Title
On Demand Response in Electricity Markets

Permalink
https://escholarship.org/uc/item/6dm6s9qq

Author
Campagne, Clay Wisner

Publication Date
2016

Peer reviewed|Thesis/dissertation
On Demand Response in Electricity Markets

by

Clay Wisner Campagne

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering — Industrial Engineering and Operations Research in the Graduate Division of the University of California, Berkeley

Committee in charge:
Professor Shmuel S. Oren, Chair
Professor Duncan Callaway
Assistant Professor Anil Aswani

Fall 2016
On Demand Response in Electricity Markets

Copyright 2016
by
Clay Wisner Campagne
Abstract

On Demand Response in Electricity Markets

by

Clay Wisner Campaigne

Doctor of Philosophy in Engineering — Industrial Engineering and Operations Research
University of California, Berkeley
Professor Shmuel S. Oren, Chair

This dissertation studies two topics in Demand Response (DR) in electricity markets, with some discussion of retail electricity pricing more broadly. In each of these investigations we posit a model of a consumer, or population of consumers, optimizing their consumption decisions for their private benefit. The first investigation considers the profit maximization problem of a DR aggregator, and the second studies the welfare impacts of existing and hypothetical retail tariffs and DR programs, with a combination of theoretical analysis and simulation experiments.

Part I provides a comprehensive introduction to the dissertation.

Part II of the dissertation formulates and analyzes the profit maximization problem of an aggregator that owns the production rights to a Variable Energy Resource’s (VER) output, and also signs contracts with a population of DR participants for the right to curtail them in real time, according to a contractually specified probability distribution. The aggregator is situated in a market environment in which it bids a day-ahead offer into the wholesale market, and is penalized for deviations of its realized net production—renewable energy bundled with DR—from that offer. We consider the optimization of the aggregator’s end-to-end problem: designing the menu of DR service contracts using contract theory, bidding into the wholesale market, and dispatching DR consistently with the contractual agreements. In our setting, DR participants have private information about their valuation for energy; and wholesale market prices, VER output, and participant demand are all stochastic, and possibly correlated.

In Part III, we study the welfare effects of various dynamic electricity pricing schemes, including Real-Time pricing, Time-of-Use pricing, Critical Peak Pricing, and Critical Peak Rebates (referred to simply as “Demand Response”), by simulating the behavior of rational consumers under a set of historical scenarios drawn from the greater San Francisco Bay Area. Using realistic dynamic consumption models, we gain novel insights into the effects of intertemporal substitution on individual and social surplus. Defining the concept of a baseline-taking equilibrium, we are able to estimate the welfare impact of the perverse incentive to inflate the Demand Response baseline, under the assumption of perfect foresight.
To summarize some of these findings: in a standard consumer model that does not allow for intertemporal substitution, the average magnitude of retail markups accounts for a much greater fraction of economic inefficiency than does the absence of real-time pricing, and DR programs have a negligible impact on economic efficiency. But with the introduction and improvement of load-shifting technology, real-time and other dynamic pricing programs become more important relative to the average magnitude of markups. In our models that incorporate consumption substitution, real-time pricing results in efficiency gains on the order of 10% or more of consumer expenditure (and a larger fraction of generation and capacity costs), whereas DR programs produce efficiency gains between one sixth and one half as large. The perverse incentive to inflate the DR baseline is greatly suppressed by the high retail energy prices that currently prevail, and would be further attenuated in a model that accounted for uncertainty. Existing retail tariffs, including those with Time-of-Use and demand charge components, have efficiency effects that depend strongly on the underlying model and parameters. Several existing tariffs give consumers incentives to substitute consumption in ways that are not necessarily welfare-improving, with the result that investment in load-shifting technology can have positive or negative effects, depending on the specifics of the tariff and consumption model.
To my family.
Contents

List of Figures vii
List of Tables viii

I Introduction 1

II Aggregator Business Model 5

1 Introduction 6
1.1 Background and motivation 6
1.2 Related work 9
1.3 Introduction to the model 10
1.4 Information and decision structure 13
1.5 Organization of remaining chapters 14

2 Demand response: utility model, production, and payment 15
2.1 A one-dimensional type space 15
2.2 Direct mechanisms 17
2.3 The Revelation Principle 19
2.4 The optimal payment T needed to effect a demand response policy 21
2.5 Expressing the net payment as a linear functional of the curtailment policy 23
2.6 State-contingent monopsony procurement of DR and competitive extension 24

3 Solving the end-to-end problem 26
3.1 Benefit from DR dispatch 26
3.2 Example 1: purely idiosyncratic valuation shocks 27
3.3 Example 2: parameterized uniform distributions and day-ahead imbalance prices 31

4 Discussion and conclusion 39
Appendices

A Solution table 41
B Proofs 43

III Simulating Dynamic Tariffs 46

5 Introduction 47
 5.1 Related literature .. 48
 5.2 Our contribution, and executive summary of results 51

6 Electricity tariffs 56
 6.1 Overview of electricity tariffs 56
 6.2 Tariffs used in our simulations 57

7 Consumption model 60
 7.1 Expenditure model .. 60
 7.2 Electricity Consumption Model 61

8 Simulation setting and welfare metrics 65
 8.1 Simulation parameters .. 65
 8.2 Welfare measures .. 66

9 The principal determinants of tariff efficiency 68
 9.1 “Classical” time-separable analyses 68
 9.2 Substitution effects under linear energy pricing 71
 9.3 Simulation results: comparison across tariffs 77

10 The effects of Demand Response and DR distortions 84
 10.1 Theoretical overview .. 84
 10.2 Simulation results: DR distortions 89

11 Discussion: conclusions, caveats, and future directions 95
 11.1 Unintended consequences and perverse incentives 95
 11.2 The retail wholesale price wedge and “complementary policies” 96
 11.3 Limitations of the simulation methodology 97

Appendices 98

A Formulation of the optimization problem 99
 A.1 Optimization problem for a fully rational consumer 99
 A.2 Fixed-point algorithm for computing a baseline-taking equilibrium 103
List of Figures

2.1 The monopsony and oligopsony purchase problem. 25

3.1 Monopsony DR purchase decision and choice of DA offer \(q \). 35

3.2 Day-ahead offer curves. .. 36

3.3 DR contract as a function of type ... 38

3.4 Payment to DR as a function of probability of curtailment. 38

9.1 Simulation deadweight loss vs. prediction of time-separable model for several tariffs and battery sizes .. 73

9.2 Normalized Quadratic Utility social surplus vs. battery size 74

9.3 Virtual social and private energy arbitrage revenue against battery size for several tariffs ... 77

9.4 Results: welfare effects of actual tariffs in Quadratic Utility model 79

9.5 Results: welfare effects of hypothetical tariffs in Quadratic Utility model ... 80

9.6 Results: welfare effects of several tariffs in HVAC model 82

10.1 Baseline-manipulation example in the Quadratic Utility model 86

10.2 Baseline-manipulation example in the HVAC model 87

10.3 Results: welfare effects of DR and distortions in Quadratic Utility model ... 91

10.4 Results: welfare effects of DR and distortions in HVAC model 93
List of Tables

A.1 \(J_{DA}(q) \) and the optimal offer quantity \(q^* \) in Example 2. .. 42

9.1 Bias-Variance Decompositions of Deadweight Loss ... 70
9.2 Average social marginal costs vs. PG&E retail prices .. 71

10.1 Average social marginal costs vs. imputed generation components of tariffs 89

B.1 HVAC system parameters ... 107

E.1 Quadratic Utility data; \(E_d = -0.05 \), Battery size = None ... 116
E.2 Quadratic Utility data; \(E_d = -0.05 \), Battery size = Medium 117
E.3 Quadratic Utility data; \(E_d = -0.05 \), Battery size = Large ... 118
E.4 Quadratic Utility data; \(E_d = -0.1 \), Battery size = None .. 119
E.5 Quadratic Utility data; \(E_d = -0.1 \), Battery size = Medium .. 120
E.6 Quadratic Utility data; \(E_d = -0.1 \), Battery size = Large .. 121
E.7 Quadratic Utility data; \(E_d = -0.2 \), Battery size = None .. 122
E.8 Quadratic Utility data; \(E_d = -0.2 \), Battery size = Medium .. 123
E.9 Quadratic Utility data; \(E_d = -0.2 \), Battery size = Large .. 124
E.10 Quadratic Utility data; \(E_d = -0.3 \), Battery size = None .. 125
E.11 Quadratic Utility data; \(E_d = -0.3 \), Battery size = Medium 126
E.12 Quadratic Utility data; \(E_d = -0.3 \), Battery size = Large .. 127
E.13 HVAC model simulation Data ... 128
Acknowledgments

I would like to thank my advisor, Professor Shmuel S. Oren, for his support, encouragement, and guidance; Professors Duncan Callaway and Anil Aswani for their academic guidance and for serving on my thesis committee and qualifying exam committee; Professor Xin Guo for serving on my qualifying exam committee; and the four just mentioned for their thoughtful feedback on my research.

As concerns Part II, I thank Felipe Castro for his help on an earlier version of this project. I thank the anonymous referees at the Journal of Regulatory Economics, for their careful review and insightful comments. And I thank my advisor, Shmuel Oren, for his feedback, help with the introduction, and for his intellectual guidance and stimulating discussion pertaining to the revisions. This work was supported by the Department of Energy, through a grant administered by the Center for Electric Reliability Technology Solutions (CERTS).

Regarding Part III, I would like to thank my coauthors, Maximilian Balandat and Lilian Ratliff, for their generosity and hard work in an enjoyable collaboration. I am truly grateful to Max, not only for being so productive, but also for serving as an excellent de facto project manager, keeping us on track.

Finally I would like to thank all my friends and family for their unflagging support and encouragement, and Sofia DeMarco in particular, for some stern advice.
Part I

Introduction
Motivation and overview

In electricity markets, generation capacity utilization rates and wholesale marginal costs are highly variable, and as renewable energy generation becomes more prevalent, they will probably become more so. Automation and load-shifting technology, which should allow consumers to manage their consumption in response real-time grid conditions, are becoming more sophisticated and widely available. But existing retail pricing programs have typically provided consumers with only limited incentives to adjust their consumption in response to these variable supply conditions. In order to realize the value of these technologies, we need to create institutional frameworks and evaluate policies, to ensure that technologically-enabled market participants face incentives conducive to the efficient and reliable use of resources. In this spirit, this dissertation studies two topics in demand response, i.e., in retail pricing programs that incentivize flexible consumers to adjust their consumption to supply conditions.

Part II proposes a business model and analyzes the corresponding profit maximization problem for an aggregator that owns the production rights to a Variable Energy Resource’s (VER) output, and also signs contracts with a population of demand response (DR) participants for the right to curtail them in real time according to a contractually-specified probability distribution. This investigation is motivated by the fact that environmental concerns have spurred increasing reliance on variable renewable energy resources (VERs) in electric generation. Under current incentive schemes, the uncertainty and intermittency of VERs resources impose costs on the grid, which are typically socialized across the whole system, rather than born by their creators. Our aggregator is situated in an institutional framework that seeks to remedy this problem with the use of imbalance prices, giving the aggregator the incentive to “firm up” its offer. In this setting, the aggregator bids a day-ahead offer into the wholesale market, offsetting imbalances between the cleared day-ahead bid and the realized VER production by curtailing DR participants’ consumption according to the signed contracts. We consider the optimization of the aggregator’s end-to-end problem: designing the menu of DR service contracts using contract theory, bidding its bundled resource into the wholesale market, and dispatching DR consistently with the contractual agreements. The aggregator elicits DR participants’ private information regarding their valuation for energy by offering a menu of reliability-differentiated contracts, so that by their choice of contract, DR participants self-select into appropriate reliability classes. In this problem setting, wholesale market prices, VER output, and participant demand are all
stochastic, and possibly correlated. Part II is an adaptation of Campagne and Oren (2016), ©Springer Science+Business Media New York 2016, published with permission of Springer.

In Part III, we simulate two types of dynamic consumer models in a wide range of actual and hypothetical retail tariffs, including baseline-dependent DR, in a set of historical data scenarios from the greater San Francisco Bay Area. The first of these models represents the consumer as having a separate linear demand curve for energy in each hourly time period, which is calibrated from historical load and tariff data, and then endows this consumer with a physical model of a battery that allows it to shift energy consumption across time. We simulate this “Quadratic Utility” consumer with no battery, with a “medium-size” battery, and with a “large” battery, as well as four different levels of price elasticity, ranging from -0.05 to -0.3. (Intertemporal substitution is represented only by the battery in this model, not by explicit cross-price elasticity.) The second model is a simple linear dynamical model of a commercial HVAC system, which is managed to minimize energy expenditure, subject to the constraint that it maintain interior air temperature within comfort constraints that depend on the day and time. The thermal inertia of the building’s temperature dynamics is a natural mechanism for shifting consumption intertemporally in response to price incentives, for example by “pre-cooling” before DR events and peak Time-of-Use periods. First we use both of these models to examine the principal determinants of tariff efficiency more broadly, particularly the role of average markup magnitude vs real-time pricing, as well as a wide range of realistic and hypothetical tariffs of interest, and their interaction with battery size and price elasticity. Then we focus on baseline-dependent DR, with particular attention to the effects of two perverse incentives that economists have identified in these programs: baseline inflation and double payment. While our modeling framework is subject to limitations imposed by our assumptions of perfect foreknowledge of exogenous prices, our models allow us to study the effects of tariffs while accounting for optimal load-shifting behavior in a way that previous economic analyses of dynamic tariffs typically have not. Part III is an adaptation of our current working paper, Campagne et al. (2016).

The remainder of this dissertation is organized as follows. Part II treats the profit-maximization problem of a DR-and-renewables Aggregator. This is introduced in Chapter 1, which presents the background and motivation, a summary of related literature, an overview of the problem formulation, and an explanation of the general information and decision structure. In Chapter 2, we present a detailed economic model of demand response contracting. Then in Chapter 3, we consider the solution of the Aggregator’s end-to-end problem, which includes the contracting problem from the previous chapter, co-optimized with a day-ahead offer policy and DR dispatch policy. This analysis is presented for two special cases, which are progressively simpler and whose solutions are progressively more explicit. Then Chapter 4 concludes Part II.

Part III treats the evaluation of the welfare impacts of retail tariffs, including DR programs, by simulating optimizing consumers. It begins with an introduction in Chapter 5, which reviews the relevant literature, explains how our investigation fits into that literature, and then presents an executive summary of our results. Then in Chapter 6, we discuss electricity tariffs, first in general and then with specific reference to our simulations. In Chapter
7, we describe the formulation of the optimization problem that our simulated agents solve to make their consumption decisions. This optimization problem can be “factored” into an expenditure model and a dynamical model of the consumer’s state. Chapter 8 describes the specific data environment and parameter values that specify our simulation experiments, and the calculation of welfare metrics according to which we evaluate the results. In Chapter 9 we discuss the broad determinants of tariff efficiency, and present simulation results comparing welfare impacts of a broad range of realistic and hypothetical tariffs. Then in Chapter 10, we study the effects of Demand Response, and the “Demand Response distortions,” baseline inflation and double payment. Each of Chapters 9 and 10 begins with a theoretical overview, and concludes with a detailed description of simulation results. We conclude Part III in Chapter 11, by discussing the policy implications of our findings—complicated as they are—as well as the limitations of our modeling framework, and how those limitations impact the interpretation of our results.

Finally, we offer overall conclusions in Part IV.
Part II

Aggregator Business Model
Chapter 1

Introduction

1.1 Background and motivation

Environmental concerns regarding global warming and the adverse health effects of emissions produced by fossil fuel generation have led to a greater reliance on renewable sources of generation, such as solar and wind, which are inherently variable and uncertain. This trend is accompanied by increased proliferation of distributed resources, storage, and smart grid technologies for metering and control, which facilitate demand response and greater observability of the grid. As a result, the electric power industry faces new challenges in planning and operation of the power system that require new institutional and regulatory frameworks, along with appropriate market mechanisms to achieve productive and allocative efficiencies. While the conventional approach to mitigating adverse uncertainty and variability on the supply and demand sides has been increased reliance on reserves and flexible generation units, this approach is expensive, and will undermine the economic and environmental goals of renewables integration. Mobilizing demand side flexibility enabled by smart metering and other smart grid technologies to mitigate the uncertainty and variability of renewable resources is a sustainable solution for addressing the operational challenges posed by massive integration of renewables.

Alternative approaches to integrate renewable resources into the power grid and facilitate demand response have been proposed and experimented with by policy makers around the world, and have been the subject of numerous academic studies in the economics and power system literature. From an economics perspective, the gold-standard approach to achieving production and allocative efficiency is a centralized market where all renewable resources and conventional resources are pooled together with demand side resources, responding to real-time marginal prices set through a market clearing mechanism. However, while such an approach may serve as a useful benchmark, it is impractical, as it would require the system operator to collect information and co-optimize the dispatch of a vast number of resources including conventional generation, renewables and participating demand side resources (PDR). The computational and institutional barriers to such a centralized approach calls for more
pragmatic second-best alternatives with more manageable scope. Recent regulatory initiatives such as “Reforming the Energy Vision” (REV) initiated by the New York Public Service Commission (PCS) promote a more decentralized approach as a way to facilitate the integration of decentralized renewable resources and demand response (MDPT Working Group, 2015). Likewise, the concept of aggregators that can pool demand side resources and act as intermediaries, offering load reduction into the wholesale market, has been popularized by the emergence of commercial entities such as EnerNOC. The scope of such aggregation can be expanded to include behind-the-meter resources and distributed renewable resources.

In this paper we propose and analyze an aggregator business model that assembles a portfolio of variable energy resources (VER) such as wind, and of flexible demand response (DR), with the purpose of producing a firm and controllable bundled energy resource that can be offered into the ISO wholesale day ahead market. We presume that the aggregator is in a position to acquire detailed information and enter into contractual arrangements that would enable it to mobilize the DR flexibility so as to offset the VER uncertainty and variability. Such a bundled resource will relieve the ISO from having to procure additional reserves or other ancillary service products for the purpose of mitigating renewables intermittency.

Our premise in this paper is that future regulatory reforms will provide incentives to VER to firm up their output and induce loads to surrender their flexibility. On the VER side, such incentives will be enabled when subsidies to renewables such as feed in tariffs will be replaced by nondiscriminatory market mechanisms. Under such a mechanism, uncertain resources would bear the cost they impute on the system, whereas flexible resources are rewarded for the flexibility. Furthermore, VER will have to schedule their forecasted production and be subject to deviation settlements in the real-time market like other resources, whereas firmed up VER will be eligible for capacity payments through resource adequacy mechanisms. On the demand side, ex ante contractual agreements with an aggregator that compensate the customer for forgone consumption and “information rents” should provide incentives for load to reveal and trade their flexibility.

The two principal forms of demand response are direct load control, wherein the aggregator physically constrains participants’ consumption during scarcity events, and price-based control, wherein the participants face real-time prices that reflect current system conditions. Direct load control has been studied in theory (Chao, 1983) and implemented in practice, particularly in contexts such as air conditioner cycling (RLW Analytics, 2007). It has the advantage in terms of system reliability, because the response is more predictable; as well as with respect to billing simplicity and predictability, because the customer does not face state-dependent prices. On the other hand, price-based control provides customers with more flexibility (Braithwait et al., 2006). According to standard microeconomic models, the most economically efficient form of control is real-time pricing, because it ensures that customers consume exactly when their marginal benefit is greater than the instantaneous marginal cost of power production (Borenstein, 2005; Caramanis et al., 1983; Holland and

1Caramanis et al. (1983) categorized direct load control as “price / quantity transactions,” and price-based control as “price only transactions”.
If the consumer’s demand curve for power were constant over time, then a direct load control contract linked to spot prices would result in the same consumption decisions as real-time pricing (Chao and Wilson, 1987).

Restructured electricity markets are premised on treating electricity at the wholesale level as a homogeneous commodity that is produced and traded based on fluctuating price signals. We argue, however, that at the retail level electricity can be offered as a quality differentiated service with predetermined prices and uncertain availability (quantity control). Such uncertainty is realized through direct load control, or customer response to a load control signal subject to a noncompliance penalty. The above perspective, which has been articulated by Oren (2013), is the underlying paradigm explored in this paper and we will not attempt to contrast it with a real-time pricing approach, which as we concede, represents the “economic gold standard.” Specifically, we consider a profit-maximizing aggregator contracting ex ante with DR participants for the right to send a curtailment signal with a specified probability (or, more generally, in specified states of the world, as reflected by a publicly observable index). The curtailment signal effectively raises the participant’s price for calling energy from a particular capacity increment from its original retail rate R, to an exogenously determined “penalty price,” $H > R$. That is, the capacity increment is an option, and curtailment raises the strike price. We assume that demand response load pays a regulated retail rate, and has no other venue for participating in wholesale markets. The case where $H = \infty$ can be interpreted as direct load control. This generalizes plans like PG&E’s SmartRate plan, which raises the customer’s tariff for 15 days a year or less. In our generalization, different slices of the household’s consumption capacity have different probabilities of facing curtailment/penalty rate signal. Combined with a model of stochastic valuations for service, this approach models two kinds of imperfect or fractional DR yield: DR that fails to materialize because the customer would not have consumed in the first place (the ex post valuation of consumption is less than R), and DR that fails to materialize because the customer’s ex post valuation is higher than the penalty price, H. In either case we assume that the valuations are constant throughout the time interval, and each valuation is for the energy from an infinitesimal capacity slice, so we do not consider the possibility of partial exercise of a capacity increment within a period. However, by “stacking” these increments, the model generalizes to horizontal load slices that can be fractionally utilized, at a constant level during the period. Less-than-infinite penalties may be a happy medium between the intrusiveness of a hard constraint, and the complexity of a real-time price.

Our proposed business model is based on a “fuse-control paradigm” (Margellos and Oren, 2015) where the aggregator manages the service quality for the aggregate consumption by imposing a capacity constraint, or by signaling a capacity threshold above which the penalty will be imposed, and leaves the decision of allocating the available power to devices behind the meter to the household. This is a less intrusive alternative to direct curtailment of individual devices, such as air-conditioner cycling programs, for instance. Furthermore, delegating

\[^2\text{The standard analysis ignores intertemporal interactions; but see, for example, Tsitsiklis and Xu (2015) for an extension to pricing for contribution to system-wide ramping cost.}\]
the behind-the-meter allocation allows the customer to reflect intertemporal variations in preferences for different electricity uses, and capture the effect of behind-the-meter variable resources such as solar panels, local storage devices, and deferrable energy uses such as electric vehicle charging, HVAC etc. In our model the aggregator is assumed to submit price-contingent hourly offers into the ISO day ahead market and dispatch curtailment signals to its contracted load based on the awarded quantities in the day ahead market, the realized renewable output, and the deviation settlement prices. Our end-to-end approach seeks to co-optimize the contract design on the demand side with the aggregator’s bidding strategy in the ISO day ahead market and the DR deployment strategy.

1.2 Related work

Motivated by the same concern about the subsidization of VERs’ contribution to reserve costs, Bitar et al. (2011, 2012) consider several stylized market models for renewable power. They use a newsvendor-style model to quantify the effect of imbalance charges on the offer behavior and profit of a renewable producer, and to quantify, for example, the value of forecast improvement in this policy environment. Their second model is a market for reliability-differentiated power, originally studied by Tan and Varaiya (1991, 1993). In this model, the producer owns a stochastic power resource, and sells its entire production in advance without using reserves, by offering contracts with imperfect service reliability. Our model can be seen as a synthesis and generalization of these two models.

We cast the problem of designing an optimal menu of variable-reliability demand response contracts as a variation on the classic monopsony screening problem from contract theory. Our approach to embedding this screening problem in a wholesale electricity market follows the literature on priority service, particularly Chao and Wilson (1987) and Chao (2012). However, that literature has focused on perfect competition or regulated social welfare maximization, and abstracts away from the scheduling and recourse decisions of individual producers. Because we are interested in new business models that manage imbalance, we update the priority service approach in a profit maximization setting, where imbalance cost is reflected by imbalance prices. We also consider preliminary extensions of our analysis to competitive settings.

Another point of contrast with Chao (2012) is that our stochastic demand model disaggregates the aggregate demand curve along the quantity axis, and then adds post-contracting noise to valuations, in a manner similar to Courty and Li (2000)’s sequential screening model. However, in contrast to most screening environments, including that of Courty and Li (2000), our producer’s contracting problem is embedded in a newsvendor-like problem, with asymmetric linear prices for positive and negative imbalance. As a consequence, the aggregator’s benefit is not linear (i.e. is not an expectation) over a type distribution. The aggregator-cum-producer co-optimizes its demand response menu with a day ahead offer quantity, with the demand response providing recourse in case of real-time imbalance.

3But see Wilson (1993), who treats profit maximization but in a slightly different setting from ours.
Recently, Crampes and Léautier (2015) have used contract theory to study the welfare effects of allowing demand response participation in adjustment markets, when DR participants have private information about their utility from consumption. In their setting, vertically integrated producers contract as profit-maximizing monopoly\(^4\) retailers with consumers in the first stage, where consumers “buy their baseline” on which adjustment is settled, and producers incur the obligation to produce the contracted amount. Then, in the second stage, all producers experience an identical supply shock (capacity failure), and both producers and consumers can participate in a competitive adjustment market. They employ a stylized, two-type model with asymmetric information to show that there exist cases in which allowing consumers to participate in a competitive adjustment market reduces social welfare, by creating sufficiently large distortions in first-stage retail contracting.

There are two major points of contrast between our model and that of Crampes and Léautier (2015) worth mentioning. Crampes and Léautier (2015) treat retail contracting as monopolistic, and view the adjustment market as competitive. In contrast, we take both retail and wholesale prices as exogenous, and we consider monopsony contracting in the adjustment market, with a preliminary extension to Cournot oligopsony. This reflects our focus on the medium-term future, in which the aggregation market has few participants, and is small \textit{in toto} relative to wholesale markets. We view retail rates as administratively determined, in a manner that is exogenous to consumers’ and aggregators’ decision-making. This is because we are interested in the normative business decisions of aggregators.

The second point of contrast with Crampes and Léautier (2015) is purely a modeling choice. Crampes and Léautier (2015) consider a two-type demand model, to give the clearest demonstration of a distortion effect. We model a continuous market demand curve, comprising a continuum of types. This provides a more detailed, less stylized account of how an aggregator should optimize a production offer and DR dispatch policy with knowledge of market statistics, renewable output, demand conditions, etc. While a two type demand model may suffice to illustrate welfare implications, our modeling choice is motivated by a market design perspective, addressing the operational question of “how to” construct and utilize a DR contract menu.

\section{Introduction to the model}

We consider the profit maximization problem of an aggregator. This aggregator has two sources from which it produces energy: a VER (“wind”) with known probability distribution over production quantities, and a population of DR participants, with whom it signs contracts ex ante (say, at the beginning of the season) giving the aggregator the right to curtail them with specified probabilities. The market system operator treats reductions in participants’ consumption, induced by curtailment, as the aggregator’s production. The DR participants have private information regarding their valuation for service. For simplicity we assume

\footnote{However, Crampes and Léautier argue that the qualitative insights carry over to imperfectly competitive settings.}
that the aggregator acts as a monopsonist purchaser of rights to curtail increments of their capacity with specified probabilities. The monopsony assumption is obviously questionable from an institutional perspective unless there are regulatory barriers to entry for aggregators. Our main motivation for this assumption is to focus on the contracting details. We will discuss how this assumption can be relaxed somewhat allowing for a symmetric Cournot oligopsony model of aggregators competing by offering exclusive contracts to DR load, which is used to firm up their VER supply that they offer into the wholesale market. The exclusivity assumption can be justified on technological grounds, since implementing a curtailment policy either through direct load control or penalty signal may require specialized aggregator-owned equipment. We analyze the aggregator’s problem as a “screening problem” (Börgers, 2010) in which the aggregator’s benefit function reflects its participation in the wholesale electricity market, as we describe presently.

The aggregator bundles the VER and DR production for sale into a wholesale electricity market by choosing an energy offer quantity \(q \) into the day-ahead (DA) market, contingent on DA information. If the DA offer is made contingent only on the price \(p \), then this price-contingent offer policy can be interpreted as a supply offer curve. In the day-ahead, the aggregator receives revenue \(pq \). In the real-time dispatch (RT) stage, it learns the wind outcome \(s \), the prices \(a \) and \(b \) for positive and negative deviations respectively from the DA commitment quantity \(q \), and chooses a set of DR participants to curtail. Ex post, this results in a net (“aggregated” or “bundled”) production quantity, \(s + DR \). The aggregator then pays \(b(q - s - DR)^+ - a(q - s - DR)^- \) to settle the difference between the ex post production and the DA commitment. The joint probability distribution over all information is known in advance. One might say that from the ex ante perspective, the aggregator’s problem is a probability distribution over newsvendor problems, and in each newsvendor problem, after the initial quantity choice, the aggregator can take recourse actions in response to observed “demand” (here we mean negative wind), by dispatching DR. The DR cost is nonlinear, determined by the economics of the screening problem. In general the probability distribution over DR actions may be constrained to conform to contracts negotiated ex ante, but this advance commitment has no economic effect: assuming the aggregator faces no statistical or computational limitations, DR can be treated purely as scenario-dependent recourse (see Section 2.4.1), whose optimal distribution it can foresee and therefore commit to from the ex ante stage.

The population of demand response participants is modeled as a continuum of “increments” of capacity—i.e., potential consumption. Ignoring stochasticity of valuations, each increment is a differential, \(dx \), on the quantity axis of the population aggregate demand curve. Each infinitesimal increment has private information, indexed by its type \(\tau \in [\underline{\tau}, \bar{\tau}] \subset \mathbb{R} \), parameterizing the distribution over its “ex post valuation” \(\theta \) for power at the time of con-

5Our model implies that the aggregator offers a menu of quality-differentiated service options (Mussa and Rosen, 1978) to each increment, independently of contracting with the rest. A consumer chooses a menu item for each of its increments, and its total utility and transfer are Lebesgue integrals over the corresponding utility and transfers for each increment. This treatment rules out quantity-based nonlinear price discrimination.
CHAPTER 1. INTRODUCTION

assumption. The types of increments are distributed according to a measure with associated distribution function G and density g, with convex compact support $[\tau, \overline{\tau}] \subset \mathbb{R}$. The measure of a set of increments under G represents the total potential consumption capacity of that set, in MW.

Before laying out the microeconomic model of how DR is produced and how much it costs, we can informally write the aggregator’s problem, from the ex ante perspective, as:

$$\max_{q, DR, T} J_{EA}(q, DR, T) = \max_{q, DR, T} \mathbb{E}[pq + a (DR + s - q)^+ - b (q - DR - s)^+] - T. \quad (1.1)$$

Here q, DR, and T are policy variables. The DR dispatch is determined in real time, although in accordance with a policy determined ex ante, and the corresponding payment T is made ex ante. The exogenous random variables are:

- p: day ahead ("DA") price $\in [\underline{p}, \overline{p}]$,
- a: overproduction payment rate $\in [\underline{a}, \overline{a}]$, realized in RT,
- b: shortfall penalty rate $\in [\underline{b}, \overline{b}]$, realized in RT,
- s: VER ("wind") realization, $\in [\underline{s}, \overline{s}]$, realized in real time (RT),
- $\{\theta_\tau : \tau \in [\underline{\tau}, \overline{\tau}]\}$: DR participants’ valuations, realized ex post.

We generally assume that $0 \leq a \leq b$ and $0 \leq p$. Allowing a penalty for overproduction, i.e. $a < 0$, reflecting the frequent occurrence of negative real time prices, would involve minor complications, which we discuss in connection with Example 2 in Section 3.3.

The last item is a continuum of random variables: a process, although indexed by the type of the DR participant, rather than by time. It does not show up in the informal objective, but we will explain how it affects the DR quantity DR, and payment T.

\footnote{The EA subscript indicates that this objective is an expectation from the ex ante perspective.}
\footnote{We use the same symbols for random variables and their realized values.}
\footnote{We assume that this process is jointly measurable with respect to the product measure induced by g and the probability measure over θ_τ. Therefore the process admits an essentially unique decomposition into an idiosyncratic component and an aggregate component (Al-Najjar, 1995). We are not particularly interested in technical issues regarding measurability. Instead we simply posit, as suggested in Judd (1985), that the idiosyncratic noise obeys an exact strong law of large numbers. In a similar spirit, we make whatever assumptions necessary to license the application of Fubini’s theorem to exchange the order of integration with respect to g and expectation over the process θ_τ, which should not be demanding, since each valuation takes a value in a compact interval $[\underline{\theta}, \overline{\theta}] \subset \mathbb{R}$. Further, the increments’ decision that is contingent on this information process involves no strategic interaction, so most of the potential technical complications do not arise.}
1.4 Information and decision structure

In our most general analysis, random variables are realized, and decisions taken, in four temporal stages. As mentioned above, the contracting decision that is made at the ex ante stage is an expectation over scenario-contingent decisions which can be treated, for analytical purposes, as if they are postponed until real time, after all uncertainties affecting aggregator decisions are realized. At each subsequent stage, information from the previous stage is retained, new payoff-relevant random variables are realized, and forecasts of the random variables in future stages may be updated. We denote the tuple of random variables at each time-stage, drawn from the set of possible events, as “\(\omega \in \Omega \),” with a subscript denoting that time-stage, and we denote the non-payoff-relevant component as \(\xi \) with the same subscript.

0. Ex ante (EA) stage. The aggregator learns all probability distributions. The aggregator offers the same menu of contracts to each member of the population of DR participants, and the DR participants select their preferred plans. The aggregator makes the aggregate payment \(T \) from Equation (1.1).

1. Day-ahead (DA) stage. The aggregator learns the DA price \(p \): \(\omega_{\text{DA}} = (p, \xi_{\text{DA}}) \in \Omega_{\text{DA}} \), and chooses its offer quantity, \(q(\omega_{\text{DA}}) \). The function \(\omega_{\text{DA}} \mapsto q(\omega_{\text{DA}}) \) can be interpreted as a supply function offered in the ISO DA market, if it is \(p \)-measurable.

2. Real-time dispatch (RT) stage. The aggregator learns the imbalance prices \((a, b) \) and wind outcome \(s \): \(\omega_{\text{RT}} = \omega_{\text{DA}} \times (a, b, s, \xi_{\text{RT}}) \in \Omega_{\text{RT}} \), and chooses the set of DR increments to send curtailment signals to: \(\{ \tau : k(\tau, \omega_{\text{RT}}) = 1 \} \). A general curtailment function is denoted as \(k : [\tau, \bar{\tau}] \times \Omega_{\text{RT}} \to [0, 1] \), where the value \(k(\tau, \omega_{\text{RT}}) \) is the ex ante probability that type \(\tau \) is curtailed in RT event \(\omega_{\text{RT}} \). In Assumption 2 below, we restrict attention to curtailment rules of the form \(k(\tau, \omega) = \mathbb{1}_{\{ \tau \leq \hat{\tau}(\omega_{\text{RT}}) \}} \).

3. Ex post (EP) stage. The participants’ valuations are realized: \(\omega_{\text{EP}} = \omega_{\text{RT}} \times \{ \theta_\tau : \tau \in [0, N] \} \); this determines the realized quantity of demand response. We denote the latter random variable (or its realization in event \(\omega_{\text{EP}} \)) as \(DR(\omega_{\text{EP}}, \hat{\tau}(\omega_{\text{RT}})) \).

The aggregator’s primary policy variables are thus

\[
q : \omega_{\text{DA}} \mapsto q(\omega_{\text{DA}}) \in \mathbb{R} \\
k(\cdot, \cdot) : (\tau, \omega_{\text{RT}}) \mapsto k(\tau, \omega_{\text{RT}}) \in [0, 1].
\]

We alternate between \(\hat{\tau} \) and \(k \) notation for the curtailment policy as convenient. The payment \(T \) is a decision, but the screening analysis lets us express the optimal \(T \) given a curtailment policy \(k \) as a functional of that policy.

9This is a slight simplification: the collection of any penalties from increments, for violating curtailment signals, is also netted out from \(T \) ex post.

10In our example in Section 3.3, the DA forecasts of imbalance prices are assumed to be perfect, so they are effectively revealed in this stage as well.

11The product notation \(\times \) denotes concatenation of ordered tuples.
CHAPTER 1. INTRODUCTION

This is a rather general description, which is suitable to our analysis of the DR contract design component of the aggregator’s problem. However, we only solve the aggregator’s whole problem (the “end-to-end problem”), which embeds the DR contracting into a wholesale offer problem, in special cases. In these special cases, some of the information is realized at earlier stages than in the general case, or is never stochastic; that is, certain advance forecasts are assumed to be perfect.

We occasionally omit the DA, RT and EP subscripts on random outcomes when the referent is clear from the context.

1.5 Organization of remaining chapters

The remainder of this part proceeds as follows: In Chapter 2, we characterize the class of merit-order curtailment policies and their corresponding contracts in our setting. This determines the cost of implementing a curtailment policy. In Chapter 3, we analyze the aggregator’s end-to-end problem, which embeds DR contracting and dispatch into a newsvendor-style wholesale market. In Section 3.1, we present the general model of the aggregator’s benefits from demand response. In Sections 3.2 and 3.3, we consider two specials cases of the end-to-end problem that we can solve to successive degrees of explicitness. These give us insight into the structure of the aggregator’s end-to-end problem. Finally, we conclude and outline extensions and future directions.
Chapter 2

Demand response: utility model, production, and payment

In this chapter, we analyze the DR contracting process. In Section 2.1, we lay out the key economic assumptions that make our problem tractable. In Section 2.2, we introduce direct mechanisms and specify our capacity increments’ utility function in a direct mechanism. In Section 2.3 we invoke the Revelation Principle, the foundation of mechanism design. Section 2.4.1, we note that contracting for merit-order curtailment policies can also be implemented “in real time,” at least if we treat the economic model literally, which gives us economic insight into the set of implementable contracts and policies.

2.1 A one-dimensional type space

The key feature of our analysis of the DR contractual screening problem is that we make two assumptions that are jointly sufficient to render the increments’ type space “one-dimensional.”

The first assumption is that conditional on any real-time outcome \(\omega_{RT} \), “higher types” have a higher distribution over ex post valuations, in the sense of first-order stochastic dominance (FOSD). At the ex post stage, each capacity increment will consume if its realized valuation for consumption is sufficiently high. Since there is a continuum of increments, each one is infinitesimal. Therefore we can assume that no two increments have the same type, and that a distinct ex post valuation random variable is associated with each type:

Definition 2.1.1 (Ex post valuation). The “ex post valuation” is the dollar value that an increment of type \(\tau \) derives from consumption in ex post event \(\omega_{EP} \). It is a random variable.

1 See Börgers (2010) chapter 5.6.

2 This could easily be generalized, but assuming a very high density over a short interval of types should be a reasonable approximation to a point mass on a single type, and this setup allows us to distinguish increments anonymously—i.e. only by type—which is convenient.
with value \(\theta(\tau, \omega_{EP}) \).

The cdf for the valuation \(\theta(\tau, \omega_{EP}) \), conditional on the type and the information publicly available in real time, is

\[
\Pr\{\theta(\tau, \omega_{EP}) \leq \theta | \omega_{RT}\} \triangleq F(\theta |\tau, \omega_{RT}).
\]

We denote the conditional pdf \(\frac{\partial}{\partial \theta} F(\theta |\tau, \omega_{RT}) \) as \(f(\theta |\tau, \omega_{RT}) \).

The set of distributions over ex post valuations obeys a monotonicity and smoothness condition:

Assumption 1 (First-order stochastic dominance—FOSD). The distribution over ex post valuations is ordered by, and differentiable with respect to, ex ante type:

1. \(F(\theta |\tau, \omega_{RT}) < F(\theta |\tau', \omega_{RT}) \) \(\forall \tau > \tau', \forall \theta, \omega_{RT}; \)
2. \(\partial F(\theta |\tau, \omega_{RT})/\partial \tau < 0 \); and
3. \(\exists M \in \mathbb{R}_+ \text{ s.t. } |\partial F(\theta |\tau, \omega_{RT})/\partial \tau| < M \) for a.e. \((\omega, \tau) \in \Omega_{RT} \times [\underline{\tau}, \overline{\tau}] \) under the product measure.

In fact, this condition can be weakened so that there is a different FOSD ordering of the type space for each real-time outcome, but the corresponding informational requirements for the aggregator may seem unrealistically onerous.

Our second assumption is a restriction on the set of DR curtailment policies:

Assumption 2 (Merit-Order Curtailment Policy). We restrict attention to DR curtailment policies with a “Merit-Order,” or cutoff, form: \(k(\tau, \omega_{RT}) = 1_{\{\tau \leq \hat{\tau}(\omega_{RT})\}} \). That is, in each real-time (RT) outcome \(\omega_{RT} \), the aggregator sends the curtailment signal to all increments with ex ante type less than some event-specific cutoff type, \(\tau = \hat{\tau}(\omega_{RT}) \).

(We explain in Section 2.3 below how the curtailment policy can take the increments’ types as an argument, despite that the types are the increments’ private information.) The choice of DR dispatch policy \(\hat{\tau}(\cdot) \) determines the quantity of demand response, which is a random variable, whose value is realized ex post: \(DR(\omega_{EP}; \hat{\tau}(\omega_{RT})) \) (see Definition 3.1.1).

The combination of Assumptions 1 and 2 ensures that the type space \([\underline{\tau}, \overline{\tau}]\) is “one-dimensional” in a key economic sense.\(^3\) Consider any pair of types \(\tau_2 > \tau_1 \) and any merit-order allocation rule \(k(\tau, \omega_{RT}) = 1_{\{\tau \leq \hat{\tau}(\omega_{RT})\}} \). The marginal utility for type \(\tau_2 \) being switched from allocation \(k(\tau_1, \cdot) \) to allocation \(k(\tau_2, \cdot) \) is greater than the marginal utility for \(\tau_1 \) undergoing the same switch. So higher types value “higher allocations” (that is, being curtailed less) more than do lower types, a fact which allows the aggregator to “separate” the types. This

\(^3\) See Börgers (2010), chapter 5.6.
essentially reduces DR contracting problem to a textbook single-stage screening problem by separability across events $\omega_{RT} \in \Omega_{RT}$.

In a standard sequential screening problem (Courty and Li, 2000), a single agent’s ex post valuation is realized conditional on its ex ante type. Our problem is putatively dynamic, but because we exogenously specify how the increment makes the final consumption decision, it becomes effectively static, except that the increments’ first-stage utility function reflects the information dynamics. In addition to the dynamic aspect, in our problem, our aggregator simultaneously derives benefit from a whole population of DR participants who have stochastic and possibly correlated valuations, rather than drawing a single agent from a common distribution. But, as reflects our application area, DR participants are “too small” to affect each other, so they are not strategically relevant to each other. These facts reduce our problem to a variation on a textbook screening problem, resulting in an expression for the optimal payment for a given curtailment policy, in Proposition 2.4.3 (“revenue equivalence”). This makes it straightforward to embed the contracting decision in the wholesale market problem.

For technical reasons, we also assume that the distribution $F(\theta|\tau, \omega_{RT})$ has constant support for all τ, ω_{RT}.

Finally, we make a very plausible simplifying assumption, that the highest type, τ, is “very high”.

Assumption 3. For any optimal curtailment policy $\hat{\tau}^*(\cdot)$, $\tau > \hat{\tau}^*(\omega_{RT})$, $\forall \omega_{RT} \in \Omega_{RT}$.

2.2 Direct mechanisms

We assume that ex ante, DR increments are anonymous: the only distinguishing feature of each one is its type. Therefore, the result of contracting will be that, one way or another, each capacity increment is assigned a curtailment status, contingent only on its type, and the real-time dispatch outcome ω_{RT}; this curtailment status function is its “allocation,” which we denote as $k(\tau, \omega_{RT})$. The contracting outcome will also involve a payment from the aggregator to the increment. Because both the aggregator and the increments are risk-neutral and we assume that the aggregator is capable of commitment, it makes no difference whether the payment is made ex post, or whether the same payment is made ex ante as an expectation over the ex post payments.

4This “staticness” holds in a more specific sense than the more general result that sequential mechanisms can be reduced to a particular kind of static mechanism (Krähmer and Strausz, 2015). This reflects our concrete interest in demand response as embedded in our end-to-end problem.

5We just mean that there are some units of demand whose valuation for power is high enough that they would not accept a reasonable payment curtailment in any contingency. For example, hospitals with life support units may have some quantity level at which their demand is, for all intents and purposes, perfectly inelastic.
CHAPTER 2. DEMAND RESPONSE: UTILITY MODEL, PRODUCTION, AND PAYMENT

There might be many mechanisms by which such a contracting outcome could come about, but the Revelation Principle shows that any equilibrium contracting outcome can be achieved by a “direct revelation mechanism.”

Definition 2.2.1. A direct mechanism in our setting is a pair of functions

\[
[\underline{\tau}, \overline{\tau}] \ni \tau \mapsto k(\tau, \cdot) \in [0, 1]^{\Omega_{RT}}
\]

(where \([0, 1]^{\Omega_{RT}}\) is the set of functions having domain \(\Omega_{RT}\) and codomain \([0, 1]\)) and

\[
[\tau, \overline{\tau}] \ni \tau \mapsto t(\tau) \in \mathbb{R}.
\]

Here \(k(\bar{\tau}, \cdot)\) is the real-time dispatch curtailment function, assigned ex ante to an increment reporting type \(\bar{\tau}\), and \(t(\bar{\tau})\) is the ex ante or expected gross payment made to an increment reporting \(\bar{\tau}\).

The interpretation is that the increment of type \(\tau\) gives a “report” of its type, \(\bar{\tau} \in [\underline{\tau}, \overline{\tau}]\), and the aggregator commits to effect the corresponding allocation function and payment, \(\langle k(\bar{\tau}, \cdot), t(\bar{\tau}) \rangle\). We call \(t(\bar{\tau})\) the “gross ex ante payment” to an increment reporting type \(\bar{\tau}\). It is “gross” because the aggregator may also collect a penalty from the increment ex post if it violates the curtailment signal, and we will net the latter quantity out of the aggregate payment.

2.2.1 The increments’ utility function in a direct mechanism

Here we display the increments’ utility function in a direct mechanism in a manner that reflects our demand response setting. In the following subsection, we show that any contracting equilibrium that allocates a curtailment function and an expected payment can be implemented by a direct mechanism—in particular, a “direct revelation mechanism.”

A capacity increment of infinitesimal magnitude \(dx\), with ex post valuation \(\theta\), pays the variable charge \(R \cdot dx\) or \(H \cdot dx\) (depending on its curtailment status) and enjoys utility \(\theta \cdot dx\) from consuming the quantity \(dx\) MWh. Henceforth, we normalize the an increment quantities produces, pays or enjoys—DR, tariffs or expected utility—by dividing them by \(dx\); resulting in the corresponding quantity “per unit mass” of increments.

A priori, in its “outside option”, each increment has a retail service contract that permits it to consume if it pays the retail rate \(R \$\)/MWh. This service contract is an option, in the financial sense, for physical delivery of a commodity at the point of service. Before the institution of a DR policy, this option only has value to its owner, since the commodity cannot be transferred and thus enjoyed by anyone else. But a DR policy establishes (in our model), by administrative fiat, that if the aggregator prevents an increment from exercising its service option when it otherwise would have, then the resulting reduction in consumption is treated as production of that same quantity by the aggregator.

\(^6\)Here we closely follow the development of Börgers (2010), chapter 2.
An increment’s expected utility from holding its original service option is its “option value.” This is its consumption utility net of the retail price, provided that it is positive. Through contracting, the aggregator purchases the right to send a curtailment signal to each increment in every event where the reported type \(\tilde{\tau} \leq \hat{\tau}(\omega_{RT}) \). The curtailment signal penalizes consumption by raising the effective price (exercise price) of the increment’s service option from the retail rate, \(R \), to an exogenously determined penalty rate, \(H > R \). This reduces both the option value and the quantity of consumption. Generally, we assume that the aggregator collects the difference or “penalty fee” \(H - R \) if the increment consumes despite receiving the signal, but we are particularly interested in the special case of direct load control, which is modeled by \(H = \infty \). In that case a penalty fee is never collected, because the increment always complies with the curtailment signal.

We quantify the increment’s utility when under contract as net of the outside option value:

Definition 2.2.2 (Net option value from curtailment). Denote an increment’s change in ex post value given curtailment as

\[
L(\theta) \triangleq ((\theta - H)^+ - (\theta - R)^+) \leq 0. \tag{2.1}
\]

The lost option value for type \(\tau \), from perspective of real-time event \(\omega_{RT} \) conditional on curtailment, is

\[
z(\tau, \omega_{RT}) \triangleq \int_{\Theta} L(\theta)f(\theta|\tau, \omega_{RT}) \, d\theta \leq 0. \tag{2.2}
\]

The net option value of an increment of type \(\tau \), reporting type \(\tilde{\tau} \), given curtailment policy \(k(\cdot, \cdot) \), is

\[
U(\tilde{\tau}|\tau) \triangleq \int_{\Omega_{RT}} z(\tau, \omega) \, k(\tilde{\tau}, \omega) \, dP_{RT}(\omega). \tag{2.3}
\]

We assume that increments have quasi-linear utility, so that it affords the following decomposition:

Definition 2.2.3 (Direct mechanism representation of the increments’ expected utility function). An increment that reports its type as \(\tilde{\tau} \), given that it has true type \(\tau \), enjoys expected net utility

\[
u(\tilde{\tau}|\tau) \triangleq U(\tilde{\tau}|\tau) + t(\tilde{\tau}). \tag{2.4}
\]

2.3 The Revelation Principle

The Revelation Principle establishes that without loss of generality, we can restrict attention to “direct revelation mechanisms,” in which the increment reports its true type to the aggregator’s direct mechanism, and in which the incentive compatibility constraint is satisfied.
CHAPTER 2. DEMAND RESPONSE: UTILITY MODEL, PRODUCTION, AND PAYMENT

We quote Proposition 2.1 of Börgers (2010) with minor substitutions, the proof of which can be found there:

Proposition 2.3.1 (Revelation Principle). For every mechanism Γ and every optimal increment strategy σ in Γ, there is a direct mechanism Γ' and an optimal buyer strategy σ' in Γ' such that

1. The strategy σ' satisfies:
\[
\sigma'(\tau) = \tau \text{ for every } \tau \in [\underline{\tau}, \overline{\tau}],
\]
i.e. σ' prescribes telling the truth;

2. For every $\tau \in [\underline{\tau}, \overline{\tau}]$, the curtailment allocation $k(\tau, \cdot)$ and the payment $t(\tau)$ equal the allocation function and the expected payment that result in Γ if the buyer plays her optimal strategy σ.

Definition 2.3.2 (Incentive compatibility). A direct mechanism in our problem is incentive compatible if truth-telling is optimal for every type; that is if:
\[
\tau \in \arg \max_{\tilde{\tau} \in [\underline{\tau}, \overline{\tau}]} \{U(\tilde{\tau}|\tau) + t(\tilde{\tau})\}. \tag{IC}
\]

The previous result and definition allow us to simplify our problem, by restricting attention to direct revelation mechanisms which satisfy the (IC) constraint.\footnote{We should note, however, that the Revelation Principle assumes away problems of multiple equilibria. However, this is not a problem for us, because we have already restricted the curtailment policy set in Assumption 2.}

An increment participating in an incentive compatible mechanism derives its equilibrium utility:

Definition 2.3.3 (Equilibrium utility). For a given direct revelation mechanism, an increment of type τ enjoys net expected utility
\[
u(\tau) \triangleq u(\tau|\tau) = U(\tau|\tau) + t(\tau)
\]
in the contracting equilibrium, i.e., when it truthfully reports its type in a direct mechanism.

Another crucial constraint results from our assumption that the increments participate in the contracting scheme voluntarily:

Assumption 4 (Individual rationality).
\[
u(\tau) \geq 0 \text{ } \forall \tau \in [\underline{\tau}, \overline{\tau}]. \tag{IR}
\]
This is to say that contracting cannot leave the increment worse off than in its outside option, which we normalize to zero. (Remember that $U(\tilde{\tau}|\tau)$ is the change in consumption utility, and penalties, resulting from contracting.) Further, we assume that all increments participate, without loss of generality: for suppose an increment found it better not to participate, so that it is never curtailed and generates no DR for the aggregator, and receives no payment from the aggregator. This could be equivalently represented by $k(\tau, \cdot) \equiv 0$, and $t(\tau) = 0$. In our model, this allocation makes it so the increment makes no contribution to the aggregator’s objective, and by definition of the outside option, the increment’s net utility is also zero. So non-participation can be modeled as the degenerate form of participation just mentioned, and without loss of generality we can enforce the assumption that all increments participate and achieve nonnegative net utility.

2.4 The optimal payment T needed to effect a demand response policy

We are now ready to derive an expression for the aggregate payment T as a function of the curtailment policy.

Lemma 2.4.1 (Continuity and differentiability of equilibrium consumption utility with respect to true type). The increment’s utility function, as a function of its true type while holding its report constant, is differentiable, Lipschitz continuous, and thus absolutely continuous, for any given report $\tilde{\tau}$. Therefore there exists an integrable function $b(\tau)$ such that $\left| \frac{\partial}{\partial \tilde{\tau}} U(\tilde{\tau}|\tau) \right| \leq b(\tau)$, and $U(\tilde{\tau}|\cdot)$ is uniformly continuous, $\forall \tilde{\tau}$.

Proof. See Appendix.

At this point it would be standard to state a necessary condition that incentive compatibility places on the curtailment allocation $k(\cdot, \cdot)$. However, since we are restricting attention to the class of cutoff policies $\{\hat{\tau}(\cdot)\}$, we will skip this, and show in Proposition 2.4.5 that all cutoff policies can be implemented, given the appropriate payment.

Lemma 2.4.2. Incentive compatibility implies that the equilibrium net expected utility $u(\tau)$ is decreasing in ex ante type, that $u(\tau)$ is absolutely continuous, and that

$$u(\tau) = u(\overline{\tau}) - \int_\tau^\overline{\tau} \left. \frac{\partial}{\partial s} U(\tau|s) \right|_{\tilde{\tau}=s} \, ds \tag{2.5}$$

$$= u(\tau) + \int_\tau^\overline{\tau} \int_\Omega \int_\Theta L'(\theta) \frac{\partial F(\theta|s, \omega)}{\partial s} \bigg|_{\leq 0} \frac{\partial f(\theta|s, \omega)}{\partial s} \bigg|_{\geq 0} \, d\theta k(s, \omega) \, dP(\omega) \, ds \tag{2.6}$$

$$= u(\overline{\tau}) - \int_\tau^\overline{\tau} \int_\Omega \int_\Theta L(\theta) \frac{\partial f(\theta|s, \omega)}{\partial s} \, d\theta k(s, \omega) \, dP(\omega) \, ds. \tag{2.7}$$
CHAPTER 2. DEMAND RESPONSE: UTILITY MODEL, PRODUCTION, AND PAYMENT

Proof. The first line follows from the envelope theorem: Milgrom and Segal (2002), Theorem 2, the conditions of which we have established in Lemma 2.4.1. Since the integrand in line (2.6) is nonnegative, and τ is the lower limit of integration, $u(\tau)$ is nonincreasing. □

Proposition 2.4.3 (Necessary condition on the payment for Incentive Compatibility / Revenue Equivalence). Under a merit-order curtailment policy, incentive compatibility requires that the ex ante gross payment to an increment of type τ be

$$t(\tau) = u(\tau) - \int_{\Omega_{RT}} z(\hat{\tau}(\omega), \omega) k(\tau, \omega) dP_{RT}(\omega). \quad (2.8)$$

Proof. See Appendix. □

The next proposition shows that when the aggregator optimizes its profit, $u(\tau)$ is zero. So equation (2.8) can be interpreted as saying that, for each real-time state, every curtailed increment is paid the reservation utility of the highest curtailed increment in that state.

Proposition 2.4.4 (Individual Rationality “binds at the top”). Given incentive compatibility, individual rationality holds only if $u(\tau) \geq 0$. Maximization of the aggregator’s profit implies that $u(\tau) = 0$.

Proof. Proposition 2.4.2 implies that $u(\tau)$ is nonincreasing. Since the aggregator’s payment to each increment includes the constant term $u(\tau) \geq 0$, the aggregator maximizes profit by reducing $t(\tau)$ until $u(\tau) = 0$. □

Proposition 2.4.5 (Sufficient Condition for Incentive Compatibility). Any merit-order curtailment policy is rendered incentive compatible, when the corresponding payment is as in Proposition 2.4.3.

Proof. See Appendix. □

This proposition shows that the DR contracting problem is separable over Ω_{RT}. In the next section we consider the implications of this result.

2.4.1 State-contingent interpretation of the payment form

The formula in Proposition 2.4.3 for the payment (setting $u(\tau) = 0$), has an intuitive interpretation, corresponding to what we call the “state-contingent representation.” Proposition 2.4.5 shows that under First-Order Stochastic Dominance (Assumption 1), merit-order curtailment guarantees the satisfaction of any linking constraints across random events ω_{RT} that are implied by incentive compatibility, so that those linking constraints can be discarded. The aggregator’s DR contracting problem is therefore separable across realized RT states ω_{RT}, and we can think of the aggregator as committing to separate DR purchases contingent on each ω_{RT}. In the merit-order setting, the curtailment policy for each fixed real-time outcome is binary and decreasing over the type argument: i.e., it is constant over all curtailed
types. This is because incentive compatibility forces the aggregator to pay each curtailed increment in a particular state the reservation value of the highest curtailed type in that state, since any increment could impersonate that type.\(^8\)

The formula for the payment in Proposition 2.8 is in fact the ex ante expectation of the payments that would be made if curtailment contracting were performed in this state-contingent manner.

2.5 Expressing the net payment as a linear functional of the curtailment policy

In order to solve the end-to-end problem, we need expressions of a certain form for the aggregate payment, i.e. integrated over the DR population.

Definition 2.5.1 (Payment). The aggregate net payment is the integral of the type-specific payment over the increment population, net of penalty receipts:

\[
T \triangleq \int_{\Omega} \int_{\tau} \left[t(\tau) g(\tau) d\tau - (H - R) \int_{\Omega_{EP}} \int_{\tau} 1\{\tau \leq \hat{\tau}(\omega_{RT})\} 1\{\theta(\tau, \omega_{EP}) > H\} g(\tau) d\tau \right] dP(\omega_{RT}).
\]

Proposition 2.5.2 (Expressing the aggregate payment as an expectation of a linear functional of the increment population). Defining the virtual net payment to type \(\tau\) in event \(\omega_{RT}\) as

\[
\psi(\tau, \omega_{RT}) \triangleq - \left(z(\tau, \omega_{RT}) + \frac{G(\tau)}{g(\tau)} \frac{\partial}{\partial \tau} z(\tau, \omega_{RT}) \right) - (H - R) \Pr\{\theta(\tau, \omega_{EP}) \geq H | \omega_{RT}\}.
\]

The aggregate payment can be expressed as

\[
T = \int_{\Omega_{RT}} \int_{\tau} \psi(\tau, \omega_{RT}) g(\tau) d\tau dP(\omega_{RT}). \tag{2.9}
\]

Proof. See Appendix.\(^9\)

We call \(\psi(\tau, \omega_{RT})\) the “virtual net payment” to type \(\tau\) for curtailment in event \(\omega_{RT}\). In addition to penalty fee receipts, the marginal aggregate payment from raising the marginally curtailed type to \(\tau\) in event \(\omega_{RT}\) has two components: the aggregator must pay the marginal

\(^8\)See the discussion at the end of Börgers (2010), chapter 2.2.

\(^9\)It turns out that this formula holds for general \(k(\cdot, \cdot)\) satisfying incentive compatibility (i.e. we would integrate the above expression over the whole population, multiplying the integrand by \(k\)), not just for the cutoff form \(\hat{\tau}\), but this is not an immediate concern of ours here, so we leave this result unproved.
segment of the type population its lost utility \(z(\tau, \omega_{RT})g(\tau) \); and it must also raise the payment it makes to infra-marginal types to that same level, incurring a payment \(G(\tau) \frac{\partial}{\partial \tau} z(\tau, \omega_{RT}) \), because the infra-marginal types, the measure of which is \(G(\tau) \), can impersonate the marginal type. This second term corresponds to the information rent in the mechanism design literature. The expression \(\psi(\tau, \omega_{RT}) \) attributes both of these components to the marginal type, so that we obtain the marginal change in the aggregate payment from recruiting type \(\tau \). The same economic insight arises when we interpret the product rule in the first-order condition for the elementary monopsony pricing problem, as we discuss in the next section. This allows us to express the first-order conditions for the end-to-end problem.

2.6 State-contingent monopsony procurement of DR and competitive extension

As we have just seen that the contracting problem is separable across RT scenarios, we will focus on the single scenario \(\omega_{RT} \), and suppress the notation for it. Examining the formula for \(\psi(\tau) \) in Proposition 2.5.2, we note that since first-order stochastic dominance guarantees that \(\partial / \partial \tau z(\tau) \leq 0 \), and since \(\frac{G(\tau)}{g(\tau)} > 0 \), the information rent makes the virtual payment greater than the marginal curtailed increment’s lost utility. Assume that the aggregator has a marginal benefit from procuring DR, equal to society’s benefit, which is nonincreasing in the quantity curtailed, and thus nonincreasing in the marginal type. Then we have the standard monopsony distortion: the aggregator will purchase the quantity that sets its marginal expenditure, \(\psi(\hat{\tau}) \), equal to its marginal benefit, rather than the quantity that sets the marginal social cost (i.e. the marginal increment’s lost consumption utility) equal to its marginal benefit.

In keeping with the direct mechanism representation of contracting, we mostly focus on the marginal increment’s type as the decision variable in this paper. But to develop economic intuition and suggest an extension to Cournot competition between aggregators, we consider a special case, and then a change of variables that maps the marginal type to the corresponding DR procurement quantity. First, for the purpose of illustration, we parameterize the type variable (and its distribution), so that \(\tau = -z(\tau) \), the (positive) lost option value in the RT scenario under consideration. Then \(\frac{\partial}{\partial \tau} z(\tau) = -1 \), and \(\psi(\tau) = \tau + G(\tau) g(\tau) \). Also, for simplicity, assume that the DR yield is perfect: dispatching a unit of increments produces a unit of DR. The aggregator’s marginal analysis on the type domain is portrayed in figure 2.1a, where the benefit as a function of marginal curtailed type is \(\beta(\hat{\tau}) \).

Next we display the corresponding curves, but parameterize them as functions of the quantity of DR procured, rather than the marginal curtailed type. So the x-axis is \(q_{DR} = G(\hat{\tau}) \). We denote \(G^{-1}(\cdot) \) as \(P(\cdot) \), so that \(\hat{\tau} = P(q_{DR}) \): this is the state-contingent price that the aggregator must offer to procure the quantity \(q_{DR} \) of DR. The virtual payment,

\footnote{We assume that \(\psi \) is monotonically increasing in this representation, as we also do below when we solve the end-to-end problem.}
expressed as a function of DR quantity q_{DR}, is $\hat{\tau} + \frac{G(\hat{\tau})}{g(\hat{\tau})} = P(q_{DR}) + q_{DR}P'(q_{DR})$. (This is because $P'(q) = \frac{d}{dq} G^{-1}(q) = -\frac{1}{g(G^{-1}(q))} = \frac{1}{g(\hat{\tau})}$. Of course this is the marginal expenditure as a function of quantity, i.e., $\frac{d}{dq}(qP(q))$. So we see (figure 2.1b) that this instance of our problem is the same as the elementary monopsony pricing problem. It is the aggregator’s effect on the price of DR, in the second term, that causes it to purchase less than the efficient level.

The effect of competition among aggregators in DR procurement can be captured as in classical oligopoly or oligopsony models by scaling the second term, i.e. the information rent as a function of q_{DR}, by $0 < \alpha < 1$. We illustrate this with the dashed line in figure 2.1b. In the case of a symmetric state-contingent Cournot oligopsony, it can be shown that $\alpha = \frac{1}{n}$, where n is the number of competitors (Varian, 1992, chapter 16). As n increases, the distortion approaches zero, and the equilibrium procurement approaches the efficient level. In order to combine state-continent procurement contracts offered by a competitive aggregator into a single ex-ante contract offer that specifies expected payment vs. curtailment probability, we may need to assume that the competition for contracting takes place up front while contracts are exclusive. Such an assumption can be justified by the need for specialized aggregator-owned technology for managing load curtailments.

In most of our subsequent presentation of the end-to-end model, we maintain the DR monopsony assumption, making informal remarks about the possible effects of competition among aggregators in Section 3.3 and the conclusion.
Chapter 3

Solving the end-to-end problem

In the previous chapter, we derived useful expressions for the cost of recruiting DR. To maximize its profit, the aggregator balances costs against benefits. Having determined the cost of DR as a function of the policy, we now analyze the aggregator’s problem as a two-stage problem: first, we characterize the optimal dispatch of DR, conditional on an arbitrary DA offer policy \(q \). Then, holding the DR policy at its optimal setting as a function of \(q \), we optimize \(q \).

3.1 Benefit from DR dispatch

Recall the informal sketch of the objective from Equation (1.1):

\[
\max_{q, DR, T} J(q, DR, T) = \max_{q, DR, T} \mathbb{E} \left[\overbrace{pq + a(\text{overproduction})}^{\text{day-ahead revenue}} - \overbrace{b(q - DR - s)^+}^{\text{shortfall}} \right] - T
\]

We now give the definition of the DR production quantity:

Definition 3.1.1 (DR quantity, \(DR(\tilde{\tau}(\cdot), \omega_{EP}) \)). The quantity of DR in ex post event \(\omega_{EP} \) is the measure under \(g \) of increments that forego consumption as a result of receiving the curtailment signal:

\[
DR(\tilde{\tau}(\omega_{RT}); \omega_{EP}) \triangleq \int_{\mathbb{Z}} \mathbb{1}\{ \tau : R \leq \theta(\tau, \omega_{EP}) \leq H \} g(\tau) \, d\tau
\]

We assume that the valuation process allows the application of Fubini’s theorem to the DR process:
Assumption 5 (Fubini property of ex post DR process). We assume that for all events $\omega_{RT} \in \Omega_{RT}$, and all subsets $B \subset [\tau, \hat{\tau}]$,

$$
\mathbb{E}_{EP}\left[\int_B 1\{\theta(\tau, \omega_{EP}) \in [R, H]\} g(\tau) \, d\tau \Big| \omega_{RT} \right] \\
= \int_B \Pr_{EP}\{\theta(\tau, \omega_{EP}) \in [R, H]\} |\omega_{RT}\} g(\tau) \, d\tau \\
\triangleq \int_B y(\tau, \omega_{RT}) g(\tau) \, d\tau.
$$

(This equals $\text{DR}(\hat{\tau})$ when $B = [\tau, \hat{\tau}]$.) Here we define $y(\tau, \omega_{RT})$ as the “expected DR yield” of type τ conditional on event ω_{RT}. Also, recall that the DA offer policy is a function of the day-ahead information: $q : \Omega_{DA} \to \mathbb{R}$. We will analyze the aggregator’s end-to-end problem in two special cases.

3.2 Example 1: purely idiosyncratic valuation shocks

In this section, we assume that conditional on the real-time outcome, uncertainty regarding the ex post valuation process is i.i.d. noise.

Assumption 6. The valuation process decomposes as

$$
\theta(\tau, \omega_{EP}) = m(\tau, \omega_{RT}) + \epsilon(\tau, \omega_{EP})
$$

where $m(\tau, \omega_{RT})$ is a deterministic function, $\epsilon(\tau, \omega_{EP})$ is i.i.d. conditional on ω_{RT} over τ, and $\mathbb{E}[\epsilon(\tau, \omega_{EP})]\omega_{RT}] = 0, \forall \omega_{RT}, \omega_{EP}$. Each $\epsilon(\tau, \cdot)$ has conditional cdf $\Phi(\epsilon; \omega_{RT})$, and conditional pdf $\varphi(\epsilon; \omega_{RT})$.

Remark 3.2.1. Assumptions 1 (FOSD) and 6 (idiosyncratic noise) jointly imply that $m(\cdot, \omega_{RT})$ is increasing, for each ω_{RT}. The common conditional cdf of valuation shocks can be written as $\Pr(\theta \leq z|\tau, \omega_{RT}) = \Phi(z - m(\tau, \omega)|\omega_{RT})$. This determines the virtual payment function $\psi(\tau, \omega_{RT})$, the formula for which we omit. Further, our assumption of constant support for $\{\theta_{\tau}\}_{\tau}$ implies that each θ_{τ} has full support on \mathbb{R}, for every ω_{RT}.

We make the following assertion without proof:

Remark 3.2.2. Under Assumption 6, the DR output is almost surely deterministic, condi-
CHAPTER 3. SOLVING THE END-TO-END PROBLEM

Drational on \(\hat{\tau}(\omega_{RT}) \):

\[
DR(\hat{\tau}(\omega_{RT}); \omega_{EP}) = \int_{\mathcal{I}} 1\{\theta(\tau, \omega_{EP}) \in [R, H]\} g(\tau) d\tau
\]

\[
= \mathbb{E}_{EP} \left[\int_{\mathcal{I}} 1\{\theta(\tau, \omega_{EP}) \in [R, H]\} g(\tau) d\tau \bigg| \omega_{RT} \right]
\]

\[
= \int_{\mathcal{I}} \Pr_{EP} \{\theta(\tau, \omega_{EP}) \in [R, H]\} |\omega_{RT} \} g(\tau) d\tau
\]

\[
= \int_{\mathcal{I}} \psi(\tau, \omega_{RT}) g(\tau) d\tau.
\]

See Al-Najjar (1995) for further discussion on this issue. Our purpose in making Assumption 6 was simply to license the above result, so the reader may take this consequence as the operative assumption instead.

Having derived expressions for the DR production quantity and the payment contribution in each RT outcome \(\omega_{RT} \), we can now plug them into the stylized objective of Equation (1.1). Note that the real-time contribution to the ex ante component is the integrand from Equation (2.9).

Definition 3.2.3 (Aggregator’s objective, and its constituent parts). The real-time contribution to the aggregator’s ex ante objective in event \(\omega_{RT} \) is

\[
J_{RT}(q, \hat{\tau}(\omega_{RT}); \omega_{RT}) \triangleq pq + a \left(\int_{\mathcal{I}} g(\tau, \omega_{RT}) y(\tau, \omega_{RT}) d\tau + s - q \right)^{+} - b \left(\int_{\mathcal{I}} g(\tau, \omega_{RT}) y(\tau, \omega_{RT}) d\tau - s \right)^{+} - \int_{\mathcal{I}} \psi(\tau, \omega_{RT}) g(\tau) d\tau;
\]

(3.1)

The day-ahead contribution is the expectation over the real-time contribution:

\[
J_{DA}(q, \hat{\tau}(\cdot); \omega_{DA}) \triangleq \mathbb{E}_{\omega_{RT}|\omega_{DA}} [J_{RT}(q, \hat{\tau}(\omega_{RT}); \omega_{RT})|\omega_{DA}];
\]

(3.2)

And the aggregator’s objective, full stop, is the expectation over the DA contribution:

\[
J_{EA}(q(\cdot), \hat{\tau}(\cdot)) \triangleq \mathbb{E}_{\omega_{DA}} [J_{DA}(q(\omega_{DA}), \hat{\tau}(\cdot); \omega_{DA})].
\]

(3.3)

Approaching the problem as a two-stage decision problem with recourse, we first derive a first-order necessary condition for optimizing Equation (3.1) with respect to the optimal DR dispatch \(\hat{\tau}(\omega_{RT}) \) given a DA offer \(q \). We denote this optimal recourse policy as \(\hat{\tau}^{*}(\omega_{RT}|q) \). Since we will optimize \(q \) below, we also occasionally drop the “|\(q \)”, or “conditioned on \(q \)” argument for brevity.
3.2.1 First-order necessary conditions for $\hat{\tau}^*(\omega_{RT}|q)$ in example 1

To make the first-order conditions and consequent results easier to read, we define the following quantities:

Definition 3.2.4. Under Assumption 6 (idiosyncratic noise), we define the marginal type that must be curtailed to cancel out a nonnegative RT imbalance, given wind realization s, as

$$DR^{-1}(q - s;\omega_{RT}) \triangleq \begin{cases} -\infty & \text{if } q < s \\ \tau & \text{s.t. } DR(\tau,\omega_{RT}) = q - s, \text{ if } DR(\tau,\omega_{RT}) \geq q - s \geq 0 \\ \infty & \text{if } q - s \geq DR(\tau,\omega_{RT}) \end{cases}.$$

Definition 3.2.5. The marginal cost of DR from type τ (i.e. the dollar amount the aggregator must pay to curtail increments of type τ, per unit of resulting DR yield), is $c(\tau;\omega_{RT}) \triangleq \psi(\tau,\omega_{RT})/y(\tau,\omega_{RT})$.

We will occasionally suppress ω_{RT} arguments for DR, c, etc. for conciseness.

Proposition 3.2.6 (Optimal DR curtailment policy). The first-order necessary condition requires that if $\hat{\tau}^*(\omega_{RT}) > \tau$, the following condition holds (here $\partial(\cdot)$ denotes the subgradient mapping):

$$\psi(\hat{\tau}^*)g(\hat{\tau}^*) \in \partial \left(a \left(\int y(\tau;\omega_{RT})1_{\tau \leq \hat{\tau}} g(\tau) \, d\tau + s - q \right)^+ \\ - b \left(q - s - \int y(\tau,\omega_{RT})1_{\tau \leq \hat{\tau}} g(\tau) \, d\tau \right)^+ \right)$$

which implies

$$c(\hat{\tau}^*) \in \{a\} 1_{DR(\hat{\tau}^*)+s > q} + \{b\} 1_{DR(\hat{\tau}^*)+s < q} + [a,b] 1_{DR(\hat{\tau}^*)+s = q}.$$

If $c(\cdot)$ is monotonically increasing, this requires that (suppressing the ω_{RT} argument of DR^{-1})

$$c(\hat{\tau}^*(\omega_{RT})) = \begin{cases} c(DR^{-1}(q - s)) & \text{if } c(DR^{-1}(q - s)) \in (a,b), \\ a & \text{if } c(DR^{-1}(q - s)) < a, \text{ and} \\ b & \text{if } c(DR^{-1}(q - s)) > b. \end{cases} \quad (3.4)$$

Proof. Subdifferentiation of the previous formula for the aggregator’s objective with respect to $\hat{\tau}^*$.

Assuming that c, the marginal cost of DR, is monotonic, in the optimal DR recourse policy $\hat{\tau}^*(\omega_{RT}|q)$, the aggregator exactly meets its commitment if the marginal cost of DR
CHAPTER 3. SOLVING THE END-TO-END PROBLEM

needed to do so is strictly between the two imbalance prices, a and b.\footnote{We will argue in a followup work that the cost c should typically be monotonic. Another setting perhaps worth considering is for c “single-troughed,” i.e. quasi-convex, so that $-c$ is single-peaked. This might obtain if it is prohibitively expensive to obtain DR from types low valuation types, because their yield is too low. We may consider the optimality conditions for this case elsewhere.} Otherwise, if the marginal cost of DR needed to do so would be greater than b, the aggregator curtails all increments up to the “upper critical valuation,” $c^{-1}(b)$. If the marginal cost of curtailing up to the point of zero imbalance is below a, then the aggregator produces more than it offered day ahead, curtailing all increments up to the “lower critical type,” $c^{-1}(a)$. Increments with type below the minimum lower critical type, $\tau < \inf_{\omega_{RT}} c^{-1}(a(\omega_{RT}); \omega_{RT})$ are curtailed in all wind outcomes; increments with valuation above the maximum upper critical type are not curtailed in any wind outcome. These features of the real-time curtailment decision are depicted in the upper left panel of Figure 3.1, although that figure is further specialized to Example 2, introduced below. That panel is essentially the same as Figure 2.1b, but with a piecewise-constant benefit function, reflecting our aggregator’s newsvendor-style revenue function.

Decomposing events by imbalance status, the first-order conditions for monotonic c admit the following formulation,\footnote{If c is weakly increasing, then the equality is replaced with ϵ, and c^{-1} is interpreted as the set-valued preimage function.} which is also helpful for the optimization of q.

$$
\hat{\tau}^*(\omega_{RT}|q) = \begin{cases}
DR^{-1}(q - s) & \text{if } DR(\hat{\tau}^*(\omega_{RTD})) = q - s, \\
-1(b) & \text{if } DR(\hat{\tau}^*(\omega_{RTD})) < q - s, \text{ and} \\
-1(a) & \text{if } DR(\hat{\tau}^*(\omega_{RTD})) > q - s.
\end{cases}
$$

(3.5)

3.2.2 The optimal day-ahead offer policy, q^*

To find the optimal q^*, we first plug the expression for the optimal DR dispatch in Equation (3.5) into the aggregator’s objective, conditional on ω_{DA}:

$$
J_{DA}(q, \hat{\tau}^*(\cdot|q); \omega_{DA}) = \sup_{\hat{\tau}(\cdot)} J_{DA}(q, \hat{\tau}(\cdot); \omega_{DA}) = pq + \mathbb{E}_{\omega_{RT}|\omega_{DA}} \left[a \left(\int_{\mathbb{R}} \hat{\tau}^*(\omega_{RT}|q) y(\tau) g(\tau) d\tau + s - q \right)^{+} \right] \\
- \mathbb{E}_{\omega_{RT}|\omega_{DA}} \left[b(q - s - \int_{\mathbb{R}} \hat{\tau}^*(\omega_{RT}|q) y(\tau) g(\tau) d\tau)^{+} \right] \\
- \mathbb{E}_{\omega_{RT}|\omega_{DA}} \left[\int_{\mathbb{R}} \psi(\tau; \omega_{RT}) g(\tau) d\tau \right].
$$

(3.6)
Proposition 3.2.7 (First-order necessary condition for optimal day-ahead offer). The optimal day-ahead offer, q^*, conditional on ω_{DA}, satisfies the following condition:

$$
p = E[a| DR(\hat{\tau}^*) + s > q^*] \Pr\{DR(\hat{\tau}^*) + s > q^*\} + E[b| DR(\hat{\tau}^*) + s < q^*] \Pr\{DR(\hat{\tau}^*) + s < q^*\} + E[c(\hat{\tau}^*)| DR(\hat{\tau}^*) + s = q] \Pr\{DR(\hat{\tau}^*) + s = q^*\}.
$$

Proof. See Appendix.

This is not an explicit solution; we present this condition because of its clear economic interpretation: The aggregator increases its DA offer quantity until the marginal change in expected real-time expenditures (imbalance prices plus payments to DR) rises to meet the marginal DA revenue. If the RT imbalance prices a and b are known day-ahead, then figure 3.1 and the accompanying discussion in Section 3.3.1 apply to this case. That is, we show in that section how the aggregator’s problem can be viewed as an elaboration of the elementary monopsony pricing problem.

3.3 Example 2: parameterized uniform distributions and day-ahead imbalance prices

Now we consider a simple concrete example, where renewable power output and increment types are distributed uniformly, valuation noise is degenerate (i.e. nonexistent), the imbalance prices are known day-ahead, the lowest valuation is equal to the retail rate, and the aggregator employs direct load control. In this case, we can derive formulas for the aggregator’s optimal policy and its relevant features, in order to display the solution graphically, and obtain quantitative sensitivity results. The main objects in the model are

\[
\begin{align*}
 g(\tau) &= \frac{d}{d\tau} G(\tau) = N \mathbb{I}_{\tau \in [\underline{\tau}, \bar{\tau}]} \\
 s &= \text{Uniform}[0, \bar{s}] \\
 \theta_{\tau} &= \tau \text{ (degenerate distribution at } \tau) \\
 R &= \tau \\
 H &= \infty.
\end{align*}
\]

With no valuation noise, this model does not satisfy our Assumption 1 (FOSD). But we only needed Assumption 1 in order to prove Lemma 2.4.1 (monotonicity and differentiability of the equilibrium utility with respect to true type), which we can directly verify. In our current setting,

\[
\begin{align*}
 U(\tilde{\tau}|\tau) &= -\int_{\Omega_{RT}} \tau k(\tilde{\tau}, \omega_{RT}) dP(\omega_{RT}) = -\tau \Pr\{\tilde{\tau} \leq \hat{\tau}(\omega_{RT})\}, \quad (3.8) \\
 \therefore \frac{\partial}{\partial \tau} U(\tilde{\tau}|\tau) &= -\Pr\{\tilde{\tau} \leq \hat{\tau}(\omega_{RT})\} \leq 0. \quad (3.9)
\end{align*}
\]
The remaining lemmas and propositions of Chapter 2 therefore follow. Before obtaining formulas for the payment, etc., we can simplify the model by reparameterization. First, by a change of variables on τ, we normalize the valuations to express them as net of the retail rate, and set $\tau = R = 0$. This specification results in the following model quantities:

forall $\tau \in [\underline{\tau}, \overline{\tau}]$,

\[
\begin{align*}
 z(\tau) &= -\tau \\
 \frac{\partial}{\partial \tau} z(\tau) &= -1 \\
 G(\tau)/g(\tau) &= \tau \\
 \psi(\tau) &= 2\tau \\
 y(\tau) &= 1 \\
 c(\tau) &= 2\tau.
\end{align*}
\]

(3.10)

Instead of expressing the problem in terms of N, the DR population size, and \overline{s}, the VER nameplate capacity, we write the problem in terms of the parameter $\nu = N/(\overline{s}(\overline{\tau} - \underline{\tau}))$: the density of increment-valuations per dollar, per MW nameplate capacity. Now power (and energy) quantities are expressed as a fraction of the nameplate capacity: the DA offer quantity now takes the form $q \leftarrow q/\overline{s}$, the fraction of VER nameplate capacity bid day ahead; DR quantities are in the same units; the random variable s is reparameterized as $s \leftarrow s/\overline{s}$, now the wind realization’s cdf value. Correspondingly, the aggregator’s profit is now denominated in dollars per unit VER nameplate capacity, per hour.

Following the same two-stage solution method as before, we first consider the optimization of the real-time demand response dispatch. In this setting,

\[
DR(\hat{\tau}) = \nu \hat{\tau}.
\]

(3.11)

The aggregator’s “real-time objective” is:

\[
J_{RT}(q, \hat{\tau}(\omega_{RT}); \omega_{RT}) = pq + a(s + \nu \hat{\tau}(\omega_{RT}) - q)^+ - b(q - s - \nu \hat{\tau}(\omega_{RT}))^+ - T(\omega_{RT}),
\]

(3.12)

where the last term is the net ex post payment in event ω_{RT}, i.e. $\int_{\underline{\tau}}^{\hat{\tau}(\omega_{RT})} \psi(\tau, \omega_{RT}) g(\tau) \, d\tau$, from Proposition 2.5.2:

\[
T(\omega_{RT}) = \nu \int_0^{\hat{\tau}(\omega_{RT})} 2\tau \, d\tau
\]

(3.13)

\[
= \nu \hat{\tau}(\omega_{RT})^2.
\]

(3.14)

Note that for $a \leq b$ (which we assume to hold), this objective is concave in τ and q. The first-order conditions for $\hat{\tau}(\omega_{RT}|q)$ give us that in the optimal recourse curtailment policy,

\footnote{The derivation of model parameters from elasticity estimates must be done before the change of variables, because an elasticity is a ratio involving the retail price, which we are eliminating from the problem.}
Equation (3.5) takes the form

\[\hat{\tau}^*(\omega_{RT}|q) = \begin{cases}
\frac{a}{2} & \text{if } (q-s)/\nu < a/2 \Leftrightarrow s > q - \nu a/2 \\
(q-s)/\nu & \text{if } a/2 < (q-s)/\nu < b/2 \Leftrightarrow q - \nu b/2 < s < q - \nu a/2 \\
\frac{b}{2} & \text{if } (q-s)/\nu > b/2 \Leftrightarrow s < q - \nu b/2.
\end{cases} \] (3.15)

That is, the lower and upper critical valuations mentioned above are \(c^{-1}(a) = a/2 \) and \(c^{-1}(b) = b/2 \) respectively. Referring back to Equation (3.4), which applies here as well, we see that the optimal marginal DR cost is set equal to the imbalance cost that obtains given the resulting DR quantity. A marginal analysis of this optimization is depicted in the upper left panel of figure 3.1. Henceforth we assume that \(\hat{\tau} \) is held at its optimal recourse value given \(q \), and proceed to analyze the “first-stage” problem, \(\max_q J_{DA}(q, \hat{\tau}^*(\cdot|q); \omega_{DA}) \).

The assumptions made for our symmetric oligopsony extension, in Section 2.6, hold in this case. So with \(n \) aggregators, then the distortion term becomes \(G(\tau)/ng(\tau) \), and \(c(\tau) = \frac{n+1}{n} \tau \) instead of \(2 \tau \), deflecting the marginal expenditure curve downward as the number of competitors increases.

For a given policy and \(\omega_{DA} = (p, a, b) \), there are three possible types of event with respect to wind: shortfall, zero imbalance, and overproduction. To calculate the expected value of the objective over the real-time information \(s \), we define the wind levels that constitute breakpoints between these regimes:

\[d \triangleq \min(1, \max(0, q - \nu b/2)) \] (3.16)
\[e \triangleq \min(1, \max(0, q - \nu a/2)) \] (3.17)

Since \(s \) is now normalized to refer to the wind realization’s cdf value, \(d \) is the probability of shortfall, and the level \(e \) is one minus the probability of overproduction.\(^4\) Plugging in the optimal \(\hat{\tau}^*(\omega_{RT}) \) and taking the expectation over \(s \), we get

\[\max_q J_{DA}(q, \hat{\tau}^*(\cdot|q); \omega_{DA}) = \max_q p q - \int_0^d \left(\int_0^{b(\nu/2)^2} + b(q - \nu b/2 - s) \right) ds \]
\[- \int_d^e \left(\int_d^{\nu(q-s)/\nu} + b(q - \nu b/2 - s) \right) ds \]
\[- \int_e^1 \left(\int_e^{\nu(a/2)^2} - a(s + \nu a/2 - q) \right) ds. \] (3.18)

This “first-stage” (DA-stage) objective is concave (it is a day ahead expectation with respect to \(s \) of a concave real-time benefit function), and piecewise polynomial in \(q \), with breakpoints where \(d \) and \(e \) hit zero or one. The combinations of possible sets of events based on parameter values generate many cases.

\(^4\)For example, \(d \) is the probability that wind is less than \(q - \nu b/2 \), which would imply that the wind quantity plus the maximum economical amount of DR be less than the offer quantity \(q \).
Proposition 3.3.1 (Solution to the end-to-end problem, Example 2). The solution to the aggregator’s end-to-end problem in Example 2 is presented in Table A.1.

By “solution,” we mean that we exhibit the optimal policies q and $\hat{\tau}$, as a function of ω_{DA} and ω_{RT} respectively. If the aggregator is to publish a menu of contract choices ex ante, it would do this by taking expectations of the curtailment status, and payment, over Ω_{DA}, according to average market statistics. We provide an example of this in Section 3.3.2.

3.3.1 Graphical marginal analysis of the optimization of DR and q in Example 2

We can obtain more intuition regarding the optimization of the aggregator’s policy by considering the graphical depiction of the marginal analysis of the aggregator’s DR quantity decision in figure 3.1. Here we treat the DR procurement decision as a quantity decision, as described in Section 2.6. First we consider a single wind and price outcome, in the upper-left panel. With respect to DR, the aggregator is a monopsonist, i.e., the sole buyer in a commodity market with many sellers. In each real-time realization ω_{RT}, it faces the same marginal purchase cost curve (the marginal cost of DR, Definition 3.2.5) and it makes the optimal real-time curtailment decision by ensuring that its marginal cost of DR is between the imbalance prices that it faces on the margin. The marginal benefit from purchasing the q_{DR}th MW of DR is denoted by $\beta(q_{\text{DR}})$, a piecewise-constant decreasing function depicted in black. The marginal cost from purchasing the q_{DR}th MW of DR is equal to the virtual payment to the marginally curtailed increment, which is increasing: $mc(q_{\text{DR}}) = 2q_{\text{DR}}/\nu$.

The optimal curtailment quantity is the point on the quantity axis where the marginal benefit curve crosses the marginal cost curve. Projecting the intersection of the two curves onto the y axis, we obtain the optimal DR recourse cost associated with that real-time outcome, which we depict with a circle on the y axis.

Next we step back to the DA optimization of q. At the DA stage, the aggregator foresees that a random RT outcome will realize, at which point it will take a DR recourse action in the manner just described. In the current example, the imbalance prices a and b are known day-ahead, and the only random variable at the DA stage is the wind, s. The distribution over wind outcomes (here with pdf h), together with the aggregator’s choice of q, induces a distribution over breakpoints in the marginal benefit curve, $h(q - s)$, which we depict under the x axis of the last three panels of figure 3.1. Adjusting q slides the pdf of breakpoints along the x axis. We depict the distribution over marginal benefit curves induced by a choice of q as a regularly spaced finite sample from it (curves in light gray). Assuming optimal RT recourse, a choice of q induces a distribution over recourse costs, which we depict vertically on the y axis. This distribution has a density component corresponding to the virtual payment to the marginally curtailed type when there is no imbalance, as well as two point-masses, at a and b, depicted as circles with area proportional to their probability. The aggregator’s optimal DA offer, q^*, sets the expected recourse cost equal to the DA revenue. That is,
imagining that gravity is pulling the recourse cost distribution to the right, the optimal \(q^* \) balances that distribution on the DA price, \(p \).

Returning to the monopsony setting, the result of optimizing \(q \) contingent on DA information can be represented as a supply curve. However, in Example 2, since we assume that the imbalance prices \(a \) and \(b \) are revealed simultaneously with \(p \), the policy mapping DA information to the DA offer quantity \(q \) is actually a “supply surface.” We display several representative slices of this surface in figure 3.2. In this figure, we consider three cases where the imbalance prices are equal to the day ahead price, plus a premium \(\epsilon \). As \(\epsilon \) increases in this figure, the shortfall penalty and the overproduction rate are increased. Both of these effects move in the same direction, encouraging the producer to bid a smaller fraction of nameplate. (A higher overproduction payment encourages the producer to bid less, because it reduces the producer’s opportunity cost in scenarios where its supply exceeds its bid.) In future research we will discuss how one can solve the end-to-end problem numerically, via simulation, in a general model. The output of such an optimization can be offered as a supply curve in an ISO auction market.

In the symmetric Cournot oligopsony setting, the DR cost curve is deflected downward. (We assume that the aggregators have equal fractional shares of the DR market; to maintain comparability, we also need to assume that the aggregator owns a fractional share of a common wind resource, which is represented by a scaling of the wind distribution.) This should result in a lower marginal cost of curtailment, a higher optimal day-ahead offer, and of course, lower
profits. We intend to explore the oligopsony setting in more depth in future work.

3.3.2 Graphical depiction of the contract menu

Figure 3.1 characterizes the aggregator’s optimal DA action, q^*, and RT recourse, $\hat{\tau}^*$. Stepping back to the ex ante stage, we consider the ex ante contract menu that would implement $\hat{\tau}^*(\cdot)$. This requires some assumption of market statistics over Ω_{DA}. We consider the example:

\[
\begin{align*}
 p &\sim \text{Uniform}[10, 100] \\
 a &= (1 - \delta) p \\
 b &= (1 + \delta) p \\
 \delta &\sim \text{Uniform}[0.1, 0.9].
\end{align*}
\]

We also assume that $\nu = 1/100$, which is derived from the following parameter choices under linear demand:\footnote{Note that $\nu = N/(\overline{\sigma}(\overline{\tau} - \bar{\tau})) = g(R)/\overline{\sigma}$. The elasticity at the retail rate is $\eta(R) \triangleq g(R)\frac{\partial}{\partial R}$. The parameters chosen yield $\nu = 1/100$.}

\[
\begin{align*}
 \overline{\sigma} &= 100 \text{ MW} \\
 R &= $30/MW \text{ (generation component of the retail price)} \\
 N &= D(R) = 100 \text{ MW (aggregate demand at } R = $30) \\
 \eta(R) &= 0.3 \text{ (elasticity at } R = $30).
\end{align*}
\]

In figure 3.3, we plot the probability of curtailment, as well as the ex ante payment, as a function of type.\footnote{We did this by analytically in the MATHEMATICA language, solving the aggregator’s problem pointwise over Ω_{DA}, and then taking expectations of the quantities with respect to our market statistics.}
We also display as a dotted line what the payment would be, if the aggregator maintained the same curtailment allocation, but were able to perfectly price discriminate (paying each increment its reservation price for curtailment, rather than the reservation price of the highest curtailed increment). The shaded region between those two lines is the information rent: the surplus payment that the increments are able to extract by virtue of their private information.

In figure 3.4, we eliminate the type parameter from the contract menu, by plotting the payment to each increment type against the probability that that type is curtailed. This gives a more realistic depiction of a menu that the aggregator might offer in practice. Here we see that the payment rises sub-linearly in probability. If we imagine only a single tuple of prices \((p,a,b)\), then the probability of curtailment is piecewise linear: there is no curtailment for valuations above \(b/2\), valuations below \(a/2\) are always curtailed, and between those two levels, the probability varies linearly in type, as determined by the uniform distributions over wind and type (see Equation (3.5)). However, while the probability of curtailment falls piecewise linearly in type, the corresponding valuation for service rises linearly. If each increment were paid its reservation utility (i.e. no private information) the payment would be a concave quadratic function of type, and the lowest type would accept curtailment for no payment. With private information, the payment curve has a similar quadratic form, but it is decreasing in type, and the payments are inflated. (Incentive compatibility, combined with merit-order curtailment, forces the payment to be nonincreasing in type. Merit-order curtailment implies that service plans designed for higher types have a lower probability of curtailment. There is no way to compel a low-type increment to accept a package intended for it, with high probability of curtailment and low payment, if an alternative package is available for higher types, which has lower probability of curtailment and a higher payment.)

When the market prices are stochastic, the payment as a function of type is an average, or ex ante expectation, over such decreasing piecewise quadratic curves.
CHAPTER 3. SOLVING THE END-TO-END PROBLEM

Figure 3.3: DR contract as a function of type

Figure 3.4: Payment to DR as a function of probability of curtailment.
Chapter 4

Discussion and conclusion

We mentioned in Chapter 2 that the aggregator purchases less than the efficient level of demand response. This is because the aggregator is a monopsony purchaser of DR contracts. Under current institutional norms, customers effectively have option rights to consumption in the quantity of their physical fuse. But going forward, particularly with the rise of distributed generation, we anticipate that demand charges (in the sense of a fixed charge for fuse capacity) will become more prevalent. A demand charge in the sense we mean requires the consumer to "buy the baseline," or the capacity rights, which they would then re-sell to the aggregator. If the increments purchase less firm capacity up front, then more flexibility will be available for real-time adjustment and recourse in general. In order to investigate this, a model must incorporate an antecedent stage in which the DR participants purchase the baseline, as in, for example, Crampes and Léautier (2015).

The incorporation of a such a demand charge would typically remove lower-type increments from the distribution (i.e. demand curve) faced by the aggregator. The effect of this can be ambiguous for the aggregator’s profit. On the one hand, increments with low but positive net ex post valuation can provide cheap DR for the aggregator to purchase and deploy in the wholesale market; removing these from the market would reduce aggregator profit. On the other hand, increments with ex post valuation likely to be below the retail rate must be paid despite that they provide no DR, raising the total cost curve for DR in each scenario. In our Example 2, if we add increments with valuation below the retail rate, the aggregator would always have to pay them to dispatch a positive quantity of DR, but it would not get demand response from them. (This can be considered a form of adverse selection.) The result is that in each RT scenario, the aggregator would purchase either the same amount of DR as if there were no such increments (because of marginal cost calculations), or the aggregator would switch to purchasing zero DR in that scenario. We may explore the effects of demand charges more systematically in later work. Generally, we anticipate that a properly set demand charge can increase social welfare, but that a welfare-improving demand charge has an ambiguous effect on the aggregator’s profits, depending on specific conditions.

One institutional implication of our model that we have not commented on is that it
includes a form of “double-payment” for demand response, as currently formulated. The consumer receives payment for curtailment, but also avoids paying the retail rate for foregone consumption. Since we assume that the aggregator is distinct from the retail provider, curtailment would impose a revenue loss to the retailer, which is not represented in our model. One way of “correcting” this requires only a slight adjustment: the aggregator can be made the retailer as well, which would modify the penalty receipts term to reflect the lost retail revenue from repayment.
Appendix A

Solution table
APPENDIX A. SOLUTION TABLE

<table>
<thead>
<tr>
<th>Region</th>
<th>$[q_a, q_b]$</th>
<th>$[q_a, q_b]$</th>
<th>$J_{DA}(q)$</th>
<th>$q_a < q^* < q_b$ if</th>
<th>if $q_a < q^* < q_b$, then $q^* =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$0 < q < \nu a/2$</td>
<td>$(p - a)q + (a/2)(\nu a/2 + 1)$</td>
<td>$p < a$</td>
<td>q_a</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td>$\nu a/2 < q < \nu b/2$</td>
<td>$(p - a - \frac{a^2}{2}) q + \frac{a}{2} q^2 - \frac{1}{2} q^3 + \frac{a^3}{24} + \frac{a^4}{256}$</td>
<td>$a \leq p \leq a + \nu(\frac{a^2}{2})^2$</td>
<td>$\nu a/2 + \sqrt{\nu} \sqrt{p - a}$</td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>$\nu b/2 < q < 1 + \nu a/2$</td>
<td>$(p - a - \frac{a^2}{2} + \frac{a^2}{3}) q + \frac{a}{2} q^2 - \frac{1}{2} q^3 + \frac{a^3}{24} + \frac{a^4}{256} - \frac{b}{2} q^2 + \frac{b^2}{2} q^3$</td>
<td>$a + \nu(\frac{a^2}{2})^2 \leq p \leq b - \nu(\frac{a^2}{2})^2$</td>
<td>$(p - a)/(b - a) + \nu(a + b)/4$</td>
<td></td>
</tr>
<tr>
<td>1d</td>
<td>$1 + \nu a/2 < q < 1 + \nu b/2$</td>
<td>$(p + \frac{a^2}{2} - \frac{b}{2}) q - \left(\frac{b}{2} + \frac{1}{4}\right) q^2 + \frac{1}{16} q^3 - \frac{1}{16} q^4 - \frac{1}{16} q^5$</td>
<td>$b - \nu(\frac{a^2}{2})^2 < p < b$</td>
<td>$1 + \nu b/2 - \sqrt{\nu} \sqrt{b - p}$</td>
<td></td>
</tr>
<tr>
<td>1e</td>
<td>$1 + \nu b/2 < q$</td>
<td>$(p - b)q + \frac{b}{3} + \frac{b^2}{12}$</td>
<td>$b < p$</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

(a) Case 1: $\nu(b - a)/2 \leq 1$.

<table>
<thead>
<tr>
<th>Region</th>
<th>$[q_a, q_b]$</th>
<th>$[q_a, q_b]$</th>
<th>$J_{DA}(q)$</th>
<th>$q_a < q^* < q_b$ if</th>
<th>if $q_a < q^* < q_b$, then $q^* =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>$0 < q < \nu a/2$</td>
<td>$(p - a)q + (a/2)(\nu a/2 + 1)$</td>
<td>$p < a$</td>
<td>q_a</td>
<td>0</td>
</tr>
<tr>
<td>2b</td>
<td>$\nu a/2 < q < 1 + \nu a/2$</td>
<td>$(p - a - \frac{a^2}{2}) q + \frac{a}{2} q^2 - \frac{1}{2} q^3 + \frac{a^3}{24} + \frac{a^4}{256}$</td>
<td>$a \leq p \leq a + 1/\nu$</td>
<td>$\nu a/2 + \sqrt{\nu} \sqrt{p - a}$</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>$1 + \nu a/2 < q < \nu b/2$</td>
<td>$(p + \frac{1}{10}) q - \frac{q^2}{2} - \frac{1}{2} q^3$</td>
<td>$a + 1/\nu < p \leq b - 1/\nu$</td>
<td>$(1 + \nu p)/2$</td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>$\nu b/2 < q < 1 + \nu b/2$</td>
<td>$(p + \frac{a^2}{2} + \frac{b}{2}) q - \left(\frac{b}{2} + \frac{1}{4}\right) q^2 + \frac{1}{16} q^3 - \frac{1}{16} q^4 - \frac{1}{16} q^5$</td>
<td>$b - 1/\nu < p < b$</td>
<td>$1 + \nu b/2 - \sqrt{\nu} \sqrt{b - p}$</td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td>$1 + \nu b/2 < q$</td>
<td>$(p - b)q + \frac{b}{3} + \frac{b^2}{12}$</td>
<td>$b < p$</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

(b) Case 2: $\nu(b - a)/2 > 1$, $\Leftrightarrow 1 + \nu a/2 \leq \nu b/2$.

Table A.1: $J_{DA}(q)$ and the optimal offer quantity q^* in Example 2.
Appendix B
Proofs

Proof of Lemma 2.4.1. Assumption 1 ensures the conditions sufficient for this claim. Note that $L(\cdot)$ is absolutely continuous, and differentiable except at two points. Further, recall that the support of $F(\cdot|\tau, \omega)$ is constant. Therefore we can apply integration by parts, and the antiderivative term drops out:

$$U(\tilde{\tau}|\tau) = \int_{\Omega_{RT}} \int_{\Theta} -L'(\theta)F(\theta|\tau,\omega) \, d\theta \, k(\tilde{\tau}, \omega) \, dP_{RT}(\omega).$$

The partial derivative in question is therefore

$$\frac{\partial}{\partial \tau} U(\tilde{\tau}|\tau) = \int_{\Omega_{RT}} \int_{\Theta} -L'(\theta) \frac{\partial F(\theta|\tau,\omega)}{\partial \tau} \, k(\tilde{\tau}, \omega) \, dP_{RT}(\omega) \leq 0.$$

Each term in the integrand is uniformly bounded, which guarantees that this partial derivative is uniformly bounded, so that the function $U(\tilde{\tau}|\cdot)$ is Lipschitz continuous, and thus absolutely continuous.

Proof of Proposition 2.4.3. By rearrangement, the payment is the equilibrium utility minus the net option value:

$$t(\tau) = u(\tau) - U(\tau). \tag{B.1}$$

First we simplify the expression for $u(\tau)$ from line (2.7). Under merit-order curtailment, $k(\tau, \omega) = \mathbf{1}_{\{\tau \leq \hat{\tau}(\omega)\}}$. Exchanging the order of integration so that we integrate first with respect to τ, we get that:

$$u(\tau) = u(\tau) - \int_{\Omega_{RT}} \int_{\Theta} L(\theta)(f(\theta|\hat{\tau}(\omega), \omega) - f(\theta|\tau, \omega)) \, k(\tau, \omega) \, dP_{RT}(\omega). \tag{B.2}$$

Subtracting from this the net option value $U(\tau)$, we arrive at the desired result.
APPENDIX B. PROOFS

Proof of Proposition 2.4.5. Consider the difference in utility between the case where an increment of ex ante type τ reports truthfully, versus mis-reporting as $\tilde{\tau}$.

$$u(\tau) - (U(\tilde{\tau}|\tau) + t(\tilde{\tau}))$$

$$= \int_\Omega \int_\Omega L(\theta) f(\theta|\tau, \omega) \ d\theta (k(\tau, \omega) - k(\tilde{\tau}, \omega)) \ dP(\omega) + t(\tau) - t(\tilde{\tau})$$

$$= \int_\Omega \int_\Omega L(\theta) (f(\theta|\tau, \omega) - f(\theta|\tilde{\tau}(\omega), \omega)) \ d\theta (k(\tau, \omega) - k(\tilde{\tau}, \omega)) \ dP(\omega)$$

$$= \int_\Omega \int_{\tilde{\tau}(\omega_{RT})}^{\tau} -L'(\theta) (F(\theta|\tau, \omega) - F(\theta|\tilde{\tau}(\omega), \omega)) \ d\theta (k(\tau, \omega) - k(\tilde{\tau}, \omega)) \ dP(\omega).$$

Suppose $\tau > \tilde{\tau}$. Merit-order curtailment implies that $k(\tau, \omega) - k(\tilde{\tau}, \omega) = -1_{\{\tilde{\tau} \leq \hat{\tau}(\omega) < \tau\}} \leq 0$. On this set, FOSD implies that $F(\theta|\tau, \omega) \leq F(\theta|\tilde{\tau}(\omega), \omega)$. This implies that the integral’s value is nonnegative. Similarly, if $\tau < \tilde{\tau}$, then $k(\tau, \omega) - k(\tilde{\tau}, \omega) = 1_{\{\tilde{\tau} \leq \hat{\tau}(\omega) < \tau\}} \geq 0$. On this set, $F(\theta|\tau, \omega) \geq F(\theta|\tilde{\tau}(\omega), \omega)$. Again, the integral’s value is nonnegative. \hfill \Box

Proof of Proposition 2.5.2. The substance of the proposition is that (ignoring the penalty receipts term)

$$\int_\tau^\tilde{\tau} t(\tau) g(\tau) \ d\tau$$

$$= -\int_{\Omega_{RT}} \int_\tau^{\tilde{\tau}(\omega_{RT})} \left(\frac{G(\tau)}{g(\tau)} \frac{\partial}{\partial \tau} z(\tau, \omega_{RT}) + z(\tau, \omega_{RT}) \right) g(\tau) \ d\tau \ dP(\omega_{RT}). \quad (B.3)$$

Integrating the expression for $t(\tau)$ in Equation (2.8) over the population under the merit-order assumption that $k(\tau, \omega) = 1_{\{\tau \leq \hat{\tau}(\omega)\}}$, we get that

$$T = \int_\tau^\tilde{\tau} t(\tau) g(\tau) \ d\tau = \int_{\Omega_{RT}} \int_\tau^{\tilde{\tau}(\omega_{RT})} z(\tau(\omega_{RT})) g(\tau) \ d\tau \ dP(\omega_{RT}) \quad (B.4)$$

$$= \int_{\Omega_{RT}} z(\tau(\omega_{RT})) G(\tau(\omega_{RT})) \ dP(\omega_{RT}). \quad (B.5)$$

To obtain the desired RHS of B.3, we differentiate the integrand in (B.5) using the product rule, factor out a “$g(\tau)$,” and re-integrate. \hfill \Box

Proof of Proposition 3.2.7 (FONC for q^*). In order to differentiate this objective with respect to q, we decompose RT outcomes into three sets: overproduction = $\{DR + s > q\}$, shortfall = $\{DR + s < q\}$, and no imbalance = $\{DR + s = q\}$.

1. From expression (3.5), we see that

\[\text{Despite the fact that the DR policy is held at its optimal values, we cannot apply an envelope theorem, because there is a positive probability that the value function is not differentiable with respect to $\hat{\tau}$ at $\hat{\tau} = \hat{\tau}^*$ (in all ω_{DA} events where there is zero imbalance at the optimum, the right derivative with respect to $\hat{\tau}$ has an a coefficient, and the left derivative has a b coefficient).}\]
\[
\frac{\partial}{\partial q} \hat{\tau}^*(\omega_{RT}|q) = \frac{1}{DR'(DR^{-1}(q-s))} \mathbb{1}_{\{DR(\hat{\tau}^*)=q-s\}} \\
= \frac{1}{DR'(\hat{\tau}^*)} \mathbb{1}_{\{DR(\hat{\tau}^*)=q-s\}} = \frac{1}{y(\hat{\tau}^*)g(\hat{\tau}^*)} \mathbb{1}_{\{DR(\hat{\tau}^*)=q-s\}}.
\]

Here we ignore certain “edge” events, which we assume have probability zero: abusing notation,

\[s_{\text{inf}} = \inf\{s : DR(\hat{\tau}^*(s)) + s = q\} \]
\[s_{\text{sup}} = \sup\{s : DR(\hat{\tau}^*(s)) + s = q\} .\]

Also, note that the contributions to the expected derivative from the overproduction and shortfall terms are both zero when \(DR + s = q\), because by assumption, the shortfall quantity is constantly zero on this set. When overproduction and underproduction are strict, then \(\frac{\partial}{\partial q} \hat{\tau}^*(\omega_{RT}|q) = 0\).

This gives us that

\[
\frac{\partial}{\partial q} J(q|\omega_{DA}) = p - \mathbb{E}[a|DR(\hat{\tau}^*) + s > q] \Pr\{DR(\hat{\tau}^*) + s > q\}
- \mathbb{E}[b|DR(\hat{\tau}^*) + s < q] \Pr\{DR(\hat{\tau}^*) + s < q\}
- \mathbb{E}[c(\hat{\tau}^*)|DR(\hat{\tau}^*) + s = q] \Pr\{DR^* + s = q\} .
\]

The first-order condition follows. \qed
Part III

Simulating Dynamic Tariffs
Chapter 5

Introduction

This chapter is an adaptation of our current working paper (Campagne et al., 2016).

Many economists have stressed the importance of dynamic retail pricing for the efficient and reliable functioning of electricity markets. Dynamic tariffs include general Time-of-Use tariffs (ToU), Critical Peak Pricing (CPP), historical-baseline-dependent Demand Response (DR), and real-time pricing (RTP). Economists are often particularly critical of DR programs, for giving consumers adverse incentives (double payment and baseline inflation) that may make their individually optimal behavior detrimental to social welfare.

Policy-oriented discussions of dynamic pricing programs often stress the importance of load-shifting behavior, but economic evaluations of dynamic pricing typically assume a time-separable economy, precluding the possibility of intertemporal consumption substitution. Economic studies also typically assume simplified representations of retail tariffs. For example, the standard time-separability assumption precludes the representation of demand response or demand charges.

In this paper, we model prototypical rational electricity consumers, and formulate their consumption decisions under various dynamic pricing schemes as mathematical optimization problems. Using historical data from California, we simulate a large number of different scenarios and quantify the average impact of various real and idealized electricity tariffs on social welfare. Our framework explicitly models intertemporal substitution of consumption. We introduce the concept of a “baseline-taking equilibrium,” and compute these equilibria, so that we can calculate the welfare impacts of baseline manipulation.

The organization of the remaining chapters is as follows. We review the relevant literature in Section 5.1. We discuss our contributions to this literature in Section 5.2, and give an executive summary of our results in Section 5.2.2. In Chapters 6 and 7, we describe the tariffs we simulate, and the consumer models that face these tariffs, respectively. In Chapter 8, we describe the data setting and parameters that determine certain aspects of the tariffs we simulate, and also the welfare metrics according to which we evaluate tariffs. In Chapters 9 and 10, we describe our main findings, which divide respectively into a broad discussion of the determinants of efficiency and comparison across real and hypothetical tariffs in general, and the effects of DR and DR distortions in particular. Each of Chapters 9 and 10 begins with
a theoretical overview, followed by a summary of the results of our relevant simulations. Finally, in Chapter 11, we discuss policy implications, modeling limitations, and possible future research directions. Further details are provided in the Appendices, as well as in the code repository, accessible at https://github.com/Balandat/pyDR.

5.1 Related literature

Our research relates to three main strands of literature. Two strands are in economics: treating the efficiency of various retail electricity pricing schemes in general (Section 5.1.1), and distorted incentives from baseline-dependent demand response programs in particular (Section 5.1.2). The third strand studies engineering models of energy consumers (Section 5.1.3).

5.1.1 Efficiency of Retail Pricing in General

The problem of economically efficient retail pricing of electricity is one of the core instances of the “peak-load pricing” problem: how to optimally price a non-storable good subject to fluctuating demand, produced by a regulated monopolist that faces a production capacity constraint and a break-even revenue requirement. Crew et al. (1995) provide a classic survey of this literature. They characterize the optimal markups of retail prices over marginal operating costs that may be required to pay for capacity costs and other fixed costs under linear pricing, and discuss extensions and related settings.

The most fundamental conclusion of the economics of electricity pricing is that for consumers who behave according to standard economic models, the most efficient (or “first-best”) outcome occurs when they face a Real-Time Price (RTP) equal to the time-varying social marginal cost (SMC) of generating electricity, including the costs of externalities like Greenhouse Gases (GHGs) and other pollutants.

Borenstein and Holland (2005) discuss the effects of real-time metering and pricing on the efficiency of retail competition in restructured electricity markets, particularly when some fraction of customers remain in flat tariffs. They give a theoretical argument that, while retail competition results in the efficient outcome when all customers face real-time prices, when some or all remain in a flat tariff, competition fails to achieve the second-best outcome; and nor does it provide optimal incentives for the marginal adoption of real-time metering.\(^1\) More relevant to our concerns, they also provide simulation-based estimates of the welfare gains and cost savings from three different penetration levels of real-time pricing, in a long run competitive equilibrium simulation model, using data from 1999-2003 in California. Borenstein (2005) elaborates further on these simulation results and the underlying data

\(^1\)Second-best settings are settings where some constraints on policy make the otherwise unconstrained socially optimal solution infeasible. In this case the constraints are that consumers are subject to linear pricing, and that some fraction of customers are on flat-rate pricing instead of RTP.
and methodology, and also discusses the much smaller gains that can be obtained from time-of-use pricing in this model, under various rules determining how fixed costs are collected through volumetric adders. In energy and capacity cost terms (disregarding operating reserves, producer market power, and other complicating factors), he estimates the gains from introducing RTP in California to be on the order of hundreds of millions of dollars annually, or 5-10% total customer bills, and those from ToU to be about 20% as large.

Joskow and Tirole (2006) analyze several economic environments, including those of Borenstein and Holland (2005), and challenge some of the latter’s modeling assumptions together with their corresponding conclusions. For our purposes, most relevant is their demonstration that Borenstein and Holland (2005)’s theoretical inefficiency results stem from the restriction to linear (i.e., volumetric) tariffs. Joskow and Tirole conclude that retail competition with flat two-part pricing (a lump-sum access charge plus a linear, per MWh charge, that is constant across hours) can achieve the second-best optimum.

Borenstein (2009) provides a less formal, more policy-oriented discussion of various types of retail tariffs, including RTP, ToU, demand charges, critical peak pricing (CPP), interruptible service contracts, and baseline-dependent demand response. He estimates, based on wholesale price statistics, that ToU prices can reflect at most 6-13% of wholesale price variation in California (see his footnote 8). Hogan (2014) observes that this fraction of wholesale price variation that is “explained” by hourly or ToU indicator variables (the R^2-squared from a linear regression model) is an approximate index for the fraction of welfare gains that can be obtained by switching a group of consumers from a flat tariff to a ToU tariff, as compared to switching from flat to RTP. In the case of PJM, Hogan reaches an more pessimistic estimate of the gains achievable by ToU than Borenstein (2005).

Jacobsen et al. (2016), studying second-best Pigovian taxation of environmental externalities, establish conditions under which formulas for deadweight loss itself, rather than the ratios of deadweight losses given by Hogan’s index, can be expressed as functions of summary statistics from such regression analyses. As a preliminary step in their analysis, they present a standard expression for the deadweight loss due to suboptimal linear prices, based on Harberger (1964)’s seminal “welfare triangle” analysis: the deadweight loss is the demand-derivative-weighted sum of squared differences of retail prices from social marginal costs (Equation 9.1 in our Section 9.1). Hogan’s index corresponds to the special case in which demand derivatives are constant but unknown, and the average markup in each ToU is zero. Their formula has the advantage of being applicable to any linear pricing scheme, whereas

2Transmission and distribution (T&D) are assumed to be passed through to customers as a time-invariant 40/MWh charge.

3Borenstein and Holland (2005)’s constant-elasticity demand model implies that that total surplus is infinite, so they consider absolute gains in surplus and cost savings, and as a fraction of customer bills (system cost plus 40/MWh T&D costs, in his model).

4This standard Harberger triangle analysis assumes linear demand functions and constant marginal costs. Therefore, it does not take into account long-term equilibrium effects on the capital stock, as Borenstein and Holland (2005) do. Also note that this formula only applies when zero lower bounds on consumption are not binding.
Hogan’s index is applicable only to comparing the just mentioned second-best scheme, ToU with zero average markup, with the first-best: RTP with zero markup. The assumption of zero average markup is restrictive, because political and other normative constraints seem to prevent utilities from collecting transmission and distribution (T&D) costs entirely through fixed “meter” charges.

5.1.2 Demand Response incentives in particular

Many economists have argued that demand response is a poor substitute for real-time pricing in terms of economic efficiency (Wolak et al., 2009; Chao and DePillis, 2013; Borenstein et al., 2002; Bushnell et al., 2009a; Borenstein, 2014). Borenstein (2014) criticizes it for giving incentives that vary drastically about the baseline quantity: if the participant’s demand is too great during a DR event, then it faces no incentive to conserve at all. This is a consequence of the fact that DR is designed as a risk-free, “carrot-only” incentive program, rather than a “carrot-and-stick” incentive (Alexander, 2010): customers are encouraged to change their behavior, but they face only an “upside” incentive from the status quo.

DR programs also give consumers two distorted incentives that are principal foci of the current study. The “double-payment” distortion is the excessive incentive for demand reduction during DR events that results from the fact that DR participants not only receive the wholesale price per unit reduction, but also avoid paying the retail price, which already includes an estimate of the wholesale price. The “baseline-inflation” distortion is the perverse incentive that consumers are given to increase their consumption in hours that they anticipate may determine the baseline for an upcoming DR hour, in order to increase their DR payment.

Chao and DePillis (2013) analyze these two incentive effects by characterizing the stationary Markov equilibrium of a dynamic model in which the consumer’s utility is a sum over concave, temporally independent stage utility functions, and DR participation is compulsory once enrolled. They show that both double payment and baseline inflation result in inefficient consumption levels in their model. In a case of static linear demand and supply, they

5Jacobsen et al. (2016)’s primary focus is the same as the assumed setting of Hogan’s index, however: welfare losses from second-best pricing, particularly of externalities. Note that these results probably also apply to two-part pricing, to the extent that the access fee is small enough that it doesn’t deter consumption. However, Ito (2014)’s observation that consumers seem to respond to average prices rather than marginal prices throws this conventional “marginal” approach into question. For this and similar reasons, we interpret our results as pertaining to idealized rational consumers, rather than consumers as they currently are.

6Joskow and Tirole (2006) argue that some fixed costs are already collected through lump-sum charges, so that the need to recoup fixed costs should not prevent efficient, marginal-cost-based pricing. However, Borenstein (2016) points out that determining the appropriate share of system-wide fixed costs for each consumer seems to require arbitrary cost allocations that are hard to square with normative principles. This is particularly the case for business customers, since companies can have radically different sizes. This difficulty provides an argument in favor of volumetric collection of some portion of fixed costs, despite the resulting economic inefficiency.

7When we say that DR is compulsory, we mean that the consumer receives a DR payment which is the reduction from baseline times the wholesale price, even if this quantity is negative. That is, Chao and DePillis’ formulation assumes away the problem of discontinuous incentives noted by (Borenstein, 2014).
demonstrate that without baseline inflation (i.e. under a “contractual baseline”), the effect of the double-payment distortion is that a demand response policy only improves efficiency when DR events are called when the wholesale market price is at least twice the retail rate (their Section 4.1).

5.1.3 Engineering / HVAC Literature

In the engineering literature, authors have proposed and studied relatively sophisticated consumers and developed algorithms for computing optimal behavior in the face of different pricing schemes. Zavala (2013) focuses on buildings as consumers and gives a comprehensive overview of real-time optimization strategies under dynamic prices. The problem of optimally scheduling different loads of a single consumer, such as electric appliances, is particularly well studied; see e.g. Chen et al. (2012) and Tsui and Chan (2012). However, while authors consider a variety of dynamic pricing schemes (Vardakas et al., 2015), results on the welfare effects of existing dynamic policies under historical data are hard to find. Also, there does not seem to be any study of the impact of adverse incentives on social welfare.

A number of authors have focused on developing new pricing schemes based on maximizing social welfare, see for example Shi and Wong (2011); Singh et al. (2011); Dong et al. (2012); Samadi et al. (2012); Yang et al. (2013). Others consider the relationship between electricity retailer and consumers in a principal-agent framework (Zugno et al., 2013; Balandat et al., 2014), from which we take inspiration in formulating our mixed-integer optimization problem. Similarly, Aswani and Tomlin (2012) consider the adverse effects of baselining programs and their resolution using performance bonuses in a setting where the principal is a building owner, and the agent is the manager of the building’s HVAC system. However, these approaches typically result in very complicated pricing mechanisms that are very far from current policy, whereas we evaluate the welfare impacts of pricing programs that are designed for general retail consumers, and which actually exist or are under consideration by policymakers, using detailed historical simulations.

5.2 Our contribution, and executive summary of results

5.2.1 Relation to extant literature

Our study examines the welfare effects of a number of different real and hypothetical tariffs, for two principal electricity consumer models. Our Quadratic Utility (QU) model represents a generic consumer with a separate demand curve for each time stage, like those from Borenstein and Holland (2005) and Chao and DePillis (2013); but by incorporating a physical model of a battery, we further endow this consumer with an ability to engage in intertemporal substitution. The second model represents an agent operating a commercial building electric Heating, Ventilation and Air Conditioning (HVAC) system, who seeks
to minimize total expenditures, subject to maintaining the building’s internal temperature within time-dependent comfort constraints.

We complement the simulation analysis of Borenstein and Holland (2005) by studying the welfare effects of a range of real and realistic tariffs, represented in fine-grained detail. The type of analysis in Borenstein and Holland (2005) does not incorporate critical peak pricing, demand charges, and baseline-dependent demand response, and since the latter two features involve intertemporal coupling (as opposed to simple linear prices), their modeling approach cannot be extended to incorporate them. Using standard results presented in Jacobsen et al. (2016), we show that making the assumption of zero average markup (Hogan, 2014) can be quite misleading, particularly given the large markups over social marginal costs in the real tariffs we study.8 We assess the gains from real-time pricing, various time-of-use tariffs, CPP, and DR; and show that under the standard model (without intertemporal substitution), high volumetric markups are a much greater contributor to deadweight loss than is the absence of real-time pricing, at least for realistic tariffs and data drawn from the contemporary greater San Francisco Bay Area. But our simulation results indicate that real-time pricing becomes more important as the capacity for consumption substitution increases.

We complement the analysis of Chao and DePillis (2013) with a more detailed and accurate representation of demand response revenues, which, due to the voluntary nature of participation, are non-convex in the consumption quantity.

Perhaps the most significant advance in our approach, vis-à-vis the literature described above, is that our models incorporate realistic intertemporal consumption substitution: shifting energy through time either with a battery, or with the inherent thermal inertia of a building and its air volume.9 This is especially significant because one of the key policy rationales for DR and other time-varying tariffs programs is to incentivize “load shifting” (Faruqui et al., 2012): incentives reflecting scarcity might not merely prevent an act of consumption, but might result in it being rescheduled.10 We think it is important, especially given advances in automation technology,11 to consider how the dynamic nature of consumption may interact with dynamic tariffs.

A shortcoming of our approach, compared to Borenstein and Holland (2005), is that we have no representation of the supply side. We take historical market prices as fully representing the supply side, whereas Borenstein and Holland model the supply mix and market equilibrium. This means that our simulation results are best interpreted as showing the marginal effects of shifting a single consumer, or a small group of consumers, between tariffs, 8While it is not a focus of ours, according to our data, optimal ToU pricing would reduce deadweight loss from the optimal flat tariff by only 2-3%, assuming the current PG&E ToU periods, and a consumer with the same demand-derivatives in every period.
9While Chao and DePillis (2013) analyze a dynamic equilibrium, dynamics only enter into their model through the baseline-formation process itself, rather than in the internal state of the consumer.
10Herter and Wayland (2010) provide empirical evidence for load shifting among residential customers in the California Statewide Pricing Pilot, a critical peak pricing experiment.
11Bollinger and Hartmann (2015) and Harding and Lamarche (2016) both find that automation technology, in particular “smart” thermostats, provides significant reductions of peak load.
CHAPTER 5. INTRODUCTION

without thereby affecting the supply side. Another shortcoming of our approach, particularly in comparison to Chao and DePillis (2013), is our assumption of perfect foreknowledge of wholesale prices and thus the timing of DR events.

Our work bridges the gap between the economics and engineering literatures, while making important contributions to both fields: On the one hand it enriches the economics and policy literature by extending existing analyses to more realistic consumption models that allow true intertemporal substitution, and by defining the novel baseline-taking equilibrium concept that allows to evaluate the cost of manipulation of the DR baseline. On the other hand, our work contributes to the engineering literature by developing a novel optimization formulation that allows us to endogenize the DR baselining methodology currently in use by CAISO, and by making available a software package that allows researchers to easily apply our economic analyses to a variety of engineering-style consumption models.

5.2.2 Executive summary of results

Using historical data from California including real-time prices, weather, and representative consumption to calibrate our models (see Appendices B and D), we provide estimates of the welfare effects of various dynamic pricing policies, and in our Quadratic Utility model, assess their dependence on the elasticity and substitution capacity of demand.

In Section 9.1, we show that in our data setting, according to a standard analysis of tariff efficiency which ignores intertemporal substitution (essentially, our QU model with no battery), the deadweight loss is mostly due to the high average level of markups, rather than tariffs’ failure to co-vary in real time with social marginal costs. However, as we introduce and increase the capability of intertemporal substitution, the average markup has less of an impact on total welfare, and real-time pricing becomes relatively more important (Section 9.2). We also show how ToU and RTP tariffs whose price ratios do not reflect the ratios of social marginal costs create inefficient load-shifting incentives for customers who can intertemporally substitute, with the result that having a battery can be socially destructive.

In Section 9.3 we perform a comprehensive comparison of the simulation results for a range of real and hypothetical tariffs. The most salient patterns are that welfare effects generally scale approximately linearly with elasticity, because the effects of tariff differences are mediated by their effects on consumption quantities\(^1\); and that the larger efficiency effects are typically across tariffs, rather than from adding DR or peak day pricing to a tariff (except for PDP in the A-6 ToU tariff). For example, the A-6 ToU induces quite low social welfare in our QU model without a large battery, mostly because the extremely high prices over-penalize consumption during peak ToUs. But with a large battery, the A-6 ToU tariff becomes more efficient; not because the consumer is using the battery efficiently, but because the battery is encouraging it to take advantage of low off-peak prices to consume more.

In the QU model, real-time pricing tariffs are generally much more efficient than all actually-existing tariffs. For a typical business consumer with an annual bill of $4,010 annu-

\(^{12}\)This result is exact for the quadratic utility model in absence of a battery: see equation (9.1).
ally and elasticity $E_d = -0.1$, our “A-1 RTP” tariff achieves welfare gains of $\$66$ annually with no battery, and $\$357$ annually with a medium battery. The greatest gains achieved by (arguably) non-hypothetical tariffs with those parameter values are $\$8$ and $\$69$ respectively, from the A-1 ToU tariff with baseline-taking demand response. (All benefits are all calculated relative to the benchmark of the “vanilla” A-1 tariff, on which this consumer model is calibrated.)

In the QU model, the effects of PDP and DR are quite small without a battery. For example, for a typical business consumer with an annual bill of $\$4,010$ annually and elasticity $E_d = -0.1$, the benefits are positive but negligible, from $\$1$ to $\$10$ annually. The no-battery welfare effects scale approximately linearly in elasticity. With a medium battery (with similar specifications as a first-generation Tesla PowerWall battery), the benefits of DR are between $\$40$ and $\$80$ annually, with baseline manipulation cases typically falling toward the lower end of the range; and PDP saves nothing in the A-1 ToU, and $\$28$ annually in the A-6 ToU.

But in the HVAC case, aggressive ToU tariffs (the A-6 and E-19 ToU) are competitive with some RTP tariffs in terms of social welfare, due to large capacity cost savings. DR and critical peak pricing programs typically have beneficial welfare effects, and the latter significantly reduce consumers’ contribution to long-run capacity costs. Tariffs from the A-1 ToU with peak day pricing, E-19 ToU tariffs, and our hypothetical A-1 RTP tariff all achieve cost savings between $\$12,000$ and $\$22,000$ annually compared to the “vanilla” A-1 tariff, which has baseline generation cost of $\$68,100$, and consumer expenditure of $\$146,795$. These large effects reflect the high degree of flexibility of our HVAC system. DR typically achieves cost savings of $\$2,000$-$\$7,000$ annually depending on the base tariff, and PDP delivers smaller benefits, from $\$0$-$\300, except in the A-1 ToU, where it achieves a surprisingly large benefit of $\$12,439$, entirely due to reduced capacity costs.

In Chapter 10 we focus on the welfare effects of DR and DR distortions. We estimate the welfare effects of the double-payment incentive in our simulation scenarios; and, by formulating the concept of a “baseline-taking equilibrium,” we similarly compute the welfare effects of DR baseline manipulation. In the quadratic utility model under a realistic tariff, demand response has negligible effects without a battery. With a medium battery, DR generates welfare improvements on the scale of 1-2% of annual customer expenditures (or 3-6% of capacity plus generation costs), but the adverse incentives reduce the benefits toward the lower end of that range. With a large battery, the welfare benefits are slightly larger without manipulation, but with manipulation, DR becomes destructive, making demand response destructive to social welfare overall. In the HVAC model, demand response creates much larger benefits, on the order of 10% of the social cost of generation plus capacity. Surprisingly, the “adverse incentives" of DR can actually be beneficial in a realistic tariff; but in a theoretical case with zero average markup, the adverse incentives are destructive, so much so that the net effect of DR becomes negative.

Finally, we argue (at the end of Section 9.2) that a battery may be a worthy investment for the QU consumer under an RTP tariff, but that under currently realistic ToU and DR tariffs, the benefits of a battery do not reliably justify the cost, and may even be negative. Therefore, we would argue that programs to subsidize on-site battery deployment are unadvisable until
tariffs are reformed to give reliably efficient incentives.
Chapter 6

Electricity tariffs

6.1 Overview of electricity tariffs

Economists typically advocate for real-time pricing, on the basis of economic efficiency (Borenstein, 2005). However, very few consumers seem to have the sophistication and motivation to make consumption decisions based on real-time prices, such that exposure to unpredictable prices and bills would be worthwhile — as of 2012, only two utilities offered retail RTP plans (Faruqui et al., 2012). Regulators and consumer advocates are wary of requiring or defaulting their constituents into programs with volatility and unpredictable bills, or exposing sub-populations to retail rates that would be higher than under the status quo (Alexander, 2010; Faruqui et al., 2012). As a result, a number of alternatives have been introduced that can be seen as striking a risk-reward tradeoff that is intermediate between traditional flat-rate pricing and RTP, capturing some of the variability in the cost of energy, while avoiding the unpredictability (Faruqui et al., 2012). We provide a brief summary of these alternatives here; the interested reader can refer to Borenstein (2009) or Faruqui et al. (2012) for a more thorough overview.

ToU tariffs are one such alternative, under which customers pay different rates in different periods, classified by season, work day vs holiday or weekend, and time of day. In theory, ToU prices can be interpreted as composed of an estimate of the conditional expectation or conditional weighted average of wholesale prices during the respective ToU (Hogan, 2014), plus a markup to recoup additional costs. These additional costs might include the provision of peak capacity, and fixed costs that are not necessarily proportional to the customer’s quantity of energy consumption, such as administrative and transmission and distribution costs.

Demand charges are charges proportional to the customer’s maximum demand (in kW), typically averaged over a fifteen minute period. There are several possible rationales for applying demand charges, although Borenstein (2009) is very skeptical that any is economically satisfactory. One justification is that demand charges help manage peak demand, since ToU pricing does not capture any of the considerable residual cost variation during the peak
ToU (Borenstein, 2009). However, this problem would be better addressed with critical peak pricing. Another rationale is that peak demand is a proxy for the cost a customer imposes on the system for system capacity at the distribution level. Historical entrenchment also likely plays a role: Arthur Wright invented the “electric maximum demand indicator” in 1902 (Wright, 1902), and advocated vigorously on behalf of demand charges. His technology offered an approximate solution to managing peak electric load almost a century before the widespread adoption of real-time meters (Faruqui, 2015).

Critical Peak Pricing (CPP) is another alternative: under CPP, higher prices are charged in a small subset of hours, but the particular times are determined on relatively short notice (e.g., the 20 hours of the year with the highest anticipated prices). Under standard CPP, the peak price is known at the beginning of the season; under variable peak pricing, the critical peak prices determined close to real time, and are related to LMPs. CPP is often combined with ToU pricing.

Finally, in Demand Response (DR) programs, consumers are rewarded for their “reduction” in consumption with respect to some baseline.¹ A DR policy can be combined with any of the above tariff types.

We use the terms “markup,” “volumetric adder,” and, in Section 9.1, “pricing error,” almost interchangeably. Generally the markup is the retail price minus the wholesale price, and “volumetric adder” is a common term in the electricity industry for the markup per unit energy. The pricing error is the difference between the retail price and the social marginal cost, which, technically speaking, is the markup minus externality costs.

6.2 Tariffs used in our simulations

In our analysis, we focus on a number of commercial tariffs offered by PG&E in Northern California, as well as several hypothetical tariffs. The actually existing tariffs include the A-1, A-1 ToU, A-6 ToU, A-10, the A-10 ToU, and the E-19 ToU tariffs, which we briefly outline in the remainder of this section. We refer the reader to PG&E’s documentation² for more detail.

The A-1 tariff is a “small general service” flat rate tariff. It charges one energy charge (i.e. per kWh) for all Winter periods, from November 1 to April 30, and another rate that is approximately 50% higher for all summer periods. However, the A-1 is not open to customers with a maximum demand of 75 kW for three months in a row, or to newly connecting customers with smart meters. The A-1 ToU is new small general service time of use (ToU) tariff, meant to replace the A-1. Like all PG&E ToU tariffs, in the summer A-1 ToU has on-peak, part-peak, and off-peak energy charges, and for the winter it has part- and off-peak

¹Borenstein (2009) uses the more specific term Critical Peak Rebates, but we use the term “DR”, even though it is sometimes used to refer to a wider class of programs, as the latter term is more commonly applied.

²Pacific Gas and Electric Company (b), http://www.pge.com/tariffs/electric.shtml
charges. Within each season, the difference between the highest and lowest energy rates is about 20%, and the ratio of average summer to winter rates is similar to the original A-1.

The A-6 ToU is a ToU tariff that more aggressively incentivizes load shifting. The summer peak price is $0.60 / kWh, four times the summer off-peak price. Off peak prices are lower than those under A-1 ToU.

The A-10 tariff is similar to the A-1, except that it also has a demand charge. In turn the energy charges are lowered, relative to the A-1. The demand charge is meant to be a simple proxy for the contribution to system peak, which, in theory, would ensure that consumers face the appropriate price signals for contributing to the need for marginal system capacity expansion, although it has been criticized by some as being ill-suited to that goal (Borenstein, 2005).

Finally, the E-19 tariff combines the aggressive ToU pricing of the A-6—with a summer peak energy rate more than four times the summer off-peak rate—with the demand charge. It has the lowest off-peak rates of any of the tariffs. Further, it has a more elaborate demand charge formula: in the summer, there are separate charges proportional to the highest 15 minute power draw in a on-peak period and part-peak period respectively, and there is also an additional charge proportional to the maximum of the two power draws just mentioned.

The ToU tariffs (A-1 ToU, A-6 ToU, A-10 ToU, and E-19 ToU) all allow for CPP. In particular, PG&E’s Peak Day Pricing (PDP) program is an optional rate offered to consumers already on one of the ToU tariffs that provides a discount on regular summer electricity rates in exchange for higher prices during nine to 15 peak pricing event days per year. Under PDP, PG&E has the right to call between 9 and 15 PDP events, on a day-ahead basis. On a PDP day, a substantial adder, between $0.60 and $1.20, is added to energy charges between 2-6 pm. In exchange, customers are offered reductions in both their off-peak energy charges and in their demand charges. Our simulations include PDP events on the days that they actually occurred. We treat peak day pricing and demand response as exclusive alternatives.3

We also consider three hypothetical tariffs: the SMC RTP tariff, the A-1 RTP tariff, and the Opt Flat tariff. The SMC RTP tariff consists only of an energy charge, equal to the time-varying social marginal cost (SMC), that is, the LMP, plus the Social Cost of Carbon (see Appendix C.2). Capacity costs and non-GHG externalities are not included in these SMCs. The A-1 RTP tariff is more realistic RTP tariff, which adds LMPs to the A-1 “non-generation rate.” The non-generation rate is the surcharge charged to customers of Community Choice Aggregator as an estimate of the transmission and distribution cost allocation that those customers must pay to (Pacific Gas and Electric Company, a). However, we should note that the A-1 RTP tariff has a much lower average price than actually existing tariffs, because the imputed generation portion that we remove from the A-1 tariff to get the non-generation rate is actually much larger than average LMPs (this is evident by comparing tables 9.2 and 10.1 below).

3PG&E allows simultaneous (“dual”) participation in both programs, but only if the DR is a “day-of” capacity program, rather than a day-ahead energy program. (Pacific Gas and Electric Company, 2011).
The Opt Flat tariff is a flat tariff equal to the average SMC. This is the optimal flat tariff for a time-separable demand system with identical demand derivatives in every period.

We simulate DR in the Opt Flat tariff, but no DR, or peak-day pricing, in either of the RTP tariffs.
Chapter 7

Consumption model

In this section we provide a brief overview of the consumption models in our study. We think of such models as consisting of two parts: a basic expenditure model and an electricity consumption model. The expenditure model describes the generic costs associated with consuming electricity under various tariffs,\(^1\) while the electricity consumption model captures the specifics of the consumer’s utility function, constraints, and dynamics. This modular framework allows us to easily incorporate different types consumers and to analyze how this drives the welfare effects.

We assume that utility is quasi-linear, so that the overall utility of a risk-neutral consumer is \(V = U - E \), where \(U \) is the total consumption utility (given by the electricity consumption model) and \(E \) is the total expenditure.

7.1 Expenditure model

A customer’s expenditures over \(T \) periods under a given retail tariff are given by

\[
E = FC + \sum_{t=1}^{T} \left(p_t^R q_t - 1_{\{t \in \mathcal{E}\}} p_t^{DR} DR_t \right) + DC
\]

where \(FC \) are the tariffs total fixed charges over all periods,\(^2\) and \(q_t, p_t^R, \) and \(p_t^{DR} \) are the electricity consumption (in kWh), retail energy charge, and demand response reward\(^3\) (in \$/kWh) in period \(t \), respectively. Further, \(\mathcal{E} \) is the set of DR periods, and \(DC \) are the total demand charges accrued over all periods. For each period \(t \in \mathcal{E} \) the quantity \(DR_t = q_t^{BL} - q_t \) is the “reduction” in electricity consumption with respect to the baseline value \(q_t^{BL} \), based on which the consumer is compensated if it participates in the DR event at time \(t \).\(^4\) For the

\(^1\)Accounting for things like demand charges, PDP credits, and DR reward payments.

\(^2\)e.g. daily meter charges, processing and billing charges, etc.

\(^3\)Here \(p_t^{DR} = p_t^W \) for standard DR rewards, and \(p_t^{DR} = p_t^W - (p_t^R - p_t^{WK-D}) \) for LMP-G rewards, which have been proposed to reduce the “double payment distortion (see Section 10).

\(^4\)See Appendix A for details on how the consumer’s problem can be formulated as a mixed-integer optimization problem.
sake of simplicity, our expenditure model assumes that the revenues that a DR provider gets under FERC Order 745 are passed on directly to the DR participant.

Various baselining methodologies for Demand Response have been proposed and are used by different ISOs. In this paper, we will focus on the so-called “10 in 10” baseline used by CAISO detailed in Appendix A, under which q_t^{BL} essentially is the average consumption during the same hour of the day over a number of recent non-event days. Demand charges, if part of the tariff, are typically high linear prices on the customer’s peak power consumption during each month (or they may be specific to each ToU of each month: see Section 6), averaged over an hourly or quarter-hourly period.

In reality, the times at which DR events take place are unknown to the consumer a priori, at least until a certain period (e.g. 24 hours for day ahead warning) before the event. Moreover, if the DR rewards depend on the real-time or hour-ahead LMP, there is uncertainty about the marginal benefit of reducing consumption during a DR event, even if the period of the event is known. Thus in reality a utility-maximizing consumer faces a stochastic optimization problem that includes her beliefs about both the probability of a DR event occurring and the marginal reward in every period. As such a problem appears intractable without making additional modeling assumptions, we for simplicity consider the benchmark case where the periods and rewards of the DR events are known a priori for the entire simulation horizon.

Assumption 7 (A priori knowledge of DR events). The set $\mathcal{E} \subset \{1, \ldots, T\}$ of DR events as well as the associated demand response rewards p_t^{DR} for $t \in \mathcal{E}$ are known to the consumer in period $t = 0$.

Under Assumption 7, the consumer has perfect knowledge of the effect of its consumption choices on the amount of DR rewards received. Intuitively speaking, this will over-emphasize a consumer’s potential to benefit from artificially inflating their baseline in order to maximize DR payoffs, as doing so in the presence of uncertainty is typically a much less compelling strategy.

7.2 Electricity Consumption Model

We capture the dynamics of the consumption model (and thus the potential for intertemporal substitution) using the language of dynamical systems. In order to obtain a tractable

5For simplicity, we do not perform the so-called Load Point Adjustment (LPA) (Coughlin et al., 2008). A multiplicative LPA would be difficult or impossible to implement, because it would introduce a ratio of decision variables into the constraints. But an additive LPA would be straightforward to implement.

6However, we cannot easily claim the solution under Assumption 7 as an upper bound on the effects of artificial baseline inflation (at least in an almost sure sense), as suboptimal decision-making due to false beliefs in the presence of uncertainty potentially may yield better outcomes for the individual than the expectation-maximizing strategy. We plan to investigate this further in the future.
optimization problem, we restrict ourselves to linear dynamical systems. Specifically, we consider a generic electricity consumer with an internal state $x_t \in \mathbb{R}^n_x$ that evolves over time according to a discrete-time linear time-invariant (LTI) system of the form:

\begin{equation}
 x_{t+1} = Ax_t + Bu_t + Ev_t
\end{equation}

\begin{equation}
 y_t = Cx_t + Du_t
\end{equation}

\begin{equation}
 q_t = c_q u_t.
\end{equation}

Here $u_t \in \mathbb{R}^{n_u}$ denotes the vector of inputs, $y_t \in \mathbb{R}^{n_y}$ is the vector of outputs, and $v_t \in \mathbb{R}^{n_v}$ is a vector of disturbances. We assume that $v_t = \hat{v}_t + \nu_t$, where \hat{v}_t is the disturbance forecast and ν_t is a random vector representing the forecast error. The initial state x_0 at time $t = 0$ is known. The system matrices $A \in \mathbb{R}^{n_x \times n_x}$, $B \in \mathbb{R}^{n_x \times n_u}$ and $E \in \mathbb{R}^{n_x \times n_v}$, which describe the state evolution, and the output matrices $C \in \mathbb{R}^{n_y \times n_x}$ and $D \in \mathbb{R}^{n_y \times n_u}$ are also known. Finally, $c_q \in \mathbb{R}^{1 \times n_u}$ is vector mapping control input to power consumption, implying that the energy consumption q_t in period t is linear in the control u_t. While this assumption is somewhat restrictive, it still allows for a wide range of interesting and relevant consumption models.

Stacking states, controls and outputs, respectively, we can write $x := [x_0^\top, \ldots, x_T^\top]^\top$, $u := [u_0^\top, \ldots, u_{T-1}^\top]^\top$ and $y := [y_0, \ldots, y_T]^\top$.

Typically there will be some hard constraints on the system's control input u, due for example to actuator limits. Moreover, physical limits as well as safety considerations impose hard constraints on the state x and the output y. We assume that these constraints are linear in state and control and thus can be expressed as

\begin{equation}
 Fx + Gu \leq 0
\end{equation}

where F and G are appropriate matrices. Note that this formulation allows for a wide range of constraints, from simple box constraints over complicated polytopic constraint sets to intertemporal constraints, for example in the form of budget constraints on the control input, or an overall target production quantity in a production model. As with the uncertainty about DR events, we in this initial work for simplicity choose to ignore the forecast errors:

Assumption 8 (Absence of Forecast Errors). There are no errors in the disturbance forecast, i.e., $\nu_t \equiv 0$.

7To simplify notation we focus on time-invariant systems, noting that the extension to time-varying systems is straightforward.

Since our optimization formulation already includes integer variables, it would be relatively easy to extend our framework to piece-wise affine (PWA) dynamical systems. This increased generality would allow to include approximations to non-linear models that better capture the dynamics of certain systems. For example, Aswani et al. (2012) argue that PWA systems can provide a more accurate representation of the dynamics of HVAC systems in different operating regimes. To simplify exposition, we will focus on linear dynamical systems in this paper.

8Requiring the consumption to be linear in the control has to do with how we formulate the participation decision during Demand Response hours, which relies on this linearity.

9Constraints on the output y can clearly be written in this way as well.
CHAPTER 7. CONSUMPTION MODEL

Under Assumption 8, the dynamics (7.2a) can also be included into the constraints (7.3).

Compared to the fidelity and generality of the consumption models that have been used in the economics literature, our formulation allows for a broad range of more realistic models. We describe the two models for which we obtain our simulation results in the following.

7.2.1 Quadratic Utility (QU) with Battery

The first model we consider is a consumer that derives a quadratic utility (QU) from electricity consumption in each time period, giving rise to a standard linear demand curve for each period. We augment this system with a battery that allows for energy storage and thus enables intertemporal substitution. The consumer who consumes quantity \(\tilde{q}_t \) in period \(t \) derives stage consumption utility

\[
U_t(\tilde{q}_t) = a_t \tilde{q}_t - \frac{1}{2} b_t \tilde{q}_t^2,
\]

so that total consumption utility is

\[
U = \sum_{t=1}^{T} U_t(\tilde{q}_t). \tag{7.4}
\]

We use the notation \(\tilde{q}_t \) to denote the energy that goes “into the quadratic utility function,” since energy can additionally be drawn from the grid and deposited in the battery, generating utility not instantaneously but at the time of withdrawal.) The parameters \(a_t \) and \(b_t \) are calibrated based on observed consumption levels of a sample of consumers under the A-1 tariff, positing time-separable utility, no storage, and a range of assumed elasticities of demand (see Appendix B.1 for details). We model the battery as a simple continuous-time first-order linear system given by the ODE

\[
\dot{x}_\tau = -\frac{1}{T_{\text{leak}}} x_\tau + \eta_c u_{1,\tau} - \frac{1}{\eta_d} u_{2,\tau}. \tag{7.5}
\]

Here \(x_\tau \) is the battery charge (in kWh) and \(u_{1,\tau} \) and \(u_{2,\tau} \) are the charge and discharge power (in kW) at time \(\tau \), respectively. Further, \(T_{\text{leak}} \) is the leakage time constant and \(\eta_c \) and \(\eta_d \) are the charging and discharging efficiencies of the battery, respectively. The discrete-time battery model of the form (7.2) is obtained by discretizing (7.5) under zero-order hold sampling. The energy drawn from the grid in period \(t \) is \(\tilde{q}_t \equiv u_{1,t} + u_{3,t} \), where \(u_{3,t} \) is the energy that is consumed directly, and \(u_{1,t} \) is the energy used for charging the battery. The total amount of electricity consumed in period \(t \) is \(\tilde{q}_t \equiv u_{2,t} + u_{3,t} \).

In addition to the base case of no battery, we consider a “medium” and a “large” battery with 10kWh and 25kWh capacity, respectively. We assume simple lower and upper bounds (conditional on battery size) of the form \(0 \leq u_{i,t} \leq u_{i,\text{max}} \) on charging and discharging rates. The consumer we consider is unable to discharge stored energy to the grid. All parameters and the discrete-time model are given in Section B.1 in the Appendix.

7.2.2 Commercial Building HVAC Model

We also consider a simple model of the Heating, Ventilation and Air-Conditioning (HVAC) system of a commercial building. Commercial building HVAC makes up about 14% of to-
tial electricity consumption in the U.S.\(^{10}\) Such HVAC systems are a natural candidate for
the provision of demand response, due to their high level of consumption, and the intrin-
sic thermal inertia of buildings, which allows to shift heating and cooling intertemporally
(Oldewurtel et al., 2013). While commercial HVAC – even when participating in demand
response programs – tends to be governed by relatively simple heuristic control strategies
(Oldewurtel et al., 2013), we contend that an optimization-based approach is well-motivated
for the comparison of the economic outcomes under many different policy settings.

The form and parameters of our model are taken from Gondhalekar et al. (2013). The
model has three states, which describe aggregates of indoor air temperature, interior wall
surface temperature, and exterior wall core temperature (all in °C). The two control inputs
\(u_1\) and \(u_2\) are the electric power (in kW) used for heating and for cooling, respectively.\(^{11}\) The
electric energy drawn from the grid in period \(t\) is \(q_t = u_{1,t} + u_{2,t}\). Exogenous disturbances
are outdoor air temperature, solar radiation, and internal heat sources, and are taken from
publicly available data sources (see Appendix D for details).

We impose “comfort constraints” on the interior air temperature \(x_{1,t}\) as well as actuation
constraints on heating and cooling power consumptions \(u_{1,t}\) and \(u_{2,t}\) (see Appendix B.2 for
details). We assume that the utility generated from consuming electricity is independent
of the particular temperature profile, so long as it satisfies the comfort constraints. Hence
effectively we have that \(U = C\) for some constant \(C\) if the comfort constraints are satisfied,
and \(U = -\infty\) otherwise.\(^{12}\) By representing the preferences of the occupants by hard comfort
constraints, we avoid the issue of estimating the occupants’ dollar value of discomfort incurred
by slight deviations from a most-preferred set-point.

Note that while, unlike the QU model, the HVAC model does not include an electric
battery, the thermal capacity of the building also enables intertemporal substitution of con-
sumption, e.g. by pre-cooling the building during the morning.

\(^{10}\)HVAC accounts for about 40% of commercial building electricity consumption (Fagilde), and commercial
buildings comprise about 35% of total U.S. electricity consumption (U.S. Department of Energy; U.S. Energy
Information Administration).

\(^{11}\)We acknowledge that most buildings in California are not electrically heated. The point here is not to
have a model as accurate as possible, but to understand the effect of intertemporal substitution capability
based on the thermal inertia of the building. Moreover, most periods with high LMPs fall in the hot summer
months, which means that the effect of heating plays less of a role anyway.

\(^{12}\)See Section 8.2 for additional discussion of consumer utility effects.
Chapter 8

Simulation setting and welfare metrics

8.1 Simulation parameters

For both the Quadratic Utility and HVAC models, we simulate the behavior of the consumer under the different pricing schemes for a range of different parameters. We consider data for the following five geographic regions\(^1\): San Francisco East Bay, San Francisco Peninsula, Central Coast, Fresno, and Sacramento. For each of these areas, we take as simulation periods the years 2012, 2013, and 2014, each taken separately. To simplify our exposition, and to get a metric that is, in some sense, representative for the consumption in recent years in all of California, most of our results are reported in form of the average over both geographical areas and simulation periods.

The periods during each simulation run that are potential DR periods are those whose real-time LMP exceed the threshold determined by CAISO’s net benefit test (NBT) (Xu, 2011). We artificially limit the number of DR events, since simply applying the NBT results in thousands of DR events per year, which we judge to be unrealistic.\(^2\) To simulate \(n_{\text{DR}}\) DR events during the simulation period, we determine the \(n_{\text{DR}}\) hours with the highest LMPs, subject to the constraint that there are no more than two events in a single day. While we technically can run simulations for an arbitrary number of DR events, for large \(n_{\text{DR}}\) the problem size of the baseline manipulation case quickly becomes intractable.\(^3\) We report results with \(n_{\text{DR}} = 75\), which appears relatively high given the number of events that are

\(^1\)These map to so-called Sub-Load Aggregation Point (SLAP) nodes defined by CAISO.

\(^2\)Furthermore, experience shows that DR programs with too many events are easily subject to manipulation. The most egregious abuses have been under DR programs without such a net-benefits threshold, such as in ISO-NE’s Day-Ahead Load Response Program (DALRP), which allowed participation every day, effectively locking in an extremely high baseline for the entire season (http://www.troutmansandersenergyreport.com/2013/09/ferc-issues-three-civil-penalties-regarding-manipulation-of-iso-nes-demand-response-program/).

\(^3\)The complexity of this problem does not grow linearly and depends heavily on the number of potential DR events during the 10 day period before the event that is used to determine the 10 in 10 CAISO baseline. See Appendix A.1 for details.
typically called in existing Critical Peak Pricing and DR programs.\(^4\)

8.2 Welfare measures

We evaluate welfare effects of retail tariffs under both the Quadratic Utility (QU) and HVAC consumption models described in Section 7. For the both consumers, we evaluate tariffs according to variants of standard welfare measures: consumer surplus, retailer surplus, and the sum of these: social surplus, or total welfare. The consumer surplus is the consumption utility minus the consumer expenditure. The retailer surplus is the consumer expenditure, treated as revenue, minus LMP-weighted consumption, capacity costs (which we actually break out separately), and greenhouse gas (GHG) externality costs.\(^5\) By netting externality costs from the retailer surplus, we are in a sense partitioning society into the consumer on the one hand, and everything else on the other. This is a reasonable scheme, because the consumer is the only optimizing agent in our setup; and in any case, California utilities are subject to revenue regulation, such that their allowed revenues are “decoupled” from sales volume (Migden-Ostrander et al., 2014).\(^6\)

Because we take historical wholesale prices as given rather than depending on the consumption, these measures give us the marginal welfare impact, to the consumer and to the rest of society, of moving a small group of consumers onto one or another tariff.\(^7\) The (marginal) social surplus is the sum of the consumer and retailer surpluses: consumption utility, minus procurement and environmental costs.

In any consumption model, ignoring capacity costs, if the consumer faces a tariff equal to the LMP plus externality costs, then the consumer’s objective is identical with the social welfare objective.\(^8\) This is the best case for society, and we simulate this situation with our SMC RTP tariff. The deadweight loss under a given tariff is the total welfare in this hypothetical best case, minus the total welfare under the tariff under consideration.\(^9\)

\(^4\)For example, no more than 15 events per year are called in PG&E’s SmartRate critical peak pricing plan (Pacific Gas and Electric Company, 2015).

\(^5\)The CPUC requires that load-serving entities in California procure sufficient long term capacity to cover their peak loads. We discuss the calculation of environmental costs and capacity costs in Appendices C.2 and C.3.

\(^6\)Other presentations might break out externalized environmental costs or DR revenues separately, since in actuality, they clearly do not accrue to the retailer.

\(^7\)If we estimated historical cost curves instead of taking historical LMPs as given, we could study the aggregate impact of moving a larger number of consumers between tariffs. We restrict ourselves to the “marginal” setting for the sake of simplicity. This partly accounts for our use of the term “retailer surplus” instead of the more standard “producer surplus,” since it is more realistic to assume that the retailer would procure the bulk of its energy at the LMP, in expectation.

\(^8\)This is to say that the consumer’s contribution to social cost can be well approximated as a linear expression with a coefficient for energy consumed in each hour. In principle, the consumer’s marginal contribution to production cost also includes its contribution to ancillary service costs (Tsitsiklis and Xu, 2015).

\(^9\)In fact, we treat capacity costs in a somewhat inconsistent manner. On the one hand, we do not
calculations of deadweight loss are relative to the particular demand models—in particular, battery size and elasticity. This deadweight loss can be interpreted as the amount society loses by suboptimal pricing, assuming that consumer preferences and technology are fixed.

In the HVAC model, the consumption utility is taken to be an arbitrary constant (see Section 7.2.2). In our analysis of welfare impacts we always consider changes in surplus from some benchmark tariff, so that this constant is canceled out.
Chapter 9

The principal determinants of tariff efficiency

9.1 “Classical” time-separable analyses

A common refrain among electricity market economists is that real-time pricing is the most efficient retail pricing scheme, and that ToU and DR are very inadequate approximations of it (Borenstein and Holland, 2005; Hogan, 2014). The latter policies may even be counterproductive distractions, some authors argue, by competing for limited attention and political capital (Bushnell et al., 2009b; Hogan, 2014).

Hogan (2014) makes this argument with respect to ToU in the context of second-best pricing. He observes that taking the optimal flat tariff as a baseline, the optimal ToU tariff can only capture about 11% of the welfare gains achievable by the optimal RTP tariff.

The optimal flat tariff has an energy price equal to the demand-derivative-weighted average of social marginal costs, and similarly, the optimal ToU tariff sets the price in each ToU equal to the demand-derivative-weighted conditional expectation of the SMC conditional on that ToU. But this argument must be qualified by the fact that this form of second-best pricing is itself difficult or impossible to achieve. This is because the utility has substantial fixed administrative, transmission, and distribution costs, and, for the time being, it seems that fixed tariff charges sufficiently high to recoup these costs are politically infeasible, so that a substantial portion must be recovered through volumetric adders to the tariff (Borenstein, 2016).

In fact, we observe that the average markups embedded in PG&E tariffs are large enough

1A second-best policy is a policy that is suboptimal, but optimal subject to some policy constraint under consideration. Here, the constraint is that prices not vary, or not vary within each ToU.

2We report Hogan (2014)’s figure for the seemingly favorable assumption that the price can differ for each hour of the day, and that prices are updated annually (see his footnote 4). For hourly ToU prices updated every month, the achievable welfare gains increase to about 20%. According to our data, conditioning on year and ToU can achieve about a 2-3% reduction in deadweight loss.

that, according to standard time-separable consumption models, they account for the great majority of the deadweight loss, so that the failure to co-vary dynamically with social costs pales in comparison.\footnote{Borenstein (2005) addresses this issue, arguing that disregarding the volumetric adder is unlikely to have a substantial effect (see his page 5). One factor explaining the discrepancy between Borenstein’s conclusions and our own is that he considers markups on the order of 10% or 20% of wholesale prices, whereas the markups we observe are on the order of several hundred percent, and none as small as 100% (see Table 9.2). While we ignore system peak capacity costs in some of our calculations on this issue, the left column of figure 9.4 bears out the same observation.}

However, we describe in Section 9.2 that when we allow for intertemporal consumption substitution, the importance of the average markup is diminished, and our results are more consistent with the arguments of economists mentioned above, including their lack of emphasis on average markups.\footnote{The reader should bear in mind the caveat that in the present section, we consider only short-run costs, and ignore the cost of peak capacity. We incorporate capacity costs into the social welfare measures in Sections 9.3 and 10.}

Jacobsen et al. (2016) present a formula for Harberger (1964)’s standard characterization of DWL as a function of the mis-pricing “errors,” in a system with linear demand and constant marginal costs:

$$-2 \times \text{DWL} = \sum_{j=1}^{J} \sum_{k=1}^{j} e_j e_k \frac{\partial x_j}{\partial e_k} = \sum_{j=1}^{J} e_j^2 \frac{\partial x_j}{\partial e_j} + \sum_{j=1}^{J} \sum_{k \neq j} e_j e_k \frac{\partial x_j}{\partial e_k}. \tag{9.1}$$

In general, the “error” e_i is the difference between the retail price and the social marginal cost for commodity i, and x_j is the demand for commodity j, for $i, j \in \{1, \ldots, J\}$. In our setting, the commodities are electricity delivery in particular hours, and the “errors” are the hourly markups, which we also refer to as “volumetric adders.”\footnote{We should note that equation (9.1) only holds when nonnegativity constraints are not active for the consumer’s optimal consumption vector. This condition does not hold for our QU consumer under the A-6 ToU PDP tariff with elasticity $E_d \geq 0.2$, since the resulting energy prices are about four times the prices on which that consumer model is calibrated.}

In the time-separable consumption model, the second term on the right hand side of (9.1) is zero, and the DWL is a weighted least squares objective, with the weights being the demand derivatives. Treating the retail price as a statistical predictor of the social cost, we can decompose this mean-squared-error loss function into bias and variance components.\footnote{Technically, a bias-variance decomposition requires scaling the demand derivatives so that they sum to one, thereby scaling the DWL as well, and then treating them as a notional probability measure. See Appendix C.1 for details. Whenever we refer to expectations or variances, the corresponding probability measure incorporates demand-derivative weighting.} The bias component of a tariff’s DWL is the mean tariff error: the average markup, less externality costs. The variance component is the average squared difference between the error and the bias. The variance component is zero if and only if the tariff differs from the SMC by a constant, namely, the bias. Such a tariff is an RTP tariff (reflecting both internal and externalized costs) with a constant volumetric markup.
In a ToU tariff, the variance component is a weighted average of the SMC variance within each ToU: \(\sum_i w_i \cdot \text{Var}(\text{SMC}|\text{ToU} = \text{ToU}_i) \), where \(\text{ToU}_i \) ranges over the ToU period types (i.e. summer peak, summer part-peak, summer off peak, winter part-peak, winter off peak), and \(w_i \) incorporates both the frequency of ToUs and their average demand derivatives. The law of total variance, i.e. \(E_Y[\text{Var}(X|Y)] \leq \text{Var}(X) \), guarantees that the optimal ToU tariff reduces DWL as compared to the optimal flat tariff, as both have only variance components. In this zero-average-markup second-best setting, the fraction of welfare gained from the optimal ToU tariff, compared to the optimal RTP tariff, is equal to the R-squared from a linear regression of the SMC on ToU indicator variables. This R-squared is the fraction of SMC variance “explained” by the ToU, and when demand-derivatives are the same for all time periods, it is Hogan (2014)’s index, mentioned above.\(^8\)

In Table 9.1 we see that using this decomposition, for a time-separable consumption model on a PG&E tariff, the average markup makes a much larger contribution to deadweight loss than does the failure of retail prices to covary with the SMC.\(^9\) In Table 9.2, we display the mean SMC for the NP-15 pricing node, as well as prices under two tariffs, to give an idea of the magnitude of the average markup. In the A-1 and A-1 TOU tariffs, the bias component contributes approximately 90% of the DWL. In the A-6 TOU tariff, whose price difference between summer peak and winter off peak ToUs is approximately 10 times the average summer peak LMP, both the bias and the variance contributions are much greater than those of the A-1 tariffs. (The A-1 RTP tariff’s nonzero variance component reflects the fact that the volumetric adders equal to PG&E’s non-generation-rate, which are used as volumetric adders on top of an LMP pass-through, are different in the summer and the winter.)

Table 9.1: Bias-Variance Decompositions of Time-Separable Deadweight Loss for \(E_d = -0.1 \), using A-1 load data

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DWL</th>
<th>Bias Portion</th>
<th>Variance Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>$112</td>
<td>$98</td>
<td>$14</td>
</tr>
<tr>
<td>A-1 TOU</td>
<td>$115</td>
<td>$101</td>
<td>$14</td>
</tr>
<tr>
<td>A-1 TOU PDP</td>
<td>$137</td>
<td>$104</td>
<td>$33</td>
</tr>
<tr>
<td>A-6 TOU</td>
<td>$278</td>
<td>$166</td>
<td>$112</td>
</tr>
<tr>
<td>A-6 TOU PDP</td>
<td>$320</td>
<td>$154</td>
<td>$165</td>
</tr>
<tr>
<td>A-1 RTP</td>
<td>$45</td>
<td>$44</td>
<td>$1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>$7</td>
<td>$0</td>
<td>$7</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

\(^8\)Some of these statements are made somewhat more nuanced by demand-weighting, but the same principles apply.

\(^9\)Table 9.1 assumes a constant elasticity of -0.1, and calibrates demand derivatives based on historical load data from the A-1 tariff. These quantities are linear in elasticity, as long as nonnegativity constraints are inactive at the optimal consumption vector.
Table 9.2: PG&E load-weighted average NP-15 SMC for three years, and retail prices, all in $/MWh, by ToU

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>A-1 ToU</th>
<th>A-6 ToU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer peak</td>
<td>60</td>
<td>56</td>
<td>67</td>
<td>242</td>
<td>262</td>
</tr>
<tr>
<td>Summer part-peak</td>
<td>50</td>
<td>52</td>
<td>61</td>
<td>242</td>
<td>253</td>
</tr>
<tr>
<td>Summer off peak</td>
<td>40</td>
<td>44</td>
<td>55</td>
<td>242</td>
<td>225</td>
</tr>
<tr>
<td>Winter part-peak</td>
<td>47</td>
<td>54</td>
<td>66</td>
<td>164</td>
<td>175</td>
</tr>
<tr>
<td>Winter off peak</td>
<td>40</td>
<td>48</td>
<td>59</td>
<td>164</td>
<td>155</td>
</tr>
</tbody>
</table>

9.2 Substitution effects under linear energy pricing

In this section, we focus on incentives that result from linear energy prices—that is, per-unit-energy prices, rather than demand charges or demand response—particularly in models like our QU and HVAC models, in which consumers are able to substitute intertemporally. First we explore how the relative contributions to DWL of the average markup vs. time-invariance change as substitution capacity changes, either “directly,” via cross-price elasticity, or “indirectly,” by load-shifting using either existing means of storage (HVAC model) or a battery (QU model). Then we draw a distinction between “level effects” and “load shifting effects” of tariffs on consumption patterns, which helps us explain why some tariffs have the efficiency effects that they do.

For a consumer with the ability to intertemporally substitute, the bias-variance decomposition introduced above no longer exhausts the deadweight loss. Nevertheless, we can still consider markups and a lack of real-time pricing as two principal factors impacting tariff efficiency, and compare their effects. We present two arguments to demonstrate that, as we increase cross-price elasticity directly or indirectly, the high level of markups diminishes in importance, and the lack of real-time pricing — which is in a sense the same thing as high markup variance — becomes more important.

First we consider changing cross-price elasticity directly in a linear demand model. Examining the cross terms in equation (9.1), we see that, roughly speaking, the more highly correlated tariff errors are for pairs of periods which serve as substitutes (i.e., have large positive cross-price elasticities), the more the substitution effect reduces deadweight loss. On the other hand, if two pricing errors have opposite signs in substitute hours, then they induce inefficient substitution between their respective hours. Using (9.1), we can derive a condition for a two-good linear demand system under which, even if both pricing errors are

10In our QU model, we use the battery model as an indirect means of introducing cross-price elasticity. The QU-with-battery demand system is piecewise linear, rather than linear, and so equation (9.1) is only an approximation to the DWL. For the HVAC model, if there were no heat dissipation, then as long as constraints are not binding, the consumer will shift consumption to the cheapest period. This means that, effectively, the cross price-elasticity would be infinite between two periods with different price as long as consumption can be shifted without violating the constraints. In reality, heat dissipation renders it finite, although potentially very high.
positive, increasing the smaller of them can reduce deadweight loss:

\[
\frac{\partial}{\partial e_1} \left(e_1 \frac{\partial x_1}{\partial e_1} + e_2 \frac{\partial x_2}{\partial e_2} + e_1 e_2 \left(\frac{\partial x_1}{\partial e_2} + \frac{\partial x_2}{\partial e_1} \right) \right) > 0 \Leftrightarrow \frac{e_2}{e_1} > -2 \frac{\frac{\partial x_1}{\partial e_1}}{\frac{\partial x_1}{\partial e_2} + \frac{\partial x_2}{\partial e_1}}.
\] (9.2)

This inequality shows that, if the markup of good 2 is high compared to that of good 1, and the cross-price elasticities are large compared to good 1’s own-price elasticity, then increasing the magnitude of \(e_1\) can actually reduce deadweight loss, by diminishing exaggerated incentives to substitute good 1 for good 2 (recall that \(\frac{\partial x_1}{\partial e_1} < 0\), and generally, the cross-price elasticities are positive). The lesson is that equalizing markups across time becomes more important as cross-elasticity increases.

Now we consider the effect of changing cross-price elasticity “indirectly,” by varying the size of the Quadratic Utility consumer’s battery, between None, Medium, and Large. We see how this indirect modification of cross-price elasticity affects the relative contributions of average markup and correlation with RTP change by comparing the DWL under two hypothetical tariffs. The A-1 RTP tariff has a constant markup to recover fixed costs (no markup variance), so that its DWL is entirely attributable to markups. On the other hand, the “Opt Flat” tariff does not track SMC variation at all, but has an average markup of zero, so that its DWL is entirely attributable to a lack of real-time pricing.

In Figure 9.1, we present the result of this analysis, for elasticity \(E_d = -0.1\). On the \(x\)-axis, we plot the deadweight loss in each tariff that results from a time-separable model, such as those assumed by Borenstein and Holland (2005) and Hogan (2014); this is calculated directly from equation (9.1), without intertemporal cross-terms, using tariff data and utility function parameters. On the \(y\)-axis, we plot the deadweight loss from our simulation results relative to the social surplus under the “SMC-RTP” tariff, with the same elasticity and battery technology. In Figure 9.1, circle markers represent no substitution (no battery), diamond markers represent moderate substitution (Medium battery), and inverted triangle markers represent high substitution (Large battery). Each tariff is represented as a vertical stack of three markers, one of each shape, because the \(x\)-axis quantity does not account for

11The derivation relies on the linearity of the demand system, i.e., the fact that higher-order derivatives of demand quantities with respect to price are zero.

12The argument that substitution between goods drives their optimal markups together has a long history in the taxation literature. Hatta and Haltiwanger (1984), for example, give sufficient conditions on the “strength” of substitutes, which guarantee that “squeezing” their tax rates toward each other would be welfare-improving.

13See Appendix B.1

14The optimal flat tariff, assuming time-separable consumption utility, weights SMCs by their demand derivatives: see equation (5) in Borenstein and Holland (2005). However, as we use the same tariffs for several different consumer types, we reflect our agnosticism about demand by using an arithmetic average. This discrepancy accounts for the fact that the bias component is not exactly zero. Another reasonable choice might be to use system load weighting, to assure that energy costs are recovered by the LSE.

15This comparison assumes that technology is fixed. If we interpret the battery as a proxy for other kinds of substitution preferences, then the comparison would hold those constant as well.
substitution capability. The fact that the circle markers lie on the $y = x$ line shows that our consumption model is correctly calibrated.\footnote{However, if we displayed the same plot for $E_d \leq -0.2$, the DWL predicted by equation (9.1) would overstate the actual DWL for PDP tariffs, because that equation is only valid for “interior solutions,” whereas PDP prices get so high that they drive the optimal unconstrained consumption quantities negative for elastic consumers.}

In the left portion of the figure, we see that without substitution, the Opt Flat tariff has a much lower DWL than the A-1 RTP (see also Table 9.1). But as we allow and increase substitution by introducing and then increasing the size of the physical battery model, the Opt Flat tariff induces much larger DWLs. This is because the Opt Flat tariff fails to encourage efficient intertemporal substitution, while the A-1 RTP tariff promotes it.

The corresponding results for several actual PG&E commercial tariffs appear in the right portion of Figure 9.1. These tariffs are less efficient than the hypothetical tariffs described so far.

![Figure 9.1: Simulation DWL (y-axis) vs. time-separable DWL (x-axis) for actual and idealized tariffs, for three battery sizes.](image)

The A-1 tariff is also flat, with a price depending only on season, and therefore gives almost no incentive to use battery storage. Its pattern of results is the same as the Opt Flat, except for a translation representing lower efficiency overall, due to consumption-suppression effects due to the higher price level of A-1. The effect that the deadweight loss increases with battery size for all tariffs is primarily due to the reference value: the larger the battery, the more efficient consumption under the SMC-RTP becomes, which means that more social value is “left on the table.”

The A-6 ToU tariffs, on the right, show a much different pattern: the DWL for the large battery is less than that for the medium battery. This pattern reflects the fact that, in the A-6 ToU tariff, the medium battery provides little or no welfare benefit, while the marginal benefit of switching to the large battery is even greater in the A-6 ToU tariff than it is in the SMC RTP. This pattern is displayed in Figure 9.2, in which we plot the effect of increasing battery size on social welfare, for several elasticities. Since the y-axis values for the A-6 ToU tariff in figure 9.1 are scaled differences between the SMC-RTP values and the A-6 ToU values in figure 9.2, the fact that the marginal benefit of the large battery is greater in the
A-6 than in the RTP explains the fact mentioned above, that the large battery has lower DWL than the medium battery.

In figure 9.2 we omit plots for tariffs, such as the A-1, where the figure would be indistinguishable from constant; but we retain some that one may expect to show variation, but do not. Under RTP tariffs, the welfare increases nearly linearly. A large battery increases social surplus by $435-$441 annually in the SMC-RTP tariff, and $340-$345 in the A-1 RTP tariff, as compared to an annual bill of $4,010 (or surpluses between $9,000 and $40,000, depending on elasticity). We see that the battery makes very little difference in the A-1 ToU tariff. Counterintuitively, the social surplus slightly decreases when a medium battery is added under the A-6 ToU tariff, for elasticities -0.1 (circles) and -0.05 (not pictured), by $10 and $13 respectively (this trend is too small to see in the plots, but the reader can refer to the tables in Appendix E).

![Figure 9.2: Quadratic Utility: Normalized social surplus (disregarding capacity costs) for battery size = (N)one, (M)edium, and (L)arge, for 9 tariff × DR type combinations. Social surplus is normalized by value for SMC RTP, with the corresponding elasticity and no battery.](image)

One observation we can make from figure 9.2 is that the battery does not raise social welfare to very high levels, except in the RTP tariffs. In fact, we will now give an argument that even the substantial social welfare gains from increasing battery size in the A-6 ToU tariff are not due to efficient use of the battery itself.\(^\text{17}\)

\(^{17}\)Neubauer and Simpson (2015) make a similar argument, that demand charges give consumers inefficient
To make this argument, we decompose the deadweight loss into “level effects” and “load-shifting effects.” That is, we distinguish between (i) whether the consumption levels in each period are efficient, and (ii) whether, given those levels, the use of the battery is efficient. This decomposition is expressed in the equality between (9.3) and (9.4) below.

Defining the “virtual social energy arbitrage revenue” (VSEAR) as the social benefit from shifting energy across time without changing consumption levels, the inefficiency of suboptimal use of storage can be expressed as the efficient VSEAR, minus the VSEAR under individually optimal behavior, resulting in the equality between (9.4) and (9.5) below:

\[
\text{DWL} = \text{Efficient Surplus} - \text{Actual Surplus} = (\text{Efficient Surplus} - \text{Actual Levels Efficiently Sourced}) \\
+ (\text{Actual Levels Efficiently Sourced} - \text{Actual Surplus}) \\
= (\text{Efficient Surplus} - \text{Actual Levels Efficiently Sourced}) \\
+ (\text{Actual Levels Efficiently Sourced} - \text{Actual Levels No Battery}) \\
+ (\text{Actual Levels No Battery} - \text{Actual Surplus}) \\
\]

The first two summands in (9.5) are nonnegative by construction, but their calculation requires an auxiliary optimization which we do not perform. The last term is, in a sense, the impact of actual (individually optimal) battery use on economic efficiency.

For intuition about the cause of inefficient substitution, consider a consumer that will consume a unit of energy in hour \(i\), and has the option of drawing that unit from the grid either in hour \(i\), or drawing a slightly larger quantity to provide for that consumption in hour \(j < i\). (That is, we hold the consumption quantity constant, as in the latter components of the decompositions above.) The consumer’s battery has charge, discharge, and leakage inefficiencies, \(\eta_c\), \(\eta_d\) and \(T_{\text{leak}}\) respectively. The consumer saves the following dollar quantity per unit if it chooses to draw the power in period \(j < i\):

\[
p^R_i = \frac{p^R_j}{\eta_d \eta_c e^{(i-j)/T_{\text{leak}}}} \approx p^R_i - 1.11 \cdot 1.01^{(i-j)} p^R_j \approx p^R_i - (1.11 + 0.01(i - j)) p^R_j. \tag{9.6}
\]

\(\text{DWL} \geq 0\) from consuming at inefficient levels:

\(\text{VSEAR} \geq 0\) given actual consumption but socially optimal shifting:

\(\text{VPEAR} \geq 0\) under individually optimal behavior

\(\approx p^R_i - 1.11 + 0.01(i - j)\)

incentives to exploit on-site storage.

\(\text{These are features of consumption decisions given the ability for intertemporal substitution, rather than tariffs, and are distinct from the bias-variance decomposition of DWL that is applicable for time-separable consumption models.}\)

\(\text{i.e., VSEAR} = \sum_t (u_{2,t} - u_{1,t}) \text{SMC}_t\) according to the notation from Section 7.2.1, and VPEAR, defined below is \(\sum_t (u_{2,t} - u_{1,t}) \text{SMC}_t\).
We refer to (9.6), summed over time indices, as the virtual private energy arbitrage revenue, or VPEAR.20 The middle expression of (9.6) plugs in our battery model parameters. Because $(1.01)^k \approx 1 + 0.01k$ for small k, battery storage effectively increases the price and cost by a fixed 11% for a charge-discharge cycle, plus 1% per hour in storage, compared to the price and cost in the actual production hour.

The social cost savings from that substitution is the same expression with the corresponding social marginal costs in place of retail prices:

$$\text{SMC}_i - \frac{\text{SMC}_j}{\eta_d \eta_c e^{(i-j)\eta_d}/T_{\text{leak}}}.$$ \hfill (9.7)

The summation of (9.7) over time is the VSEAR, introduced above. When $(9.6) > 0 > (9.7)$, the consumer is given a socially inefficient incentive to substitute intertemporally with storage, and for each unit of energy drawn in j and consumed in i, the quantity (9.7) is incurred as deadweight loss.

The price statistics in Table 9.2 suggest that the consumer is often given inefficient substitution incentives. In particular, the ratio of summer peak to part- and off peak prices is exaggerated in the A-6 ToU tariff (although the consumption-suppression effects are much greater). The fact that wholesale prices have very high variance implies that ToU tariffs generate inefficient substitution incentives more often than the means would suggest.

In Figure 9.3, we plot the virtual social energy arbitrage revenues under three tariffs, as well as the corresponding private arbitrage revenue (VPEAR). Elasticity has very little effect on the results, so we only display the result for elasticity of demand $E_d = -0.1$. We can see that the use of the battery itself is on average destructive of value in the A-6 ToU tariff. This is surprising, when contrasted with the increases in social surplus between the medium and large battery (Figure 9.2). The implication is that the battery increases efficiency in the A-6 ToU tariff by encouraging the consumer to consume more, but not by getting the consumer to draw power at more socially efficient times. The “load-shifting” effect increases generation costs, but its effect on social surplus is outweighed by the beneficial level effect. Society would be even better off if the consumer’s consumption quantities were held at the levels chosen when it has a battery, without it actually using the battery.

Under RTP tariffs, the VSEAR is quite large, whereas under existing ToU tariffs, it is negative, and quite small. In the A-1 ToU case, this is also reflected in the fact that the private benefits from load shifting, as captured in the VPEAR, are also quite small. But in the case of the A-6 ToU, the customer realizes extremely large private benefits—about $1,300 annually—from load shifting which is in itself socially destructive. This pattern of results helps explains the trends in social surplus depicted in figure 9.2 above.

These observations, that existing retail tariffs do not align private incentives with social welfare, make us skeptical of the case for public subsidization of on-site battery storage.

20This measure only includes energy charges, and is thus not an accurate measure of expenditure savings for tariffs with DR or demand charges. However, it is valid for peak day pricing, since we model PDP as part of the energy charge of the tariff.
CHAPTER 9. THE PRINCIPAL DETERMINANTS OF TARIFF EFFICIENCY

Noting the often small, mixed or unpredictable effects of battery storage in existing tariffs, we believe that any subsidies should be conditioned on the development of retail tariffs that give consumers reliably efficient price signals.

9.3 Simulation results: comparison across tariffs

Building on the preliminary, thematically organized analysis above, in this section we summarize the cross-tariff comparison of welfare measures.

9.3.1 Quadratic Utility

First we continue discussing the results for the Quadratic Utility model. In Figures 9.4 and 9.5, we plot dollar changes in economic surpluses, under real and hypothetical tariffs respectively, using the A-1 tariff as a benchmark. The social surplus under the A-1 does not depend on battery size, and is $8,855 for elasticity $E_d = -0.3$, $12,000 for $E_d = -0.2$, $21,435 for $E_d = -0.10$, and $40,305 for $E_d = -0.05$. For a more concrete benchmark, the consumer expenditure is $4,010, and the total of SMC and capacity cost is $1,209, regardless of elasticity or battery size.\(^{21}\) All data is presented in tables E.1 - E.12. We plot the changes in social surplus (thick black arrows) as the sum of three components: change in consumer surplus on top (blue arrows), change in retailer surplus ignoring capacity costs (“retail energy surplus” — red arrows), and negative change in capacity costs on the bottom (purple arrows). We represent the summation of these components into the total change in social surplus in the style of “tip-to-tail” vector sum diagrams.

\(^{21}\)The expenditure and cost are constant because the consumer parameters are calibrated to reproduce a given reference consumption trace for each elasticity, and the battery plays almost no role under the A-1 tariff.
We do not simulate the Quadratic Utility model under tariffs with demand charges (the A-10 and E-19 tariffs), because we already make a very large number of comparisons in the QU model; calibrating the QU utility parameters by assuming the optimality of historical load data is much more complicated under such tariffs; and those consumer classes associated with these tariffs seem quite different from those associated to the A-1 and A-6 tariffs. For the sake of completeness, we also plot the effect of DR under “baseline-taking equilibrium.” (We explore the effects of DR in greater detail in Section 10.)

The most salient trends are that with low elasticities, efficiency effects are quite small, because prices have smaller effects on consumption levels; that the larger efficiency effects are typically across tariffs, rather than between the various dynamic variation of each tariffs, with the Opt Flat tariff being the most efficient with no battery and real-time pricing being the most efficient with a battery, and the A-6 ToU tariff being the least efficient, except with a large battery. As discussed in Section 9.1, without intertemporal substitution, the average level of the tariff is the primary driver of efficiency effects, but when there is consumption substitution, the real-time pricing tariffs are generally much more efficient than all other tariffs. The efficiency effects of DR under “baseline-taking equilibrium” are generally positive but often small. We discuss the effects of DR and its distortions in detail in Section 10.

A-1 and A-1 ToU

The A-1 tariff without DR is not represented in figure 9.4, because it is the baseline against which other tariffs are compared. The “vanilla” settings of the A-1 and A-1 ToU tariffs have nearly the same results, and are within $10 of each other for every metric, for every elasticity and battery size.

With no battery, the various settings of the A-1 and A-1 ToU tariffs make almost no difference, particularly in terms of total welfare. The largest difference in total surplus between any two such settings is nearly proportional to elasticity, with $5 annually with $E_d = -0.05$, and $30 annually with $E_d = -0.3$. (Recall that for the QU model without intertemporal substitution and with a linear tariff, DWL is linear in elasticity.)

With a medium battery, DR and PDP start to have beneficial effects. DR increases social surplus by about $57 annually in the A-1 tariff, and $74 annually in the A-1 ToU. Elasticity does not change these tariff effects by more than a dollar within the range we simulate. The effect of PDP is much smaller, less than $20 annually, except with elasticity $E_d = -0.3$, in which it is higher: $56 annually. Also, more of the benefits from DR accrue to the consumer (with all parties benefiting when capacity costs are accounted for), which may make DR more viable than PDP as a voluntary program.

With a large battery, the effect of DR is the same as it is in the Medium battery, plus or minus two dollars. However, PDP becomes more efficient, resulting in social surplus benefits $30-$40 greater than DR. In this case, the benefits mostly accrue to the consumer, and the

\footnote{Recall that equation (9.1) shows that without intertemporal substitution, deadweight loss is linear in elasticity when nonnegativity constraints are inactive for the optimal consumption vector.}
retailer sees a reduced energy surplus, but after accounting for capacity costs, all parties are better off.

A-6 ToU

With no battery, the A-6 ToU tariff is strikingly less efficient than the A-1 tariffs. We discussed this above in Section 9.1: the very high markups during peak ToUs suppress consumption during those periods; and without load shifting, the A-6 ToU’s consumption-suppression effect outweighs the effect of the lower prices during the off-peak ToU. At elasticity $E_d = -0.1$, the difference is about 150 annually, and this effect is linear in elasticity. With low elasticities, the price increase in the A-6 ToU causes a large monetary transfer from the consumer to the retailer (140 with $E_d = -0.1$), but as elasticity increases, the consumer cuts back, and the size of the transfer diminishes.

With a medium battery, the efficiency effects of the A-6 ToU are similar as without a
battery, but the allocation of surplus is much more favorable to the consumer. The effects of elasticity on the allocation of these losses are similar as above, except that the retailer shares in the losses for larger elasticities.

With a large battery, the A-6 ToU becomes more efficient than the A-1, by approximately $110 annually. We have discussed part of the explanation above, particularly in connection with figures 9.2 and 9.3 above: disregarding capacity costs, the beneficial effect is due to the fact that the consumer consumes greater amounts, enjoying higher consumption utility, not because the battery usage is itself efficient. However, we also see that the A-6 ToU generates substantial capacity cost savings with the large battery, since most system peak hours occur in the peak ToU. We note that elasticity has very little effect with the large battery.

Peak Day Pricing has a much more impressive effect in the A-6 ToU tariff than in the A-1 tariffs with the small and medium batteries, although the resulting efficiency is still much less. PDP results in substantial capacity cost savings, as well as smaller consumer losses.

With no battery and with the medium battery, DR has a smaller effect in the A-6 ToU tariff than it does in the A-1 tariffs. With a large battery, neither PDP nor DR has an appreciable effect in the A-6 ToU tariff.

![Figure 9.5: Quadratic Utility model: changes in surplus from A-1 tariff; hypothetical tariffs.](image)

Figure 9.5: Quadratic Utility model: changes in surplus from A-1 tariff; hypothetical tariffs.

Hypothetical Tariffs

The social surplus results for the hypothetical tariffs is largely explained in Sections 9.1 and 9.2: with no battery, the Opt Flat tariff is more efficient than the A-1 RTP. However, as the consumer becomes able to intertemporally substitute, the Opt Flat tariff is greatly surpassed by the RTP tariffs.
CHAPTER 9. THE PRINCIPAL DETERMINANTS OF TARIFF EFFICIENCY

The SMC RTP and Opt Flat tariffs induce huge transfers from the retailer to the consumer, because they do not include volumetric adders. This prevents us from plotting the hypothetical tariff results on the same scale as the real tariffs above. The A-1 RTP also transfers money to the consumer, but less than the others do, reflecting the fact that the implied generation rate that is subtracted off from the A-1 to arrive at the A-1 non-generation rate is actually much greater than the average LMP.

In all cases, the real-time pricing tariffs are much more efficient than actually existing tariffs. It is easier to compare the efficiency of real and hypothetical tariffs above in figure 9.1, where they are all on the same scale.

9.3.2 HVAC consumption model

The comparison across tariffs is less daunting in the HVAC case, since we only consider a single consumption model. In Figure 9.6, we display changes in welfare relative to the benchmark of the A-1 tariff. The A-1 tariff induces a social surplus of $-68,100, which is negative because the value of meeting the comfort constraints is normalized to zero. Consumer expenditure under the A-1 tariff is $146,795. This data is also presented in table E.13.

In the HVAC system, the decompositions we introduced above, distinguishing between level effects and load shifting effects, do not apply. Nevertheless, it is clear that this system is subject to load shifting effects but not level effects, in the sense that multiplying all tariff prices by a positive scalar has no effect on the consumer’s optimal solution.

The HVAC system results are much different from those for the Quadratic Utility consumer, presumably largely because of the absence of level effects.

The A-1 ToU tariff is very similar to the flat A-1, but with Peak Day Pricing, the A-1 ToU achieves large cost savings, of about $12,500. Every other tariff induces a substantial improvement over the A-1 tariff, mostly because of large capacity savings. This is especially the case for the A-6 and E-19 tariffs, which have very aggressive ToU pricing. Demand Response (without baseline manipulation) is always beneficial, although the effects are largest

\[\text{For ease of reading, we truncate the plot at $35,000. The increase in consumer surplus from changing to the SMC-RTP tariff is $113,491, and for changing to the Opt Flat tariff, that increase is $107,534. These tariffs entail huge transfers to the consumer, because they do not include volumetric adders. Any realistic implementation would need to include some kind of lump-sum transfer from the consumer, which would arbitrarily change the right endpoints which are not visible here. Also note that by construction, the endpoint of the red arrow is the change in energy generation cost from the A-1 benchmark.} \]

\[\text{This is because the consumer’s optimization problem is to minimize expenditure, subject to comfort constraints. This problem can be reformulated so that the objective is linear in the vector of retail prices, with no prices showing up in the constraints. Then scaling the vector of prices scales the objective function (by linearity) without affecting the constraints, so that the optimal solution is unaffected. If a tariff includes complicated elements like demand response or demand charges, prices show up in auxiliary constraints. But these constraints can be eliminated by substitution into the objective, at the cost of no longer having a standard-form LP or MIP, which only matters for computational reasons.} \]
in the A-1 and A-1 ToU tariffs. In all tariffs, PDP has positive effects — by far the most beneficial in the A-1 ToU tariff, where it saves approximately $12,500 in capacity costs.

SMC-RTP is, reassuringly, the most efficient tariff. But it is striking, and surprising, that the A-6 ToU tariffs are more efficient than the hypothetical A-1 RTP, and the E-19 tariffs are only slightly less efficient than the A-1 RTP. The benefits from these aggressive ToU tariffs are primarily due to reductions in capacity costs, which more than compensate for less beneficial energy cost effects (as compared to A-1 RTP). This can be seen by noting that the endpoint of the red arrow represents the change in social energy costs, and the length of the purple arrow represents the reduction in capacity costs. The A-10 tariff has similar energy costs as the A-1 tariff, but, presumably due to demand charges, it has lower capacity costs. The E-19 tariff has consistently higher generation costs than the A-1 benchmark, but the capacity cost savings more than compensate, so that it is also more efficient than the A-1.

The fact that the hypothetical A-1 RTP tariff does not compare as favorably against realistic tariffs as it does in the Quadratic Utility model, due to its smaller reductions in
capacity costs than those achieved by the realistic tariffs, probably indicates that RTP tariffs should include contribution to capacity costs, as our simulated RTP tariffs do not. It appears that LMPs alone do not provide a sufficient incentive to reduce system capacity costs, particularly when their effect is diluted by flat volumetric adders. However, we should note that our methodology for computing capacity costs is subject to noise, being derived from such small “samples” of hours, and it’s based on a public available dataset which we do not regard as a particularly reliable measure of actual capacity costs.\footnote{One way to reduce the variance of capacity cost estimates would be to average effects across heterogenous consumers. Another would be to adopt something like the “probabilistic” capacity charge allocation from Boonhower and Davis (2016).}

The most dramatic pattern in private expenditures in the comparison of real tariffs is that the A-6 ToU and E-19 ToU tariffs are the cheapest for the consumer. This is because our HVAC system is very capable of intertemporal substitution, perhaps particularly in the weather regime we consider, so that the tariffs with the lowest off-peak price are the cheapest. This substitution entails a loss of retailer energy surplus, because the retail price differences are greater than the average wholesale price differences.

The hypothetical tariffs all induce large transfers from the retailer to the consumer, because realistic tariffs include such high markups over LMPs.
Chapter 10

The effects of Demand Response and DR distortions

10.1 Theoretical overview

In this section, we examine the welfare effects of Demand Response, with a focus on two economic distortions commented on in the literature: “baseline manipulation” and “double payment” (Chao and DePillis, 2013; Hogan, 2010; Borlick et al., 2012).

Baseline manipulation

A fully rational consumer who understands the baselining method may have an incentive to artificially inflate her consumption during certain periods in order to increase the rewards from DR “reductions” during periods of high reward p_t^{DR}. In our model the baseline values are determined endogenously as part of the optimization problem, so these incentives are captured correctly and we can indeed observe this behavior in our simulations, as we show shortly below. To evaluate the effects of baseline manipulation compared to the behavior of a non-strategic customer, we consider a no-manipulation benchmark that we refer to as “baseline-taking equilibrium”:

Definition 10.1.1 (Baseline-Taking Equilibrium). Let $\beta: q \mapsto q^{BL}$ denote the function mapping a consumption sequence $q = (q_1, \ldots, q_T)$ to a sequence of baseline values $q^{BL} = (q_1^{BL}, \ldots, q_T^{BL})$; let \mathcal{C} denote the set of constraints on state and control variables of the consumer; and let $V(x, u; q^{BL})$ denote the utility derived with state and control vectors x and u, when the baseline vector q^{BL} is treated as a fixed parameter rather than a decision variable. Then (x^*, u^*, q^*) is a baseline-taking equilibrium if $q^{BL} = \beta(q^*)$ and $(x^*, u^*) \in \arg\max_{x, u \in \mathcal{C}} V(x, u; q^{BL})$.

In words, a baseline-taking consumer regards the DR baseline values as exogenously given data, rather than decision variables as in the “fully rational” model. In equilibrium, the consumer’s optimal response to q^{BL} includes a consumption vector q^* that “happens to
CHAPTER 10. THE EFFECTS OF DEMAND RESPONSE AND DR DISTORTIONS

satisfy $q^{BL} = \beta(q^*)$. Algorithm 1 in Appendix A.2 describes the fixed-point iteration we use to compute a baseline-taking equilibrium.

The contrast between such a baseline-taking equilibrium and the strategic, or “baseline-manipulation” optimum is analogous to the contrast between a price-taking equilibrium on the one hand, and monopoly or Cournot oligopoly pricing outcomes on the other.\(^1\)

To illustrate baseline manipulation resulting from the distorted incentives, we show some simulation results that highlight the effect of DR with and without baseline manipulation. These plots show how a fully rational (i.e. strategic) DR participant would behave with advanced knowledge of DR event days, and they also demonstrate that optimal behavior in baseline-taking equilibrium matches an intuitive understanding of how a rational DR participant that ignores the incentive to inflate the baseline would behave.

Baseline manipulation in the QU model

A sample solution from our simulation of the Quadratic Utility model under the OptFlat tariff is shown in Figure 2.7 for the strategic agent (CAISO), the baseline-taking agent (BLT), and the Nominal agent, who is not exposed to any DR incentives. We highlight the DR event as well as the BL-relevant periods, i.e. the periods that are considered for determining the baseline value for the DR period.

The top panel of Figure 10.1 shows the charging (u_1) and discharging (u_2) rates of the battery.\(^2\) We see that immediately before and during the DR event, both the strategic agent and the BLT agent act the same: before the event they charge the battery, and then they consume from the battery during the event. The middle panel shows the total energy drawn from the grid ($u_1 + u_3$). From this we see that during the DR event, both the strategic and BLT agent in fact consume exclusively from their battery and draw no power from the grid (the Nominal agent ignores the event). But at 24 and 48 hours before the event, the BLT agent acts the same as the Nominal agent, while the strategic agent charges its battery as rapidly as possible during the baseline-setting hour, and discharges during the subsequent two hours. The evolution of the battery charge,\(^3\) shown in the bottom panel of Figure 10.1, reflects the behaviors described above.

Baseline manipulation in the HVAC model

We present a similar sample solution for the HVAC model under the A-1 ToU tariff in Figure 10.2. The top panel shows the cooling

\(^1\)To solve for a price-taking equilibrium, the economist characterizes producers’ optimal quantity response as a function of an exogenously determined price over which the producer has no strategic control. Then the economist uses a market-clearing condition relating prices and total production quantities to determine the equilibrium price that supports these quantity decision. By comparing prices and quantities in both economic environments, one can, arguably, capture the effects of strategic “manipulation” of baselines, and prices, respectively.

\(^2\)We do not include the respective inputs of the nominal agent, who under the Opt Flat tariff does not use the battery and exclusively consumes energy directly from the grid.

\(^3\)Note that in our discrete-time model the charging and discharging during period t is reflected in the battery charge only in period $t+1$.
power, while the bottom panel shows the evolution of the temperature in the building. Since this is a hot summer day, the building has to use a significant amount of energy to cool the building in order to satisfy the comfort constraints. In the 12 hours leading up the DR event, the strategic and the BLT agent both behave in the same way: they pre-cool the building considerably, so that during the DR event, they can forgo the use of cooling. In the temperature evolution we can see that after the DR event the temperature hits the upper constraint. This can be contrasted with the behavior of the Nominal agent, who does not pre-cool the building and hence needs to use considerable cooling power during the DR event in order to satisfy the comfort constraints. 24 hours before the DR event, the BLT agents behavior is indistinguishable from that of the Nominal agent, while the strategic agent “overcools” for an hour by running the HVAC at a higher power level than necessary for
satisfying the comfort constraints (we can see this because the associated temperature trace drops slightly below the other temperature traces in the hour after the baseline-relevant hour, whereas at other times it is mostly hidden behind them). Then the strategic DR participant allows the temperature to drift back up to the upper constraint. Given our modeling assumption that the buildings occupants are indifferent to temperature as long as it satisfies the comfort constraints, this overcooling behavior is wasteful, because the energy needed to maintain a certain temperature level is greater the further it is from the temperature the building would be without actuation.\(^4\)

In both the QU and the HVAC cases, the baseline-taking and baseline-manipulating behavior are indistinguishable in hours leading up to the DR event, when “legitimate” preparation for the DR event occurs. Obviously, manipulation behavior is concentrated on periods 24 hours prior, 48 hours, and so on. This has an important and intuitive implication of what we might expect when there is price uncertainty that resolves as the hour approaches: if the day-ahead forecast is good, then as uncertainty is introduced into further-ahead forecasts,

\(^4\)If the only exogenous determinants of building temperature were outside temperature, this would be the simple result of Newton’s law of cooling, which states that the rate at which a body dissipates heat into its surroundings is proportional to the difference between the body’s temperature and that of its surroundings. In a model with higher order terms relating power draw and HVAC cooling output, overcooling might be wasteful because it would encourage the building to run the HVAC at an inefficiently high level; but in our linear model, this is not an issue.
baseline-manipulation behavior should diminish, and the strategic agent should become more similar to the baseline-taking agent. This is because baseline-manipulation is costly, because by definition the agent is deviating from behavior that would be optimal if not for the effect on the baseline.

Double payment

The other economic distortion we consider is “double payment.” Under the compensation scheme mandated by FERC Order 745, providers of demand response are to be paid for reductions from their historical baseline at the LMP. But by reducing consumption, the DR participant also avoids paying the retail price, \(p^R_t \). The retail price can be decomposed into a component that reflects the average cost of energy procurement, plus a markup intended to recoup the retailer’s additional costs, particularly their fixed costs. We can write this decomposition as

\[
\hat{p}^R_t = \mathbb{E}[p^W_t] + \text{T\&D}_t,
\]

where the first term denotes the average wholesale price, and the second denotes fixed costs such as Transmission and Distribution.

The result is that, in a DR hour, the the avoided expenditure, or effective “net price” per MWh reduced, is

\[
p^R_t + p^W_t = \mathbb{E}[p^W_t] + \text{T\&D}_t + p^W_t,
\]

which exceeds the efficient price by \(\mathbb{E}[p^W_t] + \text{T\&D}_t \). But in an average hour, the retail price exceeds the efficient price by only \(\text{T\&D}_t \).

Many economists have concluded on the basis of this and other arguments that this effective price during DR events is too high, incentivizing inefficiently low consumption levels (Borlick et al., 2012; Chao and DePillis, 2013); and that if baseline-dependent DR is to exist, a quantity, usually referred to as “G,” should be subtracted from the DR payment, to correct the effective price.

However, there is a lack of clarity in the literature about what exactly this “G” should be. Some authors take it to be the retail rate (Chao and DePillis (2013); Borlick et al. (2012); Borlick (2010); Shanker (2010)), so that the effective price would be \(p^W_t \) in DR hours. This is the efficient price for a single hour considered alone. But Hogan (2010) (also approvingly cited by Chao and DePillis (2013)) argues that “G” refers to “the imputed generation portion of retail rates.” If the imputed generation component is \(\mathbb{E}[p^W_t] \), then the LMP - G payment would be \(p^W_t - \mathbb{E}[p^W_t] \), and the effective net price would be \(\text{T\&D}_t + p^W_t \).

When we simulate the elimination of the double-payment distortion by making LMP-minus-G payments in our study, we adopt a variant of this latter approach, subtracting an imputed generation component of the retail price from the LMP payment. This seems sensible because it equalizes average markups across DR and non-DR hours (see Section 9.2), and DR does not necessarily abate fixed costs (although that point is arguable).

To derive the imputed generation component of a retail tariff, we subtract the “non-generation rate” for that tariff from the tariff itself. The non-generation rate is a surcharge

\[\text{T\&D}_t\]

This disregards externality costs. To account for externality costs, the reader can subtract them from \(\text{T\&D}_t \) in what follows. This is straightforward in our setting, because externality costs are essentially time-invariant in California, as natural gas is the marginal fuel in the majority of hours (see Appendix C.2 and Callaway et al. (2015)).
paid to PG&E by customers of Community Choice Aggregation customers, to cover PG&E’s infrastructure costs (see Table 10.1). In our hypothetical Opt Flat tariff, we take the imputed generation component to be the average LMP itself, since the Opt Flat tariff represents the average generation rate.

Table 10.1: Load-weighted average A-1 ToU prices, Non-gen components, imputed generation components, and NP-15 SMC, all in $/MWh. Data from Pacific Gas and Electric Company (a)

<table>
<thead>
<tr>
<th>Tariff</th>
<th>Non-gen</th>
<th>Imputed gen</th>
<th>Average SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer peak</td>
<td>262</td>
<td>128</td>
<td>134</td>
</tr>
<tr>
<td>Summer part-peak</td>
<td>253</td>
<td>128</td>
<td>125</td>
</tr>
<tr>
<td>Summer off peak</td>
<td>225</td>
<td>128</td>
<td>97</td>
</tr>
<tr>
<td>Winter part-peak</td>
<td>175</td>
<td>97</td>
<td>77</td>
</tr>
<tr>
<td>Winter off peak</td>
<td>155</td>
<td>97</td>
<td>58</td>
</tr>
</tbody>
</table>

While we consider this to be a reasonable and realistic way of decomposing PG&E’s tariffs into generation and non-generation components, the resulting decomposition results in generation components that are much higher than the average LMP. The resulting value of “G” is a sort of compromise, intermediate between the retail rate itself endorsed by Chao and DePillis (2013) on the high side, and the average wholesale price, which is perhaps the lowest value suggested by Hogan (2010), on the low side. It seems the fact that PG&E’s imputed generation component is so much higher than the average LMP is accounted for by CPUC mandates to procure various expensive renewable resources, such as wind, solar, and biogas energy, using out-of-market feed-in tariffs.

10.2 Simulation results: DR distortions

In the following two sections, we present our findings on the effects of DR with and without the two economic distortions just introduced, for both the Quadratic Utility model and the HVAC model.

In Figures 10.3 and 10.4, we plot, for both consumer models, the welfare effects of the four DR settings: standard DR with both the manipulation and double-payment distortions ("DR"); DR without double payment ("LMP-G"); DR in a baseline-taking equilibrium ("BLT"); and DR without double payment and in a baseline-taking equilibrium ("BLT & LMP-G"). The welfare effects are represented in terms of their changes (in $) from the no-DR benchmark, as in the previous figures.

6A reasonable alternative would be some kind of load-weighted average LMP (since PG&E publishes representative consumption data for each customer class (Pacific Gas and Electric Company, 2016a), a separate load-weighting measure could be used for each tariff).

7See Senate Bill 1122 (California State Senate, 2012), as well as Pacific Gas and Electric Company (2016c).
We explore the welfare impacts of these different demand response environments under two tariffs: A-1 ToU and Opt Flat. We choose the A-1 ToU tariff as representative of extant tariffs, as flat tariffs such as the A-1 are being phased out for commercial and industrial tariffs, and are not available to customers with smart meters (Pacific Gas and Electric Company, b). We choose the Opt Flat tariff because it is common in the DR and dynamic pricing literature to treat DR as superimposed on a second-best tariff, i.e. in which the retail price is the average social marginal cost (Chao and DePillis, 2013, Appendix A).

Note that, in our model, DR can never have a detrimental effect on the consumer surplus, because participation is voluntary and we assume that the consumer has perfect foresight.

10.2.1 DR and distortions simulation results: Quadratic Utility model

In general, the changes in surplus due to DR for the Quadratic Utility consumption model are on the order of several hundred dollars at most. This is very small as a fraction of total social surplus since calibration of inelastic utility functions results in very large social surpluses (ranging from $8,855 for elasticity $E_d = -0.3$ to $21,435 at elasticity $E_d = -0.1$). However, in absolute terms, or as a fraction of the annual electricity bill (calibrated to be equal to $4,013 annually in the A-1 case), the changes are more substantial.

In Figure 10.3, we plot the results for a demand elasticity of $E_d = -0.1$. The plots for the range from -0.05 to -0.2 are very similar for both tariffs, so we only include one.\(^8\) Since the effects of DR are almost negligible without battery storage, this lack of dependence on demand elasticity suggests that the economically significant effects of DR are a result of battery storage arbitrage, and are mostly financial from the consumer’s perspective, without much effect on end-use consumption quantities.

DR has an appreciable effect on the surpluses whenever there is battery storage. In these cases, manipulation of the DR baseline has a comparatively large and detrimental effect on social surplus. That is, “BLT” always has a higher surplus than “DR,” and “BLT & LMP-G” always has a higher social surplus than “LMP-G.” Whenever DR with baseline manipulation has a non-negligible effect, the consumer benefits are much greater than for the corresponding BLT case, but the aggregate social benefits are smaller, which implies a financial transfer from the retailer (really, the rest of society) to the consumer, which is sometimes quite large.\(^9\) In baseline-taking equilibria, the retailer surplus increases under the A-1 ToU tariff, and is unaffected under the Opt Flat tariff. The retailer benefits are entirely due to reduction in capacity costs (purple arrows).

\(^8\)In the tables in Appendix E we also present results for $E_d = -0.3$, but this case is more extreme, and perhaps not very realistic.

\(^9\)Ignoring capacity costs, this transfer is the length of overlapping blue and red arrows. Accounting for capacity costs, one would replace the red arrows with the sum of the red and purple arrows. Note that for any tariff, the transfer between the consumer and the retailer could be changed to any desired values by changing the fixed charges, i.e., the meter charges.
Without a battery, DR is beneficial to society, but the scale is negligible: at most $15 annually (a little over $1 a month) under the very high elasticity $E_d = -0.2$, and at most $3 annually under the more plausible elasticity of $E_d = -0.05$. The largest effect of DR without a battery (and the only one greater than $15 annually) is a reduction in generation cost of $36 annually, when $E_d = -0.3$.

With a medium battery, all DR variants increase social surplus, with an increase between $50 and $75 in the A-1 ToU tariff, and between $19 and $60 in the Opt Flat tariff. The lower ends of these ranges come from the baseline manipulation cases, and the upper ones are from baseline-taking. Eliminating the double-payment distortion (“LMP-G” vs. “DR”, and “BLT & LMP-G” vs. “BLT”) has a small positive effect (sometimes none) on total surplus, and has a more substantial effect of redistributing part of the change in social surplus from the consumer to the retailer (reducing the size of the transfer from the retailer to the consumer in the baseline manipulation case, and magnifying the retailer’s revenue increase under baseline-taking). In the basic DR setting (with both manipulation and double payment), DR increases the social surplus by $20 annually, but involves a transfer from the retailer to the consumer of $60 to $65 in the A-1 ToU and $140 in the Opt Flat, annually. In the real world, much of such a transfer would likely involve cross-subsidization from consumers who do not participate in DR. But without baseline manipulation, both the retailer and the consumer see improvements from DR, which is what one would hope for from a DR program.

With a large battery, the effects of DR are quite large and mixed. Strikingly, increasing the battery size from Medium to Large has a negligible effect on total surplus in baseline-taking equilibria, and has a large negative effect when manipulation is possible (comparing...
results for the Large vs Medium battery). With both manipulation and double payment, DR has a small negative effect on social surplus in the A-1 ToU tariff ($10 annually), and a larger negative effect in the Opt Flat tariff ($190 annually). These totals include large transfers from the retailer to the consumer: about $220 and $380 respectively. Without manipulation, society gains $60 to $70 annually from DR, and the retailers revenues either increase or are unaffected, as compared to no DR.

Comparing the A-1 ToU tariff with the Opt Flat tariff, we see that the deleterious effects of baseline manipulation are much greater in the Opt Flat. Intuitively, this would seem to be because baseline manipulation requires “excessive” consumption in anticipation of upcoming DR events. That excessive consumption is easier to engage in, in a tariff that has much lower markups, such as the Opt Flat.

These results compare DR tariffs against the A-1 ToU benchmark, which changes slightly with battery size. So we also summarize the effects of increasing the battery size on social surplus in DR tariffs: With demand response, increasing battery size can increase social welfare by between $23 and $36 annually in the A-1 tariff, and $44-$48 in the A-1 ToU (the high end of the ranges are from lower elasticities). The private gains are smaller. With baseline manipulation, a medium battery realizes a value to society of $14-$26, but with a large battery, the surplus decreases by $21-$26 annually. In conjunction with our discussion above, this suggests that RTP tariffs may make battery investments worthwhile, but DR programs probably do not justify them, and may even make the operation of a battery economically destructive.

To sum up, in the Quadratic Utility model, the effects of DR on total surplus are highly dependent on the base tariff (A-1 ToU vs. Opt Flat), the size of the battery, and the type of economic distortions allowed for, but are not significantly dependent on elasticity. Baseline manipulation is always worse for society than baseline taking, and can in fact make the net social effects of DR deleterious. DR with baseline manipulation results in large transfers toward the consumer whenever there is any effect on efficiency. Double payment has smaller efficiency effects, mostly redistributing changes in surplus from the retailer to the consumer. A large battery as compared to a medium battery is good for the consumer, but neutral for society in baseline-taking equilibrium, and bad for society when baseline manipulation is possible.

As a side-note, the non-monotonicity of the effect of the battery size on social surplus reflects the complexity of tariff incentive effects when consumers can intertemporally substitute, an issue we explored earlier in Section 9.2, particularly Figures 9.2 and 9.3, with respect to the A-6 ToU tariff.

\[10\] The notable exception to this is in the A-1 ToU tariff, with the large battery and baseline manipulation, where eliminating double payment creates a $25 annual gain for society, transforming effects that were slightly or negligibly deleterious into effects that are noticeably positive.
10.2.2 DR and distortions simulation results: HVAC model

Figure 10.4 shows the changes in surpluses for the HVAC model, from the no-DR benchmarks for the A-1 and Opt Flat tariffs respectively. For the A-1 tariff, the benchmark social surplus (negative generation cost minus capacity cost with no DR) is -$68,100, and the individual expenditure is $146,795. For the Opt Flat tariff, the social surplus benchmark is nearly same as that of the A-1 tariff (-$68,097), and the individual expenditure is $39,261.\footnote{Since the A-1 tariff is also flat, the only difference in incentives between the two tariffs is the incentive to substitute between summer and winter seasons in the A-1 tariff, which is only possible for a few hours annually. The Opt Flat individual expenditure is lower than the social cost of generation because the Opt Flat tariff does not reflect capacity costs.}

![HVAC DR distortions: Social Surplus Changes from no-DR baseline. (Benchmark social cost of generation and capacity: $68,100.)](image)

Under the A-1 ToU tariff, the effect of demand response is always beneficial for society in aggregate. It is also beneficial in every component of social surplus, except in the case with both DR distortions, in which case the retailer is negatively impacted in terms of energy costs, but in turn sees a larger benefit in terms of capacity costs. The pattern of results stemming from distortions is hard to explain: eliminating baseline manipulation is good for society in the presence of the double-payment distortion, but it is deleterious for society under LMP-G compensation. Similarly, eliminating double payment is beneficial under baseline manipulation, but it is harmful in baseline-taking equilibria. And the “undistorted” outcome with baseline-taking and LMP-G, is the worst of all four combinations of distortions.
In the Opt Flat tariff, the effects are much more concordant with economic intuition. This might be expected, since the Opt Flat tariff is the standard setting under which DR is studied, and we do not have to worry about the interaction of the DR incentives with high markups and potentially distorted time-of-use price ratios. Demand response is deleterious for society with baseline manipulation, but beneficial in baseline-taking equilibrium. What is striking is the extremely high transfer from the retailer to the consumer under baseline manipulation (note though that reduced capacity costs still have a significant positive effect on retailer surplus). Eliminating the double-payment distortion is beneficial under baseline manipulation. In baseline-taking equilibrium, eliminating double payment has a small effect, which is almost entirely a redistribution of revenue from the consumer to the retailer. This suggests that double payment does not have a large effect on consumption behavior in baseline-taking equilibrium.

And again, baseline manipulation is a much smaller problem in the A-1 ToU tariff than it is in the Opt Flat tariff, presumably because baseline inflation is more expensive in the former tariff, which has much higher markups. Finally, we recall our comment from discussing the examples of baseline manipulation depicted in figures 10.1 and 10.2: it seems likely that under uncertainty about hours far in the future, the effects of baseline manipulation, insofar as they differ from baseline taking, would be smaller than what we see in our simulation results.
Chapter 11

Discussion: conclusions, caveats, and future directions

11.1 Unintended consequences and perverse incentives

Throughout this paper, we have observed that, not all too surprisingly, the efficiency effects of different tariffs depend strongly on the underlying consumption model. Moreover, tariffs and intertemporal substitution technology interact to produce complicated patterns of outcomes, which are often hard to explain, let alone foresee. For example:

- In the QU model without intertemporal substitution capacity, high markups are much more important drivers of welfare losses than a lack of real-time pricing, but the relative importance of high markups decreases as substitution capacity increases;

- In the QU model with a large battery, DR with baseline manipulation is welfare-improving with high markups (A-1 ToU tariff), but welfare-reducing with low markups (Opt Flat tariff);

- In the QU model under the A-6 ToU tariff (with large price differences between ToUs), a medium battery provides very little social benefit, but a large battery provides a large social benefit. Consequently, the A-6 ToU tariff reduces welfare compared to the A-1 tariffs with no battery and with a medium battery, but it increases welfare over the A-1 tariffs with a large battery;

- In the QU model with DR and baseline manipulation, a medium battery provides a significant social benefit, but a large battery provides no benefit, or is socially harmful;

- In the QU model, real-time pricing based on LMPs is far more efficient than flat and existing tariffs when there is any substitution capacity, but in the HVAC model,
existing tariffs can be more efficient than our hypothetical real-time pricing tariff, by reducing capacity costs.

The effects involving baseline manipulation, and to some extent real-time pricing, are likely sensitive to our unrealistic perfect foresight assumptions. It is easy to find examples of prominent economists criticizing well-intended tariff features for giving perverse incentives in the presence of rapidly developing technologies: we have discussed demand charges and demand response above; net metering is another example.

One policy conclusion we draw from all this is that, given the complexity of tariff incentives, policymakers should hew closely to economic orthodoxy, and focus on conceptually simple tariffs that are less likely to have unexpected consequences. And if the energy market does not provide sufficient incentives for capacity investment, then these improved tariffs should also account for contribution to system capacity costs. If tariffs do not give the right incentives under a broad range of conditions, then additional smart technology can reduce efficiency, rather than increasing it. Simulation studies like this one may also help as early indicators of potentially costly distortions.

11.2 The retail-wholesale price wedge and “complementary policies”

Our findings also prompt consideration of the extreme disparity between high retail prices and relatively low wholesale prices. Although it is not the focus of our study, it seems that feed-in tariffs and power purchase agreements supporting California’s Renewable Portfolio Standards, and other “complementary policies,” are major drivers of this disparity. These complementary policies are intended to supplement California’s cap-and-trade carbon pricing regulation, but according to the current consensus, they instead play the leading role (Cullenward and Coghlan, 2016; Fowlie, 2016); the result of these technology- and sector-specific conservation policies is that environmental goals are likely met at unnecessarily high cost (Schatzki and Stavins, 2014). For example, Hughes and Podolefsky (2015) make a rough estimate that the California Solar Initiative, a residential solar subsidy program, achieved CO2 emission reductions at a cost of approximately $130 to $196 per metric tonne: over 10 times the prevailing emissions allowance price. All of these policies tend to increase the wedge between retail and wholesale prices, and to suppress carbon emissions allowance prices. Our finding that high markups are likely to be a major driver of welfare losses dovetail with these considerations, strengthening the broader argument in favor of simplifying and streamlining California’s energy and environmental policy more generally, in order to achieve environmental goals as efficiently as possible.

This out-of-market procurement of renewable resources also raises methodological questions about our methods. As it is, the fact that retail prices are so much higher than LMPs plus externality costs leads us (using standard economic reasoning) to conclude that in most hours, consumers should be consuming more than they do. But if marginal demand would in
fact be met by more expensive out-of-market generation, then our welfare metrics underest-
te the marginal cost of energy, and the conclusion may change. For example, a binding
Renewable Portfolio Standard forces some fraction of marginal demand to be met at a cost
that is unrelated to the wholesale market price. At the same time, the marginal cost to the
utility is potentially quite different from the marginal cost to society, especially in the case
of feed-in tariffs, which intentionally break any link between price and cost.

Clearly these are also problems with the interpretation of our “retailer surplus” metric
as an estimate of retailer profit. But that interpretation was already very problematic,
firstly because PG&E owns some generation resources of its own, and secondly because
California’s “uncoupling” policy, designed to remove the incentive for PG&E to increase its
extiny energy sales, has the effect of breaking the connection between net energy revenue and profit.
(Nevertheless, the retailer surplus metric is still the best place to start in considering the
financial implications of tariffs and programs for the utility.)

11.3 Limitations of the simulation methodology

Perfect foresight

A major limitation of our approach is that it considers data—LMPs, periods eligible for
DR, and weather—to be exogenously given and known to the consumer in advance. This
perfect knowledge assumption is clearly restrictive, and we would expect consumer behavior
in DR and RTP tariffs to be somewhat different in a more realistic setting with limited
information about future wholesale market prices and DR events. A central concern of ours
is the efficiency effects of baseline manipulation. Intuitively, we would expect that perfect
foresight gives the consumer the greatest ability to artificially inflate its baseline, and hence
expect that our estimates of the social cost of baseline manipulation over-estimate the true
cost. Since in our models, “legitimate” preparation for upcoming DR events seems to occur
in the hours immediately before the event, we expect that as price uncertainty is added
for hours further out in the planning horizon, the effects of baseline manipulation should
diminish. Uncertainty has implications for most other tariffs, but we do not expect them to
be as severe, except perhaps in real-time pricing and demand charges, since retail prices are
generally known far enough in advance, and weather is usually fairly predictable over the
relevant time horizon.

Ideally, we would be able to extend our formulation to more realistic settings that incorpo-
rate uncertainty by adopting methods such as approximate dynamic programming (Powell,
2011), stochastic multistage programming (Defourny et al., 2011), or stochastic MPC (Mes-
bah, 2016). However, if the goal is to retain the ability to treat complex consumption
models and to formulate the DR baseline endogenously as part of the optimization problem,
the extension to such methods poses very significant challenges, at least if the resulting al-
gorithm should be of any reasonable computational complexity. The “perfect information

1Our baseline-taking equilibrium concept and associated fixed-point algorithm seem to translate relatively
relaxation” that we examine in the present work would be an important first step in benchmarking any such approximately optimal policies under more realistic information structures (Brown et al., 2010).

Price exogeneity

Since we take historical wholesale prices as given data, our simulation methodology does not account for the impact of our consumers’ behavior on wholesale prices and the resulting equilibrium outcome. Accordingly, our welfare results should be interpreted as marginal welfare effects: they give a first-order approximation to the value of a tariff policy, by estimating the impact of moving a small number of consumers from one tariff to another, assuming that the rest of the system in unchanged. A more complete treatment would require a model of the supply side, such as in Borenstein (2005).
Appendix A

Formulation of the optimization problem

Recall the utility function of a risk-neutral, utility-maximizing consumer from Section 7:

\[V(u, x, q, z, q^{BL}) := U(u, x, y, q) - \sum_{t=1}^{T} [p_t^R q_t - 1_{\{t \in \mathcal{E}\}} p_t^{DR} D_{t}] - FC - DC \]

(A.1)

A.1 Optimization problem for a fully rational consumer

A fully rational consumer faces the following optimization problem:

\[
\begin{align*}
\text{max}_{x, u, q, z, q^{BL}} & \quad V(x, u, q, z, q^{BL}) \\
\text{s.t.} & \quad z_t^{DR} \in \{0, 1\} \quad \forall t \\
& \quad D_{t} = (q_t^{BL} - q_t) z_t^{DR} \quad \forall t \\
& \quad \text{consumption model constraints}, (x_t, u_t) \quad \forall t \\
& \quad \text{baseline definition}(q_{BL}, q, z^{DR}) \\
& \quad \text{FC = fixed charge definition} \\
& \quad \text{DC = demand charge definition}(q)
\end{align*}
\]

(A.2)

Denote problem (A.2) by \(\mathcal{P} \). We point out that, under our assumption of perfect foresight,\(^1\) participation in DR events, though voluntary, will take place automatically in (A.2) whenever it is ex-post beneficial to the consumer.

Before describe how to formulate the different elements of \(\mathcal{P} \) in the following sections, we briefly comment on the complexity of the optimization problem. Depending on the

\(^1\)Which follows from Assumptions 7 and 8.
length of the simulation horizon, the number of DR events, and whether the tariff includes a demand charge, P is a Mixed-Integer Program (MILP for the HVAC model and MIQP for the Quadratic Utility model) of considerable size. The largest of our simulations are for the HVAC model and involve around 45,000 variables and 100,000 constraints. For the Quadratic Utility model our largest optimization problem has around 35,000 variables and 9,000 constraints. Despite the large size of the problem, the GUROBI solver (Gurobi Optimization, 2016) we use manages to solve even the largest of the problems in less than 100 seconds on a standard desktop computer.

Demand charges

Let T_{DC} denote the set of periods relevant for the demand charge in the horizon of interest\(^2\). Then we have $DC = \sum_{p \in T_{DC}} DC_p$, where, for each $p \in T_{DC}$, $DC_p \geq q_t$ for all $t \in p$. From the objective function, it is easy to see that at the optimum, $DC_p = \max_{t \in p} q_t$ for each $p \in T_{DC}$.

In this paper, we focus on charges on the peak consumption during each month. However, the above formulation is rather general and can easily be modified to account for similar kinds of demand charges, as long as they can be reformulated as linear constraints.

Endogenous definition of the DR baseline

Various baselining methodologies have been proposed for Demand Response and are used by different ISOs. In this paper, we focus on the so-called “10 in 10” baseline defined by CAISO (CAISO, 2015). In this methodology, the baseline for a particular hour is the average consumption in the previous n similar\(^3\) non-event days (i.e. days without a DR event), where $n = 10$ for Business days and $n = 4$ for non-Business days. The CAISO methodology also allows for a so-called load-point adjustment (LPA), by which the raw customer baseline can be adjusted up or down by no more than 20%, depending on the consumption level during the morning of the event day. For simplicity, we will ignore the LPA in this paper.

Let $q_{d,h}$ denote the total energy consumption of the DR participant in hour h of day d. Under some abuse of notation, let $q_{d,h}^{BL}$ denote the value of the CAISO baseline in the same period. In order to improve readability, we start with the simplest case and step by step build up a formulation that captures the complete baseline.

No other DR events: In the simplest case, there are no possible DR events in the past n similar days, and the baseline value can be written as

$$q_{d,h}^{BL} = \frac{1}{n} \sum_{d' \in D} q_{d',h}$$

\(^2\)E.g. the different months or the different billing periods within the simulation horizon $1, \ldots, T$

\(^3\)Here “similarity” just depends on the distinction between Business and non-Business days.
where \mathcal{D} is the set of the n similar previous days. In this case, it is easy to formulate the DR participant’s decision problem: Abusing notation again, let $z_{d,h} \in \{0,1\}$ be a binary variable indicating whether the participant reduces consumption w.r.t to baseline ($z_{d,h} = 1$) or not ($z_{d,h} = 0$) during hour h of day d. Moreover, let $r_{d,h} = (q_{d,h}^{BL} - q_{d,h})z_{d,h}$ denote the reduction w.r.t. the baseline value. The DR reward during this hour is $L \text{MP}_{d,h} \cdot r_{d,h}$, where $\text{LMP}_{d,h}$ is the Locational Marginal Price at the participant’s pricing node. Thus, as the term $L \text{MP}_{d,h} \cdot r_{d,h}$ appears in the participant’s objective function (which is to be maximized), then the constraints

\begin{align*}
 r_{d,h} &\geq 0 \quad \quad (A.4a) \\
 r_{d,h} &\leq q_{d,h}^{BL} - q_{d,h} \quad \quad (A.4b) \\
 r_{d,h} &\leq z_{d,h} \cdot M \quad \quad (A.4c)
\end{align*}

with M a suitably large constant fully encode the decision problem. In particular, if $z_{d,h} = 0$ then $r_{d,h}$ is forced to zero by constraint (A.4c). Otherwise, if M is large enough and $z_{d,h} = 1$, then (A.4c) is not binding, and by way of how it appears in the objective, $r_{d,h}$ at optimum will equal the baseline reduction $q_{d,h}^{BL} - q_{d,h}$ by constraint (A.4b). Observe that, importantly, all constraints (A.4) are linear inequality constraints.

However, if within the n previous similar days there is the possibility for participating in another DR event, then the previous decision of whether to reduce consumption and receive a DR payment will affect the computation of the baseline. Nevertheless, by introducing additional variables and constraints, it is still possible to formulate the baseline as a (possibly large) set of linear inequality constraints.

All DR events in same hour, one other possible event: For simplicity, assume first that DR events always occur during the same hour of the day. This allows us to simplify notation, drop the index h, and simply consider d as the period of interest. Further, suppose that there is exactly one day, say day $d_{[1]}$, in the previous n similar days during which the participant may choose to be rewarded for reducing consumption w.r.t. the baseline. Let $z_{d_{[1]}} \in \{0,1\}$ denote the associated indicator variable. Again, with the term $L \text{MP}_{d} \cdot r_{d}$ in the

\footnote{For example, if d is a Business day, then \mathcal{D} contains the 10 previous Business days.}
\footnote{Note that the variable $r_{d,h}$ appears nowhere else in the objective or in other constraints.}
\footnote{Choosing M large enough but not too large is important for the optimization problem to be well-conditioned. In general this can be tricky, but in our case a straightforward and suitable choice is to set M to the maximum possible energy consumption or the participant in any given period.}
APPENDIX A. FORMULATION OF THE OPTIMIZATION PROBLEM

objective function, the problem can be encoded via the following constraints:

\[r_d \geq 0 \] (A.5a)
\[r_d \leq q_{d}^{\text{BL}} - q_d \] (A.5b)
\[r_d \leq z_d \cdot M \] (A.5c)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{(1)}} \right) + z_{d_{(1)}} \cdot M \] (A.5d)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{(1)}} \right) + (1 - z_{d_{(1)}}) \cdot M \] (A.5e)

where \(D' \) is the set of \(n - 1 \) similar previous days excluding day \(d_{(1)} \), and \(d^{(1)} \) is the first similar day prior to all days in \(D' \). In particular, if \(z_{d_{(1)}} = 0 \), the constraint (A.5e) will be inactive and, because \(q_{d}^{\text{BL}} \) enters the objective through the reduction \(r_d \), (A.5d) will be binding. In both cases, the baseline \(q_{d}^{\text{BL}} \) will be forced to the correct value.

All DR events in same hour, more than one event: We retain the simplifying assumption that all events happen during the same hour, but now consider the case when there are \(k \) possible event days that could affect the baseline in day \(d \). Call those event days \(d_{[1]}, \ldots, d_{[k]} \) and denote by \(z_{d_{[1]}}, \ldots, z_{d_{[k]}} \in \{0, 1\} \) the associated indicator variables for participating in the respective event. Furthermore, let \(D' \) be the set of \(n - k \) previous similar days excluding days \(d_{[1]}, \ldots, d_{[k]} \). Finally, denote by \(d^{(1)}, \ldots, d^{(k)} \) the \(k \) first similar days prior to all days in \(D' \), and let \(K = \{1, \ldots, k\} \). It turns out that we can encode the correct baseline by using \(2^k \) big-M type constraints. This is easiest to see when \(k = 2 \), in which the constraints are:

\[r_d \geq 0 \] (A.6a)
\[r_d \leq q_{d}^{\text{BL}} - q_d \] (A.6b)
\[r_d \leq z_d \cdot M \] (A.6c)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{[1]}} + q_{d_{[2]}} \right) + (z_{d_{[1]}} + z_{d_{[2]}}) \cdot M \] (A.6d)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{[1]}} + q_{d_{[2]}} \right) + (1 - z_{d_{[1]}}) M + z_{d_{[2]}} \cdot M \] (A.6e)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{[1]}} + q_{d_{[2]}} \right) + z_{d_{[1]}} M + (1 - z_{d_{[2]}}) \cdot M \] (A.6f)
\[q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + q_{d_{[1]}} + q_{d_{[2]}} \right) + (2 - z_{d_{[1]}} - z_{d_{[2]}}) \cdot M \] (A.6g)

It is rather straightforward to verify that for all possible combinations

\[(z_{d_{[1]}}, z_{d_{[2]}}) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\} \]

the constraints (A.6) result in the correct definition of the baseline. For the general case, equations (A.6d)-(A.6g) can be replaced by the following \(2^k \) constraints:

\[\forall K \in 2^K \quad q_{d}^{\text{BL}} \leq \frac{1}{n} \left(\sum_{d' \in D'} q_{d'} + \sum_{j \in K} q_{d_{[j]}} + \sum_{l \in K \setminus K} q_{d^{(l)}} \right) \]
\[+ M \cdot \sum_{j \in K} z_{d_{[j]}} + M \cdot \sum_{l \in K \setminus K} (1 - z_{d_{[l]}}) \] (A.7)

where \(2^K \) denotes the power set (i.e., the set of all subsets) of \(K \).
DR events in different hours, more than one event: This is the most general case that covers the full problem. To encode whether there is one or more DR events during a given day, we use an auxiliary indicator variable for each day with at least one possible event. Specifically, suppose that during day d there are m hours during which the participant can choose to participate in DR. Call those hours h_1, \ldots, h_m, and let $z_{d,h_i} \in \{0, 1\}$ for $i = 1, \ldots, m$ the associated indicator variables for DR participation. Let $z_d \in \{0, 1\}$ be the binary variable indicating whether the participant places at least one DR bid during day d. Then the variable z_d is fully determined by the following constraints:

\begin{align}
 z_d &\geq z_{d,h_i} \quad \text{for } i = 1, \ldots, m \\
 z_d &\leq \sum_{i=1}^m z_{d,h_i}
\end{align}

(A.8a)

The general problem can then be formulated by defining auxiliary variables and associated sets of constraints as in (A.8) for each day with possibly multiple DR events, and by using those auxiliary variables z_d in the respective constraints (A.7) that determine the baseline value.

A.2 Fixed-point algorithm for computing a baseline-taking equilibrium

A consumer that takes the baseline values q^{BL} as given exogenously, but otherwise behaves in a fully rational way, solves a slightly modified version of the optimization problem P in (A.2). Specifically, q^{BL} is not a variable anymore but instead is a fixed parameter, and the constraint (A.2e) is dropped from the problem. Let \tilde{P} denote this modified optimization problem.

We are interested in Baseline-taking Equilibria as formalized in Definition 10.1.1. A straightforward approach to finding such an equilibrium is a fixed-point iteration, as given by Algorithm 1. Here $\beta : q \mapsto q^{BL}$ is the function computing the baseline based on the consumption vector q (in our case, this is the CAISO 10 in 10 method). Furthermore, $d : q^{BL} \times q^{BL} \mapsto \mathbb{R}^+$ is a distance function between two baseline profiles, and $\epsilon > 0$ is a numerical tolerance parameter\(^7\). At this point we do not have any theoretical convergence guarantees\(^8\) for Algorithm 1, but numerical simulations have shown it to converge reliably.

\(^7\)In our simulations, we used the standard Euclidean norm for the distance and tolerance parameter of $\epsilon = 10^{-2}$.

\(^8\)Without making additional assumptions, deriving theoretical guarantees for convergence seems quite daunting, as in each iteration of the algorithm we are solving a full Mixed-Integer optimization problem.
within a few (<10) iterations for all our simulation scenarios.

Data: ϵ

Result: Baseline-taking equilibrium (x^*, u^*, q^*, z^*)

Solve P to obtain initial condition (x^0, u^0, z^0, q^0)

Let $q^{BL} = \beta(q^0)$

for $k \in \mathbb{N}$ do

Solve \tilde{P} for baseline q^{BL} to obtain $(\tilde{x}, \tilde{u}, \tilde{z}, \tilde{q})$

Let $\tilde{q}^{BL} = \beta(\tilde{q})$

if $d(q^{BL}, \tilde{q}^{BL}) < \epsilon$ then

return $(x^*, u^*, q^*, z^*) := (\tilde{x}, \tilde{u}, \tilde{z}, \tilde{q})$

end

$q^{BL} \leftarrow \tilde{q}^{BL}$

end

Algorithm 1: Algorithm for computing baseline-taking equilibrium

Algorithm 1 returns, up to numerical tolerances, a consumption vector q^* that is optimal with respect to the baseline $\beta(q^*)$, which is of course nothing but the a Baseline-taking Equilibrium according to Definition 10.1.1.
Appendix B

Dynamical system models

While we investigate the two particular models of the Quadratic Utility with Battery and the HVAC-equipped building in detail, we point out that our formulation also allows for general quadratic utility functions of the form

$$U(u, x, y, q) = w^T H w + h^T w$$ \hspace{1cm} (B.1)

where $w = [u^T, x^T, y^T, q^T]^T$ and $H \preceq 0$. This is a rather general formulation that encompasses many different models of interest. As the pyDR package \cite{Balandat:2016a} is written in a modular fashion, it is straightforward to include other consumption models of the form (B.1).

B.1 Quadratic Utility model with battery

Calibration of the consumption utility model

Recall from Section 7.2 that in the Quadratic Utility model a consumer who consumes quantity \tilde{q}_t in period t at price p_t^R derives stage utility

$$U_t(q_t) = a_t \tilde{q}_t - \frac{1}{2} b_t \tilde{q}_t^2 - p_t^R \tilde{q}_t$$ \hspace{1cm} (B.2)

In the absence of storage, optimal consumption without a budget constraint yields that

$$U_t'(q_t) = 0 \Leftrightarrow a_t - b_t \tilde{q}_t^2 - p_t^R \tilde{q}_t \Leftrightarrow \tilde{q} = \frac{a_t - p_t^R}{b_t}$$ \hspace{1cm} (B.3)

The parameters a_t and b_t are calibrated for each period based on observed consumption data and prices, by positing the (point) elasticity of demand, E_d. The elasticity is

$$E_d(p_t^R) \triangleq \frac{dq_t(p_t^R)}{dp_t^R} \frac{p_t^R}{q_t} = -\frac{1}{b_t} \frac{p_t^R}{q_t} = -\frac{p_t^R}{b_t} \frac{b_t}{a_t - p_t^R} = -\frac{p_t^R}{a_t - p_t^R}$$
Solving for the parameters \(a_t\) and \(b_t\) yields

\[
\begin{align*}
 a_t &= -\frac{p^R_t (1 - E_d)}{E_d} \\
 b_t &= -\frac{p^R_t}{q_t E_d}
\end{align*}
\]
(B.4)

We calibrate the parameters \(a_t\) and \(b_t\) in each period using consumption data representative\(^1\) of customers with PG&E’s A1 tariff under the associated retail charges from the A1 tariff. To ensure comparability, this calibration is the same for all simulations of the Quadratic Utility model.

Battery Parameters

The battery charge \(x_t\) (in kWh) is subject to the following constraints:

\[
0 \leq x_t \leq \begin{cases}
0 \text{kWh} & \text{for no battery} \\
10 \text{kWh} & \text{for medium battery} \\
25 \text{kWh} & \text{for large battery}
\end{cases}
\]

Charging and discharging\(^2\) are limited to \(0 \leq u_{i,t} \leq u_{i,\text{max}}\), where

\[
\begin{align*}
 u_{1,\text{max}} &= \begin{cases}
 0 \text{kW} & \text{for no battery} \\
 5 \text{kW} & \text{for medium battery} \\
 25 \text{kW} & \text{for large battery}
\end{cases} \\
 u_{2,\text{max}} &= \begin{cases}
 0 \text{kW} & \text{for no battery} \\
 7.5 \text{kW} & \text{for medium battery} \\
 30 \text{kW} & \text{for large battery}
\end{cases}
\end{align*}
\]

We assume a leakage time constant of \(T_{\text{leak}} = 96 \text{ h}\) and the same charging and discharging efficiency of \(\eta_c = \eta_d = 0.95\). Discretizing (7.5) under zero-order hold sampling with a sampling time of 1h then yields the following matrices for the discrete-time system model (7.2):

\[
\begin{align*}
 A &= 0.9974 \\
 B &= [0.95, -1.0526, 0] \\
 E &= D = 0 \\
 c_q &= [1, 0, 1]
\end{align*}
\]

B.2 Commercial building HVAC system model

We consider a simple Linear Time Invariant model for the HVAC system of a commercial building, with form and parameters from Gondhalekar et al. (2013). The continuous-time

\(^1\)We use the so-called “Dynamic Load Profile”, which is published online (Pacific Gas and Electric Company, 2016a).

\(^2\)In our implementation we also limit the direct consumption in order to simplify finding an “M” in the big-M formulation. However, the limit is so high that the constraints are never binding, and thus do not affect the solution of the optimization problem.
system dynamics are \(\dot{x} = A_{ct}x + B_{ct}u + E_{ct}v \), where \(x \in \mathbb{R}^3 \), \(u \in \mathbb{R}^2 \), \(v \in \mathbb{R}^3 \) and

\[
A_{ct} = \begin{bmatrix}
-(k_1 + k_2 + k_3 + k_5)/c_1 & (k_1 + k_2)/c_1 & k_5/c_1 \\
(k_1 + k_2)/c_2 & -(k_1 + k_2)/c_2 & 0 \\
5/c_3 & 0 & -(k_1 + k_5)/c_3 \\
\end{bmatrix}
\]

\[
B_{ct} = \begin{bmatrix}
1/c_1 & -1/c_1 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}, \quad E_{ct} = \begin{bmatrix}
k_3/c_1 & 1/c_1 & 1/c_1 \\
0 & 1/c_2 & 0 \\
k_1/c_3 & 0 & 0 \\
\end{bmatrix}
\]

Here \(x_1(t) \) represents the room temperature, and \(x_2(t) \) and \(x_3(t) \) represent interior-wall surface and exterior-wall core temperature at time \(t \), respectively. The inputs \(u_1(t) \) and \(u_2(t) \) are heating and cooling power in period \(t \), respectively. The disturbance vector \(v(t) \) consists of outside air temperature \((v_1(t)) \), solar radiation \((v_2(t)) \) and internal heat gains \((v_3(t)) \). All temperatures are in \(^\circ \text{C} \), all other inputs are in kW. The parameters in the matrices given in Table B.1.

Table B.1: HVAC system parameters (Gondhalekar et al., 2013)

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.356 \times 10^9</td>
<td>2.97 \times 10^9</td>
<td>6.695 \times 10^9</td>
<td>16.48</td>
<td>108.5</td>
<td>5.0</td>
<td>30.5</td>
<td>23.04</td>
</tr>
</tbody>
</table>

We discretize the continuous-time model using a zero-order hold scheme with 1 hour sampling time\(^3\) to obtain a discrete-time system of the form (7.2). The resulting matrices are

\[
A = 0.1 \cdot \begin{bmatrix}
5.821 & 3.394 & 0.582 \\
1.069 & 8.868 & 0.048 \\
0.814 & 0.214 & 7.536 \\
\end{bmatrix}, \quad B = 10^{-3} \cdot \begin{bmatrix}
2.947 & -2.947 \\
0.231 & -0.231 \\
0.181 & -0.181 \\
\end{bmatrix}, \quad E = 10^{-3} \cdot \begin{bmatrix}
20.238 & 3.178 & 2.947 \\
1.441 & 1.368 & 0.231 \\
143.635 & 0.190 & 0.181 \\
\end{bmatrix}
\]

The total power consumption in this model is simply the sum of heating and cooling power, and so \(c_3 = [1, 1] \). The interior air temperature \(x_{1,t} \) is required to satisfy “comfort constraints” of the form \(x_{1,t}^{\text{min}} \leq x_{1,t} \leq x_{1,t}^{\text{max}} \), where

\[
x_{1,t}^{\text{min}} = \begin{cases}
21 & \text{if } 8\text{am} \leq t \leq 8\text{pm} \\
19 & \text{otherwise}
\end{cases}, \quad x_{1,t}^{\text{max}} = \begin{cases}
26 & \text{if } 8\text{am} \leq t \leq 8\text{pm} \\
30 & \text{otherwise}
\end{cases}
\]

with the narrower band capturing the main work hours. Heating and cooling power consumption \(u_{1,t} \) and \(u_{2,t} \) satisfy actuator constraints of the form \(0 \leq u_{1,t} \leq u_{1,t}^{\text{max}} \) and \(0 \leq u_{2,t} \leq u_{2,t}^{\text{max}} \), respectively, where

\[
u_{1,t}^{\text{max}} = 500 \quad \text{for nodes PGEB, PGP2} \\
u_{2,t}^{\text{max}} = \begin{cases}
150 & \text{for node PGCC} \\
300 & \text{for nodes PGSA, PGF1}
\end{cases}
\]

\(^3\) We could also higher sampling frequencies, but those would result in much larger optimization models.
Here we adjusted some of the constraints from Gondhalekar et al. (2013) upwards to account for the higher cooling requirements (hence larger HVAC systems) at the higher temperature pricing nodes PGCC (Central Coast), PGSA (Sacramento) and PGF1 (Fresno).
Appendix C

Economics appendix

C.1 Bias-variance decomposition of deadweight loss

We can compute the bias-variance decomposition of a tariff’s deadweight loss (DWL), displayed in Table 9.1, under the assumption of a time-separable linear demand system with interior optimal consumption decisions, as follows. We recall the expression (9.1) for the DWL, under the assumption of time separability (i.e. cross-derivatives equal zero):

$$\text{DWL} = -\frac{1}{2} \sum_{j=1}^{J} e_j^2 \frac{\partial x_j}{\partial e_j}$$

We construct weights which are proportional to the demand derivatives, so that the coefficients on the tariff errors sum to one:

$$w_j \triangleq -\frac{1}{2} \frac{\partial x_j}{\partial e_j} \left(-\frac{1}{2} \sum_{i=1}^{J} \frac{\partial x_i}{\partial e_i} \right)$$

$$= \frac{\partial x_j}{\partial e_j} \left(\sum_{i=1}^{J} \frac{\partial x_i}{\partial e_i} \right).$$

We treat the vector of weights \vec{w} as a notional probability mass function. All expectations are with respect to \vec{w}.

Then our proxy loss function is the expected squared tariff error, under \vec{w}, and is proportional to the DWL:

$$L \triangleq \sum_{j=1}^{J} w_j e_j^2 = \frac{\sum_{j} e_j^2 \frac{\partial x_j}{\partial e_j}}{\sum_{j} \frac{\partial x_j}{\partial e_j}}$$

$$= -2 \cdot \text{DWL} \left/ \left(\sum_{j} \frac{\partial x_j}{\partial e_j} \right) \right.$$.
We define the tariff’s bias as the expected difference between the retail price and the social marginal cost (SMC):

\[\beta \triangleq \sum_j w_j (p_j^R - SMC_j) = \sum_j w_j e_j. \]

The variance is the expected squared difference of the tariff error from the bias:

\[\text{Var} \triangleq \sum_j w_j (p_j^R - SMC_i - \beta)^2 = \sum_j w_j (e_j - \beta)^2. \]

The tariff proxy loss is the variance plus the square of the bias:

\[L = \beta^2 + \text{Var}. \]

Since the \(DWL = -\left(\sum_j \frac{\partial x_j}{\partial e_j} \right) L/2 \), the portion of DWL due to bias is \(-\left(\sum_j \frac{\partial x_j}{\partial e_j} \right) \beta^2 / 2 \), and the portion due to variance is \(-\left(\sum_j \frac{\partial x_j}{\partial e_j} \right) \text{Var}/2 \). In Table 9.1, as in our simulations, we determine demand derivatives by assuming constant demand elasticity, and backing out demand derivatives from historical price and load levels for A-1 customers.

C.2 Social marginal cost and the social cost of carbon

To calculate the social marginal cost (SMC) RTP tariff, we assume that the social marginal cost of generation is the private marginal generation cost, plus the externalized cost of pollution. For simplicity, we consider pollution costs to be entirely attributable to GHG emissions.

We do not include estimated capacity costs in SMC tariffs, because we consider the quality of the data to be too low, and the calculation method too arbitrary, to merit inclusion in the tariffs that form the basis for our repository of simulation data. However, when we calculate welfare metrics in Sections 9.3 and 10.2, we also include estimated capacity costs, whose calculation we describe in Appendix C.3. The resulting inconsistency means that the SMC-RTP tariff could be improved on.

To determine the social cost of GHG emissions, we start by assigning a social cost of carbon, of $40 per metric tonne CO\(_2\)e (Jacobsen et al., 2016; Interagency Working Group on Social Cost of Carbon, 2013). From this, we subtract an estimate of the cost of carbon that was reflected in the price of carbon in the California cap and trade market, and thus internalized into wholesale prices. We determine the latter subtrahend to be $0 in 2012, and $12 in 2013 and 2014 (Hsia-Kiung et al., 2014).

In order to obtain the carbon cost per MWh, we multiply these carbon costs per tonne by the marginal operating emissions rate (MOER) of the CAISO grid, in tonnes per MWh. To obtain these MOERs, we use a dataset from the company WattTime, which gives hourly marginal operating emissions rates (MOERs) for the CAISO market, for the year 2015 (see
also (Callaway et al., 2015). We do not have hourly data on emissions rates for the CAISO grid for 2012-2014, but we will see below that the hourly variation in MOERs in 2015 is small enough that it would have a very small impact on our welfare calculations. We then assume that the composition of marginal power plants did not dramatically change between 2012 and 2015, and use the 2015 mean MOER from the WattTime dataset.

Then the time-average marginal external carbon cost is

\[
\text{MOER} \times 1 \text{ tonne/2204.62 lb} \times \frac{40 \text{ tonne}}{\text{SCC}} = 16.60 \text{ MWh for 2012}
\]

and

\[
\text{MOER} \times 1 \text{ tonne/2204.62 lb} \times \frac{40 - 12 \text{ tonne}}{\text{SCC}} = 11.62 \text{ MWh for 2013 and 2014}
\]

To show that using the mean MOER in place of the hourly results does not result in excessive error, we rely on our observation that the coefficient of variation for CAISO MOERs in WattTime dataset is 6.9%. Since variation in external costs is due entirely to variation in the MOER, this results in a standard deviation of $1.16 / MWh in 2012, and $0.86 / MWh in 2013 and 2014. Compared to the pricing errors we observe, this is extremely small.\footnote{We can draw a similar conclusion with publicly available data. In CAISO, the time-sensitive estimate of the marginal cost of carbon differs from its average by less than 2.9%, or $0.463/MWh, more than 95% of the time (Callaway et al., 2015, p. 19).} We also tried fitting several models predicting MOERs from LMPs, and found LMPs to be quite poor predictors. The R-squared coefficient for a linear regression of MOER on LMP for 2015 is 0.03. LOWESS locally linear regression exhibited a similarly poor fit.

Therefore, carbon costs are essentially a fixed adder, which “cancels out” some portion of the welfare loss caused by high volumetric markups, by bringing the social marginal cost up toward the retail price.

C.3 Calculation of capacity costs

In California, due to both price caps and limited price-responsiveness of demand, the energy markets are seen as inadequate to the task of ensuring sufficient capacity to meet peak demand. To address this, the CPUC requires that LSEs procure sufficient capacity to meet their estimated contribution to system peak load, with a 15% reserve margin, in a bilateral capacity market (Gannon et al., 2015). In the California capacity market, LSEs procure capacity at the monthly level.

To calculate marginal contributions to system capacity cost, we follow Boomhower and Davis (2016), whose primary concern is to evaluate the benefits of energy efficiency investments, which deliver time-varying reductions in consumption. They rely on the 2013-2014...
CPUC Resource Adequacy Report (Gannon et al., 2015), which presents data on a survey of resource adequacy (RA) contracts (covering generally around 10% of all RA contracts), including the mean, weighted average, maximum, minimum, and 85th percentile of contract costs per kW-year. It presents these figures by month-of-year for all of CAISO (Table 13), and regionally, aggregated over all months (Table 12).

Boomhower and Davis (2016, Appendix B) take the 85th percentile of contract prices, in $/kW-month, for all of California, disaggregated by month, to represent the marginal cost of adding or maintaining capacity. Then they consider several methods of allocating percentages of contribution to peak capacity needs across hours. The result of such an allocation procedure is to arrive at a $/kWh capacity charge for each hour of the month, in proportion to their contribution to peak, such that the charges add up to the original $/kW-month quantity. We follow one of their three methods, which assigns one third of the peak capacity cost to each of the peak three hours of system load. We obtain system load data from the website http://www.energyonline.com, provided by LCG Consulting.

This method has several shortcomings, but it seems to be the best achievable with publicly available data. Firstly, the CPUC survey covers only 31% of such contracts in CAISO, and we have no assurance that this subset of contracts is representative of the population. Further, we can see in Table 12 that capacity contracts reported for capacity local to the Bay Area and other PG&E areas settle at lower prices than in other regions, but we do not have monthly prices available for our geographical regions of interest—only for CAISO as a whole.²

Pfeifenberger et al. (2012) provide additional background on this topic. They argue that because California’s long-run Resource Adequacy requirement is currently met by bilateral contracting, it is difficult to estimate the value of marginal capacity in California. They report that as of 2012, the CPUC (California Public Utilities Commission) cost-effectiveness test assumed that peak reductions from that DR resources provided savings of $136/kW-year. In contrast, because of excess capacity, they argue that the capacity could be acquired for as little as $18-38/kW-year (Pfeifenberger et al., 2012, p. 2).

²In fact, the CPUC capacity (“Long Run Adequacy”) regulations are more complex than we have indicated, because in addition to the total capacity requirement, LSEs are also required to ensure that an administratively-determined portion of their capacity is in their local area, so that sufficient capacity is still available during grid congestion. Capacity prices vary considerably by local area.
Appendix D
Data appendix

Our simulations use different historical data as inputs, including time series of CAISO LMPs, weather, and representative historical consumption and data on the various tariffs offered by PG&E. In this section we describe the sources for this data and how the raw data has been processed. All data used in our simulations is available for download (Balandat et al., 2016b) so it can be used with our python package pyDR (Balandat et al., 2016a) to reproduce the results reported in this paper.

Weather Historical outside temperature and Global Horizontal incident (GHI) solar radiation data for each of the geographic locations was obtained from the publicly available CIMIS data set (California Department of Water Resources, 2015). For the 15 minute resolution model, the data was generated from the hourly data using two-sided exponential smoothing. The four different components of the solar radiation used in the HVAC building model simulations were computed using the open source python library pvlib (pvlib, 2016).

Wholesale electricity prices CAISO defines a total of 23 so-called Sub-Load-Aggregation Points (SLAP). Among other roles, these SLAPs are the pricing points on which compensation for Demand Response resources registered as Proxy Demand Resources (PDR) is based (California Independent System Operator Corporation, 2013). We used real-time market (RTM) data for the years 2012-2014 for the following SLAPs: PGCC (Central Coast), PGE (SF East Bay), PGF1 (Fresno), PGP2 (SF Peninsula) and PGSA (Sacramento). The data was scraped on 15 minute resolution from the CAISO OASIS API (California Independent System Operator Corporation, 2015). For the hourly resolution of our model, we used the average of the the ream-time LMP within each hour.

Tariffs The schedules for the PG&E commercial electricity tariffs used in our study are provided by PG&E in form of a spreadsheet (Pacific Gas and Electric Company, 2016b). The tariffs used for the simulation in this paper are also included in our python package pyDR (Balandat et al., 2016a).
PDP events For peak day pricing, we use data on the historical occurrence of “Smart-Days,” which are days on which the PG&E residential “SmartRate” critical peak prices are charged. This data is available on the PG&E website,¹ and we use the data from 2012 to 2014 in our simulations. PG&E representatives have also provided us with a list of PDP event days for 2013-2015 by email, and have told us that that SmartDay event days and PDP event days are triggered on the same days, although there are slight discrepancies. We use the online SmartDay data in order to have a consistent series that includes 2012.

The PG&E website lists the following SmartDay events:

- 2011: 6/21, 6/22, 7/5, 7/6, 7/28, 7/29, 8/17, 8/18, 8/23, 8/29, 9/2, 9/6, 9/7, 9/8, 9/20
- 2012: 7/9, 7/10, 7/11, 7/23, 9/4, 9/13, 9/14, 10/1, 10/2, 10/3
- 2013: 6/7, 6/28, 7/1, 7/2, 7/19, 8/19, 9/9, 9/10
- 2014: 5/14, 6/9, 6/30, 7/1, 7/7, 7/14, 7/25, 7/28, 7/29, 7/31, 9/11, 9/12
- 2015: 6/12, 6/26, 6/30, 7/1, 7/28, 7/29, 7/30, 8/17, 8/27, 8/28, 9/9, 9/10, 9/11
- 2016: 6/1, 6/26, 6/27, 6/28, 6/30, 7/14, 7/15, 7/26, 7/27, 7/28, 8/17, 9/26

Demand profiles We calibrate the parameters for the quadratic utility model (see Section B.1 for details) on the demand from the “dynamic profiles” provided by PG&E (Pacific Gas and Electric Company, 2016a).

Appendix E

Tables of results

In Tables E.1 - E.12, we display the simulation results for the QU consumer, for each tariff, DR type (including PDP as a DR type), battery size, and elasticity. Results are averaged across years (2012, 2013, 2014) and region (PGCC, PGEB, PGF1, PGP2, PGSA).

“CS” is consumer surplus: consumption utility minus consumer expenditure. “RES” is “retail energy surplus”: consumer expenditure minus LMP-weighted consumption and carbon externalized carbon costs. “Cap” is capacity costs. “SS” is social surplus — here reported as SS = CS + RES - Cap. “Gen” is marginal generation cost: LMP-weighted consumption, plus externalized carbon cost. (This implies that consumer expenditure can be calculated as RES + Gen.) “VSEAR” is virtual social energy arbitrage revenue: the revenue that would be generated if all charge-discharge cycles were purchases and sales of energy, at the LMP plus externalized carbon cost (see footnote in Section 9.2). “PEAR” is private energy arbitrage revenue: the savings in individual expenditure due to battery usage, holding control decisions at their actual values, including PDP revenues, but excluding baseline-dependent DR revenues.
Table E.1: Quadratic Utility data; $E_d = -0.05$, Battery size = None

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>37501</td>
<td>3002</td>
<td>198</td>
<td>40305</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>37500</td>
<td>3004</td>
<td>194</td>
<td>40309</td>
<td>1004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>37498</td>
<td>3005</td>
<td>194</td>
<td>40309</td>
<td>1005</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>37503</td>
<td>3000</td>
<td>197</td>
<td>40306</td>
<td>1008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>37502</td>
<td>3001</td>
<td>198</td>
<td>40306</td>
<td>1009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>37457</td>
<td>3045</td>
<td>197</td>
<td>40304</td>
<td>1010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>37455</td>
<td>3046</td>
<td>193</td>
<td>40308</td>
<td>1003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>37454</td>
<td>3047</td>
<td>193</td>
<td>40308</td>
<td>1004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>37459</td>
<td>3042</td>
<td>197</td>
<td>40305</td>
<td>1007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>37458</td>
<td>3044</td>
<td>197</td>
<td>40305</td>
<td>1008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>37418</td>
<td>3073</td>
<td>185</td>
<td>40306</td>
<td>1009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>36506</td>
<td>3915</td>
<td>186</td>
<td>40235</td>
<td>997</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>36505</td>
<td>3916</td>
<td>183</td>
<td>40238</td>
<td>990</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>36504</td>
<td>3917</td>
<td>183</td>
<td>40238</td>
<td>991</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>36508</td>
<td>3912</td>
<td>186</td>
<td>40234</td>
<td>994</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>36507</td>
<td>3914</td>
<td>186</td>
<td>40235</td>
<td>995</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>36685</td>
<td>3715</td>
<td>165</td>
<td>40235</td>
<td>998</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>40600</td>
<td>-46</td>
<td>205</td>
<td>40349</td>
<td>1048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>40598</td>
<td>-44</td>
<td>201</td>
<td>40353</td>
<td>1041</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>40598</td>
<td>-44</td>
<td>201</td>
<td>40353</td>
<td>1041</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>40603</td>
<td>-47</td>
<td>205</td>
<td>40350</td>
<td>1045</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>40602</td>
<td>-47</td>
<td>205</td>
<td>40350</td>
<td>1045</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>38429</td>
<td>2106</td>
<td>197</td>
<td>40338</td>
<td>1015</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>40558</td>
<td>0</td>
<td>202</td>
<td>40356</td>
<td>1039</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table E.2: Quadratic Utility data; $E_d = -0.05$, Battery size = Medium

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>37501</td>
<td>3002</td>
<td>198</td>
<td>40305</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>37612</td>
<td>2924</td>
<td>192</td>
<td>40344</td>
<td>981</td>
<td>31</td>
<td>-43</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>37574</td>
<td>2967</td>
<td>188</td>
<td>40352</td>
<td>975</td>
<td>36</td>
<td>-30</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>37555</td>
<td>2991</td>
<td>184</td>
<td>40362</td>
<td>968</td>
<td>43</td>
<td>-5</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>37538</td>
<td>3008</td>
<td>183</td>
<td>40363</td>
<td>968</td>
<td>43</td>
<td>-5</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>37459</td>
<td>3039</td>
<td>197</td>
<td>40301</td>
<td>1014</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>37572</td>
<td>2962</td>
<td>184</td>
<td>40350</td>
<td>980</td>
<td>31</td>
<td>-36</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>37532</td>
<td>3006</td>
<td>182</td>
<td>40356</td>
<td>976</td>
<td>35</td>
<td>-23</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>37514</td>
<td>3033</td>
<td>171</td>
<td>40376</td>
<td>965</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>37495</td>
<td>3051</td>
<td>172</td>
<td>40375</td>
<td>965</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>37478</td>
<td>3009</td>
<td>185</td>
<td>40301</td>
<td>1013</td>
<td>-5</td>
<td>59</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>37142</td>
<td>3265</td>
<td>185</td>
<td>40222</td>
<td>1013</td>
<td>-16</td>
<td>636</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>37235</td>
<td>3212</td>
<td>165</td>
<td>40283</td>
<td>977</td>
<td>21</td>
<td>607</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>37196</td>
<td>3248</td>
<td>172</td>
<td>40272</td>
<td>978</td>
<td>19</td>
<td>619</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>37191</td>
<td>3257</td>
<td>162</td>
<td>40286</td>
<td>971</td>
<td>26</td>
<td>633</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>37170</td>
<td>3274</td>
<td>170</td>
<td>40274</td>
<td>976</td>
<td>21</td>
<td>634</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>37256</td>
<td>3131</td>
<td>164</td>
<td>40223</td>
<td>1014</td>
<td>-16</td>
<td>570</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>40600</td>
<td>-46</td>
<td>205</td>
<td>40349</td>
<td>1048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>40757</td>
<td>-179</td>
<td>211</td>
<td>40368</td>
<td>1024</td>
<td>25</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>40736</td>
<td>-157</td>
<td>211</td>
<td>40368</td>
<td>1024</td>
<td>25</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>40660</td>
<td>-61</td>
<td>191</td>
<td>40407</td>
<td>1003</td>
<td>45</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>40652</td>
<td>-53</td>
<td>191</td>
<td>40407</td>
<td>1004</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>38546</td>
<td>2144</td>
<td>149</td>
<td>40541</td>
<td>866</td>
<td>155</td>
<td>119</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>40733</td>
<td>0</td>
<td>122</td>
<td>40611</td>
<td>868</td>
<td>178</td>
<td>189</td>
</tr>
</tbody>
</table>
Table E.3: Quadratic Utility data; $E_d = -0.05$, Battery size = Large

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>37502</td>
<td>3001</td>
<td>198</td>
<td>40305</td>
<td>1011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>37725</td>
<td>2767</td>
<td>227</td>
<td>40265</td>
<td>1027</td>
<td>-15</td>
<td>-143</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>37645</td>
<td>2863</td>
<td>220</td>
<td>40288</td>
<td>1009</td>
<td>3</td>
<td>-100</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>37556</td>
<td>2989</td>
<td>185</td>
<td>40360</td>
<td>969</td>
<td>42</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>37538</td>
<td>3007</td>
<td>183</td>
<td>40361</td>
<td>969</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>37461</td>
<td>3038</td>
<td>197</td>
<td>40301</td>
<td>1014</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>37682</td>
<td>2815</td>
<td>205</td>
<td>40292</td>
<td>1020</td>
<td>-8</td>
<td>-123</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>37601</td>
<td>2908</td>
<td>192</td>
<td>40317</td>
<td>1006</td>
<td>5</td>
<td>-83</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>37513</td>
<td>3032</td>
<td>171</td>
<td>40374</td>
<td>966</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>37496</td>
<td>3049</td>
<td>172</td>
<td>40373</td>
<td>966</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>37555</td>
<td>2942</td>
<td>108</td>
<td>40388</td>
<td>1011</td>
<td>-1</td>
<td>140</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>37842</td>
<td>2632</td>
<td>73</td>
<td>40401</td>
<td>1017</td>
<td>-10</td>
<td>1360</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>38008</td>
<td>2476</td>
<td>78</td>
<td>40407</td>
<td>1011</td>
<td>-3</td>
<td>1286</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>37950</td>
<td>2539</td>
<td>76</td>
<td>40412</td>
<td>1005</td>
<td>3</td>
<td>1309</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>37878</td>
<td>2624</td>
<td>73</td>
<td>40429</td>
<td>988</td>
<td>18</td>
<td>1358</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>37866</td>
<td>2636</td>
<td>73</td>
<td>40429</td>
<td>989</td>
<td>18</td>
<td>1358</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>37899</td>
<td>2579</td>
<td>55</td>
<td>40423</td>
<td>1019</td>
<td>-10</td>
<td>1252</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>40600</td>
<td>-46</td>
<td>205</td>
<td>40349</td>
<td>1048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>40953</td>
<td>-498</td>
<td>308</td>
<td>40177</td>
<td>1118</td>
<td>-68</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>40929</td>
<td>-443</td>
<td>303</td>
<td>40184</td>
<td>1116</td>
<td>-67</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>40660</td>
<td>-62</td>
<td>192</td>
<td>40406</td>
<td>1004</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>40652</td>
<td>-55</td>
<td>192</td>
<td>40406</td>
<td>1004</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>38608</td>
<td>2180</td>
<td>106</td>
<td>40683</td>
<td>769</td>
<td>254</td>
<td>182</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>40852</td>
<td>0</td>
<td>61</td>
<td>40791</td>
<td>751</td>
<td>297</td>
<td>320</td>
</tr>
</tbody>
</table>
Table E.4: Quadratic Utility data; $E_d = -0.1$, Battery size = None

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>18631</td>
<td>3002</td>
<td>198</td>
<td>21435</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>18634</td>
<td>3002</td>
<td>194</td>
<td>21443</td>
<td>999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>18632</td>
<td>3005</td>
<td>194</td>
<td>21443</td>
<td>1001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>18635</td>
<td>2999</td>
<td>197</td>
<td>21437</td>
<td>1001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>18633</td>
<td>3001</td>
<td>197</td>
<td>21437</td>
<td>1004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>18587</td>
<td>3043</td>
<td>196</td>
<td>21433</td>
<td>1009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>18591</td>
<td>3043</td>
<td>192</td>
<td>21441</td>
<td>997</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>18588</td>
<td>3045</td>
<td>192</td>
<td>21441</td>
<td>999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>18591</td>
<td>3039</td>
<td>195</td>
<td>21435</td>
<td>1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>18590</td>
<td>3041</td>
<td>196</td>
<td>21435</td>
<td>1002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>18558</td>
<td>3050</td>
<td>172</td>
<td>21436</td>
<td>1006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>17684</td>
<td>3785</td>
<td>175</td>
<td>21294</td>
<td>983</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>17688</td>
<td>3784</td>
<td>171</td>
<td>21301</td>
<td>971</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>17685</td>
<td>3787</td>
<td>172</td>
<td>21300</td>
<td>974</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>17688</td>
<td>3779</td>
<td>174</td>
<td>21293</td>
<td>973</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>17686</td>
<td>3784</td>
<td>174</td>
<td>21295</td>
<td>977</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>17891</td>
<td>3537</td>
<td>133</td>
<td>21295</td>
<td>984</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>21782</td>
<td>-48</td>
<td>213</td>
<td>21522</td>
<td>1085</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>21786</td>
<td>-47</td>
<td>209</td>
<td>21530</td>
<td>1073</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>21785</td>
<td>-46</td>
<td>209</td>
<td>21530</td>
<td>1074</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>21787</td>
<td>-49</td>
<td>212</td>
<td>21526</td>
<td>1076</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>21786</td>
<td>-48</td>
<td>212</td>
<td>21526</td>
<td>1077</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>19569</td>
<td>2129</td>
<td>197</td>
<td>21501</td>
<td>1018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>21743</td>
<td>0</td>
<td>206</td>
<td>21537</td>
<td>1068</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table E.5: Quadratic Utility data; $E_d = -0.1$, Battery size = Medium

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>18631</td>
<td>3002</td>
<td>198</td>
<td>21435</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>18743</td>
<td>2925</td>
<td>192</td>
<td>21475</td>
<td>982</td>
<td>31</td>
<td>-43</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>18704</td>
<td>2968</td>
<td>189</td>
<td>21483</td>
<td>976</td>
<td>36</td>
<td>-30</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>18685</td>
<td>2991</td>
<td>184</td>
<td>21492</td>
<td>968</td>
<td>43</td>
<td>-5</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>18668</td>
<td>3008</td>
<td>183</td>
<td>21493</td>
<td>968</td>
<td>42</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>18590</td>
<td>3037</td>
<td>196</td>
<td>21430</td>
<td>1013</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>18703</td>
<td>2962</td>
<td>184</td>
<td>21480</td>
<td>980</td>
<td>30</td>
<td>-36</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>18662</td>
<td>3005</td>
<td>182</td>
<td>21485</td>
<td>976</td>
<td>35</td>
<td>-23</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>18644</td>
<td>3031</td>
<td>170</td>
<td>21504</td>
<td>964</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>18626</td>
<td>3049</td>
<td>171</td>
<td>21503</td>
<td>964</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>18617</td>
<td>2987</td>
<td>172</td>
<td>21432</td>
<td>1011</td>
<td>-5</td>
<td>59</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>18318</td>
<td>3140</td>
<td>174</td>
<td>21284</td>
<td>999</td>
<td>-15</td>
<td>635</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>18410</td>
<td>3091</td>
<td>154</td>
<td>21347</td>
<td>965</td>
<td>19</td>
<td>606</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>18372</td>
<td>3123</td>
<td>161</td>
<td>21334</td>
<td>966</td>
<td>18</td>
<td>618</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>18366</td>
<td>3132</td>
<td>152</td>
<td>21345</td>
<td>958</td>
<td>24</td>
<td>632</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>18346</td>
<td>3147</td>
<td>160</td>
<td>21334</td>
<td>962</td>
<td>20</td>
<td>632</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>18458</td>
<td>2964</td>
<td>110</td>
<td>21312</td>
<td>1000</td>
<td>-15</td>
<td>568</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>21782</td>
<td>-48</td>
<td>213</td>
<td>21522</td>
<td>1085</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>21942</td>
<td>-182</td>
<td>217</td>
<td>21544</td>
<td>1060</td>
<td>27</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>21921</td>
<td>-160</td>
<td>217</td>
<td>21544</td>
<td>1060</td>
<td>27</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>21844</td>
<td>-63</td>
<td>198</td>
<td>21583</td>
<td>1038</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>21837</td>
<td>-55</td>
<td>198</td>
<td>21583</td>
<td>1039</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>19684</td>
<td>2168</td>
<td>149</td>
<td>21703</td>
<td>875</td>
<td>155</td>
<td>119</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>21919</td>
<td>0</td>
<td>126</td>
<td>21792</td>
<td>900</td>
<td>181</td>
<td>192</td>
</tr>
</tbody>
</table>
Table E.6: Quadratic Utility data; $E_d = -0.1$, Battery size = Large

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>18632</td>
<td>3001</td>
<td>198</td>
<td>21435</td>
<td>1011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>18856</td>
<td>2769</td>
<td>227</td>
<td>21398</td>
<td>1029</td>
<td>-15</td>
<td>-143</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>18776</td>
<td>2865</td>
<td>221</td>
<td>21420</td>
<td>1010</td>
<td>3</td>
<td>-100</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>18686</td>
<td>2989</td>
<td>184</td>
<td>21490</td>
<td>969</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>18668</td>
<td>3006</td>
<td>183</td>
<td>21491</td>
<td>969</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>18591</td>
<td>3036</td>
<td>196</td>
<td>21430</td>
<td>1013</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>18813</td>
<td>2816</td>
<td>205</td>
<td>21424</td>
<td>1021</td>
<td>-8</td>
<td>-123</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>18731</td>
<td>2908</td>
<td>191</td>
<td>21448</td>
<td>1007</td>
<td>5</td>
<td>-84</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>18644</td>
<td>3030</td>
<td>170</td>
<td>21503</td>
<td>965</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>18626</td>
<td>3047</td>
<td>171</td>
<td>21502</td>
<td>966</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>18689</td>
<td>2940</td>
<td>98</td>
<td>21531</td>
<td>1011</td>
<td>-1</td>
<td>139</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>18984</td>
<td>2613</td>
<td>53</td>
<td>21543</td>
<td>1015</td>
<td>-10</td>
<td>1351</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>19151</td>
<td>2458</td>
<td>63</td>
<td>21546</td>
<td>1010</td>
<td>-3</td>
<td>1278</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>19092</td>
<td>2520</td>
<td>57</td>
<td>21555</td>
<td>1003</td>
<td>3</td>
<td>1301</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>19020</td>
<td>2605</td>
<td>53</td>
<td>21572</td>
<td>986</td>
<td>18</td>
<td>1349</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>19009</td>
<td>2616</td>
<td>53</td>
<td>21572</td>
<td>987</td>
<td>18</td>
<td>1349</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>19040</td>
<td>2572</td>
<td>51</td>
<td>21561</td>
<td>1019</td>
<td>-10</td>
<td>1248</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>21782</td>
<td>-48</td>
<td>213</td>
<td>21522</td>
<td>1085</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>22171</td>
<td>-504</td>
<td>317</td>
<td>21350</td>
<td>1155</td>
<td>-66</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>22116</td>
<td>-448</td>
<td>311</td>
<td>21357</td>
<td>1153</td>
<td>-65</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>21845</td>
<td>-65</td>
<td>199</td>
<td>21581</td>
<td>1040</td>
<td>45</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>21837</td>
<td>-57</td>
<td>199</td>
<td>21581</td>
<td>1040</td>
<td>45</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>19746</td>
<td>2206</td>
<td>107</td>
<td>21845</td>
<td>779</td>
<td>255</td>
<td>184</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>22039</td>
<td>0</td>
<td>66</td>
<td>21973</td>
<td>783</td>
<td>303</td>
<td>326</td>
</tr>
</tbody>
</table>
Table E.7: Quadratic Utility data; $E_d = -0.2$, Battery size = None

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>9196</td>
<td>3002</td>
<td>198</td>
<td>12000</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>9207</td>
<td>2999</td>
<td>191</td>
<td>12015</td>
<td>988</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>9202</td>
<td>3004</td>
<td>192</td>
<td>12014</td>
<td>993</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>9205</td>
<td>2994</td>
<td>195</td>
<td>12005</td>
<td>987</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>9202</td>
<td>3000</td>
<td>196</td>
<td>12006</td>
<td>993</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>9153</td>
<td>3038</td>
<td>195</td>
<td>11996</td>
<td>1007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>9164</td>
<td>3035</td>
<td>188</td>
<td>12011</td>
<td>984</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>9159</td>
<td>3041</td>
<td>190</td>
<td>12010</td>
<td>989</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>9162</td>
<td>3030</td>
<td>192</td>
<td>12001</td>
<td>983</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>9158</td>
<td>3036</td>
<td>193</td>
<td>12002</td>
<td>990</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>9143</td>
<td>3006</td>
<td>147</td>
<td>12002</td>
<td>1002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>8345</td>
<td>3524</td>
<td>152</td>
<td>11717</td>
<td>955</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>8356</td>
<td>3519</td>
<td>145</td>
<td>11731</td>
<td>932</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>8349</td>
<td>3527</td>
<td>148</td>
<td>11728</td>
<td>939</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>8355</td>
<td>3509</td>
<td>145</td>
<td>11718</td>
<td>931</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>8349</td>
<td>3522</td>
<td>151</td>
<td>11720</td>
<td>941</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>8600</td>
<td>3259</td>
<td>87</td>
<td>11772</td>
<td>962</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>12452</td>
<td>-51</td>
<td>228</td>
<td>12173</td>
<td>1159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>12463</td>
<td>-53</td>
<td>221</td>
<td>12189</td>
<td>1136</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>12461</td>
<td>-51</td>
<td>222</td>
<td>12189</td>
<td>1138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>12462</td>
<td>-51</td>
<td>225</td>
<td>12185</td>
<td>1136</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>12460</td>
<td>-50</td>
<td>226</td>
<td>12185</td>
<td>1139</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>10154</td>
<td>2173</td>
<td>196</td>
<td>12132</td>
<td>1025</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>12418</td>
<td>0</td>
<td>215</td>
<td>12203</td>
<td>1125</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table E.8: Quadratic Utility data; $E_d = -0.2$, Battery size = Medium

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>9196</td>
<td>3002</td>
<td>198</td>
<td>12000</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>9309</td>
<td>2927</td>
<td>193</td>
<td>12043</td>
<td>983</td>
<td>30</td>
<td>-43</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>9270</td>
<td>2970</td>
<td>189</td>
<td>12050</td>
<td>977</td>
<td>36</td>
<td>-30</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>9250</td>
<td>2990</td>
<td>184</td>
<td>12056</td>
<td>967</td>
<td>42</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>9233</td>
<td>3008</td>
<td>183</td>
<td>12058</td>
<td>968</td>
<td>42</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>9155</td>
<td>3032</td>
<td>195</td>
<td>11993</td>
<td>1011</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>9269</td>
<td>2960</td>
<td>183</td>
<td>12046</td>
<td>981</td>
<td>30</td>
<td>-36</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>9228</td>
<td>3003</td>
<td>181</td>
<td>12051</td>
<td>975</td>
<td>34</td>
<td>-23</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>9210</td>
<td>3026</td>
<td>169</td>
<td>12067</td>
<td>962</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>9191</td>
<td>3044</td>
<td>170</td>
<td>12066</td>
<td>962</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>9202</td>
<td>2945</td>
<td>137</td>
<td>12010</td>
<td>1006</td>
<td>-4</td>
<td>59</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>8976</td>
<td>2895</td>
<td>149</td>
<td>11721</td>
<td>970</td>
<td>-13</td>
<td>632</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>9064</td>
<td>2856</td>
<td>132</td>
<td>11788</td>
<td>942</td>
<td>17</td>
<td>604</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>9028</td>
<td>2881</td>
<td>139</td>
<td>11770</td>
<td>941</td>
<td>17</td>
<td>615</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>9019</td>
<td>2886</td>
<td>132</td>
<td>11773</td>
<td>933</td>
<td>22</td>
<td>629</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>9002</td>
<td>2901</td>
<td>138</td>
<td>11765</td>
<td>936</td>
<td>19</td>
<td>630</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>9124</td>
<td>2833</td>
<td>86</td>
<td>11871</td>
<td>984</td>
<td>-14</td>
<td>566</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>12452</td>
<td>-51</td>
<td>228</td>
<td>12173</td>
<td>1159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>12618</td>
<td>-188</td>
<td>229</td>
<td>12201</td>
<td>1132</td>
<td>31</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>12595</td>
<td>-165</td>
<td>229</td>
<td>12201</td>
<td>1131</td>
<td>31</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>12519</td>
<td>-67</td>
<td>212</td>
<td>12239</td>
<td>1109</td>
<td>50</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>12510</td>
<td>-59</td>
<td>212</td>
<td>12239</td>
<td>1109</td>
<td>50</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>10265</td>
<td>2217</td>
<td>150</td>
<td>12332</td>
<td>894</td>
<td>156</td>
<td>120</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>12594</td>
<td>0</td>
<td>136</td>
<td>12459</td>
<td>965</td>
<td>186</td>
<td>198</td>
</tr>
</tbody>
</table>
Table E.9: Quadratic Utility data; $E_d = -0.2$, Battery size = Large

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>9197</td>
<td>3001</td>
<td>198</td>
<td>12000</td>
<td>1011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>9422</td>
<td>2775</td>
<td>228</td>
<td>11969</td>
<td>1032</td>
<td>-15</td>
<td>-143</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>9342</td>
<td>2869</td>
<td>221</td>
<td>11989</td>
<td>1012</td>
<td>3</td>
<td>-100</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>9251</td>
<td>2989</td>
<td>184</td>
<td>12055</td>
<td>969</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>9233</td>
<td>3006</td>
<td>183</td>
<td>12056</td>
<td>969</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>9157</td>
<td>3032</td>
<td>195</td>
<td>11993</td>
<td>1011</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>9380</td>
<td>2818</td>
<td>204</td>
<td>11994</td>
<td>1023</td>
<td>-8</td>
<td>-123</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>9297</td>
<td>2909</td>
<td>190</td>
<td>12016</td>
<td>1007</td>
<td>5</td>
<td>-84</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>9209</td>
<td>3026</td>
<td>169</td>
<td>12066</td>
<td>964</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>9192</td>
<td>3043</td>
<td>170</td>
<td>12065</td>
<td>964</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>9257</td>
<td>2944</td>
<td>97</td>
<td>12103</td>
<td>1011</td>
<td>-1</td>
<td>139</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>9564</td>
<td>2602</td>
<td>46</td>
<td>12120</td>
<td>1016</td>
<td>-11</td>
<td>1335</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>9732</td>
<td>2449</td>
<td>57</td>
<td>12125</td>
<td>1012</td>
<td>-3</td>
<td>1262</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>9673</td>
<td>2511</td>
<td>50</td>
<td>12135</td>
<td>1005</td>
<td>2</td>
<td>1285</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>9600</td>
<td>2593</td>
<td>45</td>
<td>12148</td>
<td>986</td>
<td>18</td>
<td>1332</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>9589</td>
<td>2605</td>
<td>46</td>
<td>12148</td>
<td>987</td>
<td>17</td>
<td>1333</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>9618</td>
<td>2571</td>
<td>46</td>
<td>12142</td>
<td>1021</td>
<td>-10</td>
<td>1240</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>12452</td>
<td>-51</td>
<td>228</td>
<td>12173</td>
<td>1159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>12851</td>
<td>-515</td>
<td>333</td>
<td>12003</td>
<td>1228</td>
<td>-62</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>12795</td>
<td>-458</td>
<td>327</td>
<td>12010</td>
<td>1226</td>
<td>-61</td>
<td>-51</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>12519</td>
<td>-69</td>
<td>213</td>
<td>12237</td>
<td>1111</td>
<td>48</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>12511</td>
<td>-61</td>
<td>213</td>
<td>12237</td>
<td>1111</td>
<td>48</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>10327</td>
<td>2256</td>
<td>110</td>
<td>12473</td>
<td>800</td>
<td>258</td>
<td>186</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>12718</td>
<td>0</td>
<td>76</td>
<td>12641</td>
<td>847</td>
<td>314</td>
<td>337</td>
</tr>
</tbody>
</table>
Table E.10: Quadratic Utility data; $E_d = -0.3$, Battery size = None

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>6051</td>
<td>3002</td>
<td>198</td>
<td>8855</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>6069</td>
<td>2996</td>
<td>187</td>
<td>8877</td>
<td>978</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>6062</td>
<td>3004</td>
<td>190</td>
<td>8876</td>
<td>985</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>6066</td>
<td>2989</td>
<td>188</td>
<td>8868</td>
<td>975</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>6060</td>
<td>2999</td>
<td>194</td>
<td>8865</td>
<td>983</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>6009</td>
<td>3034</td>
<td>193</td>
<td>8849</td>
<td>1006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>6027</td>
<td>3027</td>
<td>183</td>
<td>8871</td>
<td>973</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>6019</td>
<td>3036</td>
<td>186</td>
<td>8869</td>
<td>980</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>6024</td>
<td>3020</td>
<td>183</td>
<td>8861</td>
<td>969</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>6018</td>
<td>3031</td>
<td>190</td>
<td>8858</td>
<td>979</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>6018</td>
<td>2961</td>
<td>121</td>
<td>8607</td>
<td>948</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>5296</td>
<td>3263</td>
<td>128</td>
<td>8430</td>
<td>926</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>5314</td>
<td>3257</td>
<td>119</td>
<td>8452</td>
<td>897</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>5303</td>
<td>3267</td>
<td>125</td>
<td>8446</td>
<td>906</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>5311</td>
<td>3240</td>
<td>117</td>
<td>8434</td>
<td>892</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>5302</td>
<td>3260</td>
<td>126</td>
<td>8436</td>
<td>905</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>5549</td>
<td>3141</td>
<td>82</td>
<td>8607</td>
<td>948</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>9412</td>
<td>-54</td>
<td>243</td>
<td>9115</td>
<td>1233</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>9430</td>
<td>-60</td>
<td>233</td>
<td>9138</td>
<td>1199</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>9427</td>
<td>-56</td>
<td>234</td>
<td>9138</td>
<td>1202</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>9427</td>
<td>-54</td>
<td>235</td>
<td>9138</td>
<td>1197</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>9425</td>
<td>-52</td>
<td>238</td>
<td>9135</td>
<td>1200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>7029</td>
<td>2217</td>
<td>194</td>
<td>9052</td>
<td>1033</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>9382</td>
<td>0</td>
<td>223</td>
<td>9159</td>
<td>1182</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table E.11: Quadratic Utility data; $E_d = -0.3$, Battery size = Medium

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>6051</td>
<td>3002</td>
<td>198</td>
<td>8855</td>
<td>1011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>6165</td>
<td>2930</td>
<td>193</td>
<td>8901</td>
<td>985</td>
<td>30</td>
<td>-43</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>6125</td>
<td>2971</td>
<td>189</td>
<td>8907</td>
<td>978</td>
<td>35</td>
<td>-30</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>6105</td>
<td>2990</td>
<td>184</td>
<td>8911</td>
<td>967</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>6088</td>
<td>3007</td>
<td>183</td>
<td>8912</td>
<td>967</td>
<td>41</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>6011</td>
<td>3028</td>
<td>193</td>
<td>8846</td>
<td>1009</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>6126</td>
<td>2959</td>
<td>182</td>
<td>8903</td>
<td>981</td>
<td>30</td>
<td>-36</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>6085</td>
<td>3001</td>
<td>180</td>
<td>8906</td>
<td>975</td>
<td>34</td>
<td>-23</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>6065</td>
<td>3022</td>
<td>168</td>
<td>8919</td>
<td>960</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>6047</td>
<td>3040</td>
<td>169</td>
<td>8918</td>
<td>961</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>6074</td>
<td>2924</td>
<td>97</td>
<td>8902</td>
<td>1004</td>
<td>-4</td>
<td>58</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>5920</td>
<td>2672</td>
<td>118</td>
<td>8474</td>
<td>942</td>
<td>-11</td>
<td>628</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>6004</td>
<td>2643</td>
<td>107</td>
<td>8540</td>
<td>921</td>
<td>15</td>
<td>602</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>5971</td>
<td>2660</td>
<td>113</td>
<td>8518</td>
<td>917</td>
<td>16</td>
<td>612</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>5959</td>
<td>2663</td>
<td>109</td>
<td>8513</td>
<td>908</td>
<td>20</td>
<td>625</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>5945</td>
<td>2677</td>
<td>112</td>
<td>8509</td>
<td>911</td>
<td>19</td>
<td>626</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>6040</td>
<td>2726</td>
<td>80</td>
<td>8685</td>
<td>970</td>
<td>-13</td>
<td>565</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>9412</td>
<td>-54</td>
<td>243</td>
<td>9115</td>
<td>1233</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>9584</td>
<td>-194</td>
<td>242</td>
<td>9147</td>
<td>1203</td>
<td>34</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>9560</td>
<td>-170</td>
<td>242</td>
<td>9148</td>
<td>1203</td>
<td>34</td>
<td>-13</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>9483</td>
<td>-71</td>
<td>226</td>
<td>9186</td>
<td>1179</td>
<td>53</td>
<td>-1</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>9474</td>
<td>-63</td>
<td>226</td>
<td>9185</td>
<td>1179</td>
<td>53</td>
<td>-1</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>7136</td>
<td>2265</td>
<td>153</td>
<td>9249</td>
<td>914</td>
<td>157</td>
<td>121</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>9560</td>
<td>0</td>
<td>146</td>
<td>9414</td>
<td>1029</td>
<td>192</td>
<td>204</td>
</tr>
</tbody>
</table>
Table E.12: Quadratic Utility data; $E_d = -0.3$, Battery size = Large

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>CS</th>
<th>RES</th>
<th>Cap</th>
<th>SS</th>
<th>Gen</th>
<th>VSEAR</th>
<th>VPEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>6052</td>
<td>3001</td>
<td>198</td>
<td>8855</td>
<td>1011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1</td>
<td>CAISO</td>
<td>6278</td>
<td>2780</td>
<td>228</td>
<td>8830</td>
<td>1035</td>
<td>-15</td>
<td>-143</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G</td>
<td>6197</td>
<td>2872</td>
<td>221</td>
<td>8848</td>
<td>1014</td>
<td>3</td>
<td>-100</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>6106</td>
<td>2988</td>
<td>184</td>
<td>8910</td>
<td>968</td>
<td>40</td>
<td>-4</td>
</tr>
<tr>
<td>A1</td>
<td>LMP-G BLT</td>
<td>6088</td>
<td>3006</td>
<td>183</td>
<td>8911</td>
<td>969</td>
<td>40</td>
<td>-4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>6012</td>
<td>3027</td>
<td>193</td>
<td>8847</td>
<td>1009</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>6236</td>
<td>2820</td>
<td>203</td>
<td>8853</td>
<td>1025</td>
<td>-9</td>
<td>-123</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>6154</td>
<td>2909</td>
<td>189</td>
<td>8873</td>
<td>1008</td>
<td>4</td>
<td>-84</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>6065</td>
<td>3021</td>
<td>168</td>
<td>8919</td>
<td>962</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>6047</td>
<td>3039</td>
<td>168</td>
<td>8917</td>
<td>962</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>6113</td>
<td>2947</td>
<td>97</td>
<td>8964</td>
<td>1012</td>
<td>-1</td>
<td>139</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>6430</td>
<td>2592</td>
<td>45</td>
<td>8977</td>
<td>1016</td>
<td>-11</td>
<td>1318</td>
</tr>
<tr>
<td>A6TOU</td>
<td>CAISO</td>
<td>6599</td>
<td>2443</td>
<td>56</td>
<td>8986</td>
<td>1015</td>
<td>-3</td>
<td>1245</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G</td>
<td>6540</td>
<td>2504</td>
<td>49</td>
<td>8995</td>
<td>1007</td>
<td>2</td>
<td>1268</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>6467</td>
<td>2583</td>
<td>45</td>
<td>9005</td>
<td>986</td>
<td>17</td>
<td>1315</td>
</tr>
<tr>
<td>A6TOU</td>
<td>LMP-G BLT</td>
<td>6455</td>
<td>2595</td>
<td>45</td>
<td>9005</td>
<td>987</td>
<td>17</td>
<td>1316</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>6482</td>
<td>2575</td>
<td>46</td>
<td>9011</td>
<td>1025</td>
<td>-11</td>
<td>1233</td>
</tr>
<tr>
<td>Opt Flat</td>
<td>None</td>
<td>9412</td>
<td>243</td>
<td>9115</td>
<td>1233</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Opt Flat</td>
<td>CAISO</td>
<td>9821</td>
<td>346</td>
<td>8948</td>
<td>1301</td>
<td>-58</td>
<td>-51</td>
<td></td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G</td>
<td>9763</td>
<td>341</td>
<td>8955</td>
<td>1299</td>
<td>-58</td>
<td>-51</td>
<td></td>
</tr>
<tr>
<td>Opt Flat</td>
<td>BLT</td>
<td>9483</td>
<td>226</td>
<td>9183</td>
<td>1181</td>
<td>51</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Opt Flat</td>
<td>LMP-G BLT</td>
<td>9474</td>
<td>226</td>
<td>9183</td>
<td>1181</td>
<td>51</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>7199</td>
<td>113</td>
<td>9392</td>
<td>821</td>
<td>261</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>9686</td>
<td>87</td>
<td>9600</td>
<td>910</td>
<td>324</td>
<td>348</td>
<td></td>
</tr>
</tbody>
</table>
Table E.13: HVAC model simulation Data

<table>
<thead>
<tr>
<th>Tariff</th>
<th>DR Type</th>
<th>Indiv</th>
<th>Gen</th>
<th>Cap</th>
<th>-SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>None</td>
<td>146795</td>
<td>47275</td>
<td>20825</td>
<td>68100</td>
</tr>
<tr>
<td>A1</td>
<td>BLT</td>
<td>144649</td>
<td>44312</td>
<td>18211</td>
<td>62523</td>
</tr>
<tr>
<td>A1TOU</td>
<td>None</td>
<td>148514</td>
<td>47122</td>
<td>20724</td>
<td>67846</td>
</tr>
<tr>
<td>A1TOU</td>
<td>CAISO</td>
<td>144595</td>
<td>44006</td>
<td>17477</td>
<td>61483</td>
</tr>
<tr>
<td>A1TOU</td>
<td>BLT</td>
<td>146211</td>
<td>43926</td>
<td>17284</td>
<td>61210</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G</td>
<td>146239</td>
<td>44011</td>
<td>17312</td>
<td>61323</td>
</tr>
<tr>
<td>A1TOU</td>
<td>LMP-G BLT</td>
<td>146998</td>
<td>44424</td>
<td>18188</td>
<td>62612</td>
</tr>
<tr>
<td>A1TOU</td>
<td>PDP</td>
<td>147396</td>
<td>46824</td>
<td>8591</td>
<td>55415</td>
</tr>
<tr>
<td>A10</td>
<td>None</td>
<td>149471</td>
<td>47936</td>
<td>11455</td>
<td>59391</td>
</tr>
<tr>
<td>A10</td>
<td>BLT</td>
<td>147712</td>
<td>46135</td>
<td>10904</td>
<td>57039</td>
</tr>
<tr>
<td>A10TOU</td>
<td>None</td>
<td>147242</td>
<td>47618</td>
<td>11184</td>
<td>58802</td>
</tr>
<tr>
<td>A10TOU</td>
<td>BLT</td>
<td>145564</td>
<td>45892</td>
<td>10702</td>
<td>56594</td>
</tr>
<tr>
<td>A10TOU</td>
<td>PDP</td>
<td>148114</td>
<td>47694</td>
<td>7708</td>
<td>55402</td>
</tr>
<tr>
<td>A6TOU</td>
<td>None</td>
<td>136553</td>
<td>45695</td>
<td>2867</td>
<td>48562</td>
</tr>
<tr>
<td>A6TOU</td>
<td>BLT</td>
<td>134969</td>
<td>44162</td>
<td>2778</td>
<td>46940</td>
</tr>
<tr>
<td>A6TOU</td>
<td>PDP</td>
<td>135883</td>
<td>45642</td>
<td>2627</td>
<td>48269</td>
</tr>
<tr>
<td>E19TOU</td>
<td>None</td>
<td>131046</td>
<td>49598</td>
<td>3361</td>
<td>52959</td>
</tr>
<tr>
<td>E19TOU</td>
<td>BLT</td>
<td>129784</td>
<td>48440</td>
<td>3234</td>
<td>51674</td>
</tr>
<tr>
<td>E19TOU</td>
<td>PDP</td>
<td>131046</td>
<td>49598</td>
<td>3361</td>
<td>52959</td>
</tr>
<tr>
<td>OptFlat</td>
<td>None</td>
<td>39261</td>
<td>47272</td>
<td>20825</td>
<td>68097</td>
</tr>
<tr>
<td>OptFlat</td>
<td>CAISO</td>
<td>27985</td>
<td>51660</td>
<td>19106</td>
<td>70766</td>
</tr>
<tr>
<td>OptFlat</td>
<td>BLT</td>
<td>36334</td>
<td>43510</td>
<td>17037</td>
<td>60547</td>
</tr>
<tr>
<td>OptFlat</td>
<td>LMP-G</td>
<td>29903</td>
<td>50291</td>
<td>19207</td>
<td>69498</td>
</tr>
<tr>
<td>OptFlat</td>
<td>LMP-G BLT</td>
<td>36729</td>
<td>43557</td>
<td>18037</td>
<td>60594</td>
</tr>
<tr>
<td>A1 RTP</td>
<td>None</td>
<td>112629</td>
<td>37073</td>
<td>15051</td>
<td>52124</td>
</tr>
<tr>
<td>SMC RTP</td>
<td>None</td>
<td>33304</td>
<td>33304</td>
<td>6500</td>
<td>39804</td>
</tr>
</tbody>
</table>

The HVAC simulation results, displayed in Table E.13, are also averaged across years and regions. “Indiv” is individual expenditures, “Gen” is generation cost, and “Cap” is capacity cost. If we normalize consumption utility to zero, then consumer surplus is -Indiv, retailer surplus is Indiv - Gen (or Indiv - Gen - Cap if we account for capacity costs), and social surplus is -Gen - Cap. We report -SS, i.e. Gen + Cap in the last column.
Part IV

Concluding remarks
Summary of results

In this thesis, we have investigated two topics in retail electricity pricing and demand response.

Part II studies the profit maximization problem faced by an aggregator of DR and renewables, participating in a wholesale market with imbalance prices. The aggregator produces DR by purchasing the right, from the consumer, to interrupt the latter’s retail service contract. We develop a consumer utility model that endows DR participants with a stochastic valuation for energy. This model represents the natural link between the fractional DR yield that the consumer produces when curtailed, and the consumer’s ex ante valuation for their retail contract, which the aggregator must re-purchase in order to produce DR. We then show how the aggregator optimizes its menu of contracts in order to segment the market of DR participants according to their demand characteristics, taking this stochastic valuation model into account. We solve the aggregator’s end-to-end profit maximization problem to successive degrees of explicitness in two special cases. While most of our analysis assumes that the aggregator is a monopsonist purchaser of DR, we also develop a model for Cournot oligopoly competition for aggregators, which may be of interest for further research.

Part III simulates optimizing consumers to estimate the welfare impacts of various retail tariffs in the greater San Francisco Bay Area, with a particular focus on the perverse incentives created by baseline-dependent demand response. Our simulation framework includes realistic models of load-shifting, either through the use of battery storage, or the intrinsic thermal inertia of a commercial building’s HVAC system. While policy conclusions from the existing economics literature tends to focus more on the lack of real-time retail pricing, we find that when intertemporal substitution is not modeled (and the existing economics literature mostly leaves it out for the sake of simplicity), the current high average level of retail markups is actually a much greater driver of economic inefficiency. However, when consumption substitution is added to the quadratic utility model, dynamic tariffs become more important, and real-time pricing becomes much more beneficial. The welfare effects of various tariffs depend heavily on the specific consumer model we use, which makes overall comparisons difficult. But we show that tariffs often give consumers the incentive to use substitution technology in a manner that is not socially beneficial.

With regard to demand response, we find that for the QU consumer without intertemporal substitution, the effects are negligible. With a medium battery (with 10 kWh capacity, modeled on a first-generation Tesla PowerWall), DR generates welfare improvements of approximately 1-2% of consumer expenditures, i.e. 3-6% of generation plus capacity costs. Adverse incentives reduce the benefits to the bottom of this range. With a large battery (25 kWh capacity), the benefits are very slightly larger, but baseline manipulation has a deleterious effect that makes the net welfare effect of DR negligible or strongly negative, depending on the tariff. The effect of baseline manipulation is significantly suppressed by the high retail markups of existing tariffs. In the HVAC model, DR has larger welfare effects, generating welfare benefits of approximately 10% of generation-plus-capacity cost. The cost of the DR distortions makes DR a socially destructive policy under the hypothetical Opt
Flat tariff equal to the average LMP; but surprisingly, the DR distortions increase social welfare under the A-1 tariff.

Policy recommendations

The unifying focus of this thesis is incentive design in electricity tariffs. In these broad terms, our contention is that advances in energy management and automation technology for consumers can create valuable social benefits, but that the value of these technologies can only be realized when consumers face the right incentives.

Part II is a conceptual demonstration of a potential market arrangement, designed to manage the uncertainty imposed by variable renewables, and how a business entity optimally operates in it. As such, it might serve as a sort of conceptual blueprint for the design of such a market and business model.

In our simulation study in Part III, we find that the welfare effects of various tariffs are highly dependent on the consumption model, and the effects of various tariff features and add-ons depend on the baseline tariff. In some tariffs, battery technology creates private benefits that are aligned with social benefits — for example, in RTP (to some extent by construction). But in other tariffs, installing a battery can create large private benefits that correspond to negligible social benefit: this happens in the A-6 ToU tariff and in DR programs, particularly with baseline manipulation. Therefore we conclude that tariff rationalization should be prioritized, particularly before any subsidization of behind-the-meter battery storage, to ensure that the private interests of consumers are aligned with social welfare, so that such investments are not wasteful.

Future research

The demand response model in Part II was posed in a general manner, for example allowing for uncertainty in the aggregate DR yield resulting from curtailment, but we only solved it in special cases. Followup research might derive useful optimality conditions in the general case, and more importantly, should include solving this problem in a case with realistic distributions over market prices, renewables output, demand, etc. The most straightforward approach would be to use stochastic programming. There are also several avenues for generalizing the model, that may be tractable. One avenue for extension would be generalizing the type ordering from first-order stochastic dominance, perhaps by allowing composition with mean-preserving spread (along the lines of citetCourty2000), although this is only straightforward with an infinite noncompliance penalty, so that the utility loss function from curtailment is convex. Allowing the endogenous determination of the noncompliance penalty would also be desirable. Another extension would be to allow supply technology with non-zero marginal cost. Finally, it may be possible to relax the one-dimensional-type-
space assumptions altogether, perhaps using an infinite-dimensional Lagrangian formulation to enforce incentive-compatibility.

Much of the effort resulting in Part III was in the development of the open-source software package pyDR (Balandat et al., 2016a). We hope that we have provided other researchers with a useful tool to study welfare effects of dynamic electricity pricing under a broad range of consumption models and tariffs. These might be guided by particular policy concerns, such as the evaluation of baseline methodologies, tariff features such as demand charges, or automation technologies. Of particular interest might be more realistic models of commercial buildings, perhaps incorporating piecewise-linear dynamics by means of integer programming (Aswani et al., 2012).

One deficiency of the research in Part III is the assumption that market prices are exogenous and known in advance. Modeling the endogeneity of prices and costs would most likely sacrifice the linear / quadratic model structure that allows us to practically solve large integer programs. While the baseline-taking equilibrium concept and corresponding fixed-point iteration algorithm extend naturally to a stochastic programming setting, the long decision horizon makes such an approach computationally intractable. One approach might be to find principled ways to shorten decision horizons, reduce the number of decision points, or attempt an alternative modeling approach, such as stochastic MPC.
Bibliography

