theory, [268] make an approximation in

which we restrict our attention (and the range of the sum) to the most chemically relevant

corner of Hilbert space, in this case the span of the closed shell “ground state” determinant

and the singles excitations. Note that W need not be evaluated exactly for the theory to

operate correctly, as its role is merely to guide the optimization into the correct stationary

point. So long as W provides a sufficiently strong nudge to get us close, the Lagrange

multiplier term in Eq. (3.2) will ensure convergence to the stationary point. This type

of “nudged” convergence to a stationary point has been seen before in the application of

full configuration interaction quantum Monte Carlo to excited states, [331] where a heavily

approximated projection operator that could only serve to nudge the state propagation away

from the lower states was sufficient to converge the imaginary time evolution onto excited

states. When an approximate nudge is insufficient, our formulation allows for a systematic

retreat to safety via increasingly accurate evaluations of W , but we stress that in our initial

testing this has yet to prove necessary. Indeed, in all cases tested so far, the even more

aggressive approximation

W ⇡ (! � E)

2
(3.5)

leads the minimization of L to converge on to the same stationary point as when truncating

the sum in Eq. (3.4). If this equivalence is maintained after more extensive testing in the

future, there would be a strong simplicity argument in favor of employing Eq. (3.5).

Unlike the

ˆH2
terms, the challenge of second energy derivatives can be overcome by a

compound use of automatic differentiation (AD), [332] which ensures that all of the deriva-

tives of a many-input-single-output function can be evaluated for a small constant multiple

of the cost of evaluating the function itself. As AD’s use in quantum chemistry is still in

its infancy, [281, 333, 334] let us briefly explain the principles so that its usefulness for our

purposes is clear. First, consider that many complicated functions, such as the CIS energy,

can be written as a graph in which each node is one of the four basic binary operations
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Table 3.1: Expressions for the derivatives of the four basic arithmetic functions in terms of

the (presumably stored) values of their inputs a and b and output f .

f(a, b) a+ b a � b ab a/b

@f/@a 1 1 b 1/b

@f/@b 1 �1 a �f/b

shown in Table 3.1 in which two input quantities a and b go in and the output quantity f
that comes out may then become one of the inputs for one or more of the other nodes in the

graph. One can compute the overall function value g(~x) by traversing the graph, starting

from the dangling edges that are the inputs ~x and moving forward through all the nodes

until the final output g(~x) is reached. Now, if one can afford to store the outputs of each

node in the graph, it becomes possible to evaluate all of g’s first derivatives with respect to

the elements of ~x for a cost that is a small constant multiple of the evaluation cost of g via

a sort of reverse traversal of the graph. [332] Crucially, if one considers a given node and

assumes that they already know the partial derivative of g with respect to the output f of

that node, then the chain rule and the simple derivative formulas in Table 3.1 ensure that the

partial derivatives of g with respect to the node’s inputs a and b can be evaluated via three

or fewer binary arithmetic operations. Starting at the final node and working backwards,

one finds that the number of operations required to get all the derivatives of g with respect

to all the intermediates and all the elements of ~x is not worse than four times the number

of nodes in the graph, and so the cost to get all the derivatives @g/@~x is a small constant

multiple of the cost to evaluate g itself.

This approach, known as reverse accumulation, provides a straightforward if tedious

recipe for constructing a low cost implementation of analytic derivatives, and we may for

example apply it to the CIS energy E to obtain an efficient function for the energy first

derivatives that appear in Eq. (3.2). Folding this logic over on itself, we recognize that thanks

to the dot product of these efficient derivatives with ~µ, L itself can be implemented as a many-

input-single-output function of the variables ~⌫ and ~µ whose cost is a small constant multiple

of that of E. By a second, compound application of reverse accumulation we may thus arrive

at an implementation that delivers analytic derivatives of L with respect to both ~⌫ and ~µ
for a cost that is also a small constant multiple of that of a CIS energy evaluation and with

an additional memory requirement for intermediate storage that scales only as the square

of the system size. Note that, in practice, setting up reverse accumulation is tedious work

that can and has been automated in many software packages. In the present study, we have

leveraged the machine learning community’s rapid progress in reverse accumulation software

by employing the TensorFlow [335] framework to evaluate our Lagrangian’s derivative vector,

the norm of which we minimize by a quasi-Newton approach. [336] As the cost of a CIS
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energy evaluation scales as the cost of a Fock matrix build, so does evaluation of L and the

necessary derivatives, leading our excited state mean field approach to have the same cost

scaling as CIS.

While we have motivated this Lagrangian approach with the prospects of relaxing the

orbitals in CIS, the logic supporting its construction is much more general, and indeed

L can in principle be employed efficiently with any ansatz for which E and a reasonable

approximation to W can be efficiently evaluated. L could, for example, be used as a more

rigorous alternative to maximum overlap methods [220] when optimizing a CASSCF wave

function for an individual excited state. Although we are quite curious about this possibility,

we do not pursue strongly correlated excited state treatments in this study. Instead, we

focus on delivering a fully orbital-relaxed CIS wave function and testing its ability to act

as a platform for excited state correlation treatments in the same way HF theory does for

ground states.

To this end, we employ the CIS-like ansatz

|�i = eX̂
 

c0|0i +
X

ia

cia|ai i +
X

īā

cīā|āī i
!

, (3.6)

in which excitations are labeled by alpha (i,a) or beta (

¯i,ā) indices and the closed shell deter-

minant |0i is included to help the orbital-relaxed excited state better maintain orthogonality

to the RHF ground state. The vector of variables ~⌫ that we optimize via L includes the

coefficients c0, cia, and cīā, as well as the elements of the matrix X that defines the orbital

rotation operator,

ˆX =

X

p<q

Xpq

�

â+p âq � â+q âp
�

, (3.7)

which for the present study we constrain so as to keep the orbitals spin-restricted. Although

we do not explore the possibility in the present study, this approach could be generalized to

work with a CASSCF wave function by replacing the CIS expansion in Eq. (3.6) with the

CASSCF CI expansion. Given the much greater size of such CI expansions, it may in that

case be more effective to use L only for the orbital rotation optimization and to instead rely

on modern CI solvers to keep the energy stationary with respect to the CI coefficients.

While the excited state mean field (ESMF) ansatz |�i is more flexible than CIS and might

therefore be expected to be more accurate, one should remember that, due to the significant

effect of weak correlation on energetics, HF theory itself is quite poor quantitatively even

when it is qualitatively a good zeroth order wave function. By the same reasoning, total

energies and energy differences from ESMF wave functions (which revert to RHF when !
targets the ground state) are not likely to be competitive in accuracy with methods that

incorporate correlation effects, such as equation of motion coupled cluster singles and doubles

(EOM-CCSD).[15]

As in the ground state, we are interested in the ESMF wave function not as a destination

in and of itself, but rather as a reliable platform upon which to construct correlation treat-

ments that can reasonably hope to achieve more quantitative accuracy. Considering first the
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prospects for a coupled cluster theory, we note that due to the natural termination of the

Baker-Campbell-Hausdorff (BCH) expansion in traditional, similarity-transformed CC sin-

gles and doubles (CCSD), [268] the usual approach of projecting the CC eigenvalue equation

(e�T̂
ˆHeT̂ � E)|�i = 0 (3.8)

into the space of low order (in this case internally contracted) excitations from the reference

will, as in the ground state theory, lead to a polynomially complex system of equations

for the cluster amplitudes. However, due to the fact that bare triples excitations would be

present within the internally contracted doubles, the cost scaling of such an approach would,

although still polynomial, be substantially higher than in ground state CCSD. More enticing

is the prospect of leveraging the fact that the potentially long-range nature of the excitation

and the orbital relaxations it induces should already be accounted for in the ESMF reference

state, allowing lower-cost local CC approaches [337–340] to focus on what they do best:

treating short-ranged weak correlation.

As intriguing as CC methods may be, the principle of Occam’s razor suggests that an

analogue of the much simpler MP2 theory would be a wiser starting point for investigations

into post-ESMF correlation methods. We can arrive at just such a method, which we will

denote as ESMP2, by applying standard Rayleigh-Schrödinger perturbation theory to the

zeroth order Hamiltonian

ˆH0 =
ˆR(

ˆF � ˆH)

ˆR +

ˆP ˆH ˆP +

ˆQ ˆF ˆQ (3.9)

where

ˆF is the Fock operator with respect to the ESMF one-body density matrix,

ˆR = |�ih�|,
ˆP is the projector to the span of |0i and the singles excitations in the ESMF orbital basis,

and

ˆQ = 1 � ˆP . Note that

ˆP |�i = |�i and

ˆQ|�i = 0. This choice of

ˆH0 leads to the

MP2-like zeroth order relationship

ˆH0|�i = E0|�i = h�| ˆF |�i|�i (3.10)

and indeed we see that when we set ! so as to target the ground state, |�i becomes the RHF

state and ESMP2 simplifies to MP2. In the excited state case, as in traditional MP2, the

first order wave function contains no determinants with fewer than two excitations, which

is a consequence of including the

ˆP ˆH ˆP term in

ˆH0. We also maintain the relationship

EESMF = E0 + E1 in direct analogy to the MP2 relationship EHF = E0 + E1. As the

Fock operator is not diagonal for excited states, the first order amplitudes on doubles and

triples are found by inverting

ˆF �E0 via the minimal residual Krylov subspace method, for

which the MP2-style denominators are an excellent preconditioner. Note that this approach

produces a fully excited-state-specific first order wave function, as opposed to the CIS(D)

method where the triples are a product of the CIS coefficients and the ground state MP2

amplitudes. [129, 341]

While we have, for the sake of simplifying development and testing, written our pilot

ESMP2 implementation in a fully uncontracted form whose triples part has an N7
cost
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Table 3.2: Comparisons for singlet excitations. For EOM-CC(2,3) we report excitation

energies in eV, with other methods’ results reported as excitation energy errors in eV relative

to EOM-CC(2,3) and summarized in terms of mean unsigned error (UE) and maximum UE.

For stretched LiF, transitions are relative to the closed shell ionic state and are labeled by the

F ! Li orbitals involved (the bond is aligned along the z axis). For other cases, transitions

are relative to the ground state. Traditional methods were evaluated with Molpro [294] and

QChem. [291]

EOM EOM

State CC(2,3) CIS OO-CIS CIS(D) ESMF ESMP2 CCSD

H2O, cc-pVDZ, r = 0.9614 Å, a = 104.4�

n ! �⇤
8.22 0.96 -0.35 -0.18 -0.74 -0.01 -0.08

n ! ⇡⇤
10.25 0.70 -0.32 -0.11 -0.77 0.00 -0.06

� ! �⇤
10.86 0.94 -0.26 -0.17 -0.73 -0.05 -0.06

� ! ⇡⇤
12.93 0.65 -0.26 -0.10 -0.83 -0.03 -0.04

⇡ ! �⇤
14.82 0.18 -0.47 -0.06 -0.82 -0.04 -0.01

CH2O, cc-pVDZ, geometry: B3LYP/cc-pVTZ

n ! ⇡⇤
4.22 0.40 -0.14 0.01 -0.98 -0.09 -0.05

⇡ ! ⇡⇤
10.02 0.26 -0.30 0.46 -1.12 -0.06 0.12

n ! �⇤
8.70 1.68 0.50 -0.46 -0.71 0.09 -0.08

LiF, cc-pVDZ, r = 8.0Å

2px ! 2s -2.68 1.49 -3.03 -1.44 -1.02 0.10 -0.22

2pz ! 2s -2.68 1.44 -1.24 -1.31 -1.02 0.10 -0.22

2pz ! 2pz -0.84 1.48 -3.20 -1.48 -1.02 0.10 -0.22

Ne, cc-pVTZ

2s ! 3p 64.32 2.66 1.74 0.41 1.36 0.34 0.06

Mean UE 1.07 0.98 0.51 0.93 0.08 0.10

Max UE 2.66 3.20 1.48 1.36 0.34 0.22

scaling, multiple avenues exist for recovering the N5
scaling of traditional MP2. On the one

hand, we could exploit sparsity in the ESMF coefficient matrix, which we observe to have

only a handful of elements that are not small. Indeed, we have tested this idea by setting all

but three of the elements to zero when solving the ESMP2 linear equation and evaluating

its second order energy for the molecules discussed below and found that excitation energy

predictions are not strongly affected. On the other hand, we could follow the internally
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contracted approach of Evangelista and coworkers. [342]

3.4 Results
Table 3.2 reveals that, like its HF cousin in the ground state, the ESMF approximation does

not confer quantitative accuracy. This behavior can be understood as a direct consequence

of our design goal of hewing as closely as possible to a classical mean field theory. By includ-

ing only those correlations that are absolutely necessary to realize a fermionic excited state

(namely Pauli correlations and the open shell correlation), ESMF is missing all weak correla-

tions and so, like HF, does not produce quantitative energies. The fact that ESMF tends to

underestimate excitation energies can also be understood in terms of what correlations are

included. Indeed, in creating their open-shell arrangements, ESMF gives each excited state

roughly one pair’s worth of electron correlation, and so these states’ energies are biased low

compared to that of the closed shell ground state. Thus, in direct analogy to HF theory, the

simplicity and mean field nature of ESMF prevents it from delivering accurate energetics on

its own, but this of course was not the intention. What is more important is the question of

whether ESMF can match HF theory’s ability to act as a foundation for correlation methods,

a question that our early results appear to answer strongly in the affirmative.

The data reveal that in water, formaldehyde, stretched lithium fluoride, and neon, ESMP2

rivals EOM-CCSD in accuracy. Its errors are typically at least a factor of five smaller than

CIS, and it substantially outperforms CIS(D) in the charge transfer states of stretched LiF.

Our primary explanation for this success is that the reference wave function’s mean-field

quality of having fully relaxed orbitals places it at a similar “distance” from the correct wave

function as for HF in the ground state, with the subtle effects of weak electron correlation

being all that is missing. In contrast, CIS(D), which is also inspired by and closely entwined

with MP2 theory, is asking its perturbation to capture both correlation effects and orbital

relaxation. While the former are typically small in systems that are not strongly correlated,

the size of the latter is much more system dependent. Table 3.2 shows that in the low

lying transitions of water, in which the overall spatial distribution of electrons is not greatly

changed, both CIS(D) and ESMP2 are highly accurate. In stretched LiF, however, the

transitions convert between ions and neutral atoms, and as one would expect these large

charge density changes lead to strong orbital relaxation effects, as revealed by comparing the

CIS and ESMF energies. These relaxations are much more difficult to treat perturbatively,

and, to make matters worse, cause the closed-shell-state MP2 amplitudes that all CIS(D)

states rely on to be less appropriate for the open-shell states. Looked at from this perspective,

it is not surprising that ESMP2, thanks to its orbital-relaxed reference and fully state-specific

perturbation, delivers more uniform accuracy across charge-transfer, valence, and Rydberg

states alike. Indeed, when compared to the high-level benchmark of EOM-CC(2,3), [343] the

maximum unsigned error of ESMP2 is less than the mean unsigned error for CIS(D).

We can also compare our results with more recent attempts to provide orbital relaxations

for CIS. The OO-CIS method, for example, provides relaxations via a single Newton-Raphson
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orbital optimization step in which the HF Hessian is used as an approximation to the CIS

orbital Hessian. [128] As OO-CIS lacks a treatment for weak correlation, it is not surprising

that in H2O, CH2O, and Ne, its accuracy is for most states better than CIS (which has

neither orbital relaxation nor a weak correlation treatment) but worse than CIS(D), EOM-

CCSD, and ESMP2, as shown in Table 3.2. The large errors that OO-CIS makes in LiF can

be understood as a consequence of its Hessian approximation, as LiF’s smallest HF Hessian

eigenvalues are about an order of magnitude smaller than those in the other molecules, and

so when this Hessian is inverted to get the OO-CIS orbital relaxation, the resulting Newton-

Raphson step is much too large. In this system at least, it appears that the HF Hessian

is not an effective surrogate for the CIS Hessian. Unlike OO-CIS and our approach, the

variationally orbital-adapted CIS (VOA-CIS) method seeks to provide orbital relaxations

through specially chosen expansions of the configuration interaction space. [327] However,

there is at present no single prescription for defining the expansion (the developers explore

at least eight possibilities in their initial paper [327]) and so instead of making an extensive

and hard-to-interpret direct comparison, we will point out the developers’ conclusion that

“most of the time, VOA-CIS closely follows CIS(D)” and their data that shows that it is not

unusual for VOA-CIS to be in error by between 0.5 eV and 1 eV for single excitation energies.

[327] In summary, our preliminary testing shows ESMP2, with its inclusion of both orbital

relaxation and state-specific correlation, to be closer in its behavior to EOM-CCSD than to

previous attempts at augmenting the CIS wave function.

3.5 Conclusions
We have presented an excited state mean field theory and investigated its potential as a

platform on which to build excited state correlation treatments. Like HF theory, the method

relies on making a minimally correlated wave function’s energy stationary with respect to

orbital relaxations. While HF does this for a Slater determinant, we do so for a CIS-like

wave function in order to accommodate the basic structure of simple excitations, and so the

cost of our mean field optimization has the same scaling with system size as CIS. Unlike HF

theory, our approach incorporates an excited state variational principle into its Lagrangian

so that ground and excited states are treated equally. In exploring the method’s potential

as a platform for correlation treatments, we have constructed an excited state analogue of

MP2 theory and found that, in initial tests, its accuracy rivals that of EOM-CCSD.

Looking to the future, there are a number of important questions to consider about

this excited state mean field approach. First, how will it fare when applied to larger and

more complicated charge transfer systems, core excitations, and Rydberg states? Second,

will its advantages be maintained when paired with more complex and expensive methods

such as coupled cluster and the complete active space self-consistent field? Finally, can

this minimally-correlated, excited-state-specific wave function be usefully employed as a

replacement for the Slater determinant in an excited-state-specific generalization of the Kohn-

Sham approximation? We look forward to exploring these and other questions that will
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undoubtedly arise in the context of excited state mean field theory.
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Chapter 4

A Generalized Variational Principle

4.1 Abstract
We present a generalization of the variational principle that is compatible with any Hamil-

tonian eigenstate that can be specified uniquely by a list of properties. This variational

principle appears to be compatible with a wide range of electronic structure methods, in-

cluding mean-field theory, density functional theory, multi-reference theory, and quantum

Monte Carlo. Like the standard variational principle, this generalized variational principle

amounts to the optimization of a nonlinear function that, in the limit of an arbitrarily flex-

ible wave function, has the desired Hamiltonian eigenstate as its global minimum. Unlike

the standard variational principle, it can target excited states and select individual states in

cases of degeneracy or near-degeneracy. As an initial demonstration of how this approach

can be useful in practice, we employ it to improve the optimization efficiency of excited state

mean field theory by an order of magnitude. With this improved optimization, we are able to

demonstrate that the accuracy of the corresponding second-order perturbation theory rivals

that of singles-and-doubles equation-of-motion coupled cluster in a substantially broader set

of molecules than could be explored by our previous optimization methodology.

4.2 Introduction
While the ground state variational principle has acted as the cornerstone of electronic struc-

ture theory for decades, its usefulness is limited by its focus on the lowest Hamiltonian

eigenstates. Certainly this reality has not prevented the development of powerful excited

state methods based on other principles, such as linear response methods, or even methods

based on the variational principle itself, such as state-averaging methods. However, these

methods rely on making additional approximations beyond those required for the ground

state theories from which they are derived. Linear response of course assumes that the ex-

cited states are in some sense close to the ground state in state space (specifically, it assumes

that they live in the ground state’s tangent space), [325] whereas state-averaging assumes
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that important wave function traits such as the molecular orbitals are shared by all states.

[131, 132, 344] In a huge variety of applications, these approaches have been successful. How-

ever, there remain important areas — such as charge transfer, core excitation, and doubly

excited states — where these additional layers of approximation continue to impair predic-

tive power and where it would be desirable to construct excited state methods that do not

require them. [15, 165, 296, 345]

One route to doing so is to work with excited state variational principles, which can fully

tailor the flexibility of an approximate wave function ansatz to the needs of an individual

excited state. Typically based on functional forms that involve squaring the Hamiltonian

operator, [116, 249, 255, 256] these approaches must either accept a higher computational

scaling than their ground state counterparts [116] or resort to statistical evaluation [249,

256] or approximations to their functional forms. [117] These challenges in mind, it would

be interesting if a class of exact excited state variational principles could be formulated

without the need to square this difficult operator. In this paper, we present one such class,

discuss its prospects for wide utility, and show that it can be used to improve the efficiency

of excited state mean field (ESMF) theory. [117]

One seemingly inescapable difficulty with excited states and degenerate states is that

they are harder to specify uniquely than non-degenerate ground states. Indeed, the latter

can simply be specified by demanding the state of lowest energy, a prescription that is both

straightforward and widely applicable. For excited states, defining the Hamiltonian eigen-

state that one wants is much less straightforward. At the very least, one must say something

more specific about it, such as where it is in the state ordering or what its properties are like.

This specification may be relatively simple, such as specifying that one is interested in the

Hamiltonian eigenstate with energy closest to a given value, but clearly must become more

involved in cases with degeneracy or near-degeneracy. Here, we will take the perspective that

Hamiltonian eigenstates whose unique specification requires making more precise statements

about their properties be accommodated by crafting a generalized variational principle in

which these more precise specifications can be encoded. For example, when dealing with

degeneracy, uniquely specifying the desired stationary state might be accomplished by spec-

ifying desired values for both the energy and dipole moment. Even in cases that are not

strictly degenerate, optimization may be easier if one can make statements about properties

other than the energy that help differentiate the state from other energetically similar states.

Crucially, however, these statements should do no more than identify the state, and so we

will insist that the overall approach produce the same optimized wave function regardless of

the details of what properties were used to uniquely identify it.

Although we will argue below that this generalized variational principle (GVP) can be

employed in many areas of electronic structure and will point out parallels to recent work

in density functional theory [200] and multi-reference theory, [132] we will in this study use

ESMF theory as an example in which the approach offers clear practical benefits. In our

previous study of ESMF, we coupled an approximate excited state variational principle to a

Lagrangian constraint that ensured the optimizations produce energy stationary points. [117]

While this approach allowed us to verify that ESMF theory could act as a powerful platform
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for excited state correlation methods and helped to inspire the GVP that we introduce

here, it possessed a number of difficulties. First, the method of Lagrange multipliers is,

strictly speaking, a saddle-point method, [346] and so complications arise when coupling it

to standard unconstrained quasi-Newton methods. Second, we have found that, in practice,

the approach suffers from poor numerical conditioning and can take many thousands of

iterations to converge, which offsets the advantages of Hartree-Fock cost scaling with an

unusually high prefactor. Third, the original formulation was entirely based on the energy

and thus not appropriate for cases with degeneracy. As we discuss below, all three of these

difficulties can be addressed by optimizing the ESMF wave function with a GVP. The result is

an order-of-magnitude speedup for ESMF wave function optimization, moving the method

firmly into the regime where subsequent correlation methods, rather than the mean field

starting point itself, dominate the cost of making predictions.

The proposed GVP appears to create a number of opportunities in other areas of elec-

tronic structure. For example, many other approaches exist for optimizing the orbitals of

weakly correlated excited states, such as �-SCF [229] and the more recently introduced �-

SCF. [116, 347] In the case of �-SCF, the GVP’s specification of desired properties is similar

in spirit to the maximum-overlap approach, and in practice may be able to compliment it by

helping avoid variational collapse. Using similar logic, it appears likely that the GVP will

be immediately compatible with a very recent excited-state-specific variant of CASSCF that

at present [132] employs the same type of Lagrange multiplier approach as in our original

formulation of ESMF. Likewise, so long as the properties used to specify the desired state

can be statistically estimated alongside the energy, it should be possible to realize a GVP

approach within variational Monte Carlo. Finally, as we will discuss briefly below, the pro-

posed GVP can be used to define a constrained search procedure similar to the ground state

constrained search of Levy, [348] allowing formally exact density functionals to be defined for

excited states that can be specified uniquely by a list of properties. This approach should

allow a recent density functional extension of ESMF theory [200] to be reformulated and

placed on firmer theoretical foundations.

This paper is organized as follows. First, we introduce the GVP, discuss why it should

be applicable to a wide range of wave function approximations, and show that it may also

have uses in density functional theory via a constrained search procedure. We then review

the ESMF wave function ansatz before discussing both our original optimization approach

and a more efficient approach based on a simple version of the GVP. We then present results

showing the advantages of the newer optimization approach, use the improved optimizer to

converge ESMF for a wider selection of molecules than was previously possible, and analyze

the accuracy of the corresponding [117] perturbation theory (ESMP2). Finally, we provide

a proof-of-principle example of how the use of properties other than the energy can assist in

optimization and in the face of energetic degeneracy. We conclude with a summary of our

findings and some thoughts on future directions.
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4.3 Theory

A Generalized Variational Principle
Although rigorous excited state variational principles (i.e. functions whose global minimums

are exact excited states) can be constructed by squaring the Hamiltonian operator, [255]

we will take a different approach here as working with

ˆH2
is typically more difficult than

working with expressions involving only a single power of

ˆH. We begin by taking note of the

fact that, when the ansatz is chosen as the exact (within the orbital basis) full configuration

interaction (FCI) wave function, all of the Hamiltonian’s eigenstates are energy stationary

points and all of the energy stationary points are Hamiltonian eigenstates. This reality is

made plain by simply constructing the FCI energy gradient with respect to the coefficient

vector ~c,

rE =

@E

@~c
=

2

|~c |2
�

H � E
�

~c, (4.1)

and recognizing that it is zero if and only if ~c satisfies the FCI eigenvalue equation. Thus,

when attempting to construct a variational principle that yields an exact excited state in

the limit of an exact (FCI) ansatz, it is sufficient to take an approach that searches only

among energy stationary points and that, in the exact limit, is guaranteed to produce the

specific desired stationary point. Of course, the investigator must know something about

the state they want in order to ask for it specifically, and so the approach will need a

formal mechanism for defining which stationary point (i.e. energy eigenstate) is being sought.

Crucially, while working with energy stationary points does require differentiating the energy,

and minimizing a function that is itself defined in terms of the energy gradient may require

some second derivative information, the necessary derivatives do not require squaring the

Hamiltonian and can usually be evaluated without increasing the cost scaling beyond what is

already necessary for evaluating the energy in the first place. [117] Recognizing these formal

advantages, we thus seek to define a generalized variational principle for ground, excited,

and even degenerate states in which the energy gradient is the central player and a very

general mechanism is provided for specifying which Hamiltonian eigenstate is being sought.

To begin, let us make an exact formal construction, after which we will discuss how this

construction may be converted into a practical tool. First, take the wave function to be a

linear combination (with coefficient vector ~c ) of all the N -electron Slater determinants that

can be formed from the (finite) set of one-electron kinetic energy eigenstates that (a) satisfy

the particle-in-a-box boundary conditions for a large box whose edges are length L and (b)

have kinetic energy less than QL, where Q is a fixed positive constant. As the large box

gets larger, this wave function ansatz will eventually be able to describe any normalizable

Hamiltonian eigenstate to an arbitrarily high accuracy. Next, choose a set of operators

ˆBi

and their desired expectation values bi and define a vector

~d of property deviations.

~d =

n D

ˆB1

E

� b1,
D

ˆB2

E

� b2, . . .
o

(4.2)
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Now, if this vector uniquely specifies an exact Hamiltonian eigenstate, by which we mean

that one such eigenstate produces a lower norm for this vector than any other Hamiltonian

eigenstate, then that eigenstate will be the result of the following limit, which forms our

generalized variational principle (GVP).

lim

L!1
lim

µ!0
min

~c

✓

µ
�

�

~d
�

�

2
+ (1 � µ)

�

�rE
�

�

2
◆

(4.3)

Note the order of limits, in which we take the limit in µ > 0 for each value of L as L
is made progressively larger. For any finite L, the properties of the system will be finite

regardless of the choice of ~c, and so the largest possible norm for the vector

~d will also be

finite. This implies that, as µ becomes small, the only states that stand a chance of being

the minimum are energy stationary states. As the box gets bigger and bigger, the wave

function approximation becomes exact, and the energy stationary states tend towards the

exact Hamiltonian eigenstates. By assumption, one of these eigenstates has a lower value

for the norm of

~d than the others, and so that eigenstate results from the minimization, as

desired. While a non-degenerate ground state can be found via a property vector containing

only the energy by setting the target energy to a very large negative number, one can

instead seek excited states by choosing other target energies and furthermore can address

degeneracies by adding additional properties.

Although this formal definition works in principle, let us now turn our attention to how

it can be made useful in practice. First, we replace the large-box FCI wave function with

an approximate wave function ansatz. This removes the limit in L, which was in any case

merely a way of defining an explicit systematic approach towards an exact wave function.

In its place, we now have the idea of systematic improvability that usually gets associated

with variational principles: as the approximate ansatz becomes more and more flexible, we

are guaranteed to recover the exact eigenstate eventually. Of course, as with the traditional

variational principle, there will be systems for which the approximate wave functions we

can afford to work with will not approach the exact limit closely enough to be useful. For

example, the Hartree-Fock Slater determinant is known to break symmetry in unphysical

ways in many situations upon energy minimization, [349] and we see no reason that similar

qualitative failures should not occur for too-approximate wave functions when using a GVP.

That said, the data provided below for ESMF theory suggest that there are many cases

where even relatively simple wave functions are flexible enough to make the approach useful.

In terms of affordability, notice that we have not relied on squaring the Hamiltonian

operator but have instead employed the norm of the energy gradient with respect to the wave

function’s variational parameters. If our wave function approximation allows for an affordable

energy evaluation, then automatic differentiation guarantees that the energy gradient, as well

as the gradient of the norm of the gradient needed to perform the minimization, [117] can

be evaluated at a constant multiple of the cost for the energy. In the same way that we

apply this approach to ESMF theory below, we expect that a related recent approach [132]

to excited-state-specific CASSCF can also be reformulated in terms of this GVP. Of course,

in practice, there may be faster ways of evaluating the necessary gradients than resorting to



CHAPTER 4. A GENERALIZED VARIATIONAL PRINCIPLE 78

automatic differentiation, but we at least have that option in principle and so the worst-case

scenario for cost scaling should not be worse than the parent method. As one additional

comment on practical minimization, note that the limit on µ will have to be discretized, but

as we discuss below in our application to ESMF theory, this does not appear to create any

significant difficulty.

At first glance, one might worry that, since the same eigenstate can be specified by many

different property deviation vectors, the approach may give different results for different

users who make different choices. However, due to the limit on µ, only energy stationary

points will result from the minimization. So as long as the different property deviation

vectors all specify the same stationary point, they will produce the same results (under the

usual assumptions of nonlinear minimization methods not getting trapped in local minima).

Of course, there will be cases where it is not clear what to specify, but in these cases it

is not obvious that state-specific variational methods should be used at all, for how does

one design an optimization to find a state about which nothing is known? If something

is known, and if other states that the desired state could get confused with have been

identified, then projections (even approximate ones) against those states can be included in

the property deviation vector in an effort to uniquely specify the elusive state. Of course,

such an approach has its limits, and in systems with very dense spectra, such as excitations

inside a band of states in a solid, state-specific methods are hard to recommend.

Before moving on to combining this general approach with ESMF theory, let us make a

short statement about density functional theory. For a very large box (take a box as large

as you need to make the following as exact as you would like, e.g. set L to one kilometer and

Q to one megajoule per kilometer) we define the density functional

Gµ[⇢] = min

~c!⇢

✓

µ
�

�

~d
�

�

2
+ (1 � µ)

�

�rE
�

�

2
◆

(4.4)

in which we use Levy’s constrained search [348] approach of searching over only those co-

efficient vectors ~c whose wave functions have density ⇢. Minimizing this functional in the

small-µ limit,

lim

µ!0
min

⇢

✓

Gµ[⇢]

◆

, (4.5)

is then guaranteed to produce the exact density for the Hamiltonian eigenstate specified by

the supplied property deviation vector. Although minimizing G by varying ⇢ is an entirely

impractical way of finding the prescribed state’s exact density, it is one way to do it, and we

therefore see that exact density functionals (meaning functionals of the density that when

minimized give the exact density) exist for states that can be specified uniquely by property

deviation vectors. We make no attempt here to put precise bounds on how broad a class of

states this is, but we expect that it contains the vast majority of molecular excited states

that chemists have questions about. Certainly, any non-degenerate molecular bound state

falls in this category as such states can be specified uniquely by their energy.
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The ESMF Ansatz
Turning now to the construction of a practical optimization method for ESMF theory based

on the above GVP, let us begin by reminding the reader how ESMF theory defines its wave

function approximation.

| i = eX̂
 

c0|�i +
X

ia

�iaâ
†
a"âi"|�i + ⌧iaâ

†
a#âi#|�i

!

(4.6)

Here |�i is the Restricted Hartree Fock (RHF) solution and is included to help maintain

orthogonality between the excited state and the reference ground state, and the coefficients

�ia and ⌧ia correspond to excitations of an up-spin and down-spin electron, respectively,

from the i-th occupied orbital to the a-th virtual orbital. In a finite basis set of Nbas spatial

orbitals, the operator

ˆX is given by

ˆX =

N
bas

X

p<q

Xpq

�

â†pâq � â†qâp
�

, (4.7)

in which

ˆX is real and restricted to be the same for up- and down-spin spin-orbitals. These

choices ensure that the orbital relaxation operator given by eX̂ is unitary[350] and spin-

restricted. As only the elements above the diagonal of

ˆX matter here, the number of varia-

tional parameters is reduced from N2
bas as in Fig. 4.1(a) to Nbas(Nbas � 1)/2 as in Fig. 4.1(b)

. Furthermore, as noted by Van Voorhis and Head-Gordon, the energy of this type of singly

excited wave function is invariant to rotations between occupied orbitals and to rotations

between virtual orbitals.[264] Therefore, these energy-invariant rotation parameters lead to

redundancy in the parameters such that two wave functions could have different values of

~x, c0, ~�, and ~⌧ , but have the same energy. As this would further complicate any numerical

optimization strategy, we only allow for rotations between occupied and virtual orbitals,

making X an off-diagonal block matrix (see Fig. 4.1(c)), reducing the number of variational

rotation parameters to NoccNvir, and redefining

ˆX

ˆX =

N
occ

X

i

N
vir

X

a

Xia

⇣

â†aâi � â†i âa
⌘

. (4.8)

Accounting for all of the variables in the ESMF wave function, for a system with a closed-

shell ground state with Nelec electrons in a basis of Nbas orbitals, there are Nocc = Nelec/2
occupied orbitals, and Nvir = Nbas � Nocc virtual orbitals. The CIS-like coefficient vector

~c = {c0,~�,~⌧} has (1 + 2NoccNvir) elements; the orbital rotation parameter vector ~x has

NoccNvir elements; thus, the ESMF wave function  (~⌫), where ~⌫ = {~c, ~x}, has a total of

3NoccNvir + 1 variables.

Despite being composed of multiple determinants, we assert that the ESMF wave func-

tion hews closely to the principle of a mean-field theory, as it retains only the minimum
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<latexit sha1_base64="Oh90LhCs0/gD2InJVYFD/ZKg1GM=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMFYwttKJvtpF262YTdTbGE/ggvHlS8+n+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTv3mCJXmiXww4xSDmPYljzijxkrNzghZ/jTpVqpuzZ2BLBOvIFUo0OhWvjq9hGUxSsME1brtuakJcqoMZwIn5U6mMaVsSPvYtlTSGHWQz86dkFOr9EiUKFvSkJn6eyKnsdbjOLSdMTUDvehNxf+8dmaiqyDnMs0MSjZfFGWCmIRMfyc9rpAZMbaEMsXtrYQNqKLM2ITKNgRv8eVl4p/Xrmvu/UW1flOkUYJjOIEz8OAS6nAHDfCBwRCe4RXenNR5cd6dj3nrilPMHMEfOJ8/HV+PnQ==</latexit><latexit sha1_base64="Oh90LhCs0/gD2InJVYFD/ZKg1GM=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMFYwttKJvtpF262YTdTbGE/ggvHlS8+n+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTv3mCJXmiXww4xSDmPYljzijxkrNzghZ/jTpVqpuzZ2BLBOvIFUo0OhWvjq9hGUxSsME1brtuakJcqoMZwIn5U6mMaVsSPvYtlTSGHWQz86dkFOr9EiUKFvSkJn6eyKnsdbjOLSdMTUDvehNxf+8dmaiqyDnMs0MSjZfFGWCmIRMfyc9rpAZMbaEMsXtrYQNqKLM2ITKNgRv8eVl4p/Xrmvu/UW1flOkUYJjOIEz8OAS6nAHDfCBwRCe4RXenNR5cd6dj3nrilPMHMEfOJ8/HV+PnQ==</latexit><latexit sha1_base64="Oh90LhCs0/gD2InJVYFD/ZKg1GM=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMFYwttKJvtpF262YTdTbGE/ggvHlS8+n+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTv3mCJXmiXww4xSDmPYljzijxkrNzghZ/jTpVqpuzZ2BLBOvIFUo0OhWvjq9hGUxSsME1brtuakJcqoMZwIn5U6mMaVsSPvYtlTSGHWQz86dkFOr9EiUKFvSkJn6eyKnsdbjOLSdMTUDvehNxf+8dmaiqyDnMs0MSjZfFGWCmIRMfyc9rpAZMbaEMsXtrYQNqKLM2ITKNgRv8eVl4p/Xrmvu/UW1flOkUYJjOIEz8OAS6nAHDfCBwRCe4RXenNR5cd6dj3nrilPMHMEfOJ8/HV+PnQ==</latexit>

Nvir
<latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit>

Nocc
<latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit>

Nvir
<latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit>

Nocc
<latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit>

X =
<latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit><latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit><latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit>

Nvir
<latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit>

Nocc
<latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit>

��x
<latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit>

��x
<latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

X =
<latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit><latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit><latexit sha1_base64="MVjqQxUP802FccyEvsBeeVTXMJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA22027dHcTdjdCCP0LXjyoePUXefPfuGlz0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9vC7zxRpVksH0yW0EDgkWQRI9gUUhddo0G94TbdGdAy8UrSgBLtQf2rP4xJKqg0hGOte56bmCDHyjDC6bTWTzVNMJngEe1ZKrGgOshnt07RiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFrxD/83qpiS6DnMkkNVSS+aIo5cjEqHgcDZmixPDMEkwUs7ciMsYKE2PjqdkQvMWXl4l/1rxquvfnjdZNmUYVjuAYTsGDC2jBHbTBBwJjeIZXeHOE8+K8Ox/z1opTzhzCHzifP1EnjUo=</latexit>

��x
<latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

0
<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

.

.

.
.

.
0

<latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit><latexit sha1_base64="DfemnTLialK+ve98TKLnkz30pz8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnZoyH</latexit>

��x
<latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit><latexit sha1_base64="2K7smOvehtJP45SBaVKSd75FL0A=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4saQiqLeiF48VjC20oWy2k3bpZhN3N8US+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLf/oONUMfRYLGLVDKhGwSV6hhuBzUQhjQKBjWBwM/EbQ1Sax/LejBL0I9qTPOSMGis1T9tDZNnTuFMquxV3CrJIqjkpQ456p/TV7sYsjVAaJqjWraqbGD+jynAmcFxspxoTyga0hy1LJY1Q+9n03jE5tkqXhLGyJQ2Zqr8nMhppPYoC2xlR09fz3kT8z2ulJrz0My6T1KBks0VhKoiJyeR50uUKmREjSyhT3N5KWJ8qyoyNqGhDqM6/vEi8s8pVxb07L9eu8zQKcAhHcAJVuIAa3EIdPGAg4Ble4c15dF6cd+dj1rrk5DMH8AfO5w+HkI/U</latexit>

Nvir
<latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit>

Nocc
<latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit><latexit sha1_base64="/QXofz6Cort/xmumDT+DlIdnYPE=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKWxEUG9BL54kgjGBZA2zk95kyOzsMtOrhmX/w4sHFa9+jDf/xskD0cSChqKqm+4uP5bCoOt+ObmFxaXllfxqYW19Y3OruL1za6JEc6jzSEa66TMDUiioo0AJzVgDC30JDX9wMfIb96CNiNQNDmPwQtZTIhCcoZXurjppG+ER04jzLOsUS27ZHYP+kMosKZEpap3iZ7sb8SQEhVwyY1oVN0YvZRoFl5AV2omBmPEB60HLUsVCMF46vjqjB1bp0iDSthTSsfp7ImWhMcPQt50hw76Z9Ubif14rweDUS4WKEwTFJ4uCRFKM6CgC2hUaOMqhJYxrYW+lvM8042iDKtgQ5l6eJ/Wj8lnZvT4uVc+naeTJHtknh6RCTkiVXJIaqRNONHkiL+TVeXCenTfnfdKac6Yzu+QPnI9vpHqSzQ==</latexit>

Nvir
<latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit><latexit sha1_base64="ufnYSV/LIB7khBeWEdziMy8N9zI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hY0I6i3oxZNEcE0gWcPsZJIMmZ1dZnqjYdn/8OJBxasf482/cfJANLGgoajqprsriKUw6LpfzsLi0vLKam4tv76xubVd2Nm9M1GiGfdYJCNdD6jhUijuoUDJ67HmNAwkrwX9y5FfG3BtRKRucRhzP6RdJTqCUbTS/XUrbSJ/xHQgdJa1CkW35I5Bfkh5lhRhimqr8NlsRywJuUImqTGNshujn1KNgkme5ZuJ4TFlfdrlDUsVDbnx0/HVGTm0Spt0Im1LIRmrvydSGhozDAPbGVLsmVlvJP7nNRLsnPmpUHGCXLHJok4iCUZkFAFpC80ZyqEllGlhbyWsRzVlaIPK2xDmXp4n3nHpvOTenBQrF9M0crAPB3AEZTiFClxBFTxgoOEJXuDVeXCenTfnfdK64Exn9uAPnI9vzxqS6Q==</latexit>
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Figure 4.1: Gray areas represent non-zero variational parameters in the orbital rotation

space. The black-striped triangles in (b) identify energy-invariant parameters. The structure

of the rotation coefficient matrix with no assumptions is shown in (a), using the property

of anti-hermiticity in (b), and using the property of invariance under occupied-occupied and

virtual-virtual rotations in (c).

correlations necessary to describe an open shell excited state of a fermionic system. Like the

mean field Hartree Fock wave function, the ESMF wave function captures Pauli exclusion via

the antisymmetry of Slater determinants. However, more correlation is needed to describe

an open shell excited state. Not only can the electrons in the open-shell arrangement not

occupy the same spin orbital, these opposite-spin electrons cannot occupy the same spatial
orbital, which is a strong correlation not present in a closed-shell ground state that we insist

on capturing here, which immediately requires at least two Slater determinants. As includ-

ing the entire set of single excitations keeps the approach general by ensuring that any such

open-shell correlation can be captured and does not increase the cost scaling compared to

using a single pair of determinants, we opt for the wave function above as our ansatz. We

do note, however, that a two-determinant ansatz would likely be effective in many cases,

although making that simplification has the potential to complicate the corresponding per-
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turbation theory, a point we will return to in discussing our results. Either way, double and

triple excitations — where most of the weak correlation effects that would move us squarely

away from the mean-field spirit are to be found — are not included.

More accurate than CIS due to the added flexibility from the orbital rotation operator,

[325] yet less accurate than methods like EOM-CCSD that incorporate more electron cor-

relation, [15] ESMF is best seen as a gateway towards quantitatively accurate descriptions

of excited states rather than an accurate method in its own right. Like Hartree Fock the-

ory, [268, 351] its ultimate utility is intended as a platform upon which useful correlation

methods can be built. So far, three such methods have been investigated: 1) a DFT-inspired

extension to ESMF whose preliminary testing [200] reveals a valence-excitation accuracy

similar to that of TD-DFT but also the promise of significant advantages in charge transfer

states, 2) an excited state analog of Moller-Plesset perturbation theory, ESMP2,[117] which

we show below to be highly competitive in accuracy with EOM-CCSD, and 3) a state-specific

complete active space self-consistent field (SS-CASSCF) approach whose orbital optimiza-

tion mirrors that of ESMF and whose root-tracking approach is similar in spirit to the GVP

discussed here. [132]

While our original strategy for optimizing the ESMF ansatz achieved the same O(N4
)

scaling as ground state mean-field theory, the actual cost of the optimization was unaccept-

ably high. In many cases, it was more expensive than working with our fully-uncontracted

version of ESMP2, whose cost scaling goes as O(N7
). In searching for more practical opti-

mization methods, we have considered the option of deriving Roothaan-like equations, but

so far this approach has not yielded a practical optimization strategy. Instead, we have

found two other approaches to be more effective, at least for now. First, one can replace the

BFGS [259–262] minimization of our original Lagrangian with an efficient Newton-Raphson

(NR) approach, which handles the strong couplings between ansatz variables and Lagrange

multipliers more effectively. Second, one can use the GVP introduced above to redefine the

optimization target function in a way that avoids Lagrange multipliers entirely, at which

point both BFGS and NR are considerably accelerated. In the next section, we will discuss

the old and new target functions, after which we turn our attention to comparing the relative

merits of BFGS and NR and how ESMF admits a useful finite-difference approach to the

latter.

Target Functions
Lagrange Multiplier Formalism

While Hartree-Fock theory uses Lagrange multipliers to enforce orthonormality between

the orbitals,[2] our original target function for optimizing the ESMF ansatz used Lagrange

multipliers to ensure that the optimization ended on an energy stationary point even when

we approximated an

ˆH2
-based variational principle to keep it affordable. By minimizing

L~� = W +

~� · rE, (4.9)
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in which W is an approximated excited state variational principle and

~� are the Lagrange

multipliers, we guarantee that the optimization preserves the useful properties of energy

stationary points, such as size-consistency for a product-factorizable ansatz. Note that, even

if W is not approximated, such properties can be violated in the absence of the Lagrangian

constraint. [330] Note also that, since we rotate from already-orthonormal Hartree Fock

orbitals, we do not need to add additional Lagrange multipliers for orthonormality. In

practice, we approximated the excited state variational principle

W =

h |(! � ˆH)

2| i
h | i (4.10)

whose global minimum is the exact (excited) energy eigenstate with energy closest to !.[247,

255] Somewhat surprisingly, we found that even the aggressive approximation

W ⇡ (! � E)

2
(4.11)

was sufficient in practice. [117]

While this formalism allows us to produce a number of successful optimizations in small

molecules and achieves the desired cost scaling, it does create multiple complications. In par-

ticular, this Lagrangian is unbounded from below with respect to the Lagrange multipliers,

so simple descent methods like standard BFGS cannot be applied directly. Instead, we pro-

ceeded by minimizing the squared norm of the gradient of L~�, i.e. |rL~�|2, and although this

does not increase the cost scaling, it leads to an additional layer of automatic differentiation

that increases the cost prefactor. Worse yet, as we will make clear below, this strategy was

very poorly numerically conditioned, causing BFGS to require a large number of iterations to

converge. In contrast, a NR algorithm can directly search for and locate saddle points of this

Lagrangian target function, which are the solutions we actually seek, thus avoiding the need

for an extra layer of derivatives.[346] Furthermore, NR helps with the speed of convergence

due to its more robust handling of second-derivative couplings. However, whether working

with NR or BFGS, we find it even more effective to avoid Lagrange multipliers entirely by

reformulating the target function using the GVP.

Generalized Variational Principle Approach

Consider instead an optimization target function that can be switched between the energy

itself and a simple version of the GVP in which the energy is the only property in the

deviation vector.

Lµ� = �
⇣

µ(! � E)

2
+ (1 � µ)|rE|2

⌘

+ (1 � �)E (4.12)

If we first consider the case where we set � = 1, we see that we have a simple version of

Eq. (4.3) in which the limit on L has been replaced by using the approximate ESMF ansatz.

This target function is bounded from below, and so a series of optimizations in which µ is
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made progressively smaller and then set to zero can immediately employ either BFGS or

NR. Once we are close to convergence, we can in the case of NR then switch � to zero and

rely on NR’s ability to hone in on an energy saddle point. Of course, in practice, it may

be system specific when and if switching � to zero is advantageous. If one does not switch

� to zero, then it is important to realize that it is possible for an optimization to end at a

point where r|rE|2 = 0 but |rE|2 6= 0, so the user must be careful to verify at the end of

the optimization that the energy gradient is indeed zero as expected. In the results below,

we did not encounter any optimizations converging to a stationary point of |rE|2 that was

not a stationary point of E, but such points clearly exist and so this simple check should be

standard procedure.

While the use of (! � E)

2
was seen in our previous approach as an approximation to an

excited state variational principle, the GVP approach helps us see that this is not where the

approximation lies. Indeed, for non-degenerate states, this simple choice for the deviation

vector will give exact results when used with an exact ansatz. From this perspective, it is

clear that the approximation being made is instead an ansatz approximation. To be precise,

the assumption is that the stationary points of the ESMF ansatz are, for the states we

seek, similar to those of FCI, which is the same assumption that is made when formulating

the Roothaan equations to find an energy stationary point of the Slater determinant in

Hartree-Fock theory. Thus, as in the ground state case, the central assumption is that the

relevant energy stationary point of the mean-field ansatz is a good approximation for the

exact Hamiltonian eigenstate. Energy minimization (for the ground state) or the use of the

GVP (for any state) are simply means of arriving at the relevant stationary point.

To give a concrete idea of how this target function may be used in practice, let us sketch

out how we might use it to find a particular stationary point (point c) in Fig. 4.2. Initially,

we set � = 1 and µ =

1
2

and select an ! value near to where we expect the stationary point’s

energy to be. We then take a series of NR steps seeking to minimize Lµ�, but in between

each step we decrease µ by some small amount, say

1
10

, until we reach µ = 0. At this point,

the GVP is assumed to have done its job (locating the neighborhood of the correct stationary

point) and we switch � to 0, thus converting the optimization into a standard saddle point

search (if this proves unstable then � can be held at 1 instead). The potential advantage of

this � = 0 stage is that it can employ well-known preconditioning methods when solving the

NR linear equation, such as the Hartree-Fock energy hessian approximation

Mia,jb =
�ij�ab

2(Faa � Fii +�E)

(4.13)

that is often used to accelerate ground state optimizations. [264, 352–356] Here F is the

Fock matrix, and �E is the change in energy between the last two optimization steps. In

summary, what starts as a minimization method guided to the desired stationary point by

the GVP ends with a straightforward energy saddle point search. Compared to the Lagrange

multiplier approach, this approach has the advantage that there are no poorly-preconditioned

Lagrange multipliers and the objective function is bounded from below. Thus, most standard

minimization methods can be used without the need for an additional layer of derivatives,
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Figure 4.2: An idealized representation of the relationship between two variables, ⌫1 and ⌫2,
in the ESMF wave function and the ESMF energy in a model system. The global minimum

at a is the lowest energy ground state of the system, while the two stationary points at b
and c correspond to excited states of the system, and can be individually resolved using the

state-targeting parameter ! which is shown by the dotted line.

and the target function can convert into a form that is easily preconditioned near the end of

the optimization.

Finite-Difference NR
With the ability to evaluate gradients of both L~� and Lµ� comes the option of employing a

finite-difference approximation [357] to the NR method (FDNR) that allows us to avoid the

expensive construction of Hessian matrices. To begin, let us briefly review the standard NR

method in order to orient the reader and set notation. In attempting to optimize L with

respect to the variables ~⌫, the NR approach approximates changes in L to second order in
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the yet-to-be-determined update to the current variable vector �~⌫.

L(~⌫ +�~⌫) ⇡ L(~⌫) + rL ·�~⌫ + 1

2

�~⌫T · H ·�~⌫ (4.14)

Here, the Hessian is Hij ⌘ @2L/@⌫i@⌫j. Setting the gradient of this approximation (w.r.t.

�~⌫) to zero and solving for �~⌫ gives an estimate for the variable change that would lead to

L being stationary.

H ·�~⌫ ⇡ �rL (4.15)

If H can be explicitly constructed and inverted, then one simply does so in order to solve for

the update, but in many situations (including ours) the explicit construction of the Hessian

is prohibitively expensive.

Instead, we follow Pearlmutter [357] and solve Eq. (4.15) via a Krylov subspace method

(we use GMRES[358]) in which the matrix-vector product is formed efficiently via a finite-

difference of gradients. Noting that the key matrix-vector product is

[H ·�~⌫ ]i =
X

j

@2L

@⌫i@⌫j
�⌫j (4.16)

we compare to the differentiation of a first-order Taylor expansion of L.

L(~⌫ +�~⌫) ⇡ L(~⌫) +
X

j

@L(~⌫)

@⌫j
�⌫j (4.17)

@L(~⌫ +�~⌫)

@⌫i
⇡ @L(~⌫)

@⌫i
+

X

j

@2L(~⌫)

@⌫i@⌫j
�⌫j (4.18)

Combining Eqs. (4.16) and (4.18), one arrives at a simple approximation for the matrix-

vector product in the form of a gradient difference.

[H ·�~⌫ ]i ⇡ @L(~⌫ +�~⌫)

@⌫i
� @L(~⌫)

@⌫i
(4.19)

Note that, if �~⌫ is not small enough to justify the Taylor expansion, we can exploit the

linearity of the matrix-vector product to make the finite-difference more accurate by scaling

the vector down and then scaling the resulting matrix-vector product back up.

H ·�~⌫ ⇡ 1

✏

⇣

rL(~⌫ + ✏�~⌫) � rL(~⌫)
⌘

(4.20)

In a given FDNR iteration, rL(~⌫) is evaluated once and stored, so that each additional

finite-difference estimate of a matrix-vector product requires only a single additional gradient

evaluation. Although in principle an even more accurate finite-difference can be achieved

at the cost of two gradients per matrix-vector multiply via the symmetric finite-difference

formula, we have not found this to be advantageous. As our results below demonstrate, the

simpler one-gradient approach is already a very accurate approximation.
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4.4 Computational Details
Calculations in this work include timing comparisons between the previously discussed ESMF

optimization methods and vertical excitation benchmarks of ESMF and ESMP2 against a

range of single-reference excited state methods. Generally, generating initial guesses for an

ESMF calculation is straightforward and does not necessitate any post-HF calculations. An

initial RHF calculation computes the orthonormal HF orbitals which are used unrotated

as the initial ESMF orbitals, i.e. X = 0, and therefore the initial unitary transformation

matrix is simply the identity matrix. Often, the dominant configuration state function

(CSF) in an excitation is sufficient as the initial guess for ~c. For example, using the notation

from Eq. (4.6), the initial guess for a singlet excitation from the i-th to the a-th orbital

is simply | i =

1p
2
I(â†a"âi"|�i + â†a#âi#|�i). Choosing ! is system dependent and requires

some intuition, but even a rough approximation to the excitation energy from experiment,

TD-DFT, or a CIS calculation is often sufficient because the energy stationary point criteria

ensures that we will recover a size-consistent solution regardless of our choice of !. If a

rough approximation of the excited state energy is not feasible, one can slowly increase !
over the course of several optimizations and identify an entire spectrum of excited states. In

this specific survey, the former approximation process was used to generate the majority of

initial ESMF guesses. For a few systems, however, the initial guesses were generated from

the most important single excitation coefficients of the EOM-CCSD wave function, and !
was calculated using

! = ERHF +�EEOM�CCSD � 0.5

27.211
(4.21)

where ERHF is the RHF ground state energy and �EEOM�CCSD is the EOM-CCSD vertical

excitation energy. The energy correction is included since ESMF tends to underpredict

excitation energies by approximately 0.5 eV relative to high level benchmarks. These few

initial guesses built from EOM-CCSD results were only necessary to confirm that both

methods were describing the same excitation and ensure fair comparisons and evaluations

between them. The ground state references for ESMF and ESMP2 excitation energies are

RHF and MP2, respectively.

Timing data reported in this work was produced on one 24-core node of the Berkeley

Research Computing Savio cluster. Note that this timing data is meant to compare between

different optimization methods for ESMF that use the same Python-based Fock build code,

and are not intended to represent production level timings. Work is underway on a low-

level implementation that exploits a faster Fock build, but this is not the focus of the

current study. For FDNR-Lµ� timing data reported in Sec. 4.5, µ was set to

1
2

in the

first iteration,

1
4

in the second iteration, and 0 in all subsequent iterations, and � was

switched from 1 to 0 after the first 10 iterations. All calculations were completed under the

frozen core approximation and most in the cc-pVDZ basis set;[359, 360] exceptions to the

latter include the Hessian data reported in Fig. 4.7 and the LiH system in Sec. 4.5 which

used the minimal STO-3G basis set,[288, 361] and CIS(D) benchmark data which employed
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Table 4.1: For different molecules and stages in a NR optimization in the cc-pVDZ basis, we

show the number of orbitals in the basis set Nbas, the time it takes to construct Hex and then

apply it to rLµ� one hundred times, the time it takes to estimate the same one hundred

matrix-vector products via Eq. (4.20), and the average relative error associated with Eq.

(4.20).

NR Hex time Hfd time relative

Molecule Nbas iter. (min) (min) error

Water 23 0 0.40 0.39 2.4 ⇥ 10

�6

5 0.40 0.39 6.0 ⇥ 10

�6

10 0.40 0.39 6.0 ⇥ 10

�6

Ammonia 28 0 0.97 0.79 2.4 ⇥ 10

�6

10 1.00 0.82 6.1 ⇥ 10

�6

30 1.03 0.93 6.1 ⇥ 10

�6

Formaldehyde 36 0 4.52 2.08 2.8 ⇥ 10

�6

10 4.53 2.08 6.5 ⇥ 10

�6

18 4.53 2.08 6.5 ⇥ 10

�6

Methanimine 41 0 9.02 3.62 2.6 ⇥ 10

�6

10 9.22 3.81 6.5 ⇥ 10

�6

30 9.38 3.77 6.5 ⇥ 10

�6

the rimp2-cc-pVDZ auxiliary basis set.[362] With MOLPRO version 2019.1,[294, 363] we

optimized the geometries of a set of small organic molecules at the B3LYP/6-31G* level of

theory. [209, 364–366] Explicit geometry coordinates and the main CSFs contributing to

each excitation are provided in the Supporting Information (SI). Moving to the cc-PVDZ

basis set, we then performed ground state Restricted Hartree-Fock calculations to compute

the initial orbitals used in ESMF, and CIS, MP2, and EOM-CCSD calculations for later

benchmarking. CIS(D), TD-DFT/B3LYP, and TD-DFT/!B97X-V [367] excitation energies

were computed with Q-Chem version 5.2.0[368], and �-CR-EOM-CC(2,3)[165] calculations

were performed with GAMESS.[292] As some theories may lead to different orbital energies

and thus orbital orderings, for each theory that used a different molecular orbital basis, we

used Molden[369, 370] to plot and compare the main orbitals involved in each excitation to

ensure we were comparing the same state between theories.
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4.5 Results

Assessing the Finite-Difference Approximation
While the numerical efficiency offered by the FDNR approach is welcome, its overall applica-

bility depends on the accuracy of its finite-difference approximation. To quantify its accuracy

we computed the exact Hessian of Lµ�, Hex, with Tensorflow’s automatic differentiation soft-

ware [335] for water, ammonia, formaldehyde, and methanimine, at the beginning, middle,

and end of the optimization. We then constructed a “finite-difference Hessian” of Lµ�, Hfd,

by applying Eq. (4.20) to the columns of the identity matrix. In Table 4.1, we report 1)

the number of orbitals in these systems with the cc-pVDZ basis set, 2) the time in minutes

required to build Hex once and compute the matrix-vector product HexrLµ� one hundred

times, 3) the time in minutes required to compute HfdrLµ� using Eq. (4.20) one hundred

times, and 4) the relative error between the results of applying either Hfd or Hex to Lµ�,

i.e.

�

�HfdrL � HexrL
�

�/|HexrL|. The data demonstrate that the finite-difference approach

to applying the Hessian matrix has much more favorable scaling than building and applying

the exact Hessian. In fact, the cost of building the exact Hessian scales so rapidly that,

for cyclopropene (59 orbitals in the cc-pVDZ basis), Hex could not be computed in under

two hours on a NERSC Cori Haswell node. Additionally, the relative errors assure us that

the finite-difference approximation is highly accurate, and so we have used it in all of the

iterative FDNR optimizations discussed below.

Comparing Optimization Strategies
We now turn to the question of which strategy is most efficient when optimizing the ESMF

wave function. Our key findings here are that the GVP-based Lµ� objective function leads to

faster optimization than does L~� and that, once using Lµ�, the efficiencies of the BFGS and

FDNR methods become system-dependent but similar. Figures 4.3-4.6 show four examples

of this trend, which we have observed across all of the systems we have tested. In each of

these four examples, roughly one order of magnitude in speed is gained by moving to the

Lµ� objective function.

To understand why the L~� objective function is less efficient, it is useful to analyze the

Lagrange multipliers. At convergence, the energy will be stationary, which in turn implies

that the Lagrange multiplier values will all be zero.

@L~�

@~⌫
=

@

@~⌫

⇣

W +

~� · @E
@~⌫

⌘

=

@W

@~⌫
+HE

~� = 0 (4.22)

) HE
~� = 2(! � E)

@E

@~⌫
= 0 (4.23)

) ~� =

~
0 (4.24)

Thus, we have guessed

~� = 0 in our optimizations. However, as can be seen in the lower

panels of Figures 4.3-4.6, the optimization moves the Lagrange multipliers significantly away
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Figure 4.3: Two plots are shown for different optimizations of the HOMO-LUMO singlet

excitation in cc-pVDZ water. In (a), the difference between the current and converged

excited state energy in Hartree is compared to the elapsed optimization time for the BFGS-

L~� (red triangles), FDNR-L~� (orange diamonds), BFGS-Lµ� (blue circles), and FDNR-Lµ�

(green squares) optimization strategies. In (b), the norm (in millihartrees) of the Lagrange

multipliers associated with the orbital rotation parameters is shown over the course of an

BFGS-L~� optimization. Note that the elapsed time is plotted on a log scale in (a) but on a

linear scale in (b) and that each marker represents one iteration in the associated algorithm.
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Figure 4.4: For the HOMO-LUMO singlet excitation in cc-pVDZ carbon monoxide, the

difference between the current and converged excited state energy in Hartree is compared

across optimization strategies in (a) and the norm (in millihartrees) of the Lagrange multipli-

ers associated with the orbital rotation parameters is shown over the course of an BFGS-L~�

optimization in (b).
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Figure 4.5: For the HOMO-LUMO singlet excitation in cc-pVDZ formaldehyde, the differ-

ence between the current and converged excited state energy in Hartree is compared across

optimization strategies in (a) and the norm (in millihartrees) of the Lagrange multipliers

associated with the orbital rotation parameters is shown over the course of an BFGS-L~�

optimization in (b).
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Figure 4.6: For the HOMO-LUMO singlet excitation in cc-pVDZ diazomethane, the differ-

ence between the current and converged excited state energy in Hartree is compared across

optimization strategies in (a) and the norm (in millihartrees) of the Lagrange multipliers

associated with the orbital rotation parameters is shown over the course of an BFGS-L~�

optimization in (b).
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<latexit sha1_base64="6pox2Tb0usJu5ke+SAbH0ncgnnk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsbgol9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0pJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbY1SaJ/LRTFIMYjqQPOKMGiu1umNkOZv2qjW37s5BVolXkBoUaPaqX91+wrIYpWGCat3x3NQEOVWGM4HTSjfTmFI2ogPsWCppjDrI5+dOyZlV+iRKlC1pyFz9PZHTWOtJHNrOmJqhXvZm4n9eJzPRdZBzmWYGJVssijJBTEJmv5M+V8iMmFhCmeL2VsKGVFFmbEIVG4K3/PIq8S/qN3X34bLWuC3SKMMJnMI5eHAFDbiHJvjAYATP8ApvTuq8OO/Ox6K15BQzx/AHzucP/XyPiA==</latexit><latexit sha1_base64="6pox2Tb0usJu5ke+SAbH0ncgnnk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsbgol9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0pJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbY1SaJ/LRTFIMYjqQPOKMGiu1umNkOZv2qjW37s5BVolXkBoUaPaqX91+wrIYpWGCat3x3NQEOVWGM4HTSjfTmFI2ogPsWCppjDrI5+dOyZlV+iRKlC1pyFz9PZHTWOtJHNrOmJqhXvZm4n9eJzPRdZBzmWYGJVssijJBTEJmv5M+V8iMmFhCmeL2VsKGVFFmbEIVG4K3/PIq8S/qN3X34bLWuC3SKMMJnMI5eHAFDbiHJvjAYATP8ApvTuq8OO/Ox6K15BQzx/AHzucP/XyPiA==</latexit><latexit sha1_base64="6pox2Tb0usJu5ke+SAbH0ncgnnk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3SzSbsbgol9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0pJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbY1SaJ/LRTFIMYjqQPOKMGiu1umNkOZv2qjW37s5BVolXkBoUaPaqX91+wrIYpWGCat3x3NQEOVWGM4HTSjfTmFI2ogPsWCppjDrI5+dOyZlV+iRKlC1pyFz9PZHTWOtJHNrOmJqhXvZm4n9eJzPRdZBzmWYGJVssijJBTEJmv5M+V8iMmFhCmeL2VsKGVFFmbEIVG4K3/PIq8S/qN3X34bLWuC3SKMMJnMI5eHAFDbiHJvjAYATP8ApvTuq8OO/Ox6K15BQzx/AHzucP/XyPiA==</latexit>

H̃Lµ� =
<latexit sha1_base64="ypeHA+pi5yYOAQD15q5iJhvP6tg=">AAACC3icbVDLSsNAFJ3UV62vqks3g0VwVVIR1IVQdNOFiwrGFpoQJpNJO3TyYOZGKCEf4MZfceNCxa0/4M6/cdJmoa0HBs6ccy/33uMlgiswzW+jsrS8srpWXa9tbG5t79R39+5VnErKLBqLWPY9opjgEbOAg2D9RDISeoL1vPF14fcemFQ8ju5gkjAnJMOIB5wS0JJbb9jAhc8yOyQw8oKsk+duduPqf2rTEc9zfIl1ldk0p8CLpFWSBirRdetfth/TNGQRUEGUGrTMBJyMSOBUsLxmp4olhI7JkA00jUjIlJNNj8nxkVZ8HMRSvwjwVP3dkZFQqUno6cpiZzXvFeJ/3iCF4NzJeJSkwCI6GxSkAkOMi2SwzyWjICaaECq53hXTEZGEgs6vpkNozZ+8SKyT5kXTvD1ttK/KNKroAB2iY9RCZ6iNOqiLLETRI3pGr+jNeDJejHfjY1ZaMcqeffQHxucPtxqblQ==</latexit><latexit sha1_base64="ypeHA+pi5yYOAQD15q5iJhvP6tg=">AAACC3icbVDLSsNAFJ3UV62vqks3g0VwVVIR1IVQdNOFiwrGFpoQJpNJO3TyYOZGKCEf4MZfceNCxa0/4M6/cdJmoa0HBs6ccy/33uMlgiswzW+jsrS8srpWXa9tbG5t79R39+5VnErKLBqLWPY9opjgEbOAg2D9RDISeoL1vPF14fcemFQ8ju5gkjAnJMOIB5wS0JJbb9jAhc8yOyQw8oKsk+duduPqf2rTEc9zfIl1ldk0p8CLpFWSBirRdetfth/TNGQRUEGUGrTMBJyMSOBUsLxmp4olhI7JkA00jUjIlJNNj8nxkVZ8HMRSvwjwVP3dkZFQqUno6cpiZzXvFeJ/3iCF4NzJeJSkwCI6GxSkAkOMi2SwzyWjICaaECq53hXTEZGEgs6vpkNozZ+8SKyT5kXTvD1ttK/KNKroAB2iY9RCZ6iNOqiLLETRI3pGr+jNeDJejHfjY1ZaMcqeffQHxucPtxqblQ==</latexit><latexit sha1_base64="ypeHA+pi5yYOAQD15q5iJhvP6tg=">AAACC3icbVDLSsNAFJ3UV62vqks3g0VwVVIR1IVQdNOFiwrGFpoQJpNJO3TyYOZGKCEf4MZfceNCxa0/4M6/cdJmoa0HBs6ccy/33uMlgiswzW+jsrS8srpWXa9tbG5t79R39+5VnErKLBqLWPY9opjgEbOAg2D9RDISeoL1vPF14fcemFQ8ju5gkjAnJMOIB5wS0JJbb9jAhc8yOyQw8oKsk+duduPqf2rTEc9zfIl1ldk0p8CLpFWSBirRdetfth/TNGQRUEGUGrTMBJyMSOBUsLxmp4olhI7JkA00jUjIlJNNj8nxkVZ8HMRSvwjwVP3dkZFQqUno6cpiZzXvFeJ/3iCF4NzJeJSkwCI6GxSkAkOMi2SwzyWjICaaECq53hXTEZGEgs6vpkNozZ+8SKyT5kXTvD1ttK/KNKroAB2iY9RCZ6iNOqiLLETRI3pGr+jNeDJejHfjY1ZaMcqeffQHxucPtxqblQ==</latexit>

��
<latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit><latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit><latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit>

(b)
<latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit><latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit><latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit>

��
<latexit sha1_base64="ePHaK0QG9AjHj6SwvfG3ck7W/HI=">AAACGXicbVDNS8MwHE3n16xfVY9egmPgabQiqAdh6GUHDxOsDtZS0jTdwtIPknQwSv8OL/4rXjyoeNST/43p1oPbfBB4vPf7JXnPTxkV0jR/tNrK6tr6Rn1T39re2d0z9g8eRJJxTGycsIT3fCQIozGxJZWM9FJOUOQz8uiPbkr/cUy4oEl8LycpcSM0iGlIMZJK8gyr6URIDv0w7xRefuvlzpjg3GHqhgAVRQGvoD4nQc9omC1zCrhMrIo0QIWuZ3w5QYKziMQSMyRE3zJT6eaIS4oZKXQnEyRFeIQGpK9ojCIi3HwarYBNpQQwTLg6sYRT9e9GjiIhJpGvJsscYtErxf+8fibDCzencZpJEuPZQ2HGoExg2RMMKCdYsokiCHOq/grxEHGEpWpTVyVYi5GXiX3aumyZd2eN9nXVRh0cgWNwAixwDtqgA7rABhg8gRfwBt61Z+1V+9A+Z6M1rdo5BHPQvn8BtHSg2g==</latexit><latexit sha1_base64="ePHaK0QG9AjHj6SwvfG3ck7W/HI=">AAACGXicbVDNS8MwHE3n16xfVY9egmPgabQiqAdh6GUHDxOsDtZS0jTdwtIPknQwSv8OL/4rXjyoeNST/43p1oPbfBB4vPf7JXnPTxkV0jR/tNrK6tr6Rn1T39re2d0z9g8eRJJxTGycsIT3fCQIozGxJZWM9FJOUOQz8uiPbkr/cUy4oEl8LycpcSM0iGlIMZJK8gyr6URIDv0w7xRefuvlzpjg3GHqhgAVRQGvoD4nQc9omC1zCrhMrIo0QIWuZ3w5QYKziMQSMyRE3zJT6eaIS4oZKXQnEyRFeIQGpK9ojCIi3HwarYBNpQQwTLg6sYRT9e9GjiIhJpGvJsscYtErxf+8fibDCzencZpJEuPZQ2HGoExg2RMMKCdYsokiCHOq/grxEHGEpWpTVyVYi5GXiX3aumyZd2eN9nXVRh0cgWNwAixwDtqgA7rABhg8gRfwBt61Z+1V+9A+Z6M1rdo5BHPQvn8BtHSg2g==</latexit><latexit sha1_base64="ePHaK0QG9AjHj6SwvfG3ck7W/HI=">AAACGXicbVDNS8MwHE3n16xfVY9egmPgabQiqAdh6GUHDxOsDtZS0jTdwtIPknQwSv8OL/4rXjyoeNST/43p1oPbfBB4vPf7JXnPTxkV0jR/tNrK6tr6Rn1T39re2d0z9g8eRJJxTGycsIT3fCQIozGxJZWM9FJOUOQz8uiPbkr/cUy4oEl8LycpcSM0iGlIMZJK8gyr6URIDv0w7xRefuvlzpjg3GHqhgAVRQGvoD4nQc9omC1zCrhMrIo0QIWuZ3w5QYKziMQSMyRE3zJT6eaIS4oZKXQnEyRFeIQGpK9ojCIi3HwarYBNpQQwTLg6sYRT9e9GjiIhJpGvJsscYtErxf+8fibDCzencZpJEuPZQ2HGoExg2RMMKCdYsokiCHOq/grxEHGEpWpTVyVYi5GXiX3aumyZd2eN9nXVRh0cgWNwAixwDtqgA7rABhg8gRfwBt61Z+1V+9A+Z6M1rdo5BHPQvn8BtHSg2g==</latexit>

H̃L��
=

<latexit sha1_base64="sBH/9RwLYp4a3tuPSFS4iRTlHDs=">AAACEXicbVC7SgNBFJ2NrxhfUUubwSBoEzYiqIUQtElhEcE1gWxYZmfvJkNmH8zMBsKw32Djr9hYqNja2fk3Th6FJh4YOJxz7517j59yJpVtf1uFpeWV1bXiemljc2t7p7y79yCTTFBwaMIT0faJBM5icBRTHNqpABL5HFr+4Gbst4YgJEviezVKoRuRXsxCRokyklc+cRXjAWg3Iqrvh7qR556+9bQ7BKpdbgYFJM9zfIW9csWu2hPgRVKbkQqaoemVv9wgoVkEsaKcSNmp2anqaiIUoxzykptJSAkdkB50DI1JBLKrJyfl+MgoAQ4TYV6s8ET93aFJJOUo8k3leHM5743F/7xOpsKLrmZxmimI6fSjMONYJXicDw6YAKr4yBBCBTO7YtonglBlUiyZEGrzJy8S57R6WbXvzir161kaRXSADtExqqFzVEcN1EQOougRPaNX9GY9WS/Wu/UxLS1Ys5599AfW5w+8o55S</latexit><latexit sha1_base64="sBH/9RwLYp4a3tuPSFS4iRTlHDs=">AAACEXicbVC7SgNBFJ2NrxhfUUubwSBoEzYiqIUQtElhEcE1gWxYZmfvJkNmH8zMBsKw32Djr9hYqNja2fk3Th6FJh4YOJxz7517j59yJpVtf1uFpeWV1bXiemljc2t7p7y79yCTTFBwaMIT0faJBM5icBRTHNqpABL5HFr+4Gbst4YgJEviezVKoRuRXsxCRokyklc+cRXjAWg3Iqrvh7qR556+9bQ7BKpdbgYFJM9zfIW9csWu2hPgRVKbkQqaoemVv9wgoVkEsaKcSNmp2anqaiIUoxzykptJSAkdkB50DI1JBLKrJyfl+MgoAQ4TYV6s8ET93aFJJOUo8k3leHM5743F/7xOpsKLrmZxmimI6fSjMONYJXicDw6YAKr4yBBCBTO7YtonglBlUiyZEGrzJy8S57R6WbXvzir161kaRXSADtExqqFzVEcN1EQOougRPaNX9GY9WS/Wu/UxLS1Ys5599AfW5w+8o55S</latexit><latexit sha1_base64="sBH/9RwLYp4a3tuPSFS4iRTlHDs=">AAACEXicbVC7SgNBFJ2NrxhfUUubwSBoEzYiqIUQtElhEcE1gWxYZmfvJkNmH8zMBsKw32Djr9hYqNja2fk3Th6FJh4YOJxz7517j59yJpVtf1uFpeWV1bXiemljc2t7p7y79yCTTFBwaMIT0faJBM5icBRTHNqpABL5HFr+4Gbst4YgJEviezVKoRuRXsxCRokyklc+cRXjAWg3Iqrvh7qR556+9bQ7BKpdbgYFJM9zfIW9csWu2hPgRVKbkQqaoemVv9wgoVkEsaKcSNmp2anqaiIUoxzykptJSAkdkB50DI1JBLKrJyfl+MgoAQ4TYV6s8ET93aFJJOUo8k3leHM5743F/7xOpsKLrmZxmimI6fSjMONYJXicDw6YAKr4yBBCBTO7YtonglBlUiyZEGrzJy8S57R6WbXvzir161kaRXSADtExqqFzVEcN1EQOougRPaNX9GY9WS/Wu/UxLS1Ys5599AfW5w+8o55S</latexit>

��
<latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit><latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit><latexit sha1_base64="pRyKOQFDFy6i+4WP9UKQ4mKNjWA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGK00oWy2k3bpZhN2N4US+iu8eFDx6t/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGHosEYlqh1Sj4BI9w43AdqqQxqHAx3B4M/UfR6g0T+S9GacYxLQvecQZNVZ68kfIcl9mk2615tbdGcgyaRSkBgVa3eqX30tYFqM0TFCtOw03NUFOleFM4KTiZxpTyoa0jx1LJY1RB/ns4Ak5sUqPRImyJQ2Zqb8nchprPY5D2xlTM9CL3lT8z+tkJroMci7TzKBk80VRJohJyPR70uMKmRFjSyhT3N5K2IAqyozNqGJDaCy+vEy8s/pV3b07rzWvizTKcATHcAoNuIAm3EILPGAQwzO8wpujnBfn3fmYt5acYuYQ/sD5/AGaOpB4</latexit>

��
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Figure 4.7: Heatmaps of the initial Hessian matrix for (a) the L~� target function and (b) the

Lµ� target function where µ =

1
2

and � = 1 for the HOMO-LUMO excitation in formaldehyde

in the STO-3G basis. The values of the matrix are scaled such that the matrix elements

equal to zero are white and the elements darken as they increase in magnitude. Note that

in order to emphasize detail, the Hessians are scaled according to H̃ij = (1 � exp[���Hij

�

�

])

and that H̃Lµ� is enlarged with respect to H̃L~�
.
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from zero before returning them there. At the very least, this suggests that while our initial

guesses for the wave function parameters and Lagrange multipliers are reasonable, they are

not particularly well paired, in that the optimization of the wave function variables drives

the multipliers away from their optimal values during a large fraction of the optimization.

This issue is simply not present when using the Lµ� objective function as no multipliers are

present and thus no guess for them is required.

To gain additional insight into the difficulties created through the Lagrange multipliers,

we can look at the Hessian matrices produced by the two different objective functions, for

which examples are shown in Fig. 4.7. As one might expect, the L~� Hessian has a blocked

structure, with the multiplier-multiplier block being zero trivially and the other three blocks

being diagonally dominant. This structure is quite far from the identity-matrix guess of

standard BFGS, and although it may be possible to construct a better estimate for the

initial inverse Hessian this would require evaluating at least some of the second derivatives

of the objective function individually, which is not guaranteed to have the same cost scaling

as evaluating the energy. Although good estimates may be achievable at low cost, we have

not in this study made any attempt at improving the initial BFGS Hessian guess for either

objective function, and have simply used the identity matrix in both cases. As Fig. 4.7 shows,

this very simple guess is a better fit for the single-diagonal diagonally dominant Hessian of

the GVP-based objective function. As we move towards a production-level implementation of

the ESMF wavefunction and GVP, we hope to further improve the optimization algorithms.

As the overall computational cost of ESMF is dominated by the number of Fock builds,

we anticipate significant speedups through Hessian preconditioning, integral screening,[371]

resolution of the identity approaches,[372, 373] and, as our objective function is invariant to

some orbital rotations, geometric descent minimization methods.[264]

Table 4.2: The maximum and mean unsigned errors for singlet excitation energies from seven

methods vs �-CR-EOM-CC(2,3)D in eV for several small organic molecules.

Unsigned EOM-
Errors CIS CIS(D) CCSD B3LYP !B97X-V ESMF ESMP2

All Molecules

Max 2.38 0.82 0.60 6.91 2.69 1.49 0.42

Mean 0.87 0.34 0.26 0.99 0.44 0.58 0.13

No CT

Max 1.55 0.82 0.45 1.08 1.07 1.39 0.42

Mean 0.73 0.32 0.22 0.27 0.22 0.51 0.12
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Figure 4.8: Singlet excitation energy errors from seven methods vs �-CR-EOM-CC(2,3)D in

eV for several small organic molecules.

Benchmarking Excitation Energies
We compiled a modest test set of small organic molecules that allows us to compare the

accuracy of ESMF and ESMP2 against that of a range of single reference, weakly correlated

excited state wave function methods. These methods include CIS, CIS(D), and notably

EOM-CCSD and �-CR-EOM-CC(2,3),D, the latter of which scales as O(N7
) and is used as

a high level benchmark.[165] To contextualize the accuracy of ESMF and ESMP2 theories

within the wider realm of excited state methods, we also present TD-DFT benchmarks

against �-CR-EOM-CC(2,3),D for both the B3LYP functional and the !B97X-V functional

– two popular hybrid GGA functionals.[209, 364, 367] For reference, the formal scaling of all

methods used here is summarized in Table 4.3. While these scalings can in some cases be

reduced via sparse linear algebra or integral screening, [374–376] we compare to canonical

scalings here as our ESMF implementation does not yet take advantage of such approaches.

Our test set includes a number of intramolecular HOMO-LUMO singlet excitations as

well as two long-range charge transfer excitations, NH3(n) ! F2(�⇤
) with a 6 Å separa-
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Table 4.3: Formal cost-scaling for methods used in this work. These scalings are with respect

to the system size N and are for canonical versions of the methods, i.e. without accelerations

from two-electron integral screening or factorization.

Method Formal Scaling

RHF[2] N4

CIS[325] N4

TD-DFT [325] N4

ESMF N4

CIS(D)[129] N5

EOM-CCSD[165] N6

�-CR-EOM-CC(2,3),D[165] N7

ESMP2 N7

tion, and N2(⇡) ! CH2(2p) with a 10.4 Å separation. These types of CT excitations are

known to cause difficulties for linear response theories; for example, CIS fails to capture

how the shapes and sizes of the donor’s and acceptor’s orbitals change following the exci-

tation. [127] In contrast, EOM-CCSD (through its doubles response operator) and ESMP2

(through ESMF’s variational optimization) do capture the relaxation effects, which helps

them achieve significantly better (although not perfect) energetics in these CT cases. [15,

296, 345, 377–380] Although the analysis for TD-DFT is less straightforward, even modern

range-separated functionals do not account properly for all orbital relaxation effects, which

continue to produce difficulties in charge transfer excitations[200, 325, 381] despite the clear

improvements [120, 196, 382, 383] that range-separation offers.

The results for this survey are shown in Fig. 4.8 and tabulated in the SI. Overall, we

see that EOM-CCSD and ESMP2 are most accurate in this test set, which we attribute to

their ability to provide fully excited-state-specific orbital relaxations. In contrast, CIS, which

lacks proper orbital relaxation, has the largest mean unsigned error (MUE) and maximum

error of the wavefunction methods, performing especially poorly in the two charge transfer

systems. Note that, although CIS can shape the orbitals for the electron and hole involved in

the excitation via superpositions of different singles, it leaves the remaining occupied orbitals

unrelaxed, which is notably inappropriate in long range CT where the large changes in local

electron densities should lead all nearby valence orbitals to relax significantly.

CIS(D), an excited state analog of ground state MP2, recovers much of the electron

correlation effects missing in CIS, halving the CIS MUE. Employing perturbation theory

in the space of double excitations and using products of CIS single excitation amplitudes

and ground state MP2 double excitation amplitudes to account for triple excitations from

the ground state wave function, CIS(D) captures weak correlation and can improve the
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CIS excitation energies for only O(N5
) cost.[129] The effect of the perturbative doubles

and approximated triples on the excitation energies is certainly noticeable as the accuracy

improves; however, CIS(D)’s use of ground state MP2 amplitudes leaves it lacking as from

first principles, the electron-electron correlation in the ground state should differ from that

in the excited state for any electrons involved in or near the excitation. We would thus

expect a fully excited-state-specific perturbation theory to outperform CIS(D), and indeed

this is what we find.

Within this test set of systems, we unsurprisingly observed that the accuracy of TD-

DFT is both system and functional dependent. As summarized in Fig. 4.8, the accuracy

of the B3LYP and !B97X-V functionals across the intramolecular valence-excitations rivals

that of EOM-CCSD. Indeed, it is difficult to motivate moving away from the remarkably

low computational cost TD-DFT methods for such excitations.[120] However, the TD-DFT

results are not as accurate in the charge transfer systems. The B3LYP functional performs

particularly poorly, and while the accuracy of TD-DFT with the !B97X-V functional, which

uses HF exchange at long-ranges, is not quite so catastrophic, it drastically underestimates

the excitation energy by multiple eV.

In this survey, ESMF consistently underestimates the excitation energy, and when the

unsigned errors are compared, was more accurate than CIS, yet not as accurate as CIS(D).

The underestimation can be understood by recognizing that, in the excited state, ESMF

captures the pair-correlation energy between the two electrons in open-shell orbitals, whereas

no correlation at all is preset in the RHF ground state (apart from Pauli correlation that

of course ESMF also has). In addition, ESMF does in fact recover some weak correlation

between different configurations of singly-excited determinants, i.e. for some configurations

of i, j, a, and b, h�a
i |e�X̂

ˆHeX̂ |�b
ji 6= 0. We are thus not surprised that ESMF excitation

energies tend to be underestimates due to this capture of some correlation. Note that, as

this is a very incomplete accounting of correlation effects (doubles and triples are missing),

it is also not surprising that the overall accuracy of ESMF is inferior to that of CIS(D),

which provides at least an approximate estimate of what the second order correction for the

doubles and triples should be. Another notable point about the accuracy of ESMF is that it

is not significantly different in the CT systems as compared to the other systems, suggesting

that it has successfully captured the larger orbital relaxations present in CT.

Although its stand-alone accuracy leaves something to be desired, the ESMF wave func-

tion does provide an excellent starting point for post-mean-field correlation theories, as

evidenced by the excellent performance of ESMP2. Thanks to its orbital-relaxed starting

point and excited-state-specific determination of the doubles and triples, ESMP2 delivers the

highest overall accuracy when compared to the �-CR-EOM(2,3)D benchmark. In both intra-

and inter-molecular excitations, ESMP2 is significantly more accurate than CIS, CIS(D), or

ESMF, and slightly more accurate than EOM-CCSD. Of particular interest to note is that

ESMP2 maintains its accuracy across both intramolecular valence excitations and long-range

charge transfer excitations, and while this test set is too limited and the basis set too small to

make strong recommendations, this data suggests that ESMP2 may in some circumstances

be preferable to EOM-CCSD as well as TD-DFT in both intra- and inter-molecular excita-
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tions. Certainly the data motivate work on versions of ESMP2 that avoid using the full set of

uncontracted triples in the first order interaction space, which should lower its cost-scaling.

A Single-CSF Ansatz
As many excitations are dominated by a single open-shell CSF, one might wonder whether

in these cases the full CIS-like CI expansion within ESMF is strictly necessary. Although the

effect of the remaining singly-excited CSFs is not negligible, one could argue that their small

weights put them firmly in the category of weak correlation effects that should be handled by

the perturbation theory. For now, we have chosen not to pursue this direction in ESMP2 for

two reasons. First, it would limit the theory to single-CSF-dominated excitations. Second,

many of the other single excitations are much closer in energy to the reference wave func-

tion than the doubles excitations are, thus significantly increasing the risk of encountering

intruder states. That said, we have used our present implementation to test how much the

absence of these terms in ESMP2 matters if we restrict the reference function to be a single

CSF with optimized orbitals, which we will refer to here as the oo-CSF ansatz.

|oo-CSFi = eX̂
 

â†a"âi"|�i + ⌘ â†a#âi#|�i
!

. (4.25)

As in Eq. 4.6, |�i denotes the RHF solution. However, the definition of

ˆX is slightly

different. The oo-CSF ansatz is invariant to occupied-occupied and virtual-virtual orbital

rotations that do not involve orbitals i or a, but such rotations that do involve these orbitals

now matter, and so we have enabled these portions of the X matrix in addition to the

ESMF occupied-virtual block shown in Fig. 4.1(b). Finally, note that ⌘ is not a variable and

is simply set to 1 if we wish to work with the spin singlet and �1 for the triplet.

As seen in Table 4.4, we tested oo-CSF as a reference for ESMP2 in three systems where

the structure of the optimized ESMF wave function suggested that oo-CSF had a good chance

of being effective and one in which it did not appear appropriate. For water, the ESMF

wave function is already dominated by a single CSF. For formaldehyde and methanimine,

the additional subset of occupied-occupied rotations that we enabled for oo-CSF allow the

primary components of the excitation to be converted into a single CSF by mixing the ESMF

HOMO with the other occupied orbitals. While this simplification is certainly not always

possible (N2 is a good counterexample, having two large components involving completely

separate sets of molecular orbitals) our results suggest that when it is, the absence of the

other singles excitations in our ESMP2 method may not be of much consequence. In the

future, the efficacy of oo-CSF for single-CSF-dominated states could perhaps be exploited in

a couple of different ways. On the one hand, it is a simpler ansatz and so may prove easier to

optimize than ESMF, which even in systems where secondary CSFs were not negligible could

be useful if it provides a low-cost, high-quality initial guess for the ESMF optimization. On

the other hand, its simpler structure could prove useful in simplifying the implementation

of ESMP2.
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Table 4.4: Excitation energy errors in eV relative to �-CR-EOM-CC(2,3),D for the

HOMO!LUMO singlet excitations of water, formaldehyde, methanimine, and dinitrogen.

Below the name of each molecule, we report the CSF coefficients in the ESMF wave function

with amplitudes larger than 0.1.

oo- ESMP2 ESMP2

ESMF CSF w/ESMF w/oo-CSF

Water -0.67 -0.66 0.05 0.06

HOMO ! LUMO 0.70

Formaldehyde -0.69 -0.66 0.15 0.18

HOMO ! LUMO 0.66

HOMO-3 ! LUMO 0.22

Methanimine -0.59 -0.55 -0.02 0.02

HOMO ! LUMO 0.67

HOMO-2! LUMO -0.17

Dinitrogen -1.39 -1.13 0.06 0.52

HOMO-1 ! LUMO 0.49

HOMO! LUMO+1 0.49

Targeting with Other Properties
So far, we have focused on how an energy-targeting GVP can improve ESMF optimizations.

We now turn our attention to the use of other properties to improve the robustness of opti-

mization in the face of poor initial guesses, energetic degeneracy, and poor energy targeting.

To investigate these aspects of the GVP, we study stretched LiH (bond distance 7 Å) in the

STO-3G basis, whose low-lying states can be seen in Fig. 4.9. The idea is to optimize to

the | CT
s=0i state despite the challenges of (a) initial guesses that contain varying mixtures

of | EX
s=0i and | CT

s=0i character, (b) setting the energy targeting to aim at the wrong state,

namely setting ! to the ESMF energy for | EX
s=0i, and (c) the presence of | CT

s=1i, which is

energetically degenerate with | CT
s=0i at this bond distance. While the latter difficulty could

be resolved by constraining our CI coefficients to produce only singlet states, we intentionally

leave our CI coefficients unconstrained. Instead, we will investigate the efficacy of overcoming

the challenges of degeneracy, poor ! choice, and poor initial guesses by including additional

properties in the GVP’s deviation vector

~d.
As we wish to arrive at the neutral | CT

s=0i state while avoiding the corresponding triplet
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Figure 4.9: Molecular orbital diagrams for the key determinants in the four relevant states

in our LiH test. From left to right, we have the ionic RHF wave function |�i, and the main

CSFs that contribute to the singlet state | EX
s=0i that maintains the ionic character, and that

contribute to the degenerate singlet and triplet states | CT
s=0i and | CT

s=1i in which neutrality

has been restored by an Li!H charge transfer. Note that while the molecular orbitals are

arranged based on their RHF orbital energies, the energy gaps are not to scale.

state and being resilient to an initial guess contaminated by the ionic | EX
s=0i state, the total

spin and the Mulliken charges [2] of the atoms are obvious candidates for additional properties

that should help uniquely identify our target state. We therefore chose our property deviation

vector as

~d =

n

hEi � !, hQLii � ⌘,
p

hS2i � ⇣
o

(4.26)

where hQLii is the Mulliken charge on the Li atom and we set ⌘ = 0 and ⇣ = 0 so as to

target a neutral singlet. Happily, both the values and the derivatives of the Mulliken charges

and the total spin

hS2i =
P

ia(�ia � ⌧ia)2
P

ia �
2
ia + ⌧ 2ia

(4.27)

are easily evaluated for a CIS-like wavefunction like ESMF, and so the use of these properties

does not change the cost-scaling of the method. In order to conveniently study the effects of
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Figure 4.10: For various choices of the ⇤ matrix weights, we report the minimum value of

p required for our initial guess |g(p)i to successfully optimize to the correct energy for the

targeted | CT
s=0i state.

putting different amounts of emphasis on different property deviations, we modify the GVP

objective function to take the following form.

L⇤ = µ ~d T
⇤

~d+ (1 � µ)|rE|2 (4.28)

⇤ =

2

4

⇤E 0 0

0 ⇤Q 0

0 0 ⇤S

3

5

(4.29)

Of course, this is equivalent to setting the semi-positive-definite matrix ⇤ to unity and scaling

the definitions of the different properties, but we find the above form more convenient for

presenting the different relative weightings that we placed on our three different property

deviations.

For our initial guess |g(p)i, we have set the orbital basis to the the RHF orbitals and have

used varying mixtures of |�EXi and |�CT i, which are the CIS wave functions corresponding
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to | EX
s=0i and | CT

s=0i, respectively.

|g(p)i =
r

p

100

�

�

�

�CT
E

+

r

100 � p

100

�

�

�

�EX
E

(4.30)

For each choice of the property weights in the ⇤ matrix, we tested whether |g(p)i would

successfully converge to the | CT
s=0i state for the cases p = 0, 10, 20, . . ., 100. Each optimiza-

tion was performed via FDNR minimization of L = �L⇤ + (1 � �)E, with µ stepped down

from one to zero by intervals of 0.1 and � switched from one to zero on the twentieth FDNR

iteration. A value of -7.146 Eh, the ESMF energy for | EX
s=0i, was used for ! throughout.

As seen in Fig. 4.10, placing significant weights on both the charge and spin deviations

allows for successful optimizations even with very poor initial guesses and our intentionally

off-center value for !. With ⇤S = 10 and ⇤Q > 4, we find that having as little as 10% of the

correct CIS wavefunction in the initial guess leads to a successful optimization. When we do

not include the spin targeting (i.e. when we set ⇤S = 0), we find that the charge targeting

is much less effective, with no optimizations succeeding when less than 80% of the correct

CIS wavefunction is in the guess, regardless of the value of ⇤Q. This result was somewhat

unexpected, given that our guess is a pure spin singlet. We had expected that by giving

the optimization a strong preference for neutral states, we would have converged to a linear

combination of | CT
s=0i and | CT

s=1i that, while perhaps displaying some spin contamination,

at least had the correct energy. Instead, we find that using spin to break the optimization

degeneracy (by setting ⇤S = 10) is essential for robust convergence.

4.6 Conclusions
We have presented a generalization of the variational principle based on the energy gradient

and the idea of constructing a flexible system for optimizing a state that can be specified

uniquely by a list of properties. This approach is formally exact while avoiding the difficulties

associated with squaring the Hamiltonian operator. Instead, it demands that a limited

amount of energy second derivative information be evaluated, but, and this point is crucial,

the required derivatives do not lead to an increase in cost scaling compared to the traditional

ground state variational principle. So long as the properties used to identify the desired state

do not themselves lead to an increase in cost scaling, the approach is therefore expected to

maintain the scaling of its ground state counterpart.

Combining these ideas with excited state mean field theory, we have shown that the

latter’s optimization can be carried out without the need for the Lagrange multipliers that

were present in its original formulation. We find that this approach leads to substantial

efficiencies in the optimization thanks to both a simpler Hessian and an objective function

that is bounded from below and thus easier to use straightforwardly with quasi-Newton

optimization methods. We have also shown that a full Newton-Raphson approach can be
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realized efficiently and without Hessian matrix construction by formulating Hessian matrix-

vector products approximately via a finite-difference of gradients. Although it is not yet clear

whether quasi-Newton methods or this full Newton approach will ultimately be faster for

excited state mean field optimizations, what is clear is that the objective function based on

the generalized variational principle is strongly preferable to the original objective function

that relied on Lagrange multipliers.

With the ability to converge excited state mean field calculations in a larger set of

molecules than was previously possible, we compared the corresponding second order per-

turbation theory to other commonly-used single-reference excited state methods and found

its accuracy to be highly competitive. This success motivates both work on an internally

contracted version of this perturbation theory in order to reduce its cost scaling and on

fully excited-state-specific coupled cluster methods, which, if the history of ground state

investigations is any guide, should be even more reliable than the perturbation theory.

More broadly, the generalized variational principle appears to offer new opportunities

in many different areas of electronic structure theory. The ability to use a property vector

to define which state is being sought without changing the final converged wave function

should be especially useful in multi-reference investigations, where root flipping often pre-

vents excited-state-specific calculations. By combining the energy with other properties, we

demonstrated that the GVP could be used to resolve an individual state even in the presence

of degeneracy, poor initial guesses, and poor energy targeting. There are of course many

properties one could explore, but some that come immediately to mind are the dipole mo-

ment, changes in bond order from the ground state, and the degree of overlap with wave

function estimates from other methods such as state averaging. In addition to multi-reference

theory, the generalized variational principle appears to offer a route to defining exact density

functionals for excited states so long as those states can be specified uniquely by a list of

properties. Combined with promising preliminary data from a density functional extension

of excited state mean field theory, [200] this formal foundation may allow for interesting new

directions in density functional development.
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Chapter 5

Conclusions

Three works were presented in this dissertation. Within Chapter 2, it was demonstrated that

size consistency is lacking in interior state selective variational principles that are analytic

around their global minima and based on at most the second power of the Hamiltonian. Ad-

ditionally, a general optimization strategy that gradually merges a state selective variational

principle from this set with variance minimization achieves size consistency at convergence

and maintains rigorous state selectivity at all stages was presented. Widely applicable to

a range of variational principles and compatible with wave function optimizers in VMC

methods, the algorithm removes solution dependence on the energy targeting parameter !,

making QMC-based excited state optimization more blackbox. Implemented in a leading

QMC software package,[266] this approach has been applied by others in the QMC commu-

nity to study core excitations,[384] optical gaps in real solids,[385] and strongly correlated

and frustrated quantum systems.[386] Moreover, the transformation algorithm opens doors

for high-accuracy QMC studies of excited systems such as charge transfer excitations in

solvated systems, perhaps those of interest in DNA photophysics, and intermolecular exci-

tations between molecules and solids like those between organic dyes and nanoparticles in

dye-sensitized solar cells.

Moving from stochastic to deterministic electronic structure theory, in Chapter 3 a

minimally-correlated, computationally affordable, wave function-based excited state mean

field theory that gives state specific, fully relaxed orbitals was described. Capable of mod-

elling excitations with more than one significant contributing single excitation, this CIS-like

wave function achieves qualitative descriptions of excited states at only O(N4
) cost in par-

allel with ground state Hartree Fock theory. Additionally, its potential as a platform on

which to build excited state correlation treatments was realized through the development

of an excited state analog to second-order Møller-Plesset perturbation theory, which rivals

the accuracy of EOM-CCSD in valence, Rydberg, and CT excitations and has recently been

implemented at O(N5
) cost.[387] These particularly promising initial results were bolstered

by a broader study of organic molecules presented in Chapter 4, and within this set of va-

lence and CT excitations, ESMP2 had a mean unsigned error with respect to a high-level

benchmark half that of EOM-CCSD. The accuracy of ESMP2 in excitations dominated by
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one or more single excitations is further evidenced by a currently unpublished benchmark

of the method within the Thiel set of small and medium sized organic chromophores, which

includes the nucleotides uracil, cytosine, thymine, and adenine.[162] The success of ESMF as

a reference wave function for ESMP2 theory has encouraged the development of an O(N6
)

scaling excited state analog to the coupled cluster singles and doubles method which is

currently under construction.

To optimize the ESMF wave function, a novel energy gradient minimization method that

uses Lagrangian optimization techniques to minimize an approximate excited state varia-

tional principle and treats ground and excited states on equal footing was introduced in

Chapter 3. This optimization was improved upon by the research reported in Chapter 4.

With the development of the generalized variational principle, which is based on the energy

gradient and the idea of constructing a flexible system for optimizing a state that can be spec-

ified uniquely by a list of properties, the difficulties associated with squaring the Hamiltonian

operator and with optimizing the Lagrange multipliers are avoided. Applying the GVP to

the ESMF wave function demonstrated that this approach leads to substantial efficiencies in

the optimization due to both a simpler Hessian and an objective function that is bounded

from below and thus easier to use straightforwardly with quasi-Newton optimization meth-

ods, which were implemented efficiently based on a finite-difference approximation to Hessian

matrix-vector multiplication. While the GVP requires some energy second derivatives to be

computed, they do not lead to an increase in cost scaling compared to the traditional ground

state variational principle. Similarly, as long as other state targeting properties do not in-

crease the relative cost scaling, the scaling of the GVP will remain the same. Moreover, the

ability to use a property vector to define which state is being sought offers new opportunities

in many different areas of electronic structure theory. The property vector also allows for a

natural translation between experiment and theory – for example, an experimentalist inquir-

ing about a dark ⇡ ! ⇡⇤
state at 250 nm provides the theorist with targeting information

regarding relative dipole, bond order, and energy targets which could be incorporated in

the GVP. Additionally, targets related to the degree of overlap with different wave functions

could assist theoretical investigations in which root-flipping and occupancy sloshing compli-

cate optimizations. Finally, since the resulting optimized wave function is independent of the

targeting parameters, the GVP provides an effective route to resolving energetically dense

spectra without empirical parameterization. With its broad applicability to a wide variety

of existing ansatzes and ongoing efforts towards its implementation in quantum Monte Carlo

methods, the GVP is an exciting innovation in electronic structure optimization methods.
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