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SUMMARY

Suppressive myeloid cells can contribute to immunotherapy resistance, but their role in response 

to checkpoint inhibition (CPI) in anti-PD-1 refractory cancers, such as biliary tract cancer (BTC), 

remains elusive. We use multiplexed single-cell transcriptomic and epitope sequencing to profile 

greater than 200,000 peripheral blood mononuclear cells from advanced BTC patients (n = 9) and 

matched healthy donors (n = 8). Following anti-PD-1 treatment, CD14+ monocytes expressing 

high levels of immunosuppressive cytokines and chemotactic molecules (CD14CTX) increase 

in the circulation of patients with BTC tumors that are CPI resistant. CD14CTX can directly 

suppress CD4+ T cells and induce SOCS3 expression in CD4+ T cells, rendering them functionally 

unresponsive. The CD14CTX gene signature associates with worse survival in patients with BTC 

as well as in other anti-PD-1 refractory cancers. These results demonstrate that monocytes arising 

after anti-PD-1 treatment can induce T cell paralysis as a distinct mode of tumor-mediated 

immunosuppression leading to CPI resistance.

In brief

Keenan et al. report that a monocyte population expressing immunosuppressive chemokines and 

cytokines (CD14CTX) is induced with anti-PD-1 and associates with resistance to treatment in 

biliary tract cancer. CD14CTX induce immune-paralyzed CD4+ T cells, representing an alternative 

mechanism of resistance in checkpoint inhibitor-refractory cancers.

Graphical Abstract

Keenan et al. Page 2

Cell Rep. Author manuscript; available in PMC 2023 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

While immune checkpoint inhibition (CPI) can lead to dramatic clinical responses in 

specific cancers, many solid malignancies are insensitive to this treatment approach. 

Advanced biliary tract cancers (BTCs), a family of heterogeneous epithelial cancers 

including intrahepatic and extrahepatic cholangiocarcinoma and gallbladder cancer, have 

a poor prognosis and an objective response rate to CPI under 10% (Kim et al., 2020; 

Piha-Paul et al., 2020). While BTCs have been characterized by an immunosuppressive 

microenvironment, desmoplastic stroma, and a paucity of tumor-infiltrating effector T cells 

(Rizvi et al., 2018; Zhou et al., 2019), the mechanisms that underlie primary resistance to 

CPI are not fully elucidated.

Cells of the myeloid lineage consist of both tumor-promoting and -suppressing subsets that 

function in inflammation and cancer immunity (Broz and Krummel, 2015; DeNardo et al., 

2011; Linde et al., 2018; Ma et al., 2021). While CPI was developed to target T cells 

and its effects on various subsets have been well-documented, its effects on myeloid cells 

are not as well understood despite associations to altered frequency and activation states 

of myeloid cells (Hartley et al., 2018). For example, an increased frequency of circulating 

CD14+CD16−HLA-DRhi monocytes prior to treatment, along with a decreased frequency 

of T cells, correlate with survival and response to anti-PD-1 in melanoma patients (Krieg 

et al., 2018). Further, PD-1 signaling can polarize macrophages to an M2 phenotype, lead 
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to defects in phagocytosis, and impair effective anti-tumor immunity (Diskin et al., 2020; 

Gordon et al., 2017; Strauss et al., 2020).

Here, we used sample multiplexed single-cell cellular indexing of transcriptomes and 

epitopes (CITE-seq) to dissect the Cell compositional, transcriptomic, and surface proteomic 

responses of circulating immune cells from BTC patients to CPI. We found the composition 

of immune cells from BTC patients differed drastically from healthy donors, and that further 

changes were induced in patients’ circulation following anti-PD-1 treatment, particularly 

in CD14+ monocytes. Monocytes with canonical monocytic features are associated with 

response, while those expressing specific immunosuppressive markers are associated with 

insensitivity to CPI and can directly suppress CD4+ T cells. By analyzing surface 

protein and expression profiles across individuals, we further showed associations of 

immunosuppressive monocytes with the frequency of SOCS3+ CD4+ T cells in BTC 

patients. In co-culture experiments, these immunosuppressive monocytes were able to render 

resting CD4+ T cells unresponsive, suggesting multiple mechanisms of inhibition.

RESULTS

Multiplexed CITE-seq identifies altered circulating immune cell composition in BTC 
patients compared with healthy individuals

We used multiplexed CITE-seq to profile peripheral blood mononuclear cells (PBMC) 

obtained from BTC patients (n = 9) before, 1 week after, and 3 weeks after anti-PD-1 

treatment as well as from gender- and age-matched healthy donors (n = 8) (Table S1 and 

Figure 1A). By analyzing over 230,000 cells, we identified the canonical circulating myeloid 

and lymphoid cell types including B cells, CD4+ and CD8+ T cells, NK cells, NK T cells, 

plasmacytoid and conventional dendritic cells (pDC, cDC), CD14+ and CD16+ monocytes, 

plasma cells, and a small immune progenitor cell population visualized using uniform 

manifold approximation and projection (UMAP) (Figures 1B and S1A–S1G and Table S2). 

When comparing pre-treatment BTC patients’ circulating immune cells with healthy donors, 

we found decreased frequencies of CD8+ and plasma cells in BTC patients (Figure 1C and 

Table S3). We next examined whether there were differences in circulating immune cells in 

BTC patients when analyzed by their clinical outcome to treatment. With the exception of 

the small progenitor cell population, there were no significant differences in frequencies of 

broad immune cell types in patients whose tumors responded to anti-PD-1 (responder) or 

were insensitive (non-responder) prior to or following CPI (Figures 1D, 1E, S1H, and Table 

S3). These findings differ from those reported in melanoma patients, in which an increased 

frequency of circulating CD14+ monocytes was observed in patients whose tumor responded 

to immunotherapy prior to treatment (Krieg et al., 2018). While T cells are thought to be 

the major targets of anti- PD-1 therapy, we found that CD14+ monocytes express high levels 

of PD-L1 and PD-L2 transcript and protein expression and PD-1 surface protein expression 

before CPI treatment (Figure 1F). These results are consistent with previously published 

reports (Diskin et al., 2020; Gordon et al., 2017; Strauss et al., 2020) and suggest that 

anti-PD-1 may also act on myeloid cells.
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BTC patients harbor distinct populations of circulating myeloid cells

To focus further on the myeloid compartment, we re-clustered on the monocytes and 

dendritic cells and identified seven sub-populations annotated using a combination of 

protein and RNA markers (Figures 2A and 2B). These included conventional dendritic cells 

(cDC), plasmacytoid dendritic cells (pDC), CD16+ monocytes, and four sub-populations 

of CD14+ monocytes. We used gene ontology enrichment analysis of upregulated genes 

(Ashburner et al., 2000; The Gene Ontology, 2019) to annotate the four CD14+ monocyte 

sub-populations by canonical immune-specific pathways (Li et al., 2014) (Figure 2C and 

Tables S4): (1) CD14IFL myeloid cells were enriched for pathways related to inflammation 

(e.g., pro-inflammatory cytokines and chemokines, NFkB signaling, and inflammasome 

function); (2) CD14APC cells were enriched in monocyte differentiation and function and 

antigen processing and presentation; (3) CD14ISG represented a smaller population of 

CD14low monocytes with upregulated interferon response genes (ISG) and innate immune 

signaling; and (4) CD14CTX cells were enriched for chemotaxis molecules and suppressive 

cytokines. CD14CTX also have increased expression of macrophage-associated genes CD63, 

CD68, MSR1, CFS1, CCL2, and CCR2 and lower expression of CD14 (Figures 2B and 

2D). These findings suggest that CD14APC, CD14IFL, and CD14ISG are canonical CD14+ 

monocytes, while CD14CTX may exist on the spectrum of monocytes-macrophages (Betjes 

et al., 1991; Iqbal et al., 2014). The distribution of CD14+ sub-populations varied between 

BTC and healthy donors with quantitative differences detected for several populations, 

despite there not being an apparent difference when comparing total CD14+ monocyte 

frequencies overall (Figure 2E and Table S3). BTC patients prior to treatment had an 

abundance of the different monocyte sub-populations including CD14CTX and CD14ISG, and 

an increased frequency of CD14APC and a decreased frequency of CD14IFL in comparison 

with healthy individuals. Healthy donors had a more uniform composition of monocyte 

sub-populations (predominately CD14IFL) (Figure 2E).

Myeloid subpopulation frequencies and gene signatures differ by clinical outcome

To examine whether the circulating monocyte sub-populations may represent states of 

monocyte-macrophage differentiation, we used trajectory analysis (Trapnell et al., 2014) to 

order the four CD14+ monocyte sub-populations along latent time (Figures 3A–3C). Genes 

differentially expressed along latent time overlapped with top differentially expressed genes 

in these populations and organized into three modules, distinct but related to the monocyte 

cell clusters (Figure 3D). Module 2 genes increase over latent time and include markers 

of monocytic lineage (CD14, VCAN, S100A8, S100A9, CD74), whereas modules 1 and 

3 decrease over latent time and include ISGs (RSAD2, ISG15, IRF7), PD-L1 (CD274), 

and immunosuppressive cytokines (CXCL8, CXCL10, CXCL11, IL6) (Figure 3D and Table 

S5). Furthermore, monocytes from BTC patients at baseline and 1 week were present 

across latent time in both responders and non-responders. However, by week 3, monocytes 

from responders were mainly found alongside the CD14+ monocytes from healthy donors 

(Figures 3C and S2A). Noting differences between CD14+ sub-populations in this analysis, 

we assessed the composition of all myeloid populations by response category (Figures 3E, 

3F, and S2B). The small population of CD14ISG was derived from the circulation of two 

of the four responders at baseline (Figure 3E). There were few other significant differences 

pre-treatment or at 1 week post-treatment between responders and non-responders (Figures 
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3E and S2B). However, by 3 weeks post-anti-PD-1, responders had a markedly higher 

frequency of CD14APC, whereas non-responders had an increased frequency of CD14CTX, 

pDC, and cDC (Figure 3F).

CD14CTX express a program of immunosuppressive chemokines and cytokines

We next used MAST (Finak et al., 2015) to compare CD14CTX to CD14APC cells, 

the two dominant populations in BTC patients’ circulation following CPI. CD14CTX 

had increased expression of several tumor-associated macrophage (TAM)- and/or myeloid-

derived suppressor cell (MDSC)-related cytokines (Mantovani et al., 2017; Ostrand-

Rosenberg and Fenselau, 2018), including IL6, TGFB1, and CXCL8 (Figures 4A and 4B). 

However, CD14CTX lack expression of other MDSC-associated genes including ARG1, 

VEGFA, and IDO1 (Figure 4B and Table S6). Although antigen processing and presentation 

pathways were enriched in both monocyte sub-populations (Figures S3A and S3B), the 

individual genes and pathways differed. CD14CTX expressed COX2 (PTSG2) and HLA 

molecules (Figure S3B), while CD14APC expressed genes related to monocyte surface 

phenotype (S100A8, S100A9, CD14, FCN1) and function (i.e., the inflammasome-related 

gene, NLRP3) (Figures 4A and S3A and Table S6). CD14CTX also expressed a distinct set 

of chemokines involved in the recruitment of CCR2+ inflammatory monocytes, a population 

associated with poor outcomes in cancer patients (CCL2, CCL7) (Geissmann et al., 2003; 

Sanford et al., 2013), recruitment of neutrophils (CXCL1, CXCL2, CXCL3) (Mollica Poeta 

et al., 2019; Sokol and Luster, 2015), and associated with T cell exhaustion (CCL20) 

(Kfoury et al., 2021), pro-inflammatory cytokines (IL1A, IL1B), as well as molecules 

associated with cell migration and extracellular matrix digestion (TIMP1, CTSB, CTSZ) 
(Akkari et al., 2014; Porter et al., 2013; Roeb et al., 2005) (Figures 4A and S3B).

To enable further in vitro functional characterization, we leveraged the surface protein 

abundance data from CITE-seq to identify markers that can distinguish CD14CTX from other 

monocyte sub-populations. First, we used COMET (Delaney et al., 2019) to identify two 

highly expressed surface markers in CD14CTX: Tim3 (HAVCR2), an immune checkpoint 

on T cells that is also expressed by dendritic cells and M2 macrophages (Ocana-Guzman 

et al., 2016), and CD29 (ITGB1), an integrin that can mediate chemotaxis (Shang et al., 

1998) and is upregulated in macrophages compared with other myeloid cells (Ammon 

et al., 2000). We confirmed that Tim3 and CD29 are highly expressed by CD14CTX at 

the RNA and protein levels and that the combination specifically distinguishes CD14CTX 

from other sub-populations (Figure 4C). Using flow cytometry, we demonstrated that BTC 

patients had an increased frequency of CD29+Tim3+CD68+ cells as well as Tim3+CD68+ 

and CD29+CD68+ cells compared with healthy donors, with similar findings shown for 

CD14-gated cells (Figures 4D and S3C–S3F). Enrichment of CD29+ and Tim3+ monocytes 

was specific to BTC patients, while the frequency of total CD14+ or CD68+ myeloid cells 

did not differ significantly between healthy individuals and BTC patients (Figures 4D and 

S3F). To validate these findings, flow cytometry was performed on PBMC from additional 

BTC patients (n = 16), confirming an increased frequency of CD29+Tim3+ monocytes 

(gated by either CD68 or CD14) (Figure S3G).
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CD14CTX gene signature correlates with SPP1+ TAMs in the tumor microenvironment and 
is associated with poor prognosis in other CPI-insensitive tumors

Because CD14CTX express chemokine receptors that might facilitate migration into the 

tissues, we next examined the relationship between circulating and intra-tumoral myeloid 

states in BTC. We performed scRNA-seq on primary cholangiocarcinoma tumors (n = 

4) obtained from standard of care resections (Table S7) and recovered a total of 10,913 

myeloid cells. Tissue-associated myeloid cells consisted of dendritic cells (DC), neutrophils 

(Neut), two populations of macrophages characterized by either high APOE or SPP1 
expression (MacAPOE, MacSPP1), CD14+ monocytes (CD14+ mono), CD16+ monocytes 

(CD16+ mono), and intermediate CD14+CD16+ monocytes (CD14+CD16+ mono) (Figures 

S4A and S4B). Among the tissue-associated myeloid populations, the expression profile 

of CD14CTX was most correlated with MacSPP1, exemplified by the shared expression 

of differentially expressed CD14CTX genes including HAVCR2 and ITGB1 (Figures S4C 

and S4D). Notably, two genes that differ in expression between MacSPP1 and CD14CTX 

are related to chemotaxis and extravasation (SERPINB2 [Schroder et al., 2019], TIMP1 
[Roeb et al., 2005]), suggesting a transition in macrophages that have already migrated to 

the tumor microenvironment. As an alternate approach to assess the relationship between 

the circulating and tissue-associated myeloid populations, we co-clustered myeloid cells 

from circulation with those from the tumors, following batch correction. We found that the 

intra-tumoral MacSPP1 cluster with the circulating CD14CTX (Figure S4E). An alternative 

approach using partition-based graph abstraction (Wolf et al., 2019) also found close 

connectivity between CD14CTX and SPP1+ TAM clusters (Figure S4E). We also found 

evidence of SPP1+HAVCR2+CD68+ myeloid cells within biliary tumor tissue from on-

treatment biopsies by combined in situ hybridization and immunofluorescence, further 

suggesting the existence of a TAM population in BTC analogous to CD14CTX (Figure S4F).

To test whether CD14CTX gene signature may be prognostically relevant, we applied the 

CD14CTX gene signature to the TCGA cholangiocarcinoma dataset (median overall survival 

= 40.13 months, n = 36) (Farshidfar et al., 2017). High expression of the CD14CTX gene 

signature was indeed associated with a significantly worse overall survival (median survival 

= 21.1 months versus not reached, p value = 0.02) (Figure 4E). We then turned to two other 

prototypical CPI-insensitive cancers: colorectal (O’Neil et al., 2017) and prostate cancer 

(Antonarakis et al., 2020). We found the CD14CTX gene signature was correlated with worse 

prognosis in both of these diseases as well. In colon cancer, a high CD14CTX expression 

score (Table S6) correlated with overall survival of 54.6 months versus not reached for 

patients with a lower score (p = 1.7 × 10−4, n = 251, Figure 4F). In prostate cancer, a 

higher CD14CTX gene signature expression score correlated with lower disease-free survival 

(DFS) (73.4 months versus not reached, p = 3.7 × 10−8, n = 482) (Figure 4G) (Cancer 

Genome Atlas, 2012; Cancer Genome Atlas Research, 2015). We next investigated whether 

the CD14CTX gene signature correlated with outcomes in immunotherapy-treated patients. 

First, in baseline tumor biopsies from advanced renal cell carcinoma patients (n = 886; 

NCT02684006) (Choueiri et al., 2020; Motzer et al., 2020), the CD14CTX gene signature 

correlated with worse progression-free survival in patients treated with avelumab (anti-PD-

L1)-based treatment compared with patients whose tumors had a lower CD14CTX gene 

signature (10.3 versus 12.5 months) (Figure 4H). Secondly, in metastatic melanoma, the 
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CD14CTX gene signature in baseline biopsies was also correlated with worse progression-

free survival (3 versus 8.6 months) with pembrolizumab (anti-PD-1) treatment: (n = 112) 

(Jerby-Arnon et al., 2018) (Figure 4I).

CD14CTX frequency correlates with SOCS3+CD4+ T cell frequency

Next, we defined T cell sub-populations present in healthy donors and BTC patients by 

re-clustering on the CD4+ and CD8+ T cells (Figure 5A). Using both transcript and protein 

markers, we identified nine unique clusters of T cells: 6 CD4+ T cell clusters including 

naive and effector memory (CD4naive, CD4EM), FOXP3+ regulatory (CD4Treg), and cells 

characterized by high expression of either TCF7, SOCS3, or ISG (CD4TCF7, CD4SOCS3, 

CD4ISG), and three clusters of CD8+ T cells including naive (CD8naive) and effectors 

expressing either predominantly GZMB/GZMH or GZMK (CD8GrB, CD8GrK) (Figures 

S5A–S5C). We hypothesized that myeloid-T cell interactions could be involved in CPI 

insensitivity and examined for frequency association between myeloid cell and T cell 

sub-populations (Figure 5B). Strikingly, we found that in BTC patients, the frequency of 

CD14CTX were positively correlated with the frequency of CD4SOCS3 (R = 0.49, p value 

= 0.011) and negatively correlated with CD4TCF7 frequency (R = −0.52, p value = 6.55 

× 10−3) (Figure 5C), whereas the frequency of CD14APC was positively correlated with 

the frequency of CD4TCF7 (R = 0.75, p value = 8.72 × 10−6) and not correlated with the 

frequency of CD4SOCS3 (R = −0.32, p value = 0.11) (Figure S5D). The positive correlation 

of CD4TCF7 with CD14APC and negative correlation with CD14CTX in BTC patients is 

intriguing because TCF7 expression within CD4+ T cells is associated with the capability to 

self-renew (Nish et al., 2017).

CD14CTX are capable of inducing dysfunction in CD4+ T cells

Given the immunosuppressive gene signature of CD14CTX and their correlation in frequency 

with CD4+ T cells expressing SOCS3, a negative regulator of cytokine signaling that 

has been associated with T cell dysfunction (Croker et al., 2003; Jiang et al., 2017), we 

investigated the capacity of CD14CTX monocytes to alter the proliferation and function of 

CD4+ T cells. Using the markers we identified from CITE-seq analysis and validated by 

flow cytometry (Tim3, CD29, CD14), we used FACS (fluorescence-activated cell sorting) 

to isolate CD14CTX from BTC patients’ PBMCs and co-cultured them with healthy donor 

CD4+ T cells (Figures 5D, S6A, and S6B). Compared with autologous or allogeneic healthy 

donor CD14+ monocytes, CD14CTX cells isolated from BTC patients’ circulation could 

suppress the proliferation of CD4+ T cells (Figure 5E). CD29+Tim3+ CD14CTX cells could 

also suppress proliferation of CD8+ T cells (Figure 5E). Further, we found that CD14CTX 

could induce SOCS3 expression in sorted resting CD4+ T cells compared with healthy 

donor monocytes (both from the same [autologous] or a different [allogeneic] healthy donor) 

and to CD29–Tim3−CD14+ cells from BTC patients (non-CD14CTX monocytes) consistent 

with the association between the frequency of CD14CTX with CD4SOCS3 (Figure 5F). To 

examine whether these effects could be due to a soluble factor, we cultured resting CD4+ 

T cells from healthy donors with plasma from either healthy plasma donors or from BTC 

patients. We found that plasma from BTC patients could induce SOCS3 in CD4+ T cells 

(Figure 5G). As SOCS3 expression is associated with ‘‘immune paralysis’’ in CD4+ T 

cells in the setting of cytokine exposure (Sckisel et al., 2015), we assessed the functional 
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capacity of SOCS3+CD4+ T induced by BTC-derived CD14CTX monocytes. While 

SOCS3−CD4+ T cells from BTC patients retained the ability to produce IFNγ, TNFα, 

and IL2, SOCS3+CD4+ T cells failed to produce these cytokines in response to stimulation 

(Figure 5H). We demonstrated that CD4+ T cells co-cultured with CD29+Tim3+CD14+ 

cells secreted less TNFα and IL-2 compared with CD29–Tim3−CD14+ or healthy donor 

monocytes and IFNγ compared with CD29–Tim3−CD14+ monocytes (Figure 5I). Lastly, we 

examined whether CD14CTX and CD4SOCS3 interact within the tumor microenvironment 

since we could also identify a population of SOCS3+CD4+ T cells in biliary tumors by 

scRNAseq (Figures S7A and S7B). Using in situ hybridization, we corroborated these 

results finding not only the presence of CD3+CD4+SOCS3+ T cells in the human BTC 

tissue sections, but also their co-localization with HAVCR2+SPP1+CD68+ cells in the tumor 

microenvironment, demonstrating that HAVCR2+SPP1+CD68+ macrophages are located 

closer to CD3+CD4+SOCS3+ T cells than non-SPP1/HAVCR2+ CD68+ macrophages (p = 

0.04) (Figures 5J and S7C–S7F).

DISCUSSION

Circulating and tissue-resident myeloid cells are known to be heterogeneous in cancer 

patients, having immune-modulating functions ranging from being tumor promoting to 

tumor suppressing (DeNardo et al., 2010; Gabrilovich et al., 2012; Hegde et al., 2021). An 

understanding of immunosuppressive capacity of monocytes, MDSC, M2 macrophages, and 

TAMs is emerging, along with the heterogeneity of myeloid phenotypes within different 

tumor types (Cheng et al., 2021; Gallina et al., 2006; Mantovani et al., 2017; Ostrand-

Rosenberg and Fenselau, 2018; Trovato et al., 2019). By using multiplexed single-cell 

transcript and protein profiling of PBMCs, we identified circulating monocytes as a hallmark 

of cancer and of insensitivity to immunotherapy. While these monocytes share some 

features of MDSC and M2 macrophages, they do not conform to these classifiers and 

lack expression of MDSC/M2-associated genes such as ARG1, VEGFA, and IDO1. The 

monocyte subpopulation associated with anti-PD-1 insensitivity (CD14CTX) has increased 

expression of chemokines and molecules involved in extracellular matrix digestion, 

which could facilitate migration into the tumor microenvironment and could represent 

a precursor of TAMs. This result was further supported by overall highly correlated 

gene signatures, with downregulation of genes related to extravasation, in TAMs from 

primary cholangiocarcinoma tumors. Incongruous findings have been observed regarding 

the association of TAMs with biliary cancer patient prognosis, highlighting the challenge 

in applying one label to a heterogenous group of cells that can have anti- or pro-oncogenic 

phenotypes (Loeuillard et al., 2019). Our observation that alteration in monocytes was 

associated with clinical response to anti-PD-1 aligns with findings in melanoma patients, 

although we observed clinical associations with circulating monocyte populations emerging 

on treatment rather than being present at baseline (Krieg et al., 2018). While we observed 

that dendritic cells increased in frequency in non-responders following anti-PD-1, this may 

be secondary to the altered frequency of monocyte sub-populations.

Using our single-cell multi-omic data, we developed cell surface markers and gene 

signatures of CD14CTX that can be used to assess these cells by more conventional means 

and could be further explored as a circulating biomarker or a target for future therapies. 
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First, our CITE-seq data nominates Tim3 and CD29 as more specific combinatorial markers 

to identify these circulating myeloid cells within BTC patients. Furthermore, CD14CTX 

express certain molecules associated with immunosuppression such as CXCL8, TGFB1, 

and IL6, which could be targeted by anti-cancer therapy independently. The CD14CTX gene 

signature correlated with poor prognosis in other CPI-insensitive cancers such as prostate 

and colorectal cancer and in patients treated with CPI. In addition, CD14CTX aligned with 

SPP1 (osteopontin)-expressing TAMs, a broadly expressed, pleiotropic molecule, involved 

in chemotaxis, anti-apoptosis, and maladaptive wound-healing response, with both pro- and 

anti-inflammatory roles (Denhardtet al., 2001; Muliaditan et al., 2018). SPP1 expression 

correlates with poor prognosis in many cancer types, including biliary cancer, and SPP1+ 

TAMs have been identified in other CPI-insensitive diseases including colorectal cancer 

(Muliaditan et al., 2018; Sulpice et al., 2013; Zhang et al., 2020a; Zheng et al., 2018). 

Finally, we demonstrated that CD14CTX could induce SOCS3 expression in CD4+ T cells, a 

known negative regulator of cytokine signaling and mediator of T cell ‘‘immune paralysis’’ 

(Croker et al., 2003; Jiang et al., 2017; Sckisel et al., 2015). T cell unresponsiveness 

induced in T cells by cancer-associated myeloid cells is an emerging mechanism of 

immunosuppression distinct from those mediated by other immune checkpoint pathways 

(Emmons et al., 2021). Here, in the context of biliary cancer, we demonstrated that 

circulating SOCS3+CD4+ T cells also exhibited immune paralysis following stimulation 

in vitro. Targeting these immunosuppressive myeloid populations driving T cell paralysis, 

in combination with CPI, presents a future avenue for overcoming CPI insensitivity and 

improving outcomes in patients with BTC.

Limitations of the study

While our study provides important insights into the circulating myeloid cells of BTC 

patients and mechanisms of CPI response and resistance in BTC, the single-cell dataset 

is derived from a small cohort. Therefore, we sought to validate our observations with 

independent cohorts of cholangiocarcinoma tumors through assessing additional patients 

as well as examining a cohort from the TCGA dataset. The overall low response rate 

to CPI in BTC likely reflects multiple mechanisms of resistance, which could be further 

elucidated by examining additional patient cohorts. While we found that induction of 

CD14CTX corresponds with resistance to CPI, the mechanisms controlling the induction 

of responder versus non-responder myeloid sub-populations remain to be determined. Lastly, 

we demonstrated that the plasma from patients with BTC can induce SOCS3 in CD4+ T 

cells and that myeloid cells from BTC patients can suppress T cell proliferation and cytokine 

production, but the factor(s) inhibiting T cells also remain to be identified.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Lawrence Fong, 

lawrence.fong@ucsf.edu.
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Materials availability—This study did not generate new unique reagents or biological 

materials.

Data and code availability

• Single-cell RNA-seq, CITEseq, and bulk RNA-seq data have been deposited 

at GEO: GSE210067 and are publicly available as of the date of publication. 

Accession numbers are listed in the key resources table.

• All original code has been deposited in github and is publicly available as of the 

date of publication. Access information is listed in the key resources table. The 

software used in this study is described in the following sections and the key 

resources table in detail.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Peripheral blood mononuclear cells were obtained from patients pre- and on-treatment (per 

UCSF institutional review board (IRB) #15–18420) from the clinical trial of staggered 

or simultaneous GM-CSF and anti-PD-1 (pembrolizumab) (n = 9 total, 4 women and 5 

men, age range 53–73 years). Patients, per eligibility criteria, had advanced biliary tract 

cancer previously treated with chemotherapy, and no active uncontrolled infections. BTC 

patients started treatment with anti-PD-1 (administered intravenously starting on cycle 1 day 

1 (C1D1) and repeating every 3 weeks) and subsequently received GM-CSF (administered 

subcutaneously in cycles 2 and 3 for 14 days each) (Kelley RK et al., 2018). We profiled 

blood samples from BTC patients from baseline, 1 week following anti-PD-1, and 3 weeks 

following anti-PD-1 immediately prior to cycle 2; this report does not examine effects of 

GM-CSF, as patients received GM-CSF after the collection of these sample timepoints. 

For the purposes of this study, responders (n = 4) were characterized as patients that had 

an objective partial response or stable disease by imaging, resulting in progression-free 

survival for 6 months or longer. Non-responders (n = 5) were patients that did not have 

objective tumor responses and/or who had progression-free survival less than 6 months. 

Tumor samples were collected from patients biopsied as part of the Phase II clinical trial 

and from patients undergoing standard-of-care resections and consented under the UCSF 

Hepatobiliary Tissue Bank and Registry (IRB #12–09576) (n = 4 total, 3 men and 1 woman, 

age range 37–60 years) Healthy donor PBMCs were collected from age and gender-matched 

healthy donors as part of the Cancer Immunotherapy Biobanking protocol and the Immune 

Cell Census (IRB #15–16385 and #19–27147, respectively; n = 8 total, 4 women and 4 

men, age range 46–77 years); healthy donor samples reflect one timepoint, with multiple 

independent replicates sequenced. Informed consent was obtained from all patients for 

participation in the listed trials and for use of blood and tumor samples in research studies. 

Patients’ and healthy donors’ age, sex, gender, race, ethnicity, and additional tumor-related 

characteristics are provided in Tables S1 and S7.
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METHOD DETAILS

Processing of samples, scRNAseq, and CITE-seq—Blood samples were processed 

using ficoll (Cytiva); after centrifugation, the peripheral blood mononuclear cell (PBMC) 

layer was isolated and cryopreserved in cell media with human serum and DMSO. 

Previously frozen PBMCs from healthy donor and BTC patients were thawed using media 

containing RPMI, heat-inactivated sterile filtered human serum, penicillin-streptomycin, 

non-essential amino acids, sodium pyruvate, and L-glutamine (CHM media). Samples were 

then incubated for DNAse I (15 units/mL, Roche) before washing and counting. 1 × 

106 cells from 16 unique samples were combined and stained with one pooled cocktail 

containing 99 AbSeq antibody-oligonucleotide conjugates (Table S2, BD Biosciences) per 

standard protocols (Olvera et al., 2018), following preincubation with TruStain FcX (Fc 

Receptor Blocking Solution, Biolegend). Samples from different individuals and timepoints 

were randomly mixed across experiments to minimize batch and confounding effects 

(Figures S1A and S1B). Droplet-based single cell RNA sequencing (scRNAseq) was 

performed using the 10× Genomics Chromium Single Cell 3ʹ Reagent Kits v3, according 

to manufacturer instructions. For tumor tissues, samples were digested in RPMI containing 

Collagenase I & II (0.1 mg/mL, Thermo Fisher Scientific) and DNAse I, minced, and 

digested for one hour using the GentleMACS system (Miltenyi Biotec). Isolation of live 

cells was performed using MACS LS columns (Miltenyi Biotec). scRNAseq of tumor 

samples was completed on fresh material with 10× 5′ version 1 kits. All sequencing was 

performed on an Illumina NovaSeq S4 sequencer with paired end 200 base pair read length 

and 25,000 reads per droplet.

RNA extraction and bulk RNA sequencing—RNA extraction and bulk RNA 

sequencing were performed to obtain single nucleotide polymorphism information for 

sample deconvolution. The RNeasy Mini Kit (Qiagen) was used to extract RNA from 

minimum 2.5 × 105 cells per PBMC sample. cDNA was prepared using methods previously 

described, with the Smart-seq2 protocol (Picelli et al., 2014), and libraries were prepared 

using Nextera XT DNA Sample Preparation Kit. Bulk RNA from each sample was 

sequenced at a depth of at least 2 × 107 reads per cell on the Illumina Novaseq S4 

and aligned to human genome build 38 with STAR (Dobin et al., 2013). Pre-processing 

of aligned sequencing data and identification of single nucleotide polymorphisms was 

performed using the Genome Analysis Toolkit (McKenna et al., 2010) as previously 

described (Bunis et al., 2021). We used demuxlet (Kang et al., 2018) (https://github.com/

statgen/demuxlet) for sample deconvolution of multiplexed PBMC samples, removing any 

samples that lacked high confidence in sample identification.

Pre-processing of scRNAseq data—CellRanger version 3.1.0 (10× Genomics, 

Genome Build: GRCh38 3.0.0) was used to align the raw sequencing data. The ADT library 

sequences were aligned to a customized reference genome provided by BD containing the 

oligonucleotide sequences corresponding to each antibody. We used the SCANPY (Wolf et 

al., 2018) data analysis pipeline for pre-processing and analysis of scRNAseq data, with the 

following software versions: scanpy 1.4.6, anndata 0.7.1, umap 0.4.1, numpy 1.18.1, scipy 

1.4.1, pandas 1.0.3, scikitlearn 0.21.2, statsmodels 0.10.1, python-igraph 0.8.0, and louvain 

0.6.1. We applied the following cutoffs for filtering high quality cells: <20% mitochondrial 
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genes, >100 and <2500 genes expressed per cell, and excluded platelets, red blood cells, 

and doublets. We filtered out ribosomal genes and genes detected in less than three cells. 

Following sequencing alignment, pre-processing, quality control, and doublet removal, we 

recovered over 230,000 cells from all samples combined, corresponding to greater than 

5,000 cells per sample. We log2 plus one transformed, normalized the data to 10,000 counts 

per cell, regressed out gender, percent mitochondrial genes, and number of gene counts, and 

scaled genes to unit variance. We performed batch correction using ComBat (Johnson et al., 

2007) and highly variable genes present in greater than 4 of 11 independent experiments, 

using the SCANPY function for highly variable genes, and ran principle component analysis 

with SCANPY. We then performed k-nearest neighbor graph construction and clustering on 

gene expression data; for analysis of all immune cells, we clustered cells with a resolution 

of 1.0. We re-clustered on myeloid or T cells individually, removing any contaminating cells 

(non-myeloid or non-T cell), for myeloid, we used a resolution of 0.3; for T cells, we used 

resolution 0.6. For protein data, we processed the data by log2 plus one transformation, 

regressing out batch, and scaled as for RNA. For the fresh tumor tissue dataset, we applied 

the same pre-processing pipeline and used previously established gene lists used for the 

annotation of cells in cholangiocarcinoma including immune and non-immune cells (Zhang 

et al., 2020b) and identified four myeloid clusters, three lymphocyte clusters, and three 

malignant cell clusters. We independently re-clustered on the intra-tumoral myeloid cells 

and T cells using a resolution of 0.3 and 1, respectively.

scRNAseq analysis—We used the SCANPY embedded function to determine top 

differentially expressed genes for all immune cells, T cells and myeloid sub-types; for 

further analysis, we used MAST (see Statistical Analysis). Cell types were annotated using 

commonly expressed protein (Figure S1C and Table S2) and transcript markers (Figure 

S1D). CITE-seq generally produced strong correlation (R = 0.40 to 0.71, p = 1.25 × 10−7 to 

9.31 × 10−3, inclusive of all values except for CD4) between protein and RNA expression 

for canonical immune cell type markers across individual samples, except in genes that 

have low levels of transcript abundance such as CD4 (Figures S1E–S1G). We used COMET 

(Delaney et al., 2019) to identify combinatorial gene expression by analyzing a subset of 

1000 equally sampled cells from the CD14CTX, CD14APC, and CD14IFL populations and 

running three iterations with different random samples. We then used this list to identify 

highly ranked gene pairs that were cell surface proteins contained in the CITE-seq panel. 

Trajectory analysis was performed using Monocle v2.10.1 (Qiu et al., 2017; Trapnell et al., 

2014), using a sub-sample of maximum 10,000 total cells with equal cell number sampled 

from each cell type. For gene signature comparisons between circulating immune cells and 

intra-tumoral immune cells, we created a matrix of pseudobulk expression for each cell 

type and then performed correlation analysis on pseudobulk gene expression profiles. For 

cross-data set comparison and clustering of intra-tumoral and circulating myeloid cells, 

we used Harmony to process data (Korsunsky et al., 2019) and partition-based graph 

abstraction (PAGA) (https://github.com/theislab/paga) to demonstrate the connectivity of 

clusters (Wolf et al., 2019). For gene ontology analysis, we used an immune-specific 

pathway database (Li et al., 2014), and used an adjusted p value cutoff of <0.05 and a 

log fold-change of 0.5 (as determined by MAST, as described under Statistical Analysis) for 

the genes from each monocyte sub-population. For over-representation analysis, we used 
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the enricher function from clusterprofiler (http://www.bioconductor.org/packages/release/

bioc/html/clusterProfiler.html) (Yu et al., 2012) and cnetplot function from DOSE (https://

bioconductor.org/packages/release/bioc/html/DOSE.html) (Yu et al., 2015).

Flow cytometry and in vitro experiments—PBMC samples were thawed as described 

for scRNAseq, incubated with TruStain FcX (Biolegend), and stained with LIVE/DEAD 

Fixable Near-IR Dead Cell Stain (Invitrogen), followed by surface antibody staining. 

For CD68, SOCS3, and cytokine staining, we performed intracellular staining using the 

Intracellular Fixation & Permeabilization kit (eBioscience). Data was acquired using the 

LSRFortessa cytometer (BD Biosciences). We performed FACS with the gating schema 

described in the Results section and Figures S6A and S6B to obtain the sorted populations 

from healthy donor and patient PBMCs, using a FACSAria Fusion (BD Biosciences). In 

T cell/myeloid cell co-cultures, cells were plated at 1:1 ratio for effector T cells:myeloid 

population, with 2 × 105 T total cells per well, in CHM media and 10 units IL-2. Cells 

were harvested on day 6 for analysis with flow cytometry. Intracellular SOCS3 staining was 

performed using an unconjugated primary (Cell Signaling) and a fluorescently conjugated 

secondary antibody (Jackson ImmunoResearch). For T cell stimulation experiments, we 

used anti-CD3/CD28 beads (ThermoFisher Scientific) in culture for 3 days before harvest; 

protein transport inhibitor cocktail (eBioscience) was added to co-cultures for 4 h before 

harvest and intracellular cytokine staining. Complete information for antibodies used is 

available in Key Resources Table. For suppression assays, sorted T cells were stained 

with CFSE (CellTrace, Invitrogen) per manufacturer instructions prior to co-culture with 

monocytes.

Tissue staining and image analysis—RNAscope (Advanced Cell Diagnostics, ACD) 

in situ hybridization and immunofluorescence were performed on 4μm FFPE sections 

obtained from control tonsil and from biopsies collected from BTC patients treated on 

the clinical trial. Tissues were pre-treated with target retrieval reagents and protease 

to improve target recovery based on guidelines provided in the RNAscope Multiplex 

Fluorescent Reagents Kit v2 Assay protocol. mRNA expression was demonstrated using 

probes for CD68, SOCS3, SPP1, and HAVCR2 (ACD). Probes were hybridized with Opal 

7-Color Manual IHC Kit (PerkinElmer) to produce discrete points of light. Samples were 

then stained for CD4 (Thermo Fisher Scientific) and CD3 (Abcam) and with the AF488 

and AF555-conjugated secondary antibodies given in Key Resources Table. Tissues were 

counterstained with DAPI. Slides were imaged using TCS SP8 X white light laser inverted 

confocal microscope (Leica Microsystems, Inc). The ARK Python library (Greenwald et 

al., 2022) was used to perform cell segmentation based on the DAPI (nuclear) stain, 

extract single-cell marker counts, and generate a CSV file of cell size-normalized and 

arcsinh-transformed single-cell marker counts. A re-scale factor of 0.5 was applied to format 

40× image data for use with a segmentation model trained on 20× data. Microsoft Excel 

was used to produce histograms and biaxial scatterplots that were then used to gate image-

specific CSV files of cell populations of interest. These cell population CSVs were imported 

into CytoMAP (Stoltzfus et al., 2020), which we used to plot cell centroids colored by cell 

type. CytoMAP’s Calculate Distance tool was used to calculate average distances between 
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cells. Median distances were calculated for each image and compared with a one-sided 

paired t-test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—For differential expression analysis, we used the embedded 

SCANPY function to identify differentially expressed genes in each cluster compared to the 

union of the rest of the clusters which uses Benjamini-Hochberg (Hochberg and Benjamini, 

1990) to control the false discovery rate. For specific comparisons of differential gene 

expression between cell types, we used MAST to calculate fold change and significance, 

based on a model incorporating cellular detection rate (based on number of genes per 

cell), gender, and patient as covariates (Finak et al., 2015). For frequency proportions, 

weighted least squares was used to adjust for number of cells sequenced in each individual 

and Benjamini-Hochberg method was used to adjust p-values for multiple comparisons. To 

assess the correlations of the frequency of cell types, we used Spearman’s rank correlation 

coefficient. Flow cytometry data was analyzed with FlowJo (FlowJo Software for Mac 

Version 10, 2019) for data analysis. A two-sample t-test was used to compare frequency 

of cell types between patients and healthy donors, and for analyses with multiple groups, 

one-way ANOVA was performed, using GraphPad Prism version 8.3.0. Additional details 

such as statistical test used, number of samples, and p-values can be located in figure 

legends and in Tables S3 and S4, S5, and S6.

Survival analysis—Raw gene expression counts were downloaded from 

cholangiocarcinoma (Farshidfar et al., 2017), prostate cancer (Cancer Genome Atlas 

Research, 2015), and colon cancer (Cancer Genome Atlas, 2012) datasets using The 

Cancer Genomics Cloud (Lau et al., 2017); additional clinical metadata was downloaded 

from cBioportal (Cerami et al., 2012). Overall survival (OS) and disease-free survival 

(DFS) were defined as from the time of collection of tissues to the date of death or last 

follow-up and estimated by the Kaplan-Meier method. For the checkpoint inhibitor-treated 

datasets, we downloaded data from the phase 3 JAVELIN Renal 101 trial (n = 886; 

NCT02684006; (Choueiri et al., 2020; Motzer et al., 2020)) and from baseline biopsies 

prior to pembrolizumab (anti-PD-1) treatment in melanoma patients (n = 112; Validation 

Cohort 2 (Jerby-Arnon et al., 2018)) and for both datasets, used progression-free survival 

as the clinical endpoint. We started with the top 20 differentially expressed genes in 

CD14CTX, as determined by MAST, and then used only genes found in both datasets. We 

use a normalized z score for each gene, which is calculated by (raw gene expression – 

mean expression)/standard deviation of expression; then the composite score was calculated 

as the linear combination of the coefficients estimated based on the multivariable Cox 

proportional hazards (CPH) model (which includes all the top 20 genes) multiplied by the 

corresponding gene expression values (Yasrebi et al., 2009). When fitting the CPH model, 

panelized regression with LASSO (least absolute shrinkage and selection operator) method 

was applied to avoid overfitting (Waldron et al., 2011). We compared the OS between 

patients who had the higher composite score (above the median) versus those with the lower 

score by log rank test.
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ADDITIONAL RESOURCES

Peripheral blood and tissue samples obtained from BTC patients on a phase II clinical trial 

with the ClinicalTrials.gov identifier NCT02703714.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multi-omic single-cell sequencing reveals circulating myeloid states in biliary 

cancer

• The CD14CTX monocyte state is associated with resistance to checkpoint 

inhibitors (CPI)

• The CD14CTX molecular signature associates with poor prognosis across 

cancer types

• CD14CTX induce CD4+ T cell immune paralysis, a potential mechanism of 

CPI resistance
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Figure 1. Analysis of circulating immune cells within healthy individuals and BTC patients
(A) Schematic of experimental design.

(B) Uniform manifold approximation and projection (UMAP) plot of all cells from BTC 

patient and healthy donor blood samples colored by cell type. NK/NKT cluster contains T 

cells, NK T cells, and NK cells; cDC = conventional dendritic cells; mono = monocytes; 

pDC = plasmacytoid dendritic cells.

(C–E) Percent of each cell type out of total immune cells in BTC patients (prior to treatment, 

n = 9) and healthy donors (n = 8) (C) and in responders (n = 4) and non-responders (n = 5) 

Keenan et al. Page 23

Cell Rep. Author manuscript; available in PMC 2023 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior to treatment (D), and 3 weeks following anti-PD-1 (E). * denotes significance (adjusted 

p < 0.05). Boxes denote inter-quartile range (IQR), while bars denote 25% – 1.5 3 IQR and 

75% + 1.5xIQR.

(F) UMAP of all immune cells colored by protein and RNA expression for PD-1 (PDCD1), 

PD-L1 (CD274), and PD-L2 (PDCD1LG2).
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Figure 2. Circulating myeloid populations within BTC patients and healthy responders
(A) UMAP colored by myeloid cell subtype. cDC = conventional dendritic cells; mono = 

monocytes; pDC = plasmacytoid dendritic cells.

(B) UMAP of myeloid cells showing expression of each protein or RNA molecule used to 

annotate myeloid subtypes.

(C) Heatmap with expression of genes in the top enriched pathways (right labels) for each 

monocyte subtype.

(D) UMAP of RNA expression of the indicated gene across all myeloid cells.
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(E) Percent of each cell subtype out of total myeloid cells in BTC patients (prior to 

treatment, n = 9) and healthy donors (n = 8). * denotes significance (adjusted p < 0.05); 

*** denotes adjusted p value < 0.001. Boxes denote inter-quartile range (IQR), while bars 

denote 25% – 1.5xIQR and 75% + 1.5xIQR.
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Figure 3. Monocyte subtypes associated with anti-PD-1 response
(A–C) Trajectory analysis of monocyte subtypes from BTC patients and healthy donors. 

Cells are ordered in latent time (A) with monocyte subtype (B) or response status (C) 

overlaid.

(D) Heatmap of differentially expressed genes, arranged by clusters of patterns of gene 

expression across latent time (direction shown by arrow).

(E and F) Percent of each cell subtype out of total myeloid cells in BTC responders (n = 4) 

and non-responders (n = 5) prior to treatment (E) and 3 weeks following anti-PD-1 (F). * 
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denotes significance (adjusted p < 0.05); ** denotes adjusted p value < 0.005; *** denotes 

adjusted p value < 0.001. Boxes denote inter-quartile range (IQR) while bars denote 25% – 

1.5xIQR and 75% + 1.5xIQR.
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Figure 4. Monocyte gene signatures associated with poor prognosis in CPI-insensitive cancer 
types
(A) Volcano plot of log2(fold change) and –log10(p value) showing differently expressed 

genes between CD14CTX and CD14APC.

(B) Expression of suppressive chemokines and cytokines associated with MDSC and M2 

macrophages is shown for CD14CTX and CD14APC.

(C) Protein (top panel) and RNA (bottom panel) expression overlaid on UMAP of myeloid 

cells for HAVCR2 (Tim3) and ITGB1 (CD29, integrin-α1) and for the combination of both 

genes/proteins.
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(D) Bar plots of each myeloid population gated on CD68 and calculated as percentage of 

total CD45+ circulating immune cells as analyzed by flow cytometry of peripheral blood 

samples from healthy donors (‘‘Healthy,’’ n = 7) or BTC patients (n = 8). * = p < 0.05, error 

bars denote standard deviation.

(E–G) Kaplan-Meier curve of overall survival for cholangiocarcinoma (E) and colon cancer 

(F), and disease-free survival for prostate cancer (G) cases in the TCGA dataset by high 

(red line: median expression greater than composite score [CS]) or low (dashed line: median 

expression lower than CS) expression of the CD14CTX gene signature.

(H and I) Kaplan-Meier curve of progression-free survival for renal cell carcinoma (H) and 

melanoma (I) patients treated with PD-1 blockade inhibition by high (red) or low (black) 

expression of the CD14CTX gene signature. For (E)–(I), the y axis is in months, and the 

numbers below the plots denote number of individuals at risk. NR = not reached, CI = 

confidence interval, OS = overall survival, DFS = disease-free survival, PFS = progression-

free survival.
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Figure 5. CD14CTX are associated with SOCS3+CD4+ T cells and can induce CD4+ T cell 
suppression
(A) UMAP of all T cells in healthy donors and BTC patients colored by cell annotations.

(B) Heatmap of Pearson correlation coefficients for cell type frequencies for myeloid and T 

cell subtypes.

(C) The frequency of the specified cell type out of total myeloid or T cells was calculated 

and then correlated as shown in each plot. Each dot corresponds to an individual patient 

sample.
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(D) Schematic of co-culture conditions. The monocyte populations indicated were cultured 

with healthy T cells for 6 days and re-stimulated with anti-CD3/CD28 beads for 3 days prior 

to harvest.

(E) CFSE staining is shown for representative CD4+ and CD8+ populations (left panel). 

Data are summarized in bar plots as the percentage of CD4+ and CD8+ T cells that remain 

undivided following re-stimulation in each co-culture condition (right panel, n = 3–6 wells 

per condition). Stim = stimulated.

(F) Flow cytometry assessment for percentage SOCS3+ out of healthy donor (HD) CD4+ T 

cells co-cultured with the indicated monocyte population (n = 2–3 wells per condition).

(G) Flow cytometry assessment for percentage SOCS3+ out of HD CD4+ T cells alone (n = 

3 replicates) or co-cultured with plasma from HD (n = 3) or BTC patients (n = 18).
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