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Abstract

We construct the general 2+1 dimensional asymptotically AdS3 solution dual to a stationary

1+1 CFT state on a black hole background. These states involve heat transport by the CFT

between the 1+1 black hole and infinity (or between two 1+1 black holes), and so describe the

AdS dual of CFT Hawking radiation. Although the CFT stress tensor is typically singular at the

past horizon of the 1+1 black hole, the bulk 2+1-dimensional solutions are everywhere smooth,

and in fact are diffeomorphic to AdS3. In particular, we find that Unruh states of the CFT on any

finite-temperature 1+1 black hole background are described by extreme horizons in the bulk.
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I. INTRODUCTION

The study of field theories far from equilibrium is a classic problem of long-standing

interest. While much can be learned from perturbation theory, more complete results are

difficult to obtain. As is by now well known, gauge/gravity duality can be a useful tool to

study non-perturbative effects. There has thus been significant interest in using this frame-

work to study plasmas with strong time dependence and the approach to thermalization

(see e.g. [1–3] for recent examples and further references), though it has mostly been used

to study the equilibrium properties of field theories, or perhaps small perturbations away

from equilibrium. Below, we use this duality to study heat transport far from equilibrium

in a strongly coupled large N CFT.

We are interested in particular in the response of the field theory when coupled to heat

sources or sinks at finite locations. For the purposes of this section, we consider a field theory

in d spacetime dimensions. A convenient way to introduce such sources is to place the CFT

on a background non-dynamical spacetime containing black holes with surface gravity κ,

which have temperatures TBH = κ/2π due to the Hawking effect. The problem of heat

transport then becomes one of computing the expectation value of the stress tensor in the

given background. Note that, since gravity is not dynamical in this context, we can choose

the metric at will. In particular, we can include as many black holes as we like at locations
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of our choosing, and we are free to assign their surface gravities as desired. One then seeks

states of the field theory which are smooth across all future horizons. Stationary such states

are analogues of the Unruh vacuum [4] for black holes in asymptotically flat spacetimes.

Gauge/gravity duality for large N field theories [5] has been used to study related settings

in [6–26]. Though this exploration involved certain tensions and subtleties, the picture that

emerged in [20] (building on [17]) is one with two important phases for each black hole. In

the so-called “funnel phase” a given black hole exchanges heat with distant regions much

as in a free theory with a similar number of fields. One may say that grey body factors are

O(1) even at large N . But in the contrasting “droplet phase” there is no conduction of heat

between a given black hole and the region far away at leading order in large N . In effect,

all grey body factors associated with the black hole vanish at this order.1 While we save

a more complete review for section II, we mention that the terms “droplet” and “funnel”

refer to the shape of the bulk horizon in the dual gravitational theory; see especially figure

1. Additional phases are also possible that conduct heat between subsets of nearby black

holes but not to infinity; these are of less concern below. We also mention that 1+1 CFTs

(and their 2+1 AdS duals) are a special case in which only the funnel phase is allowed.

The above works have focussed on cases without heat flow; i.e., either droplets (in which

heat does not flow at leading order) or on equilibrium funnels. But heat transport is an

interesting phenomenon and, moreover, at least for d ≥ 3 the corresponding solutions of the

dual AdSd+1 gravitational theory are expected to have novel properties. For example, time-

independent such solutions should be black holes which (in some sense) have a temperature

that varies along the horizon. But there is no generally accepted definition of horizon

temperature which allows the temperature to vary2. Indeed, the fact that any definition of

temperature should vary implies that the horizon is not a Killing horizon, which is already

a novel property for a stationary solution. There is also an interesting question of whether

such black holes should have a regular past horizon. On the one hand, from the field theory

point of view, the CFT stress tensor must diverge on the past horizon of the (now fixed

1 To be more precise, the grey body factors are non-zero only for a number of degrees of freedom that scales

like N0 = 1.
2 Except of course within the domain of the gradient expansion, as in the fluid-gravity correspondence

[27]; see also [28]. For proposals in more general contexts see e.g. [29] for a recent paper and references.

If flowing funnels could be constructed, it might be interesting to apply these proposals and study the

results.
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and non-dynamical) black hole metric in any state with both heat flow and time-translation

symmetry. Ref. [20] thus expected the past horizon of the dual bulk solutions to be singular

in the presence of (stationary) heat flow. But cases are known where similarly singular stress

tensors are described by smooth bulk solutions [30–32]. Perhaps this could be the case here

as well.

This paper provides a first step in this direction by constructing examples of such ‘flowing

funnel’ solutions in AdS3, which are then dual to heat transport in a 1 + 1 CFT; i.e.,

for the case d = 2. The behavior of the stress tensor (and thus of heat transport) in

1 + 1 CFT’s is fully determined by conformal invariance, and of course the same is true of

the AdS3 description. This is therefore not an example where one expects gauge/gravity

duality to lead to significant new insights for the field theory. In addition, a consequence

of this conformal symmetry is that states are characterized by two (left- and right-moving)

temperatures TL, TR, both of which are necessarily constant (independent of spatial position)

in a stationary solution. So this is also not a context where we will learn about bulk horizons

with non-constant temperature. Nevertheless, it gives a prime opportunity to see how heat

transport in the CFT is encoded in the dual bulk solutions. We may also hope that the

explicit solutions given below will provide a useful starting point for studying the higher-

dimensional case.

We begin with a brief review of black funnels, black droplets, and their dual field theory

description in section II. Section III then constructs flowing funnels from rotating BTZ

black holes. We close with some further discussion in section IV and relegate details of the

Fefferman-Graham coordinates to an appendix.

II. A BRIEF REVIEW OF DROPLETS AND FUNNELS

Studies of the above framework using gauge/gravity duality have led to both surprising

phenomena and significant controversy. The first such study appears to have been [6],

which used the AdS4 C-metric [33] to find a bulk solution describing the dual CFT on an

asymptotically flat black hole spacetime. The surprise was that, at leading order in large N,

the CFT stress tensor was completely static and described no flow of heat from the (finite

temperature) black hole to infinity (where the state approached the vacuum). Indeed, the

expectation of finite heat flow was so strong that it motivated predictions [7, 8] (see also

4



[18, 23])) that black holes on Randall-Sundrum brane-worlds [34, 35] could not be stationary

even at the classical level3, in contradiction with the natural intuition based on gravity in the

bulk (see [36] for details). The difficulty in finding such stationary solutions with black holes

(see e.g. [9–16, 37]) made these arguments seem compelling for some time, though modern

numerical techniques have established that these solutions do in fact exist [24, 25]. As in

[6], although the field theory contributes a non-trivial stress tensor one finds no transport

of energy to infinity at leading order in N ; i.e., at O(N2) for [24, 25].4 Indeed, from the

bulk viewpoint, heat transport can occur only due to a quantum process (bulk Hawking

radiation) which is an effect of order N0 = 1. See also [19].

While intuition from weak coupling may make this tiny heat transport seem surprising,

Fitzpatrick, Randall and Wiseman [17] pointed out that similar phenomena are in fact well-

known at strong coupling and large N . In particular, they noted that confined phases of

large N gauge theories have conductivities of order 1 and not of order N2. Though the above

theories are not strictly confining, we see that an effect of this magnitude would explain the

results of [24, 25].

A somewhat more complete picture was constructed in [20] and explored further in [21, 22,

26]. The basic approach of [20] was to i) explicitly add a thermal bath at infinity, ii) follow

the natural intuition for the bulk gravitating solutions, and iii) translate the results into an

explanation5 of the effect in the gauge theory. The rest of this section briefly summarizes

the arguments of [20] with minor additions and clarifications.

Let us take the gauge theory to be conformal, and to be deconfined at all temperatures

T > 0. We take the theory to live on some asymptotically flat spacetime and imagine

coupling the system to a large heat bath (at some temperature T∞) far from the black hole.

3 The brane in a Randall-Sundrum brane-world spacetime can be thought of as a boundary for an asymp-

totically AdS spacetime which has been placed at finite distance and given a boundary condition that

makes the boundary metric dynamical. At least roughly speaking, this makes the system dual to a field

theory coupled to dynamical gravity. Hawking radiation in the dual field theory would therefore cause

the brane black hole to shrink. If this effect occurs at leading order in large N, then it would be visible at

the classical level from the bulk point of view.
4 Here and below we will count powers of N as appropriate to a large N SU(N) Yang-Mills theory. This in

particular describes theories dual to bulk spacetimes asymptotic to AdS5 ×X for compact 5-dimensional

manifolds X .
5 Here we mean a self-consistent scenario for the behavior of the strongly-coupled large N gauge theory. A

full explanation would of course require the scenario to be derived from first principles, but this remains

an open problem.
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It is clear that this heat bath should fill the spacetime with a thermal plasma – at least

far from the black hole where the spacetime is nearly flat. In order to discuss the dual

gravitational solution, it is useful to introduce two coordinates: r, which parametrizes the

distance from the black hole in the gauge theory and z, chosen so that the gauge theory ‘lives’

on the AdS boundary at z = 0 and which parametrizes the distance into the bulk. To be

concrete, at least near the boundary one might take these to be part of a Fefferman-Graham

type coordinate system6 in which the bulk metric takes the form

ds2d+1 = z−2
(

dz2 + gijdx
idxj

)

, (2.1)

with r being one of the boundary coordinates xi and ds2d = gijdx
idxj being the

asymptotically-flat black hole spacetime (which we call the ‘boundary black hole’ or equiv-

alently the ‘gauge theory black hole’) on which the gauge theory is to be studied. One

expects the thermal plasma to be described by a bulk horizon that approximates that of

the familiar planar Schwarzschild black hole at large r. On the other hand, one also expects

the horizon of the boundary black hole to extend into the bulk. There are then two natural

classes of possible bulk solutions. If the above two horizons connect to form a single smooth

horizon, the solution is said to describe a “black funnel.” If they are instead disconnected,

the solution describes a “black droplet, suspended above a (deformed) planar black hole.”

These two situations are sketched in figure 1.

Taking the gauge theory black hole to have radius R, the product RT∞ is scale invariant.

It is thus natural to expect the basic physics to depend crucially on this product, with the

precise details of the gauge theory black hole playing a lesser role. In particular, since depth

(z) is related to size (r) on the boundary, for large RT∞ one expects funnels to exist and to

be thermodynamically dominant, while droplets (above planar black holes) should dominate

for small RT∞. See [20] for a more detailed discussion. It is natural to expect that the two

phases are connected by a cone transition as occurs in similar settings [38–40] in which

dialing a parameter causes two horizons to meet and perhaps merge.7

6 Though there is no a priori guarrantee that such coordinates are regular across the full bulk horizon. See

e.g. the discussion of 2+1 funnels in [20].
7 This scenario was proposed and explored in [38] for mergers of horizons with the same temperature. It

was shown in [40] that similar behavior can result even when the horizon temperatures differ. We note

that the AdS-Schwarzschild black string solution of [36] is such a cone involving a planar black hole of
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2R

T−1
∞
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Shoulders

Boundary
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2R
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∞
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Boundary

(Deformed) Planar BH

(b)

FIG. 1: A sketch of the relevant solutions: (a): black funnel and (b): black droplet above a

deformed planar black hole. Both describe possible states of dual field theories in contact with

heat baths at temperature T∞ on spacetimes containing black holes of horizon size R. The top line

corresponds to the boundary, with the dots denoting the horizon of the boundary black hole. The

shaded regions are those inside the bulk horizons.

As in [20], let us focus for now on the equilibrium context (where TBH = T∞). In the

funnel case, disturbances of the bulk horizon near z = 0 (which describes the region near

that boundary black hole) can propagate along the bulk horizon into the region near r = ∞
(which describes the thermal plasma). Although any coherent oscillation is highly damped

during this propagation, this merely turns the energy of the oscillation into heat which

will nevertheless flow along the horizon. In contrast, disturbances of the droplet horizon

in figure 1 (and the heat they generate) cannot directly propagate to the planar black hole

horizon. Instead, they can only couple to the planar black hole horizon via bulk gravity.

Since in linear field theory we describe the coupling between asymptotic scattering states

and a black hole in terms of grey body factors, it is natural to say that for the dual field

theory the boundary black hole has tiny grey body factors (of order 1/N2 or smaller).

Of course, the situation is more complicated than this statement might seem to imply

as the dual field theory contains many degrees of freedom that interact strongly. A more

complete story would note that the O(N0) degrees of freedom dual to bulk gravitational

waves have more familiar O(1) grey body factors while the grey body factors for the N2

zero temperature. Since there appears to be no nearby stable solution, the full phase diagram is likely to

be as complicated and interesting as that of Kaluza-Klein black holes (see e.g. [41]).

7



degrees of freedom that describe the rest of the plasma near r = ∞ appear to vanish exactly

to all orders in 1/N . It is natural to suppose that these latter grey body factors are in

fact exponentially small due to tunneling through a potential barrier of height N or N2.

Presumeably this potential barrier is related to the need to change the ways in which flux

tubes connect in attempting to move a quasi-particle from a state in which it is attached via

flux tubes to the black hole into a plasma state. As noted in [20], the plasma quasi-particles

seem to have an effective size which is larger than those of quasi-particles attached to the

black hole. Thus one should be able to describe the above potential barrier in terms of

an effective potential for the size of a quasi-particle. Again, this is merely a self-consistent

interpretation of the bulk gravitational physics. A complete microscopic understanding in

terms of the gauge theory remains to be found.

While it is useful to keep the above general context in mind, the discussion degenerates

somewhat in the case of 1+1 CFTs (dual to 2+1 AdS solutions). In this context, there is no

useful definition of the “size” of a horizon in the CFT. Indeed, all horizons are analogous to

planar horizons in higher dimensions and may therefore be considered to have R = ∞. In

particular, there cannot be any effective potential associated with the size of a quasi-particle.

As a result, only the black funnel phase is allowed.

As a final side comment, we mention that it should be possible to construct an even more

general set of droplet-phase solutions. First, note that even in a free field theory, one may

consider a thermal state on a black hole background with T 6= TBH . Although the correlation

functions are then singular at the horizon, a logical possibility is that that our large N CFT

in such a state may be described by a smooth bulk gravitational dual which merely fails to

be asymptotically AdS in the usual sense at the horizon of the boundary black hole. This

was the case in [31, 32], which studied an analogous setting involving de Sitter horizons and

found that the field theory temperature T corresponded to the temperature of a smooth bulk

horizon that attached to the boundary black hole; i.e., T = Tbulk BH 6= Tbndy BH . The results

of [31, 32] thus suggest that general droplet solutions are labeled by three temperatures:

Tbndy BH , Tbulk droplet, and T∞. In particular, in contrast to the identification in [24], even

for TBH 6= 0 the Boulware (ground) state should be described by a smooth bulk solution

having only extreme horizons (Tbulk droplet = T∞ = 0).
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III. FLOWING FUNNELS FROM BTZ BLACK HOLES

We now turn to the problem of constructing AdS3 spacetimes which exhibit heat flow in

a stationary state. Our particular interest concerns bulk solutions dual to a 1+1 CFT on a

black hole background. We refer to such AdS3 solutions as 2+1 ‘flowing funnels.’

Note that in 1+1 dimensions a given static region of spacetime can be attached to no

more than two black holes – one on the left, and one on the right. We begin with spacetimes

that contain only one black hole (say, on the left) and which approach the Minkowski metric

in inertial coordinates on the right; see figure 2. Adding the second black hole will be

straightforward once this case is under control.

H+

H−

i+

i0

i−

I +

I −

(a)

H+

H−

H+

H−

(b)

FIG. 2: Conformal diagrams showing the two types of 1+ 1 background spacetimes for our CFTs.

(a): A single black hole on the left with an asymptotically flat region on the right. (b): Two black

holes.

In fact, let us first consider the case of no black holes at all. Recall that the stress tensor

of stationary CFT states on 1+1 Minkowski space is fully characterized by its right-moving

and left-moving temperatures TR, TL:

ds2CFT = −dudv, TCFT
ab dxadxb = π

c

12

(

T 2
Rdu

2 + T 2
Ldv

2
)

, (3.1)

where we have introduced null coordinates u = t− x, v = t+ x , and c is the central charge

of the CFT. The system may also be characterized by a temperature T = 2(T−1
L + T−1

R )−1

and a chemical potential for momentum µ = ℓ(TR−TL)/(TR+TL). Although 1+1 CFTs are

not well-described by perfect fluids, one may nevertheless think of the system as being ‘at

rest’ when TL = TR, as there is then no net transport of energy. Boosting to a more general
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frame, it is natural to define the ‘velocity’ of the system to be Ua∂a =
1√

TLTR

(TR∂v + TL∂u).

As is well-known, the bulk spacetimes dual to such flowing thermal states are just AdS3

in BTZ coordinates [42, 43]; i.e., they are BTZ black holes with the ‘angle’ unwrapped so

that it runs over (−∞,∞) instead of over S1. In the present context, it is natural to give

the would-be BTZ angle the name x and units of length. The bulk metric then takes the

form

ds2bulk = −(ρ2 − ρ2+)(ρ
2 − ρ2−)

ℓ2ρ2
dt2 +

ρ2ℓ2

(ρ2 − ρ2+)(ρ
2 − ρ2−)

dρ2 +
ρ2

ℓ2

(

dx− ρ+ρ−
ρ2

dt

)2

, (3.2)

where ℓ is the usual AdS scale and the temperatures are TR = (ρ+ + ρ−)/2πℓ and TL =

(ρ+ − ρ−)/2πℓ. We take ρ+ > 0 so that the sign of ρ− determines the sign of the BTZ

angular momentum J . In (3.2), we have called the usual BTZ radial coordinate ρ in order

to reserve r for a radial coordinate along the boundary. The boundary stress tensor [44, 45]

of (3.2) is (3.1) with c = 3ℓ/2G, where G is the bulk gravitational constant.

Now, a general static 1+1 spacetime may be written as ds2 = Ω2(x) (−dt2 + dx2), and

so may be generated from Minkowski space via an appropriate conformal rescaling. In

particular, we obtain a black hole of temperature Tbndy BH = κ/2π by taking Ω → 1 as

x → +∞ and Ω ∼ eκx as x → −∞. Under such a conformal rescaling, the CFT stress

tensor transforms as [46]

Tab → Tab +
c

12π

[

∇a∇bσ −∇aσ∇bσ +
1

2
gab (∇σ)2 − gab∇2σ

]

(3.3)

where Ω = eσ. In particular, the stress tensor is unchanged at large positive x (where ∇aσ

vanishes) while at large negative x eqn. (3.1) becomes

TCFT = π
c

12

[

e2κu
(

T 2
R − 1

4π2
κ2

)

dU2 + e−2κv

(

T 2
L − 1

4π2
κ2

)

dV 2

]

+ . . . (3.4)

in terms of the new affinely-parametrized null coordinates U, V (which satisfy U =

−κ−1e−κu + . . . and V = κ−1eκv + . . . where + . . . represents terms that are subleading

as x → −∞). Note that the new stress tensor is regular on the future horizon (u = ∞)

precisely when we choose TR = Tbndy BH .

For this choice, one may interpret the CFT state as describing heat exchange between a

boundary black hole of temperature Tbndy BH = TR and a heat bath at infinity (x = +∞)

with temperature TL. In particular, suppose that we instead choose the background metric
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to be time dependent, and to evolve from 1+1 Minkowski space in the far past to the desired

boundary black hole spacetime in the far future. Then, by the usual arguments, when the

CFT begins in an initial thermal state of temperature TL the late-time behavior of the CFT

is described by our solution above.8

Returning to the stationary case, let us remark on several features of our bulk solution:

• The choice TL = 0 is dual to the Unruh state of the CFT. In particular, the Unruh

state corresponds to an extreme horizon in the bulk whose properties are fixed by the

temperature of the boundary black hole. In contrast, note that the Boulware state is

described by an ‘unwrapped’ M = 0 BTZ black hole with TL = TR = 0 6= Tbndy BH ,

which is just a Poincaré horizon (independent of Tbndy BH). As noted in section II,

this is a smooth bulk spacetime with a singular boundary stress tensor. In this case,

the singular boundary stress tensor is due to a singular choice of conformal frame.

• By construction, on the boundary of our spacetime the stationary Killing field ∂t of

BTZ agrees with the static Killing field of the boundary metric. But BTZ has a

second (commuting) Killing field ∂x. While this is not a Killing field of the boundary

black hole, the fact that all 1+1 metrics are conformally flat means that ∂x acts as a

conformal Killing field on the boundary. This is a peculiar feature of our AdS3 problem

that will not be reflected in higher dimensions. Indeed, in higher dimensions it is easy

to show that any conformal isometries of boundary metrics describing non-extreme

stationary spherically symmetric boundary black holes are in fact boundary Killing

fields, so that there can be no such ‘accidental’ Killing fields in the bulk.9

• The bulk solution has a Killing horizon generated by χ = ∂t + ℓ−1µ∂x, where µ =

ℓ(TR − TL)/(TR + TL) as above is related to the angular velocity of the horizon via

µ = ΩHℓ. Thus we see that µ characterizes the rate at which null generators of the

horizon pass from one Killing orbit to another. For µ > 0 we may say that, in this

sense, generators ‘move’ from the boundary down into the bulk and toward positive

x, while for µ < 0 the ‘motion’ is toward negative x and up toward the boundary.

8 Recall that TL is the temperature of the left-moving part of the CFT. Unfortunately, this is naturally

thought of as being sourced by a heat bath on the right (at x = +∞).
9 Extreme black holes can have such conformal isometries but do not by themselves lead to heat flow.
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As was the case for ∂x above, χ is an accidental symmetry from the viewpoint of the

boundary theory and will have no analogue in higher dimensions; i.e., the black holes

that describe flowing funnels dual to d > 1+1 CFTs will not have Killing horizons.

• For TL = TR our solution is precisely the static AdS3 black funnel constructed in [20].

In many implementations of the AdS/CFT correspondence one may gain insight into the

CFT state by displaying the bulk solution in Fefferman-Graham coordinates. This seems to

be less useful in the current context as these coordinates are highly singular. We relegate the

details of the coordinate transformations and the resulting metrics to the appendix, though

we briefly summarize the key points below.

There are three natural sources of coordinate singularities in the Fefferman-Graham co-

ordinates associated with any boundary black hole: i) the past horizon H− of the boundary

black hole, ii) null infinity I ± of the boundary spacetime (see figure 2), and iii) the singu-

larity of the boundary black hole. The singularity on H− is associated with the fact that,

while we tuned parameters to make the CFT stress tensor smooth across the future horizons,

it generally remains singular on H−. The problem at I ± is associated with the fact that

these are finite locations when AdS3 is described in global coordinates10. In addition, the

singularity of the boundary black hole is clearly a singularity of the transformation between

any global coordinates and our Fefferman-Graham coordinates. Since the boundary metric

can be chosen at will (and need not satisfy any equations of motion) we are free to place

this singularity anywhere we like inside the boundary horizon. But it is important to note

that, when written in conformally flat form, the conformal factor Ω of any boundary black

hole metric necessarily has some singular feature associated with the fact that e.g. future-

directed null geodesics along I
+ encounter the horizon H+ only at infinite affine parameter

while other left-moving future-directed null geodesics encounter the horizon at finite affine

parameter.

It is no surprise that the full singularities of the Fefferman-Graham coordinate system

extend into the bulk, connecting to the boundary at the above three locations. One might

10 The particular global coordinates used in figures 3, 4, and 5 below are the dimensionless τ, R, θ for which

ds2 =
4ℓ2

(1−R2)2

[

−1

4
(1 + R2)2dτ2 + dR2 +R2dθ2

]

.
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H−

H+

I −

I +

i0

i+

i−

Image i0

FIG. 3: The relevant portion of the AdS3 boundary in global coordinates. The dotted line indicates

the singularity of the boundary metric (3.5); i.e., a singularity in the conformal frame associated

with (3.5). The boundary past horizon H− is another such singularity. Since θ has period 2π, the

point marked “Image i0” represents the same event on the boundary of global AdS3 as does i0.

Due to singularities in the change of conformal frame it nevertheless represents a distinct point of

the black hole boundary spacetime (3.5).

hope that the singularities remain localized at the the bulk BTZ singularity and at the

natural bulk null surfaces associated with (i) and (ii) above. But that turns out not to be

the case, and Fefferman-Graham coordinate singularities extend outside the horizons of the

BTZ black hole. The situation is summarized in figures 3, 5, and 4 below for the AdS3

spacetime dual to the Unruh state of the CFT on the metric

ds2CFT = − tanh2 κr dt2 + dr2 =
−1

1− κ2uv
dudv, (3.5)

where κ = 2πTR is again the surface gravity of the boundary black hole. The general case

TL 6= 0 is similar. We draw the reader’s attention to the branch cut in figures 5 and 4,

which limits the utility of Fefferman-Graham coordinates to a region surprisingly close to

the boundary. We also include plots of the Fefferman-Graham z vs. r along the future

horizons for various values of TL/TR (see figure 6).

Finally, let us consider the addition of a 2nd black hole to the 1+1 CFT spacetime. This

may be accomplished by performing another conformal rescaling, this time with Ω ∼ e−κRx

at large positive x. It is natural to choose Ω so that |∂t|2 = −1 at e.g. x = 0. This provides

a preferred location with respect to which to normalize notions of temperature and surface
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FIG. 4: Left: Notable features of the bulk AdS3 spacetime in Fefferman-Graham (FG) coordinates

u, v, z, (compactified to show their full range) for our Unruh state solution (TL = 0, κ = 2πTR)

and boundary metric (3.5). Past and future bulk horizons H±, boundary horizons H± and the

various pieces I ±, i0,± of infinity for the boundary spacetime (see fig. 3) are shown. The surfaces

H−
sing (at v = 0) and CS are FG coordinate singularities. The first (H−

sing) acts like part of the

bulk past horizon from the FG point of view, though its image in global coordinates coincides with

that of i−. The second (CS) is a closed surface from the FG point of view which begins and ends

at z = 0, uv = 1 (the singularity of the boundary black hole; dotted line in figure 3). Parts of the

surfaces CS, H± are obscured, as is a third FG coordinate singularity at κ2uv = 1 (for all z). A

line on the CS surface near its maximum value of z is a set of branch points. The black grid on

the left diagram marks the image of an associated branch cut chosen so that the transformation

to FG coordinates is one-to-one in the region bounded by this cut, the CS surface, and the plane

z = 0. Right: The general structure and the relative locations of CS, H± are made clear. These

surfaces depend only on the product uv. CS and H+ intersect along a single line. H+ and H− do

not intersect in the bulk but meet only at the singularity of the boundary black hole.

gravity. We also rename the above κ as κL to refer to the surface gravity of the left black
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FIG. 5: Notable features of the bulk AdS3 spacetime in global coordinates associated with the

Unruh state (TL = 0, κ = 2πTR) and the boundary black hole (3.5). The bulk past and future

horizons H± are labeled, as are H±, I ± and i0,± describing the horizons and infinity of the

boundary metric (see figure 3). In global coordinates, the surface H−
sing of figure 4 coincides with

i−. The lines labeled CS are uv = const. contours of the FG coordinate singularity described by

the CS surface of figure 4. In Fefferman-Graham coordinates, the CS surface is closed and pinches

off as it reaches the boundary singularity at κ2uv = 1. In global coordinates, this behavior gives

rise to an open surface with two edges: one edge is at the boundary singularity (seen above behind

the bulk horizon H+; this line is κ2uv = 1 for all values of the FG z coordinate) and I −. The

other edge travels from i+ to i− inside the bulk. The associated branch cut shown as a black grid

in figure 4 is not drawn, but would start near this edge in the bulk and fold back to the right,

passing above the CS surface and terminating on I + and I −. One should be aware that the part

of the CS surface above the branch cut (near the interior edge) has multiple images in figure 3 and

is a coordinate singularity only after one has passed through the branch cut.

hole. The resulting family of solutions is labeled by four parameters (TL, TR, κL, κR), and
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κz

sinh2 κr

FIG. 6: The future horizon in Fefferman-Graham coordinates for TL/TR = 2, 1, 12 , 0 and κ = 2πTR

(smooth future horizon). The case TL = TR describes the Hartle-Hawking state studied in [20].

The case TL = 0 describes the Unruh case studied in detail in this paper. The horizontal axis plots

sinh2 κr rather than just r in order to reach all the way to the boundary singularity at sinh2 κr =

−1. The curve diverges at large r for TL = 0 but otherwise asymptotes to κz = 2
√

TR/TL.

the CFT stress tensor is smooth across both horizons if TR = κL/2π and TL = κR/2π. Such

states describe the asymptotic future of any CFT state (with a smooth stress tensor) on a

spacetime which evolves from flat Minkowski space in the far past to one containing our two

black holes in the far future. The details are in direct analogy to the case of a single black

hole above.

IV. DISCUSSION

We showed above how AdS3 solutions dual to stationary CFT2 states with heat trans-

port between black holes (or between one black hole and a heat bath at infinity) can be

constructed by ‘unwrapping’ the angular coordinate of BTZ black holes and changing con-

formal frame at infinity. Thus the solutions may also be described as pure AdS3 in an

appropriate conformal frame. An interesting point was that Unruh states of the CFT (liv-

ing on a spacetime with a single black hole) are dual to extreme horizons in the bulk. But

perhaps the notable feature of our solutions is just that they are everywhere smooth, de-

spite the fact that the boundary stress tensor is generally singular on the past horizon of

the boundary black hole. This smoothness is similar to the phenomenon seen in [31, 32] for
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CFTs on black hole spacetimes in which the CFT was forced to have a temperature different

from the Hawking temperature of the boundary black hole (TCFT 6= Tbndy BH). See also [30].

In fact, ref. [31, 32] considered AdSd+1 solutions for all d ≥ 1+1 and found smooth bulk

solutions in all dimensions. But as we now discuss it is difficult to see how this could be

possible for higher dimensional flowing funnels. In the AdS3 case, the ‘accidental’ Killing

fields discussed in section III meant that our solutions had Killing horizons. As a result,

the points along a given null generator were related by a symmetry and nothing interesting

can happen as one follows a null generator into the distant past. But section III noted that

there are no accidental symmetries in the higher-dimensional case. Furthermore, as in our

AdS3 case, the flow of heat should make the stationary Killing field ∂t fail to be null on the

horizon11. Thus the generators will again move with respect to the stationary Killing orbits.

To understand the implications, let us consider a flowing AdSd+1 funnel with SO(d− 1)

rotational symmetry. Here it is useful to use the size r of the Sd−2 spheres of symmetry

as a coordinate along the horizon. Now, the twist ωab of the horizon-generating vector

field ξa is an anti-symmetric tensor on the horizon satisfying ξaωab = 0; i.e., it effectively

has components only in the r-direction and in the angular direction. So by the SO(d − 1)

symmetry ωab = 0 and the null generators necessarily focus at finite affine parameter if the

expansion or shear is non-zero.

Note that the value of r will change as one moves along a null generator of the horizon.

This means that one of the eigenvalues of ∇(aξb) must be non-zero and thus that the expan-

sion and shear cannot both vanish. Since horizon generators necessarily extend to infinite

affine parameter toward their future, we conclude that they focus at finite affine parameter

in the past.

There are now two logical possibilities: 1) that this focusing represents a caustic in a

smooth spacetime, or 2) that it represents a spacetime singularity. While we have not

completely ruled out the first option, the 2nd seems much more natural. This is just the

picture suggested originally in [20]. It remains an interesting challenge to construct such

higher-dimensional flowing funnel solutions.

11 At least near the boundary, one may think of this as due to the fact that non-zero tr components of the

boundary stress tensor force ∂t to be non-hypersurface-othogonal, and thus to differ from the horizon-

generating vector field.
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Appendix A: Flowing Funnels in Fefferman-Graham coordinates

The goal of this appendix is to describe the solutions of section III in Fefferman-Graham

coordinates associated with the boundary metric (3.5). This boils down to computing the

relevant coordinate transformation between these new coordinates and e.g. the BTZ co-

ordinates t, ρ, x of (3.2). We will in fact use null Fefferman-Graham coordinates u, v, z

with u = −κ−1e−κt sinh κr, v = κ−1eκt sinh κr so that (using the Fefferman-Graham gauge

conditions) the bulk metric takes the form

ds2 =
ℓ2

z2

[

−
(

1

1− κ2uv
+O(κ2z2)

)

du dv +O(κ2z2) du2 +O(κ2z2) dv2 + dz2
]

. (A1)

While it is in principle possible to compute this transformation directly, we find it

simpler to use Poincaré coordinates UP , VP , ZP on AdS3, for which the AdS3 metric is

ds2 = ℓ2(−dUP dVP + dZ2
P )/Z

2
P , as an intermediate step. The point here is that the trans-

formation from (ρ, t, x) to (UP , VP , ZP ) is known explicitly. We may then change conformal

frame and solve for (u, v, z) in terms of (UP , VP , ZP ) as a power series in z and, due to

the relative simplicity of the Poincaré patch metric, the result is a geometric series that is

easily summed and written in closed form. Combining the two transformations then gives

the desired result. In contrast, summing the series solution to go directly from (ρ, t, x) to

(u, v, z) is more difficult.

Let us look for Fefferman-Graham coordinates in which the boundary metric takes the

form (A1) by making the ansatz that UP , VP , ZP have a series expansion in (integer) powers

of z and that the leading O(z0) terms in UP , VP are respectively ℓ(κu)γR, ℓ(κv)γL , while
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the leading term in ZP is ℓ
√

γRγL(κu)γL−1(κv)γR−1(1− κ2uv)κz. Then as stated above one

finds that the result is a geometric series. Summing the series yields

UP (u, v, z) = ℓ(κu)γR
[

1− 2γR
(1− κ2uv)[1− γL(1− κ2uv)](κz)2

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2

]

,

VP (u, v, z) = ℓ(κv)γL
[

1− 2γL
(1− κ2uv)[1− γR(1− κ2uv)](κz)2

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2

]

,

ZP (u, v, z) = ℓ
√
γLγR

4(κu)(γL+1)/2(κv)(γR+1)/2(1− κ2uv)3/2κz

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2
. (A2)

It is then straightforward to read off the boundary stress tensor [44, 45] to obtain

Tuu =
c

12π
κ2

[

κ2v2

4(1− κ2uv)2
+

γ2
R − 1

4κ2u2

]

,

Tvv =
c

12π
κ2

[

κ2u2

4(1− κ2uv)2
+

γ2
L − 1

4κ2v2

]

,

Tuv = − c

12π

κ2

2(1− κ2uv)2
, (A3)

where as usual c = 3ℓ/2G. Note that regularity of Tab on the future horizon (u = 0) would

require γR = 1, while a vanishing incoming flux at I − (u = −∞) would require γL = 0.

Thus the transformations (A2) degenerate in the Unruh state, as they suggest that VP is

independent of (u, v, z).

This subtlety disappears when one instead transforms to BTZ coordinates. The trans-

formation from (Up, Vp, Zp) to (t, ρ, x) is given for ρ > ρ+ by equations (2.9) of [47] and

takes a simple form in terms of the null Fefferman-Graham coordinates U = −ℓe−κ(t−x),

V = ℓeκ(t+x), and Z given by the implicit relation

ρ =
ℓ2

Z

√

1 + (∆2 + Σ2) (Z/ℓ)2 +∆2Σ2(Z/ℓ)4, (A4)

for ∆ = (ρ+ − ρ−)/2ℓ and Σ = (ρ+ − ρ−)/2ℓ. We mention that the metric in (U, V, Z)

coordinates is

ds2 =
ℓ2

Z2

[

ℓ2

UV

(

1 + ∆2Σ2(Z/ℓ)4
)

dU dV + Z2

(

Σ2

U2
dU2 +

∆2

V 2
dV 2

)

+ dZ2

]

. (A5)

The transformation from (UP , VP , ZP ) to (U, V, Z) is then

UP = −ℓ
1 − Σ∆(Z/ℓ)2

1 + Σ∆(Z/ℓ)2
(−U/ℓ)2Σ ,

VP = ℓ
1− Σ∆(Z/ℓ)2

1 + Σ∆(Z/ℓ)2
(V/ℓ)2∆ ,

ZP =
2
√
Σ∆Z

1 + Σ∆(Z/ℓ)2
(−U/ℓ)Σ (V/ℓ)∆ . (A6)
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Combining (A6) with (A2) and using the identifications ∆ = 2γL and Σ = 2γR yields the

transformation between the BTZ coordinates U, V, Z and (u, v, z). In particular, the result

is well-behaved in the extremal limit ∆ = 0, Σ = 1/2, where it becomes

U(u, v, z) = ℓκu

[

1− 2(1− κ2uv)(κz)2

4κ2uv(1− κ2uv)− κ2uv(κz)2

]

,

V (u, v, z) = ℓκv exp

[

−(κz)2
8(1− κ2uv)2 − 2(2− κ2uv)(1− κ2uv)(κz)2

(4(1− κ2uv)− (κz)2)(4κ2uv(1− κ2uv)− (2− κ2uv)(κz)2)

]

,

Z(u, v, z) = ℓ

√

−16(1− κ2uv)3(κz)2

(4(1− κ2uv)− (κz)2)(4κ2uv(1− κ2uv)− (2− κ2uv)(κz)2)
. (A7)

A non-degenerate (but rather implicit) transformation from Fefferman-Graham coordinates

u, v, z to the global coordinates τ, R, θ of footnote 10 may then be obtained by combining

eqns (A7) with the transformation

U(τ, R, θ) = −ℓ
2R cos θ + (1 +R2) cos τ

2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)
,

V (τ, R, θ) = ℓ exp

[

1

2
+

2R sin θ + (1 +R2) sin τ

4R cos θ + 2(1 +R2) cos τ
+

2R sin θ − (1 +R2) cos τ

2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)

]

,

Z(τ, R, θ) = ℓ
1−R2

√

[2R cos θ + (1 +R2) cos τ ][2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)]
. (A8)

which relates the BTZ coordinates U, V, Z to global coordinates τ, R, θ. We have used this

procedure to generate figures 5 and 4. In particular, we were able to identify the bulk

horizons H± in Fefferman-Graham coordinates from (A7) and the known horizons in BTZ

coordinates. We also identified singular surfaces of the transformation by examining the

Jacobian; these are the plane v = 0 and the dark surface labeled CS in figure 4. The CS

surface was numerically mapped to the global coordinates by using equations (A8) and is

shown in figure 5 as a set of lines, each of which is a contour of constant uv. Note that

the surface defined by these lines ends abruptly in the middle of the spacetime. This edge

corresponds to the boundary singularity at κ2uv = 1. Further examination reveals that

the CS surface contains a set of branch points in the transformation to Fefferman-Graham

coordinates. To make the coordinate transformation one-to-one, we must introduce an

appropriate branch cut. Our choice is indicated in figure 4. The transformation is one-

to-one in the region between the cut, the boundary, and the CS surface. In terms of our

global coordinates (figure 5), the cut is a surface that starts near the internal edge of the
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CS surface, runs to the right above the CS surface, and terminates at I ±.
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