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Abstract

In this paper we try to define insulin resistance (IR) precisely for a group of Chinese women. Our definition deliberately does
not depend upon body mass index (BMI) or age, although in other studies, with particular random effects models quite
different from models used here, BMI accounts for a large part of the variability in IR. We accomplish our goal through
application of Gauss mixture vector quantization (GMVQ), a technique for clustering that was developed for application to
lossy data compression. Defining data come from measurements that play major roles in medical practice. A precise
statement of what the data are is in Section 1. Their family structures are described in detail. They concern levels of lipids
and the results of an oral glucose tolerance test (OGTT). We apply GMVQ to residuals obtained from regressions of
outcomes of an OGTT and lipids on functions of age and BMI that are inferred from the data. A bootstrap procedure
developed for our family data supplemented by insights from other approaches leads us to believe that two clusters are
appropriate for defining IR precisely. One cluster consists of women who are IR, and the other of women who seem not to
be. Genes and other features are used to predict cluster membership. We argue that prediction with ‘‘main effects’’ is not
satisfactory, but prediction that includes interactions may be.
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Introduction

An individual is considered insulin resistant if his or her insulin

mediated glucose uptake by muscle and adipose tissue is impaired

[1]. As a compensatory mechanism, beta cells in the pancreas

secrete increased amounts of insulin in an attempt to maintain

normoglycemia. This compensatory mechanism is termed hyper-

insulemia. Because hyperinsulinemia has negative effects on tissues

that are sensitive to insulin such as the liver and kidneys, it is not a

benign condition.

Insulin resistance (IR) with compensatory hyperinsulinemia,

increases the excretion of triglycerides by the liver, resulting in

elevated serum levels of triglycerides; secondarily it results in

decreased levels of high density lipoprotein cholesterol (HDL, the

‘‘good’’ cholesterol) as well as increased presence of small and

more than normally dense low density lipoprotein (LDL, the

‘‘bad’’ cholesterol) particles. IR/compensatory hyperinsulinemia

also appears to contribute to the complex pathogenesis of the most

common form of elevated blood pressure, namely essential

hypertension [2],[3] by promoting water resorption in the kidney

and/or increased activity of the sympathetic nervous system.

Through these and other ‘‘downstream’’ adverse metabolic

consequences whose description is beyond the scope of this brief

introduction IR/compensatory hyperinsulinemia markedly in-

creases the risk of developing type 2 diabetes as well as various

complications of atherosclerosis including coronary artery disease,

ischemic stroke, and peripheral arterial disease even in the absence

of diabetes.

Current conventional wisdom has it that an individual’s degree

of insulin resistance can be estimated biologically most accurately

and directly by one of two procedures. The euglycemic clamp is

one; the insulin suppression test is the other. The two procedures

produce measures of IR that are highly correlated, with a squared

correlation coefficient 0.85 [4]. See also [5]. For purposes of

research we have utilized the results of ‘‘steady state plasma

glucose, ’’ or SSPG [5], the second procedure, for some subjects;

comparison of our methodology for clustering and SSPG is

reported in material that follows. Studies by which IR is estimated

using such ‘‘gold standard’’ measures confirm a very wide range of

insulin sensitivity in healthy, non-diabetic, non-hypertensive

individuals. However, estimating IR using either of the most

accurate procedures is invasive and laborious. Neither has made

its way to the clinic thus far, and neither is likely to in the

foreseeable future. As a consequence, multiple approximations

have been developed. Given the critical need to measure IR

precisely, the correlations of surrogate measures defined so far with
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putative gold standard measures are only modest (.5 to .7; [6], [7]).

These approximations involve systemic background levels of

glucose and insulin, which thus are ‘‘nuisance parameters’’.

Indeed, SSPG is one measure of the body’s ability to respond to

a fixed glucose challenge where only a known fixed level of

exogenous insulin is available. Since IR is inferred largely from

higher-than-expected values of measured quantities such as

glucose and insulin following a glucose challenge, and since

‘‘errors of measurement’’ are well known to attenuate ‘‘real’’

effects [8], [9], one might expect that IR as defined by surrogate

measures underestimates actual incidence of IR by individual.

This is borne out for those of our subjects who underwent SSPG.

Surrogate markers of IR include more easily obtainable

measures of serum insulin and glucose over the two hour window

of an oral glucose tolerance test (OGTT). As is done typically in

medical practice, we also include measurements of serum lipids,

including triglycerides, total cholesterol, LDL and HDL choles-

terol. Heretofore, results of an OGTT and lipids have been taken

to define IR, albeit subjectively. These informal definitions involve

high triglyceride to HDL ratio, a homeostatic model assessment of

insulin resistance (termed HOMA IR; see [10] for example), and

high values of insulin ‘‘area under the curve’’ (AUC) for a period

following a glucose challenge (for example, see [11]).

Conventional wisdom has it that two powerful determinants of

IR are adiposity as estimated by body mass index (BMI) or waist

circumference, and physical fitness best quantified by maximal

oxygen uptake with exercise (VO2 max). By conventional analyses,

the two may explain up to 50% of the variation of gold standard

measures of insulin sensitivity in linear models [12], [13], [14]. By

determinants we mean both markers of those individuals who will

develop IR and also of those individuals who already are IR.

Methods

Ethics Statement
The U.S. National Heart, Lung and Blood Institute’s (NHLBI’s)

Family Blood Pressure Program (FBPP) was a large, genetic study

of high blood pressure and related conditions in multiple ethnic

groups. The program consisted of four networks: GenNet,

GENOA, HyperGen, and SAPPHIRe [15]. SAPPHIRe stands

for Stanford Asian Pacific Proram in Hypertension and Insulin

Resistance. Each was funded by the NHLBI beginning in 1995.

FBPP focus has been to identify genes that contribute to essential

hypertension or related phenotypes through studies by linkage and

(somewhat later by) association. For SAPPHIRe, IR was chosen as

intermediate phenotype, by which we mean that abnormalities in

blood pressure predispose to abnormalities in IR. We have results

on only one OGTT per individual. Thus, data were gathered at

the outset of an individual’s entry. Throughout this document, by

sibs are meant sisters (or brothers) descended from the same set of

parents. A sibship is a set of sibs. The individual by whom we

identified sibships, that is, the proband was determined among

Chinese in San Francisco, Hawaii, or Taiwan. IRBs (meaning

Institutional Review Boards) of all the institutions of our

collaborative study approved the research reported here. An

individual was considered Chinese if all four grandparents self-

reported as Chinese.

SAPPHIRe Data Set
SAPPHIRe recruited Chinese and Japanese hypertensive

patients in two phases. The first, from which data here were

derived, were from four hospitals in Taiwan, one in Hawaii, and

one in the San Francisco Bay Area. In this first phase, a total of

1460 Chinese siblings (602 males and 858 females) from 557

families were enrolled. Through an interview, a physical

examination, a blood draw, and an OGTT, 11 measurements

(listed in Table 1) relevant to IR were obtained on all subjects.

DNA was purified from whole blood and was used to genotype

293 SNPs in candidate genes. From the original sample we

excluded 517 people who were missing at least one crucial

measurement. After exclusion there were 943 sibs, 386 males and

557 females for whom results are presented here. SSPG was also

obtained for a subset of 202 female participants. Results on SSPG

as it corroborates (or not) clusters computed in what follows are

reported in Figure 1. Each sibship studied contained one proband

for hypertension, that is, a subject who presented as hypertensive

Sibships involved hypertensive and other (typically hypotensive)

sibs of the proband. SAPPHIRe data analyzed here were not

gathered from a population study. This concern for conditional

rather than unconditional attained significance and related applies

to many epidemiologic studies.

We had 293 single nucleotide polymorphisms (SNPs) genotyped

in a total of 57 ‘‘candidate genes,’’ the respective proteins for

which they code bearing upon hypertension. These SNPs are listed

in [16]. In particular, many such genes were chosen by resident

SAPPHIRe experts because their proteins influence blood pressure

control or glucose homeostasis. For example, APOAV regulates

triglyceride levels, which are known to be differentially expressed

in insulin resistance [17]. CD36 is a multifunctional receptor [18]

that plays a part in mediating intracellular signaling as well as in

taking up biologically active substances such as long-chain fatty

acids. Primers were designed to sequence the promoter region, the

59 and 39 untranslated regions (UTRs), the exons, and the intron-

exon boundaries of each candidate gene. A discovery set

comprised of 24 SAPPHIRe individuals’ DNA was sequenced to

identify SNPs and intertion-deletion mutations. These individuals

were chosen to be hypertension, though implicitly we used

information also on normotensive individuals because we know the

‘‘wild type’’ value at each SNP. After assembling the sequence

contigs using the program Consed [19], the SNPs were tagged

[20] and called manually in each of the 24 individuals. The SNPs

identified in this manner were cross-checked against the public

dbSNP database [21] and entered into a hand-curated SNP

report. In general, SNPs not in high linkage disequilibrium (LD)

with each other, that have greater than approximately a 10% allele

frequency (see Table 2), and that were deemed likely to change

protein function were chosen for genotyping. We believe that

including these 24 individuals in our analysis has introduced

approximately no bias in any conclusions. Genotyping was

performed using the ABI Taqman 59 nuclease allelic discrimina-

tion system with either custom made or commercially available

primers and probes. The accuracy of the genotypes was tested by

comparing them against the discovery set sequences and against a

15% repeated set of DNA.

The genetic data used in our study were generated before the

current era of high-density arrays, and before the U.S. NIH policy

requiring that genetic data paid for with NIH monies be shared

publicly through dbGAP. Indeed, sharing data is not legal even if

the data are de-identified because the subjects did not consent to

such sharing. We acknowledge that most IRBs have been willing

to allow such data sharing without re-consenting so long as access

is controlled. Thus, data will be made available to any qualified

investigator who wishes to work with them. He or she should

contact the senior author, Richard Olshen (olshen@stanford.edu)

with a proposal for a manuscript. Olshen will survey SAPPHIRe

investigators who remain alive (several are coauthors of this paper),

and will reply to any proposer.
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Why we Restrict this Analysis to Chinese Women
The Chinese population is about 19% hypertensive (see [22]).

Generally speaking, hypertension in the Chinese does not owe to

their being obese (see [23]). Given the greatly narrower range of

BMI in Chinese than in other populations, it is plausible that there

is less variability in BP in Chinese than in other populations (see

[23]). Further, since men tend to be more hypertensive than

women (see [24]), we began by thinking that the prevalence of

hypertension, which is highly correlated with IR in men, owes

more in men to obesity than it does in women. Remember that IR

was chosen as an intermediate phenotype by SAPPHIRe

investigators. Therefore, if one looks for genes that predispose to

either hypertension or IR, it seems reasonable to study Chinese

women, as we have done. And remember, too, that the FBPP was

given as its initial task to hunt for single SNPs in which

‘‘abnormalities’’ predispose to hypertension. By abnormalities we

mean mutation away from the ‘‘wild type,’’ the prevalent

genotype.

How we Pick Regressors and why we Regress out Age
and BMI

Conventional wisdom has it that age and BMI both influence

IR and hypertension [25],[26]. Because our interest is in genes,

abnormalities in which predispose to IR, it seemed particularly

important to us to remove the impact of age and BMI on IR.

Therefore, we employed linear regression to remove the impact of

age and BMI on nine key variables by which IR is quantified.

They are triglycerides; total cholesterol; HDL; and measured

glucose and insulin at baseline, one hour, and two hours as part of

an OGTT. We began our search for regressors by studying 17

simple functions of age and BMI that owe to Maclaurin and

Fourier expansions of these two variables and functions of them.

The 17 are AGE, BMI, AGE , BMI , AGE2 2 |BMI ,
ffiffiffiffiffiffiffiffiffiffiffiffip

,

sqrt(BMI), log(AGE), log(BMI) sin(AGE), sin(BMI), cos(AGE),

cos(BMI), sin(AGE/2), cos(BMI/2). Each individual thus defines a

point in 17-dimensional Euclidean space. One can compute

principal components (eigenvectors) of these 17-dimensional

Figure 1. Clusters and SSPG. CDFs of SSPG: ‘‘Normal’’ cluster vs. ‘‘Insulin resistant’’ cluster.
doi:10.1371/journal.pone.0094129.g001

Table 1. Eleven measurements relevant to insulin resistance.

Variables Description

Age age at exam, years

BMI body mass index, kg/m2

Triglyc Triglycerides, mg/dl

TCHL total cholesterol, mg/dl

HDL HDL cholesterol, mg/dl

OGTTG0 oral glucose tolerance testing of glucose at baseline, mg/dl

OGTTG1 oral glucose tolerance testing of glucose after one hour, mg/dl

OGTTG2 oral glucose tolerance testing of glucose after two hours, mg/dl

OGTTI0 oral glucose tolerance testing of insulin at baseline, mg/dl

OGTTI1 oral glucose tolerance testing of insulin after one hour, mg/dl

OGTTI2 oral glucose tolerance testing of insulin after two hours, mg/dl

doi:10.1371/journal.pone.0094129.t001

Insulin Resistance: Regression and Clustering
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vectors to see what summarizes their variability. Indeed, one can

infer the percent of mean-square variability explained by

cumulative successive principal components from the ‘‘Scree

plot.’’ Rather than simply compute the successive fractions, we

instead bootstrapped individuals according to principles that are

specific to our dataset and their inferred cumulative percent

explained. Exactly how the bootstrapping was accomplished is

described in what follows. But readers are referred now to our

summaries in Figure 2.

Table 2. Details of SNPs found to be predictive of insulin resistance.

SAPPHIRe terminology
for predictive
SNPs

dbSNP
Accession

Human
gene Location

Frequency of
major allele

Mutual
information

LAMA4_S.2 rs1050348 LAMA4 6q21 0.82 0.0177

CYP1B15 CYP1B1 2p21 0.82 0.0153

LAMA4_S.17 rs1050353 LAMA4 6q21 0.66 0.0170

LAMA4_S.22 rs12208872 LAMA4 6q21 0.66 0.0162

LAMA4_S.18 rs3734289 LAMA4 6q21 0.66 0.0157

FOXO1A_S.4 rs3751437 FOX01 13q14.q 0.91 0.0148

APOAV_S.6 rs662799 APOAV 11q23 0.74 0.0141

APOAV_S.1 rs2072560 APOAV 11q23 0.74 0.0135

SLC2A4_S.1 rs5435 SLC2A4 17q13 0.7 0.0136

HUT2SNP5 rs1123617 HUT2 16q21 0.68 0.0084

PRKCI.2 rs55683301 PRKC1 3q26.3 0.93 0.0104

CD36.1 rs1405747 CD36 7q11.2 0.5 0.0107

CD36.3 rs3211956 CD36 7q1.2 0.75 0.0106

doi:10.1371/journal.pone.0094129.t002

Figure 2. Scree plot. Eigenvalue ratio of 1,000 bootstrapped samples.
doi:10.1371/journal.pone.0094129.g002
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A cursory examination of the principal components demon-

strates that the variability of the 17-dimensional vectors is

explained by the first two principal components, and that these

first two principal components depend crucially on only three

functions of AGE and BMI, namely AGE , BMI , and the2 2

product AGE |BMI. In order to avoid beginning our explana-

tions with quadratic terms, we added in the two corresponding first

order terms to come up with five terms, the cited three plus AGE

and BMI themselves. Of course, one might have intuited this from

Maclaurin expansions, but better in our view ‘‘to let the data speak

for themselves’’.

How we Bootstrap our Data
The detailed form of bootstrapping in our scenario is rather

tricky. We tried to be faithful to the bootstrap principle that

sampling with replacement from the empirical distribution of the

data bears approximately the same relationship to that empirical

distribution as does the empirical distribution to ‘‘nature.’’

However, ‘‘The empirical distribution of what?’’ Most individual

measurements are not independent of all others since the

measurements are for sibships. We required sampling with

replacement to be faithful to three principles. (1) The number of

sibships in each bootstrap sample should be the same as the total

number of sibships in the empirical distribution of our SAPPHIRe

data (in particular, 287). (2) The expected number of people in

each bootstrap sample should be the same as the total number of

people in that empirical distribution. (3) For each j, the expected

fraction of sibships of size j, should be the same as in the empirical

distribution. Readers will check easily that all three requirements

are met if we sample sibships with replacement 287 times, but with

the probability of sampling any particular sibships being propor-

tional to its size. This is the same as sampling 287 individuals at

random and with replacement, but then letting a bootstrap sample

consist of individuals chosen and their respective sibships.

How we Cluster Individuals
Clustering is applied twice to our data, one concerning certain

residuals with units of clustering being individuals. That clustering

is accomplished by methodology described in this subsection.

Vector quantization (VQ) design [27] as applied here amounts

to a particular approach to clustering data. In VQ an input vector

is represented by one of a predefined set of patterns (cluster

centers = codewords). Data are assigned to cluster centers on the

basis of which pattern is closest to the given input vector. VQ has

been used successfully in pattern recognition, including speech and

image processing [28],[29],[30]. VQ design can be viewed as

fitting a model when partition cells are represented by their

conditional probability density functions with respective weights

given by estimated prior probabilities. VQ of dimension p (i.e., the

number of features is p) and size K (the number of clusters is K )

can be described by the mappings and sets: an encoder a, a decoder b,

and a length function l. An encoder a is a mapping of an input vector x
in p-dimensional Euclidean space, Rp, into an index

i[I~f1,2,:::,Kg. The encoder is described by a partition

S~fSi : i~1,2,:::,Kg such that Si~fx : a(x)~ig. A decoder b
converts the index into a source reproduction x̂x, and b is

associated with a reproduction codebook C~fb(i) : i[Ig. Finally,

a length function l measures the complexity or cost of an index i, and

it is ‘‘admissible’’ if
P

i[I e{l(i)
ƒ1. Both l and the requirement of

admissibility are closely seen to be related to the ‘‘prior

probability’’ of the cluster indexed by i. For a fixed-rate quantizer,

l(i) is fixed at [ lnK] (the integer part of lnK ) for all i. Otherwise, a

quantizer is said to be variable-rate. Eq. (1) summarizes VQ.

X �?a a(X )~i �?b X̂X~b a(X )ð Þ ð1Þ

Here, for purposes of defining insulin resistance on the basis of

certain residuals, we are interested in GMVQ, where we fit Gauss

mixture models (GMM) to data in a VQ design using the Lloyd

algorithm with a suitable distortion measure [31],[30]. The EM

algorithm [32] is the most popular approach to fitting a GMM to

Table 3. Sibship size and expected number of families in insulin resistant cluster under H0.

Sibship size num of families NF(C ,k)
expected num of
families in C

2 120 61 66.38

3 40 30 28.07

4 15 14 12.02

5 5 4 4.34

6 1 1 0.91

Total 181 110 111.72

doi:10.1371/journal.pone.0094129.t003

Table 4. 3|3 table of APOAV_S.1 vs. APOAV_S.4 (mutual information: 1.2675).

BB Bb bb

AA 266 0 0

Aa 1 175 0

aa 0 0 37

doi:10.1371/journal.pone.0094129.t004
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data, but the Lloyd algorithm is one alternative. The main

difference between the Lloyd and EM algorithms is that in most

implementations EM entails soft decisions, whereas the Lloyd

algorithm entails hard decisions. The EM fits a GMM to each

observed vector, whereas the Lloyd fits a single component of a

GMM to each observed vector. This ‘‘hard’’ assignment of

components to observed data is based on the information theoretic

property of a Gaussian being a ‘‘worst case’’ for designing robust

compression/source coding systems [30],[33].

In GMVQ, each cluster is represented by its prior probability wi

(wi§0 and
PK

i~1 wi~1) and a cluster conditional probability

density function (pdf) gi(x), a multivariate Gaussian:

gi(x)~g(xDa(x)~i) ð2Þ

~
1

(2p)p=2D i D
1=2

exp {
(x{mi)

t {1
i (x{mi)

2

� �
ð3Þ

where g is a fitted GMM, and mi and i are the mean vector and

covariance matrix of cluster i, respectively; we assume i to be

non-singular.

In GMVQ, we try to minimize the mismatch between the

true pdf f and the fitted model g by iterating the Lloyd optimality

conditions. The encoding rule (or cluster assignment rule) is

to find a component gi that minimizes the distortion

dI (x,i)~ ln(f (x)=gi(x)){ ln (wi). Since ln (f (x)) is common to

all gi(x), the encoding rule becomes:

a(x)~argmini ½{ ln (gi(x)){ ln(wi)�

~argmini
1

2
(x{mi)

t {1
i (x{mi)z

1

2
ln (2p)pD i Dð Þ{ ln (wi)

� �
:

When the true pdf f is a GMM, minimizing the distortion

dI (x,i) is equivalent to a maximum a posteriori selection (MAP) of

a Gaussian model from a GMM (a collection of Gaussian models

gi with a probability mass function wi) [30]. The MAP selection of

gi is

a(x)~argmaxi P(i Dx)

~argmaxi gi(x)wi

~argmini ½{ ln(gi(x)){ ln (wi)�:

In GMVQ, we denote b(i) ( = centriod of ith cluster) by

N (mi, i), equivalently (mi, i).

The distortion measure between x and b(i) can be expressed:

rGMVQ (x,i)~dGMVQ (x,b(i))zl(i) ð4Þ

Table 5. 3|3 table of LEPR.12 vs PRKCZ.14 (mutual information: 0.0018).

BB Bb bb

AA 94 35 0

Aa 59 32 0

aa 4 1 0

doi:10.1371/journal.pone.0094129.t005

Table 6. Cluster statistics based on B-F-W tests.

Medical
measurements

Cluster1*:
Mean (STD)

Cluster2*:
Mean (STD)

Behrens-Fisher-
Welch t-statistic

Age 50.60 (8.57) 48.94 (8.50) 2.13

BMI 25.74 (3.51) 24.14 (3.45) 5.04

Triglycerides 55.66 (97.61) 92.28 (38.01) 8.35

Total cholestrol 198.82 (45.38) 185.33 (36.85) 3.46

HDL 43.47 (10.36) 49.81 (12.64) -6.26

OGTT glucose t = 0 97.16 (15.27) 87.18 (9.38) 8.02

OGTT glucose t = 60 204.17 (44.29) 157.69 (39.04) 11.96

OGTT glucose t = 120 167.02 (55.23) 131.59 (32.45) 7.92

OGTT insulin t = 0 10.79 (6.29) 5.86 (2.93) 9.94

OGTT insulin t = 60 121.35 (81.75) 53.18 (24.88) 10.86

OGTT insulin t = 120 110.54 (78.37) 49.30 (30.26) 10.05

*Cluster1 and Cluster2 have 177 and 380 individuals, respectively.
doi:10.1371/journal.pone.0094129.t006

Insulin Resistance: Regression and Clustering
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where dGMVQ (x,b(i))~ 1
2

(x{mi)
t {1

i
(x{mi)z

1
2

ln (2p)pD i Dð Þ,
and l(i)~{ ln (wi). Finally, the average distortion in GMVQ

becomes:

rGMVQ (f ,q)~Ef (dGMVQ (x,b(a(X ))))zEf (l(a(X ))): ð5Þ

When the underlying pdf f is unknown, typically the case in

practice, the expectations in (5) become sample averages if an

empirical distribution is used in the expectation:

r̂rGMVQ (q)~
1

N

XK

i~1

X
a (xn)~i

½dGMVQ (xn,b(i))zl(i)�, ð6Þ

where N is the number of samples.

In GMVQ, the optimal b(i) for a given encoder a(x) is defined

by mi~E½X Da(X )~i� and by i~E½(X{mi)(X{mi)
tDa(X )~i�.

The optimal length function in GMVQ is l(i)~{ ln (wi), where

wi~Pr(a(X )~i). See [33], [30] for more details. In practice, the

conditional expectations become conditional sample averages

when we run the Lloyd clustering algorithm on a set of samples.

To avoid singular covariance matrices, regularization as in [34]

can be used.

GMVQ was used to cluster people. It performs well in many

areas [35],[30],[36],[37],[29]. When GMVQ was applied to

cluster people, the clustering was based on residuals from linear

regression models described earlier. Insulin resistance was defined

by clustering people, and the clustering model was validated

internally. Therefore, we are trying to solve an unsupervised

learning problem: we not only need to cluster people, but also we

want to estimate the ‘‘true number’’ of clusters.

We tried first to estimate number of clusters by observing the

GMVQ distortion in (6) as the number of clusters varied.

A Permutation Test for Familiality
Recall that SAPPHIRe was initially a study by linkage of

hypertension with IR, crudely defined, as the intermediate

phenotype. Obviously, our study is of sibships, even though

individuals were the sampling units. However, recruitment was not

done in any sense that could be described as ‘‘random.’’ The

proband was necessarily hypertensive. Over more than a decade

SAPPHIRe policies for recruitment changed. They were influ-

enced greatly by Risch and Zhang [38], although their paper

concerned mapping quantitative trait loci (QTLs), not association.

They recommended extremely discordant sib pairs in order to

increase the power of studies when the probability of type 1 error

is fixed. After 1995, the SAPPHIRe policy became an attempt to

recruit hypotensive sibs of a hypertensive proband. Obviously, this

reduced familiality of hypertension. Since hypertension and IR are

related, adherence to this policy would also reduce familiality of

IR. Adherence was particularly strong in Taiwan, from where a

majority of SAPPPHIRe subjects were recruited. Nonetheless, it

behooved us to investigate familiality of our clusters.

Denote the jth family by fj and the cardinality of its sibship by sj .

Apparently sj is an integer between 1 and 6, and 1ƒjƒ287. We

denote people who are assigned to cluster 1 (our insulin resistant

cluster) by C1 and those assigned to cluster 2 by C2. Familiality or

lack of it is inferred by a conditional permutation test. For each

cluster we compute the expected number of families that would

appear in the cluster under a null hypothesis in which people are

assigned to clusters at random without regard to sibship but three

observed outcomes are fixed. When the number of families is

denoted by F , and the total number of individuals is denoted by n,

Table 7. SVM 10 fold cross-validation: AGE and BMI.

Age+BMI

Loss Sensitivity Specificity Overall Miscost

1.8:1 0.432 0.743 0.638 242.8

1.9:1 0.468 0.730 0.640 245.2

2.0:1 0.552 0.682 0.633 242.9

2.1:1 0.564 0.647 0.615 257.2

2.2:1 0.589 0.613 0.6 266.4

2.3:1 0.627 0.570 0.583 273.0

doi:10.1371/journal.pone.0094129.t007

Table 8. SVM 10 fold cross-validation: Age, BMI and SNPs.

Age+BMI+SNPs

Loss Sensitivity Specificity Overall Miscost

1.8:1 0.511 0.711 0.644 230.9

1.9:1 0.526 0.692 0.635 240.2

2.0:1 0.557 0.687 0.642 239.8

2.1:1 0.569 0.667 0.633 249.2

2.2:1 0.558 0.661 0.627 261.4

2.3:1 0.561 0.633 0.608 276.7

doi:10.1371/journal.pone.0094129.t008
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then n~
PF

j~1 sj~557. Count the number of families that

appear in C1:

NF (C1,k)~Dffj : sj~k and any sib of fj belongs to C1gD

~
XF

j~1,sj~k

I(fj\C1=0), ð7Þ

where 1ƒkƒ6.

Our test is conditional upon DC1D~N1; DC2D~N2; and fsjg. The

null hypothesis, H0 is that given the three cited conditions, people

are assigned to clusters at random; and the (conditional) expected

numbers of families of respective sizes j (2 through 6) are as if so

assigned. One computes the conditional expectation:

EH0
(Dffj : sj§2 and any sib of fj belongs to C1gDDN1,N2,fsjg)

~
XF

j~1,sj§2

sj 1{

n{sj

N1

� �

n

N1

� �
0
BBB@

1
CCCA ð8Þ

Table 3 gives sibship sizes (when it is at least two), total numbers

of families, observed numbers of families of respective sizes, and

numbers expected under H0. One needs no statistician to infer

that by any reasonable test statistic, our null hypothesis is

‘‘accepted.’’ The third and fourth columns of Table 3 pass what

the late Leonard J. Savage called ‘‘the traumatic intraocular test’’.

Inference from SNPs, Including Imputation
SAPPHIRe includes information from genotyping 293 SNPs in

candidate genes that were selected because abnormalities in them

are thought to predispose to insulin resistance. These data are

unphased as to chromosome. Each SNP is coded as to the number

of ‘‘major alleles,’’ that number being 0, 1, or 2. This section is

about how we quantify the relationship of these SNP values and

cluster membership. We summarize predictability by mutual

information [39].

The mutual information between two (discrete) random vectors X

and Y is a generalization of Kullback-Leibler distance and is

defined as

I(X : Y )~
X

x

X
y

p(x,y) ln
p(x,y)

p(x)p(y)
, ð9Þ

where p(x,y) is a joint probability mass function (pmf) of X and Y ,

and p(x) and p(y) are marginal pmfs of X and Y , respectively.

Obviously if X and Y are independent, I(X : Y )~0. Mutual

information has been used often in statistical learning [40]. Mutual

information is always non-negative. The more X and Y are

related, the higher I(X ,Y ) is. Thus, we postulate that SNPs

relevant to insulin resistance have higher mutual information with

insulin resistance than do other SNPs that are not. Once relevant

SNPs are identified, we also try to find their interactions with

environmental variables (age and BMI). Since insulin resistance

can be triggered by environmental factors, SNPs alone do not

cause all insulin resistance; and both (relevant) SNPs and their

interactions with age and BMI are used to classify people based on

our definition of insulin resistance. Five classification algorithms

were considered to evaluate the procedure for finding relevant

SNPs and their interactions with environmental variables. In using

relevant SNPs to train classifiers, we tried to remove redundancies.

Two SNPs are taken to be similar if they have high enough mutual

information. SNPs were clustered so that clusters consist of groups

of similar SNPs.

Among the 297 SNPs, 36 SNPs had constant value; so,

obviously, they were useless for prediction. For 12 SNPs, fewer

than 400 people were genotyped. We therefore discarded these 48

SNPs from subsequent analyses. For the remaining 249 SNPs,

missing values were imputed by RPART [41]. We realize that

there are other approaches to imputation, such as IM-

PUTE [42], [43], MACH [44], [45], and Beagle [46], and our

disequilibrium and information from the HapMap proj-

ect [47], [48]. For technical reasons, it was possible to try only

MACH among the three cited programs. It did not give

imputations that were better than our imputing method RPART

for those sequences and sites for which we had a ‘‘gold standard.’’

Individuals with more than 110 missing SNP values were

discarded prior to imputation. This reduced the number of

subjects from 557 to 485.

Clustering SNPs
Even after imputation, there were SNPs that were highly

predictable from each other. These SNPs were combined by

agglomerative clustering with average linkage [49],[40] employed

to measure their similarity. Since each SNP can take three possible

values (major allele homozygote, heterozygote, and minor allele

Table 9. SVM 10 fold cross-validation: Age, BMI, SNPs and Interaction terms.

Age+BMI+SNPs+Interaction terms

Loss Sensitivity Specificity Overall Miscost

1.8:1 0.504 0.704 0.638 235.3

1.9:1 0.520 0.704 0.642 238.1

2.0:1 0.526 0.697 0.640 246.0

2.1:1 0.544 0.688 0.640 250.6

2.2:1 0.580 0.682 0.646 247.3

2.3:1 0.582 0.666 0.635 258.2

doi:10.1371/journal.pone.0094129.t009
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homozygote), a 3|3 table was formed for each pair of SNPs, of

which examples are given in Tables 4 and 5. For example, in

SAPPHIRe terminology (see Table 2 for its translation to more

customary dbSNP accession for all but one SNP) APOAV S.1 and

APOAV S.4 were almost perfectly predictable from each other as

is clear from Table 4. Table 4 and Table 5 give examples in

SAPPHIRe terminology for which the former exhibits high mutual

information and the latter low mutual information. Table 2

summarizes the relevant SNPs that we found.

To perform agglomerative clustering, we grew a bottom-up-tree

(dendogram) using (9) as a measure of similarity and continued to

merge clusters until we were left with one. Since SNPs belonging

to the same node are similar, we represented each node of the

tree/dendogram (including terminal/leaf nodes) by a SNP with

maximum mutual information with cluster membership among all

SNPs belonging to the same node. We cut the tree; the SNPs

representing terminal nodes of the resulting sub-tree became the

final selection of relevant SNPs. Cross-validation was employed to

decide where to cut the tree, accuracy of classification of cluster

membership being the criterion.

Predicting Cluster Membership from SNPs and Finding
Interactions among Predictors

To evaluate the entire [5] procedure of predicting cluster

membership from SNPs, AGE, AGE , BMI, BMI , and2 2

AGE |BMI and (separately) interactions of them, we employed

five state-of-the-art algorithms for prediction and did 10-fold cross

validation of the entire process. Our choice was governed by

previous successful application of the algorithms to genetic

problems. Those we chose were support vector machines (SVM)

[50],[51], the L1 (Lasso) regularization path algorithm for

generalized linear models [52], logistic regression with L2 penalty

[53], FlexTree [54], and random forests [6].

We have emphasized that IR can be triggered by genes,

environmental features, and their interactions. Our discovery of

interactions among predictors is by an approach that has proven

useful in other contexts but that may be reasonably new to genetics

[55]. Features for us were SNPs selected as described and the three

scaled functions of age and BMI (AGE , BMI , AGE2 2 |BMI )

that, as we report in what follows, contain the great preponder-

ance of information in the first two principal components of the 17

predictors that have been cited. The technology is CART,

Classification and Regression Trees [56]. Because CART does

not change with (that is, is ‘‘equivariant’’ to) monotone transfor-

mations of coordinate axes, the squares could have been deleted,

and are in results we report. The ‘‘outcome’’ for our ‘‘two-class

problem’’ is cluster membership, where clustering was performed

as we have described. We anticipate results reported in what

follows by reporting here that there was remarkable evidence for

two clusters in our data. For our implementation of CART, we

took the product of empirical frequencies of cluster times loss for a

mistake to be equal by cluster. This choice is in keeping with the

findings of [57]. Our CART decision tree was grown using

RPART [41], the open source version of CART.

Precise methodology for selecting interactions depends on each

path from root node of our rooted, binary decision tree to terminal

nodes of the tree. If, for example, an optimally chosen [6] path is,

‘‘split on A, split on B, split on A,’’ then there are three ‘‘words’’

suggested: A, B, A | B if adjacent nodes are taken as suggestive of

a two-factor interaction, and three- and higher factor interactions

are ignored. This, then, is the basis for the three main effects and

interaction chosen for inclusion in subsequent classifiers, which

promise to be more accurate than nave CART itself and for which

results are given in Discussion. Our approach harks back to the

origins of binary tree-structured decision trees as, ‘‘automatic

interaction detectors,’’ [58], and is particularly important in the

typical polygenic context where there are so many candidates for

features available, especially interactions. Note that with any word

selected for inclusion, necessarily all ‘‘sub-words’’ are also

included.

Results

Comparison of OGTT and SSPG for those Subjects for
Whom we had both

There was no particular relationship between those subjects for

whom we had SSPG as well as OGTT, and those for whom we

did not. Given this haphazard selection, it is interesting to note

from Figure 1. the relationship between the two. Obviously, were

SSPG ever the standard in clinical medicine, this would be a

different paper.

The Scree Plot and Principal Components
We employed the time-honored technique of ‘‘principal

components’’ [59] to decompose the variability in the 17 functions

of AGE and BMI into their variability. Of course, we expected

that far fewer than 17 dimensions would be required, and the

Scree plot [60] that we report in Figure 2 indicates that our

intuition was correct. The plot summarizes fraction of variability

explained by respective ‘‘orthogonal’’ linear combinations of the

17 that summarize their variability. We were careful to bootstrap

the principal components by the approach we invented for this

purpose and that is reported in Section 4. Readers please note

from the figure that only two principal components summarize

approximately all the variability in the 17. Further, from computer

output not repeated here it was altogether evident that these first

two principal components could be computed with high accuracy

from only the three functions that were cited in the previous

section, namely, AGE , BMI , and AGE2 2 |BMI .

Numbers of Clusters
Clustering was performed with TSVQ as cited, with results

summarized in Figure 3. Individuals were the units by which we

clustered; what was actually clustered were residuals by subject of

nine clinical features with the cited functions of AGE and BMI

regressed out. Note from Table 1 that the clinical features were the

six values of glucose and insulin measured by OGTT, triglycer-

ides, total cholesterol, and HDL. Readers will note the two

graphics, one giving a number proportional to the average

‘‘distortion’’ between a sample point and its ‘‘cluster center’’ as the

number of clusters grows. Necessarily this number decreases with

number of clusters. The second part of the figure gives the

difference in distortion between successive numbers of clusters as

their number grows. It is patent from the second graphic, but even

the first, that our data suggest two clusters. We note that both the

GAP statistic [61] and the silhouette method [62] were applied in

order to estimate the ‘‘correct’’ number of clusters; both give

strong evidence that two is the right number.

Differences between Clusters
While clustering was performed on residuals, when we

summarize cluster membership in Table 6 we added in fitted

values so that means and standard deviations are for the original

clinical measures by subject, by cluster. Of course, we include

AGE and BMI themselves for a full summary. Were we successful

in defining clusters that exist in our population of Chinese women,

then AGE and BMI should not differ by cluster. However, the
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other nine features ‘‘should.’’ While marginal sampling distribu-

tions of the clinical features preclude any one statistical test being

just right for comparing clusters, and we are certainly are sensitive

to the matter that the features themselves were used to define the

clusters, rendering attained significance of differences between

clusters suspicious at best, we did nonetheless undertake compar-

ison by an approximate Behrens-Fisher-Welch t-statistic, a

permutation pooled t-statistic, and a Mann-Whitney statistic.

Generally speaking, differences of lipids (by which we mean

features that explicitly involve triglycerides or cholesterol) by

cluster tend to be somewhat less than differences obtained from

the OGTT. Comparison by pooled t might be considered valid if it

is taken to be unconditional with respect to an unspecified

mechanism that generated equal intrinsic variability per feature

per subject.

No matter the caveats of the previous paragraph, we did

attempt to quantify differences in the two clusters. Testing is

conditional on there being 177 individuals in one cluster and 380

in the other. By ‘‘permutations’’ is meant the random division of

the 557 subjects into two groups, one numbering 177 and the

other 380. ‘‘Significance’’ was judged by the well-known duality

between confidence intervals and p-values. Thus, for any 0vav1
and null hypothesis that an unknown parameter m~m0, the p-

value p = a if, and only if, a 100(1-a)% confidence interval for does

not include 0. These being said, pooled t was done for 100

bootstrap samples, with 10,000 permutations done for each

bootstrap sample, with bootstrapping done as described in Section

6. Results were about the same with B-F-W t as with pooled t. The

Wilcoxon test is itself a permutation test. It was computed for each

of the 100 bootstrap samples. Without giving exact p-values, we

note that they agreed, at least approximately, with the normal

approximation to B-F-W t on the original data. With cutoff of

p = 0.05, the only features for which the fraction of rejections of

the null hypothesis was not at least 99% were Total Cholesterol

and AGE.

Predicting Cluster Membership by SNPs; Main Effects are
not Enough, but Main Effects Together with Interactions
may be

Three different sets of features were used for predicting cluster

membership by each of the five algorithms introduced in the

previous section. They were AGE + BMI alone, AGE+BMI+SNPs

(main effects only), and AGE+BMI+SNPs (including their

interactions chosen as cited); these are termed, respectively,

Feature Set 1, Feature Set 2, Feature Set 3. Tables 7, 8, and 9

give cross-validated results for sensitivity and specificity for our

best classifier, SVM, for various ratios of misclassification costs, as

well as overall misclassification costs, for each of the three sets of

features. We omit results by other four algorithms. The paired t-

test averaged over the 10 folds in cross-validation with ratio of

misclassification costs 2.2:1 gave these values for comparison:

Feature Set 1 versus Features Set 2, t = 0.939; Feature Set 2 versus

Feature Set 3, t = 1.22; Feature Set 1 versus Feature Set 3, t = 2.38.

Thus, there may be significantly good classification achieved by

adding relevant SNPs and interaction terms to Feature Set 1.

Graphical results not presented here demonstrate further that even

when AGE and BMI are combined, they offer inadequate

accuracy.

We did a standard chi-square test of the null hypothesis that

classification is independent of cluster membership. The classifier

chosen was the SVM with ratio of misclassification costs 2.1:1.

With this choice, x2 = 21.2. Of course, this is an example of a

‘‘maximally selected chi-square statistic,’’ and our cutoff is not

linear in any test of features, as would be required for application

of the argument of [63]. However, comparison of 21.2 with

Table 2 of [63] suggests that the success of our classification does

not owe to chance.

We asked whether adding SNPs and interactions to AGE and

BMI might help predict cluster membership significantly. If we

assume that SNPs do not improve the accuracy of classification,

then classification would not change significantly by randomly

permuting SNPs across people. We performed 1000 permutations

and measured the area under the ROC curve of sensitivity versus

1-specificity for each permuted data set. We had the unpermuted

data for comparison. For each permutation, we performed the

permutation test for SNPs and interactions based on interactions

computed for permuted SNPs. Without belaboring details, we

report here that achieved significance (p-values) for improvements

over Feature Set 1 by Feature Set 2 was 0.223, but that p-value

was 0.028 when compared with Feature Set 3.

Discussion

We have argued that prediction of cluster membership on the

basis of SNPs and candidate genes and other features (that did not

figure in the clustering) is better than could be expected by chance.

However, our best algorithm, a support vector machine that

includes interactions in its feature set, is not sufficiently accurate

for routine clinical application. Instead, to the extent that

genotype, other features, and their synergistic effects predict IR,

it may be better to have data from a genome-wide association

study (GWAS) than from candidate genes. This view is despite

certain knowledge that any current GWAS necessarily entails

beginning with not fewer than 500,000 features, the vast majority

of them irrelevant, not to speak of the problem of describing

‘‘phenotype’’ (the dependent variable in prediction) accurately.

Many previous analyses of GWAS (see [64], [65], [66], [67], for

example) have focused primarily upon individual effects, no matter

how minor any individual impact upon phenotype. This approach

seems a vestige of thinking about Mendelian mechanisms of

Figure 3. Estimation of number of clusters. Top: r̂rGMVQ (q) vs.
number of clusters of 1,000 bootstrapped samples. Bottom: (decrease
in r̂rGMVQ (q)) vs. difference in numbers of clusters indexed by the

smaller number; 1,000 bootstrapped samples.
doi:10.1371/journal.pone.0094129.g003
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inheritance that do not port to this context of complex disease.

Indeed, the argument for presenting our analyses is to demonstrate

that statistics, broadly construed, can be brought to bear upon

understanding prediction of complex human disease, and to show

that despite the great care we took to define phenotype and to

predict it as well as could be from information in ‘‘candidate genes,

’’ AGE, and BMI were simply not good enough in a family-based

study like SAPPHIRe to lead to an algorithm for routine clinical

application. Knowing proteins (in particular, genes that code for

them) that figure in clinical presentation of a phenotype such as

insulin resistance is not the same as knowing also what controls the

expression or other aspects of those genes/proteins. Such control

may depend on genes far removed on the genome from those that

code for the particular protein. At present writing, at least so far as

IR is concerned, these other genes tend to be unknown. Methods

of causal inference and graphical models might be useful in this

regard, but they are not the subject of this paper.
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