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Abstract. We consider the spectral and algorithmic aspects of the problem of finding a Hamil-
tonian cycle in a graph. We show that a sufficient condition for a graph being Hamiltonian
is that the nontrivial eigenvalues of the combinatorial Laplacian are sufficiently close to the
average degree of the graph. An algorithm is given for the problem of finding a Hamiltonian
cycle in graphs with bounded spectral gaps which has complexity of order nc ln n.
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1. Introduction

The problem of determining whether a graph is Hamiltonian (i.e., possesses a cycle
visiting each vertex exactly once) is one of the most difficult classical problems in
graph theory. While large numbers of sufficient conditions have been discovered they
mostly involve relatively dense graphs. As an example, Dirac’s Theorem states that
if the degree at each vertex is at least |V (G)|/2 then the graph is Hamiltonian.

A breakthrough in the study of graphs which are Hamiltonian occurred thirty
years ago when Komlós and Szemerédi [8] showed that almost surely a random graph
is Hamiltonian. The technique involves the rotation of paths attributed to Posa [10].
The underlying idea is that if there is a path of maximal length then edges from the
endpoints of the path must connect to the center of the path and can be used to rotate
the path to create a new maximal path. This process of rotation can be repeated and
we form a large collection of maximal paths and then with high probability one of
these paths can be closed to form a cycle. Since almost surely the random graph is
connected this in turn implies that in fact the path must go through all of the vertices
(i.e., otherwise we could extend the path).
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More recently Krivelevich and Sudakov [9] considered the problem of showing
that a d-regular graph is Hamiltonian. They showed that if σ, the second largest
absolute value of an eigenvalue of the adjacency matrix of a d-regular graph, satisfies

σ ≤ c
(loglogn)2

logn(logloglogn)
d

for a constant c and n sufficiently large, then G is Hamiltonian. Their underlying
approach was similar to that of Komlós and Szemerédi in that graphs with small σ
are “random-like”, that is have many of the same properties as one would expect a
random graph to have.

In their paper, Krivelevich and Sudakov stated that “it seems plausible . . . that our
techniques can be used to prove Hamiltonicity of almost regular graphs (i.e., graphs
in which all degrees are very close to the average degree)”. Here we show how
to establish such a result by using their approach with some discrepancy and discrete
isoperimetric inequalities of graphs found in Chung [4]. Our main result is as follows.

Theorem 1.1. Let G be a graph on n vertices with average degree d and 0 = λ0 ≤
λ1 ≤ λ2 ≤ ·· · ≤ λn−1 be the eigenvalues of the combinatorial Laplacian of G. There
is a constant c so that if

|d −λi| ≤ c
(log logn)2

logn(logloglogn)
d,

for i �= 0 and n sufficiently large, then G is Hamiltonian.

NOTE. When G is regular the eigenvalues of the adjacency matrix and the combi-
natorial Laplacian (L = D−A, where D is the diagonal degree matrix and A is the
adjacency matrix) are related by a reflection and a shift of d. From this it can be seen
that Theorem 1.1 implies the result of Krivelevich and Sudakov. When G is not regu-
lar the eigenvalues of the two matrices are no longer related in a trivial manner and it
becomes more important which spectrum is used. We have chosen the combinatorial
Laplacian in that the spectrum is useful in controlling neighborhood expansion which
plays an important role in the proof.

The problem of finding a Hamiltonian cycle (or the traveling salesman algorithms,
TSP in short) is known to be NP-complete (Karp [7]). Currently there are implemen-
tations for the TSP algorithm for instances with up to 13000 cities (see Applegate,
Bixby, Chvátal, and Cook [2] and Woeginger [11]). The exact TSP algorithm of Held
and Karp [6] is based on dynamic programming with time complexity O(cn) for some
c < 2. For the Euclidean TSP, Chang, Hwang, and Lee [3] have a sub-exponential
algorithm with some constant c > 1.

In Section 4 we give a subexponential algorithm for finding a Hamiltonian cycle
in graphs that satisfy the required spectral bounds. The correctness of the algorithm
follows from the proof of Theorem 1.1.

2. Discrepancy Inequalities Using the Combinatorial Laplacian

To prove Hamiltonicity we first need to translate the constraints placed on the spec-
trum into constraints on how sets expand, i.e., discrepancy bounds. Krivelevich and
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Sudakov [9] used discrepancy inequalities which apply for regular graphs (see Alon
and Spencer [1, Chapter 9]), namely, for G a graph on n vertices, regular of degree d,
with σ the largest absolute value of a nontrivial eigenvalue of the adjacency matrix,
and if e(X , Y ) is the number of edges with one endpoint in X and one in Y while e(X)
is the number of edges with both endpoints in X for X , Y ⊆V then∣∣∣∣e(X , Y )− d

n
|X | |Y |

∣∣∣∣ ≤ σ
n

√
|X |(n−|X |)|Y |(n−|Y |), and

∣∣∣∣e(X)− d
2n

|X |2
∣∣∣∣ <

σ
2
|X |.

For a more general case we need a stronger result. The following are discrepancy
bounds adopted from [4]. For completeness we also include a short proof.

Theorem 2.1. Suppose that a graph G with n vertices has average degree d and
the eigenvalues 0 = λ0 ≤ λ1 ≤ ·· · ≤ λn−1 of the combinatorial Laplacian satisfy
|d−λi| ≤ θ for i �= 0. Then for any two disjoint subsets, X and Y , of vertices in G∣∣∣∣e(X , Y )− d

n
|X | |Y |

∣∣∣∣ ≤ θ
n

√
|X |(n−|X |)|Y |(n−|Y |), (2.1)

and ∣∣∣∣e(X)− d|X |(|X |−1)

2n

∣∣∣∣ ≤ θ
n
|X |(n−|X |/2). (2.2)

Remark 2.2. If we consider the case X = {v} and Y = V \{v} then (2.1) implies that
d(n− 1)/n− θ ≤ dv ≤ d + θ. So when θ is small compared to d (as is the case in
Theorem 1.1) the degrees fall in a small range and so the graph can be described as
almost-regular.

Proof. Let ϕi be the orthonormal eigenvectors corresponding to the eigenvalues λi.
Note that ϕ0 = 1/

√
n where 1 is the all 1s vector. We now use the eigenvectors to

decompose the characteristic vectors ψX and ψY by ψX = ∑i aiϕi, and ψY = ∑i biϕi.
We then have

e(X , Y ) = 〈ψX , (dI + A)ψY 〉
= d〈ψX , ψY 〉+ 〈ψX , (D−L)ψY 〉
= d ∑

i
aibi −∑

i�=0
λiaibi

= da0b0 −∑
i�=0

(d −λi)aibi.

Since a0 = 〈ψX , ϕ0〉 = |X |/√n and b0 = 〈ψY , ϕ0〉 = |Y |/√n we have upon rearrang-
ing

∣∣∣∣e(X , Y )− d
n
|X | |Y |

∣∣∣∣ =

∣∣∣∣∣∑i�=0
(d−λi)aibi

∣∣∣∣∣
≤ θ ∑

i�=0
|ai| |bi|
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≤ θ
√

∑
i�=0

a2
i ∑

j �=0
b2

j

= θ
√

(|X |− |X |2/n)(|Y |− |Y |2/n)

=
θ
n

√
|X |(n−|X |)|Y |(n−|Y |),

establishing (2.1).
Let x = |X | and let X ′ ⊂ X denote a set with |X ′| = 	x/2
. Since

∑
X ′⊆X
|X ′ |=x ′

e(X ′, X \X ′) =

(
x−2
x ′−1

)
e(X , X),

we have

(
x−2
x ′−1

)∣∣∣∣e(X , X)− d
n

x(x−1)

∣∣∣∣ =

∣∣∣∣∣∣∣ ∑
X ′⊆X
|X ′|=x ′

e
(
X ′,X \X ′)−(

x−2
x ′−1

)
d
n

x(x−1)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ ∑
X ′⊆X
|X ′|=x ′

(
e
(
X ′, X \X ′

)− d
n

⌊ x
2

⌋⌈ x
2

⌉)∣∣∣∣∣∣∣
≤

(
x
x ′

)
θ
n

√
x ′(n− x ′)(x− x ′)(n− x+ x ′),

where the last step follows by
( x

x ′
)

applications of (2.1). Rearranging we have

∣∣∣∣e(X , X)− d
n

x(x−1)

∣∣∣∣ =

( x
x ′
)

( x−2
x ′−1

) θ
n

√
x ′(n− x ′)(x− x ′)(n− x+ x ′) ≤ 2θ

n
x(n− x/2),

since e(X , X) = 2e(X) this establishes (2.2).

2.1. Some Properties of Edge Expansion

We use Theorem 2.1 in the proof of Theorem 1.1 in two ways. The first is to show
that we have good neighborhood expansion and the second is to show that the graph
is connected. The following corollary contains the equivalent of [9, Propositions 2.1-
2.5]. We let N(X) = {v ∈V \X : v∼x ∈ X} denote the neighborhood of X .

Corollary 2.3. Let G be a graph on n vertices with average degree d and |d −λi| ≤
θ for the non-trivial eigenvalues of the combinatorial Laplacian. Further we will
assume that 8θ < d and that X , Y ⊆V. Then the following hold:

(a) if |X | ≤ θn/d then e(X) ≤ 3
2

θ|X |.
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(b) if |X | ≤ θ2n
d2 then |N(X)| > (d/2−4θ)2

3θ2 |X |.
(c) if |X | > θ2n/d2 then |N(X)| > n

2
−|X |.

(d) if X ∩Y = /0 and e(X , Y ) = 0, then |X | |Y | < θ2n2

d2 .

(e) G is connected.

Proof. For (a) we use (2.2) and the assumptions to get

e(X) ≤ d|X |(|X |−1)

2n
+

θ
n
|X |(n−|X |/2)≤ θ|X |

2
+ θ|X |= 3

2
θ|X |.

For (b) we use (a), i.e., e(X) ≤ 3
2 θ|X |, and the remark following Theorem 2.1 to

get

e(X , N(X)) = ∑
x∈X

dx −2e(X)≥ (d(n−1)/n−θ)|X |−3θ|X |> (d/2−4θ)|X |.

Now we use (2.1) to conclude

(d/2−4θ)|X |< e(X , N(X)) <
d
n
|X | |N(X)|+ θ

√
|X | |N(X)|. (2.3)

If N(X) ≤ (d/2−4θ)2

3θ2 |X | then we would have

d
n
|X | |N(X)|+ θ

√
|X | |N(X)| ≤ d(d/2−4θ)2|X |2

3θ2n
+

θ|X |(d/2−4θ)√
3θ

≤ θ2n
d2

(d/2−4θ)2d|X |
3θ2n

+
(d/2−4θ)|X |√

3

=
(d/2−4θ)2|X |

3d
+

(d/2−4θ)|X |√
3

<
(d/2−4θ)|X |

3
+

(d/2−4θ)|X |√
3

< (d/2−4θ)|X |,
using that 8θ < d in going to the last line, which is a contradiction to (2.3), establish-
ing (b).

For (c) we let Y = V \ (X ∪N(X)) and use (2.1) to get

0 = e(X , Y ) ≥ d|X | |Y |
n

−θ

√
|X | |Y |

(
1− |Y |

n

)
,

which upon rearranging gives

|Y |
1−|Y |/n

≤ θ2n2

d2|X | < n.
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This implies that |Y | < n/2 and so |N(X)| = n−|X |− |Y| > n/2−|X |.
Part (d) is again a consequence of (2.1), i.e.,

0 = e(X , Y ) >
d|X | |Y |

n
−θ

√
|X | |Y |

and then rearrange.
Finally, for (e), if G is disconnected then G has a connected component X of size

|X | < n/2. Since N(X) = /0, it follows from part (c) that |X | ≤ θ2n/d2, but this now
contradicts (b).

3. Proof of Theorem 1.1

The remainder of the proof of Theorem 1.1 now proceeds as in [9] with small changes
to various constants. We will give a detailed outline of the proof and refer the inter-
ested reader to [9] for details. A brief outline of the proof is as follows: Start with a
path in the graph of maximal length and consider “rotations” of this path in G, some
rotation of the path can be closed to form a cycle which by maximality of the length
and G being connected implies that the graph is Hamiltonian.

Let P = (v1, v2, . . . , vm) be a path of maximal length in G. If vi is adjacent to vm
(abbreviated vi∼vm) for some i then another path of maximal length is given by P′ =
(v1, . . . , vi, vm, vm−1, . . . , vi+1). We say that P′ is a rotation of P with fixed endpoint
v1, pivot vi and broken edge vi∼vi+1. We can now pivot P′ to get P′′ and so on. For
t ≥ 0 we let St = {v ∈ {v2, . . . , vm} : v is the endpoint of a path obtainable from P by
at most t rotations with fixed endpoint v1 and all broken edges in P}. It is easy to see
that St ⊆ St+1 and by maximality of P that all edges incident to a vertex in St have
their second endpoint in P.

By examining subsets St it can be shown that the sets have good expansion,
namely, we have the following.

Lemma 3.1. ([9, Proposition 3.1]) For t ≥ 0, |St+1| ≥ 1
2
|N(St)|− 3

2
|St |.

Now let

t0 =

⌈
logn−2log(d/θ)

2log(d/θ)−10

⌉
+ 2.

By Corollary 2.3(b), as long as |St | ≤ θ2n/d2 then |N(St)| ≥ (d/2− 4θ)2|St |/3θ2.
In particular, if d is large compared to θ (say d > 1000θ) then it follows that when
|St | ≤ θ2n/d2,

|St+1|
|St | ≥ (d/2−4θ)2

7θ2 .

In particular, after at most t0 −2 steps we must have that |St | > θ2n/d2. By Corollary
2.3(c) when we take one more step we will have

|St+1| ≥ 1
2
|N(St)|− 3

2
|St | ≥ 1

2

(n
2
−|St|

)
− 3

2
|St | = n

4
−2|St| ≥ n

4
−2|St+1|,



Small Spectral Gap Implies Hamiltonian 409

implying |St+1| ≥ n/12. Applying Corollary 2.3(d) we then have that |N(St+1)| =
n−o(n). Applying Corollary 2.3(c) we can similarly conclude that

|St+2| ≥ 1
2

(n−o(n))− 3
2
|St+2|,

and thus |St+2| ≥ (1−o(1))n/5 > n/6 for n sufficiently large.
Let B(v1) = St0 and A0 = B(v1)∪{v1}. For each v∈B(v1) we can repeat the above

argument to get a set B(v), |B(v)|> n/6, of endpoints of maximum length paths with
endpoint v. Note that each endpoint in B(v) was obtained by at most 2t0 rotations of
P. Also note that since each vertex in B(v1) is in P, we see that P must contain some
constant fraction of the vertices. We now have that for each a∈ A0, b∈ B(a) there is a
maximal length path P(a, b) which is obtainable from P by at most ρ = 2t0 rotations.

We return to the initial path P and direct it and divide it into 2ρ disjoint segments
I1, . . . , I2ρ each of length at least 	n/12ρ
. Since each path P(a, b) is obtainable from
P by at most ρ rotations there are at least ρ of the segments untouched, we will call
these segments unbroken in P(a, b). Each unbroken segment has two orientations, an
absolute orientation from P and a relative orientation from P(a, b) (where we direct
that path from a to b).

Let k = 2max{1, �500θρ/d�}. We consider sequences σ = Ii1 , . . . , Iik of k unbro-
ken segments of P which occur in this order in P(a, b) where σ specifies not only
the order of segments in P(a, b) but also their relative orientation. We say then that
P(a, b) contains σ. Note that as P(a, b) has at least ρ unbroken segments Ii j , P(a, b)

contains at least
(ρ

k

)
sequences σ. For a given σ we denote by L(σ) the set of all pairs

a ∈ A0, b ∈ B(a) for which the path P(a, b) contains σ.
The total number of possible sequences σ is at most (2ρ)k2k. Therefore by aver-

aging we obtain that there exists a sequence σ0 for which

|L(σ0)| ≥ n2

36

(ρ
k

)
(2ρ)k2k >

n2

36

(
ρ− k

2ρ− k

)k 1
k!2k .

When k ≤ ρ/2 then (ρ−k)/(2ρ−k)≥ 1/3 and it follows that there exists a sequence
σ0 for which |L(σ0)| ≥ n2/

(
k!6k+2). We fix such a sequence and let α = 1

(k!6k+2)
.

Let Â = {a∈ A0 : L(σ0) contains at least αn/2 pairs with a as the first element}. Then
|Â| ≥ αn/2. For each a ∈ Â, let B̂(a) = {b ∈ B(A) : (a, b) ∈ L(σ0)}. The definition
of Â guarantees that |B̂(a)| ≥ αn/2.

Let C1 be the union of the first k/2 segments of σ0, in the fixed order and with the
fixed relative orientation in which they occur along any of the paths P(a, b), (a, b) ∈
L(σ0). Let C2 be the union of the last k/2 segments of σ0. Notice that

|Ci| ≥ k
2

⌊
n

12ρ

⌋
≥ 500θρ

d

⌊
n

12ρ

⌋
>

40θn
d

. (3.1)

Given a path P0 and a set S ⊆ {v1, . . . , vm}, a vertex v ∈ S is called an interior
point of S with respect to P if both neighbors of v along P are in S. The set of all
interior points of S will be denoted by int(S). Using (2.1) along with (3.1) we can get
the following result.
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Lemma 3.2. ([9, Proposition 3.2]) The set C1 contains a subset C ′
1 with | int(C ′

1)| ≥
nk/(48ρ) so that every vertex v ∈C ′

1 has at least 14θ neighbors in int(C ′
1). A similar

statement holds for C2.

We now fix the sets C ′
1 and C ′

2. Using Corollary 2.3(d) it can then be shown that
the terminal vertices connect back to the interior of the half paths. We remark that it
is at this step where our bound for the spectral gap is needed.

Lemma 3.3. ([9, Propositions 3.3 and 3.4]) There is a vertex â ∈ Â connected by an
edge to int(C ′

1). Similarly there is a vertex b̂ ∈ B̂(â) connected by an edge to int(C ′
2).

Let x be a vertex separating C ′
1 and C ′

2 along P
(
â, b̂

)
. This splits the path into two

half paths P1 and P2 obtained by splitting P
(
â, b̂

)
at x. We now fix x and rotate each

of the Pi insuring that we only use vertices in their respective int(C ′
i) as pivots. If we

can show that the corresponding sets of endpoints are sufficiently large then Corollary
2.3(d) will show that there is an edge between V1 and V2. This edge closes a path of
maximal length to a cycle. As G is connected, by Corollary 2.3(e), any non-Hamilton
cycle can be extended to a path covering some additional vertices. Therefore the
assumption about the maximality of P0 implies that P0 is a Hamilton path, and thus
the above created cycle is Hamilton as well.

So now consider P1. Let Ti =
{

v ∈C ′
1\{x} : v is the endpoint of a path obtainable

from P1 by i rotations with fixed endpoint x, all pivots in int(C ′
1) and all broken edges

in P1
}

. Examining the sets Ti it can be shown using (2.1) that when |Ti| is small it
contains a subset which expands well, in particular, within log(λn/d) steps we can
have |Ti| ≥ λn/d.

Lemma 3.4. ([9, Proposition 3.5]) There exists an i for which |Ti| ≥ λn/d.

Hence, the set V1 of endpoints of all rotations of P1 has cardinality |V1| ≥ λn/d.
By Lemma 3.4, b̂ has a neighbor in int(C ′

2), the same argument can be carried out
for P2 to show that the set V2 of endpoints of its rotations has at least λn/d vertices as
well. Then by Corollary 2.3(d) there is an edge connecting V1 and V2 and thus closing
the cycle. This completes the proof of Theorem 1.1.

4. An Algorithm for Finding Hamiltonian Cycles

The proof given above is algorithmic. Namely, it gives a procedure to find a Hamil-
tonian cycle in a graph which is guaranteed to be successful when the spectral gap is
sufficiently small. The procedure can be described as follows:
Algorithm:
Step 0: Start with a graph G and an initial long path P (such a path can be found by
starting at a single vertex and extending the path as far as possible in both directions).
Step 1: Fix one end of P and look at the rotations of P to form the sets St = {v ∈
V (P) : v is the endpoint of a path obtainable from P by at most t rotations with fixed

endpoint and all broken edges in P} for 1 ≤ t ≤ t0 =
⌈

logn−2 log(d/θ)
2 log(d/θ)−10

⌉
+2 as described

in Section 3. Then for each vertex in each St we similarly rotate. We now have a
large collection of rotations of our initial long path each of which differs from P by
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at most 2t0 rotations. Note if the vertex of an endpoint on any rotation is adjacent to
some vertex off the path, we extend the path P to a path P′ which is at least one vertex
longer and start Step 1 over.
Step 2: We divide up the initial path into 4t0 segments and find a sequence σ0 of
k = 2max{1, �500θρ/d�} segments with orientation so that the number of rotated
paths preserving σ0 is c′n2 for c ′ = 1/

(
k!6k+2). Using this orientation we will find a

path P′ so that we can fix a central point on the path and rotate the two halves so that
the respective collection of endpoints will contain many vertices on the graph.
Step 3: If any of these endpoints are adjacent to vertices not in the original path we
can again extend the path to a new path P′′ which is at least one vertex longer and
then return to Step 1. Otherwise, there must be some edge connecting two endpoints
of some path. In this case we have formed a cycle. If the cycle does not contain all
vertices, then since the graph is connected we can find a vertex not on the original
path adjacent to the cycle and thus find a longer path than what we started with, and
return to Step 1. Otherwise, we have a cycle containing all of the vertices, i.e., we
have found a Hamiltonian cycle and we stop the procedure.

The existence of such a σ0 in Step 2 follows from an averaging argument and
the fact that we are dealing with many rotations which in turn follows from Lemma
3.1. In Step 3 we used Lemma 3.3 to guarantee that the set of respective endpoints of
the two half-paths is large and then used properties of edge discrepancy to close the
cycle. We then have a cycle which we can either use to find a longer path and repeat
the process or the cycle is Hamiltonian and we are done.

Examining the steps we note that given an initial path we can describe a sequence
of rotations by listing the series of broken edges. In particular, since our path has
some fraction of the edges it takes at most n2to to describe our sets of rotations. Since
t0 is of order lnn this will take order nc lnn. For Step 2 when we consider the possible
σ0 there are of order tt0

0 such σ0, and in the worst case we have to compare every
σ0 with every rotated path. In Step 3 we again rotate half-paths which will again
have order of complexity bounded by nc lnn. In the worst case we have to repeat the
argument n times and so this will give us one last factor of n. So in total we have
computational complexity of order nc lnn.
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