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Probability judgement from samples: accurate estimates and the conjunction
fallacy

Rita Howe (Rita.Howe@ucdconnect.ie)
School of Computer Science, Belfield, Dublin 4

Fintan J. Costello (Fintan.Costello@ucd.ie)
School of Computer Science, Belfield, Dublin 4

Abstract

This paper investigates a fundamental conflict in the literature
on people’s probability estimation. Research on ‘perception’
of probability shows that people are accurate in their estimates
of probability of various simple events from samples. Equally,
however, a large body of research shows that people’s probabil-
ity estimates are fundamentally biased, and subject to reliable
and striking fallacies in reasoning. We investigate this con-
flict in an experiment that examines the occurrence of the con-
junction fallacy in a probability perception task where people
are asked to estimate the probability of simple and conjunc-
tive events in a presented set of items. We find that people’s
probability estimates are accurate, especially for simple events,
just as seen in previous studies. People’s estimates also show
high rates of occurrence of the conjunction fallacy. We show
how this apparently contradictory result is consistent with a
recent model of probability estimation, the probability theory
plus noise’ model.

Keywords: Conjunction fallacy; Disjunction fallacy; Percep-
tual probabilities; Probability estimation

Introduction
The ability to reason under uncertainty (to estimate proba-
bilities) is fundamental to human cognition. Humans exist
in a world of stochastic processes, both stationary and non-
stationary. They are regularly required to produce estimates
for discrete events often with their own hidden parameters. It
shouldn’t be surprising then that humans are often very ac-
curate in the probability judgements that they provide. This
paper investigates a fundamental contradiction in the litera-
ture on people’s probability estimation. Research on people’s
perception of probability shows that people are quite accurate
when required to give estimates of the probability of simple
events. Equally, however, a large body of research shows that
people’s probability estimates are fundamentally biased, and
subject to reliable and striking fallacies in reasoning (such as
the conjunction fallacy). To investigate this contradiction, we
present an experiment that examines conjunction and disjunc-
tion fallacy rates and accuracy of probability estimates simul-
taneously. We find that while probability estimates are accu-
rate, they are biased in specific ways. We also find that high
conjunction and disjunction fallacy rates can co-exist with ac-
curate probability estimation.

Probability perception

Early research on probabilistic reasoning involved present-
ing participants with sequences or sets of simple events that
varied on one particular dimension (sets of different shapes,

for example), and asked participants to estimate the probabil-
ity of one particular event or outcome in that set (the prob-
ability of seeing a triangle in that set, for example). Re-
sults from these studies of ‘probability perception’ showed
that the relation between subjects’ mean estimates of prob-
abilities and the sample proportions are described well by
the identity function: people’s probability estimates agreed
well with the true objective probabilities (Peterson & Beach,
1967). Later work on perceptual probabilities has suggested
that humans have computational mechanisms that provide
them with reasonably accurate judgements of simple prob-
abilities (Balci, Freestone & Gallistel, 2009). Participants are
both accurate in their probability judgements and quick to de-
tect large step changes in probabilities when required to give
repeated estimates for non-stationary Bernoulli processes in
real time (Gallistel, Krishan, Liu & Miller, 2014). Similarly,
Zhao, Shah, and Osherson (2009) used this ‘probability per-
ception’ paradigm to examine people’s judgements of condi-
tional probability. Their participants observed shapes of dif-
ferent colours on screen for 4 seconds. These were static but
appeared at new coordinates after a second had elapsed. Rela-
tively small discrepancies between objective probabilities and
conditional probability estimates were observed in this task.

Fallacious reasoning
By contrast, research on errors in probabilistic reasoning
(mainly in the ‘heuristics and biases’framework) has uncov-
ered many reliable and systematic errors or biases in people’s
judgement of probability. Over 50 such biases have been
recognised, including the conjunction fallacy and disjunction
fallacy (Baron, 2008). The conjunction fallacy, which arises
when subjects judge some conjunction of events A ∧ B to
be more likely (more probable) than one of the constituent
events of that conjunction, A, has gained the most attention
since its discovery. Probability theory, which requires that
P(A ∧ B) ≤ P(A) and P(A ∧ B) ≤ P(B) must always hold
(simply because A∧B cannot occur with A or B themselves
occurring). The conjunction, A∧B, under the probabilistic
laws, cannot be more likely than the single constituent A,
thus when a participant chooses the conjunction A ∧ B as
more probable, they are committing a fundamental violation
of rational probabilistic reasoning. The ‘Linda problem’of
Tversky and Kahneman (1983) is probably the best known
example of this fallacy. The Linda problem is as follows:

Linda is 31 years old, single, outspoken, and very bright.
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She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.

Which is more probable?

A. Linda is a bank teller
A∧B. Linda is a bank teller and is active in the feminist
movement

Tversky and Kahneman found that when presented with
simple conjunction problems over 80% of their participants
made an erroneous judgement, judging A∧B as more likely
than A. A similarly reliable disjunction fallacy occurs when
participants judge the constituents A,B as more likely than
the disjunction, A ∨ B (Bar-Hillel & Neter, 1993). These
widely replicated fallacy results were taken as an indication
that humans do not reason in a normative fashion that
is, they dont apply probabilistic rules to real-life contexts.
Instead, it was suggested that people employ heuristics -
mental short cuts - to solve these problems. The conjunction
fallacy, for instance, was suggested to occur because people
employed a “representativeness heuristic” when reasoning
about conjunctive problems (Tversky et al., 1983). Under
this theory, the fallacy occurs as the person described in
the conjunction is more representative of the information
presented in the character sketch. However, research has
called the validity of the representativeness account into
question (Bonini, Tentori & Osherson, 2004; Sides et al,
2002). Experiments that manipulated class inclusion, for
instance, demonstrated that the fallacy occurs regardless of
whether the conjunction is representative or not (Gavanski &
Roskos-Ewoldsen, 1991). While fallacy rates are generally
quite high, a frequent observation among this research is
that a small number of participants do not seem overly
susceptible to the fallacy. In addition, over a number of
conjunction problems, participants rarely have 100% error
rates. Stanovich and West (1998) recognized that individuals
can differ greatly on their performances on cognitive bias
eliciting tasks. They found that subjects with higher cognitive
ability were disproportionally likely to avoid committing a
number of cognitive biases including the conjunction fallacy.

Previously, weighted models based on component proba-
bilities such as the Signed Summation and Low-component
models were popular as a means to explain the range of
results that were consistently observed in fallacy research
(Thüring & Jungermann, 1990; Yates & Carlson, 1986).
However, these were limited in the scope of results that they
could predict. A more successful iteration of these weighted
models is the Configural Weighted Average (CWA) model
(Nilsson, Winman, Juslin & Hansson, 2009). This sophis-
ticated weighted model includes a “noise component” that
randomly disturbs probability judgements. More recently
formal probabilistic models have sought to show that a range
of biases can be explained as a function of quasi-rational

probabilistic reasoning instead of a heuristic process. Hilbert
(2012) proposed a theoretical framework based on noisy
information processing. Under this framework, memory
based processes convert observations stored in memory into
decisions. By assuming that these processes are subject to
noisy deviations and that the noisy deviations are a generative
mechanism for fallacious decision-making it provides an
explanation for a number of cognitive biases . Costello
and Watts (2016) proposed the Probability Theory plus
Noise (PTN) model which can account for this variability in
occurrence of the conjunction fallacy. In this model, people
do reason in a normative fashion according to probability
theory but are subject to random error in the reasoning
process. The reasoner’s decision-making processes, which
are memory based, reliably apply the conjunction rule
during the probability estimation process, but random noise
causes fluctuations in judgement that sometimes lead to
the subjective probability of a conjunction exceeding the
subjective probability of the constituent. Costello and Watts
showed that a simulation implementing this model produced
a wide range of fallacy rates (from less than 10% to close to
70%) and produced conjunction fallacy rates for a given set
of materials that closely matched those seen in experimental
studies for the same materials.

Aims of this paper
These two lines of research use different paradigms (direct
perception of probability in controlled sets of events versus
questions about the probability of events given descriptions)
and lead to two contradictory conclusions (people’s proba-
bility estimates are fundamentally accurate versus people’s
estimates are fundamentally flawed). In this paper, we de-
scribe an experiment that aims to reconcile these two strands
of research by using using a perceptual probability task to
examine conjunctive and disjunctive probability judgements
and the occurrence of the conjunction and disjunction fal-
lacy. We ask whether these fallacies will occur reliably in
direct probability perception even though people’s estimates
in probability perception tasks are typically accurate. We also
investigate the predictions of the (PTN) model that attempts
to simultaneously explain both relatively accurate estimation
and reliable fallacy occurrence (Costello et al, 2016).

This model assumes that people estimate probabilities us-
ing a fundamentally rational process which is, however, sub-
ject to the systematic biasing effects of random noise in the
reasoning process. Importantly, this model proposes that the
rate of random noise is greater for more complex conjunc-
tive and disjunctive events than for simple events (as a conse-
quence of simple propagation of error: because conjunctions
and disjunctions are more complex, they have more points
of ‘failure’ at which random noise can have an effect). This
model thus predicts relatively accurate probability estimates,
especially for simple events (as seen in the ‘probability per-
ception’ literature), but stronger systematic bias due to noise
for conjunctive and disjunctive events (producing the con-
junction and disjunction fallacy).
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Experiment
This experiment involves repeatedly presenting participants
with images where each image contains a relatively large
number of shapes differing in colour (red, white or green)
and configuration (solid or hollow). For each image partic-
ipants are asked to estimate the probability of some event
(e.g., a randomly selected shape being red, for example). The
true probability of events in these images were held constant
across multiple presentations (but with the images themselves
varying as to the position of the different shapes on the screen
each time), as described below. Each participant saw multiple
presentations of the same probability question (multiple ques-
tions for which the objectively correct probability was the
same), allowing us to estimate the degree of random variation
in participants estimates. Some questions asked about sim-
ple events (a shape being red, being hollow, etc.) while other
questions asked about conjunctive and disjunctive events (a
shape being red and solid, a shape being white or hollow, etc.)
Two distinct sets of images were used, with objective prob-
abilities of single and conjunctive probabilities held constant
in each set (see below). The images from these two sets were
interspersed with each other. Participants answered questions
about 460 images in total. Images were only on screen for a
short time (2 seconds), and so participants did not have time
to count the occurrence of shapes of different types. Images
were presented in randomised order.

Materials
The images consisted of shapes of three colours - colours A,
B, and C respectively - and 2 shape configurations - X and
Y - with fixed probabilities. The actual colour varied from
image to image, so sometimes colour A was white, sometimes
colour A was red and sometimes colour A was green. The
colours varied in the same way for colour B and colour C.
The actual configuration of the shapes also varied from image
to image so sometimes configuration X was solid shapes and
sometimes configuration X was hollow shapes. Conjunction
and disjunctions were created for a number of combinations
of colour and configuration such as P(A∧X), P(A∧Y) and
P(B∨X).

For each type A, B, C, X, Y, A∧X, A∧Y etc, there were
20 images asking people to estimate the probability of that
type. In practise, this meant that the participants saw 20 im-
ages asking them to estimate the probability of colour A, 20
images asking them to estimate the probability of colour B,
20 images asking them to estimate the probability of config-
uration X and so on.

Set 1
In set 1, colour A had a fixed probability of 0.7, colour B had
a fixed probability of 0.2 and colour C had a fixed probability
of 0.1. Configuration X had a fixed probability of 0.9 and con-
figuration Y had a fixed probability of 0.1. The conjunctions
for set 1 were created using the following colour and config-
uration combinations: P(A∧X), P(B∧X), and P(B∧Y). These
corresponded to the objective probability values of 0.63, 0.18

and 0.02. The disjunctions for set 1 were created using the
following colour and configuration combinations: P(A∨X),
P(B∨X), P(A∨Y), and P(B∨Y). These disjunction combina-
tions corresponded to the the objective probability values of
0.97, 0.92, 0.73, and 0.12. Participants viewed 220 images of
20 geometric shapes on a computer screen.

Set 2
For set 2, colour A had the fixed probability of 0.333, colour
B had the fixed probability of 0.333 and colour C had the fixed
probability of 0.333. Configuration X had the fixed probabil-
ity value of 0.5 and configuration Y had the fixed probabil-
ity value of 0.5. The conjunction for set 2 had the value of
0.17. Any combination of A,B,C and X,Y would give this
value. The disjunction had the objective probability value of
0.67. Again, any combination of A,B,C or X,Y would give
this value.

Participants viewed 240 images of geometric shapes in a
computer screen. Each image consisted of 12, 24, or 36
shapes. Each objective probability values of 0.333, 0.5, 0.17,
and 0.67 were presented 20 times for each of the 12, 24 and
36 shape images.

Each image presentation included a question to elicit a
probability judgement. For the colour probability questions,
participants were presented with questions in the form “What
is the probability of picking a shape that is [colour A]?” or
“What is the probability of picking a shape that is [colour
B]?” Colour C was excluded from the probability questions.
For the configuration questions, participants were presented
with questions in the form: “What is the probability of pick-
ing a shape that is [configuration X]? or “What is the proba-
bility of picking a shape that is [configuration Y]?” The con-
junction and disjunction questions took the same form. For
instance, the question to elicit a probability judgement for the
objective probability of 0.63 would be: “What is the proba-
bility of picking a shape that is [colour A AND configuration
X]?”.

Procedure
Participants were seated at a screen. Each participant began
with a training trial of sample stimuli to familiarize them-
selves with the task (see figure 1). Once the participants were
comfortable with the task, they moved onto the experimental
trials. The static image and the probability question appeared
on screen simultaneously. The image was replaced with a
blank screen once 2 seconds had elapsed to prevent the partic-
ipants from counting the shapes. The associated question re-
mained on-screen until the participants had made their guess.
The participants indicated their estimate by moving dial on
a slider using their mouse or arrow keys. This slider had a
minimum value of 0 and a maximum value of 1. A box in the
corner indicated the exact value of the participants’ estimate
and dynamically updated as they moved the slider. When the
participant was satisfied with their answer, they submitted it
by clicking on a Next button. This also triggered the succeed-
ing image and probability question.
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[Probability Question]

50%

Next

0 1

Figure 1: The figure above displays example stimuli image
from set 1 in grey scale. While the shape types changed
between sets, the underlying proportions remained constant.
The image above has a shape configuration of 0.9 for solid
shapes and 0.1 for hollow shapes. The colours have fixed
probabilities of 0.7, 0.2 and 0.1.

Results
A total of 9 participants made 460 probability judgements
each. Their responses and response time was recorded for
each judgement. Two of the participants were excluded from
the final analysis for failing to answer 20% of the questions.
The number of participants is in line with other studies of
probability perception (e.g. Gallistel et al, 2014).

Error and variance The initial analysis determined
whether an estimate was an actual estimate or whether an er-
ror had occurred in the response (such as the participant mis-
takenly submitting an estimate). To do this, the standard de-
viation for each participants’ estimates were calculated. Any
estimate that fell ± 3 standard deviations from the mean es-
timate of a probability was excluded. In total, this comprised
of 1% of responses.

Estimated probability vs true probability
For each of the 11 probability values in set 1, each partici-
pant gave 20 estimates for its value. In set 2, the 4 proba-
bility estimates were questioned at 3 different levels; 20 es-
timates were given for each probability value at each level.
The relationship between mean probability estimates and ob-
jective probability are displayed in figure 2. For each prob-
ability value, the participants’ average estimate and standard
deviation was calculated. The average estimate and standard
deviation were also calculated for the sample. The average
deviation from the true probability was calculated in terms
of percentage points. Some noticeable trends were observed,
participants tended to overestimate the low probabilities and
underestimate the higher probabilities. The degree of overes-
timation for the low constituents was much less than for the
low complex statements. For instance, the constituent with a
true probability of 0.1 have an average estimate of 0.13, while
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True Probability
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Figure 2: The above graph displays the average probabil-
ity estimate vs the objective probability value by type. Any
value falling above the line represents an overestimation of
the probability value, while the values falling below the line
represent underestimations of the true value. Largely, con-
junctions were overestimated and disjunctions were underes-
timated. Constituents tended to have accurate estimates.

the conjunction with a probability of 0.02 had an average es-
timate of 0.14 and the disjunction of 0.12 had an average es-
timate of 0.26. Overall, conjunctions were overestimated and
disjunctions were underestimated. The conjunctions and dis-
junctions averaged 10 percentage points away from their true
probability while the constituent average was 4 percentage
points. Figure 2 shows the average estimate for each type.

For set 2, the conjunctions were overestimated on all occa-
sions, with the average estimate increasing as the stimulus set
became more complex. The disjunctions were consistently
underestimated. Participants were more accurate in their esti-
mates for the constituents. The 12-shape combinations had
the lowest average estimates, the 24-shape estimates were
higher than the 12-shape and lower than the 36-shape esti-
mates. The 36-shape images had the highest mean estimates.

Fallacy rates
Each conjunction and constituent was presented 20 times to
each participant. To evaluate the rate at which the partici-
pant had committed the conjunction fallacy, each conjunction
judgment 1 . . .20 was matched in order with its correspond-
ing constituent judgments (1 . . .20), so the first conjunction
judgement was matched with the first constituent judgements,
and so on. If a particular conjunction judgement exceeded the
estimate of either of the corresponding constituent values, an
instance of the conjunction fallacy was recorded. For each
participant, there were six conjunction questions where the
fallacy could be committed, three from set 1 and three from
set 2. The average conjunction fallacy rate was 30%. Fal-
lacy rates ranged from 13% to 69%: a range that is in-line
with those seen in description based studies (e.g. Stolarz-
Fantino, Fantino, Zizzo, & Wen, 2003). The set-up of this ex-
periment allows us to categorise conjunctions based on their
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Table 1: Fallacy rates occurrences by objective probability
for the conjunction and disjunction problems.

Set 1 Set 2

Conjunction fallacy

Conjunction probability 0.02 0.18 0.63 - 0.17 0.17 0.17
(12-shapes) (24-shapes) (36-shapes)

Fallacy rate 43% 21% 68% - 19% 13% 14%

Disjunction fallacy

Disjunction probability 0.12 0.73 0.92 0.97 0.67 0.67 0.67
(12-shapes) (24-shapes) (36-shapes)

Fallacy rate 34% 28% 49% 71% 40% 25% 24%

Fallacy rates varied quite significantly for the conjunctive and
disjunctive judgements. The highest fallacy rates were ob-
served for the highest objective probabilities. However, the
objective probability value was necessarily an accurate pre-
dictor of fallacy occurrence as high fallacy rate were also ob-
served for low objective probabilities.

actual probabilities and their underlying constituent probabil-
ities. The participants showed marked differences in perfor-
mances for each of the six conjunctions they were presented
with. Table 1 displays the fallacy rate breakdown by con-
junction type. The highest fallacy rates are seen for the con-
junction with the highest probability value. High fallacy rates
were also observed for the conjunction with the lowest prob-
ability value. The other conjunctions had low fallacy rates.

As for the conjunction fallacy, each disjunction judgement
was matched with the constituent judgements in sequence,
so the first disjunction judgement was matched with the first
instances of the relevant constituent judgements. If a disjunc-
tive estimate was less than either of its constituent estimates
then it was counted as a disjunction fallacy. The average dis-
junction fallacy rate was 39%. The fallacy rate ranged from
25% to 71%, which is consistent with the results from de-
scription based research. The average fallacy rate for the each
of the 7 possible disjunctions is displayed table 1. As for the
conjunctions, the objective probability value of the disjunc-
tion was not an indicator of fallacy rate occurrence.

Conjunction and disjunction fallacy occurrence varied over
the course of presentation, however, there was no obvious
trend of improvement or deterioration in the participants abil-
ity to avoid committing the fallacies (fallacy rates did not de-
cline with familiarity).

Variance
Since each conjunction, disjunction and constituent was pre-
sented 20 times to each participant, we can estimate the de-
gree of variance (standard deviation) in estimates for type.
Recall that the PTN model predicts greater variance would
exist for the complex combinations than the constituents.
Results showed that the complex combinations were more
variable than their constituent counterparts for 68% of the
comparisons. The conjunctions were noisier than their con-

Table 2: Average standard deviation for constituents, con-
junctions and disjunctions

A B A (SD) B (SD) A∧B (SD) A∨B (SD)

0.1 0.2 0.050 0.072 0.070 0.102
0.1 0.7 0.050 0.083 - 0.091
0.9 0.2 0.073 0.072 0.071 0.120
0.9 0.7 0.073 0.083 0.085 0.095
0.5 0.33 (12) 0.088 0.090 0.086 0.145
0.5 0.33 (24) 0.101 0.080 0.075 0.126
0.5 0.33 (36) 0.060 0.098 0.096 0.111

The table above displays the average variability scores for the
single constituents, conjunctions and disjunctions. In nearly
all the cases, the complex judgement (conjunction or dis-
junction) was more variable than one if not both of its con-
stituents.

stituents counterparts for 50% of the comparisons. Disjunc-
tions were more variable than their constituent counterparts
for 83% of the comparisons. The average variance for con-
stituents was 0.77, conjunctions had an average variance of
0.81 and disjunctions had an average variance of 0.11.

Variance and fallacy rate Participants variability was pos-
itively correlated with their fallacy rates, small positive cor-
relations were observed for the conjunction fallacy rates,r =
0.25 and the disjunction fallacy rates, r = 0.36 for set 1. For
set 2, a strong positive correlation was observed for the con-
junction fallacy rate and variability, r = 0.89 and a mild pos-
itive correlation for the disjunctions, r = 0.32. This supports
the PTN model assumption that conjunction and disjunction
fallacies arise due to variability in conjunction and disjunc-
tion estimates. Table 2 displays the average standard devia-
tion values for each constituent, conjunction and disjunction.
Overall, the complex combinations had higher average stan-
dard deviations than the constituents.

Timings

Participants had slower response times for their initial esti-
mates but these decreased and plateaued rapidly. To inves-
tigate whether there was a difference in response times for
type - constituent, conjunction, and disjunction - the average
time for each type was calculated. Then a repeated measures
ANOVA was performed to examine whether a difference ex-
isted for the average reaction times for judgement type. The
ANOVA found a significant difference in reaction speed for
judgement type, F(2, 278) = 8.478, p < 0.05. Pairwise
comparisons showed that constituents judgements were sig-
nificantly faster than conjunctions judgements. Constituent
judgements were also significantly faster than disjunctions
judgements. No significant different was observed between
the judgements speeds for the conjunctions and disjunctions.
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Discussion

This paper investigated an apparent conflict in the literature
on probability estimation, which shows accurate estimates
when people estimate probabilities from directly presented
samples, but systematic occurrence of the conjunction and
disjunction fallacy when people estimate the probability of
described events. Our experimental results show accurate es-
timates, and frequent fallacies in judgement for conjunctions
and disjunctions, occurring simultaneously when probabili-
ties are estimated from samples. This pattern of results is pre-
dicted by the PTN model (Costello & Watts, 2016), in which
people estimate probabilities by following standard frequen-
tist probability theory, but with random noise in judgement.
Fallacies in judgement such as the conjunction and disjunc-
tion fallacy are caused by increased rates of random error
for conjunctions and disjunctions, while accurate estimates
for constituents are produced because people follow stan-
dard probability theory in making estimates, and because con-
stituent estimates are subject to lower rates of random error.

The results here demonstrate that producing accurate prob-
ability estimates (especially for constituents) and producing
conjunction and disjunction fallacy responses are not mutu-
ally exclusive states: both patterns of results can occur si-
multaneously, and are naturally explained in a model where
people reason according to standard probability theory but are
subject to random noise in the reasoning process

While the wide range of fallacy results observed in the lit-
erature (approximately 10% to 80% depending on task type)
is challenging, this experiment demonstrates that a range of
fallacy rates from low to high can occur for the same task and
are a consequence of the objective values of the constituents,
the conjunctions or disjunctions and the rate of variability
in estimates. We observed complex combination estimates
that were consistently more variable than the constituent es-
timates. While both the CWA and PTN models predict that
fallacy rates will be effected by noise, they make divergent
predictions. The CWA model predicts a negative correlation
with variability and fallacy rates, that is, the rate of fallacy
errors should increase as the rate of noise decreases. Here,
both conjunction and disjunction fallacy rates correlated pos-
itively with variability. These results are consistent with the
PTN model which predicts that we should observe a positive
relationship between fallacy rates and variability.

The results of this experiment seem to resolve the conflict
between studies of probability perception and the studies of
fallacies in reasoning. Participants were accurate probabilis-
tic reasoners - their judgements of probabilities were good
especially for the constituents. However, these judgements
are still systematically biased and depending on the problem
type, noisy. People’s estimates are more variable for conjunc-
tions and disjunctions than the constituents and this variance
causes the occurrences of the conjunction and disjunction fal-
lacy. This account of accurate estimates with consistent fal-
lacy occurrences is consistent with the PTN model.
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