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Abstract

Spiders (Araneae) haveadiverse spectrumofmorphologies, behaviors, andphysiologies. Attempts tounderstand thegenomic-basis

of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly

fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat

content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the

genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of

�2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest

that the previously reported and vast genome size variation in spiders is linked to the different representation and number of

transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory

perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk

gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata

(�450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic

novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable

element expansion.

Key words: gene family, Araneae, arthropod, repeatome, hawai’i, transposable element.

Introduction

With nearly 50,000 described species (World Spider Catalog

2021), and dating back �350 Myr (Fern�andez et al. 2018),

spiders (Chelicerata, Araneae) have conquered most terrestrial

ecosystems, from the cold Arctic to arid deserts (Jackson and

Cross 2011; Dimitrov et al. 2012; Garrison et al. 2016;
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Fern�andez et al. 2018). Spiders play a key role in terrestrial

ecosystems regulating community dynamics as major arthro-

pod predators (Herberstein and Wignall 2011; Wilder 2011),

having evolved a diverse array of adaptive solutions, which

include, a rich cocktail of venoms to neutralize prey (Binford

2001; King and Hardy 2013), a color palette essential for

camouflaging, mimicking, and signaling (Oxford and

Gillespie 1998; Croucher et al. 2013; Cotoras et al. 2016),

and the ability to produce silk for spinning webs and subduing

prey (Vollrath 1999; Garb et al. 2010; Sanggaard et al. 2014).

Despite the advances in spider ecology, evolution, and sys-

tematics, knowledge of spider genomes still lags relative to

other taxa. Most of the available spider genomes are of poor

quality, being highly fragmented (Garb et al. 2018) and lack a

substantial part of the genome, with only three recent excep-

tions involving chromosome-resolved genomes (Escuer et al.

2021; Fan et al. 2021; Sheffer et al. 2021). Several factors

contribute to the sparse availability of high-quality spider ge-

nome assemblies, including the lack of a model organism

among spiders (sensu Drosophila melanogaster in flies and

Tribolium castaneum in beetles) (Brewer et al. 2014), and

the challenges associated with sequencing spider genomes,

which are characterized by high AT-content, repeats, hetero-

zygosity, and often large genome sizes (Garb et al. 2018).

Focus on non-model organism genomes shows that increased

taxon-sampling leads to an improved understanding of the

diversity and function of molecular mechanisms across the

tree of life (McGregor et al. 2008), as it overcomes the biases

from the limited number of model taxa, and highlights the

idiosyncrasies throughout the tree of life. Consequently, a

better representation of spider genomes will certainly help

understanding spider diversity and evolution (McGregor

et al. 2008).

A systematic analysis of spider genomes has the potential

to unveil the genomic foundation of spider evolution. For ex-

ample, the detection of duplicate Hox clusters suggested an

ancestral whole genome duplication in the common ancestor

of modern spiders and scorpions (Arachnopulmonata;

Schwager et al. 2007), and this evidence was later on con-

firmed by the first spider genomes (Clarke et al. 2015;

Schwager et al. 2017; Leite et al. 2018). The implications of

whole genome duplications may, however, be multifarious

and complex (Ohno 1970). On one hand, genome duplication

may act as a catalyst for molecular novelty. Under this frame-

work, the retention of duplicated genes and other genetic

components may act as “reservoirs of genetic variation,”

through processes of gene neo- and sub-functionalization

(Lynch and Force 2000), and be of use when organisms en-

counter novel selective pressures (Li et al. 2018; Nieto Feliner

et al. 2020; Schmickl and Yant 2021). Considering the evi-

dence for gene duplicates in spider genomes, including spi-

droins (silk genes) (Sanggaard et al. 2014; Clarke et al. 2015;

Babb et al. 2017; Garb et al. 2018; Sheffer et al. 2021),

venoms (Sanggaard et al. 2014; Gendreau et al. 2017;

Haney et al. 2019), chemosensory (Vizueta et al. 2018,

2019; Vizueta, Escuer, et al. 2020) gene families may yield

insights on phenotypic innovation and the adaptation to novel

environments. On the other hand, because genome duplica-

tion leads to a significant re-organization of the genome, it

may cause deregulation of gene-expression networks or un-

lock the epigenetic suppression of transposable elements,

which may proliferate across the genome and result in de-

creased fitness for the organism—“the genomic shock

hypothesis” (McClintock 1984; Choi et al. 2020). In such a

scenario, one expects to find variation in transposable ele-

ment proliferation across genomes, and ultimately a substan-

tial variation of genome size. The proliferation of transposable

elements may thereby underlie genome size variation in spi-

ders, which ranges between 0.74 and 5.73 C values (0.7–

5.6 Gb) (Gregory and Shorthouse 2003) (http://www.

genomesize.com/ checked in April 15, 2021; values for:

Habronattus borealis, Tetragnatha elongata, respectively).

Comparisons between different genome assemblies may yield

important insights on the prevalence of gene duplications,

neofunctionalization, and transposable element dynamics

across different lineages.

Here, we report a genome assembly of the Hawaiian spider

Tetragnatha kauaiensis and place it in the context of currently

available spider genomes to assess signatures of genome evo-

lution across spider lineages (supplementary table 1,

Supplementary Material online). To do so, we first explore

the completeness and duplication rates across the spider as-

semblies. Considering the role of transposable elements in

driving genome size variation, we also assess transposable

Significance

Despite being one of the most charismatic animal lineages, progress on spider genome evolution lags due to the

challenges in sequencing and assembling their genomes, which involve genome size and repeat content. Here, we

sequence the genome of Tetragnatha kauaiensis, a spider endemic to Hawai’i, and compare it with other available

spider genomes. We find variation in terms of repeats and transposable elements; expansions in gene-content asso-

ciated with metabolism, sensory perception, and immunity; and wide variation of chemosensory genes and venom

genes.
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element load in each genome. Third, we quantify the expan-

sion and contraction of gene families (based on gene similarity

metrics), and classify the function of these families using Gene

Ontology (GO). Finally, we delve deeper into the identification

and comparison of chemosensory, venom, and spidroin (silk)

genes, studying duplicates in a phylogenetic context. Focus on

these three categories is grounded on their central role to the

survival and fitness of spiders, and benefits from extensive

research, including hand curated genes and databases.

Results

The Tetragnatha kauaiensis Genome

The T. kauaiensis genome assembly has a size of �1.08 Gb,

distributed along a total of 132,391 contigs, comprising

3,925 scaffolds. The largest scaffold is ca. 10.5 megabases

(Mb), whereas the estimated scaffold-N50 for the assembly

is �2 Mb (supplementary table 2, Supplementary Material

online). The assembly has a GC content of �33.3%, in line

with the remaining spider genomes (lowest GC content

Latrodectus hesperus with 28.59% and highest content is

Stegodyphus mimosarum with a GC content of 33.62; sup-

plementary table 2, Supplementary Material online). The as-

sembly has no obvious contaminants or associated symbionts,

as determined by Blobtools (supplementary fig. 1,

Supplementary Material online). The majority of scaffolds

have a similar GC composition, despite variations in coverage.

From all 3,925 scaffolds, 2,774 were labeled as no-hits (com-

prising only a total of �32.46 Mb of the assembly), and 889

labeled as Arthropods (�886 Mb).

Annotation of the T. kauaiensis genome yielded 38,907

genes, comprising 213,695 exons and 171,423 introns (sup-

plementary table 3, Supplementary Material online).

Together, all genes cover 290,369,064 bp (290 Mb) repre-

senting 26.7% of the genome with 41,209,078 bp (41 Mb,

3.8% of the genome) being coding sequences (cds). The

mean gene length is 7,463 bp (supplementary table 3,

Supplementary Material online), the longest gene is

208,580 bp long (208 kb), and 89.7% of BUSCOs are re-

trieved as complete.

Genome Characterization and Evolution

The analyzed assemblies vary widely in size. Araneus ventrico-

sus has the largest assembly with 3.6 Gb (supplementary table

2, Supplementary Material online), whereas T. kauaiensis has

the smallest assembly with 1,085,571,486 bp (1.1 Gb). In be-

tween these extremes, we find the genomes of S. mimosarum

(2.7 Gb), Trichonephila clavipes (2.4 Gb), Argiope bruennichi

(1.7 Gb), Dysdera silvatica (1.4 Gb), Parasteatoda tepidariorum

(1.5 Gb) and L. hesperus (1.1 Gb).

Considering the 3-fold variation in genome size and the

evidence for ancient whole genome duplications in

Chelicerata (Shingate et al. 2020) and Arachnida (Schwager

et al. 2017; Harper et al. 2021), and the suggestion that there

has been a large-scale (whole genome or chromosomal) du-

plication event within spiders (Clarke et al. 2015), we explored

the possibility of whole genome duplication private to spider

genomes by interrogating the number of homologs in the

Hox genes clusters. Using Hox genes 1–5, and based on a

threshold of 95% identity, we find no evidence for an addi-

tional ancestral whole genome duplication in the studied spi-

der genomes. We found zero, one, or two homologs for Hox

1 (supplementary table 4, Supplementary Material online). For

Hox 2, we found two homologs in all genomes, with the

exception of A. ventricosus, where we only find a single ho-

molog (supplementary table 4, Supplementary Material on-

line). For Hox 3, there was only one homolog in all genomes,

with the exception of P. tepidariorum (two candidates) and T.

clavipes (no candidate). For Hox 4, we found two homologous

genes in T. kauaiensis, P. tepidariorum, L. hesperus, and

S. mimosarum, one in T. clavipes and another in D. silvatica.

A. ventricosus, however, had four homologs for the Hox4

gene. Finally, for Hox 5, we identified one homolog in all

genomes, with the exception of A. ventricosus and

P. tepidariorum where we found two homologous genes.

This suggests that, with the exception of the outlier with

four copies (Araneus Hox4), Hox genes are present in one

or two copies.

Transposable Element Variation

We find variation in repeat content and tempo of repeat ac-

cumulation across the spider assemblies (fig. 1; supplemen-

tary table 5, Supplementary Material online). For example,

10.3% of the D. silvatica genome is composed of Long

Interspersed Nuclear Elements (LINEs), whereas all other stud-

ied spiders had at most 3% LINEs (fig. 1A). Stegodyphus

mimosarum had 5.40% of its genome covered by long ter-

minal repeat (LTR) elements, whereas A. ventricosus, which is

the second LTR-element-most rich genome, had only 1.60%

(fig. 1). Interspersed repeats varied between 52.84% in

D. silvatica and 16.53% in L. hesperus (supplementary table

5, Supplementary Material online). Unclassified repeats

ranged between 32.64% (A. ventricosus), and 4.71%

(L. hesperus) (supplementary table 5, Supplementary

Material online). Overall, Repeatmasker identified between

16.71% and 52.84% of total repeat content (fig. 1A; supple-

mentary table 5, Supplementary Material online). The corre-

lation coefficient (R) between genome size and the percent of

masked genome is R¼ 0.65, and the correlation coefficient

(R) between total length of the masked genome and genome

size is R¼ 0.962. Finally, we find variability in the accumula-

tion of transposable elements through time, as represented by

the shape of the transposable element/repeat landscape plot

curves (fig. 1B). For instance, the A. bruennichi and

P. tepidariorum assemblies show two peaks in transposable

element accumulation, whereas all the others display a single
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peak. Stegodyphus mimosarum, however, has a recent burst

in Tc1/mariner (DNA/TcMar) transposable elements (fig. 1B).

Despite the differences in the accumulation of transposable

element/repeats through time, we note that the Tc1/mariner

group (DNA/TcMar) is present as one of the top three most

represented transposable elements in all the assemblies, and

hAT transposons (DNA/hAT) are also among the three-

dominant categories in six assemblies. There is, however,

variation across assemblies, as shown by the high numbers

of Helitrons (RC/Helitron) in two of the Araneidae assemblies

(A. bruennichi and A. ventricosus), Gypsy (LTRGypsy) in

S. mimosarum, and Jockey (LINE/Jockey-l) in L. hesperus.

The analysis of genome completeness, as assessed by

BUSCO scores, suggests that spider assemblies are consider-

ably fragmented and missing substantial parts of the genome

(supplementary table 6, Supplementary Material online). For
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instance, the D. silvatica, L. hesperus and T. clavipes genomes

have only, respectively, 66%, 38.6%, and 52% complete

BUSCOs (Arachnid odb10). Completeness in the remaining

genomes ranged between 80% and 99%. Duplicated

BUSCOs ranged between 30.5% (P. tepidariorum) and

3.2% (S. mimosarum). Notably, the two biggest genomes,

A. ventricosus (3.6 Gb) and S. mimosarum (2.7 Gb) have

18.4% and 3.2% duplicated BUSCOs (supplementary table

6, Supplementary Material online, Arachnid data set odb10).

The percentage of complete single-copy, duplicated, frag-

mented, and missing BUSCOs is concordant between the

Arthropod and Arachnid sets (supplementary table 6,

Supplementary Material online).

Gene-Family Evolution

Because studying gene family evolution requires a phyloge-

netic backbone, we used the tree obtained from OrthoFinder

based on 286 single-copy orthologs (orthologs are genes in

different species that evolved from a common ancestral gene;

fig. 2A). The tree topology has T. kauaiensis (Tetragnathidae)

as sister lineage to the clade comprising the two members of

Araneidae (A. bruennichi and T. clavipes). The clade encom-

passing all the aforementioned is sister to the Theridiidae

(L. hesperus and P. tepidariorum). In turn, S. mimosarum

(Eresidae) is the sister to Araneoidea (represented here by

Tetragnathidae, Araneidae, and Theridiidae). Dysdera silvatica

(Dysderidae) is the sister to the clade comprising all the
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aforementioned spiders (fig. 2A). This topology is in agree-

ment with recent and comprehensive phylogenomic analyses

of spiders (Fern�andez et al. 2018).

From a total of 608 significant gene family expansions in all

branches, 572 occurred in terminal branches (fig. 2B). There

were 451 significant expansions, and 157 significant contrac-

tions, of which 124 occurred in terminal branches (supple-

mentary figs. 1–4, Supplementary Material online).

GO annotations of the significantly expanded gene families

which were characterized under “biological process” were or-

ganized by REVIGO and are represented in fig. 2B. Broadly, we

find expansions associated with feeding metabolism and sen-

sory perception, mannose metabolism in the genome of

D. silvatica and chitin metabolism in T. kauaiensis (fig. 2B).

Expansions in carbohydrate metabolism are found in

D. silvatica and T. kauaiensis, whereas Araneidae has glyoxylate

catabolic process expanded (fig. 2B). Expansions in sensory

perception of taste are found in D. silvatica, T. kauaiensis,

A. bruennichi, and in Node 1 (fig. 2B). Immune response is

found in the genomes of D. silvatica, P. tepidariorum, and

A. bruennichi, whereas sodium ion transport is found in

T. kauaiensis and A. bruennichi (fig. 2B).

When considering significant expansions in all GO catego-

ries (i.e. biological process, molecular function, and cellular

component), we find expansions associated with taste (in-

cluding sensory perception of taste in Node 1,

A. bruennichi, and D. silvatica; detection of chemical stimulus

involved in sensory perception of taste in A. bruennichi and

Node 1; molecular function taste receptor activity is found in

A. bruennichi and T. kauaiensis; supplementary table 7,

Supplementary Material online). We also find evidence for

expansions related to various metabolic processes, including

carbohydrate metabolic process, and mannose metabolic pro-

cess in D. silvatica, whereas protein catabolic process, 3,4-

dihydroxybenzoate catabolic process, fatty acid catabolic pro-

cess, pyruvate metabolic process, glucose metabolic process,

protein metabolic process, lipid catabolic process, lipid meta-

bolic process, and fatty acid metabolic process are found in T.

clavipes. The P. tepidariorum genome includes expansions in

peptidoglycan catabolic process and lipid metabolic process,

whereas that of T. kauaiensis includes expansions in chitin

metabolic process and carbohydrate metabolic process.

Theridiidae includes expansions in lipid metabolic process,

whereas Araneidae includes changes in taurine catabolic pro-

cess. Finally, catalytic activity is expanded in the genomes of

D. silvatica, L. hesperus, T. clavipes, T. kauaiensis. Other nota-

ble expansions include the regulation of neurotransmitter lev-

els, structural constituent of eye lens in A. bruennichi, defense

response and toxin activity in C. sculpturatus, and response to

heat in T. clavipes. The biological process for “sodium channel

activity” is found expanded in A. bruennichi, T. clavipes, and

P. tepidariorum, whereas the molecular function for “sodium

channel activity” is found in A. bruennichi and T. kauaiensis.

Proteolysis (i.e. breakdown of proteins), the breakdown of

process is expanded in A. bruennichi, C. sculpturatus,

D. silvatica, L. hesperus, P. tepidariorum, S. mimosarum,

T. kauaiensis, and Theridiidae.

Venom Gene-Family Variation

The combination of BLAST and TOXIFY identified a total of

559 toxins in the studied genomes (supplementary table 8,

Supplementary Material online), included as part of 189

orthogroups. The orthogroups with most genes are displayed

in figure 3 and include OG0000175 (135 genes, Astacin-like

metalloproteases as determined by NCBI-BLAST),

OG0000314 (105 genes, Neprilysins or endothelin-

converting proteins), OG0000346 (99 genes, uncharacterized

proteins), OG0000432 (86 genes, Techylectin), OG0000639

(68 genes, various toxin-types), OG0000761 (61 genes,

Zonadhesins, various toxin-types), OG0000803 (59 genes,

Astacin-like metalloproteases), OG0000916 (54 genes,

Papilins, Kunitz-type serine protease inhibitor) OG0000930

(54 genes, Astacin-like metalloproteases), OG0001436 (41

genes, uncharacterized proteins). The two most toxin-rich as-

semblies were the A. bruennichi and P. tepidariorum where

154 and 200 toxins were identified, respectively. The scorpion

genome, C. sculpturatus, yielded 31 toxins, whereas

D. silvatica and L. hesperus yielded 13 and 16 toxins, respec-

tively (supplementary table 8, Supplementary Material online).

Phylogenetic analyses of the orthogroups show that most

venom families were present before the split between scor-

pions and spiders (fig. 3). Different spider genomes include

species-specific expansions (i.e. groups of five or more genes

from a single genome that cluster as a monophyletic clade),

and many of these have relatively large branch lengths.

Specifically, we find evidence for various expansions in

P. tepidariorum (4 expansions, one with 7 genes, another

with 12, one with 7 and one with 9 genes), one expansion

in A. ventricosus (one expansion with 11 closely related

genes), one in D. silvatica (one expansion in 6 genes) and

one in C. sculpturatus (5 genes expanded) in OG0000175

(fig. 3). In OG0000314, we found an expansion private to

the three Araneidae genomes, including A. bruennichi, A.

ventricosus, and T. clavipes), various expansions exclusive to

the A. ventricosus genome, and one expansion specific to the

scorpion genome (nine genes). In OG000346, we found var-

ious expansions on the S. mimosarum (nine genes),

P. tepidariorum (five genes), A. ventricosus (eight genes)

genomes. In OG000432 we found genome-specific expan-

sions in D. silvatica (eight genes; fig. 3). In OG0000639, we

found an expansion in C. sculpturatus (five genes), and in

OG0000803 there are two five-gene expansions, one in

C. sculpturatus, another in A. ventricosus. OG0000930 is

only present in T. kauaiensis (1 expansion with 20 genes),

A. ventricosus, A. bruennichi, T. clavipes, and

P. tepidariorum. OG0001436 is expanded in C. sculpturatus

(five genes).
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Chemosensory Gene-Family Variation

We identified a total of 5,595 candidate gustatory receptors

(GRs), 1,934 candidate ionotropic receptors (IRs), 25 candi-

date Odorant binding proteins (OBP-like), 147 candidate

Niemann-Pick type C2 (NPC2), 137 candidate carrier protein

(CCP), and 998 candidate cluster of differentiation 36 and

neuron membrane proteins (CD36-SNMP; supplementary ta-

ble 9, Supplementary Material online; figs. 4 and 5). GRs

exhibited a large interspecific variation (fig. 4), ranging

between 1,436 GRs in A. ventricosus and 84 in L. hesperus.

Centruroides sculpturatus, the outgroup, had 1,648 GRs (sup-

plementary table 9, Supplementary Material online). The

D. silvatica genome has the most IR/iGluR genes with 443

genes (supplementary table 9, Supplementary Material on-

line; fig. 4). We detected a total of 25 OBP-like genes, with

5 being present in T. kauaiensis, 4 in D. silvatica and in

S. mimosarum, 3 in P. tepidariorum and all remaining

genomes having only 1 or 2 OBP-like genes (supplementary

table 9, Supplementary Material online; fig. 5). From the 147
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identified NPC2, D. silvatica had the least NPC2-genes (7

genes) and A. ventricosus the most (23). Argiope bruennichi

had the most CCP, with 41 genes, whereas C. sculpturatus

and T. clavipes had only 1 CCP (supplementary table 9,

Supplementary Material online; fig. 5). Finally, we identified

at least 8 and at most 16 CD36-SNMP genes. T. clavipes and

C. sculpturatus had the most CD36-SNMP genes with 16 and

14, respectively, whereas P. tepidariorum and A. bruennichi

had the least with 8 (supplementary table 9, Supplementary

Material online).

An analysis of phylogenetic patterns suggests that the che-

mosensory portfolio is driven by a highly dynamic

diversification process. For instance, within GRs there are

two genome-specific expansions of genes in the scorpion,

one including 1,237 genes and another 235 genes (fig. 4).

A similar pattern is observed in the IRs where we find two

genome-specific expansions private to the scorpion genome

(88 genes, and 382 genes; fig. 4), a large genome-specific

gene group with 392 genes in D. silvatica, and another in the

Tetragnatha genome including 139 genes. In CCPs, we found

expansions in A. bruennichi (5 genes and 13 genes),

P. tepidariorum (21 genes), A. ventricosus (8 genes), and

D. silvatica (6 genes; fig. 5A). In CD36-SNMP we found expan-

sions in the scorpion (9 genes) and in T. kauaiensis (5 genes;

fig. 5B). In NPC2, we found expansions in L. hesperus (14

genes), P. tepidariorum (6 genes), and C. sculpturatus (14

genes; fig. 5C), whereas in CD36-SNMP (fig. 5D) we found

expansions in the T. kauaiensis (5 genes) and C. sculpturatus

(9 genes) genomes.

Silk Gene-Family

We identified a total of 24 putative spidroins in the genome of

T. kauaiensis (supplementary table 9, Supplementary Material

online). After querying these to the NCBI protein database,

we identified one Flagelliform spidroin (Flag), four Aggregate

spidroins (AgSp), eight Major Ampullate spidroins (MaSp),

three Minor Ampullate spidroins (MiSp), one Tubuliform spi-

droins (TuSp), one Pyriform spidroin (PySp), and one Aciniform

spidroin (AcSp). There was one spidroin for which NCBI did

not yield any results, and four where the database retrieved

more than a single gland as a top-hit (supplementary table 9,

Supplementary Material online). Alignments are provided in

the Supplementary Material online.

Phylogenetic patterns of spidroin shows several genome-

specific expansions of the Ma/Mi spidroins, including two sep-

arate expansions in the P. tepidariorum genome (25 genes

and 10 genes; supplementary table 10, Supplementary

Material online; fig. 6), a single expansion in S. mimosarum

including 7 genes, another in A. ventricosus including 8 genes,

and another in T. kauaiensis including 7 genes. In the remain-

ing spidroins, we find genome-specific expansions in AgSp

and PySp in P. tepidariorum, with nine and six genes, respec-

tively. In AcSp there are two smaller lineage-specific clades in

A. bruennichi and A. ventricosus. There is a genome-specific

expansion in A. bruennichi for the TuSp gland, with seven

genes (supplementary table 10, Supplementary Material on-

line; fig. 6).

Discussion

In this study, we report the sequence assembly of the T.

kauaiensis genome, and explore genome evolution across

the available spider assemblies. To do so, we controlled for

the quality of the assemblies, by focusing on contiguity and

completeness (i.e. how complete a genome is from a gene
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FIG. 4.—Gustatory and ionotropic reception phylogenies (A)

Gustatory receptor phylogeny. The phylogeny has 5,595 genes and

includes every GR identified in the assemblies herein studied. (B)

Ionotropic receptor phylogeny. The phylogeny has 1,932 genes and
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content perspective based on the presence of universal single

copy genes), finding that many of these assemblies are highly

fragmented and incomplete. We find a wide variation in gene

content, repeat content, and genome size in the surveyed

spider genomes, which indicates a highly dynamic pattern

of genome evolution. Although the low quality of some as-

semblies did not hamper comparative analyses of the sur-

veyed spider genomes, results should be interpreted with

caution. By surveying all repeats and transposable elements

(hereafter “the repeatome”) and studying Hox gene duplica-

tions, we find that the observed genome size differences are

likely driven by the expansion of the repeatome. We also find

significant gene-family expansions associated with sensory

perception of taste, immunity, and metabolism, which may

underlie the diverse biology of spiders. We confirm previous

work showing that venoms and chemosensory genes are pre-

sent in high numbers across the assemblies, and discuss the

role of putative ancient whole genome duplication in gener-

ating the diversity we observe in spiders.

Repeat Content Underlie Genome Size Variation in Spiders

Previous evidence from flow cytometry, Feulgen image anal-

ysis densitometry, and genome assembly sizes have found

wide variation in genome size in spiders (Gregory and

Shorthouse 2003; Sanggaard et al. 2014; Kr�al et al. 2019).

For instance, Gregory and Shorthouse (2003) assembled a

large data set comprising 115 species from 19 different fam-

ilies of spiders, finding that spider genomes vary between

5.73 and 0.79 C (�7 Gb for the jumping spider H. bore-

alis—�724 Mb for the long-jawed orbweaver T. elongata).

They also reported a wide variation within relatively closely

related species. For instance, genome size in the Salticidae

family ranged between 1.73 and 5.73 C (between H. borealis

and the peppered jumping spider Pelegrina galathea). Our

results are in line with this evidence, because we found var-

iation in genome size among spider assemblies (in our data set

the largest genome was A. ventricosus with 3.6 Gb, and the

smallest was T. kauaiensis with 1.08 Gb). We also report
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FIG. 5.—Phylogeny of other chemosensory genes. (A) CCP phylogeny; (B) CD36-SNMP phylogeny; (C) NPC2, phylogeny; (D) OBP-like phylogeny.
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variation between relatively closely related species (i.e. within

the Araneidae family, where we included three assemblies,

genome sizes ranged between 3.6 and 1.7 Gb). Similar to

previous reports, we do not find a clear phylogenetic pattern

of genome size variation across the spider tree of life (Gregory

and Shorthouse 2003).

Genome size may increase through whole genome dupli-

cation, where the whole genome doubles itself, or through

small-scale duplication of genetic elements which may include

duplication of genes or transposable elements. Recent evi-

dence, using flow cytometry, has revealed a whole genome

duplication in caponiid spiders (Kr�al et al. 2019), which indi-

cates the potential of further whole genome duplications in

spiders, other than the duplication�450 Ma (Schwager et al.

2007, 2017). Although we have no caponiids in our data set,

we found no evidence of recent whole genome duplication

specific to spiders on the analyzed assemblies. This evidence

comes from several sources. First, there is a low percent of

double copy BUSCO genes—a set of highly curated genes,

single copy genes. The scorpion assembly has a duplicate

BUSCO score of 26%, whereas spider genomes range be-

tween 26% and 0.8%, in P. tepidariorum and L. hesperus,
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FIG. 6.—Silk genes (spidroins) phylogeny. These include Major and Minor Ampullate spidroins (Ma/MiSp), Aciniform spidroins (AcSp), Aggregate

spidroins (AgSp), Flagelliform spridroins (Flag), Pyriform spidroins (PySp), an unidentified spidroins group present in the Trichonephila clavipes genome

and the Tubuliform spidroins (TuSp).
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respectively (note that L. hesperus assembly has many missing

BUSCOs, which is indicative of a poor assembly quality).

Second, analysis of Hox genes shows that these genes are

mostly present in two copies, with a single exception of

four Hox4 in A. ventricosus. The four copies of Hox4 in A.

ventricosus could be an artifact due to the similarity between

Hox genes, and we were not able to obtain candidates for

Hox1 using the 95% cut-off threshold. The BUSCO-pattern

together with that from the Hox genes is in line with the

evidence for ancestral whole genome duplication in

Arachnopulmonata. Third, an important finding of our work

is that variation in genome size of spiders is largely driven by

the duplication of genetic elements, and specifically, the

repeatome (transposable elements and repeats). Indeed, we

find an R¼ 0.95 correlation between the “length of the

masked repeats” and the “genome size”—a strong indica-

tion of the role of the repeatome in underlying genome size

changes (fig. 1). Expansions of the repeatome are generally

constrained in animal lineages because bigger genomes trans-

late to higher cell-economy costs through the increase of cell

size. In addition to this, proliferation of transposable elements

may interfere with gene expression when these selfish ele-

ments jump in front of a gene promoter (Choi and Lee 2020).

Considering the strikingly different representation of the

repeatome that we find here, including the variation in trans-

posable element accumulation through time, we speculate

that transposable elements may have had a role in the regu-

lation and variation of gene expression across spiders, likely

underlying some of the observed morphological and physio-

logical diversity.

By conducting a de novo annotation of repeats and using

the same version and library of repeats for every genome, we

guaranteed a standardization of the repeat identification,

thereby removing potential biases due to the use of different

databases and pipelines. Variation in some elements, both in

terms of classes and extent along the genome, was substan-

tial. For instance, LINESs represent less than 2% in every as-

sembly, but represent 10.3% of the D. silvatica assembly. This

may suggest mechanisms to purge LINEs from some clades, or

an expansion specific to D. silvatica (and possibly closely re-

lated species). Furthermore, DNA elements had a 3-fold var-

iation, ranging between 5.59% (T. kauaiensis) and 18.82%

(D. silvatica). Despite the overall variation in numbers and ac-

cumulation of the repeatome through time, there was a clear

dominance of DNA/TcMar and DNA/hAT elements (both DNA

elements) across the assembly when considering the top three

most represented categories (fig. 1B), suggesting these ele-

ments are the most prolific and present across spiders, and

potentially scorpions (keep in mind we have single scorpion

genome in our analyze using the same version and library of

repeats for every genomes). Future studies on spider genome

assemblies should put transposable element variation in the

context of the spider phylogeny, and should benefit from an

increased sampling of spider genomes. The differential

presence of repeats and transposable elements may indicate

that mechanisms to eliminate these elements such as non-

homologous end joining or illegitimate recombination may be

active in these genomes (Choi et al. 2020). A phylogenetic

framework together with ancestral character reconstructions,

focusing on transposable element data, will certainly elucidate

the patterns of activation and deactivation of certain trans-

posable element classes, and how changes in transposable

element proliferation may be linked to particular events in

the evolution of spiders. For instance, a caponiid genome,

where a more recent genome duplication was detected

(Kr�al et al. 2019), may help understand the impacts of whole

genome duplication and transposable element proliferation in

spiders. This would allow testing the “genomic shock” hy-

pothesis after genome duplication in spiders. Finally, the var-

iation in the repeatome is in line with those of the remaining

arthropods, where variation in transposable elements load

was deemed as an important predictor for genome size

(Wu and Lu 2019; Gilbert et al. 2021).

Gene Duplicates

Observed patterns in the explored gene families, namely ven-

oms and chemosensory, suggest a central role in the evolution

of spiders (figs. 3–5). The presence of most gene families in

the scorpion genome and in spider genomes suggests an an-

cestral status (Vizueta, Escuer, et al. 2020), whereas variation

in gene numbers and their branch lengths along the phylog-

eny is an indication of divergence, and thereby indirect evi-

dence of the acquisition of novel gene functions (i.e.

neofunctionalization). Gene duplicates generally experience

relaxation of purifying selection or gene dose compensation

and, if one of the copies does not get sub- or neofunctional-

ized through time, it will be lost. Indeed, we manually curated

chemosensory genes, finding a low ratio of pseudogenes

(supplementary table 9, Supplementary Material online).

There are large genome-specific duplications detected in

C. sculpturatus, T. kauaiensis, and D. silvatica in the two larg-

est chemosensory families (fig. 4A and B). This is an indicator

of the importance of GRs and IRs in T. kauaiensis and

D. silvatica, and we speculate it may be associated with the

colonization of islands (T. kauaiensis is part of a Hawaiian

radiation of spiders, and D. silvatica is part of a

Macaronesian radiation) where environmental conditions

can be very different (disharmonic biotas, open ecological

niches) (Vizueta et al. 2019). We note that, unfortunately,

the taxonomic range (i.e. one single genome for

Tetragnathidae and one single for Dysderidae) does not allow

dissecting whether these changes are shared by other mem-

bers of the families, whether they are private to the species in

question (D. silvatica, T. kauaiensis) or even to the adaptive

radiations (occuring in Hawai’i and Macaronesia). Similarly,

because we only included a single scorpion assembly, we can-

not comment on whether the expansions observed in
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C. sculpturatus are specific to all scorpions, or just the

C. sculpturatus genome.

Despite the aforementioned evidence, not every gene fam-

ily is present in very high numbers. For example, we detected

only 25 OBP-like genes in all genomes, and the small number

of genes together with the short branch lengths confirms that

the OBP-like are a relatively conserved family of genes in

arachnids (Vizueta et al. 2017). In addition to the OBP-like,

we also find few silk genes, with very short branch lengths

(notice P. tepidariorum in PySp and Ma/MiSp, A. ventricosus in

Flag and AcSp), which may be indicative of very recent dupli-

cations in silk genes (Garb et al. 2007; Clarke et al. 2014,

2015). These results are in line with those of Clarke et al.

(2015) who used transcriptomics to suggest that a large-

scale duplication occurred early in the divergence of spiders,

and that multiple independent duplication events in silk genes

have likely taken place afterwards. Our results, however, have

to be interpreted with caution because silk genes are com-

posed of sequences (of often hundreds) of repeated amino-

acids (Clarke et al. 2015), being therefore hard to reconstruct

in entirely in the gene annotation process, and being typically

fragmented onto separate fragments. Considering the frag-

mentation of most assemblies, it is possible that some dupli-

cates consist of gene fragments.

Significant Expansion of Metabolism, Immunity, and
Sensory Perception Gene Families

Using a statistical approach to detect expansion of gene fam-

ilies, we find that most expansions are in terminal branches.

As a direct comparison, recent analyses on 76 insect assem-

blies were able to identify 147 expanded gene families, com-

prising 9,601 genes, in the branch corresponding to insects

(“the Last-Insect-Common-Ancestor”; Thomas et al. 2020),

thereby providing evidence for “ancient expansions” particu-

lar to insects. Thomas et al. (2020), however, included ten

times more genomes than we did, and some of the spider

genomes in our data set lack substantial data, as indicated by

the BUSCO scores (supplementary table 6, Supplementary

Material online). Thus, it is possible that spiders have their

own set of “ancient expansions,” which we were not able

to detect due to the limitations of our data set. It is also pos-

sible that the inclusion of fragmented assemblies (D. silvatica

and L. hesperus) leads to an inflation of expanded gene fam-

ilies on closely related assemblies (e.g. Parasteatoda tepidar-

iorum). We expect that the addition of more highly completed

spider genomes will help to further our understanding of the

evolutionary history of gene families in spiders.

Despite the challenges in the data set, we find notable

evidence for various gene families expansions in spiders.

Specifically, using GO annotations we find that gene families

associated with various metabolic functions, sensory percep-

tion of taste, and immune functions are expanded. This pat-

tern is similar to the pattern found in arthropods which

includes expansions of metabolic genes (Thomas et al.

2020). These independent pieces of evidence suggest that

gene duplications associated with metabolism, immunity,

and sensory functions may have been instrumental to the

evolution of arthropods in general, but also spiders specifi-

cally. We speculate that these expansions may contribute to

the success, in terms of number of species and adaptation to

different environments in spiders. As chromosome resolved

assemblies become cheaper and technically less challenging,

revising the role of gene expansions and gene contractions

will certainly yield important insights toward the understand-

ing of genome evolution of spiders.

Conclusion

We have sequenced the T. kauaiensis genome, and explored

patterns of genome evolution across various genome assem-

blies. Comparative genomics analyses including T. kauaiensis,

one scorpion (outgroup), and seven additional spiders assem-

blies suggest that variation of transposable elements and re-

peat content are associated with the wide variation of spider

genome sizes. We also found many duplications in chemo-

sensory and venom genes, consistent with the evidence that

the evolution of toxins and the ability to perceive the environ-

ment are ancestral attributes of spider evolution. Our results

suggest that the evolutionary history of spiders is character-

ized by gene-family expansions associated with sensory per-

ception of taste, metabolism, and immune responses, and by

multiple gene duplication events. Although we uncovered

interesting patterns of genome evolution, we acknowledge

the limitations of this work due to the lack of high-quality

genomes. We hope that, however, this work catalyzes enthu-

siasm in the spider research community to produce and ana-

lyze more high-quality genomes.

Materials and Methods

Tetragnatha kauaiensis—Genome Sequencing, Assembly,

Annotation, and Quality Verification

We sequenced the genome of a single individual of

T. kauaiensis using a paired-end and a non-size selected

mate-pair library on a lane of Illumina HiSeq4000 (individual

ID AJR402, collected May 31, 2013 by AJ Rominger in Kaua’i,

at 22.1412, –159.6206). Using these libraries we built a base

assembly using ALLPATHS-LG with default parameters in ad-

dition to “HALOIDIFY ¼ True” (Gnerre et al. 2011). We then

sequenced an additional individual using the Dovetail Chicago

method (AJR443, collected June 3, 2013 by AJ Rominger in

Kaua’i, at 22.1469, –159.6638), which was used to scaffold

the initial assembly using the HiRise software (Koch 2016;

Putnam et al. 2016).

The quality of the assembly was first assessed using BUSCO

v3.0.2 arthropoda db v9 (Sim~ao et al. 2015), which searches
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for highly conserved genes in the assembly. Then we used the

Assemblathon 2 script (https://github.com/ucdavis-bioinfor-

matics/assemblathon2-analysis) (Bradnam et al. 2013), which

assesses scaffold and contig statistics, to evaluate the quality

of the assembly. Annotation of repeats was carried out by

identifying and building a database of repeats along the ge-

nome using RepeatModeler followed by masking them using

RepeatMasker (Tarailo-Graovac and Chen 2009). We ex-

plored the draft assembly for contaminants, including gut-

microbiota and wet-lab contaminants using Blobtools

(Koutsovoulos et al. 2016; Laetsch and Blaxter, 2017) (sup-

plementary fig. 1, Supplementary Material online).

To determine protein-coding genes and their locations

along the genome, we used BRAKERv1 (Hoff et al. 2019).

We used whole-body T. kauaiensis transcriptome reads pre-

viously generated by Yim et al. (2014) (SRR1313313,

SRR1427109). Raw transcriptomic reads were cleaned using

Trimmomatic (Bolger et al. 2014) and aligned to the gener-

ated genome using STAR (Dobin et al. 2013). The resulting

binary alignment map file was provided to BRAKERv1 as RNA-

based evidence. The final annotation was assessed by

BUSCOv4.0.1 (Seppey et al. 2019), using the Arthropoda10

(1,013 genes) and Arachnida10 (2,943 genes) gene sets.

Genomes Used for Comparative Genomics

We searched the I5K and NCBI databases and the literature

for published and available spider genomes (data consulted

on October 23, 2019). In total, we downloaded nine spider

genomes (supplementary table 1, Supplementary Material on-

line), their general feature format (gff3), and predicted protein

files (faa; supplementary table 1, Supplementary Material on-

line). From the available genomes, we selected those with a

contig-N50 above 8,000 bp in order to avoid genomes that

were highly fragmented. This included the genomes of S.

mimosarum (Sanggaard et al. 2014), L. hesperus (BCM-

HGSC website), P. tepidariorum (Gendreau et al. 2017), T.

clavipes (Babb et al. 2017), D. silvatica (S�anchez-Herrero

et al. 2019), A. ventricosus (Kono et al. 2019) and A. bruen-

nichi (Sheffer et al. 2021). Additionally, we downloaded the

genome of the bark scorpion C. sculpturatus (Schwager et al.

2017) as an outgroup.

Characterization of Spider Genomes

We characterized spider genomes based on the 1) continuity

and completeness of the assemblies, 2) assembly size, 3)

repeat-content, and 4) broad genomic features. Specifically,

1) the continuity of each genome serves as a proxy of the

overall quality of an assembly, and it affects the detection of

genes, repeat sequences, and transposable elements (Peona

et al. 2018). We characterized the contiguity of the assemblies

using the Assemblathon 2 script, as described above for

T. kauaiensis, retrieving contig-N50, scaffold-N50, total num-

ber of contigs, total number of scaffolds, maximum scaffold

size, assembly size, and GC content. 2) The “completeness”

of the assemblies is generally defined as an overview of the

genes which may be missing, fragmented, duplicated, or pre-

sent in a single copy in an assembly. To assess the complete-

ness of the genomes, we used BUSCO v4.0.1 as outlined

above for T. kauaiensis (the Arthropoda10 set including

1,013 genes; and the Arachnida10 set including 2,943

genes). 3) To assess repeat content, we used Repeat-

Modeler v2.0.1 and Repeat-Masker-v4.1.0. Repeat content

in the genome includes simple repeats (typically 1–5 base

pairs, e.g. AAA, TTTTT), tandem repeats (100–200 base pairs),

segmental duplications (10,000–300,000 base pairs), and in-

terspersed repeats (SINES, which are nonfunctional copies of

RNA genes that were reintegrated into the genome; DNA

transposons; LINES, which are non-retrovirus retrotranspo-

sons). We ran RepeatModeler and RepeatMasker for each

genome to screen and annotate DNA sequences de novo,

thereby annotating and masking repeats. We retrieved

repeat-statistics including percent of the genome covered

by different repeats and transposable element landscape

plots. Finally, 4) we assessed broad genomic features includ-

ing, among others, the number of genes, coding sequences,

introns, gene length using Another Gff Analysis Toolkit v0.4.0

(AGAT available at https://github.com/NBISweden/AGAT/;

agat_sp_functional_statistics.pl, and agat_sp_statistics.pl).

The association between total genome size, and percent of

masked sequences and total length of masked genome was

assessed with a correlation using the cor() function in R.

Spider Genome Evolution

Previous work suggests that the whole genome duplication in

the common ancestor of scorpions and spiders can be linked

to the diversification of spiders (Schwager et al. 2007, 2017).

To better understand the presence of whole genome dupli-

cation in the studied lineages, we used two complementary

approaches. We first analyzed repeat content variation in the

available spider genomes (as described above), because differ-

ences in repeat content may translate to differences in ge-

nome size. Second, we downloaded the Hox genes 1–5 from

the P. tepidariorum genome, and searched for these in the

remaining spider genomes using BLAST (Altschul et al. 1990).

Hox gene-copies are prime candidates for detecting whole

genome duplications because they are functionally con-

strained (Leite et al. 2018). For example, a 1:4 ortholog ratio

is maintained between the Drosophila melanogaster genome

and vertebrate genomes, indicating the two whole genome

duplications that occurred in the lineage of modern verte-

brates (Hakes et al. 2007; Schwager et al. 2017).

Spider Gene-Family Evolution

Another component of genome evolution is gene-family ex-

pansion and reduction, or the gain and loss of gene-copies.

Focusing on the predicted-proteins resulting from the
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annotations of the spider genomes, we first cleaned and fil-

tered sequences using Kinfin’s filter_fastas_before_cluster-

ing.py (Laetsch and Blaxter 2017) removing sequences

shorter than 30 amino acids. We then removed all isoforms,

keeping only the longest isoform using in-house scripts. For

this analysis, we removed the genome of A. ventricosus since

it has twice the number of genes compared with the other

spider genomes, and this biases the analysis. Cleaned and

isoform-free prediction-proteins were then analyzed using

Computational Analysis of Family Evolution (CAFE v 4.2.1)

(De Bie et al. 2006). Briefly, we first determined gene-

similarity (based on BLAST e values) in the data set using an

all-by-all BLAST approach. We then applied a Markov Cluster

algorithm (MCL; mcxload, mcl mcxdump) (Enright et al.

2002), and parsed the output using the mcl2rawcafe.py

script. These clusters (gene-families) are then integrated in a

phylogenetic-backbone, which was retrieved from

OrthoFinder’s single-copy orthologs (Emms and Kelly 2015).

This tree was then converted to an ultrametric format with r8s

(Sanderson 2003), using the divergence time of 175 Myr be-

tween Tetragnathidae (T. kauaiensis) and Araneidae

(A. bruennichi) as a calibration point (Fern�andez et al.

2018). We used Dendroscope’s Graphical User Interface to

visualize trees and remove bootstrap support (Huson and

Scornavacca 2012). Using the main pipeline of CAFE, we es-

timated the birth-death parameter lambda (k¼ 0.0021) for

the data set and obtained information on gene-family under

significant evolution.

Genes belonging to gene-families that have undergone

significant changes, that is, fast evolving families, were anno-

tated using GO terms using the command-line version of

Interproscan v5.34–73.0 (Ashburner et al. 2000). GO term

annotations for genes belonging to expanded or reduced

gene families were summarized and plotted as a treemap

using R (R Core Team 2013) with REVIGO’s treemap script

(Supek et al. 2011).

Silk, Chemosensory, and Venom Gene Variation

To investigate venom gene evolution, we downloaded all

toxin sequences available in the Arachnoserver v3.0 (Pineda

et al. 2018), and used these as a database to query proteins

from the spider and scorpion genomes with BLAST. Hits with

e values below 1e–10 were considered as candidate venom-

genes. However, because venom proteins are potentially

highly divergent and typically short, BLAST searches may re-

sult in a high proportion of false positives. To address this

issue, we ran TOXIFY on the candidates, a pipeline specifically

designed to identify toxins using deep learning algorithms

(Cole and Brewer 2019). TOXIFY generates a prediction score

between 0 and 1 where the higher the score, the more likely a

molecule is to be a venom, and we selected values above 0.75

as a criterion here. After TOXIFY, we kept a list of 589 putative

venom genes across the assemblies. We then used

OrthoFinder, obtaining an orthogroup-assignment for each

of these 589 venom genes, finding that they group in 189

orthogroups. From these 189 groups, we selected the 10

biggest (in terms of gene number), identified the toxin-

group using NCBI nr protein database, and aligned the genes

within orthogroups using mafft v7.455 (Katoh and Standley

2013). These alignments were then used to obtain a maxi-

mum likelihood phylogenetic tree with bootstrap estimate

(automatic determination of the substitution model) using

IQ-Tree v1.6.12 (Nguyen et al. 2015; Chernomor et al.

2016; Kalyaanamoorthy et al. 2017; Hoang et al. 2018).

The resulting phylogeny was plotted, formatted, colored,

and labeled using the iTOL web server (Letunic and Bork

2019).

Considering the recent evidence on the wide variation in

chemosensory gene-family size in Chelicerates (Vizueta et al.

2017, 2018), we searched the available genomes for GRs, IRs,

NPC2, OBP-like, CCP, CD36-SNMP. To do so, we used

BITACORA v1.2 (Vizueta, Escuer, et al. 2020; Vizueta,

S�anchez-Gracia, et al. 2020), using its GeMoMa algorithm

(Keilwagen et al. 2019), benefiting from a curated chemo-

sensory database used in Vizueta et al (2018). To ensure the

quality of the annotations, we performed a round of manual

curation of the results, guaranteeing that 1) only a single iso-

form was selected and 2) that putative annotation artifacts

including small fragments, chimeric annotations, or identical

proteins by misassembly of duplicated contigs were removed.

Finally, curated gene members were classified as pseudo-

genes (i.e. sequences with in-frame stop codons), partial or

putatively complete functional proteins. The identified GRs,

IRs, NPC2, OBP-like, CCP, and CD36-SNMP were aligned us-

ing mafft, and a tree was generated and plotted using IQ-Tree

and iTOL as described above.

We next identified spidroins (silk genes). To do so, we used

a combination of BLAST searches using N-domains published

with the T. clavipes genome, and the NCBI accession numbers

for N-terminals and C-terminals from Vienneau-Hathaway

et al. (2017). We extracted hits with an e value below 1e–

10 and candidate silk genes were then queried in NCBI nr

database search (blastp) to classify the gland to which they

belong based on NCBI’s top hit. After labeling the gland, we

did an orthogroup assignment using OrthoFinder as described

above, and built a phylogeny for the silks in each gland, using

the same method as described above for venom genes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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