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Unraveling the mechanisms of microbial adaptive evolution follow-
ing genetic or environmental challenges is of fundamental interest
in biological science and engineering. When the challenge is the loss
of a metabolic enzyme, adaptive responses can also shed significant
insight into metabolic robustness, regulation, and areas of kinetic
limitation. In this study, whole-genome sequencing and high-
resolution 13C-metabolic flux analysis were performed on 10 adap-
tively evolved pgi knockouts of Escherichia coli. Pgi catalyzes the
first reaction in glycolysis, and its loss results in major physiological
and carbon catabolism pathway changes, including an 80% reduc-
tion in growth rate. Following adaptive laboratory evolution (ALE),
the knockouts increase their growth rate by up to 3.6-fold. Through
combined genomic–fluxomic analysis, we characterized the muta-
tions and resultingmetabolic fluxes that enabled this fitness recovery.
Large increases in pyridine cofactor transhydrogenase flux, correcting
imbalanced production of NADPH and NADH, were enabled by direct
mutations to the transhydrogenase genes sthA and pntAB. The phos-
photransferase system component crrwas also found to be frequently
mutated, which corresponded to elevated flux from pyruvate to phos-
phoenolpyruvate. The overall energy metabolism was found to be
strikingly robust, andwhat have been previously described as latently
activated Entner–Doudoroff and glyoxylate shunt pathways are
shown here to represent no real increases in absolute flux relative
to the wild type. These results indicate that the dominant mechanism
of adaptation was to relieve the rate-limiting steps in cofactor me-
tabolism and substrate uptake and to modulate global transcriptional
regulation from stress response to catabolism.

adaptive evolution | Escherichia coli | metabolism | gene knockout |
transhydrogenase

In the study of microbial metabolism, understanding responses
to genetic perturbation and adaptive evolution is fundamental.

Mutations in metabolic enzymes force a rewiring of flux in the
cell, the nature of which can inform our understanding of al-
ternative pathways, kinetics, and regulation (1, 2). Adaptive
laboratory evolution (ALE) is a powerful approach by which a
microbe is cultured continuously for many generations, typically
achieving improved fitness (e.g., faster growth rate) through
natural selection. The final mutants are then sequenced and
phenotypically characterized (3, 4), with the identification of
causal genetic mutations and mechanistic insights enabled by
replicate experiments and detailed “omics” analysis (5). Often
used to study adaptations to environmental conditions like var-
ied substrates (3, 5–8) or the presence of toxic chemicals (9–12),
ALE has also been previously applied to study the adaptive re-
sponses to genetic perturbations such as the loss of major meta-
bolic enzymes (13–15). These studies provide a valuable dimension
for both evolutionary and metabolic research, as new metabolic
phenotypes are evolved subject to significant and unnatural con-
straints. The metabolic response to knockouts before and after
adaptive evolution has been an area of significant theorizing and in
silico model development (15–17).

Phosphoglucose isomerase (pgi) knockouts of Escherichia coli
are of significant interest in metabolic engineering and have been
the subject of many investigations (1). Pgi catalyzes the first re-
action in glycolysis, the conversion of glucose 6-phosphate (G6P)
to fructose 6-phosphate (F6P), which in the wild type during
aerobic growth on glucose catabolizes ∼70% of glucose (18, 19).
Its loss results in a correspondingly severe growth impairment
(70–80% lower growth rate) (13, 20) as the oxidative pentose
phosphate pathway (oxPPP) and Entner–Doudoroff (ED) pathway
must compensate. Several studies have used 13C-metabolic flux
analysis (13C-MFA) to characterize Δpgi, frequently describing the
activation of normally latent (i.e., nonutilized) pathways and a re-
dox imbalance caused by overproduction of NADPH in the pentose
phosphate pathway (2, 21–24). The major flux, redox, and growth
rate changes caused by loss of pgi make it a rich target for ALE
experiments (13, 14). Previously, Charusanti et al. (14) adaptively
evolved 10 strains in replicate experiments over 50 d of continuous
culture in glucose minimal media, reporting significant growth re-
covery of 3.6-fold. However, no underlying intracellular fluxes have
been reported for these strains or any similarly large-scale ALE
study of genetic mutants.
To gain fundamental insight into the mechanisms and out-

comes of adaptive evolution, both the mutations and the
selected-upon phenotype (here, metabolism) must be measured.
In this study, we applied high-resolution 13C-MFA and next-
generation sequencing to the 10 evolved Δpgi strains and the
parental strain reported previously (14). Novel mutations were
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identified, and comparisons to recently reported wild-type ALE
studies (5, 6) helped to identify mutations unique to Δpgi. To-
gether with complimentary fluxomic information, a detailed
picture of how Δpgi metabolically adapts to achieve faster growth
is attained. Areas of convergence and divergence on the genetic
and fluxomic levels highlight the large number of genetic solu-
tions possible for achieving similar metabolic phenotypes as well
as some differences in metabolic optima. In several cases, spe-
cific causal mutation–flux relationships were identified.

Results
Recovery of Growth Fitness in Δpgi ALE Strains Is Associated with
Unique Mutations. In E. coli K-12 MG1655, the knockout of pgi
results in a reduction in growth rate of ∼80% compared with the
wild type, from 0.72 h−1 to 0.14 h−1. Following ALE, a significant
fraction of this growth rate can be recovered (46–71% of the
wild-type growth rate, Fig. 1A). These 2.4–3.6-fold increases in
growth rate are quite large compared with, for example, similar
ALE experiments with wild-type E. coli, which reported 1.6-fold
increases in growth rate (5).
To assess the genetic basis of the large increases in growth

rate, whole-genome sequencing was performed and sequences
were mapped to the E. coli reference to identify mutations in
10 independent ALE experiments. Recent advances in se-
quencing allowed for improved determination of mutations in
clones isolated from final populations, particularly of insertion
sequences (IS elements), compared with a previous effort that
utilized both a microarray hybridization-based method and an
earlier Illumina short-read technology protocol (14). In all,
52 unique mutations were identified across the 10 ALE strains,
spanning 34 different genetic regions (29 structural mutations—
i.e., within an ORF—and 5 intergenic regions). The complete
mutation table is in Supporting Information. A key advantage and
reason for using replicate ALE experiments is to use mutation
frequency to help differentiate causal mutations from genetic
“hitch-hikers” that do not affect fitness (5). Fig. 1B lists the genes
that were mutated in ≥2 of the 10 Δpgi ALE strains as well as
the genes frequently mutated in reported wild-type K-12
MG1655 ALE studies performed in similar conditions (5, 6).
The two sets are striking in their lack of overlap; mutations that
occur in almost every reported wild-type ALE experiment, in
rpoB, pyrE/rph, and hns/tdk, occur rarely or not at all in Δpgi
strains. Instead, the Δpgi ALE strains have a high frequency of
mutations in the pyridine nucleotide transhydrogenases pntAB
and sthA, the transcription factor rpoS, and the phospho-
transferase system (PTS) sugar transport system component
crr. The distribution of these mutations across the 10 Δpgi ALE
strains is also in Fig. 1A, showing that while some strains had
many of these common mutations (ALE-2 had six out of the
top seven), others had fewer (ALE-8 had only 1/7). This likely
reflects less common but equally effective adaptive routes. It is
worthwhile to mention that some genes or genetic regions had
many unique mutations in parallel evolutions (e.g., six for rpoS
and five for pntAB). In contrast, the IS element insertion in crr
was identical in five different strains. Both patterns clearly
demonstrate evidence for causality. It was previously demon-
strated that the combination of rpoS and sthA mutations are
causal for increased growth in Δpgi and exhibit positive epistasis
(14). The difference in mutation profiles demonstrate that there
are unique selective pressures in Δpgi, which result in unique
adaptive responses. To further investigate how these mutations
enabled the large increases in growth rates from the initial per-
turbed Δpgi state, we next characterized the carbon metabolism
of each strain using 13C-MFA.

Activation of Latent Pathways, or Not? To characterize the rewiring
of central carbon metabolism in the parental and ALE Δpgi
strains, high-resolution 13C-MFA was performed. The analysis
consisted of two parallel labeling experiments with [1,2-13C] and
[1,6-13C]glucose [an experimental design previously identified as
providing optimal flux estimate precision (25)], and the simultaneous

fitting of labeling from proteinogenic amino acids, the ribose
moiety of RNA, and glucose moiety of glycogen (26) to estimate
fluxes. For the wild type, data from parallel labeling experiments
previously reported were refitted (19). The full network model,
the measured isotopomer distributions, and the estimated met-
abolic fluxes are in Supporting Information.
In Fig. 2 A–C, the estimated intracellular fluxes of the wild-

type, Δpgi parental strain, and Δpgi ALE-3 are summarized.
ALE-3 was the fastest growing Δpgi strain (0.51 h−1) and had an
intracellular flux distribution typical of most of the ALE strains.
The growth rates and glucose uptake rates for each strain are
noted, and the fluxes shown are normalized to 100 units of
glucose uptake. In all Δpgi strains, the forward and reverse fluxes
of the PGI reaction were estimated to be zero, thus confirming
the pgi knockout. The unevolved Δpgi (Fig. 2B) was found to
utilize reactions and pathways that carry minimal flux in the wild
type (Fig. 2A), including the ED pathway, glyoxylate shunt, and
phosphoenolpyruvate carboxykinase (PCK) reaction [oxaloace-
tate to phosphoenolpyruvate (PEP)]. These flux changes have
been noted in previous studies and have been described as “la-
tent pathway activation” (2, 22–24, 27). After adaptive evolution,
ALE-3 (Fig. 2C) and the other ALE strains significantly reduced
the usage of these pathways; for example, the glyoxylate shunt
flux was reduced from 25 to 6, and the PCK reaction from 22 to
3 in ALE-3. This “rerepression” following adaptive evolution
has also been previously observed and been the focus of various
speculations and computational analyses (13, 16). The previous
terminology implies the presence of a transient regulatory re-
sponse, activated in response to the stress caused by the knockout
and then repressed during evolution to facilitate faster growth.
When interpreting metabolic fluxes, it is important to consider

both normalized fluxes (e.g., relative to glucose uptake) and
absolute fluxes (mmol·gDW

−1·h−1), as each provide complimen-
tary information. Several key fluxes are shown in both units in
Fig. 2D, corresponding to the pathway map shown in Fig. 2E.
The glucose uptake rates used to calculate absolute fluxes are in
Fig. S1. In Fig. 2 B and D, we can see that although the oxPPP is
the dominant route of glucose catabolism in Δpgi, the absolute
flux is reduced by roughly half in the unevolved strain relative to
the wild type. It has been previously reported that G6P accu-
mulates in Δpgi and that G6PDH (encoded zwf), the first step in
the oxPPP, is likely rate limiting for growth due to allosteric
inhibition caused by an elevated NADPH/NADP+ ratio (23).

Fig. 1. Growth rate recovery in evolved Δpgi strains is supported by unique
mutations. (A) The growth rate is severely reduced in Δpgi strain relative to
wild type (WT). This is significantly, but not completely, recovered through
ALE (growth rate, mean ± SEM, n ≥ 3). (B) The frequency of mutations in 10
Δpgi-ALE strains is compared with those previously reported for 14 WT-ALE
strains of E. coli (5, 6). The profile of mutations is quite distinct for Δpgi-ALE
and WT-ALE strains. The distribution of mutations from the seven most
frequently affected genes in the 10 Δpgi-ALE is also shown in A, Bottom,
with the number of unique mutations per gene noted.
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This limitation is overcome in the evolved strains, where oxPPP
fluxes are increased by three- to fourfold, to rates higher even
than in the WT (by up to twofold). Intriguingly, the highest ab-
solute flux was observed in ALE-9, which was the only evolved
strain with a mutation in zwf (Supporting Information).
In cases of “activated latent” pathways, the absolute fluxes

provide an especially illuminating perspective. There was no
statistically significant increase in the absolute ED, glyoxylate
shunt, or PCK fluxes in Δpgi compared with the wild type. In-
stead, a similar low level of absolute flux was maintained, which
only appeared much larger in relative terms due to the dramatic
reductions in absolute glucose uptake caused by the pgi knock-
out. Very little change was observed in the ALE strains for these
latent pathway fluxes, with the lone exception of an elevated
PCK flux in ALE-9. These results challenge the notion that these
latent pathways are “activated” in a regulatory sense that in-
creases their absolute flux capacity. Perhaps more likely is that
these enzymes are expressed at low levels in the wild type, and
this is maintained in the Δpgi strain, where due to the pertur-
bation in glycolysis the same small rates of flux play a larger
relative role. The rerepression in the ALE strains, then, is instead
simply the recovery of faster glucose uptake rate (Fig. S1).

Energy Metabolism Is Not Significantly Affected by Adaptive Evolution
in Δpgi. The measured metabolic fluxes can also inform a broader
analysis of energy metabolism in these strains. In Fig. 3 A and B,
oxygen uptake rates and acetate yields are shown. In the une-
volved Δpgi, the oxygen uptake is reduced to 4.3 mmol·gDW

−1·h−1,
down from 15 mmol·gDW

−1·h−1 in the wild type, corresponding to
the overall slowed metabolism and growth rate. The unevolved
Δpgi does not produce acetate, as the citrate synthase (CS) flux can
easily accommodate all of the flux from acetyl-CoA at less than
half of its wild-type rate (Fig. 2D). In the ALE strains, oxygen
uptake recovers to 62–91% of the wild-type flux and some strains
produce acetate. This may represent a limit in TCA cycle or
oxidative phosphorylation capacity that these strains encounter,
above which excess glycolytic flux is diverted to acetate pro-
duction. This acetate overflow effect is shown in Fig. 3C, which
shows that the absolute flux through the pyruvate (Pyr) dehy-
drogenase (acetyl-CoA generation) strongly correlates with
the acetate secretion flux in all strains. Fig. 3 D and E show the
normalized cofactor balances for ATP and NADH/FADH2 (the
electron carriers used in oxidative phosphorylation for ATP
production), with contributions to production and consumption
by the various pathways and cell functions. One noticeable dif-
ference in the unevolved Δpgi strain is an increased contribution
of the TCA cycle and oxidative phosphorylation to energy me-
tabolism, leading to a slightly higher overall ATP yield. The ALE
strains mostly reverted to normalized levels of total cofactor
production and consumption that were very similar to the wild
type. Overall, the profile of energy metabolism is remarkably

Fig. 2. 13C-MFA reveals large flux redistributions but ambiguous acti-
vation of latent pathways. Intracellular flux distributions, normalized to
100 units of glucose uptake, are shown for the wild type (A), unevolved
Δpgi (B), and a representative evolved Δpgi strain ALE-3 (C ). (D) Selected
fluxes are shown in normalized flux units (as in A–C ) as well as absolute
flux units (mmol·gDW

−1·h−1), in the context of central metabolic path-
ways (E ). The error bars in D reflect the 95% confidence intervals of flux
estimates.

Fig. 3. Energy metabolism is mostly unaffected by adaptive evolution in Δpgi.
Oxygen uptake rates (OURs) (A) and acetate yields (B) are shown for the wild
type, unevolved Δpgi, and 10 Δpgi-ALE strains. OUR was estimated by 13C-MFA,
and the error bars indicate SDs of the estimates. The acetate overflow effect is
represented in C, which shows the absolute acetate production flux plotted
against the absolute Pyr dehydrogenase (PDH) flux in absolute units. Error bars
represent 95% confidence intervals. The two fluxes strongly correlate (Pearson
correlation coefficient of 0.83). Both the oxygen uptake and acetate secretion
phenotypes directly impact cellular energy metabolism, summarized in more
detail through ATP (D) and NADH/FADH2 (E) balances. Overall, energy me-
tabolism was not significantly altered following adaptive evolution.
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conserved in these strains. Perhaps the most significant differ-
ence between the wild-type and Δpgi strains in cofactor metab-
olism is in the reversed role of transhydrogenase (Fig. 3D).

Transhydrogenase Genes Are Mutated in Many but Not All Δpgi ALE
Strains. E. coli is able to interconvert reduced cofactors with two
pyridine nucleotide transhydrogenases, the membrane-bound
PntAB, which primarily converts NADH to NADPH, and the
soluble form SthA (also referred to as UdhA), which primarily
converts NADPH to NADH (28). In the wild type, excess
NADH produced in glycolysis and the TCA cycle is used to
produce approximately half of the needed NADPH through the
transhydrogenase (Figs. 3D and 4A and Fig. S2). In Δpgi, the
redirection of glucose flux in upper central carbon metabolism,
away from glycolysis and into the oxPPP, results in a significant
excess of NADPH generation. Some of this is utilized by elevated
biosynthesis flux (i.e., biomass yield) (Fig. S1), but most of the
imbalance must be corrected by a reversal of the transhydrogenase
to convert NADPH to NADH.
The absolute rates of NADPH production and consumption are

shown in Fig. 4A. Here again is shown the impact of the forcing of
flux through the oxPPP, which generates a large excess of NADPH
and necessitates the reversal of the transhydrogenase. This trans-
hydrogenase flux is shown in Fig. 4B in both absolute and relative
flux units, with the 95% confidence intervals calculated from 13C-
MFA. In the Δpgi strains (both unevolved and evolved), the nor-
malized flux does not change significantly (also Fig. S2), reflecting
that other parts of central carbon metabolism were not rewired to
relieve the cofactor imbalance. Instead, the absolute trans-
hydrogenase fluxes increase significantly in the ALE strains.
To gain insight into how these flux increases were achieved, the
mutations directly related to the regions of the transhydrogenase
genes in the ALE strains were compared with the flux changes
(Fig. 4C). As noted above (Fig. 1), pntA, pntB, and sthA were some
of the most frequently mutated genes in this study. Eight of the 10
ALE strains had at least one transhydrogenase mutation, with five
having two. Based on the nature of the mutations, they pre-
sumably increase SthA activity, reduce PntAB activity, or both.
The pntAB mutations were diverse, including deletions and a
duplication, as well as an upstream IS element insertion. Three of
the four mutations in the coding regions likely result in truncated,
nonfunctional proteins: ALE-2 has a nonsense mutation in pntA,
and ALE-4 and ALE-7 have major truncations in pntB and pntA,
respectively (14). The sthA mutations were SNPs, including a
commonly mutated site (five strains) 64 bp upstream. The exact
effect of the upstream mutations on transcriptional regulation is
uncertain, but we hypothesize that they increase sthA and reduce
pntAB expression. Despite the high frequency of these mutations,
two strains (ALE-5 and ALE-6) achieved the increased flux with
no observed mutations directly in the transhydrogenase genes,
raising questions about other possible mechanisms for cofactor
rebalancing. Both ALE-5 and ALE-6 possess mutations in genes
that directly affect transcription levels (e.g., lrp and rpoA). In fact,
pntAB has been identified as a regulatory target of Lrp (29).

Mutations in PTS Component crr Are Associated with Increased Back
Flux from Pyr to PEP. Another frequently occurring, and more un-
expected, mutation was an IS element insertion in crr in 5 of 10
ALE strains (Fig. 5). Crr encodes EIIAGlc, the cytosolic subunit of
enzyme II (EII) in the PTS glucose transport system. The PTS
system is the primary mode of glucose uptake in E. coli and links the
uptake and phosphorylation of glucose (by EII) to the glycolytic
conversion of PEP to Pyr (by EI, linked by the intermediary phos-
photransferase HPr) (30, 31) (Fig. 5A). Previous work has shown
that EI of the PTS sugar transport system is reversible in vivo (32)
and that in the wild type 10% of PEP is produced from Pyr in the
reverse (i.e., gluconeogenic) direction by this mechanism. Previous
work has also shown that in a Δcrr strain, this flux is increased by
more than twofold due to perturbation of the PTS equilibrium as
well as some possible activation of PPS, the gluconeogenic enzyme
also able to facilitate the conversion of Pyr to PEP. Given the

prevalence of the crr mutation and global metabolic perturba-
tions in Δpgi, we hypothesized that the PPS/EI flux (Pyr to PEP)
would be altered in these ALE strains.
The PPS/EI flux was measured using an [U-13C]alanine tracer

approach developed recently (32) (see Materials and Methods
and Fig. S3). As shown in Fig. 5B, the extent of this flux varied
widely among the ALE strains, and its magnitude corresponded
strongly with the presence of the crr mutation. Expressed as
normalized flux (relative to 100 units of glucose uptake), the
PPS/EI flux was significantly elevated in the unevolved Δpgi
(from 18 in the wild type to 47) and was reduced subsequently in
strains lacking the crr mutation but maintained at a high level in
the strains with the mutated crr. In absolute terms, the flux was
significantly reduced in all Δpgi strains except for those with the
crr mutation, where the flux was more similar to the wild type.
Without further analysis of the activity of PPS in these strains, it
is difficult to deduce the exact mechanism of these changes, but
they are consistent with the previous observations in Δcrr (32). This
result strongly supports a genetic–metabolic flux relationship
between the crr IS element mutation and elevated PPS/EI flux.
The high frequency of this identical mutation indicates a strong

Fig. 4. Reversal of transhydrogenase flux corresponds to genetic mutations
in many but not all Δpgi ALE strains. The function of the pyridine nucleotide
transhydrogenases changes dramatically in Δpgi strains. In A, the pathway
contributions to the NADPH production and consumption are shown in
absolute units. In the wild type, excess NADH is used to produce approxi-
mately half of NADPH needed for biomass synthesis. In Δpgi strains, elevated
oxPPP pathway flux creates an excess of NADPH, leading to a reversal of net
transhydrogenase flux. This flux is shown in normalized and absolute units in
B. The three transhydrogenase enzymes pntA, pntB, and sthA were fre-
quently mutated in the ALE strains (C). Check marks reflect the presence of
the described mutations in specific ALE strain. At least one transhydrogenase
mutation occurred in 8 out of 10 strains.
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selective pressure for this mutation, but the exact mechanism of
the fitness benefit is unclear. In addition to its direct role in glu-
cose uptake, crr is also involved in signaling the global regulator
Crp (33), which controls the transcription of over 100 genes (34).

Discussion
In this work, we have explored how recovery of growth rate in Δpgi
is enabled by unique genetic mutations and significant metabolic
rewiring. In this system, fitness recovery was driven by global
transcriptional regulation (i.e., sigma factors and other RNA po-
lymerase components) and relief of a rate-limiting step at the
cofactor transhydrogenase. This led to increased absolute flux
through the oxidative pentose phosphate pathway and a corre-
sponding recovery of faster glucose uptake and growth rates. The
usage of latent pathways including the ED pathway, glyoxylate
shunt, and PCK reaction were shown to represent no increase in
absolute flux relative to the wild type and in absolute terms did not
appreciably change after adaptive evolution. The availability of
these pathways, expressed at low levels in the wild type, may offer
flexibility when facing changing conditions. However, they do not
appear to be “activated” as part of a general stress response in this
case. These insights and the dataset presented here should help
advance predictive metabolic modeling (35–37). Overall, these
results add to our understanding of adaptive evolution by eluci-
dating how challenges to specific cellular subsystems—that is,
central carbon metabolism and glycolysis—are overcome. Future
application of this approach to other significant, growth-limiting
metabolic perturbations may similarly illuminate associated ki-
netic and regulatory limitations as well as reveal useful solutions to
ameliorate them. Paired with the appropriate measurements (as
shown here with fluxomics), such studies are likely to uncover
detailed mechanisms of adaptation.
Comparing the mutations and phenotypes of wild-type and Δpgi-

derived ALE strains deepens our mechanistic understanding of
adaptive evolution by providing insight into the context-dependent
selective forces and impacts of various mutations. For example,
RNA polymerase components are commonly mutated in ALE, and
in experiments started with wild type, mutations to rpoB and rpoC
dominate (Fig. 1) (3, 5, 6, 38, 39). These have been shown to con-
tribute to a rebalancing of the proteome to promote growth (40),
corresponding to broad and proportional intracellular metabolic flux

increases (i.e., no changes in normalized flux distributions) (41).
In contrast, ALE experiments started with Δpgi-acquired fre-
quent mutations in the stress response-associated sigma factor
rpoS. This would seem to indicate the presence of a unique
maladaptive rpoS-mediated stress response in Δpgi. However,
rpoB mutations were also seen in 2 of 10 Δpgi ALE experiments
here but never co-occurring with rpoS mutations. Further work is
needed to deconvolute the role of each in adapting the global
transcriptome and whether the two mutations would have addi-
tive benefits in Δpgi. Across both the wild type and Δpgi studies,
mutations to more than two RNA polymerase subunits (rpo)
genes are rarely observed, possibly pointing to overlapping
mechanisms where the selected-for mutations depend on the
state of the cell [in this case, perturbed (Δpgi) versus a wild-type
state]. Other mutations seen more when starting with a wild-type
strain, such as in pyrE/rph, are likely relevant based on the overall
growth state (the evolved strains started with wild type are sig-
nificantly faster when evolved under the same conditions); thus,
they may never be selected for in a “crippled” starting strain such
as the Δpgi starting strain (42). However, such mutations and a
convergence of mutations may be seen if evolved for more ex-
tended lengths of time under the same conditions (43).
Other unique mutations in Δpgi were in the transhydrogenases

and in crr. With regards to the former, a recent report of an ALE
study of an oxPPP mutant (i.e., reduced NADPH production)
found a high frequency of mutations in pntAB that led to in-
creased activity (44). Given the importance of cofactors to the
formation of metabolic products, the reported mutations from
these two studies may provide valuable new candidates for ra-
tionally manipulating transhydrogenase activity in metabolic
engineering (45). Lastly, the mechanism of fitness enhancement
of the crr IS element mutation identified here requires further
study. One possibility is that the reduced glycolytic flux in Δpgi
could be sensed (46) by the PTS system—for example, via per-
turbation of the PEP/Pyr concentration ratio—and result in
feedback inhibition of glucose uptake. Another is that the ac-
cumulated G6P (23) could induce a maladaptive regulatory re-
sponse via CRP activation by P ∼ EIIBGlc. In these scenarios, a
crr mutation may help to decouple feedback inhibition or limit
the harmful regulatory effect. Ultimately, it will be desirable to
confirm the identities and interactions of causal mutations by
reproducing them synthetically. Previous work (14, 21) con-
firmed causality and epistasis for sthA and rpoS mutations but
did not fully recapitulate the observed growth phenotypes of the
evolved clones themselves. This likely points to a complex
landscape that will become more feasible to explore as high-
throughput genome engineering methods mature and many
strains can be tested efficiently.

Materials and Methods
DNA Sequencing. Sequences were obtained using Illumina MiSeq. The breseq
pipeline (47) was used to map sequenced reads and identify mutations rel-
ative to the E. coli K-12 MG1655 genome.

Tracer Experiments. For 13C-tracer experiments, strains were cultured aero-
bically in batch culture in M9 minimal medium at 37 °C in minibioreactors
with 10 mL working volume (20). For the quantification of the Pyr to PEP
flux, [U-13C]alanine tracer experiments were performed (32).

Gas Chromatography–Mass Spectrometry. Gas chromatography–mass spec-
trometry (GC-MS) analysis was performed on an Agilent 5977A mass spec-
trometer to measure labeling of proteinogenic amino acids (48, 49), glucose
(derived from glycogen), and ribose (from RNA) (26, 50, 51). Mass iso-
topomer distributions (MIDs) were obtained by integration and corrected
for natural isotope abundances.

13C-MFA. 13C-MFA calculations were performed using the Metran software.
For integrated analysis of parallel labeling experiments, the datasets were
fitted simultaneously to a single flux model (18).

Data Availability. All data generated or analyzed during this study are in-
cluded in this published article (and its Supporting Information files).

Fig. 5. Elevated back flux from PYR to PEP corresponds with a frequently
occurring mutation in crr. (A) The PTS glucose transport system couples the
uptake and phosphorylation of glucose to the glycolytic conversion of PEP to
Pyr. The terminal phosphotransferase EI has been previously shown to be
reversible and capable of converting Pyr to PEP. The back flux from Pyr to
PEP was quantified using [U-13C]alanine tracer experiments, shown here in
both normalized and absolute flux units (B), with error bars reflecting SDs of
the estimate. This flux was significantly elevated in Δpgi relative to the wild
type in normalized units but decreased in absolute units. In the ALE strains,
the back flux strongly correlated with the presence of a specific and fre-
quent insertion element mutation in crr in 5 of 10 strains. Strains containing
this mutation had highly elevated back fluxes.
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