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Malaria is one of the most lethal infectious diseases in many developing countries.  

Approximately half of the world’s population is at risk of malaria transmission, and this number 

can be expected to grow as drug resistant strains continue to develop. Among the human 

infectious Plasmodium species, Plasmodium falciparum causes the most severe and lethal form of 

malaria. This parasite has an extreme AT-rich genome and a complex life cycle that is likely to be 

regulated by coordinate changes in gene expression. However, the mechanisms behind this fine-

tuned gene expression and regulation system remain elusive. For instance, only a limited number 

of transcription factors have been identified. Recent studies suggest that epigenetic and post-

transcriptional regulation may be used as alternative regulation strategies to compensate for the 

lack of transcription factors in this parasite. Therefore, in this dissertation work, we further 

explored the transcriptome, epigenome, and the proteome to better understand the transcriptional 

mechanisms in P. falciparum. In chapter 1, we demonstrated that genes are usually defined by 

unique nucleosomal features and that nucleosome landscape alone could be used to identify novel 

genes in organisms with a nucleotide bias. Next, we investigated nascent RNA expression 

profiles and observed that the majority of genes are transcribed at the trophozoite stage in 



 ix 

response to the open chromatin structure of that stage. These results helped us link chromatin 

reorganization events to transcriptional activity and highlighted the importance of epigenetic and 

post-transcriptional regulation in this parasite. Therefore, in the latter two chapters, we further 

examined the proteasome and transcriptome isolated from both nuclear and cytoplasmic fractions 

to identify potential chromatin regulators. As a result, we identified a large number of chromatin-

associated proteins and lncRNAs that are likely to have important roles in chromatin regulation 

and post-transcriptional and translational regulations. Collectively, data and results from these 

studies will become stepping-stones for future malaria studies and further assist the identification 

of promising anti-malarial drug targets.  
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Introduction 

Malaria 

Malaria is one of the most life-threatening infectious diseases remaining in the world. In 2016, 

approximately half of the world population was at risk of malaria transmission with 212 million 

people infected and 429,000 people killed by the disease [1]. Malaria is caused by apicomplexan 

parasites from the genus Plasmodium and is transmitted by an infected female Anopheles 

mosquito. Through a mosquito bite, parasites are introduced into human host and cause the host 

to suffer from fevers, chills, and anemia. In severe cases, the large number of parasites 

accumulating in the blood stream may cause a blockage of the vessels that can result in coma or 

death of the host. Malaria-related incidences and mortality rates are especially high for infants, 

children under age of five, and pregnant women in developing countries, especially within the 

sub-Saharan Africa regions [1].  

Currently, no licensed or commercially available vaccine has been announced for malaria, but 

one candidate, RTS,S/AS01 developed by the PATH Malaria Vaccine Initiative (MVI) for P. 

falciparum infection,  is well advanced and is now in Phase 3 trial. As the safety and efficiency of 

this vaccine is still under study, vector control strategies, such insecticide-treated mosquito nets 

(ITNs) and indoor residual spraying (IRS) with insecticides, are recommended and are the most 

sufficient ways to prevent malaria.  

The initial symptoms of malaria typically begin 8-25 days after infection and are similar to flu-

like symptoms including headache, fever, shivering, and vomiting. Due to the non-specific 

presentation of malaria symptoms, malaria diagnosis requires a high degree of specification. For 

the past century, the most reliable technique for malaria diagnosis has been microscopic analysis 

at blood films. Such technique is labor intensive, time consuming, and often restricted by access 
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to instruments and facilities. As an alternative, Rapid Diagnostic Tests (RDTs) have been 

implemented for diagnosing people with malaria at high parasitemia and at locations beyond the 

reach of microscopy; however, RDTs are unable to distinguish a new malaria infection from 

recent clearance of infection [4]. Therefore, more accurate and sensitive malaria diagnosing tools 

are still needed.  

Malaria is a curable disease. Currently used anti-malarial drugs are chloroquine, mefloquine, 

doxycycline, atovaquone, proguanil hydrochloride, and artemisinins. The majority of these drugs 

are effective for treating malarias. However, due to the adaptable nature of the parasite and its 

vector, malaria parasite have inevitably evolved for nearly all effective drugs (Table 1.1). Drug 

resistance strains have posed a growing problem in modern years. To prolong drug resistance, an 

artemisinin-based combination therapy (ACT) is given as treatment for resistant infections, but 

the rapid development of drug-resistant strains remains the biggest challenge for combating 

malaria.  

 

  

Table I.1. Time frame of anti-malarial drugs and 
corresponding Plasmodium falciparum drug resistant strain 
development  (Sources: World Health Organization, 2003, 
Medicines for Malaria Venture, 2015, and O'Brien et al., 2011 
[3])  

Past popular Anti-
malarial Drug 

Year introduced 
to market 

Resistance Strain 
reported Years in-between  

Quinine 1632 1910 278 

Chloroquine 1945 1957 12 

Sulfadoxin-
Pyrimethamin 1967 1967 0 

mefloquine 1977 1982 5 

Artemisinin 2001 2009 8 
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Plasmodium falciparum  

There are five different Plasmodium species known for human infection: P. falciparum, P. vivax, 

P. malariae, P. ovale, and P. knowlesi. Among the five species, P. falciparum is responsible for 

the most severe form of malaria and causes about 90% of all malarial deaths.  This parasite has a 

complex life cycle involving multiple hosts (Figure 1.1). Through an infectious mosquito bite, 

parasite sporozoites are injected 

into the human blood stream. 

The parasites travel to the liver 

and invade liver cells [5, 6]. 

Inside the liver cells, 

sporozoites go through rapid 

DNA synthesis and mitosis to 

produce thousands of haploid 

daughter merozoites that are 

released into the blood stream 

and invade red blood cells 

(RBCs) [7]. After entering the 

RBCs, the parasites replicate 

asexually and develop through ring, trophozoite, and schizont stages [8]. This asexual cycle is 

also known as the clinically symptomatic intraerythrocytic developmental cycle (IDC). Each 

parasite produces 16-32 daughter cells, or merozoites, every 48 hours. These merozoites are then 

released into the blood stream and the replication cycle starts again. In general red cell infection 

cases, the host can destroy the infected cells with the body’s immune system by circulating the 

infected blood cells through the spleen and removing them using the lymphatic system.  However, 

Figure I.1. Overview of the life cycle of Plasmodium falciparum 
in its human and mosquito hosts. (source: Biamonte MA, et al, 
2013 [2]) 



	
  

	
   4 

in the case of malaria, the parasite releases adhesive proteins to the surface of the infected red cell 

and these help the cells stick to the microvasculature, therefore avoiding the splenic clearance 

cycle [9, 10]. Massive production of merozoites and the accumulation of infected red cells in the 

blood stream result in a blockage of the vascular system and can cause the host to suffer from 

headaches, diarrhea, and recurring fevers. In severe cases, it can lead to anemia, cerebral malaria, 

respiratory distress, and death of the host [11-13]. When growth conditions are not optimal for the 

parasite, some parasites switch from asexual reproduction to sexual differentiation and become 

gametocytes. Gametocytes circulate in the blood stream and can be picked up by mosquitos 

during a blood meal. Once inside the mosquito, the parasite undergoes the sexual reproduction 

cycle and eventually travels to the mosquito’s salivary glands [14-17].  The parasite can then be 

re-introduced to a new human host during mosquito feeding and start the asexual replication cycle 

again. In general, the asexual forms of P. falciparum are responsible for disease and symptom 

development, while sexual forms are responsible for disease transmission.  

The Genome of Plasmodium falciparum 

The genome of Plasmodium falciparum was first published in 2002 using a whole chromosome 

shotgun sequencing approach [18]. It is the most eukaryotic AT-rich genome sequenced to date 

with an overall AT composition of 80.6% and 90% - 95% in the non-coding regions [18]. The 

size of the genome is approximately 23 megabases (Mb) consisting of 14 chromosomes. 

Currently, there are 5,772 predicted genes, in which 5,548 are predicted to be protein-encoding 

genes(version 34, PlasmoDB data base: http://plasmodb.org/plasmo/).  The average gene density 

ranges from 1 gene per 4,300 to 1 gene per 4,800 base pairs, and nearly 50% of the genes contain 

introns. The average gene length, without introns, is approximately 2.3 kb and the average of 

exon size is about 950 basepairs [18]. The average intron length is about 178 basepairs and the 



	
  

	
   5 

average length of the intergenic region is about 1,700 basepairs [18]. The majority of the genes in 

the parasite was identified by gene-finding tools [18-20] and verified using experimental 

techniques including full-length cDNA, expressed sequence tag (EST), and mass spectrometry 

analysis [21-25]. However, due to low sequence similarity to proteins in other organisms, less 

than 60% of the genes are annotated. Moreover, no transposable elements, linker histone H1, 

RNA interference elements, or long tandem repeat ribosomal RNA (rRNA) arrays were identified 

in P. falciparum’s genome. Instead, single 18S, 5.8S-26S rRNA units with different sequence 

variations were found distributed among different chromosomes [18]. Extensive size 

polymorphisms were also observed, especially at the telomeres regions. However, subtelomeric 

regions of the chromosome exhibit high degrees of conservation, which was hypothesized to be a 

result of promiscuous interchromosomal exchange[18]. Furthermore, many of these chromosome 

ends contain protein-encoding genes such as virulence, invasion, and gametocyte-specific genes.  

Long non-coding RNA telomere-associated repetitive elements transcripts (lncRNA-TAREs) 

have also been recently identified [26]. Beside the 14 main chromosomes, the parasite’s genome 

also harbors a mitochondrial genome and an apicoplast genome, a plant-like plastid that is 

homologous to the chloroplasts [27-29]. The apicoplast genome is approximately 35 kilobases 

containing only 30 genes [27]. Though the exact role of the apicoplast is still unclear, it has been 

shown to be essential for parasite survival [30, 31], anabolic synthesis of fatty acids [32, 33], 

isoprenoid biosynthesis[34], and heme synthesis [35-37].  The sequenced genome provides a 

foundation for future studies on parasite’s biology as well as for the search of new anti-malarial 

drug and vaccine targets, however, many functional elements of the genome remain undiscovered, 

especially with the AT content that challenged may widely used computational tools.  

 



	
  

	
   6 

Transcriptional Regulation in Plasmodium falciparum  

In a eukaryotic cell, genomic DNA is tightly wrapped around histone proteins and assembled as 

nucleosomes. These nucleosomes are then coiled and packaged together, resulting in a fiber also 

known as chromatin. Interactions between chromatin and protein complexes as well as the 

dynamics of nucleosome positioning and post-translational modifications (PTMs) of histone core 

proteins are of vital importance to the usage of DNA. The major step in gene transcription 

initiation is the recruitment of RNA polymerase II, along with other general transcription factors 

(TFIIs), to promoter regions to form the basal pre-initiation complex (PIC). 

In P. falciparum, the nature and the contribution of mechanisms regulating gene expression are 

still poorly understood. Due to low sequence homology with other organisms, only a little more 

than half of the plasmodium genes have been successfully annotated, including RNA polymerase 

II and its subunits, 4 TATA-binding protein (TBP)-associated factors (TAFs), and 23 TFII 

components. Compare to organisms with similar genome sizes, a relatively low number of 

sequence-specific transcription factors and regulatory DNA elements such as enhancers and 

mediators were identified in P. falciparum [38-40]. Approximately 30 sequence-specific 

transcriptional factors have been found, and the majority belong to the apicomplexan-specific 

family (ApiAP2) [39, 41].  Although the specific role of some of these transcriptional factors are 

still unclear, many of the AP2 transcription factors are found throughout the parasite’s genome 

and are believed to play an important role in stage-specific developments and gametogenesis. For 

example, it was well evident that AP2-G was important for gametocyte progression, AP2-Sp was 

responsible for sporozoite formation, and AP2-L was for liver-stage development [42-44]. With 

the lack of TAFs and sequence specific transcription factors, how transcription is initiated and 
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regulated in this parasite remains uncertain and evolutionarily diverse mechanisms may be used 

as alternative solutions by the parasite.  

Recent genome-wide nucleosome mapping studies in model organisms, such as yeast and human, 

have revealed consensus patterns in nucleosome organization, including lower nucleosome 

density at intergenic regions as compared to genic regions, a strong nucleosome-depleted region 

(NDR) near the promoter, and well-positioned nucleosomes (i.e., –1 and +1 nucleosomes) 

containing variant histone H2A.Z around the transcription start site (TSS) [45-48]. These findings 

suggest that specific positioning of nucleosomes, especially at promoter and transcription start or 

stop regions, largely contribute to transcriptional control by governing the access of components 

of the transcription initiation machinery to their binding sites. Furthermore, to ensure nucleosome 

dynamics and gene expression regulation, nucleosome components or the entire nucleosome may 

be repositioned, removed, or replaced through the action of ATP-dependent chromatin 

remodeling enzymes. In addition, post-translational modifications of histone proteins can have 

large effects on chromatin structure and gene activity. Besides precise positioning of nucleosomes, 

gene expression requires physical interaction between promoter regions and their distal regulatory 

elements, yet promoters and their regulatory elements are often linearly separated along the 

chromosome. To overcome this spatial constraint, chromatin loops are formed to bring together 

the regulatory elements and their promoters for gene activation. 

Over the past decade, a series of molecular and genomic approaches have been developed (3C, 

4C, 5C, Hi-C, etc.) to study the higher order organization of chromosomes by mapping 

interactions between genomic loci [49]. Hi-C analyses of mouse and human chromosome 

structures have revealed that eukaryotic genomes are organized into large blocks that show high 

levels of chromatin interactions within that region, but not with other loci in the genome. These 
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regions, called topologically associated domains (TADs) [50, 51], are well defined by insulator 

proteins [52, 53] and are composed of many chromatin loops that have important functional roles 

in regulating gene expression. On a higher dimension, individual chromosomes organize and 

occupy distinct territories within the nucleus, and such organization is highly associated with 

gene density; gene-dense chromatin is usually enriched in the internal part of the nucleus, while 

gene-poor regions tend to locate toward the nuclear periphery [54-61]. 

In Plasmodium falciparum, recent studies have shown that the parasite’s genome undergoes 

extensive remodeling events during different developmental stages of its cell cycle; the chromatin 

structure is relatively closed during the ring and schizont stages, but substantially opened during 

the trophozoite stage [62]. In addition, both western blot [63] and mass spectrometry analysis [64-

66] has demonstrated that a large number of histones and nucleosomes[65] are depleted at the 

trophozoite stage. Through ultrastructual microscopic techniques, an increased number of nuclear 

pores as well as decomposition of chromatin near the nuclear envelope was observed at the 

trophozoite stage [27]. Collectively, these data suggest a de-condensed chromatin structure taking 

place at this cell cycle stage. In eukaryotes, a de-condensed chromatin or eurchromatin structures 

allows the transcriptional machinery to access of genomic DNA, thus allowing the genes to be 

transcribed at the given stage. In P. falciparum, a cascade of gene expression was observed across 

the parasite’s asexual cell cycle when studying the mature RNA (mRNA) expression profiles and 

was poorly correlated with the binary activity of the chromatin organization events. This 

controversy is likely due to the fact that mRNA reflects not only transcriptional activity but also 

post-transcriptional activities, such as RNA degradation and mRNA stability. As chromatin 

organization events represent more transcriptional initiation regulation, mRNA expression may 

not be the best measurement for initial transcriptional activity. In chapter 3, I discuss a better 

understanding of the relationship between transcription activity and chromatin restructuring 
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events using nascent RNA (newly synthesized RNA that are undergoing transcription). In 

summary, results from nascent RNA gene expression profiles have helped us to link the 

chromatin re-organization events to transcriptional activity and further highlighted the importance 

of epigenetic regulation and post-transcriptional regulation in this parasite.   

It was well observed that, while the majority of the genome is maintained in an open chromatin 

environment during the trophozoite stage, a small subset of genes were controlled within highly 

condensed heterochromatin clusters located within subtelomeric regions and few internal loci. 

These regions are usually marked by heterochromatin protein 1 (PfHP1) and histone repression 

mark, H3K9me3 [62, 67-74].  An example of genes controlled by heterochromatin structure is the 

P. falciparum virulence genes (var genes). These var genes encode erythrocyte membrane 

proteins 1(PfEMP1s) that are expressed at the surface of parasite-infected red blood cells (RBCs) 

and act as both an atigen and adhesion protein. Success expression of PfEMP1s allows the 

infected RBCs attach to the blood vessel and escape from the host’s immune system. Sixty var 

genes have been identified in the parasite’s genome; however only one will be expressed and 

others remain suppressed. Var gene expression and regulation is critical for parasite survival. 

Previous studies showed that silent var genes are clustered within heterochromatin regions at the 

nuclear periphery marked by PfHP1 and H3K9me3 [62, 67-73] and an absent of PfHP1 protein 

resulted a disruption of the monoallelic var gene expression, resulted an arrestment in parasite 

growth [75, 76].  In addition, emerging studies showed that many chromatin-associated proteins 

such as histone deacetylases (PfSIR2A, PfSIR2B, PfHDA2) and histone lysine methltransferase 

(PfSET2) are also linked to var gene regulation. Manipulation of these proteins will either 

interrupt the silenced var gene cluster(s) or the loss of monoallelic var gene expression pattern. 
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Similar to other organisms, histone post-modification marks (PTMs) and nucleosome positioning 

also have very important roles in regulation of gene expression activity in P. falciparum. More 

than 232 different histone PTMs have been experimentally identified during the intraerythrocytic 

stages. Although some of the function of these PTMs have yet to be discovered, it is becoming 

clear that the epigenome in P. falciparum is in a highly dynamic state and is more diverged to 

other organisms than previously expected. Similar to other eukaryotes, main histones such as 

H2A, H2B, H3, and H4 along with histone variant H2A.z, H2Bv, H3.3, and CenH3 are found in 

P. falciparum by mass spectroscopy analysis [77, 78]. However, linker Histone H1 is absent [79] 

and H4K8 and H4K12 are the more favored acetylation sites in P. falciparum [77, 80]. H4k5ac, 

H4K8ac and H4K12ac are found more evently distributed throughout the IDC[79], while 

H3K4me3 and H3K9ac was found associate with the 5’ regions of activated genes in schizonts 

but not in ring stage and H4K16ac and H4K9ac peaked at trophozoite and late schizont stages [71, 

77]. In addition, various high through-put sequencing experiments have revealed that a majority 

of the parasite genome is likely to be covered by activating histone marks (H3K9ac and 

H3K4me3) as compared to silencing marks (H3K9me3 and H3K36me3) and further validates the 

transcriptional permissive euchroamtin state of the parasite. In addition, histone PTMs are also 

strongly associated with var gene regulation; H3K9me3 are found more abundantly around 

silenced var genes, while H3K9ac are found a the 5’ flanking regions of activated var genes [74]. 

The nucleosome landscape of P. falciparum is slightly different to the nucleosome landscape of 

other eukaryotes. In the parasite’s genome, the strong positioned nucleosomes are found at the 

start and stop of coding region instead of around the TSS. Moreover, because of the AT-richness 

of the genome that is relatively less flexible, thus uneasy to wrap around to the nucleosome core, 

the parasite evolved its H2A.Z and H2B.Z variations, which are better for AT-rich DNA binding 

and are found throughout the intergenic regions of the genome instead of being located at the +1 
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nucleosome in other eukaryotes [81, 82]. Although some controversy occurs, when the 

nucleosome occupancy profiles normalized by the number of parasite or nuclei, lower 

nucleosome occupancy is found during trophozite stage. Such observation has also been validated 

and confirmed by various experimental approaches including western blot, mass spectrometry, 

MNase-Seq, FAIRE-seq, and ChIP-seq [63-66, 83]. All these data further supported the genome 

re-organization events demonstrated by the 3D genome architecture model and purpose the idea 

that once chromatin opens up, nucleosomes are evicted giving raise to the massive transcriptional 

burst at the trophozoite stage, then chromatin are re-packed at a later stage limiting transcriptional 

activity and allowing only a small number of stage-specific genes to be expressed. It is 

hypothesized that this small number of stage-specific genes are more likely to be regulated by 

more traditional transcription regulators such as the sequence-specific transcription factor and 

histone PTMs.  

In eukaryotic organisms, emerging evidences show that non-coding RNAs (ncRNAs) are also 

involved in transcriptional regulation and chromatin organization events. A well-known example 

is the lncRNA known as Xist. Xist mediates X-chromosome inactivation during zygotic 

development. Deposition of Xist on the X-chromosome recruits histone-modifying enzymes that 

place repressive histone marks such as H3K9 and H3K27 methyaltion for gene silencing and 

formation of heterochromatin structure. In addition, ncRNA have also been shown as mediators 

bridging together enhancers and promoters [84] or acted like enhancer element that activates 

transcription activity of neighboring coding genes [85]. In Plasmodium, hundreds of ncRNAs 

have been identified; however, only a small proportion of them have been annotated.  Earlier 

studies show that some of these ncRNAs, generated from bidirectional promoter activities are 

localized in in the centormeric regions and are believed to be associated with maintenance, and 

organization of the centromeric chromatin [86].  Beside centromere regions, some of identified 
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ncRNAs are found to be located at the subtelomeric regions and are involved in var gene 

regulation. Using DNA tiling microarray, Broadbent et al (2011) found 60 putative long non-

coding RNAs, in which 22 are characterized as telomere-associated repetitive element transcripts 

(lncRNA-TARE)	
   [26]. These lncRNA-TAREs are exclusively localized adjacent to upsB-

type var genes and contain many SPE2 binding sites that are only otherwise found in var gene 

promter regions. SPE2 is a cis-acting element critical for var gene silencing and are known to be 

bound by transcription factor PfSIP2 [87]. It was hypothesis that these lncRNA-TAREs may be 

involving in PfSIP2 recruiting, thus associated with var gene regulation. Beside lncRNA-TAREs, 

other lncRNAs and 43 C/D and H/ACA-box subclasses of small nucelaolar RNAs (snoRNAs) 

and small Cajal body-specific RNAs ( scaRNAs) have also been described and showed 

concordant patterns of expression across cell cycle for housekeeping gene and var gene 

regulation	
  [88]. Additionally, many anti-sense transcripts initiated from var introns were observed. 

These antisense transcripts are believed to interfering with the monoallelic var gene expression 

by directly incorporate into chromatin [77, 89, 90]. Another type of antisense transcript is the 

natural antisense transcript (NAT). High levels of NATs have been found toward the 3’ end of the 

open reading frames for more than 24% of the genes [91]. Though differentially expressed 

throughout the parasite’s cell cycle, majority of NATs in P. falciparum is not strongly associated 

with their corresponding mRNA in term of gene expression levels suggesting these NATs are not 

likely to be involved in transcriptional interference or RNA-RNA formation process but maybe 

involved in epigenetic regulation [90-92]. In general, majority of the ncRNAs has a lack of 

sequence conservation, typically expressed at a low level, could be co-expressed with nearby 

coding genes, and are notably up or down regulated to module gene expression during the 

parasite’s cell cycle [93, 94]. Compare to ncRNA biology studied in other eukaryotes, very little 
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is known about ncRNA in P. falciparum, therefore, additional efforts are needed to further 

characterize and annotated for ncRNAs in P. falciparum.  

Conclusion  

Although malaria is a treatable disease, due to the quick adaptable nature of the parasite and its 

vector, malaria remains one of the most lethal infectious diseases in the world. Currently, there is 

no approved vaccine to prevent malaria-infection and because of the symptoms of malaria are so 

similar to the symptoms of the flu, many malaria infected patients failed to be properly diagnosis 

an early stage of the infection. In addition, the fast development of resistant strains to anti-

malarial drugs became one of the biggest challenges for disease management. Though 

artemisinin-based combination therapy (ACT) is given as treatment for resistant infections, it 

could be only the matter of time for parasites to adapt to this therapy. Therefore, finding new drug 

targets as well as new anti-malarial tools are required. In addition, although a great global effort 

was made for parasite eradication and disease control, many missions were unable to complete 

due to the lack of funding and resources. For example, Global Technical Strategy for Malaria 

2016–2030 was developed aiming to eliminate malaria and to reduce the global malaria mortality 

rates by 40% by 2020. However, due to the shortfall of funding and the incompletion of health 

systems, millions of people had limited access to life-saving tools and treatments. As a result, 

fewer than half of the targeted malaria-affected countries are being on track for 2020 milestone 

achievement [1]. To further combat the disease, long-term financial support, more completed 

health care systems, and an extensive research effort searching for parasite-specific drug target 

are still needed.  

Among the five human-infection malaria parasites, P. falciparum is the one responsible for 

majority of deaths. This parasite has a complex life cycle and an extremely AT-rich genome that 
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shared a low homology with other organisms. This low level of homology challenged many well-

developed computational tools for gene identification and annotation.  As compared to other 

eukaryotes with similar genome sizes, only a fraction of the transcription factors and regulators 

have been identified in P. falciparum. Due to this paucity of transcription factors, it is still unclear 

how this parasite manages its gene expression process to coordinate the different morphological 

changes in different cell cycles. Increasing evidences have shown that epigenetic regulations, 

such as changes of histone modification, nucleosome landscape, chromatin structure, and the 

organization of the three-dimensional genome architectures, may play critical roles in this fine-

tuned gene expression system. The depletions of histones and nucleosome, as well as the three-

dimensional genome structure models demonstrated that chromatin is opened at the trophozoite 

stage, and packed at the ring and schizont stage.  In later chapter, I showed that this binary 

chromatin activity is well correlated with nascent RNA expression. Collectively, these data 

suggested that chromatin organization provides a basal control for genome-wide transcription 

activity and various epigenetic marks are vital for local heterochromatin maintenance, stage-

specific gene expression, and regulation of certain antigenic variant genes. Beside epigenetic 

elements, long none coding RNAs have also been showed to play important roles in 

transcriptional-associated events including var gene regulation and chromatin structure 

maintenance. In the final chapter, I developed an experimental approach to better identify and 

understand the function of these lncRNAs in the human malaria parasite. Taken together, these 

advanced malarial studies bring up the possibility that transcription regulation in P. falciparum 

may largely differ from the ones in other eukaryotes; Instead of using a variety of transcription 

factors, this parasite relies heavily on epigenetic regulatory elements for transcription initiation, 

and the cascade of mature RNA expression pattern, observed by traditional RNA-seq, may be a 

result of both transcriptional and post-transcriptional regulation events. In the next chapters, I will 
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further explore the parasite’s transcriptome and better characterize the mechanisms that are 

involved in the parasite’s gene expression system, especially at the transcriptional level.  
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Abstract  

Plasmodium falciparum, the deadliest malaria-causing parasite, has an extremely AT-rich 

(80.7%) genome. Because of high AT-content, sequence-based annotation of genes and 

functional elements remains challenging. In order to better understand the regulatory network 

controlling gene expression in the parasite, a more complete genome annotation as well as 

analysis tools adapted for AT-rich genomes are needed. Recent studies on genome-wide 

nucleosome positioning in eukaryotes have shown that nucleosome landscapes exhibit regular 

characteristic patterns at the 5’- and 3’-end of protein and non-protein coding genes. In addition, 

nucleosome depleted regions can be found near transcription start sites. These unique nucleosome 

landscape patterns may be exploited for the identification of novel genes. In this chapter, we 

proposed a computational approach to discover novel putative genes based exclusively on 

nucleosome positioning data in the AT-rich genome of P. falciparum. Using binary classifiers 

trained on nucleosome landscapes at the gene boundaries from two independent nucleosome 

positioning data sets, we were able to detect a total of 231 regions containing putative genes in 

the genome of Plasmodium falciparum, of which 67 highly confident genes were found in both 

data sets. Eighty-eight of these 231 newly predicted genes exhibited transcription signal in RNA-

Seq data, indicative of active transcription. In addition, 20 out of 21 selected gene candidates 

were further validated by RT-PCR, and 28 out of the 231 genes showed significant matches using 

BLASTN against an expressed sequence tag (EST) database. Furthermore, 108 (47%) out of the 

231 putative novel genes overlapped with previously identified but unannotated long non-coding 

RNAs. Collectively, these results provide experimental validation for 163 predicted genes 

(70.6%). Finally, 73 out of 231 genes were found to be potentially translated based on their signal 

in polysome-associated RNA-Seq representing transcripts that are actively being translated. 

These results clearly indicate that nucleosome positioning data contains sufficient information for 
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novel gene discovery. As distinct nucleosome landscapes around genes are found in many other 

eukaryotic organisms, this methodology could be used to characterize the transcriptome of any 

organism, especially when coupled with other DNA-based gene finding and experimental 

methods (e.g., RNA-Seq). 

Introduction  

As one of the world’s most deadly infectious diseases, malaria is responsible for about 584,000 

deaths annually, the vast majority of which are children under the age of five [2]. Currently, no 

approved vaccine is available for disease prevention, and the rapid development of parasite 

resistance to current antimalarial drugs is a major challenge for the control of malaria. Out of five 

human malaria parasite species, Plasmodium falciparum causes 90% of all malarial deaths [2]. P. 

falciparum has a complex life cycle involving multiple stages in two host organisms, humans and 

mosquitoes. This multi-stage life cycle is tightly regulated, presumably by strict control of stage-

specific gene expression. However, the mechanisms regulating gene expression in P. falciparum 

are still poorly understood. In particular, relatively few specific transcription factors and 

regulatory elements have been identified [3, 4]. In addition, the annotation of protein coding and 

non-protein coding genes is incomplete. To facilitate our understanding of the parasite’s life cycle 

and its regulatory mechanisms and thus assist the development of antimalarial drugs, a more 

accurately annotated genome is needed.  

The draft of the annotated genome of P. falciparum was first published in 2002 [5]. P. falciparum 

has a relatively compact genome consisting of fourteen chromosomes with a total length of 

approximately 23 Mb [5]. The P. falciparum genome is the most AT-rich eukaryotic genome 

sequenced to date, with an overall AT-composition of 80.7%, rising to 90-95% in introns and 

intergenic regions [6]. Currently, 5,777 predicted protein coding genes have been reported 
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(plasmoDB v26) and ~50% of these genes share little or no sequence similarity to genes or the 

encoded proteins in other organisms [5-7]. The average gene length in P. falciparum is 2.3 kb and 

the average length of intergenic regions is ~1.7 kb [8]. Both computational and evidence-based 

gene-finding methods have been applied to obtain gene annotations. Genome annotations of the 

reference strain 3D7 were performed in silico using software tools including Artemis, Genefinder, 

GlimmerM, and phat [9, 10]. Most of the predicted genes have been verified using various 

experimental techniques including full-length cDNA, expressed sequence tag (EST), and mass 

spectrometry analysis, among others [8, 11-14]. More comprehensive annotations of the 

parasite’s gene structure and other functional elements have been possible since the advent of 

second-generation sequencing technology [7, 14-19].  

Despite significant advances in the analysis of the parasite’s genome, genome annotation in P. 

falciparum is still a work in progress. The AT-richness and the relative lack of sequence 

homology to other organisms hamper the application of sequence-based gene prediction tools and 

complicate the identification of functional DNA elements, such as protein-binding sites, 

promoters, or TATA-like boxes. In addition, as mentioned earlier, the parasite has a complicated 

multi-stage life cycle involving multiple hosts. Due to technical challenges, it is nearly impossible 

to capture the transcriptome at all different life cycle stages. We are therefore still in need of an 

improved genome annotation, as well as analysis tools capable of handling the parasite’s AT-rich 

genome that will help us to better understand the regulatory mechanisms controlling gene 

expression in the parasite.  

In mammalian genomes, a large number of non-coding transcripts have been identified based on 

chromatin signatures H3K4me3 and H3K36me3 [20]. This finding suggests that elements 

defining and bracing chromatin architecture may be used to assist the identification of 
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undiscovered genes. In this study, we present a machine learning approach to predict genes in P. 

falciparum that is completely independent from the primary DNA sequence, but instead exploits 

the underlying chromatin structure and nucleosome landscape. The fundamental unit of chromatin 

is a nucleosome, a stretch of ~147 bp of DNA wrapped around a core of eight histone proteins. 

Nucleosomes are distributed non-uniformly around genes, and this distinct nucleosome landscape 

is known to play an important role in gene regulation. In particular, the core promoter is usually 

characterized by a nucleosome-depleted region that allows the binding of transcription factors and 

facilitates the assembly of the transcription preinitiation complex [21, 22]. Previous studies in our 

lab have highlighted several common and unique eukaryotic features of the P. falciparum 

nucleosome landscape. Similar to other eukaryotes, Plasmodium’s promoters and transcription 

start sites are relatively nucleosome depleted, and nucleosome occupancy is higher inside genes 

as compared to intergenic regions [23-25]. However, in contrast to the strongly positioned +1 

nucleosome directly downstream of the transcription start site in other eukaryotes [21, 26-29], the 

most strongly positioned nucleosomes in P. falciparum are located at the start and end of the open 

reading frame [23, 24]. Based on these nucleosome landscape characteristics, we propose a novel 

method for gene detection using classifiers trained on nucleosome profiles of annotated genes. 

Other experimental methods used for gene detection, such as RNA-Seq or expressed sequence 

tags (EST), can be noisy, potentially resulting in false predictions. Therefore, our methodology 

may serve as a complementary approach for refining genome annotations, especially coupled 

with sequence-based gene predictions and other experimental methods. 
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Results  

Building a classifier on nucleosome positioning profiles 

In a previous study, our lab has used second-generation sequencing to generate high-resolution 

nucleosome positioning profiles for three different stages of P. falciparum’s asexual cycle [23]. 

This data set revealed a distinct nucleosome landscape around genes, with higher nucleosome 

occupancy inside genes, lower nucleosome coverage in intergenic regions, and strongly 

positioned nucleosomes at the gene boundaries (Figure 1.1A). In addition, as observed in other 

eukaryotic genomes [27, 28, 30], a nucleosome-depleted region was found immediately upstream 

of the transcription start site, which likely harbors the binding sites of transcription factors [23]. 

These observations were replicated using an independently generated P. falciparum nucleosome 

occupancy data set [23, 31] (Figure 1.1B). In this paper, we exploited this nucleosome landscape 

around genes to identify regions in the genome containing putative novel genes. To gain 

additional power for gene detection, we decided to predict the presence of novel genes using the 

two independently published nucleosome positioning data sets [23, 31]. For each data set, we 

summed the sequence coverage profile at each of the parasite’s asexual stages into a single 

genome-wide nucleosome positioning data set. This resulted in a total of two combined profiles, 

namely i) profile B1 from Bunnik et al. [23] consisting of three asexual cycle time points, and ii) 

profile B2 from Bartfai et al. [31] consisting of four asexual cycle time points. 
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Figure 1.1. Nucleosome occupancy patterns in P. falciparum. A. Average sequence coverage 
profiles around the start (left panel) and the end (right panel) of genes (colored line), and in 
intergenic regions (black line) in the nucleosome occupancy data set from Bunnik et al. [23] (data 
set B1). B. Similar analysis for the nucleosome occupancy data set from Bartfai et al. [31] (data 
set B2). In all windows, the genomic position indicated on the x-axis is relative to the location of 
the gene start/end, or to the midpoint of intergenic windows. 
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From each of the combined nucleosome profiles, we extracted windows that either contained a 

gene start within its defined central region (positive class windows) or were completely derived 

from intergenic regions (negative class windows) (see Material and Methods; Supplemental 

Figure 1.1). We then used these positive and negative class windows to train a binary classifier 

(i.e., a support vector machine with RBF kernel) to recognize the general nucleosome occupancy 

pattern at gene start codons. The parameters of the classifier were optimized using cross 

validation (see Material and Methods; Supplemental Figure 1.2). In parallel, an independent 

classifier was trained on the nucleosome landscape at gene stop codons. Since we observed that 

nucleosome landscapes on the forward and reverse strands have slightly different characteristics, 

we independently optimized both strand-specific and non-strand-specific classifiers. All 

classifiers performed in very similar ways and optimized classifiers from both data sets gave total 

recall rates between 91 and 95% (Supplemental File 1.1). 

These classifiers were then used on the nucleosome landscape of the whole P. falciparum genome 

to detect putative novel gene starts and ends. A sliding-window method was used to scan 

intergenic regions for the presence of predicted gene starts or gene ends. The classifier produced a 

confidence score between 0 and 1 for each prediction. A valid gene candidate was defined as a 

locus with a gene start and a gene end predicted using the same strand classifier with confidence 

scores above 0.7 and located within the same intergenic region (Figure 1.2A). No additional 

constraint on the distance between a predicted gene start and gene end was required, given the 

relatively short length of intergenic regions in the genome of P. falciparum  (1.7 kb on average). 

A total of 298 final candidate regions with an average segment length of 1 kb were manually 

identified, of which 97 were detected using the B1 nucleosome positioning profile, and 201 were 

identified using the B2 nucleosome positioning profile (Supplemental File 1.1). Of the 298 

candidate regions, 67 genes were identified in both B1 and B2 data sets with an average overlap 
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in predicted gene region of 81%. This intersect between genes predicted by both data sets was 

highly statistically significant (P < 7.422e-66, calculated based on an hypergeometric distribution 

analysis [32]). Since overlapping regions may represent alternative splicing variants of the same 

gene, we merged overlapping regions using mergeBed (BEDtools [33]), resulting in a total of 231 

unique regions harboring potential novel genes. All putative novel genes are uniformly 

distributed over the 14 chromosomes of the P. falciparum genome (Figure 1.2B). 

 

Figure 1.2. Characterization of regions containing putative novel genes. A. Genome browser 
view of an intergenic region containing a predicted gene region (Pf3D7_11_v3: 513,659 – 
515,381, shown in red). Predicted gene starts and gene ends are indicated in purple and teal, 
respectively. This putative novel gene shows sequence coverage in both steady-state RNA-seq 
(green) and polysomal RNA-seq (blue) data sets. B. Random distribution of 97 regions predicted 
using classifiers trained on data set B1 across the 14 chromosomes of the P. falciparum genome. 

 

Among these 231 predicted genes, 88 showed a signal (defined as an average of two or more 

reads per base) in a previously obtained RNA-Seq data set [19], which we considered strong 

evidence for the presence of a transcribed gene in this region (Supplemental File 1.1). On 

average, predicted gene regions are covered by eight reads per base, which is significantly higher 

than that the RNA-Seq coverage in intergenic regions of the same length (Table 1.1, P = 0.015, 

bootstrap Welch t-test with n = 100,000). In addition, 108 out of these 231 (47%) uniquely 
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predicted regions overlap with previously identified long non-coding RNAs (lncRNAs), defined 

as non-coding transcripts larger than 200 bp that are not antisense or circular RNA [18, 34-37]. 

To further confirm transcriptional activity in the predicted gene regions, we designed a set of 

primers targeting 21 selected candidate regions. We were able to amplify 20 of the 21 targeted 

fragments from cDNA (Figure 1.3 and Supplemental File 1.2), suggesting that the majority of 

candidate genes may indeed be transcribed.  

 

Figure 1.3. RT-PCR validation of 21 predicted novel genes. A. Amplification of a fragment of PfAlba3 
(PF3D7_1006200) using genomic DNA (middle lane) or cDNA prepared from DNase-treated total RNA 
(right lane) as a template. Primers were designed on both sides of intron 1, yielding a 429 bp PCR product 
from genomic DNA and a 164 bp PCR product from cDNA. The presence of a single 164 bp PCR product 
amplified from cDNA confirms the absence of gDNA contamination. B. Out of our 231 novel candidate 
genes, we chose 21 regions for validation using reverse transcription polymerase chain reaction (RT-PCR). 
The top panel shows amplification products using DNase-treated cDNA as a template, while the bottom 
panel shows the control reactions using genomic DNA as a template. Of the 21 gene tested, we were able to 
amplify 20 of the predicted regions. As a control, we were unable to amplify a fragment of intergenic 
region that was not predicted to contain any genes (marked as “intergenic”).  

 

Characteristics of candidate novel P. falciparum genes 

To further investigate the putative genes identified in this study, we compared several 

characteristics of the predicted regions with known coding and non-coding regions in the P. 
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falciparum genome. The average length of the predicted gene is 1,004 bp, which is similar to the 

average length of exons and lncRNAs in P. falciparum. The average GC-percentage for the 

predicted genes (16%) is lower than known coding genes (23%), but close to previously 

identified lncRNA regions (15%) and slightly higher than intergenic regions (13%) (Table 1.1 

and Supplemental Figure 1.3A). Similarly, the average nucleosome occupancy in predicted gene 

regions ranged between that of known protein-coding genes and that of lncRNA genes 

(Supplemental Figure 1.3B-C). The nucleosome profiles at the predicted gene starts and gene 

ends recapitulate the nucleosome features observed in annotated genes, albeit at lower average 

nucleosome levels (Figure 1.4). Furthermore, the predicted novel genes have similar expression 

levels in steady-state mRNA-Seq [19] and polysome-associated mRNA-Seq [19] data sets as 

compared to lncRNA genes (Supplemental Figure 1.3D-E). Lastly, we examined the patterns of 

histone variant H2A.Z and histone marks H3K4me3 and H3K36me3. In P. falciparum, H2A.Z is 

almost exclusively found in nucleosomes located in intergenic regions [31], while H3K4me3 is 

enriched at the gene boundaries and H3K36me3 is enriched inside gene bodies [38] (Supplement 

Figure 1.4). We found that the average H2A.Z occupancy is higher in predicted genes than in 

annotated genes, and very similar to intergenic and previously identified lncRNA genes (Table 

1.1 and Supplemental Figure 1.3F). In line with H3K36me3 being more abundant in coding 

regions as compared to noncoding regions in P. falciparum, we observed that the abundance of 

H3K36me3 in our predicted genes is in between that of coding and non-coding regions. In 

addition, H3K36me3 levels in our predicted genes are higher than in previously identified 

lncRNAs (Table 1.1 and Supplemental Figure 1.3G). Similar to the H3K36me3, H3K4me3 

occupancy in our predicted genes is also found to be higher than in previous identified lncRNA 

and ranged between coding and non-coding regions (Table 1.1 and Supplemental Figure 1.3H).  
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Table 1.1. Characteristics of the 231 putative novel genes in comparison with annotated P. falciparum 
genes. 

 
*Intergenic regions were defined as the middle 1 kb of all non-coding regions longer than 1,500 bp that do 
not overlap with annotated genes, predicted genes, or previously identified lncRNA [18, 34-37].  
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9 5 16  1,010 17 62 35 18 49 201 
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8 4 16  1,004 17 62 34 19 50 231 
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Figure 1.4. Nucleosome positioning profile around predicted genes. A. Average sequence 
coverage profiles around the start (left panel) and the end of genes (right panel) for annotated 
protein-coding genes (red), published lncRNA genes (blue) and predicted novel genes identified 
in this study (green) in the nucleosome occupancy data set from Bunnik et al. [23] (data set B1). 
The average nucleosome occupancy in intergenic regions is presented as a reference (black). B. 
Similar analysis for the nucleosome occupancy data set from Bartfai et al. [31] (data set B2). In 
all windows, the genomic position indicated on the x-axis is relative to the location of the gene 
start/end, or to the midpoint of intergenic windows. 
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As the majority of the predicted genes showed characteristics similar to those of lncRNA genes, 

we further classified our novel gene candidates into putatively protein-coding and non-protein-

coding genes using a previously generated polysome-associated mRNA-Seq data set [19], which 

provides a snapshot of transcripts that are actively being translated. Using a cutoff of an average 

sequence depth of two reads across the entire predicted gene region, 73 out of 231 putative novel 

genes were found to be associated with polysomes and are thus potentially translated. For each 

predicted gene region, the longest open reading frame (ORF) was identified using ORF Finder 

with default values [39]. More putatively protein-coding gene candidates (6 out of 73 [8.2%]) 

than putatively non-coding gene candidates (3 out of 158 [0.2%]) contain an ORF longer than 100 

amino acids (two-tailed Fisher’s exact test, P = 0.03). In addition, putatively coding regions tend 

to have larger ORFs (average of 55 aa) than putatively non-coding regions (average of 48 aa, 

two-tailed Student’s t-test, P = 0.07). On the other hand, the fraction of regions that does not 

contain an ORF larger than 30 amino acids is similar between both groups of gene candidates: 10 

out of 73 (13.7%) of putative protein-coding regions versus 21 out of 158 (13.3%) of putative 

non-protein-coding regions (Supplemental File 1.1). However, 135 out of 231 novel genes have 

multiple non-overlapping ORFs on the same strand that could be exons belonging to a single 

gene. We could not find any evidence for splicing events in the RNA-seq data, although it should 

be mentioned that the sequence coverage in these regions is relatively low and may not allow the 

detection of such events.  

Homology search 

Comparative genomics is a powerful approach to gather evidence about putative genes. To find 

homologs of our putative novel genes, we aligned the predicted regions with known protein 

transcripts from the Uniprot-Trembl database using BLASTX [40-42]. Using stringent search 
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settings (perfect matched length > 30% and e-value < 1e-5), no significant hits were found, 

suggesting that all of our predicted genes may be parasite-specific. This result is expected, since 

more than 50% of P. falciparum genes are unique to the parasite and majority of the putative 

genes identified in this study may be non-coding genes with low sequence conservation. Next, we 

searched against the reference RNA sequences (refseq_rna) database using the discontiguous 

MegaBLAST program of BLASTN that is tailored to more dissimilar sequences [41-43]. A 

similarity cutoff of e-value < 1e-5 resulted in two significant matches. One of the predicted gene 

regions (Pf3D7_14_v3:38,574-40,547) showed ~50% query coverage and more than 70% identity 

with approximately twenty of the var genes, while another putative gene region 

(Pf3D7_08_v3:1,288,505-1,289,391) showed more than 40% query coverage and 70% identity 

with ribosomal RNA sequences across protozoan species, including Plasmodium vinckei vinckei, 

Theileria orientalis, and Babesia equi. We also used BLAST to compare the candidate regions 

with a database of known expressed sequence tags (EST) and found 28 matches, the majority of 

which are derived from P. falciparum (Supplemental File 1.1). These findings provide 

independent evidence that our predicted regions might indeed contain novel genes. 

Materials and Methods  

Nucleosome positioning profiles 

Nucleosome positioning profiles of the three main stages of P. falciparum’s asexual replication 

cycle were generated by micrococcal nuclease digestion of formaldehyde-crosslinked chromatin 

followed by chromatin immunoprecipitation using an antibody against histone H3. Nucleosome-

bound DNA fragments were sequenced on the Illumina HiSeq platform as described in [23, 31]. 

Two P. falciparum 3D7 nucleosome positioning profiles were used in this study. Data set B1 

from Bunnik et al. [23] consists of three asexual cycle time points (SRP026365), while data set 
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B2 from Bartfai et al. [31] consists of four asexual cycle time points (SRP003508). Reads were 

trimmed, mapped to P. falciparum 3D7 genome version 9.0 and were converted into coverage 

profiles by counting the number of sequence reads mapped at each nucleotide position as 

described in [23]. For each dataset, all coverage profiles were summed to generate a combined 

nucleosome profile G to be used as input data to train the classifier. The telomere and centromere 

regions display aberrant nucleosome coverage compared to the rest of the genome and were 

therefore removed from this data set.  

By sliding a window of length w along the combined genome-wide profile G with a sliding step 

of h = 1 base pairs, we converted the input G into a set D of windows. Each window in D is a 

vector of length w, and each coordinate i of the vector represents the total number of mapped 

reads at location i. Inside each window, we defined a central region of length m, called margin. 

The total number of windows n is ( ! !!!!)
!

, the coordinates of a window Di (𝑖   =   1,2,3… 𝑛) is 

[ 𝑎 i, bi] = 𝑖 − 1 ℎ + 1, 𝑖 − 1 ℎ + 𝑤    and the coordinates of the margin window Di is 

𝑎𝑖 + !
!
−   !

!
, 𝑎𝑖 + !

!
+   !

!
.  

After extracting the windows, we assigned a label to each window depending on the presence or 

absence of a gene start or end, as defined below. Only the positive class and negative class 

windows were used to train the binary classifier for gene recognition. We defined a negative class 

as a window that does not overlap with any gene (intergenic windows), a positive class as a 

window that contains a gene start (or gene end for the detection of gene ends) inside the margin, 

and other class as a window that does not fall into the categories of positive or negative windows. 
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Cross Validation  

The following section refers to the detection of gene starts. For gene ends, we used the same 

approach. To differentiate gene start sites and intergenic regions, a binary classifier was trained 

on positive class windows and negative class windows. Two randomly sampled data sets of 

windows were used interchangeably as training set or test set. One was sampled from windows of 

odd chromosomes, while the other was sampled from windows of even chromosomes. For each 

choice of parameter, we ran ten experiments. Odd chromosome windows were used as training 

and even chromosome windows were used for testing in the first five experiments, and vice versa 

for the other five experiments. All data was normalized with zero mean and unit variance.  To 

evaluate the classifier’s performance, we computed accuracy, precision and recall as described 

below. 

Accuracy = !"  
!"!!"

  

Precision = !"
!"!!"

  (= specificity)  

Recall = !"
!"!!"

  (= sensitivity)  

F-score = !  ×  !"#$%&%'(  ×  !"#$%%  
!"#$%&%'(!!"#$%%

 

Recall and precision often show an inverse relationship, where it is possible to increase one at the 

cost of reducing the other. For our purpose of finding putative genes, the primary goal was to 

obtain the highest possible recall for both positive and negative classes.  
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Support Vector Machine Classifier 

Support vector machine (SVM) is a family of binary classifiers than can learn from a training set 

to discriminate between positive and negative examples by finding a hyperplane that maximizes 

the margin [44]. To choose the best kernel for the SVM, we first used principal component 

analysis (PCA) to explore the relationship between the positive and negative classes, and then 

investigated different SVM kernels available from the Scikit-learn packages [45, 46]. Based on 

cross-validation experiments, we selected the RBF kernel and tuned the misclassification 

parameter C and the kernel parameter ϒ using a two-dimensional grid search where C was chosen 

from the set {10-5, 10-4, 10-3, …, 106, 107}, and ϒ was chosen from the set {10-8, 10-7, 10-6, …, 

102, 103} . All experiments were performed with 5-fold cross validation of 6,000 windows 

randomly sampled in equal quantities from both positive and negative class sets.  

Training sample size, window size, and margin width 

Using the optimized SVM-RBF hyperparameters, we tested how window size, training sample 

size, and margin width affect the performance of this classifier. We tested window size range 

from 500 bp to 2,000 bp with 500 base pair increments (Supplemental Figure 1.2A).  We 

observed that short windows may not be able to capture enough context around the gene, while 

long windows resulted in increased computational cost and were problematic for the P. 

falciparum genome, where the average length of intergenic regions is 1,694 bases [5]. For margin 

width, we tested 25 bp, 50 bp and 100 bp (Supplemental Figure 1.2B). After testing different 

window sizes and margin widths in cross-validation experiments, we observed that the best recall 

rate is obtained using a window size of 1,500 bp and a margin width of 50 bp, which were 

selected as parameters for the final classifier.  
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In addition, we used cross-validation experiments to test the relationship between training sample 

size and the performance of the trained classifiers. We ran cross-validation experiments with 

training sizes of 2,000, 3,000, 6,000, 9,000, 12,000, and 18,000 windows (Supplemental Figure 

1.2C). The results indicated that sample size does not have significant impact on the performance 

of the classifier, as long the sample is sufficiently large. We decided to use a training sample size 

of 6,000 windows with equal numbers derived from positive and negative classes, which achieves 

a good trade-off between computational cost and classifier performance. In contrast to this 

balanced training set, the vast majority of the windows in the genome are expected to be in the 

negative class. The imbalance in the test set should be reflected in the training set if the objective 

was to maximize the convex combination of precision and recall with the same weight. However, 

instead of optimizing precision, the main purpose of this study is to maximize the recall equally 

well for both positive and negative classes. The use of an imbalanced training set resulted in little 

change in recall, and we therefore used a balanced training set for this study. With these 

optimized parameters, we obtained average total recall rates of 0.94 for gene start classifiers 

trained on B1 data set, 0.92 for gene start classifiers trained on B2 data set, 0.94 for gene end 

classifiers trained on B1 data set and 0.93 for gene end classifiers trained on B2 data set 

(Supplemental File 1.1). The averaged total recall rate was 0.93 for all classifiers. The default 

confidence probability cutoff value for SVM classifier used here is 0.5. To increase the 

confidence of our gene prediction method, we tested different confidence probability cutoff 

values (0.6, 0.7, 0.8, 0.9) and observed that the number of predicted genes decreases as the cutoff 

value increases. We found that cutoff value of 0.7 gave the best trade-off between a reasonable 

number of predicted genes and a sufficiently high confidence in their prediction for both data sets 

B1 and B2.  
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Reverse transcription polymerase chain reaction (RT-PCR) 

Twenty-one highly confident gene candidates that were predicted using both data set B1 and B2 

were selected based on different combinations of RNA-Seq and polysomal RNA-Seq expression 

profiles (i.e. 3 genes showing high signals in both RNA-Seq and Poly-seq, 6 genes showing a 

high signal in only one of the profiles, and 12 genes showing low signals in both profiles). Total 

RNA was isolated from 10 ml of non-synchronous erythrocytic stage P. falciparum culture. To 

remove genomic DNA contamination, RNA samples were treated twice with 4 U DNase I (Life 

Technologies) per 10 µg of RNA for 30 minutes at 37°C. DNase I was inactivated by the addition 

of EDTA to a final concentration of 1 mM. DNase-treated total RNA was then mixed with 0.1 µg 

of random hexamers, 0.6 µg of oligo-dT(20), and 2 µl 10 mM dNTP mix (Life Technologies) in 

total volume of 10 µl, incubated for 10 minutes at 70°C and then chilled on ice for 5 minutes. 

This mixture was added to a solution containing 4 µl 10X RT buffer, 8 µl 20 mM MgCl2, 4 µl 

0.1 M DTT, 2 µl 20 U/µl SuperaseIn and 1 µl 200 U/µl SuperScript III Reverse Transcriptase (all 

from Life Technologies). First-strand cDNA was synthesized by incubating the sample for 

10 minutes at 25°C, 50 minutes at 50°C, and finally 5 minutes at 85°C. The absence of genomic 

DNA contamination was validated using a primer set targeting an intergenic region and a primer 

set targeting PfAlba3 (PF3D7_1006200) from inside exon 1 to within exon 2. Amplification of 

genomic DNA should give a product with a size of 429 bp including the intronic sequence, 

whereas amplification of cDNA should result in a fragment with a size of 164 bp. All 21 PCRs 

testing transcription activity of predicted genes were performed using 3 µl of the first-strand 

cDNA mixture with approximately 10 pmole of both forward and reverse primers. DNA was 

incubated for 5 minutes at 95°C, then 30s at 98°C, 30s at 55°C, 30s at 62°C for 35 cycles. 5 µl of 

each PCR sample was used for agarose gel electrophoresis. For each primer set, PCR efficiency 
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was tested using genomic DNA under the same amplification conditions as described above. All 

primer used for PCR validation are listed in Supplemental File 3. 

Coverage plots and histone variant analysis 

Sequence reads for ChIP-Seq experiments of P. falciparum nucleosome variant H2A.Z [31] 

(SRP003508) and histone marks H3K36me3 and H3K4me3 [38] (SRP022761) were downloaded 

and mapped to P. falciparum 3D7 genome version 9 using bowtie with default error rates. 

Coverage profiles for each time point were then generated using BEDtools [33]. For each histone 

variant, coverage profiles from different time points were summed to generate a combined 

profile. Sequence coverage for regions 750 bp before and after start and end codons of regions of 

interest were extracted from the summed coverage profiles. Averaged values for each relative 

position were then calculated and used to generate coverage plots using R.  

Discussion and Conclusion 

In this paper, we have used a machine learning approach for the detection of genes in the AT-rich 

genome of the human malaria parasite, P. falciparum, using exclusively nucleosome positioning 

data. Using classifiers trained on two independent nucleosome occupancy data sets, we detected a 

total of 231 putative novel genes. Eighty-eight of these 231 newly predicted genes exhibited 

transcription signal in RNA-Seq data and twenty out of 21 putative gene regions were validated 

by RT-PCR, indicating that our methodology is highly successful in identifying genes. 

Furthermore, of all putative gene regions identified using the nucleosome occupancy data set 

from Bunnik et al. [23], 69% were confirmed in the nucleosome positioning data set from Bartfai 

et al. [31], indicating that the classifiers trained on these two independently generated 

nucleosome landscapes are in good agreement. Collectively, our results demonstrate that local 

chromatin structure is sufficiently informative for genome annotation. Gene predictions based on 
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nucleosome positioning datasets could thus be used to complement and augment sequence-based 

methodologies that are currently used for this purpose. 

Based on the evidence we collected, it seems likely that many of the regions predicted here 

encode long non-coding RNAs. First, 108 of the predicted regions have been previously 

identified as lncRNA genes [18, 34-37]. Second, the sequence (GC-content) and nucleosome 

occupancy characteristics of the predicted regions are more similar to known lncRNAs than to 

protein-coding genes. Third, few of the predicted regions contain large ORFs. In other eukaryotic 

organisms, lncRNAs have been shown to be involved in the regulation of a multitude of cellular 

processes, one of which is regulation of gene expression by targeting general transcription factors 

and inducing chromatin remodeling [47-52]. In P. falciparum, identification and functional 

characterization of lncRNAs is ongoing. Most studies have focused on the identification of long 

non-coding telomeric end-associated transcripts that are similar to telomeric repeat-containing 

lncRNAs (TERRA) found in human and that are important for telomere maintenance [14, 35, 53]. 

Some of these lncRNAs contain binding sites for PfSIP2, a transcription factor specific to 

Plasmodium that is thought to be involved in regulation of var genes [35, 54]. This gene family is 

responsible for pathogenesis and immune evasion and most of its members are located in 

subtelomeric regions. These lncRNAs are likely to play important regulatory roles in var gene 

silencing by inducing heterochromatin formation, thus creating a repressive environment at the 

telomeric and subtelomeric ends [14, 35, 53, 55]. Additionally, lncRNAs have been implicated in 

various other processes, such as metabolic, biosynthetic and regulatory activities [14, 47, 56-59]. 

Our experimental results have expanded the list of putative lncRNAs in P. falciparum, and it will 

be of great interest to further validate and characterize these transcripts to understand their 

function in parasite biology. 
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Unfortunately, we were unable to use nucleosome positioning as a means to discover novel genes 

in the telomeric regions. Due to aberrant nucleosome positioning in the telomeric and centromeric 

regions compared to the rest of the genome, we had to exclude these regions from our gene 

predictions. The number of known lncRNAs derived from these regions is too small (n = 22) for 

accurate training of a separate classifier on these atypical parts of the genome. 

In addition to putative lncRNAs, we also distinguished 73 regions that may contain protein-

coding genes, based on the association of their transcripts with polysomes. The polysome 

profiling data set used in this study was obtained by separating polysomes on a sucrose gradient, 

followed by isolation and sequencing of mRNA in the polysome fractions [19]. This 

methodology provides a catalogue of transcripts that are actively being translated. However, it 

also captures polyadenylated transcripts that are merely associated with polysomes as regulatory 

elements, or that are present in ribonucleoprotein complexes that co-sediment with polysomes. 

Based on polysome profiling data alone, it is therefore impossible to determine whether a gene 

encodes a protein. Further study will be necessary to determine the translational status of the 

putative protein-coding genes identified in this study.   

Beside protein-coding genes and genes encoding lncRNAs, a third option for regions identified in 

this study is to contain pseudogenes. For decades, pseudogenes have been considered non-

functional or ‘junk’ DNA; however, the conserved sequence similarity between pseudogenes and 

coding genes suggests a selective maintenance of these non-coding elements. They may have an 

important biological role that has not yet been fully understood. In recent mammalian studies, 

transcripts of pseudogenes showed regulatory roles, largely through antisense mechanisms [60, 

61]. Expressed pseudogenes have also been implicated in mRNA stability in transgene mouse 
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mutants [62]. Similar regulatory pseudogenes may also be present in P. falciparum, in particular 

in predicted gene regions with homology to annotated genes as identified using BLAST searches.  

As a selection criterion for the identification of regions containing putative novel genes, we used 

the presence of both a gene start and a gene end within the same intergenic region. However, we 

also identified regions with only a predicted gene start or a gene end, but not both. Often, the 

intergenic regions containing these single-end predictions do show sequence coverage in the 

steady state or polysomal RNA-Seq data sets. Possible explanations for such single-end 

predictions include the presence of genes coding for small transcripts that are difficult to capture 

using a nucleosome positioning dataset. Each nucleosome covers approximately 146 base pairs of 

DNA, raising the possibility that short genes do not show distinct nucleosome occupancy 

features. Alternatively, the nucleosome features at the other end of the predicted gene region may 

be irregular and therefore not meet the quality threshold for selection.  

In this study, we have demonstrated that using a machine learning approach trained on the 

nucleosome landscape around genes, we were able to identify 231 putative genes, of which the 

majority showed evidence of expression in RT-PCR, EST, steady-state RNA-Seq, or polysomal 

RNA-Seq data sets in the malaria parasite, P. falciparum. A similar methodology could be used 

for predicting the location of transcription start sites (TSSs), since TSSs are generally marked by 

an upstream nucleosome-depleted region. Therefore, this approach may ultimately be useful to 

identify key regulatory elements and to complement other sequence-based genome annotation 

efforts, which will provide further insights into gene regulatory mechanisms in P. falciparum. 

Furthermore, similar machine learning approaches may also be applied to other organisms as long 

as a nucleosome-positioning data set is available and the nucleosome landscape around genes 

shows regular periodic characteristics.  
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Supplemental Figures 

 

 

Supplemental Figure 1.1. Supervised machine learning approach for novel gene detection. Using a sliding 
window method, the genome-wide nucleosome positioning data set was converted into a set of 
subsequences (“windows”), where each window is a vector of length w, and each position is a numeric 
value representing the summed number of mapped reads. A label was then assigned to each of the windows 
based on the presence of a gene start. A binary classifier for gene start recognition was trained on gene 
start-containing windows (positive class) and intergenic windows (negative class) with support vector 
machine (SVM), RBF kernel. A similar approach was used to train a classifier for the detection of gene 
ends. 
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Supplemental Figure 1.2. Optimization of classifier parameters trained on the positive strand of data set B1. 
Average recall rates for gene start detection from 10 cross-validation experiments for window size (A), 
margin width (B), and training data size (C). After comparing the recall rate for each parameter, the 
optimized classifier was trained using 6,000 windows of 1,500 bp with 50 bp margin width drawn in equal 
quantities from both positive and negative class. The ROC curves for optimized gene start and gene end 
classifiers are reported in (D). Results of optimization experiments for classifiers trained on the negative 
strand of data set B1 and classifiers trained on data set B2 were very similar and are therefore not shown. A 
detailed explanation of classifier optimization is presented in the Material and Methods section. 
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Supplemental Figure 1.3. Density plots of various characteristics of predicted gene regions versus 
intergenic regions and annotated coding and non-coding genes in P. falciparum.  
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Supplemental Figure 1.4: Coverage profiles of histone variants around gene boundaries.  

  

Occupancy(of(Histone(Variants(around(Gene(Boundaries(

Av
g.
(R
ea
d(
Co

un
t(
z=
sc
or
ed

)(
Gene(Starts((

0( 750(=750( 0( 750(=750(

Gene(Ends(

=5(

0(

5(

0 500 1000 1500

−4
−2

0
2

4

1500bp

sc
al

e(
H

3K
36

_s
ta

rt_
av

g)

0 500 1000 1500

−4
−2

0
2

4

1500bp

sc
al

e(
H

3K
36

_e
nd

_a
vg

)

H3K36me3
H3K4me3
H2A.z
Nucleosome B1
Nucleosome B2

0 500 1000 1500

−4
−2

0
2

4

1500bp

sc
al
e(
H
3K
36
_s
ta
rt_
av
g)

0 500 1000 1500
−4

−2
0

2
4

1500bp

sc
al
e(
H
3K
36
_e
nd
_a
vg
)

0 500 1000 1500

−4
−2

0
2

4

1500bp

sc
al
e(
H
3K
36
_s
ta
rt_
av
g)

0 500 1000 1500
−4

−2
0

2
4

1500bp

sc
al
e(
H
3K
36
_e
nd
_a
vg
)

RelaEve(genomic(posiEon(to(gene(start/end(or(midpoint(



	
   57 

Supplemental Table 

Supplemental Table 1.1: Classifier performance records. 

 

 

Supplemental File 

Supplemental File 1.1: List of predicted gene regions and their characteristics. (XLSX) 

Supplemental File 1.2: Primers used for predicted gene validation. (XLSX) 
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Abstract  

Gene expression in P. falciparum is tightly regulated to ensure successful propagation of the 

parasite through the different stages of its complex life cycle. The earliest genome-wide 

transcriptomics studies in P. falciparum suggested a cascade of transcriptional activity over the 

course of the 48-hour intraerythrocytic developmental cycle (IDC). In recent years, this model of 

just-in-time transcription has been challenged by the finding that post-transcriptional regulation 

plays an important role in parasite gene expression. In this chapter, we set out to generate the first 

genome-wide nuclear run-on (GRO-seq) data set in P. falciparum to accurately determine the 

timing of transcription. Findings in this chapter indicate that a majority of genes is transcribed 

simultaneously during the IDC and that only a small subset of genes is subject to differential 

transcriptional regulation. RNA polymerase II is engaged with promoters of all genes prior to this 

transcriptional burst, suggesting that Pol II pausing plays a dominant role in gene regulation at the 

level of transcription. During gametocyte differentiation, the parasite stage that is transmitted to 

mosquitoes, the overall transcriptional program is surprisingly similar to the IDC, with the 

exception of relatively small subsets of genes that are either upregulated, such as motor genes, or 

downregulated, such as invasion genes. Results from this chapter suggest that further 

characterization of the molecular players that regulate stage-specific gene expression and Pol II 

pausing, in particular the kinases involved in this process, will contribute to our continuous search 

for novel targets of antimalarial drugs. 
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Introduction  

As one of the world’s deadliest infectious diseases, malaria is responsible for about 438,000 

deaths annually, the vast majority of which occur among children under the age of five [2]. Of the 

five Plasmodium species that can cause malaria in humans, P. falciparum is responsible for the 

most severe form of malaria and causes about 90% of all malarial deaths [2]. Currently, no 

approved efficient protective vaccine is available for disease prevention, and the rapid 

development of parasite resistance to current antimalarial drugs is a major challenge for the 

control of malaria. Therefore, a better understanding of the parasite’s biological system is 

required to identify novel drug targets and to further combat the disease.  

P. falciparum has a complex life cycle involving multiple phases in its human and mosquito 

hosts. The stage responsible for clinical malaria is the intraerythrocytic developmental cycle 

(IDC). In this cycle, the parasite replicates asexually inside red blood cells and develops through 

ring, trophozoite and schizont stages to multiply into 16-32 daughter parasites [3]. During the 

IDC, environmental stress can induce sexual differentiation of parasites into male and female 

gametocytes. Gametocytes are morphological and functionally different from asexual parasites. 

Mature gametocytes, ingested by a mosquito, undergo sexual replication in the mosquito midgut 

and further develop into the salivary gland sporozoites that can be transmitted to a new human 

host. Formation and carriage of gametocytes is key to disease transmission. 

This multi-stage life cycle of the parasite is highly fine-tuned, presumably by strict control of 

stage-specific gene expression. In eukaryotes, stage-specific regulation of gene expression can be 

a combined effect of transcriptional, post-transcriptional and translational control. In P. 

falciparum, the nature and the contribution of mechanisms regulating gene expression are still 

poorly understood. Compared to organisms with similar genome size, only one-third of the 



 61 

expected number of specific transcription factors (TFs) and few mediator subunits have been 

uncovered in the P. falciparum genome [4, 5]. Recently, an apicomplexan-specific family of 

proteins containing AP2 DNA binding domains (ApiAP2) has been identified in apicomplexan 

parasites as the major group of putative sequence-specific transcription factors [6-9]. While their 

number is relatively small (27 in the P. falciparum genome), they are likely to act as master 

regulators of transcription during parasite development. However, it remains unclear how such a 

limited number of TFs can generate complex patterns of gene expression in multiple life cycle 

stages.  

Accumulating evidence suggests that P. falciparum uses chromatin structure as a basal control for 

transcriptional initiation. Genome architecture studies [10, 11] showed that chromatin is relatively 

closed during the ring and schizont stages, but opens substantially during the trophozoite stage, 

providing a transcriptional permissive state. This open-and-closed binary chromatin activity is 

also reflected in nucleosome occupancy studies [11-13] and histone abundance levels [14-16]. 

Nucleosome density is relatively low at the trophozoite stage, but maintained high at early ring 

and late schizont stages. In addition, studies using chromatin immunoprecipitation directed 

against RNA polymerase II (Pol II) and coupled to genomic DNA microarrays (ChIP-on-chip) 

indicate that Pol II is divided into a bi-phasic occupancy throughout the parasite IDC [17].  

Controversially, such chromatin structure re-arrangement activity and Pol II profiling do not 

correlate well with previously observed complex patterns of gene expression profiles constructed 

from steady-state mRNA [18-22]. The cascade of gene expression observed at the steady-state 

mRNA level led to a “just-in-time” model suggesting mRNA is produced when the encoded 

protein is required during the cell cycle. However, comparative genomics analysis of steady state 

mRNA and protein profiles of different P. falciparum stages showed a significant delay between 
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peak of mRNA and protein levels for 30 to 40% of the analyzed genes [14, 23], supporting a 

model of “just-in-time” translation for some mRNAs. Recently published novel genome-wide 

approaches that compared steady-state mRNA with polysome-associated mRNA or ribosomal 

occupancy of mRNAs have also provided a good indicator of active protein production and 

further validated the model of “just-in-time” translation for specific subsets of genes [19, 24]. In 

particular, this was true for proteins involved in remodeling of the erythrocyte just after parasite 

invasion. 

The paucity of transcription factors [25], the lack of identified DNA regulatory elements [26] 

together with the weak correlation between chromatin-remodeling events, Pol II occupancy, and 

steady-state mRNA levels, suggested significant post-transcriptional mechanisms regulating the 

parasite development. However, when Plasmodium genes are exactly transcribed and how many 

of them are regulated at the post-transcriptional level to generate the cascade of steady-state 

mRNA observed throughout the parasite life cycle remains to be determined.  

Results 

Generation of nascent RNA profiles for the P. falciparum blood stages 

In this study, we explored gene expression in P. falciparum at the initiation level using a modified 

global run-on sequencing (GRO-seq) methodology [27, 28] that specifically captures newly 

transcribed RNA (nascent RNA) in a genome-wide manner. An overview of the GRO-seq 

methodology is presented in Figure 2.1A. We have generated eight genome-wide nascent RNA 

profiles covering six asexual stages across the IDC, and early (stage II/III) and late (stage IV/V) 

gametocyte stages. To optimize the protocol, we determined that a minimum of 30 minutes 

incubation period was required to obtain sufficient nascent RNA from the in vitro transcription 

reaction (Supplemental Flie 2.1A). Several additional quality controls were implemented to 
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further validate the GRO-seq methodology. First, experimental noise was measured by 

performing the nuclear run-on reaction in the presence of unmodified uridine (Supplemental 

Figure 2.1B). This negative control yielded extremely low amounts of RNA (Supplemental 

Figure 2.1B) and low genome coverage (<1-fold) after sequencing (Supplemental Figure 2.1C), 

confirming minimal DNA and non-nascent RNA contamination using GRO-seq methodology. 

Second, to confirm that the nuclear run-on reaction generates nascent RNA in a stage-specific 

manner, we performed our assay on tightly synchronized trophozoite-stage parasites and observed 

that TEX1 gene (trophozoite exported protein 1; PF3D7_0603400) was highly transcribed, while 

no signal was obtained for a sporozoite-specific gene, STP (putative serine/threonine protein 

kinase; PF3D7_0107600) (Supplemental Figure 2.1B). Finally, we generated two biological 

replicates for five of the IDC stages, which showed high Spearman correlation coefficients 

ranging from 0.88 to 0.95 (Supplemental Figure 2.1D), confirming the reproducibility of the 

GRO-seq methodology. Together, these results indicate that our experimental approach is 

efficient, reproducible, and has minimal background noise.  

Upon sequencing of the GRO-seq libraries, we obtained between 670,456 to 11,903,568 mapped 

and filtered reads per stage after combining biological replicates, corresponding to 1.46 to 25.88 

fold exome-coverage. To be able to directly compare gene expression levels between the various 

stages, we corrected for differences in the number of parasites used as input for the nuclear run-

on reaction. This normalization was achieved by dividing the coverage read depth at each base 

pair by a stage-specific scaling factor that was based on, among others, the culture volume and 

parasitemia at the time point of harvest (see Material and Methods and Supplemental Flie 2.1).  
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A global picture of transcriptional activity in the blood stages 

Overall, GRO-seq data revealed that transcriptional activity exhibited a bell curve shape during 

asexual cycle, from extremely low global transcriptional activity at the early ring stage, via 

slightly increased transcription at the late ring stage to a strong peak of transcription at the early 

and late trophozoite stages. Finally, transcriptional activity decreases again as the parasite 

progressed into the late schizont stage (Figure 2.1B, Supplemental Figure 2.2 and Supplemental 

Figure 2.3, and Supplemental Flie 2.2). This bell-curved pattern was validated using 

Immunofluorescence microscopy capturing RNA polymerase II abundance levels at single-cell 

resolution (Figure 2.1C). In addition, our GRO-seq data indicates that transcriptional activity was 

high in early gametocytes and subsequently decreased in late gametocytes (Figure 2.1B, 

Supplemental Figure 2.2 and Supplemental Figure 2.3, and Supplemental Flie 2.2). A total of 

5,207 genes (99% of all protein-coding genes) were detected in at least one of the eight stages 

sampled in this study (Supplemental Flie 2.1), while 77 genes did not reach our threshold. These 

genes included genes expressed on the RBC surface (var, surfin) and genes expressed in other 

stages of the parasite life cycle, such as sporozoite invasion-associated protein 1 and liver specific 

protein 1 putative (LISP1). 

Cluster analysis of transcriptional profiles across the P. falciparum asexual cell cycle  

We identified a total of 5,187 genes expressed at any time point during the IDC, which were 

grouped into nine distinct clusters based on their nascent transcriptional profile across the IDC 

(Figure 2.1D and Supplemental Flie 2.1). The large majority of genes (n = 4,607; 89%) were 

most abundantly transcribed at the trophozoite stage, while 532 genes (10%) showed a high level 

of transcription at the schizont stage and 48 genes (1%) were most highly transcribed at the ring 

stage. We observed enrichment in Gene Ontology (GO) terms associated with host cell 
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remodeling among the earliest transcribed genes (clusters A1 and A2) including several PHISTb 

and early transcribed membrane proteins (ETRAMPs) (Figure 2.1D, Supplemental Flie 2.1, and 

Supplemental Flie 2.3). Six out of 25 AP2 TFs detected during the IDC were most highly 

transcribed at these early stages, suggesting that these TF could be involved in driving this first 

wave of transcriptional activity. Genes that were most highly transcribed at the late trophozoite 

stage (cluster A3-A7) were associated with biological processes that are known to occur at this 

stage, such as translation and DNA replication. The earliest of these subsets of genes (cluster A3) 

included PfAlba1, as well as 16 putative RNA-binding proteins, and showed GO enrichment for 

“nucleic acid binding” and “RNA binding”. Genes involved in pathogenesis associated with GO 

terms such as “cell adhesion molecule binding” and “infected host cell surface knob” were 

enriched at the early schizont stage (cluster A8). Finally, a relatively small number of genes 

(cluster A9) with strong enrichment for involvement in host cell invasion, such as merozoite 

surface proteins and rhoptry-associated proteins, were most abundantly transcribed at the late 

schizont stage. To validate these cluster assignments, we determined the relative transcript 

abundance for several genes detected at different stages of the IDC using semi-quantitative PCR. 

Ring, trophozoite, and schizont-stage genes all showed a good concordance between PCR results 

and the GRO-seq cluster analysis. In addition, a gene that did not pass our threshold for 

expression was also not detected by PCR (Supplemental Figure 2.4). Together, these results 

indicate that most genes are highly transcribed simultaneously at the trophozoite stage, while only 

a subset of genes is differentially regulated and transcribed either early in the cell cycle to enable 

the parasite to establish a hospitable environment inside the erythrocyte, or late in the cell cycle in 

preparation for merozoite egress and re-invasion.  
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Figure 2.1. Global nuclear Run-On coupled to next-generation sequencing (GRO-seq) in the malaria 
parasite P. falciparum. (A) Schematic overview of the GRO-seq methodology. In brief, parasites were 
extracted from highly synchronized cultures followed by extraction of the nuclei. Transcription was 
allowed to take place for 30 minutes in the presence of 5-ethynyl uridine (EU). EU-labeled RNA was then 
purified and prepared for Illumina sequencing. (B) Genome browser view of normalized nascent RNA 
profiles that show the varying levels of transcriptional activity during the blood stages. The majority of 
genes were most highly transcribed at the trophozoite stage, and a representative gene (PF3D7_0716300) is 
shown in the top panel. A subset of genes was most highly transcribed at the schizont stage or gametocyte 
stages. An example of a gene that is highly transcribed at the schizont stage (PF3D7_0905400) is shown in 
the middle panel, whereas a gene with a profile of high transcription at the gametocyte stage 
(PF3D7_1327300) is shown in the bottom panel. (C) Immunofluorescence analysis showing RNA 
polymerase II activity at the asexual IDC stages. A strong signal was detected at the early and late 
trophozoite stages. At the early schizont stage, higher activity of RNA polymerase II was detected in some 
nuclei compared to others within a single parasite. No RNA polymerase II signal was observed at the early 
ring and late schizont stages. (D) A total of 5,221 genes were identified to be expressed during the IDC and 
were grouped into 9 clusters based on their expression patterns. A selection of enriched GO-terms is listed 
on the right of each cluster. ER, early ring; LR, late ring; ET, early trophozoite; LT, late trophozoite; ES, 
early schizont; LS, late schizont; EG, early gametocyte stage; LG, late gametocyte stage. 
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RNA polymerase II occupancy confirms nascent transcriptional profiles  

To further validate our observation of widespread transcriptional activity in trophozoites and 

targeted transcription of mostly invasion-related genes in schizonts, we determined Pol II 

occupancy at the early ring, early trophozoite, and late schizont stages using chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-seq; Supplemental Figure 

2.5, and Supplemental Flie 2.4). Pol II complexes were purified using an antibody that 

specifically binds to the C-terminal repeat domain with phosphorylated serines in position 2 

(Ser2), a sign that Pol II is in a state of active transcription [29, 30]. Using semi-quantitative PCR, 

we verified enrichment of coding regions but not intergenic regions and low experimental noise 

in our ChIP procedure (Figure 2.2A). 

 Pol II occupancy at the early ring stage was extremely low as compared to other stages, 

in agreement with the lack of nascent RNA signal at this stage of the cell cycle (Figure 2.2B). 

Similar to the nascent gene expression profiles, the majority of genes showed the highest Pol II 

occupancy at the trophozoite stage, while a subset of genes was most highly occupied by Pol II at 

the schizont stage (Figure 2.2B). A metagenomic analysis showed that the average Pol II 

occupancy of genes with late schizont expression profiles in GRO-seq (cluster A9) is higher in 

schizonts as compared to genes in other clusters (Figure 2.2C). Finally, the expression patterns of 

the Pol II ChIP-seq and GRO-seq data sets are more similar than for either GRO-seq or Pol II 

ChIP-seq and a publicly available steady-state mRNA-seq data set [19] (Figure 2.2D). Together, 

these results validate our GRO-seq results and confirm that steady-state mRNA levels do not 

strictly reflect transcriptional activity, but may be subject to post-transcriptional processes, such 

as degradation and storage.  
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Figure 2.2. Confirmation of GRO-seq results by Pol II ChIP-seq. (A) Validation of Pol II ChIP using 
semi-quantitative PCR, showing enrichment of the coding region of elongation factor 2 (EF2) at the 
trophozoite and schizont stages as compared to an intergenic region (INT) and the negative (no antibody) 
control. (B) High level genome browser view (Pf3D7_14_v3:398,913-442,486) of normalized ChIP-seq 
data (top panel). The bottom panel shows a comparison between ChIP-seq (turquoise) and GRO-seq (dark 
red) data sets for a smaller region of chr14 as indicated by a black rectangle in the top panel. A rhoptry-
associated membrane antigen gene (PF3D7_1410400, indicated by the blue rectangle) showed high 
expression at the schizont stage in both ChIP-seq and GRO-seq data sets. (C) Average Pol II ChIP-seq 
coverage plots of genes from GRO-seq ring-stage (A1), trophozoite-stage (A2), schizont-stage (A9) 
clusters, and non-expressed genes around gene start (ATG) and gene end. At the schizont stage, late 
schizont-stage genes (GRO-seq cluster A9) show higher Pol II occupancy in our ChIP-seq data set as 
compared to genes with other GRO-seq expression profiles, consistent with the GRO-seq results. (D) 
Comparison of gene expression profiles as observed in GRO-seq, Pol II Chip-seq, and RNA-seq [19] data 
sets, highlighting the discrepancies between transcriptional activity (measured by GRO-seq and ChIP-seq) 
and steady-state mRNA abundance. Genes (n = 4,888) are ranked in the same order in each heatmap. ER, 
early ring; LR, late ring; ET, early trophozoite; LT, late trophozoite; ES, early schizont; LS, late schizont. 
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Transcriptional activity in gametocytes 

In early and late gametocytes, the most highly expressed genes encoded ribosomal proteins and 

proteins involved in movement and motor activity, while the bottom 20% of the genes were 

enriched for involvement in pathogenesis, erythrocyte remodeling, and antigenic variation 

(Supplemental Figure 2.3 and Supplemental Flie 2.2). To validate our results for the gametocyte 

stage, we examined 27 genes that have been shown to be essential for gametocytogenesis [7]. The 

majority of these genes (n=18, 67%) showed the highest transcriptional activity in the gametocyte 

stages, including the well-established gametocyte-specific makers P. falciparum gamete antigen 

27/25 (PF3D7_1302100) and sexual stage-specific protein precursor Pfs16 (PF3D7_0406200) 

(Supplemental Figure 2.6). The remaining nine genes were most highly transcribed at one of the 

asexual stages, suggesting that the encoded proteins may play an essential role at the earlier 

stages of gametocytogenesis, but are not highly transcribed after early gametocyte differentiation. 

We also studied the transcriptional profiles for 686 homologs of P. berghei genes that were 

known to be transcribed at the gametocyte stage and are subject to translational repression by 

RNA-binding proteins DOZI and CITH [31, 32]. The majority of these genes were in the top 50% 

of transcriptional activity at either the early or the late gametocyte stage (n=537, 78%, p = 

0.0001, Chi-square test), while 342 genes (50%, p = 0.0001, Chi-square test) were in the top 25% 

of transcriptional activity (Supplemental Flie 2.5), confirming that these genes are indeed active 

in gametocytes. 

To further compare transcriptional activity between gametocyte stages and asexual stages, we 

calculated for each gene the fold change between the average nascent RNA abundance values of 

gametocyte stages and asexual stages, and subsequently divided genes into five groups based on 

this ratio (Supplemental Flie 2.1). Clusters B1 and B2 contain genes that show more than four-
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fold (n=403) or two-fold (n=1536) higher transcriptional activity in gametocytes than in the 

asexual stages, respectively. These groups showed enrichment for genes associated with motility 

(Figure 2.3 and Supplemental Flie 2.6), such as several genes encoding dynein subunits and actin-

related proteins. Interestingly, many of these genes also showed transcriptional activity during the 

IDC, albeit at a lower level, but are not detected or present at much lower levels in steady-state 

mRNA [33] (Figure 2.3), suggesting that these transcripts may be degraded during the IDC when 

they are not needed. Cluster B3 contains a large group of genes (n=3107) for which 

transcriptional activity does not change by more than two-fold in the transition from IDC to 

gametocytes, indicating that overall, transcriptional programs of asexual parasites and 

gametocytes are not very different. This is also demonstrated by the relatively high correlation in 

GRO-seq data between the trophozoite and gametocyte stages (Spearman R 0.74 – 0.84, 

Supplemental Figure 2.1D). Finally, genes that were turned off in gametocytes as compared to the 

asexual stages were enriched for GO terms associated with pathogenesis and cell invasion, in line 

with our understanding of parasite biology (clusters B4 and B5; Figure 2.3). 
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Figure 2.3. Differences in transcriptional profiles between asexual parasites and gametocytes. Genes 
were grouped based on the ratio between their average GRO-seq expression level in the asexual and in 
gametocytes. The average expression profiles for GRO-seq and RNA-seq [33] within each group are shown 
as blue and red lines, respectively. GO enrichment in each of the clusters is shown on the right. E, early; L, 
late; R, ring; T, trophozoite; S, schizont; G, gametocyte; O, ookinete. 

 

Among the genes that were highly upregulated in gametocytes as compared to the IDC (clusters 

B1) were two AP2 transcription factors: the ookinete-specific transcription factor AP2-O and an 

AP2 TF with unknown function, PF3D7_1429200 (Supplemental Flie 2.1). Six out of eight 

CPW-WPC proteins that are involved in chromatin remodeling showed more than four-fold 

higher levels of transcription in gametocytes than in asexual stages. In addition, several mRNA-

binding proteins were upregulated, including PUF1, PUF2, five RAP proteins with RNA-binding 

domains that are almost exclusively found in Apicomplexans, and putative RNA-binding protein 

PF3D7_0716000, which may be involved in posttranslational regulation and stabilization of more 
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than 10% of the transcriptome that is known to occur in the transition from gametocytes to 

ookinetes [31, 32]. Finally, a relatively large fraction of genes in cluster B1 were conserved 

proteins with unknown function (n=199, 49.4%, p=0.0001, Fisher’s exact test), indicating that we 

still lack a significant understanding of many of the parasite-specific processes that take place 

during sexual differentiation. To determine if a common transcription factor motif could be 

identified in promoters of the genes that were upregulated during gametocytogenesis, we 

performed a motif search on the 1,000 bp upstream of the annotated ATG of genes in clusters C1 

and C2 using MEME. When performing the search on the total set of 1,939 genes, we identified 

motifs TGTDC and CATDCA, which both have overlap with previously identified AP2 TF 

binding motifs [34] (Supplemental Flie 2.7). 

Nascent transcriptional activity and epigenetic landscape 

In other eukaryotes, histone variants and activating histone post-translational modifications 

(PTMs) are associated with actively transcribed genes. In addition, nucleosome depletion around 

the transcription start site (TSS) has been shown to be associated with genes that are highly 

transcribed [11, 12, 35-38]. To further investigate mechanisms that contribute to regulation of 

transcriptional initiation, we therefore analyzed previously published H2A.Z, H3K9ac, H3K4me3 

ChIP-seq datasets [39] and a nucleosome landscape MNase-seq dataset [11]. These data sets have 

previously been analyzed for correlation with steady-state mRNA abundance, but not with GRO-

seq data. Similar to previous findings [39], no significant correlation was observed between 

transcriptional activity and H2A.z or H3K4me3 data sets (Supplemental Figure 2.7); however, a 

side-by-side comparison of GRO-seq and H3K9ac abundance heatmaps (Figure 2.4A) showed 

that genes with schizont-stage transcriptional activity tend to have higher H3K9ac marks at the 

later stage. Nucleosome occupancy in the 500bp upstream of the coding region is relatively high 
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in ring and schizont-stage parasites, while global nucleosome depletion occurs in trophozoites 

and gametocytes (Figure 2.4A, Supplemental Figure 2.7, and Supplemental Flie 2.8), as described 

previously [11, 12]. Taken together, high levels of transcriptional activity at the trophozoite and 

gametocyte stages correlate well with an open chromatin structure. However, the subset of genes 

transcribed at the schizont stage does not seem to be regulated by the same changes in chromatin 

organization that occur at the trophozoite stage.  

Nascent transcriptional activity and RNA polymerase II pausing  

Recruitment of Pol II and the formation of the pre-initiation complex (PIC) are critical steps in 

gene activation and subject to strict regulation. However, evidence is emerging that Pol II can 

also be regulated at the level of early transcription elongation [27, 29, 40-45]. This elongation 

control is achieved by pausing of Pol II 30-50 nucleotides downstream of the promoter, and 

subsequently requires additional positive signals before elongation can be continued. Pol II 

pausing has previously been studied using GRO-seq data [27, 43, 46] and Pol II ChIP-seq data 

(mainly on Pol II with Serine 5 phosphorylated CTDs) [46, 47]. To find evidence for Pol II 

pausing in P. falciparum, we focused on the GRO-seq read coverage profiles in 5’ UTR regions. 

In total, 60-70% of all GRO-seq reads mapped to intergenic regions, including the 5’ UTRs 

(Supplemental Figure 2.8A). Similar to previously published GRO-seq datasets from other 

eukaryotes, we observed a peak in read coverage around the gene start (Supplemental Figure 

2.8B) that was positively correlated with transcriptional activity (Supplemental Figure 2.8C). This 

pattern has been described to be the result of paused Pol II complexes that were activated during 

the nuclear run-on procedure. Next, we calculated a ratio, hereafter called pausing index, of 

sequence read density in the 5’ UTR (defined as 500 bp upstream of ATG) to that in the gene 

body (500 bp downstream of ATG) for each gene at each developmental stage as described by 
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Core et al. [27]. We observed that the average of pausing indexes for all genes is highest at the 

ring stage, followed by a sharp decrease at the trophozoite stage and a small increase as the 

parasite enters the schizont stage (Figure 2.4B). These data suggest that Pol II is starting to be 

engaged with the genome in the ring stage, but is prevented from continuing transcriptional 

elongation until activation in the trophozoite stage, resulting in a global transcriptional burst. For 

genes with stage-specific transcription patterns, the Pol II pausing index was lowest in the stage 

with the highest transcriptional activity (Supplemental Figure 2.9A). The negative association 

between the Pol II pausing index and transcriptional activity are similar to observations in human 

cells and are believed to be indicative of transcriptional control, where the rate of Pol II 

engagement to the promoter is higher than the rate of Pol II entering its elongation phase.  

In addition to the extended coverage at 5’ UTR, we also observed a high read coverage at the 3’ 

UTR regions, again similar to GRO-seq profiles from other eukaryotes (Supplemental Figure 

2.9B). In yeast [48], Pol II pausing at the 3’ UTR was found to be associated with splicing events. 

In P. falciparum, we observed that 3’ UTR GRO-seq coverage was approximately 1.5-fold higher 

in multi-exon genes as compared to single exon genes at the late trophozoite stage (p= 1.283e-15, 

Mann-Whitney U test) (Supplemental Figure 2.9B). These results suggest that splicing may 

indeed contribute to Pol II pausing at the 3’ UTR, but is unlikely to be the only event that triggers 

pausing of the transcriptional complex at this location.  

Comparison between nascent RNA and steady-state mRNA abundance 

To measure the degree in which transcriptional and post-transcriptional regulatory mechanisms 

contribute to global gene expression, we further clustered genes based on both nascent RNA and 

steady-state mRNA expression profiles, resulting in six distinct clusters (Figure 2.4C and 

Supplemental Flie 2.9). For this analysis, we only used the GRO-seq data that exactly matched 
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the stages available in the steady-state mRNA data set [19]. Out of the 4,881 genes that changed 

in abundance during the cell cycle in both data sets, 2,503 genes (58%) showed nearly identical 

profiles for both data sets (clusters C2, C3, and C6, respectively). In contrast, cluster C4 contains 

1,126 genes for which transcription peaked in late trophozoite stage, but that were continuously 

detected until the late schizont stage in steady-state mRNA, indicating that these transcripts 

undergo partial stabilization. This cluster showed enrichment for genes involved in protein 

metabolism (Supplemental Flie 2.9). In addition, cluster C5 (n=719) and C1 (n= 197) showed an 

even larger discrepancy between the moment of transcription and the time point of highest 

abundance in steady-state mRNA, suggesting that these transcripts are the subjects of strong post-

transcriptional regulation. The small group of genes that was previously identified as ring-stage 

specific (cluster C1) enriched for involvement in erythrocyte remodeling also showed 

transcriptional activity at the trophozoite stage, suggesting that these transcripts might be 

transcribed later in the cell cycle and stored long-term until the next round of erythrocyte 

invasion. 

For the clusters with genes that do not seem to be subject to post-transcriptional regulation and 

are most likely controlled at the level of transcription (clusters C2, C3, and C6), we mined the 

region upstream of the gene start for transcription factor binding motifs (Supplemental Flie 2.7). 

Motifs that almost exclusively contained A’s or T’s were identified for all clusters. Such stretches 

of AT could be reminiscent of the TATA box in higher eukaryotes, but were not further 

considered due to the high AT content of the P. falciparum genome. In clusters C2 and C3, we 

identified the short motifs STTC and SYTC, respectively. In addition, we observed enrichment 

for motifs GTG, GWG, and RTGT in clusters C3, C4, and C5, respectively. The reverse 

complements of these short motifs (CACACA and ACACAC) have previously been shown to be 

associated with DNA replication [49] and possibly interact with AP2 TFs PF3D7_0802100 and 



 77 

PF3D7_1456000 [34]. In addition, genes in cluster C6 showed enrichment for motif GTGHA, 

which has previously been described as the binding sequence of AP2 TF PF3D7_1007700 and is 

associated with invasion genes [34, 49-51].  

For genes in clusters showing evidence of post-transcriptional regulation (clusters C1, C4, and 

C5), we searched the regions upstream of the gene start and downstream of the gene stop for 

transcription factor or RNA-binding protein motifs. GTG and ACAC motifs were identified in the 

500 bp downstream of the gene stop in cluster C5, similar to motifs identified in the 5’UTRs of 

clusters C3, C4, and C5.These results suggests that the GTG/CAC motif is very common and 

may be similar to frequently observed TATA stretches. Overall, the lack of specific motifs 

identified in our analyses emphasizes the need for developing novel experimental designs to 

discover mechanisms regulating transcripts at the transcriptional and post-transcriptional level. 
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Figure 2.4. Association of transcriptional activity with chromatin structure, Pol II pausing, and 
steady-state mRNA expression. (A) A comparison of transcriptional activity with H3K9ac abundance, 
and global nucleosome occupancy during the IDC. Genes were ranked according to transcriptional profile 
during the IDC in the same order as in Fig 1C. (B) Averaged Pol II pausing index for all genes in GRO-seq 
data at each stage. (C) Comparison of gene expression profiles in GRO-seq and RNA-seq. Nascent RNA 
and steady-state mRNA data sets were z-scored by gene individually and then clustered based on the 
combined data. Clusters C4, and C5 show large differences in the moment of peak transcript abundance 
between the two data sets, suggestive of strong post-transcriptional regulation. Enriched GO terms are 
indicated on the right.  
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Materials and Methods 

Parasite culture  

Parasite strain, P. falciparum 3D7, was cultured at approximately 8% parasitemia in human 

erythrocytes at 5% hematocrit in a total culture volume of 25 ml as described in [52]. To obtain 

highly synchronized cultures for the asexual stages, two 5% D-sorbitol treatments were 

performed eight hours apart at the ring stage. Parasites were collected every 6 hours covering 

early ring, late ring, early trophozoite, late trophozoite, early schizont, and late schizont stages. 

Giemsa-stained blood smears were used to assess parasite developmental stages. To obtain 

gametocyte-stage parasites, P. falciparum strain NF54 was cultured as described previously [53]. 

In brief, parasites were first synchronized using 5% sorbitol lysis buffer and diluted to reach 0.5% 

parasitemia at 8.3% hematocrit the following day. A reduction of culture media to 10 ml for three 

subsequent days was used as a way to stress the parasites and induce gametocyte production. 

Culture volume was then returned to 25 ml per flask. During the next five days, cultures were 

maintained by daily media exchange using media containing 10 ml of 50 mM N-acetyl 

glucosamine (NAG) to remove asexual stage parasites. Gametocyte cultures at 2% parasitemia 

were harvested 10 days (stage III) or 14 days (stage V) after the start of this procedure.  

Nuclear isolation 

Nuclear isolation was performed as described in [11, 54]. Parasite pellets were resuspended in 1 

ml of nuclear extraction buffer (10 mM Tris-HCL pH 7.5, 2 mM MgCl2, 3 mM CaCl2, 250 units 

of SUPERaseIn (Ambion), 10% glycerol, and 0.5% Igepal CA-360 (Sigma-Aldrich, St. Louis, 

MO)) and incubated on ice for 10 min. Parasites were then mechanically lysed by passing the 

suspension fifteen times through a 26G ½ inch needle. Nuclei were pelleted by centrifugation for 

20 min at 2,500 x g at 4°C and resuspended in 1 ml of nuclear extraction buffer, followed by 



 81 

gently pipetting up and down 10 times. Nuclei were centrifuged for 20 min at 2,500 x g at 4°C 

and resuspended in 100 µl of storage solution (50 mM Tris-Cl pH 8, 5 mM MgCl2, 0.1 mM 

EDTA, 40% glycerol, and 50 units of SUPERaseIn).  

Nuclear Run-on Reaction 

Nuclei (100 µl) were incubated with 600 µl of nuclear run-on reaction buffer (10 mM Tris-Cl pH 

8.0, 5 mM MgCl2, 1 mM DTT, 300 mM KCl, and 200 units of SUPERaseIn, 1% sarkosyl, 4 mM 

ATP, 1 mM CTP, 1 mM GTP, 200 mM Ethylene uridine (EU) (Click-it Nascent RNA Capture 

Kit, Thermo Fisher), 400 mM creatine phosphate, and 0.2 mg/mL creatine kinases) adopted and 

modified from [27, 28]. Reaction mixtures were incubated for 30 min at 37°C followed by 

nuclear RNA isolation.  

Base hydrolysis of nuclear RNA 

Base hydrolysis was performed as described in [27]. For each 20 µl of RNA, 5 µl of 1M NaOH is 

added and incubated for 15 minute on ice. The reaction was neutralized with 25 µl of 1M Tris-Cl 

pH 6.8. Fragmented RNA was precipitated by adding 4 µl glycogen, 75 µl 5 M ammonium 

acetate, and 700 µl 100% ethanol). 

Nascent RNA purification and cDNA preparation  

Nascent RNA was purified from total nuclear RNA samples using the Click-iT Nascent RNA 

Capture Kit (Thermo Fisher) according to the manufacturer’s instructions. In brief, biotin-azide 

was attached to ethylene-groups of the EU-labeled RNA using click-it chemistry. The EU-labeled 

nascent RNA was purified using MyOne Streptavidin T1 magnetic Dynabeads (Life 

Technologies). The preparation of cDNA was performed using nascent RNA captured on the 

beads. cDNA synthesis reaction mix (6 µg of random hexamer (integrated DNA technologies, 
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Coralville, IA, USA), 2 µg of anchored oligo (dT)20 (Integrated DNA Technologies), 2 µl 10 mM 

dNTP mix (Life Technologies), and 14 µl Buffer J from Click-iT Nascent RNA Capture Kit 

(Thermo Fisher) in a total of 20 µl volume) was added to the beads and incubated for 10 min at 

70°C, and then chilled on ice for 5 min . Next, a mix of 4 µl 10X RT buffer, 8 µl 20 mM MgCl2, 

4 µl 0.1 M DTT, 2 µl 20 U/µl SuperaseIn and 2 µl 200 U/µl SuperScript III Reverse Transcriptase 

(all from Life Technologies) was added to the mixture and incubated for 10 min at 25°C, 50 min 

at 50°C, and finally 5 min at 85°C for first strand cDNA synthesis. To digest RNA and release the 

first-strand cDNA, 2 µl 2 U/µl E. coli RNase H (Life Technologies) was added, followed by a 20 

min incubation at 37°C. The beads then were removed using a magnet and first-strand cDNA was 

used for second-strand cDNA synthesis by adding 70 µl 5X nuclease-free water (Life 

Technologies), 30 µl second-strand buffer (Life Technologies), 3 µl 10 mM dNTP mix (Life 

Technologies), 4 µl 10 U/µl E. coli DNA Polymerase (NEB), and 1 µl 10 U/µl E. coliDNA ligase 

(NEB). The mixture was then incubated for 2 h at 16°C. Finally, double-stranded cDNA was 

purified using 1.8X Agencourt AMPure XP beads (Beckman Coulter). Validation PCRs were 

performed using the primers listed in Supplemental Flie 2.1. 

Library preparation and sequencing  

Libraries were prepared using the KAPA Biosystems Library Preparation Kit (KAPA 

Biosystems, Woburn, MA) according to the manufacturer’s instructions with the following 

modifications for the high AT-content of the P. falciparum genome: the libraries were amplified 

for 15 PCR cycles (45 s at 98°C followed by 15 cycles of [15 s at 98°C, 30 s at 55°C, 30 s at 

62°C], 5 min 62°C). Libraries were sequenced on the Illumina HiSeq2500 (Illumina, San Diego, 

CA) generating 50 bp paired-end sequence reads or the NextSeq500 generating 75 bp paired-end 

sequence reads. 
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Sequence mapping  

The first ten bases and the last base or last 20 bases were systematically trimmed from 50 bp and 

75 bp reads, respectively, using FastQ Trimmer from FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). Poly-A/T repeats and contaminating adaptor reads were 

removed using Scythe (https://github.com/ucdavis-bioinformatics/scythe)[55]. Reads containing 

bases with a quality score below 25 and Ns, reads that were unpaired, and reads shorter than 18 

bases were also filtered using Sickle (https://github.com/najoshi/sickle) [56]. In addition, high 

quality single reads that lost their mate pair during read processing were kept and mapped as 

single-end reads in parallel with paired-end reads. All trimmed reads were first mapped to the 

human genome version hg19 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/) using Bowtie 2 [57], and 

all non-human reads were further mapped to P. falciparum 3D7 genome v13.0 

(www.plasmoDB.org) using TopHat2 [58] allowing a maximum of one mismatch per read 

segment and a segment length of 18. Finally, reads that mapped to multiple locations in the 

genome (samtools v0.1.19), paired-end reads that were not properly paired (samtools v0.1.19), 

reads that were PCR duplicates (MarkDuplicates, Picard Tools v1.114), and reads that mapped to 

ribosomal RNA or transfer RNA were discarded from the final working reads. 

Calculation of normalized gene expression values  

Raw genome-wide coverage profiles were generated using BEDtools [59]. For each stage, 

numbers of mapped reads from both single-ended mapping and paired-end mapping were 

combined. For each gene, we then calculated the number of reads that mapped to its exons, and 

normalized these read counts by GC content and the sum of exon lengths using R package 

EDASeq [60]. Spearman correlations between biological replicates were calculated using the 

EDASeq normalized exon counts. For biological replicates that were highly correlated (Spearman 
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R > 0.85), bam files were merged using Samtools v0.1.19 [61] and the normalized exon count 

was recalculated. Genes with an average exon read count below 2 at all stages were considered 

not expressed and were removed from the data set. To accurately measure transcriptional activity 

at each stage, we normalized the exon read count to the amount of RNA yield per parasite. A 

stage-specific scaling factor was calculated for each library by dividing the total number of 

filtered reads by the amount of RNA extracted per 1 flask of parasite-infected culture. In addition, 

we corrected for differences in parasitemia by multiplying by a parasitemia factor that was 

calculated as the highest parasitemia in any stage divided by the parasitemia in the stage of 

interest. In order to compare libraries between stages, we re-standardized the normalized read 

counts of each library X relative to the normalized read counts of the library with the smallest 

number of filtered reads. All of these calculations were performed using the following equation: 

scalingfactor!"#$%$&' = parasitemiafactor×
filteredreads!"#$%$&' ÷ RNAyieldperflask!"#$%&'

filteredreads!"#$$%!&$'()#)* ÷ RNAyieldperflask!"#$$%!&$'()#)*
 

 

The final abundance value of each gene was presented as the normalized exon read count per 

kilobase gene model divided by the scaling factor of that stage (Supplemental Flie 2.1). A gene 

with an abundance value below 15% of the median at all stages was considered not expressed and 

was discarded for further analysis.  

Cluster and GO enrichment analysis  

All genes that showed more than two-fold change in the normalized exon read count across the 

IDC stages were used for cluster analysis. For each gene, abundance values at the six different 

stages were z-scored, followed by k-means clustering in R (version 3.2.4) with a maximum of 

1,000 iterations. The number of clusters used in this analysis was guided by the percent of 

variance captured (within group sum of squares). The optimal number of cluster was determined 
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as the smallest number of clusters that captured at least 75% of the variance. For each cluster, 

gene ontology enrichment was performed using R package goseq [62]. All GO terms with a P-

value < 0.001 were reported.  

PCR validataion for GRO-seq cluster analysis 

Four sets of primers were designed to amplify genes that are highly transcribed at the ring stage 

cluster (membrane associated histidine-rich protein, MAHRP1, PF3D7_1370300), trophozoite 

stage (trophozoite exported protein 1, TEX1, PF3D7_0603400), schizont stage (rhoptry-

associated membrane antigen, RAMA, PF3D7_0707300), and a gene that did pass through 

filtration threshold (putative pyridine nucleotide transhydrogenase, PNT, PF3D7_1453500). PCR 

amplification was performed using cDNA library samples from early ring (ER), late ring (LR), 

late trophozoite (LT), and late schizont (LS) stage alone with a control sample with no DNA 

template (No Temp). As different amount of parasite was used for nascent RNA isolation at each 

stage, we first diluted each library sample parasite extracted from 2 culture flasks (approximately 

20^9 parasites). All 4 PCRs were performed using 1 µl of the diluted cDNA library sample with 

approximately 10 pmole of both forward and reverse primers. DNA was incubated for 5 min at 

95 °C, then 30 s at 98 °C, 30 s at 55 °C, 30 s at 62 °C for 35 cycles. 5 µl of each PCR sample was 

used for agarose gel electrophoresis. For each primer set, PCR efficiency was tested using 

genomic DNA under the same amplification conditions as described above. All primer used for 

PCR validation are listed in the Supplemental Flie 2.1. 

Immunofluorescence microscopy 

P. falciparum asexual stage parasites were fixed onto slides using 4% paraformaldehyde for 30 

min at RT. Slides were washed three times using 1X PBS. The parasites were permeabilized with 

0.1% Triton-X for 30 min at RT, followed by three washes with 1X PBS. Samples were blocked 
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overnight at 4°C in IFA buffer (2% BSA, 0.05% Tween-20, 100 mM glycine, 3 mM EDTA, 150 

mM NaCl and 1X PBS). Slides were incubated for 1 hour at RT with anti-RNA polymerase II 

CTD phospho serine 2 antibody (Abcam ab5095; 1:250) followed by an incubation with donkey 

anti-rabbit dylight 550 antibody (Abcam ab98489; 1:500) for 1 hour at RT. Slides were washed 

with 1X PBS and mounted using Vectashield mounting medium with DAPI. Images were 

acquired using the Olympus BX40 epifluorescence microscope. 

Chromatin immunoprecipitation 

Synchronized parasite cultures were collected and subsequently lysed by incubating in 0.15% 

saponin for 10 min on ice. Parasites were centrifuged at 3,234 x g for 10 min at 4°C, and washed 

three times with PBS. For each wash, parasites were resuspended in cold PBS and centrifuged for 

10 min at 3,234 x g at 4°C. Subsequently, parasites were crosslinked for 10 min with 1% 

formaldehyde in PBS at 37°C. Glycine was added to a final concentration of 0.125 M to quench 

the crosslinking reaction, and incubated for 5 min at 37°C. Parasites were centrifuged for 5 min at 

2,500 x g at 4°C, washed twice with cold PBS and stored at -80°C.  

For chromatin immunoprecipitation, parasites were first incubated on ice in nuclear extraction 

buffer (10 mM HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 0.5 mM 4-(2-

aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), EDTA-free protease inhibitor 

cocktail (Roche) and phosphatase inhibitor cocktail (Roche)). After 30 min , Igepal CA-360 

(Sigma-Aldrich) was added to a final concentration of 0.25% and the parasites were lysed by 

passing the suspension through a 26 G ½ inch needle seven times. Parasite nuclei were 

centrifuged at 4°C for 20 min at 2,500 x g. Parasite nuclei were resuspended in shearing buffer 

(0.1% SDS, 1 mM EDTA, 10 mM Tris HCl pH 7.5, EDTA-free protease inhibitor cocktail, and 

phosphatase inhibitor cocktail). Chromatin was fragmented using the Covaris Ultra Sonicator 
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(S220) for 10 min with the following settings; 5% duty cycle, 140 intensity peak incident power, 

200 cycles per burst). To remove insoluble material, samples were centrifuged for 10 min at 

17,000 x g at 4°C. 

Fragmented chromatin was diluted 1:1 in ChIP dilution buffer (30 mM Tris-HCl pH 8, 3 mM 

EDTA, 0.1% SDS, 300 mM NaCl, 1.8% Triton X-100, EDTA-free protease inhibitor cocktail and 

phosphatase inhibitor cocktail). Samples were precleared with Protein A Agarose beads to reduce 

non-specific background and incubated overnight at 4°C with 2 µg of anti-RNA pol II antibody 

(ab5095, Abcam). A sample with no antibody was also incubated overnight at 4°C to be used as 

the negative control. Antibody-protein complexes were recovered using Protein A Agarose beads, 

followed by extensive washes with low salt immune complex wash buffer, high salt immune 

complex was buffer, LiCl immune complex wash buffer and TE buffer. Chromatin was eluted 

from the beads by incubating twice with freshly prepared elution buffer (1% SDS, 0.1 M 

NaHCO3) for 15 min at RT. Samples were reverse crosslinked overnight at 45°C by adding NaCl 

to a final concentration of 0.5 M. RNase A (Life Technologies) was added to the samples and 

incubated for 30 min at 37°C followed by a 2 h incubation at 45°C with the addition of EDTA 

(final concentration 8 mM), Tris-HCl pH 7 (final concentration 33 mM) and proteinase K (final 

concentration 66 µg/mL; New England Biolabs). DNA was extracted by 

phenol:chloroform:isoamylalcohol and ethanol precipitation. Extracted DNA was purified using 

1.8X Agencourt AMPure XP Beads (Beckman Coulter). Validation PCRs were performed using 

the primers listed in Supplemental Flie 2.4. 

Libraries from the ChIP samples were prepared using the KAPA Library Preparation Kit (KAPA 

Biosystems). Libraries were amplified for a total of 12 PCR cycles (12 cycles of [15 s at 98°C, 30 

s at 55°C, 30 s at 62°C]) using the KAPA HiFi HotStart Ready Mix (KAPA Biosystems). 
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Libraries were sequenced on the Illumina NextSeq500. Read coverage mapping to exonic regions 

were calculated for both positive and negative libraries, then normalized by dividing these 

numbers with million number of reads for each library. Finally, the signals obtained from the 

negative controls were subtracted from the ChIP-Seq library of the same stage.  

Histone variants and nucleosome occupancy analysis 

Sequence read files of MNase-digested chromatin (input), H2A.Z, H3K4me3, and H3K9ac ChIP-

seq data sets (GSE23787) [39] and a nucleosome occupancy data set (SRP026365) [11] were 

downloaded from NCBI Sequence Read Archive. For H2A.Z, H3K4me3, K3K9ac, and input data 

sets, reads were mapped directly to P. falciparum 3D7 genome v13.0 (www.plasmoDB.org) 

using Bowtie 2 [57]. Non-uniquely mapped reads and PCR duplicates were discarded from final 

working reads. Coverage depth was first normalized to million mapped reads and was expressed 

as the ratio between sample and input. The nucleosome occupancy data set was mapped and 

normalized as described in the original publication [11]. The normalized read coverage in the 500 

bp upstream of the annotated ATG was calculated and used to generate heatmaps using the 

command pheatmap in R.  

Motif Identification 

Two motif-discovery programs were used in this study to identify over-represented DNA motifs 

upstream of gene start site (ATG) of genes within each nascent cluster. A region of 1,000 bp 

upstream of the coding region was used for this search, based on the reported distribution of 

transcription start sites [63] (81% of TSS are located within 1,000 bp of the coding region). Genes 

that were located less than 1,000 bp from their 5’ neighboring gene were removed from the 

analysis. MEME-ChIP runs two de novo motif identification algorithms, MEME and DREME. 

The parameters used for MEME algorithm were minw=7, maxw=12 in zoops mode with E-value 
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<= 1e-01. The parameters used for DREME and CentriMo, a motif enrichment analysis algorithm 

included in the MEME-ChIP package, were the default parameters:-dreme-e 0.05 -centrimo-score 

5.0 -centrimo-ethresh 10. 

Discussion and Conclusion 

Over the past few years, various studies have analyzed steady-state mRNA abundance throughout 

the blood stages of malaria parasites [18-21, 33]. However, steady-state mRNA is the product of 

transcription, stability, and degradation, and may therefore not accurately reflect transcriptional 

activity. Here, we present the first genome-wide study that specifically measures the timing and 

level of transcription during the P. falciparum asexual and sexual blood stages by performing 

global run-on sequencing. This data set is an invaluable asset towards a better understanding of 

gene regulation at the transcriptional and post-transcriptional levels during the life cycle of P. 

falciparum.  

The results of our study suggest that transcriptional activity at the ring stage is limited to a small 

subset of genes encoding erythrocyte-remodeling proteins. However, at this stage of the life 

cycle, Pol II is already engaged with nearly every promoter in the genome, waiting for an 

activation signal that initiates a massive burst of transcription at the trophozoite stage. In line with 

this model, two general transcription factors, PfTBP and PfTFIIE, were previously shown to 

interact with both active and inactive promoters at the ring stage [64]. Once transcriptional 

elongation commences at the trophozoite stage, a large proportion of the genome is transcribed in 

agreement with a study that used the nuclear run-on methodology on individual P. falciparum 

genes [28]. This massive transcription event seems to be somewhat “leaky”, resulting in low-level 

transcription of genes that are specific for other life cycle stages of the parasite. Since these non-

IDC genes are typically not detected in steady-state mRNA, we conclude that their transcripts 
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may be quickly degraded. At the schizont stage, transcription is turned down, except for a subset 

of invasion-related genes that show upregulation of transcriptional activity, in agreement with a 

previous ChIP-on-ChIP analysis of Pol II [17]. Finally, as the parasite differentiates into a 

gametocyte, the transcriptional program remains largely unchanged as compared to the 

trophozoite stage with some exceptions, including invasion genes that are turned off and motility-

related genes that are turned on.  

The only genes for which we have been able to confirm an AP2 TF motif are the invasion genes, 

and together with ring-stage specific genes and virulence genes, these are the only genes that 

seem to be differentially regulated during the IDC. For the invasion genes, mechanisms that 

control gene expression include the binding of a specific transcript factor to the promoter region 

and the attachment of a bromodomain protein, PfBDP1, to acetylated histone H3 [65]. Virulence 

genes, in particular var genes are controlled by a combination of repressive histone modifications, 

long non-coding RNAs and localization away from the rest of the genome in perinuclear 

heterochromatin. In contrast, the massive transcriptional events at both the trophozoite and 

gametocyte stages are associated with a genome-wide depletion of nucleosomes [11, 13]. In 

addition, at the trophozoite stage, the promoters of the majority of genes are marked by activating 

histone PTM H3K9ac. Taken together, these data suggest that a large part of the genome is not 

regulated by classical eukaryotic mechanisms of transcription initiation that involve local 

chromatin changes and the presence of specific transcription factors that drive expression of a 

subset of genes. Instead, the majority of promoters are occupied by paused Pol II, activation of 

which coincides with genome-wide changes in chromatin structure, including nucleosome 

depletion [11, 13], increased chromosomal intermingling [11], nuclear expansion and an increase 

in the number of nuclear pores [66]. In this model of all-at-once transcription, there is no need for 

a large array of specific transcription factors and corresponding motifs, which may explain why a 
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larger set of specific transcription factors has remained elusive in Plasmodium spp. to date. This 

lack of a need for finely tuned transcriptional activity may also explain how the parasite can 

quickly divide and form 16 – 32 daughter cells in a relatively short time frame (<12 hours). 

The global Pol II pausing that takes place at the ring stage prior to massive transcriptional activity 

at the trophozoite stage may function as checkpoint before transcription elongation. In metazoans, 

the release of paused Pol II is mediated by phosphorylation of various proteins, including DRB 

sensitivity-inducing factor (DSIF, consisting of subunits SPT4 and SPT5), negative elongation 

factor (NELF), and the carboxyl terminal domain of the large subunit of Pol II at Ser2, by 

positive transcription elongation factor-b (P-TEFb) complex [67-69]. Inhibition of mammalian P-

TEFb results a nearly complete block of transcription, suggesting that most active genes 

experience pausing events that require P-TEFb for elongation activation [43, 44, 47]. These 

results indicate that P-TEFb is a key regulator for transcription. In Plasmodium, many of the 

critical regulators, such as subunits of P-TEFb, DSIF subunits, and NELF, involved in Pol II 

pausing have been identified. The major P-TEFb subunits are cyclin-dependent kinase 9 (CDK9) 

and cyclin proteins (T1, T2 and K). Four cyclin genes have been described in P. falciparum 

(PfCYC1-4) [70, 71], of which only PfCYC4 shows homology to human cyclin T1, T2, and K. In 

addition, CDK9 is homologous to several parasite kinases, of which CDC2-related protein kinase 

1 (PfCRK1) and protein kinase 5 (PfPK5) show the strongest similarity (Blastp E-value <10-66). 

Studies in higher eukaryotes suggest that the nucleosome landscape, such as the positioning of the 

+1 nucleosome, could play a regulatory role in pausing by providing an energy barrier for 

elongating Pol II [72, 73]. The most strongly positioned nucleosomes in P. falciparum are at the 

start of the coding regions and could act as a barrier for RNA Pol II pausing. Furthermore, Pol II 

pausing and releasing have also been linked to nascent RNA hairpin structure, RNAs transcribed 

from enhancers [74, 75], promoter elements, and template DNA motifs, such as the downstream 
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promoter element (DPE), TATA box, and GAGA motif [74, 76-82]. Unfortunately, due to low 

sequence homology and AT-richness of the P. falciparum genome, many regulatory mechanisms 

involved in RNA pol II regulation and pausing, such as enhancers, mediators, chromatin 

modifiers, and promoter elements, remain undefined. In addition, compared to mammalian 

polymerases that contain a C-terminal domain (CTD) with 52 identical heptad repeats, the 

Plasmodium CTD tail of Pol II displays wide variation in terms of length and composition [83, 

84]. For example, primate malaria parasites, such as P. knowlesi, P. vivax, P. falciparum, and P. 

cynomolgi have an increased number of heptads with a high level of variability as compared to 

malaria parasites infect other species [85]. Additional work will be needed to truly understand 

how Pol II pausing is established and controlled in Plasmodium parasites. However, the present 

work established that while more classical regulatory mechanisms of transcription only control 

subsets of genes, such as invasion genes or var genes, the activation of paused Pol II complexes 

appears to be an essential genome-wide event during the IDC in P. falciparum. The identification 

of compounds that can specifically inhibit the activity of P-TEFb in the parasite will be a 

potentially powerful approach towards novel highly effective antimalarial drugs. 

The large transcriptional activity that we observed here at the trophozoite and early schizont 

stages is in partial disagreement with the cascade of transcript abundance that has been observed 

in steady-state mRNA data sets [18-21, 33], but can be explained by a role for post-transcriptional 

gene regulation. In mature gametocytes, translational latency has been well documented and 

entails the temporary storage of hundreds of transcripts in ribonucleoprotein complexes of female 

gametocytes until translation once the parasite has developed into an ookinete inside the 

mosquito. Evidence is emerging that similar mechanisms control subsets of genes during the IDC. 

For example, Vembar et al. showed the targeted capture and stabilization of transcripts encoding 

invasion-related proteins by PfAlba1, followed by release and translation of these proteins at a 
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later time point during the cell cycle [86]. Interestingly, our study shows that invasion-related 

genes are also regulated at the level of transcription initiation, suggesting that a single group of 

genes can be subject to regulation at multiple levels. We recently reported that P. falciparum 

encodes a relatively large number of RNA-binding proteins, and that many of the known 

translational regulators that act during other stages of the life cycle, such as DOZI and CITH, are 

also associated with mRNA during the IDC [87]. These results are indicative of widespread 

control of gene expression at the post-transcriptional level. In addition, post-transcriptional gene 

regulation could also explain how the similar transcriptional profiles in trophozoites and 

gametocytes can give rise to widely different cell types. 

This study reveals for the first time the transcriptional activity of genes during the 

intraerythrocytic developmental cycle and gametocyte differentiation. Our main findings are that 

(1) most genes are actively transcribed at the trophozoite stage, (2) the transcriptional profile of 

gametocytes is surprisingly similar to trophozoites with the exception of downregulation of 

invasion genes and upregulation of genes related to motor activity, and (3) Pol II pausing acts as 

major control mechanism during the IDC, halting transcriptional elongation in the ring stage and 

once lifted, giving rise to the transcriptional burst at the trophozoite stage. Together, these results 

provide a much-needed increase in our understanding of P. falciparum biology and suggest that 

proteins involved in transcriptional elongation may be highly effective targets for anti-malarial 

therapy. 
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Supplemental Figures 

 

Supplemental Figure 2.1: Optimization and validation of GRO-seq methodology. (A) Optimization of the 
incubation times for the nuclear run-on reaction using late-stage trophozoites. Nuclear run-on was 
performed for 10, 20, or 30 minutes, followed by isolation of total nuclear RNA (left panel), fragmentation 
of total nuclear RNA (middle panel), and semi-quantitative RT-PCR on the TEX1 gene that is known to be 
expressed during the trophozoite stage (PF3D7_0603400; right panel). (B) Semi-quantitative PCR on early 
trophozoites showed strong enrichment of TEX1, while the sporozoite-specific gene STP 
(PF3D7_0107600) was not detected. For each gene, a positive PCR control (PC, using gDNA) is shown, as 
well as a regular nuclear run-on sample obtained using labeled uridine (EU) and a negative control nuclear 
run-on sample obtained using unlabeled uridine (U). Minimal signal of either gene was observed in the 
negative control samples. (C) IGV genome browser view of GRO-seq samples (EU) and their 
corresponding control samples (U), at early (E) and late (L) trophozoite (T) and schizont (S) stages, 
demonstrating the absence of signal in the negative controls. (D) Reproducibility of GRO-seq methodology 
in P. falciparum. Spearman correlations between gene abundance values of all GRO-seq samples were 
calculated before normalization. Note the relatively high correlation between trophozoite and gametocyte 
samples. M, marker; NC, no template control. 
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Supplemental Figure 2.2. The distribution of gene transcription values at all stages for raw (left panel) and 
normalized data (right panel). 
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Supplemental Figure 2.3. GRO-Seq expression profiles during the blood stages.  For each stage, genes were 
sorted based on gene expression level from highest to lowest, and were divided into five equally sized 
groups. GO enrichment results are presented for the top and the bottom group from each stage (see 
Supplemental File 2.2 for full GO enrichment results).   
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Supplemental Figure 2.4. PCR validation for GRO-seq cluster analysis. Four sets of primers were designed 
to amplify genes that were present in cluster A1 (ring stage expression - MAHPR1), in cluster A3 
(trophozoite stage expression - TEX1), in cluster A9 (schizont stage expression - RAMA), and a gene that 
did not pass our threshold for expression (PNT). PCRs were performed using cDNA library samples from 
early ring (ER), late ring (LR), late trophozoite (LT), and late schizont (LS) stages, and were diluted to the 
amount of nascent RNA isolated from 20 x 109 parasites. For each gene, the PCR intensities were highest at 
the stage corresponding to their assigned GRO-seq cluster. No amplification was observed for the non-
detected gene. gDNA, genomic DNA control; no temp, no template control. 
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Supplemental Figure 2.5. Genome browser view of Pol II ChIP-seq data. Shown are the Pol II Ab tracks for 
early ring, early trophozoite, and late schizont stages with the corresponding no antibody controls. The 
bottom track shows sheared chromatin that was used as an input for ChIP. ER, early ring; ET early 
trophozoite; LS, late schizont. 
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Supplemental Figure 2.6. GRO-Seq expression profiles of 27 genes that have been shown to be essential 
for gametocytegenesis. ER, early ring; LR, late ring; ET, early trophozoite; LT, late trophozoite; ES, early 
schizont; LS, late schizont; EG, early gametocyte stage; LG, late gametocyte stage.  
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Supplemental Figure  2.7. Association of transcriptional activity with chromatin structure. A comparison of 
transcriptional activity with relative H2A.Z, H3K4me3, and H3K9ac abundance (all three data sets from 
Bartfai et al. 2010), and global nucleosome occupancy (Bunnik et al., 2014) during the IDC and 
gametocyte stages. Gametocyte data was not available for H2A.Z and the histone PTMs. Genes were 
ranked according to their transcriptional profile during the IDC in the same order as in Fig 1C. ER, early 
ring; LR, late ring; ET, early trophozoite; LT, late trophozoite; ES, early schizont; LS, late schizont; LG, 
Late gametocyte stage. 
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Supplemental Figure 2.8. Read coverage distribution. (A) Read coverage distribution over exons, introns, 
untranslated regions (UTRs, defined as 500bp upstream and downstream of annotated start and stop 
codons), and intergenic regions. (B) Average GRO-Seq coverage profiles at 5’ UTRs and 3’ UTRs in 
Plasmodium falciparum (blue), Drosophila melanogaster (green), and Caenorhabditis elegans (red). (C) 
The read counts in the 500 bp upstream of the ATG (5’UTR) plotted against the read counts in the 500 bp 
downstream of the ATG (coding region). The pol II pausing index is the ratio of these two numbers. Genes 
were sorted based on GRO-Seq signal, divided into five equal groups (see Supplementary Fig. 3) and are 
color-coded per group based on transcriptional activity. 
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Supplemental Figure 2.9. Association of transcriptional activity and Pol II pausing. (A) Pol II pausing 
index for all genes in our GRO-seq data set and for clusters of genes with stage-specific expression profiles. 
The Pol II pausing index corresponding to the stage of gene expression is indicated with an asterisk. (B) 
Average GRO-seq landscape at the 3’ UTRs of single-exon genes and multi-exon genes at the late 
trophozoite stage. A significant difference was observed for the average read coverage between these two 
groups of genes (P = 1.283e-15, Mann-Whitney U test). Outliers, defined as values more than 1.5 
interquartile range from the median, were removed from the data set for plotting purposes. ER, early ring; 
LR, late ring; ET, early trophozoite; LT, late trophozoite; ES, early schizont; LS, late schizont. 
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Supplemental Files 

Supplemental Flie 2.1: GRO-seq analysis associated information including raw and normalized 
exon counts for all genes, cluster information, and library mapping statistics. (XLSX) 

Supplemental Flie 2.2: Enriched GO terms for GRO-seq analysis associated with Supplemental 
Figure 2.3. (XLSX) 

Supplemental Flie 2.3: Enriched GO terms for GRO-seq gene expression and clustering analysis 
associated with Figure 2.1D. (XLSX) 

 Supplemental Flie 2.4: Raw and normalized exon counts for all genes and library normalization 
information associated with Pol II ChIP-seq data analysis. (XLSX) 

Supplemental Flie 2.5: CITH and DOZI analysis associated information. (XLSX) 

Supplemental Flie 2.6: Enriched GO terms for gametocyte transcriptional activity analysis 
associated with Figure 2.3. (XLSX) 

Supplemental Flie 2.7: Data associated with motif analysis. (XLSX) 

Supplemental Flie 2.8:  Raw and normalized read counts at the 5’ untranslated region for 
epigenetic landscape analysis associated with Supplemental Figure 7. (XLSX) 

Supplemental Flie 2.9: Data associated with GRO-seq and RNA-seq comparison analysis. 
(XLSX) 

Supplemental Flie 2.10: Primer information associated with semi-quantitative PCR validation. 
(XLSX) 
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Abstract  

Chromatin proteins mediate fundamental cellular processes such as gene expression, DNA 

replication, DNA repair and maintain integrity of the genome. Recently, it has become evident 

that Plasmodium falciparum, the causative agent of malaria, displays limited tight transcriptional 

control of gene expression. Accumulating evidence suggests that parasite chromatin is highly 

structured at the three-dimentional (3D) level, and this structure potentially provides an 

epigenetic mechanism to regulate gene expression. To gather insights into how parasite 3D 

nuclear structure is being maintained, we undertook complementary computational, comparative 

genomics and experimental approaches to identify and characterize chromatin-associated proteins 

(CAPs) in P. falciparum. Over a 1000 CAPs are identified by hidden Markov model and NCBI 

RPS-BLAST searches, of which the abundance of CAPs in the parasite proteome is similar to 

other apicomplexan parasites but slightly higher than kinetoplastids. Several chromatin-associated 

domains (CADs) are enriched in apicomplexan parasites and plant species specifically. Using a 

novel methodology aimed at enriching for chromatin-bound proteome, we experimentally 

captured 987 CAPs during the blood stages, 397 of which overlaps with the in sillico identified 

candidate CAPs. Among the experimentally validated CAPs are many characterized chromatin 

regulators such as histone-modifying enzymes, parasite-specific transcription factors, DNA repair 

proteins, chromatin-assembly factors and many parasite proteins of unknown function. Finally, 

we validate several of our candidate proteins including a CROWDED-like NUCLEI (CRWN) 

protein, a plant nuclei protein that is functionally analogous to the animal nuclear lamina, using 

standard cellular and molecular approaches. Collectively, our results provide the most 

comprehensive overview of CAPs in P. falciparum.  A better understanding of these CAPs will 

not only provide a complete picture of the complex molecular components that regulate 
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chromatin structure and genome architecture in the parasite, but will also assist the identification 

of novel targets for therapeutic strategies. 
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Introduction  

The human malaria parasite, one of the deadliest infectious agents in the world, still contributes 

significantly to the global burden of disease. In 2015, an estimated 214 million cases of infection 

and 438,000 malaria-related deaths were reported [1], a majority of which are caused by the most 

lethal human malaria parasite, Plasmodium falciparum. Despite continued efforts to prevent 

malaria infections, treatment of affected individuals still remains one of the primary means of 

reducing malaria mortality. Given the absence of an FDA-approved vaccine and parasite 

resistance to all current antimalarial drugs [2, 3], there is a desperate need for new therapeutic 

approaches. 

One promising strategy towards the development of novel and effective antimalarial compounds 

is to gain a better understanding of mechanisms regulating gene expression in the parasite. Since 

the publication of the P. falciparum genome in 2002 [4], researchers have attempted to explore 

the transcriptional machinery of the parasite in detail. The distinct developmental stages of the P. 

falciparum life cycle are characterized by coordinated changes in gene expression [5-7]. 

However, a surprisingly low number of specific transcription factors have been identified in the 

parasite genome [8, 9] and in particular, only a few stage-specific transcription factors have been 

validated [10-14]. Therefore, the coordinated cascade of transcripts observed throughout the 

parasite life cycle is unlikely to be regulated only by this limited collection of specific 

transcription factors, and suggests that additional components and mechanisms, such as post-

transcriptional [15-19], translational and post-translational regulation [15, 20, 21] as well as 

change of chromatin structure, may control the expression of the predicted 6,372 genes in the 

malaria parasite. 
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Recently, several groups, including ours, have developed chromosome conformation capture (3C) 

coupled to next generation sequencing methods (called Hi-C) as a way of understanding spatial 

organization of the nucleus and its role in regulating biological processes [22-24]. Using the latest 

Hi-C methodology, our lab has determined the three-dimensional (3D) nuclear architecture of P. 

falciparum throughout its life cycle [25]. Our work showed that parasite chromatin loosens 

following the invasion of a red blood cell allowing for gene expression, and re-packs prior to the 

next cycle. Additionally, western blot and mass spectrometry analyses show a significant 

depletion of all histone proteins at the trophozoite stage [26], supporting that a significant amount 

of transcriptional activity happens during the trophozoite stage. This suggests that changes in 

chromatin structure may control, at least partially, gene expression and parasite development. 

Additionally, our Hi-C results demonstrate that the parasite nucleus is highly organized. In 

particular, telomere ends of the chromosome cluster together in heterochromatin area(s) in close 

proximity to the nuclear membrane while the centromeres cluster at the opposite of a large 

heterochromatin cluster, much like the genome organization observed in the similarly sized 

budding and fission yeast [27, 28]. However, the parasite genome exhibits a higher degree of 

organization than the budding yeast genome as genes involved in immune evasion (e.g., var, rifin 

stevor genes) add a striking complexity and act as structural elements that shape whole genome 

architecture [25]. 

Architectural proteins involved in maintenance of chromatin structure have been studied in 

organisms ranging from yeast to human [29]. Among these proteins are RNA polymerase III-

associated factor TFIIIC, cohesins, condensins and CCCTC-binding factor (CTCF) [29-32]. 

CTCF is an insulator protein conserved in vertebrates that is enriched at chromosome domain 

boundaries and interacts with the nuclear lamina [33]. Some of these components have 

homologues in the P. falciparum genome but only a few have been characterized at the functional 
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level. Furthermore, many of conserved chromatin architectural proteins or chromatin-associated 

proteins (CAPs), involved in chromatin maintenance (e.g. lamina proteins) are missing in the 

parasite genome [34]. As an example, lamina proteins in metazoans are essential for many 

nuclear functions including nuclear shape maintenance and architecture, chromatin organization, 

DNA replication, transcription and cell cycle progression [33, 35]. While absent in the malaria 

parasite, these proteins are likely to have distant homologues in P. falciparum as they are critical 

for nuclear membrane organization and chromatin structure regulation.  

Although most of our understanding of proteins involved in chromatin structure and their 

functions comes from studies of model organisms, their importance in the development and 

virulence of Plasmodium has recently been appreciated for a small number of candidates [36-39], 

but a large number of them still need to be identified and characterized at the functional level.  

Given the potential roles of CAPs in almost all aspect of parasite biology, we performed a 

comprehensive computational and comparative genomics approach to generate an extended atlas 

of chromatin associated proteins in P. falciparum. Using a set of advance bioinformatics tools, we 

identified 1,190 of well-defined and putative CAPs in the parasite genome from which 162 

proteins (13.6%) have been previously described as having chromatin-related functions [40].  We 

provide functional annotation based on homology, domain organization, domain clustering and 

expression patterns analysis. In addition, we developed an unbiased chromatin proteomics 

approach termed Chromatin Enrichment for Proteomics (ChEP) to experimentally validate some 

of our candidates. ChEP has been successfully used to identify chromatin-bound molecules and 

predict their function and regulation in a number of organisms [41-43]. Furthermore, we validated 

several of our candidate proteins including a CROWDED-like NUCLEI (CRWN) protein using 

standard cellular and molecular approaches. CRWN proteins are present in plant nuclei and 

resemble animal and fungal lamina but the machinery and processes that underlie these proteins 
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appear to be evolutionarily distinct from their animal counterparts [44, 45]. In plant, CRWN 

proteins are essential for viability and play diverse roles in both heterochromatin organization and 

the control of nuclear morphology [46]. Identification and characterization of these homologues 

in Plasmodium could reveal novel exciting targets for drug discovery. Altogether, our results 

validate that mechanisms regulating chromatin structure in the parasite are most likely complex 

but a better understanding of these CAPs will not only provide a comprehensive picture of the 

complex molecular components that control chromatin organization and genome architecture of 

this deadly parasite, but will also assist the identification of novel targets for therapeutic 

strategies. 

Results 

In silico identification and classification of chromatin-associated proteins 

To study and characterize chromatin-associated proteins (CAPs) in P. falciparum, we first 

identified and characterized Plasmodium proteins that contain domains with nuclear or chromatin 

functions. Hereafter, we call these domains chromatin-associated domains (CADs). To obtain a 

list of all possible CADs, we first filtered NCBI Conserved Domain Database and Pfam database 

for domains with chromatin-related cellular functions including heterochromatin regulation, 

chromosome organization, nucleic acid binding, and histone modifications. A total of 3,870 

CADs was found regardless of their organism sources. Next, we searched the Plasmodium 

proteome for all possible domains using both hmmscan (HMMER v3.16) and NCBI Reversed 

Position Specific BLAST (RPS-BLAST). We then searched for parasite proteins containing any 

of the 3,870 CADs. As a result, we identified a total of 1,114 candidate CAPs (20.1% of P. 

falciparum proteome, n= 5548) covering 1,629 unique CADs (42% of total CADs) in P. 

falciparum. Out of these 1,114 candidate CAPs, 460 proteins were identified using RPS-BLAST, 
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82 proteins were identified using hmmscan, and 572 proteins were identified using both 

approaches (Additional File 1). Additionally, 76 Plasmodium proteins that lacked any of the 

CADs, but have chromatin-associated functions based on their protein annotation, were manually 

added to the final chromatin-associated protein list. Among the final list of 1,190 candidate 

CAPs, 162 proteins (13.6%) have been previously described as having chromatin-related 

functions in the parasite [40], 877 have non-chromatin related annotation and 151 proteins 

(12.7%) are unknown proteins where functions have yet to be discovered.  

To have a better understanding of the Plasmodium CAPs, we further characterized the chromatin-

associated domains that they carried. The most abundant CADs were structural maintenance of 

chromosome domains (SMC) (83 members) and domains from the serine/threonine kinase 

catalytic family associated with cell cycle progression, chromatin remodeling, DNA binding, 

transcription regulation, or other nuclear activity (total 77 members). Transcription or mRNA 

processing-associated RNA-binding domains (73 members), catalytic domain of the Dual-

specificity protein kinases (64 members), DEAD box helicase domains (63 members), WD40 

Figure 3.1. Characterization of chromatin-associated domains (CADs) that were found in eight 
or more candidate CAPs.   
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domains (58 members), polyadenylate binding domains (44 members), and splicing factor, CC1-

like domains (43 members) were also found to be abundant in the parasite's genome along with 

other domains such as the anaphase-promoting complex unit, AP2 transcription factor domains, 

small nuclear ribonucleoprotein domains, and GTP-binding nuclear protein domains (Figure 3.1). 

When investigating the structural features of these highly abundant CAPs (domains present in 15 

or more candidate proteins), we observed that many of these CAD-containing proteins consist of 

either a single CAD in combination with non-chromatin-related domains or multiple CADs in 

combination with non-chromatin-related domains. This finding suggests that these CAPs may 

likely have multiple functional roles in the biology of the parasite (Figure 3.1).  To explore the 

potential function of these chromatin-associated candidate proteins, we further categorized these 

proteins based on their functionality using protein descriptions (Figure 3.2). We found that a large 

number of the proteins are likely to be nucleic acid binding proteins (n=172, 14.5%) or proteins 

involved in transcriptional regulation (n=151, 12.8%).  Among these protein candidates are high 

mobility group B1-B4 proteins (PF3D7_1202900, PF3D7_0817900, PF3D7_1205800, and 

Figure 3.2. Classification of candidate chromatin-associated proteins (CAP) 
based on their annotation or associated domains.  
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PF3D7_1359200), proteins that form the transcription initiation factor TFIID subunit 

(PF3D7_0934100, PF3D7_0522200, and PF3D7_0929000), and known transcriptional regulators 

such as Sir2A/B proteins (PF3D7_1328800 and PF3D7_1451400) and transcriptional coactivator 

ADA2 (PF3D7_1014600). Another large group of the proteins are found to be structurally or 

functionally related to chromatin and chromosome structure (n=146, 12.3%). These proteins 

include histones, histone modification proteins, nucleosome assembly proteins, chromatin 

remodeling proteins, and chromosomal structural proteins. RNA processing proteins (n=122, 

10.3%), such as RNA polymerase, protein involved in splicing, cleavage and polyadenylation 

proteins were also abundantly found in our list. Furthermore, proteins involved with protein 

modification (n=100, 8.4%), DNA methylation, replication and repairs (n=99, 8.3%), cell or 

nuclear division (n = 79, 6.6%), and ribonucleoprotein or ribosome-associated proteins (n=76, 

6.4%) were also reported. A relatively smaller portion of proteins were found to be associated 

with GTP/ATP binding (n=47, 3.9%), protein transportation or signaling activity (n= 31, 2.6%), 

ubiquitin or ubiquitin-associated proteins (n=18, 1.5%).  About 150 proteins (12.4%) were found 

to be associated with other cellular functions that are non-chromatin related. Some example 

proteins belonging to this group are zinc finger proteins, WD repeat-containing proteins, and ion-

binding proteins. Lastly, we looked into the overall gene expression of the identified candidate 

CAPs. We observed that the expression level of candidate CAPs are similar to the expression 

level of transcription factors suggesting that majority of these chromatin-associated candidate 

proteins are likely to be involved in transcription related events (Figure 3.3).  
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Comparative analysis of chromatin associated proteins 

To better understand the roles of CAPs in parasite biology, we next performed a genomic 

comparative analysis of CAPs among a variety of organisms, including two additional 

apicomplexan parasites (Plasmodium vivax and Toxoplasma gondii), euglenid parasites 

(Trypanosoma brucei, Trypanosoma cruzii, and Leishmania major), two unicellular organisms 

(Saccharomyces cerevisiae and Schizosaccharomyces pombe), and four multicellular organisms 

(Homo sapiens, Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana). 

Since not all genomes have been annotated at the same level, manual curation of the CAD list (n 

= 3,870) was avoided to eliminate bias and to ensure a fair comparison between organisms. 

Therefore, we systematically performed HMM searches on the proteomes of the above organisms 

Figure 3.3. Gene expression comparison between candidate CAPs and other classes of 
proteins during different developmental stages of the parasite life cycle. Statistical 
significant differences in average expression levels between CAPs and transcription 
factors are indicated in p-value. (R) ring, (ET) early trophozoite, (LT) late trophozoite, 
(S) schizont, (G II) Early gametocytes at stage II, (G V) late gametocytes at stage V, 
(Ook) ookinete 
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to find proteins that contained any of the 3,870 CADs. Generally, the amount of CAPs in 

Plasmodium falciparum was relatively similar to number of CAPs in other apicomplexan 

parasites (~22% of full proteome), slightly higher than those in euglenid parasites, S. pombe, and 

C. elegans, but lower than the number of CAPs in the S. cerevisiae and higher eukaryotes (Figure 

3.4). This suggests that P. falciparum chromatin structure is more complex and is regulated via 

more CAPs as compared to T. brucei, T. cruzi, L. major, S. pombe and C. elegans, possibly due to 

the structural complexity added by virulence genes [25]. However, in higher eukaryotes, 

hierarchical chromatin elements such as compartments, topologically associating domains 

(TADs) and insulated domains have been described [47], and as a result might be regulated via 

more CAPs as compared to P. falciparum.  

To identify functional differences in chromatin-associated processes, the CADs were clustered 

based on their relative abundance in all investigated species (Figure 3.5). Each cluster was then 

analyzed for domain-associated Gene Ontology (GO) enrichment. Twelve distinct clusters were 

obtained. Clusters 1-3 contain CADs that are relatively abundant in apicomplexans, of which the 

domains in cluster 1 are almost exclusively enriched in Plasmodium species. These domains show 

enrichment for GO terms associated with nucleic acid binding and specifically AP2 domain-

Figure 3.4. Relative abundance of CAPs in the full proteome of various 
organisms.   
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containing transcription factors (Figure 3.6). While highly abundant in apicomplexans, AP2 

domain containing proteins are also abundant in plant species. AP2 family of transcription factors 

play an essential role in floral development in A. thaliana [48] and in P. falciparum, proteins 

containing AP2 binding domains (ApiAp2) have been identified as sequence-specific 

transcription factors [49] and are believed to be master regulators of transcription during parasite 

development [10, 13]. The enrichment of AP2 domains in apicomplexan parasites and A. thaliana 

in our expression analysis further validates our classification methods. In addition, cluster 1 

harbors the RCC1 domain (Figure 3.6), which is found in chromosome condensation regulating 

proteins. While these proteins are conserved among unicellular and multicellular organisms, a 

highly divergent ortholog of the Regulator of Chromosome Condensation 1 (RCC1) that is 

critical for parasite pathogenesis was identified in apicomplexan parasites [50]. These atypical 

apicomplexan RCC1 proteins show different arrangements of RCC1 domains compared to their 

higher eukaryotic RCC1 orthologs. Cluster 2 contains CADs that are abundant in all unicellular 

organisms. This cluster shows enrichment for GO terms associated with DNA-binding and 

polymerase activity. The PRK09603 domain enriched in this cluster is found in bifunctional 

DNA-directed RNA polymerase II proteins (Figure 3.6). This protein is found in many 

prokaryotic members and is the single type RNA polymerase that performs transcription in 

bacteria [51]. Given the abundance in bacteria, this domain seems to also be conserved in 

unicellular eukaryotes. Cluster 3 contains CADs that are enriched in apicomplexan species and 

yeast but not in euglenid parasites. Enriched domains (LSM, PRK00737 and RRM2_SRSF4) are 

found in proteins involved with RNA processing and splicing (Figure 3.6). Unlike their 

unicellular counterparts, euglenid parasites transcribe their protein-coding genes into 

polycistronic RNAs [52] and processes the RNA through a special mechanism termed trans-

splicing where exons from two different primary transcripts are ligated [53]. This suggests that 
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RNA processing and splicing proteins in Trypanosomes and Leishmania are divergent from those 

proteins found in apicomplexans and yeast where the primary mechanism of RNA processing is 

via cis-splicing [54]. 

Figure 3.5. k-means clustering of the relative abundance of CADs among 12 organisms. 
The CAD abundance was first normalized for each organism by proteome size and then 
scaled to the CAD frequency with the highest relative abundance of that CAD. A subset of 
the Gene Ontology (GO) enriched terms associated with the Pfam domains (false 
discovery rate, FDR<0.01) for each cluster are shown on the right.   
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Chromatin-associated domains in cluster 4 are abundant in all twelve organisms discussed. One 

of the major domains enriched in this cluster is the SMC N-terminal domain (Figure 3.6). SMC 

domain-containing proteins are a large family of ATPases that play a role in many aspects of 

chromosome organization [55]. Different SMC subunits makeup cohesin and condensin 

complexes, and these proteins play an essential role in chromosome assembly and segregation 

[56, 57]. In particular, condensin promotes chromosome compaction [56], while cohesin 

facilitates sister chromatid separation during mitosis and meiosis [57]. Enrichment of this domain 

across many eukaryotes including apicomplexans, kinetoplastids, yeast and vertebrates suggests 

that proteins containing SMC domains are highly conserved and are important for maintaining 

and regulating chromatin structure in a wide variety of organisms. Among cluster 5 are CADs 

mostly abundant in kinetoplastids. This cluster harbors the domain PSP1, which was originally 

observed in yeast and was reported to be involved in suppressing mutations in the DNA 

polymerase alpha subunit (Figure 3.6) [58]. The PSP1 motif has been found to be conserved at 

the C-terminal end of Crithidia fasciculata cycling sequence binding proteins (CSBP), which 

binds to sequence elements present in mRNAs that accumulate during the cell cycle [59]. 

Homologues of CSBP proteins were found only among the kinetoplastids, however whether these 

proteins share a functional relationship with the yeast PSP1-containing proteins have yet to be 

determined. Cluster 11, contains CADs most abundant in non-protozoan organisms. This cluster 

represents GO terms associated with chromosome and chromatin structure. A representative 

domain in this cluster, NHP6B/HMG, is found in High-Mobility Group B proteins (HMGBs) 

(Figure 3.6). HMGBs are highly abundant DNA-binding proteins that are involved in many 

nuclear functions including chromatin remodeling, transcription, recombination and DNA repair 

[60, 61]. The C-terminal acidic tail typical of metazoan HMGBs [62, 63], which regulates the 

DNA-binding characteristics of the HMGB-box domains, is missing from most unicellular 
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organisms [64, 65]. This suggests that protozoan HMGBs might have additional sequence 

characteristics that enable HMGBs to bind DNA, which are absent from higher eukaryotes. 

Experimental validation of chromatin-associated proteins 

To validate our in silico identification of chromatin-bound proteins, we next performed a method 

designed to isolate, in a genome-wide manner, all proteins associated with chromatin. This 

methodology, termed Chromatin Enrichment for Proteomics (ChEP) (Figure 3.7A) was adapted 

from published studies on human and mouse cell lines [42]. Briefly, parasites were extracted at 

the ring, trophozoite or schizont stages and cross-linked with formaldehyde to preserve protein-

nucleic acid interactions. Optimization experiments showed that a longer cross-linking time, at a 

higher temperature, was necessary to obtain sufficient cross-linking between DNA and proteins 

for the ChEP methodology (data not shown). Parasite nuclei were then extracted in the presence 

of RNase A to avoid enrichment of proteins associated with nascent RNA rather than directly 

with chromatin. Non-cross-linked proteins were washed away using a highly denaturing buffer. 

Under these conditions, we observed a clear enrichment, using western blot analysis, of nuclear 

proteins histone H3 and RNA polymerase II in the nuclear fraction (Figure 3.7B). As a negative 

control, we isolated proteins from the cytoplasmic fraction. 
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Proteins isolated from the parasite nucleus following the ChEP methodology as well as the 

cytoplasmic fraction were analyzed using multidimensional protein identification technology 

(MudPIT). Two biological replicates, as well as two technical replicates were performed for each 

intraerythrocytic stage. We identified a total of 940, 934 and 1,016 proteins at the ring, 

trophozoite and schizont stages respectively in the nuclear ChEP fraction (Figure 3.7C and 

Supplemental File 3.2). We then compared the nuclear ChEP proteins to the control cytoplasmic 

Figure 3.7. Chromatin enrichment for proteomics (ChEP). A) Outline of the ChEP procedure. B) 
Validation of protein enrichment in the nuclear fraction from ChEP by western blot analysis (1- 
trophozoite nuclear fraction, 2- trophozoite cytoplasmic fraction, 3- schizont nuclear fraction, 4- 
schizont cytoplasmic fraction). Western blots show an enrichment for RNA polymerase II and 
histone H3 in the nuclear fraction compared to the cytoplasmic fraction. C) Number of proteins 
identified in the nuclear and cytoplasmic fractions of the ChEP sample at ring, trophozoite and 
schizont stages. D) Semi-quantitative proteomic analysis of the ChEP samples demonstrating that 
ChEP enriches for chromatin-associated proteins in the nuclear fraction. E) Proteomic analysis of 
the nuclear ChEP sample. Proteins that are enriched 2-fold or more in the nuclear fraction are 
classified according to their function. F) Correlation in protein abundance between replicate 
experiments. 
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proteins to identify proteins enriched in the ChEP sample. We identified 370, 611 and 706 

proteins at the ring, trophozoite and schizont stages respectively, that are detected at ≥ 2-fold 

enrichment in the nuclear fraction as compared to the cytoplasmic sample (Figure 3.7C, 

Supplemental File 3.3). 

The ChEP identified CAPs showed strong enrichment for GO terms associated with typical 

chromatin-associated processes such as histone and histone modifying, DNA binding, 

transcription, RNA processing and splicing (Figure 3.7E, Supplemental File 3.3). Proteins 

functioning in translation-related processes were also enriched in the nuclear ChEP sample, 

which points to the existence of nuclear translation in the parasite [66, 67]. Additionally, 

ribosomal RNA (rRNA) processing proteins were enriched in the ChEP sample and we observed 

a larger number of these proteins at the ring and trophozoite stages (18% at ring and 11% at 

trophozoite stage, respectively) compared to the late schizont stage (4%). Ribosome biogenesis 

takes place in the nucleus [68], and considering the biology of the parasite, a majority of the 

ribosomes will need to be assembled in preparation for the higher levels of translation that takes 

place at the later trophozoite and schizont stages. By adapting this novel ChEP protocol, we have 

also identified a large number of proteins with unknown function as likely interacting with 

chromatin (2% at ring and trophozoite stages and 5% schizont stage). On average, proteins 

detected in a given ring, trophozoite and schizont sample was also detected in its matching 

biological replicate. Additionally, calculation of spearman rank coefficients showed that each 

sample correlated strongly with its matching replicate (Spearman R = 0.96 at ring, 0.93 at 

trophozoite and 0.86 at schizont stages; Figure 3.7F). Furthermore, CAPs with higher relative 

abundance levels were more likely to be detected in the replicate experiments. This clearly 

demonstrates the reproducibility of our ChEP and mass spectrometry methodology. 
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A recent high-throughput proteomic analysis explored the nuclear proteome during the P. 

falciparum intra-erythrocytic developmental stages [69]. To validate the ability of our ChEP 

methodology to specifically enrich chromatin-bound proteins, we compared our dataset to the P. 

falciparum nuclear proteome. In order to perform an unbiased comparison, we filtered both our 

dataset and the Oehring [69] dataset to identify proteins that were detected with ≥ 2-fold 

abundance (based on uniquely detected peptide counts) in the nuclear fraction as compared to the 

control cytoplasmic fraction. For both datasets, biological replicates were merged and the 

uniquely detected peptide counts for each protein was averaged. The enriched proteins at ring, 

trophozoite and schizont stages were merged and duplicate protein IDs were removed. The final 

filtered protein list used for comparison included 1200 proteins from the ChEP experiment and 

909 proteins from complete nuclear proteome. A total of 490 (30%) protein candidates from the 

complete nuclear proteome were identified in our ChEP experiment (Supplemental Figure 3.2). 

These proteins enriched for GO terms associated with nucleic acid binding, as well as 

transcriptional and translational processes (Supplemental File 3.4). A total of 419 (26%) proteins 

from the nuclear proteome list, enriching for GO terms associated with substrate-specific and 

transmembrane transporter activities, were not enriched in our ChEP list. In total, 710 (44%) 

proteins identified from the ChEP methodology were not enriched in the nuclear proteome 

analysis. These proteins most highly enriched for GO terms associated with DNA- and RNA-

binding. Additionally, out of the 397 proteins that were enriched in both our in silico and ChEP 

analysis (Supplemental Figure 3.1B), 209 (53%) proteins were enriched in the nuclear proteome. 

Taken together, these results validate the high specificity of the ChEP methodology and our 

ability to detect and enrich for chromatin-associated protein candidates in an unbiased manner. 

The experimentally detected candidate CAPs enriched by ≥ 2-fold abundance were compared to 

the computationally detected CAPs. A total of 397 candidate CAPs that were captured by the 
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MudPIT analysis validated 40% of the CAP candidates identified in our HMM search and 

represent 33% of all computationally detected candidate CAPs (Supplemental Figure 3.1B). This 

group of proteins validate by both our in silico and experimental methods, are most likely to be 

involved in maintaining or regulating chromatin structure in the parasite. The exact function of 

these novel proteins in chromatin-related processes will need to be validated, but validation of 

one such protein candidate below highlights their potential as new therapeutic targets. 

Functional validation of candidate chromatin-associated proteins 

Putative chromatin-bound protein candidates enriched using the ChEP methodology with high 

reproducibility was searched for the existence of even distantly related homologs using PSI-Blast 

HHPred [70]. Candidate proteins with domain homology for chromatin components was selected 

for further molecular and cellular characterization. To this end, proteins in the ChEP enriched 

fraction and annotated as Plasmodium proteins of unknown function were BLASTed against 

protein domains known to be involved in nuclear function in metazoans, eukaryotic pathogens or 

plants such as nuclear lamina or lamina-like proteins, cohesin, condensing, CTCF insulator or 

insulator-like proteins. Our analysis identified putative homologs, PF3D7_1325400 and 

PF3D7_1126700, of coiled-coil proteins that are among the nuclear matrix constituent proteins 

found in plants. In A. thaliana these proteins are encoded by CRWN genes [71]. PF3D7_1126700 

was more abundant in the ChEP sample at the schizont stage (dNSAF = 0.0011) compared to 

PF3D7_1325400 (dNSAF = 0.0004). However, PF3D7_1325400 was identified with higher 

confidence (E-value = 0.01) and was used for further analysis. Hereafter, PF3D7_1325400 will 

be referred to as ‘CRWN-like’ protein. A second protein, PF3D7_0414000, annotated as 

structural maintenance of chromosome 3 (SMC3), was also used for further validation. SMC3, a 
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subunit of the cohesin complex, although annotated as such, has not yet been characterized in P. 

falciparum. 

Custom antibodies were generated for each protein by designing peptide antigens targeting the C-

terminal end of each protein (see methods). To validate these antibodies we first performed 

western blots using nuclear and cytoplasmic protein lysates from mixed-stage Plasmodium 

parasites. Using western blot, we observed a clear enrichment of CRWN-like and SMC3 proteins 

in the nuclear fraction (Figure 3.8C). Our results validate the use of these custom antibodies to 

detect the P.falciparum CRWN-like (~300 kDa) and SMC3 (~140 kDa) proteins. 

We further investigated the subcellular localization of the CRWN-like and SMC3 proteins in 

intraerythrocytic parasites using immunofluorescence assays (IFA). A single focus was observed 

for SMC3 protein at trophozoite and schizont stages (Figure 3.8A, right panel). We were unable 

to detect a fluorescence signal for SMC3 at the ring stage, possibly due to nuclear compaction at 

this stage. At all three asexual stages, the CRWN-like protein localized to the nuclear 

compartment (Figure 3.8A, left panel). In particular, we observed a single focus per nucleus at the 

ring and schizont stages (Figure 3.8A, left panel). At the trophozoite stage, the number of foci 

varied, in line with the increased level of DNA replication and nuclear expansion that takes place 

during this stage. In A. thaliana, CRWN proteins localize to the nuclear periphery and play a role 

in regulating heterochromatin environments in the nucleus [71]. It is possible that the CRWN-like 

protein in Plasmodium is similarly localizing to the heterochromatin region of the nucleus. 

Further experiments will be needed to validate the exact function of this CRWN-like protein 

during parasite development. 
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Protein interaction study  

To investigate parasite-specific molecular components interacting with SMC3 and CRWN-like 

proteins, we performed immunoprecipitation experiments using the custom generated antibodies. 

Briefly, mixed-stage parasite protein lysates were subjected to Dnase I and heparin sulfate 

treatment to solubilize chromatin-associated complexes. The solubilized protein fraction was 

incubated with anti-SMC3 or anti-CRWN-like custom antibodies and the antibody-protein 

complexes were collected using magnetic beads. In duplicate experiments, proteins interacting 

with SMC3 or CRWN-like proteins were analyzed using MudPIT. A total of 45 proteins were 

detected with ≥2-fold higher abundance to be interacting with SMC3 in the parasite 

(Supplemental Figure3.3, Supplemental File 3.5). These proteins enriched for GO terms 

associated with DNA- and RNA-binding such as transcription factor with AP2 domain (fold 

change = infinity), HMGB1 (fold change = infinity), and nucleosome assembly protein (fold 

change = infinity). Additionally, we successfully recovered SMC3 (fold change = infinity) and 

another subunit of the cohesin complex, SMC1 (PF3D7_1130700, fold change = infinity), which 

validates our methodology. However, using the anti-CRWN-like antibody, we were unable to 

immunoprecipitate the CRWN-like protein and its binding partners, indicating that the antibody-

protein interaction was too weak for the immunoprecipitation methodology. Alternative tagging 

strategies will be needed to identified interacting partners of CRWN-like protein in the parasite.  

Genomic distribution of our candidate proteins 

In order to determine the genome-wide distribution of SMC3 and CRWN-like proteins, we next 

performed ChIP-seq experiments. Briefly, trophozoite stage parasites were cross-linked with 

formaldehyde. Sonicated chromatin was incubated with anti-SMC3 and anti-CRWN-like 

antibodies and the resulting DNA-protein-antibody complexes were collected using Agarose 
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beads. Purified DNA fragments were sequenced using next-generation sequencing technology. A 

no-antibody sample was used as a negative control. In trophozoites, SMC3 marking was 

restricted to the centromere region on all 14 chromosomes (Figure 3.9). Cohesin consists of four 

protein subunits (SMC1, SMC3, SCC1 and SCC3) and the enrichment of this complex in 

genomic locations exists in all eukaryotes. In mammalian cells, cohesin sites are found near 

transcription start sites and co-localizing with CTCF, where they play multiple roles in chromatin 

organization [72, 73]. In yeast, cohesin localizes to centromeres and extends to nearby 

pericentromeric regions [74, 75]. Preferential loading of cohesin at centromeres is a kinetochore-

dependent process [76]. The parasite SMC3 distribution during the trophozoite stage resembles 

the yeast cohesin occupancy. At the trophozoite stage the parasite prepares for mitosis and our 

results suggest that cohesin has a possible role in sister chromatid separation during and cell cycle 

regulation at this developmental time point. However, in comparison with the yeast cohesin 

distribution, the parasite SMC3 occupancy does not extend to nearby pericentromeric regions, 

which suggests that the SMC3 subunit in particular might be important for sister chromatid 

cohesion.    
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Materials and Methods  

Chromatin-associated domain search 

Protein sequences were obtained from the following sources: PlasmoDB version 29.0 (P. 

falciparum strain 3D7), PlasmoDB version 29.0 (P. vivax strain Sal I), ToxoDB version 24.0 (T. 

gondii strain ME49), TriTrypDB version 24.0 (T. brucei strain TREU927, T. cruzi strain CL 

Brener Esmeraldo-like, and L. major strain Friedlin), Saccharomyces Genome Database (S. 

cerevisiae strain S288C genome assembly R64-2-1, PomBase (S. pombe downloaded on 25 June 

2015), Araport (A. thaliana 11 downloaded on 10 Jan 2017), Ensembl release 80 (H. sapiens 

genome assembly GRCh38.p2, C. elegans genome assembly WBcel235, and D. melanogaster 

genome assembly BDGP6). 

Figure 3.9: ChIP-seq analysis showing genome-wide distribution of SMC3 in trophozoites. The red 
box indicates the location of the centromere on each chromosome. 
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Protein sequences were first searched for the presence of Pfam HMM profiles (Pfam version 

30.0) using the function hmmscan of the HMMER software package (version 3.16, February 

2015) as described in [17]. Domains were also searched independently using NCBI Reversed 

Position Specific BLAST (RPS-BLAST version 2.6.0) against NCBI conserved domain database 

(pre-calculated PSSMS originating from Cdd from various alignment collections version 3.16). 

For each protein, if multiple RPS-BLAST hits were reported for the same conserved domain, only 

the one with the highest percent identity is maintained. An e-value of 0.001 was used for both 

approaches, and if a protein has multiple isoform, only the first isoform is kept. Chromatin 

associated protein candidates were filtered using 3,870 pre-filtered chromatin associated domains. 

The list of chromatin-associated domains was generated based on domain annotation found on 

NCBI conserved domain database as well as pfam domain database.  To obtain such list, we first 

searched the pfam database using keywords that are known to be related to nucleus or chromatin 

regulation such as Nucleoporin, nuclear pore complex, chromatin remodeling, histone 

modification, and etc. (see Additional  for details). Next, we further selected chromatin-associated 

domains in the resulting list base on their annotation. Similarly approach was used to identify 

chromatin associated domains within the NCBI conserved domains listed cddid_all.tbl file. Next, 

both chromatin-associated domain lists were combined and carefully curated by person. Domains 

without a clear defined of chromatin or nuclear related functions were excluded from the final 

list. Finally, pfam domain identifiers from hmmscan result were converted into NCBI PSSMS 

identifiers, and result lists from both approaches were merged.  To obtain the final chromatin 

associated candidate proteins in plasmodium falciparum, both manual-curating and a list of 

exported proteins that includes all proteins with an Export Prediction (ExportPred) score above 5, 

as well as proteins with an PEXEL or HT motif for export to the red blood cell membranes 

(downloaded from PlasmoDB) was used to rule out the potential false positive proteins, as these 
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proteins are more likely to be exported into the red blood cell than to be exported into the 

nucleus. 

Protein classification 

Candidate proteins were classified based on their general function using existing annotations and 

known function of homologs in other species from various sources including PlasmoDB, UniProt, 

and NCBI gene database. Proteins with no annotation detail were classified based on their domain 

functionality.  

Gene expression analysis for plasmodium CAPs 

The gene expression profiles and boxplot were generated using steady-state mRNA expression 

profile downloaded at plasmodb.org. The expression profiles were pre-processed using 

standardized pipelines and are RPKM transformed. For boxplot, gene groups were generated 

based on gene annotation and the list of RNA binding proteins were obtained from [17]. 

Barplot comparison of CAPs 

For each organism, both hmmscan and RPS-BLAST approaches were used and merged as 

previous described.  Since not all genomes have been annotated at the same level, manual 

curation was avoided to eliminate bias and to ensure a fair comparison between organisms; 

therefore, we systematically calculated the number of protein containing any of the filtered 

chromatin-associated domains (n = 3,870) irrespective to protein annotation. For each organism, 

the calculated value is then corrected by the proteome size and expressed as the percentage of 

chromatin-associated protein in the full proteome of that organism. 
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Domain Heatmap 

For each chromatin-associated domain presented in any of the 11 organisms, we first calculated 

its abundance in all organisms. Next, the abundance value is corrected by genome size and 

expressed as the number per 10,000 genes. Any domains with a value of zero after genome size 

correction were removed. The remaining relative abundance values are scaled to the domain 

frequency in the organism with the highest relative abundance of that domain. Finally, all 

chromatin-associated domains (n= 2,867) obtained in at least one of the organisms was clustered 

using k-mean clustering algorithm with a maximum of 1000 iterations (R v3.31). The number of 

clusters was selected based on percentage of variance, in which a minimum of 60% variance is 

required and an increase in number of cluster did not capture at additional 2% of the variance. 

Domains associated GO enrichment analysis was performed with dcGO 

(http://supfam.org/SUPERFAMILY/dcGO/index.html) with default parameters and pfam domain 

IDs. 

Parasite cultures 

The P. falciparum strain 3D7 was cultured in human O+ erythrocytes at 5% hematocrit as 

previously described [77]. Cultures were synchronized at ring stage with 5% (w/v) D-sorbitol 

treatments [78]. Parasite cultures (8% parasitemia in 5% hematocrit) were harvested 48 hours 

after the first sorbitol treatment (ring stage) and 18 hours (trophozoite stage) and 36 hours 

thereafter (schizont stage). 

Chromatin enrichment for proteomics (ChEP) 

Chromatin-associated proteins were isolated at different stages of the parasite erythrocytic cycle 

(early ring, early trophozoite and early schizont stages) using a protocol adapted from [42]. 
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Briefly, synchronized parasites were crosslinked with 1% formaldehyde for 15 min at 37°C. 

Crosslinking was quenched by adding 0.125 M glycine for 5 min at room temperature. The 

parasites were then washed with phosphate-buffered saline (PBS), incubated in nuclear extraction 

buffer (10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 0.5 mM AEBSF, protease 

inhibitor cocktail (Roche) and 0.25% Igepal) for 30 min and needle sheared using a 25-gauge 

needle. Extracted nuclei were spun at 4000 rpm for 20 min at 4°C. 

The nuclear pellet was washed with highly denaturing extraction buffers containing 4% SDS and 

8M urea to wash away non-crosslinked proteins. Chromatin was solubilized and genomic DNA 

was sheared by sonication (Covaris).  As a negative control, protein from the cytoplasmic 

fractions of the early trophozoite and late schizont parasites were extracted. 

For the isolation of cytoplasmic fractions, synchronized parasite cultures were collected and 

subsequently lysed by incubating in 0.15% saponin for 10 min on ice.  Parasites were centrifuged 

at 4,200 rpm for 10 min at 4°C, and washed three times with PBS.  For each wash, parasites were 

resuspended in cold PBS and centrifuged for 10 min at 4,200 rpm at 4°C.  After the last wash, 

parasites were resuspended in PBS, transferred to a microcentrifuge tube and centrifuged for 5 

min at 5,000 rpm at 4°C.  Subsequently, the parasite pellet was resuspended in 1.5X volume of 

cytoplasmic lysis buffer (0.65% Igepal CA-360 (Sigma-Aldrich), 10 mM Tris-HCl pH 7.5, 150 

mM NaCl, 1 mM EDTA, 1 mM EGTA, 2 mM 4-(2-aminoethyl)benzenesulfonyl fluoride 

hydrochloride (AEBSF), and EDTA-free protease inhibitor cocktail (Roche)) and lysed by 

passing through a 26G ½ inch needle fifteen times.  Parasite nuclei were centrifuged at 13,000 

rpm for 15 min at 4°C and the supernatant containing the cytoplasmic extract was collected. 
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Custom antibody generation 

Custom peptide antibodies were designed to target the C-terminal domain of 2 proteins; 

PF3D7_1325400 and PF3D7_0414000 (Thermo Fisher Scientific). For PF3D7_1325400 a 17 

amino acid peptide (sequence: KEANKNIKLLQKYNKKM) and for PF3D7_0414000 a 18 

amino acid peptide (sequence: KNEAYEIISIEEKHALEN) was used to immunize two rabbits. 

Antisera from day 72 post-immunization was collected and affinity purified to purify antibodies 

specifically targeting the protein of interest. 

Immunofluorescence microscopy 

P. falciparum asexual and sexual stage parasites were fixed onto slides using 4% 

paraformaldehyde for 30 min at RT. Slides were washed three times using 1x PBS. The parasites 

were permeabilized with 0.1% Triton-X for 30 min at RT, followed by a wash step with 1x PBS. 

Samples were blocked overnight at 4°C in IFA buffer (2% BSA, 0.05% Tween-20, 100 mM 

glycine, 3 mM EDTA, 150 mM NaCl and 1x PBS). Cells were incubated with anti-Histone H3 

antibody (ab8898 (Abcam) for gametocyte samples; 1:500 and 07-442 (Millipore) for asexual 

stage samples; 1:500) for 1 hr at RT followed by anti-rabbit Alexa Fluor 488 (Life Technologies 

A11008; 1:500). Slides were mounted in Vectashield mounting medium with DAPI. Images were 

acquired using the Olympus BX40 epifluorescence microscope or the Leica SP5 confocal 

microscope. 

Western blot analysis 

Mixed-stage 3D7 P. falciparum parasite cultures were collected and lysed using 0.15% saponin 

for 10 min on ice. After subsequent washes, the parasite pellet was resuspended in 1.5X volume 

of cytoplasmic lysis buffer (0.65% Igepal  CA-360 (Sigma-Aldrich), 10 mM Tris-HCl pH 7.5, 
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150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2 mM 4-(2-aminoethyl)benzenesulfonyl fluoride 

hydrochloride (AEBSF), and EDTA-free protease inhibitor cocktail (Roche)) and lysed by 

passing through a 26G ½ inch needle fifteen times. Parasite nuclei were centrifuged at 13,000 

rpm for 15 min at 4°C and the supernatant containing the cytoplasmic extract was collected. To 

extract proteins from the parasite nucleus, the nuclear pellet was resuspend in 1 ml of shearing 

buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris pH 7.5, protease inhibitors, phosphatase inhibitors), 

lysed by passing through a 26 G ½ inch needle seven times, and sonicated seven times 10 seconds 

on/30 seconds off using a probe sonicator. Extracted nuclear protein lysates were incubated for 10 

mins at room temperature with DNase I to remove DNA and centrifuged for 10 mins at 13,000 

rpm to remove cell debris. 

Twenty micrograms of parasite cytoplasmic and nuclear protein lysates were diluted 1:1 in 2X 

laemmli buffer and heated at 95°C for 10 mins. The protein lysates there then loaded on an Any-

KD SDS-PAGE gel (Bio-rad) and run for 1 hour at 125 V. Proteins were transferred to a PVDF 

membrane for 1 hour at 18 V, stained using custom antibodies generate against PF3D7_1325400 

(Thermo Fisher, 1:100) and PF3D7_0414000 (Thermo Fisher, 1:100) and Goat Anti-Rabbit IgG 

HRP Conjugate (Bio-Rad, 1:10,000). The membranes were visualized using the Bio-Rad 

ChemidDoc MP Gel Imager. 

Protein pull-down assay 

Mixed-stage 3D7 P. falciparum parasite cultures were collected and lysed using 0.15% saponin 

for 10 min on ice. After subsequent washes, the parasite pellet was resuspended in 2.5X volume 

of IP buffer (0.65% Igepal  CA-360 (Sigma-Aldrich), 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 

mM EDTA, 1% Triton-X, 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 

(AEBSF), 5 µM E-64 and EDTA-free protease inhibitor cocktail (Roche)) and lysed by passing 
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through a 26G ½ inch needle ten times and sonicated 7 times 10 seconds on/30 seconds off using 

a probe sonicator.  Extracted nuclear protein lysates were incubated for 10 mins at room 

temperature with DNase I to remove DNA and centrifuged for 10 mins at 13,000 rpm to remove 

cell debris. 

Washed Protein A magnetic beads (Pure Proteome) were added to the protein sample  and 

incubated for 1 hour at 4°C to preclear the lysate. Precleared lysate was collected to a new 

microcentrifuge tube and split equally for the antibody and no antibody control. The SMC3 

custom antibody was added at a 1:50 ratio the antibody tube and incubated overnight at 4°C. The 

negative control with no antibody was also incubated overnight. Antibody-protein complexes 

were recovered using Protein A magnetic beads (Pure Proteome), followed by extensive washes 

with wash buffer A (1% Triton-X, 1 mM EDTA in 1X PBS), wash buffer B (wash buffer A, 0.5 

M NaCl) and wash buffer C (1 mM EDTA, 1X PBS). Proteins were eluted using 0.1 M glycine, 

pH 2.8 and the eluent was neutralized using 2 M Tris-HCl, pH 8.0. 

Chromatin immunoprecipitation 

Synchronized parasite cultures were collected at the early trophozoite stage and subsequently 

lysed by incubating in 0.15% saponin for 10 min on ice.  Parasites were centrifuged at 4,200 rpm 

for 10 min at 4°C, and washed three times with PBS.  For each wash, parasites were resuspended 

in cold PBS and centrifuged for 10 min at 4,200 rpm at 4°C.  Subsequently, parasites were 

crosslinked for 10 min with 1% formaldehyde in PBS at 37°C.  Glycine was added to a final 

concentration of 0.125 M to quench the crosslinking reaction, and incubated for 5 min at 

37°C.  Parasites were centrifuged for 5 min at 5,000 rpm at 4°C, washed twice with cold PBS and 

stored at -80°C.  
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Parasites were incubated on ice in nuclear extraction buffer (10 mM HEPES, 10 mM KCl, 0.1 

mM EDTA, 0.1 mM EGTA, 1 mM DTT, 0.5 mM 4-(2-aminoethyl)benzenesulfonyl fluoride 

hydrochloride (AEBSF), EDTA-free protease inhibitor cocktail (Roche) and phosphatase 

inhibitor cocktail (Roche).  After 30 min, Igepal CA-360 (Sigma-Aldrich) was added to a final 

concentration of 0.25% and the parasites were lysed by passing the suspension through a 26 G ½ 

inch needle seven times.  Parasite nuclei were centrifuged at 4°C for 20 min at 5,000 

rpm.  Parasite nuclei were resuspended in shearing buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris 

HCl pH 7.5, EDTA-free protease inhibitor cocktail (Roche), and phosphatase inhibitor cocktail 

(Roche).  Chromatin was fragmented using the Covaris Ultra Sonicator (S220) for 8 min with the 

following settings; 5% duty cycle, 140 intensity peak incident power, 200 cycles per burst).  To 

remove insoluble material, samples were centrifuged for 10 min at 14,000 rpm at 4°C. 

Fragmented chromatin was diluted 1:1 in ChIP dilution buffer (30 mM Tris-HCl pH 8, 3 mM 

EDTA, 0.1% SDS, 300 mM NaCl, 1.8% Triton X-100, EDTA-free protease inhibitor cocktail 

(Roche) and phosphatase inhibitor cocktail (Roche).  Samples were precleared with Protein A 

Agarose beads to reduce non-specific background and incubated overnight at 4°C with 2 µg of 

custom anti-SMC3 antibody (Thermo Fisher Scientific).  Antibody-protein complexes were 

recovered using Protein A Agarose beads, followed by extensive washes with low salt immune 

complex wash buffer, high salt immune complex wash buffer, LiCl immune complex wash buffer 

and TE buffer.  Chromatin was eluted from the beads by incubating twice with freshly prepared 

elution buffer (1% SDS, 0.1 M NaHCO3) for 15 min at RT.  Samples were reverse crosslinked 

overnight at 45°C by adding NaCl to a final concentration of 0.5 M.  RNase A (Life 

Technologies) was added to the samples and incubated for 30 min at 37°C followed by a 2 h 

incubation at 45°C with the addition of EDTA (final concentration 8 mM), Tris-HCl pH 7 (final 

concentration 33 mM) and proteinase K (final concentration 66 µg/mL; New England 
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Biolabs).  DNA was extracted by phenol:chloroform:isoamylalcohol and ethanol 

precipitation.  Extracted DNA was purified using Agencourt AMPure XP Beads (Beckman 

Coulter). 

Libraries from the ChIP samples were prepared using the KAPA Library Preparation Kit (KAPA 

Biosystems).  Libraries were amplified for a total of 12 PCR cycles (12 cycles of [15 s at 98°C, 

30 s at 55°C, 30 s at 62°C]) using the KAPA HiFi HotStart Ready Mix (KAPA 

Biosystems).  Libraries were sequenced with a NextSeq500 DNA sequencer (Illumina). 

Raw reads quality was first analyzed using 

FastQC(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and the first 15 bp and the 

last base were removed. Any base with a quality score below 25 was trimmed using Sickle 

(https://github.com/najoshi/sickle).  Trimmed reads are then mapped to P. falciparum genome 

(v34) using Bowtie2 (v2.2.2) [79]. Uniquely mapped reads were further filtered, and Read 

coverage per nucleotide was first determined using BEDTools. The negative control library was 

obtained from NCBI GEO database under accession number, GSE85478. The negative control 

represented a no antibody control from the early trophozoite stage as described previously [80]. 

Both libraries were then normalized by dividing numbers of million mapped reads and signals 

from negative control library was subtracted from Cohesion ChIP-seq library. Genome browser 

tracks were generated and viewed using Integrative Genomic Viewer (IGV) by Broad institute. 

Centromere locations were obtained from [81]. 

Multidimensional Protein Identification Technology (MudPIT) 

Proteins were precipitated with 20% trichloroacetate acid (TCA) and the resulting pellet was 

washed once with 10% TCA and twice with cold acetone. About 50 µg of the TCA-precipitated 

protein pellet was solubilized using Tris-HCl pH 8.5 and 8 M urea, followed by addition of TCEP 
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(Tris(2-carboxyethyl)pho- sphine hydrochloride, Pierce) and CAM (chloroacetamide, Sigma) 

were added to a final concentration of 5 mM and 10 mM, respectively. The protein samples was 

digested using Endoproteinase Lys-C at 1:100 w/w (Roche) at 37 °C overnight. The samples were 

brought to a final concentration of 2 M urea and 2 mM CaCl2 and a second digestion was 

performed overnight at 37 °C using trypsin (Promega) at 1:100 w/w. The reactions were stopped 

using Formic acid (5% final). The samples were loaded on a split-triple-phase fused-silica micro-

capillary column and placed in-line with a linear ion trap mass spectrometer (LTQ) (Thermo 

Scientific), coupled with a Quaternary Agilent 1100 Series HPLC system. All samples were run 

in low resolution mode. A fully automated 10-step chromatography run (for a total of 20 h) was 

carried out, as described in [82]. Each full MS scan (400–1600 m/z) was followed by five data-

dependent MS/MS scans. The number of the micro scans was set to 1 both for MS and MS/MS. 

The dynamic exclusion settings used were as follows: repeat count 2; repeat duration 30 s; 

exclusion list size 500 and exclusion duration 120 s, while the minimum signal threshold was set 

to 100. The MS/MS data set was searched using SEQUEST [83] against a database consisting of 

5538 P. falciparum non-redundant proteins (downloaded from PlasmoDB on 24 March 2016), 

34,521 Homo sapiens non-redundant proteins (downloaded from NCBI on 24 March 2016), 177 

usual contaminants (such as human keratins, IgGs, and proteolytic enzymes), and, to estimate 

false discovery rates (FDRs), 36,179 randomized amino acid sequences derived from each non-

redundant protein entry. To account for alkylation by CAM, 57 Da were added statically to the 

cysteine residues. To account for the oxidation of methionine residues to methionine sulfoxide 

(which can occur as an artifact during sample processing), 16 Da were added as a differential 

modification to the methionine residue. Peptide/spectrum matches were sorted and selected using 

DTASelect/CONTRAST [84]. Proteins had to be detected by one peptide with two independent 

spectra, leading to average FDRs at the protein and spectral levels. To estimate relative protein 
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levels and to account for peptides shared between proteins, normalized spectral abundance factors 

(dNSAFs) were calculated for each detected protein, as described in [85]. 

MudPIT data analysis 

A total of two biological replicates, and two technical replicates for each biological replicate was 

performed for ChEP and cytoplasmic control samples at ring, trophozoite and schizont stages. 

Enrichment for chromatin-associated proteins in each individual experiment was defined as 

detection of two or more spectra of that protein in the ChEP sample and a more than two-fold 

higher normalized abundance (dNSAF) as compared to the control cytoplasmic sample. List of all 

proteins that were detected in our samples and individual peptide/spectral counts are provided in 

Supplemental File 3.2. 

Nuclear proteome and chromatin-bound proteome comparison 

P. falciparum nuclear proteome dataset from [69] was used for the comparison. For each asexual 

stage (ring, trophozoite, schizont), 8 replicates from the Oehring dataset and 4 replicates from our 

MudPIT analysis were merged and averaged. Enrichment for nuclear proteins or chromatin-

associated proteins in each experiment was defined as detection of two or more uniquely detected 

peptides of that protein in the nuclear or ChEP sample and a more than two-fold higher fold 

change as compared to the control cytoplasmic sample. Enriched GO terms for uniquely detected 

proteins in each dataset were determined using the PlasmoDB GO enrichment tool. 

Discussion and Conclusion 

Increasing evidence points towards genome architecture and chromatin structure regulation 

playing an important role in gene expression throughout the life cycle of P. falciparum [37, 86-

89]. To better understand how the three-dimensional structure of the genome is being maintained, 
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it is vital to identify which proteins and protein-complexes associating with chromatin throughout 

parasite development. Although snapshots of the parasite proteome have been generated [26, 69], 

no such complementary approaches have been performed to generate an accurate view of 

chromatin-associated proteins throughout the parasite life cycle. The dataset presented here gives 

the most complete overview of the chromatin-bound proteome in P. falciparum to date. 

By searching the parasite proteome using a large collection of Pfam (HMM) and NCBI (RPS-

BLAST) chromatin-associated domains, we have attempted to identify all CAPs throughout the 

parasite life cycle. Since P. falciparum genome is relatively distant from more traditional model 

organisms, we used less-stringent parameters for the HMM search to be able to identify CAPs. In 

addition, we have tried to account for false positive hits by using information from current 

genome annotation to filter our initial broad search to proteins that specifically interact with 

chromatin. The overall gene expression profiles of the identified candidate CAPs in many stages 

of the parasite’s life cycle show similar expression levels to transcription factors, which indicates 

the importance of the candidate CAPs in gene regulation (Figure 3.3). 

In an unbiased comparison with other eukaryotic organisms, we observed that P. falciparum 

encodes a similar number of CAPs as compared with other apicomplexan parasites but a 

relatively lower number than the similarly sized budding yeast (Figure 3.4).  However, more 

CAPs are found in P. falciparum compared to kinetoplastids T. brucei, T. cruzii and L. major. 

Transcriptional regulation in these euglenid organisms is unusual as it is polycistronic, and these 

organisms regulate their gene expression mostly at the post-transcriptional level [90]. In contrast, 

accumulating evidence suggests that P. falciparum uses chromatin structure as a basal control for 

gene regulation [37, 86-89, 91], which reflects the importance of CAPs in parasite biology.  
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 Cluster analysis based on the expression of the CADs in a variety of eukaryotic organisms 

revealed twelve distinct clusters (Figure 3.5). Cluster 1, highly abundant in apicomplexan 

parasites and plants harbors proteins containing AP2 domains. The enrichment of these parasite 

and plant-specific domains in our expression analysis further validates our classification. More 

importantly, these protein domains are underrepresented in mammalian organisms, which points 

towards the existence of parasite and plant specific chromatin regulation pathways that could be 

ideal drug targets. Cluster 4, enriches for proteins containing SMC domains and is expressed 

across many eukaryotes including apicomplexans, kinetoplastids, and yeast. SMC domain-

containing proteins are a large family of ATPases that play a role in many aspects of chromosome 

organization [56]. Cohesin protein complexes containing core subunits SMC1 and SMC3 regulate 

the separation of sister chromatids during cell division [55], while the condensin complex 

containing core subunits SMC2 and SMC4 regulate chromosome assembly and segregation 

during mitosis and meiosis [57]. Additional clusters revealed CADs that are relatively depleted in 

Plasmodium species as compared to one or multiple other organisms. Interestingly, kinetoplastids 

(cluster 5), yeast (cluster 8), human (cluster 9) and plant (cluster 12) also show enrichment for 

several CADs as compared other organisms, suggesting that these organisms have also developed 

particular species-specific chromatin-related mechanisms.   

Out of the in silico identified 1,190 P. falciparum proteins that contain a chromatin-associated 

domain, 397 proteins (40%) were experimentally confirmed via our Chromatin Enrichment for 

Proteomics (ChEP) approach. Proteins that were not identified using our ChEP methodology may 

only be transiently expressed or may have low expression levels and are thus difficult to detect by 

mass spectrometry. It is also important to note that the presence of a protein in the ChEP sample 

is not sufficient to conclude that it has a function in chromatin structure, since a number of 

proteins with no expected chromatin function can be found in our experiment. However, the 
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preservation of in vivo chromatin characteristics through cross-linking is vital for studying 

chromatin-associated processes by proteomics. Thus, by implementing the ChEP methodology 

we have tried to enrich for chromatin-bound factors by minimizing the loss of transiently bound 

factors and reducing the risk of purification artifacts that can be introduced after cell lysis. To 

validate the efficiency of the ChEP protocol in enriching for chromatin-bound proteins, we 

compared our analysis to a previously published P. falciparum nuclear proteome dataset [69]. 

Overall, 30% of enriched proteins were shared between the nuclear proteome analysis and ChEP 

sample. However, many proteins with non-chromatin related functions such as transporter 

activity were enriched in the nuclear proteome and were not identified using our ChEP 

methodology and many DNA- and RNA-binding proteins were enriched in our ChEP sample and 

were not enriched in the nuclear proteome analysis. Taken together, these results demonstrate the 

use of this novel methodology to enrich for chromatin-bound components in the parasite in an 

unbiased manner.  

As cohesin and condensin protein complexes are conserved from bacteria to human they are not 

among the most effective drug targets. While SMC proteins are annotated in P. falciparum, 

further characterization of these proteins is lacking. Here, we have explored the expression, 

localization and genome-wide distribution of the SMC3 protein in the parasite. Using 

immunofluorescence, we observe a single SMC3 focus at the trophozoite and schizont stages 

(Figure 3.8B). This result was validated by our ChIP-seq analysis showing the distribution of 

SMC3 at the trophozoite stage to be confined to the centromeric regions on all chromosomes. 

According to previously published P. falciparum nuclear architecture data, the centromeres of all 

chromosomes cluster together in one region of the parasite nucleus and therefore proteins, such as 

SMC3, localizing to the centromeric regions of chromosomes would appear as a single focus in 
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immunofluorescence experiments. Additional mechanistic insight into how this protein functions 

in the parasite is lacking and warrants further investigation. 

Plant-related SMC domain-containing proteins, Crowded Nuclei (CRWN) proteins, are not as 

widely conserved in other eukaryotes. In A. thaliana CRWN proteins are among the coiled-coil 

proteins among the Nuclear Matrix Constituent Protein (NMCP) family of proteins and was 

originally identified as a protein residing on the nuclear periphery in carrots [92]. Previous studies 

have demonstrated the importance of CRWN proteins in plant viability as evident by the inability 

to recover mutants with disruptions in the CRWN genes [71]. Additionally, mutants deficient in 

CRWN proteins exhibit altered nuclear organization including reduced nuclear size, abnormal 

nuclear shape and heterochromatin organization. The coiled-coil domain and nuclear periphery 

localization suggests that these NMCP-related proteins might be functionally analogous to 

components of the animal nuclear lamina [45].  Despite the critical role of lamina proteins in 

providing structure to the metazoan nucleus, lamina proteins have not been identified in plants or 

unicellular eukaryotes. While lamina-like protein (NUP-1) has been detected in kinetoplastids 

[93], lamina-like proteins have not been detected in Plasmodium [34]. Here, we identify and 

localize, for the first time, a possible CRWN-like protein in P. falciparum that might be an 

integral part of the parasite nucleus. The CRWN-like protein localizes to a single focus inside the 

nucleus at ring and schizont stages and it is possible that this protein regulates heterochromatin 

regions in the nucleus, much like what has been observed in plant species [71]. Further 

characterization of CRWN-like proteins in Plasmodium could improve our understanding of 

telomere and antigenic variation gene clustering at the nuclear periphery. More importantly, the 

identification of novel plant-related proteins that play an important role in parasite nuclear 

organization can serve as ideal as drug targets that can disrupt the parasite 3D nuclear structure 

with high specificity and low toxicity to the host. 
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This study presents the most comprehensive overview of chromatin-associated proteins in P. 

falciparum to date. We have computationally identified chromatin-binding proteins based on the 

presence of chromatin-binding domains and further classified these candidate proteins into 

functional categories. We have also provided experimental evidence for CAPs during parasite 

development using a new methodology termed Chromatin Enrichment for Proteomics (ChEP). 

We have further validated cellular localization and expression for two candidate chromatin-bound 

proteins. The function of many CAPs is still unknown and further characterization of CAPs is 

needed to increase our understanding of parasite biology. It is likely that our results will not only 

boost our understanding of chromatin structure and chromatin-based processes, but will also help 

to identify key players in pathogenesis and gene regulation in the malaria parasite. 
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Supplemental Figure 3.2. Comparison amongin silico CAPs and ChEP and nuclear proteome. A) 
Comparison of computationally identified CAPs with the ChEP enriched CAPs. B) Comparison of ChEP 
enriched CAPs with the parasite nuclear proteome enriched proteins based on the number of uniquely 
detected peptides. 
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Abstract 

The most lethal malaria causing parasite, Plasmodium falciparum, has a complex life cycle that 

involves multiple developmental stages and is likely regulated by the coordinate changes in gene 

expressions. A limited number of transcription factors were identified in the Plasmodium genome 

and increasing evidence has shown that epigenetic regulation and post-transcriptional 

mechanisms may play essential roles in the parasite’s gene regulation system. In all eukaryotes, 

many long non-coding RNAs have been identified and been shown to be pivotal regulators of 

genome structure and gene expression. In this chapter, we explore the intergenic long non-coding 

RNAs distributed in nuclear and cytoplasmic subcellular locations. With the assistance of our 

recently generated nascent RNA expression profiles, we identified a total of 1,094 lncRNAs, 

including 574 nuclear enriched lncRNAs, 290 cytoplasmic enriched lncRNAs, and 230 lncRNAs 

found in both nuclear and cytoplasmic fractions. We observed that these detected lncRNAs are 

differentially expressed across the parasite’s life cycle. The difference in subcellular location and 

stage specific expression suggests that the lncRNAs are subjected to different regulation 

processes and have different targets in the genome. It is likely that many of the nuclear enriched 

lncRNAs are critical for regulation of chromatin structure, while the cytoplasmic enriched 

lncRNA may be involved in post-transcriptional and translational regulations.  Some of these 

lncRNAs may also have a role in protein complex formation. Further in-depth study and 

experimental confirmation of these lncRNAs would provide significant insights into the gene 

expression and regulation systems of this lethal parasite. 
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Introduction  

Malaria is a mosquito-borne infectious disease caused by the protozoan parasite of the genus 

Plasmodium. Among the human-infection plasmodium species, Plasmodium falciparum is 

responsible for the most severe forms of malaria and the death of nearly half a million people 

each year [1]. The parasite has a complex life cycle involving multiple biological stages in both 

human and mosquito hosts. During the erythrocytic stage of the asexual phase in a human, the 

parasite replicates in red blood cells and goes through ring, trophozoite and schizont stages. Each 

48-hour cell division cycle will produce 16-32 daughter cells or merozoites that are released into 

the blood stream for new invasions. Large accumulation of infected red blood cells will result in a 

blockage of the vascular system and cause the host to suffer from recurring fevers, resulting in 

death of the host in severe cases. In addition, a subset of parasites will sexually develop into 

gametocytes circulating in the blood stream that are ready to be picked up by a mosquito during a 

blood meal.  The parasite will then develop through asexual cycle in the mosquito and be ready 

for new malarial infection within the next person. This multiple-stage processing is tightly 

regulated, but the mechanisms regulating these events are still not well understood.  

Compared to other eukaryotes with similar genome size, P. falciparum has an extremely AT-rich 

genome and a relatively low number of detected transcription factors. Thought it is still unclear 

how this parasite manages its gene expression to coordinate its complex cell cycle, evidence has 

increasingly shown that epigenetic regulation plays a major role in initiating and directing 

transcriptional process in P. falciparum. In addition, nascent RNA expression profiles revealed 

that a majority of the genes are transcribed during the trophozoite stage and that the cascade of 

gene expression observed using messenger RNA (mRNA) is likely the result of a combination of 

transcriptional [2-6] and post-transcription regulation events [7-11]. Taken together, these data 
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highlight the importance of mechanisms involved in epigenetics and post-transcriptional 

regulations.  

In the past decade, advances in biotechnologies and next generation sequencing technologies 

have led to huge progress in genomic study and revealed that transcriptome is much larger than 

what we once expected. Recent evidence suggests that approximately 80 to 90% of the human 

genome might be transcribed in at least one cell type [12-14]. Though some scientists have 

argued that many of these transcripts are a result of transcriptional noise, many believe that these 

transcripts are functional elements with biological roles that are yet to be discovered. It is now 

becoming clear that what made up this large number of transcripts are non-coding RNAs (ncRNA) 

with diverse regulatory roles in an orgasm’s biological system.  

One class of ncRNAs is the long noncoding RNAs (lncRNA).  LncRNAs are defined as none 

protein encoding RNA molecules with length of 200 nucleotides or longer. Many lncRNAs share 

features with the mature messenger RNAs (mRNAs) including 5’ caps, polyadenylated tails, and 

introns. In addition, lncRNAs are often expressed and functionally associated in a cell-type-

specific manner; lncRNA enriched in the nuclear fraction often associated with regulation of 

epigenetic and transcription regulation [15-18], while lncRNA enriched in the cytoplasm are 

associated with mRNA processing, post-transcriptional regulation, translational regulation, and 

cellular signaling process [15, 19-21].  In Plasmodium falciparum, though many lncRNAs have 

been identified, the biological significance of these lncRNAs remains elusive. Majority of the 

well-studied lncRNAs have been nuclear lncRNA and are thought to be involved in different 

aspects of chromatin biology. Some of the best-characterized lncRNAs are the telomere-

associated repetitive element transcripts (lncRNA-TAREs) [22] and telomeric repeat containing 

lncRNAs (TERRA) [23]. Both type lncRNAs showed stage-specific expression preferences and 
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are suggested to be associated with heterochromatin environment maintenance and var gene 

regulation. To better understand the biological significance of lncRNAs, we further explore the 

transcriptome of P. falciparum in both nuclear and cytoplasmic fractions. We then attempt to 

characterize lncRNAs base on their cellular location, peak of expression, physical properties, and 

epigenetic regulatory marks.  

Result 

Identification of lncRNAs 

To further explore the lncRNA populations in P. falciparum we extracted total RNA from both 

nuclear and cytoplasmic fractions from synchronized parasite cultures at ring (0 hpi), trophozoite 

(18hpi), schizont (36hpi), and gametocyte stage. Blood smears were used to assess the 

development of parasite progression (Figure 4.1A). In brief, synchronized parasites are collected 

from cell culture followed by a modified cell fractionation procedure described in PARIS kit 

(ThermoFisher). See Methods for detailed cell fractionation procedure. Successful isolation of 

both subcellular fractions was validated using western blot with the Anti-histone H3 antibody as a 

nuclear specific marker, and an anti-aldolase antibody as a marker specific to the cytoplasmic 

fraction (Figure 4.1B). After separation of nuclear material from the cytoplasmic material, total 

RNAs are extracted using Trizol LS Reagent for both fractions and polyadenylated mRNA are 

isolated from total RNA. Strand-specific libraries were then prepared and sequenced on the 

Illumina Next500 sequencing platform. Reads were trimmed and mapped to P.falicpuarm 

genome (v34) using HiSAT2 and only uniquely mapped reads were used for downstream 

applications. Details about read processing and mapping can be found in the Methods section. As 

verification, we calculated the spearman correlation in gene expression levels among nuclear 

samples, cytoplasmic samples, and a previous published steady-state total mRNA dataset 
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generated in our lab [24]. Spearman correlation coefficients are reported in supplemental figure 

4.2. Once validated, a computational pipeline was implemented for the identification of lncRNAs. 

In brief, we first merged all nuclear and cytoplasmic libraries into one dataset, resulting in one 

single file. We then assembled the nuclear and cytosol transcriptome independently using 

cufflinks. After transcriptome assembly, we filtered transcripts based on their length, expression 

level, presence of primary transcript from our GRO-seq dataset, and sequence coding potential 

(Figure 4.1A). We removed any predicted transcripts that overlap with annotated genes and 

focused on lncRNA candidates within the intergenic regions. Our goal was to select transcripts 

that are reasonably long, consistently expressed in both published nascent RNA and steady-state 

mRNA expression profiles, and that are likely to be non protein-encoding genes. As a result, we 

identify a total of 1,094 lncRNAs. Three hundred ninety-five lncRNAs (36%) overlapped with 

previously identified intergenic lncRNA in [25, 26], and 699 lncRNAs were identified as novel in 

P. falciparum (Figure 4.1C).  
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Figure 4.1. Nuclear and cytoplasmic lncRNA identification. (A) An general overview of the lncRNA 
identification pipeline. (B) Cell fractionation efficiency valdiation using anti-histone H3 and anti-
aldolases as nuclear and cytoplasmic markers. (C) Comparison of lncRNA candidates with lncRNAs 
identified from previous publications.  
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Length, GC content, and RNA stability of cytoplasmic and nuclear lncRNAs 

Next, we categorized our candidate lncRNAs into nuclear lncRNAs, cytoplasmic lncRNAs, or 

indistinguished lncRNAs that are equally distributed in both fractions. Among the 1,094 

lncRNAs, 574 lncRNAs (52%) showed enrichment in the nuclear fraction, 290 lncRNAs (27%) 

showed enrichment in the cytoplasmic fraction, and 230 indistinguished lncRNAs (21%) showed 

similar distribution between both subcellular fractions (Figure 4.2A). We then explored the 

physical properties of lncRNAs. We observed that lncRNAs are in general shorter in length and 

less GC rich as compare to protein-encoding mRNAs (Figure 4.2B and C). We then estimated the 

Figure 4.2. (A) A total of 1,094 lncRNA candidate was identified, covering 574 nuclear enriched 
lncRNA,  290 cytoplasmic enriched lncRNAs, and 230 lncRNAs found in both fractions. Density 
plot of the size (B) and GC contents (C) of lncRNA candidates and annotated protein encoding 
mRNAs. Expression level of primary transcripts (left), steady-state mRNA (middle), and relative 
stability (right) of lncRNA candidates and annotated protein encoding mRNAs.  
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expression levels and stability of the lncRNAs by using total steady-state mRNA expression 

profile and nascent RNA expression profile. RNA stability was calculated as the ratio between 

steady-state mRNA expression levels over nascent RNA expression levels. We found that, 

although the overall cell cycle gene expression pattern of the lncRNAs is similar to the expression 

pattern of coding mRNAs, lncRNAs are less abundant and less stable than coding mRNAs; 

nuclear IncRNAs are particularly low expressed and unstable as compared to the other two 

groups of IncRNAs (Figure 4.2D). These observations are in consistent with previous lncRNA 

annotation studies in human breast cancer cells [27] and noncoding RNA stability studies in 

mammalian genomes [28]. Our results suggest that the low expression level and the low stability 

of these lncRNAs may be the reason why they failed to be detected in the previous identification 

attempts. By taking advantage of primary transcripts detected in our GRO-seq dataset, we 

significantly improved the sensitivity of lncRNA detection, especially for those localized in the 

nuclear fraction and expressed at a lower level.   

Stage Specific Expression and Epigenetic landscape of Cytosolic and Nuclear lncRNAs 

As lncRNAs often exhibit specific expression patterns in other eukaryotes, we investigated the 

stage specificity of these candidate lncRNAs across cell cycle. Using k-mean clustering, we were 

able to group these lncRNAs into 7 distinct clusters (Figure 4.3A). Generally, nearly all lncRNAS 

showed strong coordinated cascade throughout the parasite’s cell cycle. A larger fraction of the 

lncRNAs are highly expressed at ring and schizont stages as compared to the trophozoite and 

gametocyte stages (Figure 4.3B). Cluster 1 contains lncRNAs that are more abundantly expressed 

in the nuclear fraction of ring stage and are also moderately expressed in the nuclear fraction of 

schizont stages. An example of lncRNAs for this cluster is the lncRNA-TAREs. We observed that 

all identified lncRNA-TAREs are clustered into this group with an average 2.01 log two fold 
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changes of nuclear to cytoplasmic ratio (Figure 4.3C and Figure 4.3D). This finding validates our 

approach and suggests that lncRNAs in this cluster may contribute to the maintenance and 

regulation of the chromatin structure and var gene regulation. Approximately 40% of the 

identified lncRNAs are more abundantly found in either the nuclear or cytoplasmic fraction at the 

schizont stage (cluster 5 and 6) after the DNA replication and the peak of transcriptional activity. 

Base on clustering analysis, we also found that 19% of the lncRNAs are more exclusively 

expressed at a high level at the gametocyte stage (cluster 7). Interestingly, two unique lncRNAs 

in this cluster expressed in gametocyte are surrounded by gametocyte specific genes and are 

located within heterochromatin regions marked by H3K9me3 (unpublished data) between the 

asexual and sexual stages (Figure 4.3E and Figure 4.3F). In contrast, we observed few lncRNAs 

that are solely expressed during the asexual cycle with distinct changes in heterochromatin marks 

(Figure 4.3D). The presences of some of these lncRNAs are confirmed using reverse transcription 

polymerase chain reaction (RT-PCR) as demonstrated in Supplemental Figure 4.1. 
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Materials and Methods 

Parasite culture 

P. falciparum 3D7 strain at ~ 8% parasitemia was cultured in human erythrocytes at 5% 

hematocrit in 25 ml of culture values as previously described in [29]. Two synchronization steps 

were performed with 5% D-sorbitol treatments at ring stage with eight hours apart.  Parasites 

were collected every early ring, early trophozoite, and late schizont stages.  Parasite 

developmental stages were assessed using Giemsa-stained blood smears (Supplemental Figure 

Figure 4.3. Gene expression pattern of lncRNAs. (A) lncRNAs are grouped into 7 clusters based on 
their cell cycle expression patterns. (B) Percentage of lncRNAs that are highly expressed in each 
subcellular fractions at ring, trophozoite, schizont, and late gametocyte stage. Genome browser view of 
H3K9me3 ChIP-seq and RNA-seq datasets on one identified lncRNA-TARE located at the right arm of 
chromosome 4 (C), one asexual-specific lncRNA (D), and two gametocyte-specific lncRNAs located at 
the intergenic regions of chromosome 9 (E) and 14 (E). 
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4.1). Gametocyte parasites were induced from the P. falciparum strain NF54 strain and were 

harvested 15 days (stage IV to V) after the induction procedure as previously described in [30]. 

Nuclear and cytosolic RNA isolation  

Highly synchronized parasites were first extracted using 0.15% saponin solution followed by 

centrifuge at 4500 rpm for 10 minute on ice. Parasite pellets are then washed twice with ice cold 

PBS and re-collected at 5000 rpm at 4 oC. Parasite pellets are resuspended in 500 uL ice cold Cell 

Fractionation Buffer (PARIS kit, ThermoFisher; AM1921) with 10 uL of RNAase Inhibitor 

(SUPERaseIn 20U/uL, Invitrogen; AM2694). Gently resuspend the cells by pipetting and 

incubate on ice for 10 minutes. Centrifuge samples for 5 minutes at 4 oC and 500 xg. After 

centrifuge, carefully collect the supernatant containing cytoplasmic fraction with micropipetor. 

Resuspend the nuclear fraction in 500 uL Cell fractionation buffer and 15uL RNAse Inhibitor as 

described above. To obtain a more purified nuclear fraction, syringe the pellet with 26G ½ inch 

needle for five times. Incubate on ice for 10 minutes and centrifuge sample again for 5 minutes at 

4 oC and 500 xg. Discard the supernatant and resuspend the nuclear pellet with 500 uL of ice cold 

Cell Disruption Buffer (PARIS kit, ThermoFisher; AM1921). For both cytoplasmic and nuclear 

fractions, RNA was isolated by adding 5 volumes of 37 oC pre-warmed Trizol LS Reagent (Life 

Technologies, Carlsbad, CA, USA) followed by a 5 minute incubation at 37 oC. RNAs are then 

isolated according to manufacturer’s instructions. DNA-free DNA removal kit (ThermoFisher; 

AM1906) was used to remove potential genomic DNA contamination according to 

manufacturer’s instruction, and the absence of genomic DNA was confirmed by performing a 40-

cycle PCRs on Pf-Alba gene using 200 to 500 ng input RNA.  

mRNA isolation and Library preparation 

messenger RNA was purified from total cytoplasmic and nuclear RNA samples using NEBNext 
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Poly(A) nRNA Magnetic Isolation module (NEB; E7490S) with manufacturer’s instructions. 

Once mRNA isolated, strand-specific RNA-seq libraries were prepared using NEBNext Ultra 

Directional RNA Library Prep Kit for Illumina (NEB; E7420S) with library amplification 

specifically modified in the following for the high AT content of P. falciparum genome: libraries 

were amplified for a total of 12 PCR cycles (45 s at 98°C followed by 15 cycles of [15 s at 98°C, 

30 s at 55°C, 30 s at 62°C], 5 min 62°C). Libraries were then sequenced on Illumina NExtSeq500 

generating 75bp paired-end sequence reads.  

Sequence Mapping  

After sequencing, the quality of raw reads was analyzed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  The first 15 bases and the last 

base were trimmed. Contaminating adaptor reads, reads that were unpaired, bases below 28 and 

Ns, and reads shorter than 18 bases were also filtered using Sickle 

(https://github.com/najoshi/sickle) [31]. All trimmed reads were then mapped to P.falciparum 

genome (v34) using HISAT2 with the following parameters: –t, -- downstream-transcriptome-

assembly,  --max-intronlen 3000, --no-discordant, --summary-file, --known-splicesite-infile, --

rna-strandness RF, and --novel-splicesite-outfile. After mapping, we removed all reads that were 

not uniquely mapped, not propery paired (samtools v 0.1.19-44428cd [32]), and are likely to be 

PCR duplicates (Picard tools v1.78[33]). The final number of working reads for each library is 

listed in Supplemental Table S4.1. For genome browser tracks, read coverage per nucleotide was 

first determined using BEDTools and normalized per million mapped reads. 

Transcriptome assembly and lncRNA identification  

To identify lncRNA in the nuclear and cytoplasmic fraction, we first merged all nuclear libraries 

and cytoplasmic liberties into two sets: one nuclear library set and one cytoplasmic library set. 
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Thenk cufflinks (v2.1.1 [34]) was used for transcriptome assembly with the following parameters: 

-p 8 -b PlasmoDB-34_Pfalciparum3D7_Genome.fasta -M PlasmoDB-34_Pfalciparum3D7.gff --

library-type fr-firststrand -I 5000. After obtained the assembled transripts, a minimal read 

coverage threshold was applied. Transcript abundance calculation was used during Cufflink 

assembly, and any transcripts with a minimal read coverage below 5 and a FPKM value below 1 

were removed. In addition, any transcripts with a size shorter than 200bp were also excluded 

from down stream analysis. Next, for each remaining transcripts, we calculated its primary 

transcription level using GRO-seq dataset (GSE85478) from [11] and removed any transcripts 

that has a read coverage fall below the 15% of median of expression levels of all protein encoding 

genes. After filter out transcripts with no primary transcription levels, we then removed 

transcripts overlapped with any annotated gene regions and focused solely on long intergenic 

non-coding RNA candidates. For those lncRNA remained, we then calculated its protein potential 

using Coding Potential Calculator (http://cpc.cbi.pku.edu.cn/). Any lncRNA that were predicted 

to be coding or weak non-coding RNA or with a coding protentail score above -1 were removed 

from our final lncRNA candidate list. To assign cellular locations, log two ratios of total nuclear 

fraction over total cytoplasmic fractions were calculated. lncRNAs with a ratio above 0.25 are 

classified as nuclear lncRNA, lncRNAs with a ratio below -0.25 are classified as cytoplasmic 

lncRNAs, and lncRNA with a ratio between -0.25 and 0.25 are classified as lncRNA showed 

equally in both fractions.  

Overlap between previous intergenic lncRNAs 

Overlapping regions between lncRNA candidates and previously identified intergenic lncRNAs 

are identified using BEDTools v2.25.0 [35] with at least 25% overlapping between the two 

fragments (-r -f 0.50).   
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Estimation of transcript stability 

Read coverage values were calculated from total steady-state mRNA datasets (SRP026367, 

SRS417027, SRS417268, SRS417269) from [24] using BEDTools v2.25.0 [35]. The read counts 

are then normalized as described in the original publication, and ratios between RNA-seq and 

GRO-seq coverage values are calculated for each lncRNA and gene. This ratio reflects the 

relative abundance of the mature RNA transcript over its corresponding primary transcript and is 

a simple but convenient measurement for transcript stability. 

Western Blot 

Eight 25ml of mixed population of parasite were collected as described before. Gently resuspend 

parasite pellets in 500ul of ice cold Cell Fractionation Buffer (PARIS kit, ThermoFisher; 

AM1921) and 50 uL of 10X EDTA-free Protease inhibitor (cOmplete Tablets, Mini EDTA-free, 

EASY pack, Roche; 05 892 791 001). Incubate solution on ice for 10 minutes and pellet sample 

for 5 minutes at 4 oC and 500 xg. Carefully collect the supernatant containing cytoplasmic 

fraction and resuspend the nuclear fraction in 500 uL Cell Fractionation Buffer followed by 5 

times of syringe using 26 ½ inch needle. Pellet nuclei again at 4 oC and 500 xg. Discard the 

supernatant and resuspend the nuclei pellet in 500 uL of Cell Disruption Buffer (PARIS kit, 

ThermoFisher; AM1921) and incubate on ice for 10 minutes. The nuclear fraction is then 

sonicated seven times with 10 seconds on/30 seconds off using a probe sonicator. Extracted 

nuclear protein lysates were incubated for 10 mins at room temperature and centrifuged for 2 

mins at 13,000 rpm to remove cell debris. Seven micrograms parasite cytoplasmic and nuclear 

protein lysates were diluted in 2X laemmli buffer at a 1:1 ratio followed by heatings at 95°C for 

10 mins. Protein lysates are then loaded on an Any-KD SDS-PAGE gel (Bio-rad) and run for 1 

hour at 125 V. Proteins were transferred to a PVDF membrane and run for 1 hour at 18 V, then 
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stained using comercial antibodies generate against histone H3 (1: 3,000 dilution, abcam; ab1791) 

and  plasmdium aldolase (1:1,000 dilution, abcam; ab207494), and secondary antibody, Goat 

Anti-Rabbit IgG HRP Conjugate (1:25,000 dilution, Bio-Rad; 1706515). Finally, membrane were 

visualized using the Bio-Rad ChemidDoc MP Gel Imager.  

lncRNA validation using reverse transcription polymerase chain reaction (RT-PCR) 

Total RNA was isolated from 10 ml of non-synchronous erythrocytic stage P. falciparum culture 

and 25 ml of late gametocyte stage culture. Total RNA quality was checked on agarose gel and 

genomic DNA contamination were removed using DNA-free DNA removal kit (ThermoFisher; 

AM1906) according to manufacturer’s instruction. The absence of genomic DNA contamination 

was validated using a primer set targeting an intergenic region and a primer set targeting PfAlba3 

(PF3D7_1006200) from inside exon 1 to within exon 2. Amplification of genomic DNA should 

give a product with a size of 429 bp including the intronic sequence, whereas amplification of 

cDNA should result in a fragment with a size of 164 bp. Approximately 1.1 µg of DNase I treated 

RNA from each sample with 35 PCR cylcle were used to confirm the absent of genomic DNA 

contamination. In addition, PCR sample with no DNA template was used as negative control 

(Supplemental Figure 4.1). DNase-treated total RNA was then mixed with 0.1 µg of random 

hexamers, 0.6 µg of oligo-dT(20), and 2 µl 10 mM dNTP mix (Life Technologies) in total volume 

of 10 µl, incubated for 10 minutes at 70°C and then chilled on ice for 5 minutes. This mixture was 

added to a solution containing 4 µl 10X RT buffer, 8 µl 20 mM MgCl2, 4 µl 0.1 M DTT, 2 µl 20 

U/µl SuperaseIn and 1 µl 200 U/µl SuperScript III Reverse Transcriptase (all from Life 

Technologies). First-strand cDNA was synthesized by incubating the sample for 10 minutes at 

25°C, 50 minutes at 50°C, and finally 5 minutes at 85°C. First strand cDNA is then mixed with 

70 µl of nuclease free water, 30 µl 5x second-strand buffer (Life Technologies), 3 µl 10 mM 



	
   181 

dNTP mix (Life Technologies), 4 µl 4 µl 10 U/µl E. coli DNA Polymerase (NEB), 1 µl 10 U/µl E. 

coli DNA ligase (NEB) and 1 µl 2 U/µl E. coli RNase H (Life Technologies). Mixture are 

incubated for 2 h at 16°C and double stranded cDNA was purified using AMPure XP beads 

(Beckman Coulter). For testing transcription activity of predicted genes, 450 ng of double 

stranded cDNA was mixed with 10 pmole of both forward and reverse primers. DNA was 

incubated for 5 minutes at 95°C, then 30s at 98°C, 30s at 55°C, 30s at 62°C for 25 cycles. Five µl 

of each PCR sample was used for agarose gel electrophoresis. All primer used for PCR validation 

are listed in Supplemental File 4.1. 

Discussion and Conclusion  

The preliminary work described in this chapter is the first genome-wide global and cell cycle 

detection of lncRNAs from different subcellular locations in P. falciparum. Using both cell 

fraction experimental and computational pipelines, we identified 1,094 lncRNAs covering 574 

nuclear enriched, 290 cytoplasmic enriched, and 230 indistinguished lncRNAs that are localized 

in both fractions. By utilizing nascent RNA expression profiles (GRO-seq dataset), we were able 

to significantly improve the sensitivity of lncRNA detection, especially for the identification of 

nuclear lncRNAs. This study revealed 699 lncRNAs that had not been described previously. 

More than 300 of these newly identified lncRNAS were enriched in the nuclear fraction.  

In other eukaryotes, functions of nuclear lncRNAs have been determined as either directly 

interfering and regulating gene expression activity [36, 37], guiding or enhancing the functions of 

regulatory proteins [16, 38-41], or assisting the alteration of chromatin structures by shaping 

three-dimensional (3D) genome organization[17, 42-44]. Some of the well-characterized nuclear 

lncRNAs, such as XIST[45], FIRRE[46], and NEAT [47], were shown to be particularly 

important for nuclear organizing and chromatin conformation change. In P. falciparum, emerging 
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evidence has shown that chromatin structure and chromatin organization are of vital importance 

for the parasite’s gene expression and regulation system. Therefore, identification of nuclear 

enriched lncRNAs may help us to discover chromatin-associated regulators in this parasite. In our 

present work, we observed that a large number of lncRNAs, including the lncRNA-TAREs, are 

very abundant at the ring and schizont stages. This finding suggests that some of these lncRNAs 

(cluster 1 Figure 4.2A) are likely to be involved in heterochromatin environment inducement or 

chromatin structure re-organization events. This is in line with previous publications that showed 

condensed chromatin structure at the ring and schizont stages. In addition, we observed that some 

of the lncRNAs are neighbored with stage-specific genes (i.e., Gametocyte-specific genes or 

erythrocyte exported genes). This finding implies that lncRNAs found in these phenomena may 

be involved in local gene regulation and affect the expression level of stage-specific genes.   

Compared to nuclear lncRNAs, progress in functional analysis of lncRNA in the Plasmodium 

cytoplasmic faction is significantly lacking. In the last decade, many lncRNAs have been 

discovered with diverse cellular functions outside of the nucleus. This type of lncRNA has been 

reported to interact with ribosome[20] and is often associated with post-transcriptional and 

translational controls [19]. Some cytoplasmic lncRNAs, such as half-STAU1-binding site RNAs 

(1/2-sbsRNAs) [48, 49] and growth arrested DNA-damage inducible gene 7 (gadd7) [50] , are 

shown to be able to alter the stability of mRNA, while some cytoplasmic lncRNAs including 

lncRNA-p21 [51] and AS UCHl1 [52] are shown to be modulating either the repression or 

promotion of translational process. As of today, some studies of P. falciparum have mentioned or 

used cytoplasmic RNA populations as a comparison control for nuclear RNAs [53], but no one 

has specifically investigated the function of any of these lncRNAs. The dataset generated from 

this study provided the first good global view of cytoplasmic lncRNAs expressing across the 

parasite’s cell cycle. Our data suggest that cytoplasmic lncRNAs are also coordinately expressed 
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but are less abundant as compared to the number of nuclear lncRNAs detected. In addition, we 

observed that a small group of cytoplasmic lncRNAs is highly expressed at the trophozoite stage, 

a stage where massive transcription activity was observed in previous studies [11]. Though more 

in-depth studies will be required to confirm the functions of these trophozoite-specific 

cytoplasmic lncRNAs, it is possible that some of these lncRNAs are involved in mRNA stability, 

alternative splicing, or translational regulation of the transcribed coding mRNAs at the 

trophozoite stage.  

Compared to lncRNA studies in other eukaryotes, the field of lncRNA in Plasmodium is still 

young, yet full of potential. First, analysis of promoter and gene body regions with available 

histone modifications datasets (H3K9me3, H3K36me3, H3K9ac) are still required for further 

annotation of these candidate lncRNAs. In addition, understanding of how these lncRNAs may 

contribute to the sexual differentiation or promotion of cell progression is still a work in progress.  

Experimental knockdown or conditional knockout of these lncRNAs will provide new insights 

into chromatin biology as well as transcriptional and translational regulation processes of this 

parasite.  We are hoping that this newly generated dataset will not only assist future lncRNA 

studies in this parasite, but also help to identify parasite-specific gene expression regulators that 

can ultimately be used as new anti-malarial drug targets.   
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Supplemental Figure 4.1. RT-PCR validation of selected 
lncRNAs. (A) Total RNA was extracted from both asexual 
and gametocyte stage parasites. RNA quality was validated 
on on agarose gel. (B) Genomic DNA was removed and 
verified using reverse transcription polymerase chain reaction 
(RT-PCR) with primers designed to amplify a fragment of 
PfAlba3 gene (PF3D7_1006200). Primers were designed on 
both sides of intron 1, yielding a 429 bp PCR product from 
genomic DNA and a 164 bp PCR product from cDNA. The 
absence of PCR product amplified from RNA confirms the 
absence of gDNA contamination. (C) RT-PCR validation of 
two selected lncRNA that are most abundantly expressed at 
the gametocyte stage with high level of H3K9me3 mark.  
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Supplemental Files 

Supplemental File 4.1: identified lncRNAs. (XLSX) 

 

Supplemental Figure 4.2. Spearman correlations in gene expression 
levels among nuclear fraction, cytoplasmic fraction, and steady-state 
mRNA across P. falciparum cell cycle.  
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Conclusion 

Concluding remarks  

Malaria has been one of the most ancient and lethal human infectious diseases known to 

mankind. For many centuries, humans have been battling and attempting to strike down this 

malicious disease. However, due to the lack of efficient vaccines, limited drug access, and the 

rapid development of anti-malaria drug resistant parasite strains, malaria still remains a big 

health burden in many developing countries. Although malaria is curable, resistant strains 

have been reported for all of the popular anti-malarial drugs. Therefore, the identification of 

new drug targets and anti-malaria compounds is urgently needed.  

Of the five Plasmodium species that cause human infection, Plasmodium falciparum is 

responsible for the most severe and lethal cases of malaria. P. falciparum has a complex life 

cycle with multiple developmental stages and hosts. This life cycle is tightly regulated 

possibly by the orderly changes in gene expressions. As of today, a limited number of 

transcriptional factors have been identified in this parasite. Accumulating evidence suggests 

that P. falciparum may use chromatin structure and post-transcriptional elements as 

alternative mechanisms for its tight transcription regulation. To gain a better understanding of 

the gene expression and regulation system of the parasite, we explored the transcriptome, 

epigenome, and proteome of P. falciparum in this dissertation work. 

First, using nucleosome-positioning landscape, we were able to identify 231 novel putative 

genes. We demonstrated that nucleosome positioning can be used for gene identification, 

especially for organisms with high nucleotide bias genomes. Secondly, by generating and 

analyzing the nascent RNA expression profile, we showed that a majority of the genes are 

actively transcribed at the trophozoite stage. Data from this study suggested that chromatin 

structure may provide a basal control for transcription activity. Additionally, the cascade of 

gene expression observed in steady-state mRNA is likely contributed by various post-

transcriptional regulation processes. These findings explain why a weak correlation between 
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the “open-and-closed” chromatin re-organization event and gene expression, measured by 

steady-state mRNA, was observed in previous studies. As chromatin structure is particularly 

important for the global transcriptional activity in this parasite, chromatin-associated 

regulators may be highly effective targets for anti-malaria therapy. Therefore, in the later 

chapters of this work, we focused on the identifications of potential chromatin-associated 

regulators such as proteins and lncRNAs. By carefully surveying the proteome, we were able 

to generate the first and the most up-to-date comprehensive overview of the plasmodium 

chromatin-associated proteome.  We also experimentally validated and annotated a few of 

these important chromatin structural proteins. Since there has been limited knowledge of 

Plasmodium chromatin-associated proteins, further investigation and functional study of these 

chromatin-associated proteins would significantly advance our knowledge on P. falciparum 

chromatin biology, thus bringing helpful insights to better understand the gene expression 

systems in this parasite. Beside chromatin-associated proteins, long non-coding RNAs have 

also been shown to have important roles in both chromatin and post-transcriptional 

regulation. Therefore, in the last chapter of this dissertation, we performed genome-wide 

identifications of both nuclear lncRNAs and cytoplasmic lncRNAs within the P. falciparum 

genome.  As a result, we identified 1,094 lncRNAs that are differentially expressed not only 

between subcellular locations but also across the parasite’s life cycle. It is likely that some of 

the nuclear expressed lncRNAs are critical for chromatin structure regulation, while the 

cytoplasmic expressed lncRNAs are important for post-transcriptional or translational 

regulations.   

Taken together, the work presented in this dissertation confirmed the strong regulatory roles 

of chromatin structure in initiating global transcriptional activity; clarified the time of 

transcription for a majority of the P. falciparum genes; and prioritized many proteins and 

lncRNAs, which are likely to be associated with chromatin regulation, for future malaria 

studies. The end goal of this dissertation work is to provide new insights and generate 
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meaningful data that will become stepping-stones to further assist the identification of new 

anti-malaria tools and therapeutic strategies. 

 

Future directions and some after thoughts 

Though substantial progress has been made in understanding the chromatin biology, gene 

expression, and regulation process in P. falciparum, many questions are still waiting to be 

answered. Given the importance of the epigenome for the parasite’s gene expression, 

pinpointing new potential drug targets is still a work in progress. In the past decade, several 

histone deacetylase (HDAC) inhibitors have been the focus of research. HDAC inhibitors, 

such as apicidin, trichostatin A(TSA), suberoylanilide hydroxamic acid (SAHA), and 2-

aminosuberic acid derivative (2-ASA-9), have all been previously shown to have a profound 

transcriptional effect on the cascade of gene expression[1, 2]. Together with other HDACs 

inhibition studies in apicomplexa parasites[3], HDACs are now promising antimalarial drug 

targets. However, as many of the histone-modifying enzymes are conserved among 

eukaryotic organisms, HDACs targeted therapies may be toxic to the human host. Therefore, 

further identification of parasite-specific elements that may interrupt the chromatin structure 

or the epigenetic control of gene expression is still needed. A number of potential chromatin 

associated proteins and lncRNAs have been identified in this dissertation.  While extensive 

experimental and functional studies are needed to validate some of these key regulators, they 

provide possible new targets for novel therapeutic strategies. For example, it is well known 

that the function of histone tail modification is to provide recognition signals to facilitate the 

recruitment or stabilization of chromatin-related protein complexes in Eukaryotes. In P. 

falciparum, though histone readers, bromodomain proteins, PHD fingers, and proteins 

containing the royal family (i.e. Tudor, Chromo, and MBT domains) have been identified [4], 

their exact role, binding sites, and associated-pathways remain unclear. Another area of 

Plasmodium study that is waiting to be expended is the study of molecular component 
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controlling nuclear architecture. Recent studies have shown that the Plasmodium telomere 

ends are clustered together and that this telomeric heterochromatin environment is important 

for expression and regulation of genes involved in virulence factors [5-7]. Further mapping 

and study of the nuclear compartments may provide new insights for our understanding of 

how nuclear localization of a gene influences its chromatin state or vice versa. While we 

conducted a large number of genome-wide studies and identified many molecular 

components that still need to be experimentally validated, we drew a more comprehensive 

map of gene expression system in this parasite. Most importantly, the work presented in this 

dissertation will provide significant insights and guidance for future malaria studies.  
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