
UC Davis
IDAV Publications

Title
Visualizing Visualization: A Model and Framework for Visualization Exploration

Permalink
https://escholarship.org/uc/item/6dw570zx

Author
Jankun-Kelly, T. J.

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6dw570zx
https://escholarship.org
http://www.cdlib.org/

Visualizing Visualization
A Model and Framework for Visualization Exploration

By

T J JANKUN-KELLY
B.S. (Harvey Mudd College) 1997

M.S. (University of California, Davis) 1999

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in charge

2003

–i–

Visualizing Visualization
A Model and Framework for Visualization Exploration

Copyright c© 2003
by

T J Jankun-Kelly

The pyramid stones

A thousand generations

Each one given thanks

–ii–

Acknowledgments

Too many people have assisted me over my 21 years of education to thank individually, and

to leave any one out would lessen their importance. Thus, this work is dedicated to each

pyramid stone that formed the foundation of this work.

This work was supported by NASA Ames Research Center through an NRA

award under contract NAG2-1216, the National Science Foundation under contracts 9983641

(CAREER Awards), ACI 9982251 (LSSDSV program) and 0222991, Lawrence Livermore

National Laboratory under ASCI ASAP Level-2 Memorandum Agreements B347878 and

B503159, Lawrence Berkeley National Laboratory, and the Director, Office of Science, of

the U.S. Department of Energy under contract DE-AC03-76SF00098. Thanks go to Ayo-

deji Demuren, the Center for Computational Sciences and Engineering at Lawrence Berkeley

National Laboratory, Philip Smith, Arthur Toga, Robert Wilson, and the Visible Human

Project for the data sets used in this work.

–iii–

Contents

List of Figures viii

List of Tables x

List of Symbols xi

Abstract 2

I Overview 3

1 Introduction 4
1.1 Problem Statement . 5

1.1.1 Approach . 5
1.1.2 Contribution . 6

2 A Characterization of the Visualization Process 7
2.1 The Purpose of Visualization . 7

2.1.1 Scientific Visualization . 8
2.1.2 Information Visualization . 9

2.2 The Visualization Exploration Process . 10
2.2.1 Visualization Space Paths . 12
2.2.2 Derivation Models . 12

2.3 Modeling User Interaction with Visualization 13
2.4 The Fundamental Operation of Visualization Exploration 15

3 Overview of the Framework 17
3.1 Internal Representation . 17
3.2 External Representation . 18
3.3 Summary . 18

II Internal Representation 19

4 Visualization Models 20
4.1 Visualization Transform Models . 20

4.1.1 Data-Flow Model . 21

–iv–

4.1.2 Data State Model . 22
4.1.3 Lattice Model . 23
4.1.4 Evaluation . 24

4.2 Visualization Data Models . 25
4.3 Visualization Session Models . 25

4.3.1 Visualization Space Path Model . 26
4.3.2 GRASPARC Model . 27
4.3.3 General Data Exploration Model . 27
4.3.4 Evaluation . 28

4.4 Summary . 29

5 A Visualization Exploration Process Model 30
5.1 Visualization Transformation Model . 30
5.2 Visualization Session Model . 32
5.3 Examples . 35

5.3.1 Image Graph Example . 35
5.3.2 VisSheet Example . 37
5.3.3 Dynamic Manipulation Interface Example 37

5.4 Comparison . 39
5.5 Summary . 40

6 Visualization Session Analysis 41
6.1 Introduction . 41
6.2 Visualization Process Relationships . 42

6.2.1 History Relationship . 42
6.2.2 Session Result Derivation Relationship 43
6.2.3 P-set Derivation Relationship . 45
6.2.4 P-set Difference Relationship . 45
6.2.5 Using Visualization Process Relationships 46

6.3 Visualization Process Graphs . 46
6.3.1 History Sequence Graph . 47
6.3.2 Session Result Derivation Graph . 48
6.3.3 P-set Derivation Graph . 49
6.3.4 P-set Difference Graph . 50

6.4 Examples . 51
6.4.1 Image Graph Example . 51
6.4.2 VisSheet Example . 52
6.4.3 Dynamic Manipulation Interface Example 52

6.5 Process Graph Analysis . 56
6.5.1 Metrics . 57
6.5.2 Patterns . 57

6.6 Summary . 58

7 Representation 60
7.1 The P-set Model Representation . 60
7.2 Using the Representation . 61

–v–

III External Representation 67

8 Principles for Visualization Exploration Interfaces 68
8.1 Components of User Interface Design . 68
8.2 Classification of Visualization User Interfaces 69

8.2.1 Interactive Control & Dynamic Manipulation Interfaces 70
8.2.2 Data-flow Interfaces . 70
8.2.3 Parameter-based Interfaces . 71
8.2.4 Spreadsheet Interfaces . 72

8.3 Desired Visualization User Interface Properties 73

9 A Spreadsheet-like Interface for Visualization Exploration 76
9.1 Spreadsheet-based Visualization Representation 77

9.1.1 Conceptual Model . 77
9.1.2 Display and Navigation . 79

9.2 Static Spreadsheet-based Exploration . 81
9.3 Dynamic Spreadsheet-based Exploration . 83

9.3.1 Parameter and Value Operators . 83
9.3.2 Animations . 85
9.3.3 Scripting . 86

9.4 Encapsulating and Sharing the Visualization Process 88
9.4.1 History Display . 89
9.4.2 On-Line Collaboration . 89
9.4.3 Off-Line Collaboration . 89

9.5 Further Examples . 90
9.6 Summary . 94

IV Summary 95

10 A Framework for Visualization Exploration 96
10.1 The Core Framework . 96

10.1.1 The VisualizationSession Class . 97
10.1.2 The VisualizationSessionResult Class 100
10.1.3 The Derivation Class . 100
10.1.4 The VisualizationTransform Abstract Class 101
10.1.5 The VisualizationParameterType and VisualizationResultType Ab-

stract Classes . 101
10.1.6 The VisualizationParameterValue and VisualizationResultValue Ab-

stract Classes . 102
10.1.7 The VisualizationOperator Abstract Class 102
10.1.8 The VisualizationView Abstract Class 102

10.2 The VisSheet Framework . 103
10.2.1 The VisualizationSheetView Abstract Class 103
10.2.2 The VisualizationSheetState Class 106
10.2.3 The VisualizationSheetDelta Class 107
10.2.4 The JFCVisualizationSheetView Class 108

10.3 The Framework in Action . 108

–vi–

10.3.1 A Web-based Sheet-like Interface for Visualization 109
10.3.2 Web-based Encapsulation of Visualizations 110

11 Conclusions 114
11.1 Effectiveness . 114
11.2 Impact . 116

Bibliography 117

–vii–

List of Figures

2.1 The knowledge crystallization cycle. 10
2.2 Visualization exploration cycles. 11

3.1 Overview of the Visualization Exploration Framework. 17

4.1 Characterizations of a visualization transform in different models. 22

5.1 Visualization session results in the P-set Model. 35
5.2 Representation of a brain vessel visualization. 36
5.3 Representation of a spreadsheet-based visualization. 38
5.4 Augmenting a visualization system with the model. 39

6.1 Sample visualization process graphs. 47
6.2 Image Graph visualization process graphs. 51
6.3 VisSheet visualization process graphs. 52
6.4 BGP visualization process graphs. 53
6.5 P-set difference graph for the BGP visualization. 54
6.6 Important results from the BGP exploration session. 55
6.7 Different visual patterns exhibited by visualization process graphs. 57

7.1 DTD for the P-set Model representation. 62
7.2 DTD for the P-set Model representation (continued). 63
7.3 Visual representation of the schema for the P-set Model representation. . . 64
7.4 BGP visualization session representation. 65
7.5 HTML overview of the vessel visualization. 66

9.1 Glyphs for the VisSheet. 78
9.2 VisSheet parameter space display. 80
9.3 Rotation the VisSheet view. 80
9.4 Static exploration via the VisSheet. 82
9.5 Isosurface VisSheet visualization. 84
9.6 Parameter operators in the VisSheet. 84
9.7 Result operator in the VisSheet. 86
9.8 An example of referencing a cell. 88
9.9 Another VisSheet examining multiple data sets. 88
9.10 A spreadsheet analyzing a 3D segmentation pipeline. 91
9.11 Another VisSheet examining the segmentation pipeline. 91

–viii–

9.12 A coupled spreadsheet. 93

10.1 Class diagram for the session classes in the framework. 98
10.2 Class diagram for the framework type system. 99
10.3 Sequence diagram for adding a result. 104
10.4 Class diagram for the VisSheet . 105
10.5 The VisPortal/WebSheet architecture. 108
10.6 The AMRWebSheet Interface . 110
10.7 VisPortal p-set difference graph. 113

–ix–

List of Tables

4.1 Summarization of the visualization transform models. 24
4.2 Summarization of the visualization session models. 28

6.1 Visualization process relationships and the relations used. 42

10.1 A summary of the core framework. 97
10.2 A summary of the components in the VisSheet framework. 106
10.3 Properties of the VisualizationSheetView abstract class. 107

–x–

List of Symbols

Symbol Description
G Graph
v Vertex
V Set of vertices
e Edge
E Set of Edges
d Data set
D Set of data sets of a given type
P Set of visualization parameter values of a given type
r Visualization result value
R Set of visualization result values of a given type
p Parameter value set (p-set)
p (i) Parameter value of type i in p-set p
P Set of p-sets
P (A) Power set of the set A
t Timestamp
t Visualization transform
T Set of visualization transforms
δ Parameter calculus instance (derivation)
D Set of derivations
x Parameter transform
X Parameter transform list
s Visualization session result
S Set of visualization session results
S Visualization session
V Visualization space
ε Data entity
E Set of data entities
m Meta-data
M Set of meta-data
⇀ next-result relation; next-results relation

 same-timestamp relation
↽ previous-result relation
⇒ derives relation
∆1 differs-by-one relation
l String label

–xi–

1

Visualizing Visualization
A Model and Framework for Visualization Exploration

Author: T.J. Jankun-Kelly
Committee: Dr. Kwan-Liu Ma, Chair

Dr. Michael Gertz
Dr. Kenneth I. Joy

Visualization and Graphics Research Group
Center for Image Processing and Integrated Computing

Department of Computer Science
University of California, Davis

2

Abstract

Visualization exploration is the process of extracting insight from data via interac-

tion with visual depictions of that data. Visualization exploration is more than presentation;

the interaction with both the data and its depiction is as important as the data and depic-

tion itself. Previous visualization research has focused on the generation of visualizations—

the depiction—and not on the exploratory aspects of the visualization process. However,

without user interfaces for and formal models of the visualization process, visualization ex-

ploration sessions cannot be fully utilized. Towards this end, this dissertation introduces a

model and framework for the visualization exploration process.

This research aims at providing a framework for capturing, representing, and ma-

nipulating information derived during the visualization discovery processes in a systematic

manner. In particular, this work focuses on the exploration during the data analysis and

visualization process through the use of intuitive graphical user interfaces. These interfaces

provide a structured environment for the exploration of the visualization parameter space.

The interfaces utilize a formal model of the visualization process that captures the fun-

damental operations performed during this exploration. The model is independent of the

visualization performed or user interface utilized. In addition, instances of the model can be

shared between users via an interoperable representation format. The goal of this work is

to maximize user productivity by offering them an effective mechanism to fetch, edit, reuse,

and share with others their visualizations which may include raw data, data associations,

visualization results, and the steps taken to derive the visualization results.

3

Part I

Overview

4

Chapter 1

Introduction

The purpose of visualization is to extract insight from data through the use of

images and animations of the data’s features. The results of the visualization system are

then used by the data creators or data users in their final analysis. Over the past decade,

the field of visualization has matured; a wealth of techniques for a variety of data types

have been developed to solve problems in various domains. As the use of visualization

becomes more wide-spread, methods to support the use and dissemination of visualization

must be developed. A visualization technique is of no use if there is no interface for that

technique. If the results of that technique are not stored, then the technique is wasted.

Thus, these problems must be addressed before visualization can become effective for large-

scale deployment.

The following example illustrates the motivation for this research. Consider two

scientists, Alice and Bob, who collaborate remotely. Bob is the primary data generator and

Alice is the data investigator. Bob has generated a data set for Alice to visualize. Alice

downloads the data and starts up her visualization system. Her system is a standard turn-

key system—it allows the visualization parameters to be edited in iteration, but provides

no access to previous results or parameter settings. At one point, Alice wishes to visually

compare several different settings for a single parameter value. To do this task, she would

have to manually re-input the previous parameter value since it is lost after subsequent

editing; this redundant effort is costly in terms of the user’s time and the computational

5

effort involved in regenerating the previous result. Alternatively, Alice could save each

result externally of the visualization system, an unnecessary complication. When Alice’s

exploration is complete, she communicates her results to Bob. Unfortunately, since her

visualization system does not store her visualization session, she must manually report her

results and parameter settings to Bob. If Bob wants to further explore the data using

Alice’s results, he would have to enter these parameter settings manually. In addition,

to share his results, he would have to repeat the laborious process of externally recording

the images and parameter settings for Alice. As demonstrated, the lack of adequate data

exploration support and session recording during the visualization process makes this form

of collaborative work difficult.

1.1 Problem Statement

Current visualization systems do not structure the exploration process in order to

eliminate costly redundant exploration. In addition, these interfaces do not provide context

for their users. Once a visualization session is complete, many of these interfaces do not

record the user’s exploration. Thus, these explorations cannot be extended or shared with

collaborators.

1.1.1 Approach

To solve these problems, this work describes a framework with the following com-

ponents:

• An internal representation of the process.

• An external, visual representation of the process through user interfaces.

• A framework to communicate between the internal and external representations.

The user interface controls the visualization process; the session model records the visual-

ization process. The internal representation consists of a model of the visualization process

(based upon the fundamental operation of the visualization process described by this re-

search) and a common representation of that process. This representation is understood

6

by the user interfaces using the developed framework. These user interfaces make use of

four principles of visualization exploration that address the lack of exploration support in

common visualization interfaces.

1.1.2 Contribution

The model and interface principles introduced here are powerful because they are

general—they can be applied to a wide domain of visualization problems. The parameter

space abstraction and process model can be used in many visualization tasks. The stored

representation can be shared and extended in several different ways. This research will

assist users of visualization in all disciplines to explore, communicate, and understand their

results.

7

Chapter 2

A Characterization of the

Visualization Process

This research aims to developing a model of the visualization exploration process

and to describe principles for systems utilizing that model. In order to develop this model,

the properties of the visualization process must be understood. This chapter examines dif-

ferent approaches to understanding the visualization process. The common feature of these

approaches—iterative interaction during visualization exploration—will lead to a discussion

of the properties of visualization systems that support this interaction. The properties of

these systems will be distilled to illuminate the fundamental operation of the visualization

exploration process. This fundamental operation characterizes the visualization process and

is the basis for the visualization exploration process model discussed later.

2.1 The Purpose of Visualization

An oft quoted tenet of visualization is “the purpose of visualization is insight, not

pictures.”1 Thus visualization is interdisciplinary by nature—the user of the visualization

provides context for the visualization. By understanding visualization’s place in the overall

analysis process, a better understanding of the visualization process is gained.
1A quote derived from Richard Hamming’s characterization of computation’s purpose (“The purpose of

computing is insight, not numbers,” [25]) and paraphrased from McCormick et al. [42]

8

2.1.1 Scientific Visualization

The typical user of scientific visualization is an application scientist. In this setting,

visualization is part of the scientific process. This process is based upon the assumption

that physical phenomena can be described through objective means. To achieve objectiv-

ity, theories about the nature of phenomena should be testable and repeatable [44]. The

scientific method was developed in order to satisfy the testability and repeatability crite-

ria. The method consists of four steps: observation, theorization, experimentation, and

analysis. Vital to the research discussed here are two properties of this process. First, the

scientific method is inherently iterative: As experiments are analyzed, new observations

could prompt new theories and experimentation. As a consequence, the scientific visual-

ization process should also be iterative in order to support the hypothesize-test-analyze

cycle of the scientific method. Secondly, documentation is vital to this process. Without

documentation, other scientists cannot verify the experimental results, violating one of the

central assumptions of the method. Consequently, visualization systems in scientific ap-

plications should document the visualization process in order to assist in repeatability. It

should be noted that automated recording of the visualization can assist the scientist in

another way—it can suggest patterns in exploration or new directions of possible study.

Springmeyer et al. [52] describe the entire scientific data analysis process of which

scientific visualization is a part. This taxonomy was developed through interviews and

observation of scientists. In their taxonomy, visualization is used mainly to interact with

and maneuver through scientific data. The actions a scientist performs with visualization

are summarized in the following list:

• Generating Data

• Examining Data

• Querying Data Values

• Data Navigation

• Data Value Comparison

9

• Data Value Classification

This taxonomy is important in that it provides a lists of requirements for scientific visual-

ization systems. If a system does not support one of these actions, it is less useful to the

scientist. When outlining principles for visualization interfaces in Chapter 8, this list will

be revisited.

To summarize, visualization is utilized during the analysis portion of the scientific

method. During this analysis, the scientist iteratively explores the data, using the results as

documentation. As discussed next, users of information visualization utilize visualization

in similar ways for similar reasons.

2.1.2 Information Visualization

Unlike scientific visualization, the users of information visualization systems are

harder to encapsulate—they are not limited to scientists but include anyone using visu-

alization in order to discover knowledge or make decisions. Put another way, the data

sets of interest to users of information visualization are any sort of information that can

be visually structured. This broad class of data is in contrast to the narrower traditional

scientific visualization data sets—data sets which typically have a pre-determined physical

structure. Since scientific visualization already has a structure, most research in that area

has been upon increasing performance of various known visual mappings. In information

visualization, more effort is given to creating informative mappings to create structure.

Human-computer interaction researchers [48] have studied how users integrate vi-

sualization into their work-cycle in a manner similar to Springmeyer et al. The “sensemaking

cycle” (called “knowledge crystallization” in the more general context that does not use vi-

sualization [9]) models this task integration (see Figure 2.1). Sensemaking is the process

of searching for a representation (a schema) and encoding data in that representation to

answer task-specific questions utilizing a computer as an aid to cognition.

Information visualization can be used at every stage of the sensemaking cycle. If

data is not available, information visualization and data mining can be used to extract data

of interest. Visualization construction tools can be used to create an adequate visual schema,

10

Task

Instantiate Schema

Data Foraging

Overview, Query, Filter,…

Search for Schema

Cluster, Classify,…

Problem-solve

Compare, Manipulate,…

Author/Decide/Act

Extract, Compose

Figure 2.1: The knowledge crystallization cycle [9]; sensemaking is a form of knowledge
crystallization that utilizes a computer to aid in cognition. Each stage in the cycle (blue)
represents a major subtask, each of which contains different subtasks (green). At any stage
in the cycle, the result of the task may cause the sensemaker to return to any previous
stage.

and then explore this schema to determine which features are vital and which are ancillary.

Since sensemaking is cyclic, the visualization system could be used to iteratively explore

as the data or the schema is changed. Thus, both information and scientific visualization

systems must support iterative exploration.

2.2 The Visualization Exploration Process

During the visualization exploration process, a user interacts with a visualization

system. The interaction leads to some sort of insight which is used in the overall task at

hand. As discussed previously, the interaction with the visualization is iterative as new

data or new insight could affect the exploration process. In order to model the visualization

exploration process, a better understanding of this interaction is needed.

Upson et al. [56] describe the scientific visualization process as an analysis cycle.

According to this model, data is filtered into subsets of interest, mapped onto visual prim-

itives, and then rendered for the user by a function called the visualization transform. The

11

visualization generated by this transform is then used by the user to provide feedback into

the previous steps, restarting the cycle. A similar cycle of raw data transformation, vi-

sual structure generation, and view rendering with user interaction is described by Card et

al. [9] for information visualization. Figure 2.2 compares these two models. The key feature

of both models is that the visualization process is an iterative sequence of user controlled

transformations. Thus, elements that change during this iteration must be the focus of any

description of the visualization process. These elements are arguments to the visualiza-

tion transform—the visualization parameters. In Upson’s model, these parameters control

the data filtering process (e.g., by specifying a data threshold value), the visual primitive

mapping (e.g., by changing colors assigned to data values), and the actual rendering (e.g.,

by changing lighting parameters). In Card’s model, parameters manipulate the raw data

transformation (e.g., by specifying what parts of a data table in a database to utilize),

the visual mappings (e.g., by changing the mapping of the nominal variables from color to

shape), and the view transformations (e.g., by changing the orientation of the view). As

parameters are visualization transformation dependent, a description of this transform is

also important to any documentation of the visualization process.

Data

Geometric
Primitives Image

Image

Simulation

Summarize

Filter

Map

Render

Playback

Raw
Data

Data
Tables

Visual
Structures

Views

Human
Interaction

Data
Transformations

Visual
Mappings

View
Transformations

(a) Scientific visualization cycle [Upson] (b) Information visualization cycle [Card]

Figure 2.2: The visualization exploration cycle according for scientific visualization [56]
and information visualization [9]. Both use a “filter-map-render” visualization pipeline
controlled by user interaction.

12

While Upson and Card’s models provide an overview for the visualization process,

they are not fine grained enough to detail the user’s exploration. What are needed are

models that “unravel” the visualization cycle in order to discuss what the user was doing

at any time in the exploration. Two approaches have been taken: visualization space paths

and derivation models.

2.2.1 Visualization Space Paths

Several novel visualization user interfaces [39, 41] assume visualization exploration

is equivalent to navigating a multidimensional visualization parameter space. In these

models, each parameter in the visualization transform corresponds to a dimension in the

visualization parameter space. Thus, a visualization result maps to a unique point in the

visualization space. Users then trace a path through this space as they explore new results.

For example, the Design Galleries [41] interface displays a overview of the entire space by

random sampling while an Image Graph [39] follows a more structured path through the

space. The models used by these interfaces provide an explicit tie between the visualization

results (what the user sees) and the visualization parameters (what the user controls).

However, the relationship between different results is not explicit in these model. Derivation

models address this limitation.

2.2.2 Derivation Models

Derivation models describe how a new item was created from a previous item.

For example, genealogy models the relationships between children and their parents (and

previous generations). In visualization, two major derivation model efforts have been un-

dertaken: The GRASPARC project [5] and Lee’s general data exploration (GDE) model

for visual data exploration [36, 37].

GRASPARC addresses modeling the search for a solution in a scientific problem

solving environment (PSE). Like the visualization exploration process, this search is param-

eter driven; in this case, the parameters are the control variables for the simulation data in

the PSE. A history tree structure is used to communicate and manipulate the PSE control

state where nodes in the tree store the solution parameters and complete or partial results

13

(as simulations can be interrupted). A similar tree-like structure could be used for simple

visualization process models; however, as discussed later, the types of interactions a user

can have with a visualization system dictate that a more complex structure is needed.

Lee’s work in visual database exploration provides the complex structure for pro-

cess modeling lacking in the more simple GRASPARC model. Lee uses a graph-like structure

to model the visualization process for databases. Vertices in the graph represent the state

of the visualization while edges are relationships between states. These relationships are

based upon similarities between meta-data attributes of the states and the data contained

with the states. In Lee’s work, the meta-data attributes describe structural attributes of

the states. A suite of derivations are defined upon these attributes in order to capture the

different interactions one can have with visual databases.

Both the visualization space and derivation models contain elements that are used

in the proposed model for visualization exploration. The visualization parameter space pro-

vides a basis where visualization explorations can be embedded. The complex derivation

model provide a formal definition of the relationships between different results in this vi-

sualization space. Instead of using structural meta-data attributes (as in the GDE model),

derivations record the origin of the parameters used in a result. In other words, derivations

describe how a user’s interaction with the visualization system created the parameters that

generate a visualization result.

2.3 Modeling User Interaction with Visualization

Visualization user interfaces allow the user to interact with visualizations. Thus,

it is important to understand how a user interacts with such systems in order to model

the visualization exploration process. Two approaches can be taken: A low-level, syntactic

approach which examines how user interface events modify the visualization or a high-level,

semantic approach which examines the goals of the user in interacting with the user interface

elements.

Syntactic modeling of user interaction is the realm of human-computer interaction

(HCI) research. This research generalizes to all forms of human-computer interfaces, not

14

just visualization interfaces. Hilbert and Redmiles [31] overview different models of user

interface events and their effects. These models focus on interactions with the specific user

interface element (i.e., “widgets” such as buttons or scrollbars) and how they correspond

to different events in the software controlling the interface. Similarly, Duke et al. [18]

discuss modeling the user interface elements themselves—they consider both the user and

application interactions with the interface elements (called “interactors” in the paper). As

these models do not address the intent of the user—the semantics of interaction—they are

not the focus of the process model developed in this work.

Semantic modeling of visualization user interface interactions has been addressed

in different ways. In information visualization, several automatic presentation systems—

systems which create static visualizations of information with little or no human interaction—

have investigated how the purpose of visualization affects the visualization’s construc-

tion [10, 40, 47]. The GADGET systems [21, 22] extend these works to create automatic

interactive visualizations based upon a user’s intent; GADGET uses the Wehrend taxon-

omy of scientific visualization tasks [58] and Shneiderman’s taxonomy of information visu-

alization tasks [50] to determine the user’s intent. These systems utilize a very high-level

semantic model of visualization, one not tied to the user’s interaction with the visualization.

Thus, they are not sufficient for the research discussed here.

Chuah and Eick’s Basic Visualization Interactions (BVI) [15] are another semantic

model of user interaction for visualization. They decompose a visualization transform into

atomic units of interaction—the BVIs. The BVIs include a visual control aspect (a user

interface element) and methods for modifying the visualization. The user interacts with

BVIs to control the visualization since the BVIs provide the interface for visualization

parameter manipulation. This model reinforces the importance of visualization parameters

to the visualization exploration process. However, Chuah and Eick’s work does not address

how the parameters can change—an important property for understanding the visualization

process.

Rheigans [46] provides some insight into the different types of interactions a user

can have with a visualization system. She discusses two types of interactions: interactive

parameter control and dynamic manipulation. In the former, interactive manipulation of

15

the parameter values does not correspond to interactive updates to the rendered result; the

result is only rendered upon user request. For dynamic manipulation interaction, parameter

values can vary over a continuous range during manipulation. This range corresponds to a

range of rendered results. Interactive parameter control interfaces were the norm in scientific

visualization before the wide-spread availability of accelerated graphics hardware; dynamic

manipulation is now common.

This classification will be used as the basis for the exploration process model

discussed here. The only type of interactions not included in Rheigans’ taxonomy are

function derivations. In function derivations, parameter values are derived either by some

sort of user-applied operator (as in the Image Graph [39]) or via a function created through

an interactive interpreter (as in the VisSheet in Chapter 9). These three interactions capture

all the interactions a user can have with parameters controlling a visualization in current

visualizations. Chapter 5 discusses this model in more detail.

2.4 The Fundamental Operation of Visualization Exploration

From the previous discussion, several key properties of the visualization explo-

ration process can be distilled. Visualization exploration is cyclic—parameters are modified

iteratively until the results of interest are generated. The parameter values are generated

in one of three ways: A parameter value can be generated from an old parameter value

(through interactive parameter control); a range of parameter values can be generated from

an old parameter value (through dynamic manipulation); or a set of parameter values can

be derived from a different set of parameter values via some operator (through a function

derivation). Parameter generation is part of the fundamental operation of visualization

exploration:

The fundamental operation of the visualization exploration process is the appli-
cation of a set of parameter values to the visualization transform to generate a
visualization result.

The fundamental operation defines the visualization exploration process. It also captures

the key action a user performs during visualization—the generation of visualization results.

16

By describing how the user performs this fundamental operation, the entire visualization

process is recorded. The framework discussed in this works facilitates the recording of the

visualization exploration process and the exploration of the visualization space by assisting

users in the fundamental operation.

17

Chapter 3

Overview of the Framework

The framework described in this research is designed to provide a structured en-

vironment for the exploration and dissemination of visualization results. The framework is

divided into two main components—the internal and external representations of a visual-

ization session (see Figure 3.1).

Request Result, Query

Return Result, Update

Internal Representation
Stores session information
Performs rendering
Stores & loads sessions

External Representation
Handles user interaction
Displays sessions
Structures exploration

Figure 3.1: Overview of the Visualization Exploration Framework. The two components
represent different parts of a visualization session: The internal representation stores the
visualization results while the external representation is the interface to the visualization.

3.1 Internal Representation

The internal representation manages the visualization session for the user. When

a new result is requested by the user (via the external representation), the internal repre-

sentation generates the result, determines its relationships to previous results, stores the

result and its relations, and returns the result to the user (via the external representation).

In standard object-oriented language, it is the model in a model-view-controller (MVC) ar-

chitecture [34]. All of the information stored by the internal representation can be accessed

18

by the user in some manner depending on the external representation. In addition, the

internal representation can serialize the visualization session. The resulting serialized data

can then be shared by other programs using the framework.

In this work, the internal representation is achieved by utilizing a formal model

of the visualization exploration process. This model captures all the interactions a user

can have with the visualization—these interactions were discussed previously during the

characterization of the visualization process in Chapter 2. The definition of the model and

its capabilities are discussed in Part II of this work.

3.2 External Representation

The external representation presents the user with the visualization. The visual-

ization session is displayed to the user, allowing them to explore new results and compare

them with previous results. In MVC terms, the external representation is both the View

and the Controller. The external representation uses the internal representation in order to

determine the state of the visualization process.

The external representation utilizes a set of principles of for visualization explo-

ration discussed in Part III of this work. These principles give structure to the visualization

exploration process, making it more efficient and effective. These principles will be demon-

strated through a new spreadsheet-like interface called the VisSheet.

3.3 Summary

The Visualization Exploration Framework unifies the internal representation of a

visualization exploration session with the external representation that depicts the session.

The framework utilizes a formal model for visualization to capture the session and principles

for visualization interfaces to modify the session. The interaction between the internal and

external interfaces will be detailed in Part IV of this work.

19

Part II

Internal Representation

20

Chapter 4

Visualization Models

Before the formal model for the visualization exploration process is introduced, a

better understanding of previous approaches to visualization modeling must be addressed.

This work aims to describe the visualization process. To this end, it must detail the two ma-

jor portions of the process: What visualization was done (i.e., the visualization transform),

and how the visualization was done (i.e., the visualization session).

4.1 Visualization Transform Models

The visualization transform describes the type of visualization being performed.

Formally, it is a function which maps data (the value) onto the graphical display (the view).

Every type of visualization has an underlying visualization transform, though, in most cases,

this transform cannot be changed as it is not apparent to the user.

A visualization transform model describes three things:

• The visualization transform (the mapping from data to result). There may be more

than one visualization transform used during a single visualization session.

• The parameters which control the visualization transform (including the data set

type).

• The result type generated by the visualization transform. Multiple result types may

be needed if there are multiple transforms.

21

Each of the following models characterizes these three components differently (see Fig-

ure 4.1). However, their similarities signify that a high-level description of the transform,

parameter types, and result types are sufficient to describe the type of visualization be-

ing performed. Low-level details utilizing one of the following models is only necessary in

cases where the high-level description is not enough to determine the type of visualization

being performed or when the visualization transform is to be modified using a supporting

interface.

4.1.1 Data-Flow Model

The data-flow model, introduced by Haber and McNabb [24], is the transform

model most widely used in scientific visualization applications. This model considers the

visualization transform a pipeline where each stage in the pipeline represents a transfor-

mation. When these stages are collected, they form a network through which data flows.

One reason the data-flow model is popular in scientific visualization is the number of data-

flow interfaces for visualization [1, 35, 56, 61] which allow data-flow networks to be directly

edited. For exploratory visualizations where the type of visualization desired is not known

a priori, these interfaces are advantageous.

Formally, a data-flow visualization transformation network G = (V,E) is a di-

rected graph of visualization stages V connected by data-flow edges E. Each visualiza-

tion stage vi = (Ii, Oi, fi) ∈ V consists of a set of inputs Ii, outputs Oi, and a function

fi : Ii 7→ Oi which transforms the inputs into the outputs. Inputs are the parameters

of the stage, while outputs are the results of the stage. Stages with no inputs and at

least one output are parameters for the transform as a whole (i.e., network sources are

transform parameters), while stages with at least one input are no output are the re-

sult of the transform (i.e., network sinks are transform results). The actual visualization

transform t : Vparameters 7→ Vresults is performed by flowing the computation from the pa-

rameter vertices Vparameters = {v = (I, ∅) ∈ V : |I| > 0} in the graph to the result vertices

Vresults = {v = (∅, O) ∈ V : |O| > 0} in the graph. If there is only one result vertex in the

graph, the functions fi performed at each stage vi can be composed into a single func-

tion which represents the transform; if there are multiple outputs (e.g., a transform which

22

load data

classify

ray-cast

project

display

Data-flow Data-state

volume

classified
volume

rays

image

classify

ray-cast

project

data value
x-position

y-position

z-position

x

y

z

Data

Display

Lattice

Figure 4.1: Characterizations of a ray-casting direct volume renderer in the data-flow, data
state, and lattice visualization transform models.

produces two images for stereo output), each single path to a sink/result would produce a

“sub-function” of the overall transform.

4.1.2 Data State Model

The data state model [14] focuses on the transformation of data states through

the visualization pipeline. Like the data-flow model, a network is used to describe the

visualization transformation. In a data state network, the nodes represent states of the

data and the edges operations on the data. Operators are classified according to the stage

in the information visualization pipeline in which they occur (Figure 2.2); for example, the

classification stage of a volume renderer is a data transformation operator since it changes

an unclassified volume into a classified volume. Though the data state model can be used to

describe scientific visualizations, it has been mostly applied to descriptions of information

visualizations [12]. At the time of this writing, there were no interfaces to edit or present

data state networks in a similar fashion to data-flow networks.

23

Formally, a data state visualization transform network G = (V,E) is an directed

graph of data states V connected by operation edges E. Each data state vi ∈ V is a

representable piece of data. Each edge ei = (vfrom, vto, fi) ∈ E performs a visualization

operation oi : vfrom 7→ vto which transforms the source vertex (its input parameter) into the

destination vertex (its output result). As formulated, the data stage model is ambiguous

when determining parameters and results of the transform, since operators with more than

one input or output are not explicitly addressed. Under simplifying assumptions (single-

input, single-output operators), it has been shown that similar data-flow and data state

networks are the dual of one another [11]. In this case, the visualization transform t : v0 7→

vn is the composition of all the data operators oi where v0 is the vertex with no in-going

edges from other vertices (the input) and vn is the vertex with no outgoing edges to other

vertices (the result).

4.1.3 Lattice Model

The display model used by VisAD [29, 30] is interesting in that it maps data

attributes directly to display via mappings utilizing lattice theory and visual presentation

principles developed by Bertin [2] and Mackinlay [40]. Lattices of data and displays are

used, where a lattice provides a partial ordering of the accuracy of the data and display

(from various meta-data attributes). The visualization occurs by using a function to map

between the lattices. The mapping is determined by maximizing the expressiveness of the

display, where expressiveness is defined by Mackinlay: A display expresses a fact if the

display encodes all those facts and only those facts [40]. Because the model describes both

the data and the display, it is both a visualization transform model (as it describes the

mapping of value to view) and a visualization data model (as it describes the structure of

the data). As of this witting, VisAD [28] is the only system utilizing this model.

Formally, this model uses two lattices U and Y to represent the data and display

structure respectively. U represents the lattice of possible values and types in the data

(each of the with an order relations based upon accuracy) while Y is a lattice of tuples

describing graphical marks (positions in a 3D-display, a time for the display, and a 3-

tuple for the red, green, and blue colors of the mark). The construction of these lattices

24

are beyond the scope of this discussion. To satisfy the expressive criteria, the display

function f : U 7→ Y must be a lattice isomorphism between U and a sub-lattice Y ′ of Y

(i.e., if the ordering relationship is written as ∨, then f (u1 ∨ u2) = f (u1) ∨ f (u2) where

u1, u2 ∈ U). Y ′ is the sub-lattice that does not contain Y ’s maximal element. The display

is constructed by creating a pair of functions g, h : R 7→ R such that for each type within

U , f ({⊥, . . . ,⊥, [x, y] ,⊥, . . . ,⊥}) = {⊥, . . . ,⊥, [g(x), h(x)] ,⊥, . . . ,⊥} where ⊥ signifies the

undefined element (remember that each element in the tuple corresponds to a simple type

in the data lattice). Thus, each type P in the lattice is expressed by exactly one display

variable in the display. Therefore, to construct the visualization transform t : P 7→ Y ′, each

type in the display lattice acts as a parameter in the visualization.

4.1.4 Evaluation

Describes
Name Transform Parameters Results Editable Composable Formalism
Data-flow Yes Yes Yes Yes Yes Good
Data State Yes Yes Yes No Yes Ambiguous
Lattice Yes Yes Yes Yes No Strong

Table 4.1: Summarization of the visualization transform models.

Each of these models have different strengths and weaknesses. The data-flow and

data state approaches are very similar, and, as mentioned, are duals of each other in certain

circumstances. Data-flow benefits from being better studied due to its longevity and the

availability of data-flow network editing interfaces. Neither of these applies to the data

state model. The data state model also suffers from its ambiguity in definition. However,

the data state model better captures information visualization transforms since data-flow

networks have not been traditionally used in that area. In addition, the state of the data is

explicit in the data state model, whereas this information must be gathered from context

in the data-flow model.

The data-flow and data state models are high-level models whereas the lattice

model is low-level. The lattice model provides a solid formal description of the visualization

25

transform at the expense of providing a succinct overview of that transform. In addition, it is

unclear how composable operations such cropping or display operations such as composition

are handled using the lattice model.

This work will utilize an expanded data state model that disambiguates the original

data state model and clarifies the role of the parameters in the transformation. This model

was chosen as it can be utilized to describe both scientific and information visualization

transforms. In the future, to provide a more formal foundation, it would be interesting to

peruse building the model out of the lattice formalization. Perhaps a composition of lattices

describing each stage in the data state pipeline could be utilized.

4.2 Visualization Data Models

To fully formalize the visualization transform model, the types of the data sets,

transform parameters and transform results must be known. For documentation purposes,

a simple label denoting the type may be sufficient. For transform results, the label may

be a Multipurpose Internet Mail Extension (MIME) media type [20] describing the output

format. For data sets, it might identify the physical data format used to store the data.

However, to formally describe the data, parameters, and results generated during the visual-

ization process, a more robust data model is needed. Data models for scientific visualization

data sets [7, 23, 30, 55] and information visualization data sets [8, 9, 50] have been devel-

oped, but may not be applicable to visualization transform parameters and results. More

research unifying scientific and information visualization data models needs to be done. For

this work, unique names for the data, parameters, and results types are utilized (MIME

type names are used for results) until a more general data model can be developed.

4.3 Visualization Session Models

The visualization session model describes what occurred during a visualization

session. At the least, it records the results of the user’s process. Most visualization user

interfaces only provide limited interaction with the stored visualization process. For exam-

26

ple, a simple undo/redo of parameter editing could be supported or a display of previous

results.

A complete visualization exploration session model describes four components:

• The visualization results generated during the visualization process.

• The parameter values used during the process.

• A linear history of the generated results.

• An encoding of the relationships between results.

None of the models discussed during the characterization of the visualization process cap-

tures all four elements, though the GDE model does possess information that could be

utilized for a similar purpose. The process model formalized by this work does capture

these four elements.

4.3.1 Visualization Space Path Model

The visualization space path model used in several interfaces [39, 41] posits that

visualization exploration is the process of exploring a path through visualization parame-

ter space. Each visualization result represents a unique point in this visualization space.

Depending on the interface, different visualization paths can be used to explore this space.

Formally, given a visualization transform t : P0×· · ·×Pn 7→ R mapping parameters

P0, . . . , Pn to results R, a visualization parameter space V is an n-dimensional space, one

dimension for each parameter. To be a proper space, an arbitrary ordering can be assigned to

parameter types without a natural ordering (this work never utilizes this ordering criterion).

Each point in the space, identified by a set of parameter values (a p-set), corresponds to a

unique result r ∈ R—if p ∈ P0×· · ·×Pn is a p-set, then r = t (p). A visualization path is a

sequence of result sets S = (S0, S1, S2, . . .) where each Si ∈ P (R)− ∅ (P (A) is the power

set of set A—the set of all subsets of A). Each Si represents all the results generated during

time step i in the exploration. For example, in the Design Galleries system, S0 consists of

a large set of initial results (generated from the random sampling) with each following Si

consisting of a single derived result. In most visualization systems, a visualization space

27

path would only consist of sets of one element as only one result can be displayed and edited

at a time.

4.3.2 GRASPARC Model

The GRASPARC system [5] utilizes a tree of PSE parameters to model the ex-

ploration process. If used to model visualization exploration, elements in the tree become

p-sets. Derivation information is encoded in the tree. Formally, given a visualization trans-

form t : P0 × · · · × Pn 7→ R, the process tree G = (R,E) defines the exploration where

the edges E ⊂ R × R are such that (ri, rj) ∈ E if ri is rj ’s parent. This tree can model

interfaces where a user can return to any previous result in the exploration to start a new

branch of the exploration.

4.3.3 General Data Exploration Model

Lee’s General Data Exploration Model (the GDE Model [37]) is built around data

entities, meta-data describing the data, and data derivations. Data entities consist of the

underlying data, the meta-data annotating the data, and a label for the entity. In addition,

the temporal ordering of the derivations can be visualized using derivation sequences while

data derivation and lineage graphs display data relationships. Derivations in the GDE

Model describe which data entities were used to generate subsequent data entities. In

addition, a time stamp and meta-data describing the derivation are also associated with a

derivation.

Formally, the GDE Model consists of data entities derived using data derivations1.

A data entity ε = (d, k,M) consists of a data set d (described using some data model), a

key k, and meta-data M = (mI ,mS ,mP ,mK) describing the identification (mI), structural

(mS), process (mP), and knowledge (mK) attributes of the data d. A data derivation

δ = (f, t, M) consists of a binary relation f : Ei 7→ Eo between an input set of data entities

Ei and an output set of data entries Eo where Ei ∩ Eo = ∅, a time stamp t, and meta-data

m describing the derivation. A derivation sequence is then an sequence D = (δ0, δ1, . . . , δn)
1In Lee’s formalism, there are three different classes of data entities and data derivations based upon the

precision of the meta-data associated with each; for the purpose of this discussion, the distinctions are not
important.

28

of data derivations δi = (fi, i,mi)—a derivation sequence fulfills the same purpose as a

visualization path. Similarly, a data derivation graph G = (V,E) details the relationships

between data entities where, given a derivation sequence D = (δ0, . . . , δn), the vertices

V =
⋃

i domain (fi) ∪
⋃

i range (fi) (where fi ∈ δi is δi’s binary relation) consist of all the

data entities in the domain or range of the any data derivation and a directed edge exists

between two vertices vi and vj if and only if fj (vi) = vj for some fj ∈ δj ∈ D.

4.3.4 Evaluation

Describes
Name Results Parameters History Derivations Formalism
Visualization Space Path Yes Yes Yes No Good
GRASPARC Tree No Yes No Partial None
GDE Model Yes No Yes Yes Strong

Table 4.2: Summarization of the visualization session models.

Of the considered process models, the GDE Model is the most complete, fulfilling

three of the four criteria for a visualization session model. Visualization space models

provide a good space in which the visualization process could be embedded and thus tracks

which parameters generated a result. However, these models do not encode how a result

was generated. The GRASPARC tree indicates which result was generated from another

result but does not specify how that result was generated from its parent result nor when

that result was generated. In addition, it is implicit in the GRASPARC model that only one

result can be generated from a previous result in any time step. Neither of these limitations

apply to the GDE Model, since a data derivation consists of an arbitrary binary relationship

with a time stamp. However, the GDE Model does not specifically formulate the parameters

used to create a visualization result nor how those parameters were generated (some of this

information may or may not be in the meta-data).

In the visualization session model developed here, an extension of the visualization

path models and the GDE Model is used. The model utilizes the visualization parameter

space from the path models as the framework for the model. Parameter value sets take the

29

place of data sets and visualization session results containing p-sets, results, time stamps,

and derivation information take the place of data entities. Unlike the GDE Model, derivation

information is embedded directly in the session results. Sequences of sessions results give a

temporal ordering of the derivation and visualization derivation graphs can also be generated

from the session results. Thus, the four properties of a session model are satisfied.

4.4 Summary

A visualization exploration process model consists of a visualization transform

model and a visualization session model. Previous approaches to visualization transform

modeling have mostly addressed the three requirements for such models, and thus an entirely

new transform model does not need to be introduced. However, previous session models

have been limited in their ability to express either different kinds of derivations or the

parameters involved in those derivations. Thus, the major contribution of the visualization

exploration process model in this work is the session model. The details of this model are

provided next.

30

Chapter 5

A Visualization Exploration

Process Model

This chapter introduces the P-Set Model for Visualization Exploration (the P-Set

Model for short). It formally describes the visualization exploration process by describing

how the visualization was performed (using a visualization transform model), how user

interaction with the visualization generated new results (using a new parameter derivation

calculus), and how a sequence of these interactions are related (using a new visualization

session model). The model is illustrated through several examples that demonstrate its

capabilities.

5.1 Visualization Transformation Model

The visualization transform model outlines the type of visualization being applied.

Without this information, it may be difficult to determine how the visualization results were

generated. The transform also details what parameter types are used to generate a result.

This information is needed by the session model in the next section.

The visualization transform model described here augments the data state model

to include information about the parameters used in the visualization process. The data

state model was chosen because it already focuses upon the data sets utilized in the visu-

alization, an important parameter. Formally, the transform model consists of the following

31

components:

Visualization transform A function t : D0×· · ·×Dn×P0×· · ·×Pm → R which describes

the mapping of value (the data set types D0 through Dn) to view (the visualization

transform result type R). P0 to Pm are visualization transform parameter types.

Visualization transform parameter type Any set that is part of the domain of the vi-

sualization transform function. By this definition, data set types are also visualization

transform parameter types. A member of a visualization transform parameter set is

a visualization transform parameter value, or parameter value for short.

Visualization transform result type A set which is in the range of a visualization trans-

form function. Members of this set, known as visualization transform result values, or

results for short, are directly representable in graphical form (such as a raster image,

shaded geometry, etc.).

When documenting the visualization exploration session, only the visualization transforms

and corresponding parameter and result types used need to be recorded. This can be

accomplished by listing the parameter types and results type for each transform (called

the transform signature). For a more detailed breakdown of the transform, the full formal

model can be used.

The complete visualization transform model decomposes the visualization trans-

form into stages of visualization operator applications. A visualization operator oi : Di,0 ×

· · · ×Di,n ×Pi,0 × · · · ×Pi,m 7→ Di,n+1 maps a set of data elements (Di,0 through Di,n) and

operator parameters (Pi,0 to Pi,m) to an output set (Di,n+1). Visualization operators are

composed in order to form a visualization transform. Though data sets are considered a

type of parameter, the model does force a distinction—parameters are controllable values

exposed by the user interface while data sets are provided by the user. The former provides

control over the operation while the later is the input to or the output of the operator.

As stated, a visualization transform is the composition of a sequence of visualiza-

tion operators: t = oj ◦ oj−1 ◦ · · · ◦ o0. The output data set of any operator becomes one of

the input data sets for the subsequent operator (e.g., output data set Di,n+1 for operator

32

oi becomes Di+1,0 in operator oi+1). To determine the signature of t, all the input data

sets to any operator which are not the output of a previous operator are considered the

visualization data sets while all of the parameters to the various visualization operators

are considered the visualization parameters of t. Finally, the output data set of the last

visualization operator is considered the visualization result. Note that the same parameter

type may be used in different visualization operators (i.e., Pi,s may have the same type as

some Pj,t); they may or may not share the same parameter value.

Like the original data state model, a decomposed visualization transform in the

expanded model may also be graphically displayed. For the graph G = (V,E), each vertex

represents one of the data set types (a data state Di,s for some i and s). There is a directed

edge ei = (Vfrom ⊂ V, vto ∈ V, oi) ∈ E between vertices Vfrom = (v0, . . . , vn) and vto if

the corresponding data stages for the vi ∈ Vfrom are in the domain of oi. This graph

distinguishes between a vertex with multiple incident edges and a vertex with a single edge

connected to multiple incident vertices. In the former, several visualization operators map

to the same data state. In the later, several data sets are used to derive a single data

state. This property disambiguates the original data state model. Similarly, the expanded

definition of the visualization operator function includes the parameter types explicitly, a

property missing from the original specification.

5.2 Visualization Session Model

The visualization session model serves two purposes. Its primary purpose is to cap-

ture the path of exploration during the visualization session. This information encapsulates

the details of the visualization exploration process. The secondary purpose of the model is

to allow the description of the session to be further analyzed, visualized, or manipulated.

Unlike the other visualization session models, this model describes four compo-

nents: the results, the parameter values, the history of the results, and the result’s rela-

tionships. The visualization results are recorded because they are the desired outcome of

the user’s exploration process. Each result is uniquely identified by the parameter values

which generated that result. Without the parameter values, the final results could not be

33

reproduced. Finally, the history and derivation information is needed to reproduce the

visualization process.

As previously stated, the fundamental operation that occurs during the visualiza-

tion process is the formation of parameter value sets to derive visualization results. These

parameter value sets, or p-sets, posses a parameter value for each parameter in the vi-

sualization transform. New p-sets are created by user interaction with the visualization

system. The session model tracks the relationships between results by recording how a

user generates new p-sets (and thus results) from old p-sets. P-set derivations can be ex-

pressed as one of three templates using a parameter derivation calculus. In the following,

the pj = {pj(1), . . . , pj(n)} are p-sets and each pj(i) ∈ Pi is a different parameter value for

the same parameter type Pi:

I. Parameter Application p2(i)| p0 7→ p1: parameter value p0(i) ∈ p0 is replaced by

p2(i) ∈ p2 in order to derive p-set p1.

II. Parameter Range [p0(i), p1(i)]| p0 7→ p1: a continuous range of parameter values is

generated between discrete parameter values p0(i) and p1(i) and applied to p-set p0.

p1 represents the p-set at the end of the continuous interaction.

III. Function Application p0(i) → p1(i)| p0 7→ p1: parameter value p1(i) was calculated

from p0(i) by some function and then applied to p0 to generate p1.

All derivations are expressed as parameter-transform-list | input-tuple 7→ output-tuple. Such

constructions are parameter derivation calculus instances. The parameter transform list

contains input and output parameter values; the former is used to derive the later. Output

parameter values are sequentially applied to the elements in the input p-set tuple to generate

the output p-set tuple. In the templates, p0(i) is an input parameter value while p1(i) and

p2(i) are output parameter values. It is possible to have multiple input parameter values,

output parameter values, p-sets in an input tuple, or p-sets in an output tuple. For example,

Figure 5.1 demonstrates a function derivation with two output parameter values (in braces)

and two elements in the output tuple (in angle brackets).

Formally, a parameter calculus instance δ = (X, Pinput,Poutput) consists of an

sequence of input and output p-sets Pinput and Poutput respectively and a list of parameter

34

transformations X = (x0, . . . , xn), xi = (l0, (pi(j), . . .) , (pi′(j′), . . .)), consisting of a label

li determining what transformation occurred (parameter application, parameter range, or

function application), a list of input parameter values, and a list of output parameter values

for that transformation. Derivations occur as follow: All possible parameter combinations

which form valid sub-p-sets derivable from the output parameter values are generated (a

sub-p-set is a set of parameter values which may not include all the parameter types specified

by the visualization transform). These are then applied in order to all the input p-sets in

Pinput to create Poutput.

The parameter derivation calculus describes all the salient parameter behaviors

described in Chapter 2. The calculus is the basis for recording the visualization exploration

session. Formally, a visualization session consists of a set of visualization session results. A

visualization session result s = (p, r, t, δ) is a tuple containing a p-set p, the visualization

transform result derived from the p-set r, a timestamp t to place the result in temporal

context, and a parameter derivation calculus instance δ detailing how the result was derived.

Example session results are given in Figure 5.1. Each session result represents the generation

of a single visualization result. As the example illustrates, it is possible for parameter

calculus instances to be the same for two or more session results (the third and fourth lines

in the example). This disparity is due to the fact that calculus instances correspond to user

actions while session results correspond to rendered results. The same user action can create

more than one rendered result, all sharing the same timestamp. Though it is possible for a

user to re-visit the same visualization result by generating the same p-set more than once,

each is a unique session result identified by a distinct timestamp. A complete visualization

session S = (T,P, R, S) then consists of the set of transforms T used in that session, the

p-sets P used in the session, the visualization results R generated from the p-sets, and the

corresponding visualization session results S.

One issue remaining is the change of visualization transforms during a visualiza-

tion exploration session. Changes of visualization transform are not explicitly encoded in

the model. Currently, it is assumed that visualization transforms can be uniquely identified

by their signature: the parameter types and result type used in the visualization transform.

Thus, a p-set not only uniquely identifies a visualization result but also identifies the visu-

35

s0 = 〈p0, r0, t0, ∅〉
s1 = 〈p1, r1, t1, p1(2)| p0 7→ p1〉
s2 = 〈p2, r2, t2, p1(1) → {p2(1), p3(1)}| p1 7→ 〈p2, p3〉〉
s3 = 〈p3, r3, t2, p1(1) → {p2(1), p3(1)}| p1 7→ 〈p2, p3〉〉
s4 = 〈p4, r4, t3, p4(2)| p0 7→ p4〉

Figure 5.1: A series of visualization session results. A session result is a tuple of a p-set
(the pi), the visualization result corresponding to that p-set (ri), a timestamp (ti), and
information detailing how the result was derived. In this example, the second session result
was derived from the first in the second timestep before the third and fourth results were
both derived in the third timestep. Afterwards, the fifth result was derived from the first.

alization transform that generated the result since the parameter types are defined by the

transform. Explicit identification of a transform change is not needed since it is implicit in

the visualization session result sequence.

5.3 Examples

To better understand the details of the visualization exploration process model,

we present a few examples. Three examples are presented in this section. The first two

examples consider detailed visualization sessions in order to demonstrate the effectiveness of

the model and representation. They also provide concrete examples of how the parameter

calculus can describe real visualization sessions. The first uses an Image Graph user interface

while the second one uses a spreadsheet-like interface. The last example is a case study

demonstrating how an implementation of the model was added to an existing visualization

tool.

5.3.1 Image Graph Example

The first example (Figure 5.2) demonstrates the use of the model and representa-

tion. A volume visualization of blood vessels in the brain was performed using the Image

Graph (top left image in the figure). The user first zoomed into a region of interest (result

sb). Two rotations were then used to display different views of the vessel (sc and sd). After

zooming in again (se), the user decided to apply the final zoom magnification to the earlier

images. This was accomplished by dragging the zoom edge over the previous zoom edge.

36

sa = 〈pa, ra, t0, ∅〉 Default
sb = 〈pb, rb, t1, pb(zoom)| pa 7→ pb〉 Zoom a
sc = 〈pc, rc, t2, pc(view)| pb 7→ pc〉 Rotate b
sd = 〈pd, rd, t3, pd(view)| pb 7→ pd〉 Rotate b
se = 〈pe, re, t4, pe(zoom)| pd 7→ pe〉 Zoom d
sf = 〈pf , rf , t5, pe(zoom)| 〈pb, pc, pd〉 7→ 〈pf , pg, pe〉〉 Zoom b
sg = 〈pg, rg, t5, pe(zoom)| 〈pb, pc, pd〉 7→ 〈pf , pg, pe〉〉 Zoom c
se′ = 〈pe, re, t5, pe(zoom)| 〈pb, pc, pd〉 7→ 〈pf , pg, pe〉〉 Zoom d

Figure 5.2: Representation of a brain vessel visualization. The feature of interest is the
bulge in the lowest vessel in image e (top left image, captions added for clarity). During
the visualization, the user dragged the zoom edge going to image e over the edge from a
to zoom the other images in the Image Graph (top right). These derivations, including the
propagation of the zoom factor from e to results f and g, are recorded in the session results
(bottom).

The images using the new magnification (from se′ , sf , and sg) replaced the old images

(from sd, sb, and sc respectively) to produce the image graph shown in the top right image

in the figure. During the exploration, the session results were recorded (bottom portion

of the figure); these results explicitly state how the zoom parameter value from se’s p-set

was applied to results sb and sc to derive results sf and sg respectively (the fifth and sixth

lines in the bottom portion of the figure). Due to the propagation, the same p-set pe was

generated twice when pe’s zoom factor was applied to pd, pe’s parent. When this session is

analyzed in Chapter 6, the distinction between session results and p-sets will become more

apparent.

37

5.3.2 VisSheet Example

In this example, the session consists of results from a visualization of a multi-

resolution, time-varying computational fluid dynamics (CFD) dataset exploration (Figure

5.3). A web-based spreadsheet-like interface (the WebSheet, see Chapter 9 and 10) was

used. In this example, the user first generated three results at different simulation time-

steps at the coarsest resolution (results s0–s2). The user then simultaneously requested

the same three images at the highest resolution by adding a new row (results s3–s5); the

final state of the interface can be seen at the top of Figure 5.3. Since last three results

were generated at the same time, they share the same timestamp t3. The session results

completely capture this visualization exploration session.

5.3.3 Dynamic Manipulation Interface Example

In the last example, the model was used to augment an existing visualization tool.

The tool in this example is used to visualize anomalies in Internet routing using the Border

Gateway Protocol (BGP) [54]. The tool displays different types of changes to ownership of

autonomous systems (ASes)—groups of hosts on the Internet. The different types of changes

correspond to different colors (top left image in Figure 5.4). Lines of the appropriate color

connect an AS along the edge of the square to IP addresses affected by the AS change within

the square. The tool allows a user to browse through different dates with different types of

AS changes highlighted. Anomalies are found by visually searching the dates for unusual

patterns of lines. In this example session, a range of dates showing all the AS change types

were examined until an anomaly was discovered on August 14th, 2000 (top row of the right

image in Figure 5.4). The displayed AS change types were then changed until the type of

anomaly was isolated (third column in the top right image in the figure). The order of this

exploration was not as straight-forward as displayed in the sheet, as the session results in

the bottom of the figure show. These results, which occurred during the AS exploration,

show how each AS change was toggled on-and-off in sequence.

In order to support the model presented here, the original tool was modified in

several stages. First, the types of visualization transforms used by the system and the

38

s0 = 〈p0, r0, t0, ∅〉 Initial Result (time-step 0)
s1 = 〈p1, r1, t1, p1(time)| p0 7→ p1〉 Time-step 300
s2 = 〈p2, r2, t2, p2(time)| p1 7→ p2〉 Time-step 500
s3 = 〈p3, r3, t3, p3(resolution)| p0 7→ p3〉 Increase resolution
s4 = 〈p4, r4, t3, p4(resolution)| p1 7→ p4〉 Increase resolution
s5 = 〈p5, r5, t3, p5(resolution)| p2 7→ p5〉 Increase resolution

Figure 5.3: Representation of a multi-resolution, time-varying computational fluid dynam-
ics visualization using the P-set Model. The user utilized the web-based spreadsheet-like
interface introduced in Chapter 10. In this example, three results at different time-steps
were rendered at the lowest resolution before the higher resolution images were rendered.

parameter and result types of each transform were determined. In this system, the major

parameter types are the date, which of the eight AS changes to display, a list of ASes to

highlight, a list of ASes to ignore, and options for modifying the display. Once the pa-

rameters were identified, the next stage determined how the parameter values can change.

For this example, all parameter changes are discrete: there are no function applications

and parameters cannot be manipulated over a range. Finally, hooks were added to the

39

. . . previous results . . .
s83 = 〈p83, r83, t83, p83(date)| p82 7→ p83〉 First August 14th result
s84 = 〈p84, r84, t84, p84(ASChange)| p83 7→ p84〉 Toggle one change type off
s85 = 〈p83, r83, t85, p83(ASChange)| p84 7→ p83〉 Toggle the same change type on
s86 = 〈p86, r86, t86, p86(ASChange)| p83 7→ p86〉 Toggle another change type off
s87 = 〈p83, r83, t87, p83(ASChange)| p86 7→ p83〉 Toggle the same change type on

. . . etc. . . .

Figure 5.4: An example of augmenting an existing visualization system (left) to store vi-
sualization session information using the model. The interface is a Border Gate Protocol
(BGP) visualization tool; the right figure displays a spreadsheet view of an exploration pro-
cess originally captured by the tool. Dates are shown across the columns and the types of
origin AS change displayed (indicated by color) are shown down the rows. The session in-
formation (bottom) shows that the AS change type was determined by sequentially toggling
the display of each change type.

user interface elements corresponding to each parameter type in order to capture changes

in parameter values. These hooks update session information stored by a separate library.

The library (written in Python) interfaces with the original tool (written in C++) in or-

der to produce the representation used by the spreadsheet (written in Java, the top right

image in Figure 5.4) to display the process. The above process can be repeated with other

visualization systems in order to make use of the model.

5.4 Comparison

The transform model used by the P-set Model fixes the ambiguity in the data

state model while introducing explicit parameter type modeling. In practice, this detail

40

in modeling is only needed in interfaces that can edit the transform (such as in data-flow

visualization interfaces). The current representation of the model, discussed in Chapter 7,

only uses the visualization transforms signature to identify the transform.

In comparison the previous session models, the P-set model has several advantages.

This model addresses the visualization path model’s inability to determine how results

were derived from one another by introducing the parameter derivation calculus. Like

the GDE Model, the P-set Model can have complex derivations (multiple ancestors or

descendents), thus avoiding the single parent problem of the GRASPARC tree model. This

model explicitly addresses how parameters were changed by the user, unlike the GDE model.

The P-set fully captures the visualization exploration process.

5.5 Summary

The P-set Model for visualization exploration describes the method of visualization

using an augmented data state model and encapsulates the visualization session using a new

parameter derivation calculus. The formal foundation for the model allows different forms

of analysis of visualization sessions. In the next chapter, visual analysis will be introduced

via graphs of the visualization process. These graphs will be used to gain other types of

insight into the visualization exploration process.

41

Chapter 6

Visualization Session Analysis

6.1 Introduction

During the visualization process, a user iteratively explores a very large space of

visualization parameters in order to discover visualization results of interest. The search of

this space can be costly—especially for very large data sets. By presenting the visualiza-

tion process to the user, unnecessary re-explorations can be avoided. Such a presentation

also assists the user understand and thus navigate the visualization space. Visualization

process information is also useful for system designers: Representations of the process can

highlight inefficiencies of the system or suggest common patterns of exploration. Methods

for visualizing the visualization process are thus beneficial both in data exploration and

system design.

This chapter describes new methods for extracting visual representations of the

visualization process. Visualization sessions are themselves visualization using visualization

process graphs introduced in this chapter. Different relations utilizing the P-set Model of

visualization exploration are used to build the process graphs. The methods presented here

allow effective visual analysis of different properties of the visualization exploration process.

42

Name Relation Description
History next-results Time-line of results
Session Result Derivation derives Temporally distinct derivations
P-set Derivation derives P-set derivations
P-set Difference differs-by-one Difference in p-set parameter values

Table 6.1: Visualization process relationships and the relations used.

6.2 Visualization Process Relationships

Before the visualization process can be presented visually, the relationships within

the process must be extracted. The relationships are represented by (possibly directed)

graphs—an edge exists between two session results or p-sets if they satisfy some relation.

Different types of relationships emphasize different characteristics of the process. For exam-

ple, one relationship between session results is their relative temporal ordering—i.e., which

result was generated first. These relationships are measured using visualization process re-

lations; these relations determine whether two nodes are connected (and the direction of

the connection in a directed graph) based upon properties of the session results. In this

work, four relationships and their corresponding relations are considered: History, Session

Result Derivation, P-set Derivation, and P-set Difference (summarized in Table 6.1).

6.2.1 History Relationship

This relationship only uses the timestamps of the visualization session results. The

purpose of this relation is to provide a temporal ordering of the results. It is important to

know what results were generated after another and what results were generated during the

same time-step. The next-results relation defined below satisfies this need.

Two relations are used—the next-result relation ⇀ and same-timestamp relation

. A third relation, previous-result ↼ exists and is the inverse of next-result, but is not

used in graph construction. The two relations are defined as follows (where S = (T,P, R, S)

is the visualization session under study):

Definition (next-result Relation). Given two session results si = (pi, ri, ti, δi) and sj =

(pj , rj , tj , δj), si, sj ∈ S, si ⇀ sj if and only if tj = ti + 1. In other words, sj occurs

43

immediately after si temporally.

Definition (same-timestamp Relation). Given two session results si = (pi, ri, ti, δi)

and sj = (pj , rj , tj , δj), si, sj ∈ S, si
 sj if and only if tj = ti. In other words, sj was

generated during the same timestep at si.

The next-result relation is irreflexive and antisymmetric. The same-timestamp

relation is reflexive and symmetric and thus transitive. Given these two relations, the

next-results relation can be defined upon sets of session results:

Definition (next-results Relation). Given a visualization session S = (T,P, R, S) and

two sets of session results Sbefore = (s0, . . . , sn) and Safter = (s′0, . . . , s
′
m), Sbefore, Safter ⊆

S, Sbefore ⇀ Safter if and only if

1. ∀si, sj ∈ Sbefore, si
 sj .

2. ∀s ∈ S − Sbefore, 6 ∃si ∈ Sbefore such that s
 si.

3. ∀s′i, s′j ∈ Safter, s′i
 s′j .

4. ∀s ∈ S − Safter, 6 ∃s′i ∈ Safter such that s
 s′i.

5. ∀si ∈ Sbefore and ∀s′j ∈ Safter, si ⇀ s′j .

In other words, Sbefore and Safter each contain results generated during the same time-step

and the results in Safter were generated in one time-step after those in Sbefore.

Like next-result, next-results is also irreflexive and antisymmetric. Note that the

next-results relation is defined such that only sets of session results that contain all the

results generated during the same time-step satisfy the relation. This property avoids

potential ambiguity in the graphs based upon this relation.

6.2.2 Session Result Derivation Relationship

This relationship establishes parent-child relationships based upon result deriva-

tions. Though it is possible to generate the same visualization result more than once, each

is considered a separate session result and thus will have distinct parent-child relationships.

44

If the relationships between p-sets is desired, the next relationship (p-set derivation) is

relevant.

The derives relation ⇒ forms the basis the session result derivation relationship.

Formally, the derives relationship is defined as follows:

Definition (derives Relation (Session results version)). Given a visualization session

S = (T,P, R, S) and two session results si = (pi, ri, ti, δi) and sj = (pj , rj , tj , δj) (si, sj ∈ S)

such that δi, δj are parameter calculus instances of the form dk = (Xk,Pk,input,Pk,output),

si ⇒ sj if and only if:

1. ti < tj

2. At least one of the following holds:

• pi ∈ Pj,input (i.e., pi is in dj ’s input tuple)

• ∃pi (k) ∈ pi such that ∃ (lm, Pm,input, Pm,output) ∈ Xj such that pi (k) ∈ Pinput,m

(i.e., one of pi’s parameter values must occur as an input parameter value in dj).

• ∃pi (k) ∈ pi such that ∃ (lm, Pm,input, Pm,output) ∈ Xj such that pi (k) ∈ Poutput,m

(i.e., one of pi’s parameter values must occur as an output parameter value in

dj).

3. ∀k such that i < k < j, 6 ∃sk ∈ S such that sk satisfies criteria 1 and 2 with respect to

sj . In other words, only the most recent session result with the same p-set is eligible

to be sj ’s ancestor.

A session result si derives result sj if a parameter from si’s p-set pi was used by

sj ’s parameter calculus instance dj in one of its parameter transform list elements or pi is a

member of dj ’s input tuple. In addition, si must be the last session result with the p-set pi

recorded before sj . Due to this restriction, session results with the same p-set but different

timestamps are not related. In addition, session results generated with the same derivation,

such as those from a function application, are not considered derived from each other. This

relation is irreflexive and antisymmetric.

45

6.2.3 P-set Derivation Relationship

The p-set derivation relationship is similar to the session result derivation rela-

tionship, but it captures derivations between p-sets, not session results. If a user performed

redundant exploration (i.e., generated the same result more than once), this will be re-

flected in the difference in cardinality of the session result derivation relation and the p-set

derivation relation. Formally, the p-set derives relations is as follows:

Definition (derives Relation (P-set version)). Given a visualization session S =

(T,P, R, S) and two p-sets pi, pj (pi, pj ∈ P), pi ⇒ pj if and only if there exist session

results sa = (pi, ra, ta, da) , sb = (pj , rb, tb, rb) ∈ S such that sa ⇒ sb.

Like the session result version, p-set derives is irreflexive and antisymmetric.

6.2.4 P-set Difference Relationship

The final relationship only considers differences in session result p-sets. This mea-

sure is useful in determining the depth of the exploration—the more p-sets differ, the more

the visualization parameter space has been explored. For this measure, the differs-by-one

relation ∆1 is used:

Definition (differs-by-one Relation). Given a visualization session S = (T,P, R, S)

and two p-sets pi = {pi (0) , . . . , pi (n)} , pj = {pj (0) , . . . , pj (n)} (pi, pj ∈ P), pi∆1pj if

and only if there exists k, 0 ≤ k ≤ n, such that pi(k) 6= pj(k) and there does not exist

m, 0 ≤ m ≤ n, m 6= k, such that pi(m) 6= pj(m). In other words, pi and pj differ in only

one parameter value.

This relation is irreflexive and symmetric.

If desired, a more restrictive version of the difference relation can be used. For

example, a differs-by-one-in-dataset relation ∆(1,dataset) could be defined as follows:

Definition (differs-by-one-in-dataset Relation). Given a visualization session S =

(T,P, R, S) and two p-sets pi = {pi (dataset) , pi (0) , . . . , pi (n)} , pj = {pj (dataset) , pj (0) ,

. . . , pj (n)} (pi, pj ∈ P), pi∆(1,dataset)pj if and only if pi(dataset) 6= pj(dataset) and there

46

does not exist k, 0 ≤ k ≤ n, such that pi(k) 6= pj(k). In other words, pi and pj differ in only

the dataset parameter value.

Similar relations can be defined for other parameter types.

6.2.5 Using Visualization Process Relationships

Each relationship highlights different aspects of the visualization process. Though

parameter derivation information is not present in the history relations, they give a clear

sense of the flow of time during the visualization process. Both the session result and p-

set derivation relations are needed to get a sense of result parent-child relationships. The

session result derivation relationship combines the sense of time the history relationship

provides with a notion of p-set relationship. The p-set derivation relation can collapse

some of the process structure, indicating where users returned to previous result (through

cycles). Thus, the p-set relation finds where re-visiting occurred while the session result

metric displays the temporal order of the re-visiting. Finally, the p-set difference metric

gives a sense for the depth of exploration during the process. Shallow spanning trees of

graphs using this metric signify a visualization process that did not deeply search the space

of parameter values while deep spanning trees could suggest lack of focus. In fact, using

these relations to build graphs is a powerful method for performing visualization session

analysis. This idea will be explored more in-depth in the next section.

6.3 Visualization Process Graphs

Visualization process graphs visually summarize the visualization process; these

graphs are similar in purpose and properties to the graphs of the GDE Model in Lee’s

thesis [37], though the p-set difference graph has no analog in Lee’s work. The process

graphs utilize the visualization session relations discussed previously in their construction.

As such, there are four graphs of interest: The history sequence graph, the session result

derivation graph, the p-set derivation graph, and the p-set difference graph. Figure 6.1

depicts these graphs for the example session from Figure 5.1.

47

s_2 s_4
t_3

s_3

s_0 s_1
t_1 t_2

(a) History sequence graph

s_0

s_1p_1(2)|p_0->p_1

s_4
p_4(2)|p_0->p_4

s_2p_1(1)->{p_2(1),p_3(1)}|p_1-><p_2,p_3>

s_3
p_1(1)->{p_2(1),p_3(1)}|p_1-><p_2,p_3>

(b) Session result derivation graph

p_0

p_1{(1,p_1(2)|p_0->p_1)}

p_4
{(3,p_4(2)|p_0->p_4)}

p_2{(2,p_1(1)->{p_2(1),p_3(1)}|p_1-><p_2,p_3>)}

p_3
{(2,p_1(1)->{p_2(1),p_3(1)}|p_1-><p_2,p_3>)}

(c) P-set derivation graph

p_0

p_1

p_4

p_2

p_3

(d) P-set difference graph

Figure 6.1: Visualization process graphs for the visualization sessions results (the si) and
p-sets (the pi) from Figure 5.1. The graphs provide an “at-a-glance” overview of the visu-
alization process. The graphs clearly show that s4 is not descended from s2 or s3, whereas
that information may not be immediately apparent from the session results.

6.3.1 History Sequence Graph

In the history sequence, branches in the visualization process are collapsed into

a single element. Each element in the sequence is a set of session results that were gen-

erated by the user in a single operation. These elements are drawn from the domain and

range of the next-results relation. The sequence can be displayed graphically using vertices

representing the sets of session results created during a single time step and directed edges

representing the flow of time. These edges are labeled with the timestamp to order the

sequence. Formally,

48

Definition (History Sequence Graph). Given a visualization session S = (T,P, R, S),

a history sequence graph G⇀ = (V⇀, E⇀) is a labeled graph with labels L⇀ : E⇀ 7→ l such

that:

• V⇀ = {S′ ⊆ S : ∃S′′, S′′ ⊆ S such that (S′, S′′) ∈ next-results ∨ (S′′, S′) ∈ next-result}.

• E⇀ = next-results

• ∀e = (S′, S′′) ∈ E⇀, L⇀ (e) = t.

For most visualization interfaces, the history sequence graph is a line. This is due

to the fact that most of these interfaces cannot generate more than one result at a time.

Towards this end, a more informative graph that displays both derivation and temporal

information is needed. Such a graph is the session result derivation graph.

6.3.2 Session Result Derivation Graph

The history sequence is insufficient for describing the relationships between session

results. The sequence does not distinguish between results derived directly from their pre-

decessor or those derived from earlier results. These relationships are vital to understanding

the entirety of the visualization process and are captured by the session result derivation

graph. This directed graph is defined as follows:

Definition (Session Result Derivation Graph). Given a visualization session, S =

(T,P, R, S), a session result derivation graph GS⇒S = (VS⇒S , ES⇒S) is a labeled, directed

graph with labels LS⇒S : ES⇒S 7→ l such that:

• VS⇒S = S. In other words, the vertices are session results in S.

• ES⇒S = derives (session version). In other words, an edge exists between session

results si and sj (si, sj ∈ S) if and only if si ⇒ sj .

• ∀e = (si, sj) ∈ ES⇒S , LS⇒S (e) = δj . The edges are labeled with the corresponding

derivation using the parameter derivation calculus.

Derivations that generated or used several results are clearly identified in the

graph. It is possible for the graph to contain disconnected components. Each disconnected

49

component corresponds to a different visualization transform as there can be no derivations

between transforms. These properties are shared by both the session result derivation graph

and the p-set derivation graph (next section).

An important property of the session result derivation graph is that it is a collection

of directed, acyclic graphs (DAGs). There are no cycles because of the ordering enforced

by the derivation relation—no result can derive a result with a lower or same timestamp

value. The DAGs represent the derivations related to a single visualization transform. Each

DAG possesses a node corresponding to the default result of the visualization transform.

The default result is the session result that corresponds to the initial parameter values for

a visualization transform; if there is no appropriate default value for a certain parameter

(such as a data set), then an “undefined” value is used. By convention, any completely new

set of parameter values is derived from this default set. Only the default results are not

derived from any other result.

6.3.3 P-set Derivation Graph

The p-set derivation graph shares many properties with the session result deriva-

tion graph. Both are labeled, directed graphs with possible unconnected components. How-

ever, unlike the session result graphs, p-set derivation graphs can have cycles. This proper-

ties is a consequence of the lack of temporal ordering in the p-set derivation. These cycles

serve an important purpose—they indicate points of redundant exploration. If a p-set is

revisited, then its corresponding visualization result was generated multiple times. This

could be a potentially costly operation, and thus cycles should be avoided. By using the

p-set derivation graph, cycles can be detected, leading to a determination of their cause.

The p-set derivation graph’s formal definition is similar to the session results

graphs’ definition, differing mainly in the vertex type (p-sets instead of session results)

and the labels:

Definition (P-set Derivation Graph). Given a visualization session, S = (T,P, R, S),

a p-set derivation graph GP⇒P = (VP⇒P, EP⇒P) is a labeled, directed graph with labels

LP⇒P : EP⇒P 7→ l such that:

50

• VP⇒P = P. In other words, the vertices are p-sets in S.

• EP⇒P = derives (p-set version). In other words, an edge exists between p-sets pi and

pj in P if and only if pi ⇒ pj .

• ∀e = (pi, pj) ∈ EP⇒P, LP⇒P (e) = {(tm, δm) : ∃n < m ∧ sn ⇒ sm ∧ pi ∈ sn ∧ pj ∈ sm}.

The edges are labeled with the corresponding timestamps and derivations for each

derivation from pi to pj .

Unlike the session result derivation graph, the p-set derivation graph must include

derivation information from several different time steps per edge due to the possibility of

cycles. Alternatively, a unique edge for each derivation could be used (this would require

that EP⇒P be a multiset instead of a set). If there are no cycles, then the session result

derivation graph and p-set derivation graph are isomorphic.

6.3.4 P-set Difference Graph

The p-set difference graph highlights the depth of exploration whereas the other

graphs highlight the structure of the exploration. Each cluster in a p-set difference graph

represents similar results—results where the p-set only differed by one value. The more

cluster there are, the larger the explored parameter space.

Like the p-set derivation graph, the p-set difference graph uses p-set as vertices.

Unlike the other graphs, it is an undirected graph since its underlying relation is reflexive:

Definition (P-set Difference Graph). Given a visualization session, a p-set difference

graph G∆1 = (V∆1 , E∆1) is an undirected graph such that:

• V∆1 = P .

• E∆1 = differs-by-one.

As defined, the p-set difference graph is unlabeled. If desired, the edges could be

labeled with the parameter type that differs between the two results.

51

s_e’

s_f

s_g

s_a s_b s_c s_d s_e s_a s_b

s_c

s_d

s_f

s_g

s_e

s_e’

(a) History sequence graph (b) Session result derivation graph

p_a p_b

p_c

p_d

p_f

p_g

p_e

p_b

p_c

p_a

p_f

p_d

p_g

p_e

(c) P-set derivation graph (d) P-set difference graph

Figure 6.2: Visualization process graphs sans labels for the Image Graph visualization
session in Figure 5.2.

6.4 Examples

To further illustrate the visualization process graphs, the examples from Section

5.3 are revisited, this time displaying their corresponding process graphs.

6.4.1 Image Graph Example

Figure 6.2 depicts the visualization process graphs for the Image Graph vessel

visualization session. The figure illustrates the various nuances of the process metrics. Like

the previous example (Figure 6.1), the history session graph displays a cluster of results.

Again, this signifies the generation of several results in the same time step (in this case, the

last three results). More interesting in this example is the difference between the session

result derivation graph (Figure 6.2b) and the p-set derivation graph (Figure 6.2c). In the

session, p-set pe was generated twice: First when created during time step t4 (se); the

second during the parameter propagation during time step t5 (se′). Though the two graphs

are different, a cycle is not present. However, it is a redundant exploration. Finally, in the

p-set difference graph, there are two major clusters—one on the left (pb–pd) and one on the

right (pe–pg). These clusters are mirrors of each other. This is due to the fact that p-sets

pb and pf differ only in their zoom value from pa while every other results differs in both

52

s_3

s_4

s_5

s_0 s_1
t_1

s_2
t_2 t_3

s_0 s_1

s_3

s_2

s_4 s_5

p_0

p_1

p_2 p_3

p_4

p_5

(a) History sequence (b) Session derivation (c) P-set difference

Figure 6.3: Visualization process graphs sans labels for the web-based VisSheet visualization
session in Figure 5.3.

zoom and view position. The results on the left-hand side share the smaller zoom factor,

the results on the right-hand side share the higher zoom factor. It is also interesting to

note that the horizontal levels (save the first with pa) share a view position distinct from

those on other levels. Thus, the p-set difference graph also provides some information on

structure in the exploration.

6.4.2 VisSheet Example

The VisSheet structures visualization exploration such that there no result is cre-

ated more than once. Characteristic of the VisSheet are the process graphs from Figure 6.3.

Since there was no redundant exploration, the session result derivation and p-set derivation

graphs are the same. The session result derivation graph (Figure 6.3b), with is grid-like

structure, is indicative of VisSheet-based exploration. Breaks in this structure only occur

when a displayed parameter is changed (creating a “bridge” link between two grids) or when

an operator is applied. Similarly, clusters for each row and column in the sheet also exists

in the p-set difference graph, each connected to their row and column neighbors.

6.4.3 Dynamic Manipulation Interface Example

This last example analyzes the complex session from the an Internet routing

anomaly visualization tool. Recall that the tool displays different types of changes to

ownership of ASes over time using colored lines or cubes depending on the visualization

used. Typically, the anomalies are found by stepping quickly through the dates, using vi-

sual pattern matching to find unusual changes. The visualization process graphs in Figures

6.4 and 6.5 corroborate this exploration pattern.

53

s_0

s_1 s_3

s_2

s_12
s_13 s_14

s_22
s_23 s_24

s_7 s_8 s_9

s_67

s_68 s_69

s_6

s_100

s_101

s_102

s_58 s_59 s_60

s_90

s_91

s_92

s_61

s_35

s_36

s_37

s_33 s_34

s_110 s_111

s_10

s_16

s_17

s_18

s_11

s_74 s_75

s_76

s_73

s_62
s_63

s_87

s_88 s_89

s_21

s_54 s_55

s_56

s_64

s_25

s_26

s_27

s_38 s_39

s_15

s_103 s_104 s_105

s_65
s_66

s_93 s_94 s_95

s_40

s_41

s_42

s_5

s_77
s_78

s_47

s_48 s_49

s_45
s_46

s_20

s_57

s_79 s_80

s_81

s_97

s_98 s_99

s_43

s_19

s_44

s_72

s_86

s_109

s_82

s_83

s_30

s_31

s_32

s_96

s_4

s_106

s_28 s_29

s_84 s_85

s_107
s_108

s_50

s_51

s_52
s_53

s_70

s_71

s_0 s_3

s_1

s_2

s_4

s_7
s_8

s_12

s_13

s_17

s_18

s_22

s_23

s_27

s_28

s_32

s_33

s_37

s_38

s_42
s_43

s_47

s_48

s_52

s_53

s_57

s_58

s_62

s_63

s_67

s_68

s_72

s_73

s_77

s_78

s_82

s_83

s_87

s_88

s_92

s_93

s_97

s_98

s_102
s_103

s_107

s_108

s_14

s_24

s_9

s_69

s_6

s_100

s_101

s_59 s_60

s_90

s_91

s_61

s_35

s_36

s_34

s_110 s_111

s_10

s_16

s_11

s_74 s_75

s_76

s_89

s_21

s_54 s_55

s_56

s_64

s_25

s_26

s_39

s_15

s_104 s_105

s_65

s_66

s_94 s_95

s_40

s_41

s_5

s_49

s_45

s_46

s_20

s_79 s_80

s_81

s_99

s_19

s_44

s_86

s_109

s_30

s_31

s_96

s_106

s_29

s_84 s_85

s_50

s_51

s_70
s_71

p_0 p_3

p_1

p_2

p_4

p_7
p_8

p_12

p_13

p_17

p_18

p_22

p_23

p_27

p_28

p_32
p_33

p_37

p_38

p_42
p_43

p_47

p_48

p_52
p_53

p_57

p_58

p_62
p_63

p_67

p_68

p_72

p_73

p_77

p_78

p_82

p_83

p_104

p_105

p_84

p_86

p_88

p_90

p_92

p_94

p_96

p_98

p_106

p_108

p_14

p_24

p_9

p_69

p_6

p_59 p_60

p_61

p_35

p_36

p_34

p_10

p_16

p_11

p_74 p_75
p_76

p_21

p_54 p_55

p_56

p_64

p_25

p_26

p_39

p_15

p_103

p_65

p_66

p_40

p_41

p_5

p_49

p_45

p_46

p_20

p_79 p_80

p_81

p_19

p_44

p_30

p_31

p_102

p_29

p_101

p_50
p_51

p_70

p_71

p_111

(a) History sequence (b) Session derivation (c) P-set derivation

Figure 6.4: Visualization process graphs sans labels for the Internet routing visualization
session in Figure 5.4. Colors correspond to important results displayed in Figure 6.6.

54

p_12

p_13

p_14

p_15

p_16

p_17

p_18

p_19

p_20

p_21

p_22

p_23

p_24

p_25

p_26

p_27

p_28

p_29

p_30

p_31

p_32

p_33

p_34

p_35

p_36

p_37

p_38

p_39

p_40

p_41

p_42

p_43

p_44

p_45

p_46

p_47

p_48

p_49

p_50

p_51

p_52

p_53

p_54

p_55

p_56

p_57

p_58

p_59

p_60

p_61

p_62

p_63

p_64

p_65

p_66

p_67

p_68

p_69

p_70

p_71

p_72

p_73

p_74
p_75

p_76

p_77

p_78

p_79

p_80

p_81

p_82

p_83

p_90

p_92

p_94

p_96

p_98

p_101

p_102

p_103

p_104

p_105

p_106

p_108

p_111

p_88

p_86

p_84

p_7

p_8

p_9

p_10

p_11

p_6

p_5

p_3

p_4

Figure 6.5: P-set difference graph for the Internet routing visualization session in Figure
5.4. Colors correspond to important results displayed in Figure 6.6.

55

(a) r83: Anomalies detected (blue) (b) r105: Major anomalies isolated (green)

(c) r106: First anomaly (yellow) (d) r108: Second anomaly (red)

Figure 6.6: Important results from the BGP exploration session and their corresponding
colors in Figures 6.4–6.5.

The history sequence (Figure 6.4a) illustrates that multiple results were only cre-

ated during the first time step. These results correspond to the default results for the

56

three visualization transforms (2D, 3D, focus+context 2D) that the tool exposes; the dis-

connected nodes in the other graphs belong to the later two transforms. The tool does not

otherwise allow multiple results to be generated. The difference between the session result

and p-set result graphs (Figure 6.4b–c) indicate that redundant exploration occurred. The

major divergence occurs at session result s83—the first result that explored the date of the

AS ownership error (Figure 6.6a and the blue node in Figures 6.4–6.5). To determine the

type of anomaly, the user then toggled the different displayed AS change types off-and-on

individually (the cluster connected to p83 in Figure 6.4) until the two anomalies were iso-

lated (p-set p105 with corresponding result Figure 6.6b [green in Figures 6.4–6.5]). These

were then displayed in isolation (p-sets p106 and p108, displayed in Figure 6.6c–d [yellow and

red respectively in Figures 6.4–6.5]). The exploration then ended.

The p-set difference graph (Figure 6.5) provides a different view of the process.

In the graph, the three clusters correspond to the three phases of the exploration: setup,

exploration, and investigation. In the first phase (the bottom cluster), the user set the initial

parameters in order to display all the different AS change types for visual comparison. This

phase ended with p-set p10, after which the second phase begun. In this phase (p-sets

p11–p83, middle of the figure), the viewed date was changed repeatedly. By the size of the

cluster, most of the time was spent in this section. The final cluster (p-sets p83–onward,

top-right) indicates the final phase where the AS change type displayed was toggled until

the anomalies were isolated. Combined with the other process graphs, visual analysis of

visualization sessions gives insight into the user’s experience.

6.5 Process Graph Analysis

As demonstrated, visualization process graphs allow in-depth analysis of the vi-

sualization process. To assist in this analysis, visualization process metrics and common

patterns can be used.

57

6.5.1 Metrics

Visualization process metrics measure aspects of the visualization session. Metrics

can act upon the formal description of the session directly or upon views of that session such

as the process graphs. For example, Lee’s thesis [37] discusses process graph metrics for the

GDE model that can be adapted to several of the process graphs discussed in this work. As

another example, consider two metrics to measure the breadth and depth of exploration:

• P-Set Breadth Metric Given a visualization session S, the value of breadth metric is

the maximum number of neighbors of any node in G∆1 , the p-set difference graph.

• P-set Depth Metric Given a visualization session S, the value of the depth metric is

the number of nodes in the longest shortest path between any two nodes in G∆1 , the

p-set difference graph.

By these metrics, the exploration depicted in Figure 6.5 is rather broad (due to the large

central cluster) but not very deep (for the same reason). Metric analysis of sessions is

fruitful area of future research.

6.5.2 Patterns

p_63

p_64

p_65

p_66

p_67

...

...

p_23

p_24
p_25

p_26 p_27

p_28

...

...

p_13 p_14

p_15 p_16 ...

...

(a) Hunt-and-Peck (b) Pattern Burst (c) Flat-Line Derivation

Figure 6.7: Different visual patterns exhibited by visualization process graphs.

Another approach in session analysis is to search for visual patterns in the process

graphs. Such patterns can give provide information about the interface used or the intention

of the user. Consider the following patterns illustrated in Figure 6.7:

58

• Hunt-and-Peck In this pattern, a user repeatedly changes a single parameter type,

looking for a particular feature. This pattern is indicated by a cluster of cycles in the

p-set derivation graph (Figure 6.7a). This behavior is found in the BGP exploration

in Figure 6.4c.

• Parameter Burst A parameter burst appears as a fully-connected cluster of sequen-

tially numbered p-sets in the p-set difference graph (Figure 6.7b). This type of pattern

indicates an exploration pattern that modifies a single parameter type until its desired

value is found before moving on to the next parameter. Chains of bursts correspond

to sequential explorations of different parameters types (as in Figure 6.5). This type

of pattern often occurs in interfaces that cannot generate multiple results at a time.

• Flat-Line Derivation A flat-line derivation occurs in either the session result derivation

graph or the p-set derivation graph when there are no branches in the graph (Figure

6.7c). If it occurs in the former but not the latter, then this indicates cycles and thus

redundant exploration. If it occurs in the p-set derivation graph as well, it indicates

that only the immediate previous result was ever used in a derivation. This pattern

often indicates an unsophisticated user interface that does not allow access to previous

results (in order to branch the exploration).

These patterns are useful to providing heuristics about the process without performing a

full metric analysis. Also, by identifying these patterns, common behavior and problems

with visualization explorations or visualization interfaces can be identified. Like the process

metrics, further research into these patterns is called for.

6.6 Summary

The information stored within the visualization process is fairly complex. To gain

an understanding of visualization sessions—and perhaps a better understanding of the data

originally visualized—this information needs to be visualized. Four different graphs exam-

ining different parts of the visualization process were presented, and an in-depth example

demonstrated the uses of this kind of visualization.

59

There are several potential applications for the work presented here. Visualizations

of the visualization process give insight into the process that can be used in different ways.

For example, the analysis of the BGP visualization session suggests that a more intuitive

mapping of AS change type to color, a more effective parameter manipulation control,

or better user training could be needed to remove the re-rendering cycle discovered. In

addition, collaborators can use such visual representations of the visualization process to

familiarize themselves with previous explorations. This exploration could in turn suggest

further avenues of pursuit with the data under study.

In order for collaborators to utilize the information stored in the P-set Model and

perform the analysis outlined here, a common representation of the model is needed. The

next chapter discusses this representation.

60

Chapter 7

Representation

In order to share visualizations captured by the P-set model, a common data

format is required. To be effective, the format must be extensible to different visualization

applications. It is also desirable that the representation can be used by data-mining or

analysis tools. These goals are accomplished by using XML to express the visualization

process. This chapter presents an XML representation of the visualization process.

7.1 The P-set Model Representation

The Extended Mark-Up Language (XML [4]) is a standard data exchange format.

Standardized technologies exist to parse and extract the content from XML documents.

XML documents can also be transformed into HTML [16]. By expressing the visualization

session with XML, the session can be easily shared with collaborators. Specific systems can

translate their internal representation into the P-set Model (via XML) which can then be

translated again into a representation usable by some other system.

The XML representation of the model is partitioned into five sections. The first

section describes the visualization transforms used by listing their signatures (the param-

eter and result types) and name. In the next section, a list of the parameter values used

is stored, each uniquely identified. Each distinct p-set is then recorded by identifying the

parameter values composing the p-set. The p-sets are also given a unique identifier. Next,

the visualization transform results are stored. For each result, a reference to the p-set

61

which generated it, an identifier, and the result itself are recorded. Note, for interactive

systems which can generate results continuously over a range, only the first and last result

in that range are stored. It is assumed that the interim results can be generated by inter-

polating over the parameter that varied. If two results are not sufficient, then “key frame”

results—results where interpolation over the range is sufficient—could also be stored. In

the final section, the visualization session’s results are themselves stored. Each session re-

sult identifies its p-set, visualization result, timestamp, and the derivation information for

that session result. Figure 7.1–7.2 provides a document type description (DTD [4]) that

describes the representation while Figure 7.3 provides a visual depiction of the schema for

the representation’s DTD.

When generating the XML session document, there are different approaches to

how parameters and results are stored. It is possible to embed a representation of these

items directly into the XML representation. For large or binary elements, such as the

data set used or the results themselves, this approach may be inadvisable. Instead, each

parameter or result element in the XML document can provide an optional link attribute.

A link is a URL describing where the actual parameter or result may be obtained. Linking

can be used to reference large data sets over the network while accessing image files locally,

avoiding costly transfers.

Note that the main purpose of the XML description of the model is for transport,

not analysis. Analysis is performed on the information encoded by XML (the visualization

session results from this model), not on the XML document itself. Given an XML document

representing a visualization session, tools are expected to parse the document into their own

internal structures before operating on the visualization session information.

7.2 Using the Representation

The representation serves two purposes. It allows sessions to be communicated

between different visualization systems and can be used to analyze the process. For example,

in the example in Figure 5.4, the representation was used to transport the visualization

session from the Internet routing visualization tool to the VisSheet; a summarized version

62

<!ELEMENT visualization (transforms,parameter values,result values,session)>

<!ELEMENT transforms (transform)+>

<!ELEMENT transform (parameter type+,result type)>

<!ELEMENT parameter type EMPTY>

<!ATTLIST parameter type

id ID #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT result type EMPTY>

<!ATTLIST result type

id ID #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT parameter values (parameter value)*>

<!ELEMENT parameter value #PCDATA>

<!ATTLIST parameter value

id ID #REQUIRED

type IDREF #REQUIRED

link CDATA #IMPLIED>

<!ELEMENT parameter sets (parameter set)*>

<!ELEMENT parameter set (parameter)+>

<!ATTLIST parameter set

id ID #REQUIRED>

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

value IDREF #REQUIRED

pset IDREF #IMPLIED>

<!ELEMENT result values (result value)*>

<!ELEMENT result value #PCDATA>

<!ATTLIST result value

id ID #REQUIRED

type IDREF #REQUIRED

pset IDREF #REQUIRED

link CDATA #IMPLIED>

<!ELEMENT session (session result)*>

<!ELEMENT session result (unrelated|derivation)>

<!ATTLIST session result

id ID #REQUIRED

pset IDREF #REQUIRED

result IDREF|undefined #REQUIRED

timestamp CDATA #REQUIRED>

Figure 7.1: DTD for the P-set Model representation. Note that the parameter value and
result value elements are allowed to have additional attributes for encoding purposes.

63

<!ELEMENT unrelated EMPTY>

<!ELEMENT derivation (calculi,input psets,output psets)>

<!ATTLIST derivation

id ID #REQUIRED>

<!ELEMENT calculi (calculus)+>

<!ELEMENT calculus (input parameters,output parameters)>

<!ATTLIST calculus

type (application|range|function) #REQUIRED>

<!ELEMENT input parameters (parameter)*>

<!ELEMENT output parameters (parameter)+>

<!ELEMENT input psets (pset)+>

<!ELEMENT output psets (pset)+>

<!ELEMENT pset EMPTY>

<!ATTLIST pset

value IDREF #REQUEST>

Figure 7.2: DTD for the P-set Model representation (continued).

of the representation can be found in Figure 7.4. In addition, since the representation is

XML, it can be easily translated into HTML, such as for the vessel visualization depicted

in Figure 7.5. This sort of overview is important in order to understand the visualization

process without having to load the session into a visualization system.

One concern is the growth of the XML representation as visualization sessions

become longer. In the worst case, the size of the file can increase quadratically with the

number of results (if every new result is derived from all previous results—an unlikely case).

However, in practice, the XML document does not approach anywhere near the size of the

original data set for common large data sets and can be effectively compressed if needed.

In the BGP example, the XML session encoding never exceeded a megabyte in size for over

eighty session results. Combined with the binary PNG images for the rendered results, the

overall size was 6.1 MB.

To this point, the model and representation discussed have focused on capturing

the details of the visualization process independent of the user interface used. However,

without a properly designed interface, the model cannot be used to its full effectiveness. In

the next part, principles for such interfaces are discussed and demonstrated.

64

vi
su
al
iz
at
io
n

tr
an
sf
or
m
s

tr
an
sf
or
m

pa
ra
m
et
er
_v
al
ue
s

re
su
lt_
va
lu
es

se
ss
io
n

un
re
la
te
d

ca
lc
ul
i

pa
ra
m
et
er
_s
et
s

in
pu
t_
pa
ra
m
et
er
s

ou
tp
ut
_p
ar
am
et
er
s

in
pu
t_
ps
et
s

ou
tp
ut
_p
se
ts

pa
ra
m
et
er
_t
yp
e

id na
m

e

pa
ra
m
et
er
_v
al
ue

id ty
pe

lin
k

re
su
lt_
ty
pe

id na
m

e

pa
ra
m
et
er

va
lu

e
ps
et

re
su
lt_
va
lu
e

id ty
pe

ps
et

lin
k

se
ss
io
n_
re
su
lt

id ps
et

re
su

lt
tim

es
ta

m
p

de
riv
at
io
n

id

ca
lc
ul
us

ty
pe

pa
ra
m
et
er
_s
et

id

ps
et

va
lu

e

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
ns

co
nt

ai
n

co
nt

ai
n

co
nt

ai
n

co
nt

ai
n

co
nt

ai
ns

co
nt

ro
lle

d
by

is
 o

f t
yp

e

ge
ne

ra
te

s
is

 o
f t

yp
e

ge
ne

ra
te

s

ge
ne

ra
te

s

identified by

cr
ea

te
d

ac
co

rd
in

g
to

is

de
sc

rib
ed

 b
y

co
nt

ai
ns

us
es

 a
s

in
pu

ts

us
es

 a
s

ou
tp

ut
s

us
es

 a
s

in
pu

ts

de
riv

es

co
nt

ai
n

co
nt

ai
n

re
fe

rs
 to

co
nt

ai
n

co
nt

ai
n

re
fe

rs
 to

pa
rt

of

Le
ge

nd
1:

1

1:
n

1:
0-

1

ID
R

E
F

EL
EM

EN
T

ps
et

ID
id

A
TT

R
IB

U
TE

ps
et

O
pt

io
na

l
A

TT
R

IB
U

TE
lin
k

1:
0-

n

Se
qu

en
ce

Se
le

ct
io

n

F
ig

ur
e

7.
3:

V
is

ua
l
re

pr
es

en
ta

ti
on

of
th

e
sc

he
m

a
fo

r
th

e
P

-s
et

M
od

el
re

pr
es

en
ta

ti
on

.

65

Figure 7.4: The XML representation of a visualization session using the BGP visualization
tool; similar portions of the document are condensed for illustration purposes. The first
section (blue) details what visualization transforms were used. The next portion (green)
lists all the parameter values explored, followed by the parameter sets constructed (pink)
and the visualization results rendered (red). Finally, the session information is recorded
(purple). This representation encodes all the information described by the model and is
used to transport session information between visualization systems.

66

Figure 7.5: HTML overview of the vessel visualization session depicted in Figure 5.2.

67

Part III

External Representation

68

Chapter 8

Principles for Visualization

Exploration Interfaces

Visualization user interfaces are used to assist the user in extracting insight from

features of interest within their data. The interface hides the complexity of the techniques

used during the visualization process from the user. Users control the visualization process

through the user interface by applying operators on the data. Parameter settings deter-

mine the outcome of these operators. Thus, visualization user interfaces act in part as an

intermediary between the data and the user.

Most current research in the field of visualization has focused on developing im-

proved visualization techniques rather than improving the visualization user interfaces.

Considering the massive data sets being generated by large research projects, this is under-

standable. Yet, at some stage, the user will need to interact with their data. Without a

structured environment to apply new visualization techniques, these techniques cannot be

properly utilized. Visualization user interfaces supply this structure.

8.1 Components of User Interface Design

User interface design incorporates a wide range of research topics. Elements in-

clude the graphical representation, input device specifications, user models, color and per-

ceptual issues, ergonomics, etc. Domik and Gutkauf [17] define four component models

69

for visualization systems: the data model, the resource model, the user model, and the

domain/task model. Data models perform the task of communicating the contents of pos-

sibly heterogeneous data formats to the user/system. The resource model describes the

physical limitations of the hardware and software housing the visualization system; it also

includes environmental factors which can affect the visualization process—e.g., the room

lighting for workbench-based virtual reality environments. The user model handles the

perceptual, memory, and coordination issues of the user. Finally, the domain/task model

describes how properties of the scientific discipline affect the system’s design. For example,

most disciplines have conventions for the display of their data. This work focuses on the

domain/task part of visualization system design common to all disciplines: the control of

the visualization process, the display of this process, and the utilization of information from

the discipline within the system. User modeling, system resource, and hardware issues will

not be discussed.

Many of the more advanced visualization user interfaces can be classified as vi-

sual programming environments (VPEs) [6]. VPEs use visual expressions (spatial relation-

ships, glyphs, text, animation) to control the underlying program execution. Data-flow and

spreadsheet interfaces are common VPEs. The visual language community has developed

several design principles for VPEs that can be applied to visualization user interfaces. Yang

et al. [60] describe a set of design benchmarks to measure the effectiveness of the static

graphical representation of the VPE. These include indicators of the visibility of the VPE

logic, visibility of dependencies, and use of screen real estate. Though these benchmarks

do not specifically addresses all the issues in visualization user interface design, they can be

applied to measure or improve the effectiveness of the user interface.

8.2 Classification of Visualization User Interfaces

User interfaces for visualization can be classified based upon the interface’s display

of the visualization exploration process—the process of generating visual results by navi-

gating through visualization parameter space. This space consists of all the possible values

for the parameters required by the underlying techniques; in the case of volume rendering,

70

these would be transfer functions, view position, lighting parameters, etc.

8.2.1 Interactive Control & Dynamic Manipulation Interfaces

The first two interface types discussed are interactive parameter control and dy-

namic manipulation interfaces [46]. In the former interface, interactive manipulation of the

parameter values does not correspond to interactive updates to the rendered result; in the

later interface, the result is rendered interactively during parameter changes. Visualization

transform editing—the process of creating visualization transforms through means such as

data-flow networks—is not supported in these interfaces, though a fixed number of differ-

ent transforms may be available for use. In these systems, the major action is the editing

of parameter values (potentially from different parameter types in the case of interactive

parameter control interfaces) to generate a visualization result; in dynamic manipulation

interfaces, parameter values can vary over a continuous range during manipulation. This

trial and error process is inefficient and does not provide context that directs a user to-

ward their goal. Automatic systems that generate parameter values can help this process,

but their result is lost if the user subsequently modifies a parameter value. Once an ac-

ceptable visualization result is obtained, only the final parameter settings and image are

available to be recorded and shared with collaborators; all previous results are lost. While

perhaps sufficient for prototypes, these user interfaces do not allow sophisticated control of

the exploration.

8.2.2 Data-flow Interfaces

Data-flow interfaces utilize the data-flow visualization transform model. They

present the data exploration process as a directed network of connected components which

act upon the data sets or output of other stages to produce their final result(s). Each

component in the network represents an operation or transformation on the output of the

previous step; components can set parameter values for subsequent visualization techniques

or perform other tasks such as annotation or image cropping. Several commercial systems

use a data-flow interface for visualization [1, 56, 61]. Depending on the system, param-

eter changes and rendering may be synchronous like dynamic manipulation interfaces or

71

asynchronous like interactive parameter control interfaces.

Data-flow interfaces provide better state display than traditional interface through

the data-flow network; the network clearly displays the flow of information whereas the

previous interfaces have no such contextual information beyond the current state. This

flow graph can be shared with collaborators to communicate the process needed to generate

the final result. One weakness of the data-flow approach is that it does not indicate the

history of the visualization process; like the previous interfaces, changes to the settings of

one of the flow nodes cause the previous image to be lost. After several iterations, if the

user wishes to revisit a previous collection of settings, there is no obvious assistance from

the user interface to support this task.

8.2.3 Parameter-based Interfaces

Unlike representations which focus on the flow of data through a system, parameter-

based representations focus on the changes of parameter values during the visualization

process. These user interfaces manipulate the operands of the visualization techniques (the

parameters) directly whereas data-flow system encapsulate the parameters within the tech-

niques. Two interfaces of this type have already been mentioned—the Design Galleries

system [41] and Image Graphs [39]. The properties are these interfaces are now explored

more in-depth.

The Design Galleries system considers data exploration a process of exploring a

multidimensional space of visualization parameters. The results a user desires exist within

this space; it is the system’s job to aid in the discovery of the parameters that correspond to

the images. After a pre-processing rendering stage, the system provides a 3D representation

of the design space; a user then navigates this space to find their desired images. By

replacing a trial and error approach with a structured navigation of parameter values, the

system allows a more efficient exploration.

The Image Graph system follows a similar structured approach; unlike the Design

Galleries system, Image Graphs are built dynamically instead of during a pre-processing

stage. An image graph is a graph representation of the visualization process that distinctly

displays the relationship between generated images via glyph edges; the graph is used to

72

explore the space of visualization parameters. As more visualizations are added, the graph

structures itself so that related images are clustered together; a user can manipulate this

structure as desired. Operations upon the edges and nodes in the graph can be used to

generate further results. The graph can be shared, thus providing a history of the final

result with the result itself.

Unlike the previously mentioned user interfaces, both of the interfaces display the

history of the data exploration process. However, these interfaces posses two key limitations.

First, screen space becomes limited as the number of different parameter settings increases;

though screen real estate management is a concern for all visualization user interfaces, the

rate of growth of parameter settings makes this issue paramount for parameter-based inter-

faces. As more images are added, zoom techniques, graph compression, or focus+context

techniques must be used in order to navigate the entire graph [27]. Thus, comparisons

between results become more difficult as more images are added. Second, both interfaces

are limited by their display and manipulation of a single data set at a time. This prevents

cross data set comparisons or operations.

8.2.4 Spreadsheet Interfaces

Spreadsheets are a subset of form visual programming languages where the user

programs the contents of cells aligned in a grid; they are most familiar from applications

such as Lotus 1-2-3 or Microsoft Excel. Spreadsheets for visualization can be characterized

by the following properties:

• A tabular structure that encapsulates the visualization process.

• Operators which act upon the contents of the spreadsheet to generate new spreadsheet

cell values.

• Relationships between cell values that are either statically or dynamically updated.

Several spreadsheet interfaces for graphics and visualization have been developed.

Levoy’s SI system [38] wraps a spreadsheet around a general image processing kernel; each

cell represents a script which can reference other cells to generate subsequent images. Hasler

73

and Palaniappan have experimented with a series of spreadsheet-based interfaces to repre-

sent satellite and other earth-observatory equipment data [26, 45]. Chi et al. [13] demon-

strate a set of principles for visualization spreadsheets through their SIV system. Each

presents a tabular interface where a cell can hold arbitrary image data; thus, a cell dis-

playing the results from a IR satellite could be side-by-side with one displaying meteoro-

logical information for the same observed region. This side-by-side comparison is one of

the strengths of a spreadsheet over the previously mentioned representations. In addition,

each of these spreadsheets systems have dynamic formulas for cells; changes to images or

formulas propagate spontaneously to any descendant cells.

Spreadsheets overcome several of the weaknesses of the previous user interfaces.

First, they allow easy comparison of different results, even across different data sets (unlike

the image graph, for example). Like the parameter-based representations, they present an

overview of the data exploration process at a glance. Though the organization of spreadsheet

representations scales better than parameter-based interfaces, zooming and navigation can

become difficult as the number and size of images increase. Finally, previous results are

usually kept available and displayed; the exception is that in formula-based spreadsheets,

modifying a cell formula replaces its previous result and any results dependent on that cell.

There are several unresolved issues when using these previous spreadsheets as an

interface for visualization exploration. Though they posses a structured environment for

display—and thus mitigate some of the display issues of the parameter-based representations—

they do not supply such structure for the actual exploration. These interfaces also “collapse”

the entire multi-dimensional visualization parameter space onto a two dimensional window.

Thus, there is no mental metaphor to assist the user in understanding and navigating the

visualization space. These issues are addressed by the spreadsheet-like interface described

in Chapter 9.

8.3 Desired Visualization User Interface Properties

The reuse of visualizations is an important issue, especially when generation of the

visualization is costly. Results from a previous visualization can suggest parameters for later

74

investigation. A user interface which exposes these previous results will make subsequent

exploration of the data easier. The interface also needs to transparently allow the user to

navigate through and manipulate the underlying data. If the interface is cumbersome in

either its usage or presentation of information, the user cannot properly analyze their data.

The user interface must both intuitively display the progress of the visualization session

and allow visual manipulation of this progress. Such interfaces are visual representations

of the visualization process. From the previous sections, a set of desired visualization user

interface properties for the data exploration process can be developed:

• Parameter Manipulation The user must be able to set and manipulate parameter

values to generate visualizations.

• Intuitive Display The relationship between and context of different visualizations must

be displayed.

• Visualization Operators Parameter and value operators to extract information and

generate new visualizations must be provided.

• Process Encapsulation The history of the exploration process must be captured for

later collaboration.

These properties allow the user to maximize the re-use of previous results. The first require-

ment is obvious and satisfies the first and third of Springmeyer’s criteria (generating and

querying data) for scientific visualization interfaces listed in Chapter 2. The second property

clearly identifies what steps were required to generate the visualization; this identification

becomes important if the generation required several computationally expensive steps. It

also fulfills other requirements in Springmeyer’s criteria (examining, navigating, comparing,

and classifying data). The third property leverages previous results in producing related

visualizations and is also related to Springmeyer’s data generation task. Finally, the last

property assists in the documentation and reproducibility of the visualization session.

Interactive parameter control and dynamic manipulation interfaces only satisfy

the first criterion; they are suited for quick prototyping of the underlying visualization

technique, not for actual application. Data-flow architectures partially support all of the

75

properties. The flow network employed by these interfaces does give some indication of

the relationship between parameters and a history of that particular visualization while the

nodes of the flow network are operators themselves. The flow network does not display the

relationships between different visualization results nor does it keep track of changes in the

network after modifications. Image graphs do satisfy these conditions; but, as parameter-

based representations, they do not display the technique used as well as a data-flow interface.

This becomes important in situations where several visualization techniques, with varying

types of parameters, can be applied. In addition, the history information captured by the

Image Graph can only be used in other Image Graphs; it does not use a general and complete

model of the visualization process like the P-set Model.

The contrast between data-flow and parameter-based interfaces such as the im-

age graph must be highlighted. Data-flow excels at displaying control flow (through the

flow network); parameter-based representations cleanly identify the parameters being used.

One of the reasons data-flow interfaces are popular is the ease with which new visualiza-

tion techniques can be added—all that is needed is a module implementing the method;

parameter-based interfaces focus on displaying the parameter values for a single technique.

The parameter interfaces posses operators to create visualizations from previous results;

data-flow networks have no similar operations besides direct manipulation. An user inter-

face combining these two approaches would join their strengths and minimize their weak-

nesses: i.e., a data-flow network can be used for controlling the visualization process while

an image graph would display the history of the network or be used for navigation. This

integration is beyond the scope of this work. Instead, the principles for interfaces discussed

will be implemented in a spreadsheet-like interface that utilized the P-set Model discussed

previously. This interface is discussed next.

76

Chapter 9

A Spreadsheet-like Interface for

Visualization Exploration

In order to gain insight from large data sets via visualization, both efficient al-

gorithms and intuitive user interfaces (UIs) are needed. Research in visualization has

focused upon the former, developing techniques to generate realistic, informative visual-

izations quickly and economically. As these methods proliferate, powerful and informative

user interfaces to make use of them become more important. By presenting and storing the

visualization exploration process, this process becomes streamlined: past work can be built

upon—avoiding potentially costly repetition—and results can be easily shared and reused.

Towards this end, a spreadsheet-like interface called the VisSheet that satisfies these re-

quirements has been developed. This chapter discusses its capabilities and illustrates its

uses through a series of examples.

Conventional spreadsheets have three properties [13]: tabular layout, operators,

and cell dependency management. Tabular organization allows quick comparison of results

and structures the subsequent analysis. Cell operators can assist in this analysis by pro-

viding a suite of functions to manipulate the cell values. Cell dependency is used to allow

changes in one area of the spreadsheet to propagate to others. The usefulness of these char-

acteristics is attested by the number of different applications of spreadsheets that exist. The

VisSheet interface uses similar properties to organize and control the visualization process.

77

The tabular display acts as a window into a multi-dimensional visualization space that a

user manipulates to discover results of interest. Operators on the cells can analyze and

generate visualizations. Similarly, parameter operators can be used to further exploration.

As cells represent fixed points in visualization space, traditional spreadsheet cell depen-

dency management does not apply. This is offset by an interpreter that can modify the

visualization at a lower level. The interpreter allows experts to perform complex operations

upon the data that supersede the UI’s facilities. The VisSheet builds upon the strengths of

spreadsheets while augmenting them towards the task of visualization exploration.

Besides presenting an interface to the visualization process, the VisSheet also cap-

tures that process for the user using the P-set Model for visualization exploration. This

encapsulation of the history is crucial. As the size of scientific data increases, users of vi-

sualization systems must be able to explore this data efficiently. Redundant exploration

is avoided by storing and displaying previous results. In addition, the user gains a clear

picture of what has and has not been tried. This information can then be shared with

others to communicate both the results and the steps used to generate those results. These

details are discussed in the following sections.

9.1 Spreadsheet-based Visualization Representation

Before the discussion of the structure of the spreadsheet-like interface, the concep-

tual model behind it must be understood. As suggested in Spence [51], the purpose of this

conceptual model is “to have a better understanding of the artefact, scheme or situation

to which the data refers, and to be able to interpret the model in some useful way.” The

formalism behind the internal model describes the properties of the interface.

9.1.1 Conceptual Model

Using the Visualization space model (Section 4.3.1), the VisSheet considers visual-

ization exploration a process of examining a multi-dimensional space V of parameter values.

Each n-tuple p ∈ V represents a combination of parameters that produce a visualization—a

p-set. The p-set p uniquely identifies a point in the visualization space which corresponds

78

Figure 9.1: Visual representation of some parameters displayed by the visualization spread-
sheet. As a user edits the underlying parameter, the icon of the parameter is updated.

to a particular visualization result r in some result space R. V thus defines a transforma-

tion t : V 7→ R from the parameters to the results. This transformation is the underlying

visualization technique used and is described by some visualization transform model. This

definition is independent of the actual application of the spreadsheet. For example, differ-

ent visualization parameter spaces exist for direct volume rendering, isosurface extraction,

and vector visualization. Parameters such as color or opacity maps would be used in the

first case, while stream line seed location and ejection rate would be used in the last. The

representation of the visualization result could vary over the domain as well: in direct

volume rendering, results are rendered images; in isosurface visualization, the extracted

triangulated surface.

The key feature of this approach is that it decomposes the visualization process

into a sequence of parameter settings that generate results. As the user iteratively changes

79

parameter values, the p-sets and the derivations of those p-sets are captured by the spread-

sheet. In addition, the results are also stored. Thus, any time a user generates a new

row or column by any means—by parameter editing, operator, or by using the interpreter

as discussed later—the new results are recording by the visualization session model. This

information is also used in displaying history information, as discussed later in this chapter.

9.1.2 Display and Navigation

A spreadsheet presents a tabular view of its underlying data. In numerical appli-

cations, this is a 2D array and thus the correspondence between data and display is trivial.

Visualization space is higher-dimensional and therefore more complicated to display. The

VisSheet is a movable, scalable window into this space. By manipulating the visualization

parameters, the user changes the position and size of this window. Unlike previous spread-

sheet designs, this spreadsheet places constraints upon the cell values. The spreadsheet

displays a planar projection spanned by two axes of the visualization space. Only a single

type of parameter value can be displayed in the rows and columns. Using volume visual-

ization as an example, the rows could display color maps while the columns show opacity

maps. For the other, non-displayed parameters, a set of default values is maintained. These

values may be updated at run-time. Parameter values are represented by rendered glyphs in

the table headers (Figure 9.1). A cell in the spreadsheet represents a result which combines

the parameter values of the row and column intersecting the cell with the default values

for the other parameters. By changing the default values for non-displayed parameters, the

spreadsheet “window” can be translated in visualization space (Figure 9.2). A different kind

of motion is achieved by changing the displayed row and column parameters (Figure 9.3).

Thus, the data exploration process becomes the process of manipulating the spreadsheet

window through the visualization space.

Previous visualization spreadsheets collapse the visualization space into 2D with-

out controlling what values are used in the spreadsheet cells. While this may be useful

to display final visualization results side by side, this projection hinders exploration efforts

since the relationship between parameter values and result is not immediately evident. This

structure satisfies the second principle of visualization user interfaces (Intuitive Display).

80

Figure 9.2: The VisSheet is a view of two dimensions of a visualization space. In this exam-
ple, opacity maps are displayed along rows and color maps along columns. A particular cell
is rendered by combining the non-displayed parameters’ default values with the parameter
values corresponding to the row and column indices. By changing the default parameters, in
this case the view position, the spreadsheet’s position in visualization space can be moved.

Figure 9.3: The spreadsheet window can also be rotated in visualization space. Starting
from a sheet displaying color and opacity maps, the user first selects an image with the
desired properties. These two parameters will become the new default values. By then
selecting two new parameters to display, in this case view position and zoom factor, the
window is rotated about the selected point to display the new values.

81

9.2 Static Spreadsheet-based Exploration

Without the dynamic operators and the interpreter described later, the interface

can still be used to explore a user’s data. In this “static” mode, the user manipulates

the spreadsheet’s position in visualization space and selects which parameters (and thus

results) to investigate. This mode of exploration fulfills the first principle of a visualization

user interface (Parameter Manipulation). Actual exploration of the data would generally

combine both phases: The data is explored using the static interface to generate a few

images and then the dynamic operations are used to create further results.

When starting a new visualization session, a user must first initialize any parameter

values that do not have default values. Using the spreadsheet, the user can select which

parameters to display along the rows and columns, and add, edit, remove, and position

column and row values as desired. Depending on the application, all cells or only those

specifically requested by the user may be displayed—the overhead of rendering the entire

table should determine which method is used. If the selected row or column parameter

is changed, the table is populated with images corresponding to the new combination of

parameters. If one of the non-displayed default parameter values is changed, the images are

updated as well. The system visually identifies which parameters correspond to an image

by rendering the row and column labels as glyphs.

Figure 9.4 demonstrates a spreadsheet-driven visualization. The user wished to

display separate skin and bone surfaces for a foot medical data set using a ray-casting

direct volume renderer. First, the user added two opacity maps which highlight the desired

surfaces; the tabular organization of the spreadsheet allows the two images to be easily

compared side-by-side. After changing the row parameter to display view positions, the

user selected a view to display the front of the foot. This position was selected as the new

default. Afterwards, the user returned to modifying color maps. Only images utilizing the

new view position were displayed. Two new color maps were added, the first a false-color

map highlighting differences in value on the surface and the second a color map to display a

flesh-like tone for the skin and white for the bone. The latter color map was selected as the

new default color map. Finally, the final images were generated by displaying and adding

82

Figure 9.4: A sequence of spreadsheets displaying the volume visualization of a foot data
set. Blank cells represent non-rendered images. The goal was to compare skin and bone
surfaces. The user first determined appropriate opacity maps before modifying the view
position, color map and zoom factor. The spreadsheet was useful in displaying the images
to be compared side-by-side.

83

a new zoom factor value. If desired, the user could change the default color map or view

position to examine alternate zoomed images.

Tabular organization is one of the advantages the spreadsheet has over other rep-

resentations. As demonstrated above, it allows quick visual comparison of data values.

This property is especially useful in comparing renderings of different data sets. Figure 9.5

displays an example sequence of data sets representing time steps in a material propagation

simulation. Changing or adding a parameter value in the figure would affect all the data

sets at once. The equivalent task would require several separate operations in an image

graph. The tabular structure also suggests natural parallelism when applying the opera-

tions from the next section: New cells generated by an operation could be distributed to

separate processors to be visualized.

9.3 Dynamic Spreadsheet-based Exploration

The spreadsheet display can be dynamically modified to supplement the data

exploration experience. The dynamic capabilities include both parameter and value oper-

ators and the associated interpreter. Animations can also be created. Combined with the

interpreter (c.f.), the dynamic operations satisfy the third principle of visualization user

interfaces (Visualization Operators).

9.3.1 Parameter and Value Operators

Like the numeric functions in traditional spreadsheets, most spreadsheets define a

set of operations that can be applied to the cells. In visualization spreadsheets, operations

allow the user to create new results from previous ones. The VisSheet defines two types

of operations: those acting on parameters (row and columns) and those acting on values

(cells). The former typically generates new parameters from their input while the later

analyzes cell values.

There are operators for each parameter type: set operations can be applied to

color and opacity maps, histograms can be derived from data sets, or isovalues can be

interpolated. To apply a parameter operator, a user first selects a range of column or row

84

Figure 9.5: An isosurface visualization spreadsheet displaying the effects of a shock wave on
a bubble of argon over several time steps. Modifying the displayed isovalue would change
all the cells at once, a task that would be more difficult in other representations.

Figure 9.6: An example of applying parameter operators, in this case the union of displayed
magnetic field lines in a simulation. The top image displays the three different field lines
side by side. When combined, the presence of the “magnetic island” between the layers
becomes apparent.

values to be used as the operator’s arguments. The user then selects an operator to apply

and, if necessary, customizes its behavior. The first spreadsheet in Figure 9.6 displays

the illuminated magnetic field lines in a Tokamak simulation [49]. The purpose of the

visualization was to discover “magnetic islands” inside the toroid object: i.e., magnetic field

85

surfaces that do not form closed toroids. From the first spreadsheet, it is not immediately

clear whether the first and last field line (measured in increasing radius from the center

of the torus) enclose the second. When a union operator is applied to the parameters,

combining the display of all three field lines into a single image in the second spreadsheet,

the artifact is clear.

Value operators are applied in similar manner to parameter operators: the operand

cells are selected and a operator is chosen from a list of possible operations. What is unique

about value operations is how the cells are selected. As the spreadsheet data is multi-

dimensional, cells from alternate “stacks” of the spreadsheet (i.e., different projections of

the visualization space) can be selected at the same time. If a user wanted to combine the

opacity and color maps from one image with the view position and zoom factor of two other

images in a volume rendering example (Figure 9.7), the user could follow these steps:

1. Change the row and column parameters to display color and opacity maps.

2. Select the cell with the desired color and opacity maps.

3. Change one of the parameters to display view positions.

4. Select the cell with the desired view position.

5. Change one of the parameters to display zoom factor values.

6. Select the final cell with the desired zoom.

7. Apply the combination operator.

The new cell would then be added to the spreadsheet at the intersection of the

four selected parameter values. Without cell selection in separate stacks, value operators

could only be applied within a given display, limiting changes in parameter to the current

row or column parameter only.

9.3.2 Animations

Unlike static images, animations better display 3-dimensional features of data.

Animations are generated using the same method used to apply value operators. First, a

86

Figure 9.7: Selected cells for a composition operator. The user wished to use the color and
opacity maps of the first image, the view position of the second and the zoom factor of the
third. The fourth image displays the desired visualization.

range of key frame cells, most often from different stacks, is selected in the spreadsheet.

As more than one parameter can change between images, the order of interpolation is then

selected by the user. Finally, the user determines how many intermediate steps to render

between each key cell. The system then automatically renders the animation.

As an example, consider an animation using the first and last cells in Figure 9.7.

Between these two images, both the view position and zoom factor has changed. To generate

the animation, the cells containing the two key frame images would be selected. Next, the

user would determine the order of interpolation of the parameters. The corresponding

animation would illustrate the 3-dimensional features of the flow through the furnace.

9.3.3 Scripting

Another dynamic capability of the spreadsheet is the use of an interpreter. This

interactive environment allows a user to directly access and manipulate the underlying

conceptual model the interface presents. The parameter and results can be used in user

defined functions to programmatically generate new visualizations. All of the operators

mentioned in the last sections can be utilized by the user. The usefulness of such an

environment has already been demonstrated [43]. The interpreter grants advanced users

low-level control of the visualization process that the UI abstracts. For example, the script

for i in range(3): addParameter("View", View(xangle=45*i,
yangle=-45*i,
zangle=0))

87

would generate a series of view positions in an arc about the data set. This technique can

be extended to generate a series of parameters within the parameter space similar to the

method used by the Design Galleries system. The user can then use the generated results

to narrow their search.

The VisSheet’s implementation of scripting differs from common macro languages

in numerical spreadsheets or the scripting abilities in the spreadsheets described by Chi

et al. [13]. In these applications, cells are referenced by their row and column values. If

a cell’s value changes, all formulas which reference that cell are updated; these changes

are propagated as needed. In the VisSheet, the cells represent immutable points in space.

Similarly, the parameter a row or column represents may change at any time. Thus tra-

ditional spreadsheet reference methods do not apply. In this interface, references to a cell

are translated into the tuple identifying that cell in the visualization parameter space. If

the second cell in first row is selected, the tuple would reference the second parameter in

the list of displayed column parameters, the first parameter in the list of row parameters,

and references to the default non-displayed parameters (see Figure 9.8). A references to

a row or column is translated into a parameter reference in a similar manner. When the

parameters that are referenced by a tuple are changed, the corresponding result is updated

as well. By way of example, consider a data set representing several variables from a tur-

bulent jet simulation (see [59] for more information). In the simulation, two different sums

of the variables should represent the same value. Using a user defined function sumData

to create a new data set by summing the values over the entire volume of its arguments,

these two sums can be compared visually using the following script:

addParameter("Data Set", sumData([column(0), column(1)])
render(cell(1, 3))
addParameter("Data Set", loadData("jet_a3a4a5a6"))
render(cell(1, 4))

Figure 9.9 displays the results of executing this script. These scripts are a versatile way to

drive the visualization process.

88

Figure 9.8: An example of referencing a cell. A reference to a cell, in this case cell (1,2),
is translated into a tuple representing the positions of the cell’s parameter values in their
respective parameter lists. The translated reference is (1,2,3,1,1,2,1).

Figure 9.9: Another spreadsheet examining multiple data sets. The data represent distinct
variables in a multi-variate turbulent jet simulation. The entire simulation has 9 variables.
Two of the variables are displayed in the first two columns. The third column is the sum of
the first two variables over the entire volume. The fourth column is the sum of four other
non-displayed variables. Both sums are supposed to represent the total flow through the
jet.

9.4 Encapsulating and Sharing the Visualization Process

The spreadsheet eases collaboration by allowing the exchange of more information

than a set of images. With only a set of images, a collaborator has no sense of their order

89

or what parameter values were used to generate them. Expressed as a spreadsheet, the

entire visualization process can be communicated to other users. First, the results of the

visualization are clearly presented by the spreadsheet. Second, as discussed previously,

parameters used for each cell are easily identified. Finally, the history of the process can be

viewed, stored, and shared among others.

9.4.1 History Display

The history of the visualization process can be used to gain insight to where a

user has been and where they can further explore. The interface displays the current

state of the visualization via its projection of the parameter space. As an option, the user

can color the borders of the cell according to the time when the results was generated.

Colored borders present the history information at-a-glance: “Hotter” borders represent

more recently modified cells than “cooler” borders. For a more extensive inspection of the

history, an alternative view of the process could be constructed. For example, by using

the internal model discussed in Part II, any of the visualization process graphs could be

displayed. Also, an HTML page summarizing the session (as mentioned in Chapter 7) could

be generated.

9.4.2 On-Line Collaboration

The spreadsheet can also be used in shared collaboration environments. In this

case, the spreadsheet acts as a window into a shared visualization in progress. In one sce-

nario, users work individually, synchronizing parameters and results as desired. In another,

changes in the state of the exploration can be communicated concurrently to all users. Both

situations can be useful: The former when users are looking for different results and the

latter when an expert is driving the exploration. Either of these options can be achieved

using the framework discussed in Chapter 10.

9.4.3 Off-Line Collaboration

To communicate the results of a visualization exploration session, the session must

be stored off-line in some manner. This off-line storage format should record everything

90

to recreate the session: the type of visualization performed, the sequence of parameters

explored, and the corresponding results. To be effective, the format should not only be

understandable by the spreadsheet itself but translatable into formats amenable to data-

mining, presentation, and analysis. All of these goals are accomplished by using the XML

representation discussed in Chapter 7.

Another form of off-line collaboration is the use of spreadsheet templates. Tem-

plates are interpreter scripts generated by experts that perform automated manipulation

and analysis of the visualization data. For example, a template could generate optimal

color and opacity maps after analyzing the input data sets, and display the results in the

spreadsheet. Templates can be distributed with data sets to perform initialization or other

functions to assist users to understand the data.

9.5 Further Examples

To illustrate the versatility of the spreadsheet-like interface, two further examples

are presented. In the first, the spreadsheet was used to investigate the effect of changing

parameters in a 3D segmentation pipeline. The segmentation is applied to a volume image

of a frozen human brain. There are six steps in the process, which are controlled by

nine parameters (see [53] for a more complete description). The brain was sliced and

photographed. Due to voids in the brain, the images contain information from other slices

as well. The purpose of the segmentation is to remove extraneous information not belonging

to each slice. The VisSheet can assist in comparing the effects of the segmentation process

on several slices simultaneously.

The first step in the segmentation process applies color thresholding on the image.

A particular color component was chosen as it captures the browns in the brain data very

well. By changing the threshold value, the effects on the segmentation can be seen (Figure

9.10). A later step tries to “grow areas” by checking the size of similar regions against

another threshold. A comparison of settings of this parameter can be seen in Figure 9.11.

It became clear through this analysis that the initial color thresholding has a greater effect

on the segmentation than the later stage and thus should be considered with more care

91

Figure 9.10: A spreadsheet analyzing the effect of different parameters on a 3D segmentation
pipeline of a human brain. In this example, the effect of color thresholding (the column
parameter) is examined across two different slices of the brain (the row parameter).

Figure 9.11: Another spreadsheet examining the segmentation pipeline. This time, differ-
ent region size thresholds are displayed along the columns. Note how the effects of the
region growing threshold parameter are less pronounced than those from the previous color
thresholding stage.

during the segmentation process. The effects of changing both parameters at the same

time was determined by translating the spreadsheet window in visualization space. Using

a script to cycle through the color thresholds in Figure 9.10 (a non-displayed parameter

in Figure 9.11), differences in the images became readily apparent to the eye. Finally, an

image difference operator defined on the cells was used to get a quantitative measure of the

92

changes caused by the parameter settings.

One difficulty with the segmentation experiment was the limitation that only two

types of parameters can be displayed and edited by the spreadsheet at a time. Creating

a result with a specific set of parameters takes significant manipulation. One method of

overcoming this shortcoming is to couple the VisSheet with another application. In this

configuration, the spreadsheet becomes a type of interactive history mechanism, recording

the process of the exploration while the user manipulates the main program. For example,

the spreadsheet can communicate with an interactive volume renderer. As the user changes

the parameter settings in the volume renderer, they are communicated to the spreadsheet

which displays the results. Care must be taken with parameters which vary often and con-

tinuously (such as view position in this example). For such parameters, the spreadsheet

could be updated at regular intervals or when the user pauses for some time. The default

parameters of the spreadsheet always correspond to the currently used parameters in the

controlling application. Displayed row and column parameters can be arbitrary—two con-

ventions are to have them be either the most recently modified parameters or the most

often modified parameters. If the interactive volume renderer also implements the P-Set

Model for its internal representation, then the communication of state is automatic via the

framework discussed in the next chapter.

The spreadsheet can remain interactive during this “indirect” modification. The

user can switch between exploring with the controlling application or with the spreadsheet.

Consider the visualization of a turbulent jet simulation depicted in Figure 9.12. In this

data set, the features of interest are the negative and positive vorticities in the jet. After

manipulating the data, the user generated two visualizations which expose the two types of

vorticities. Then, by applying a union operator upon the opacity maps of these results, a

composite image showing both types of vorticities is generated and displayed in the original

program. Exploration can continue from here, using the spreadsheet for more structured

control as the session continues.

93

Figure 9.12: The spreadsheet can be coupled with an auxiliary program that can control the
visualization. As the exploration progresses, the main application updates the spreadsheet
with its current state. This interactive history mechanism can also be used to communicate
the other way. Here the user applied a parameter operator to the opacity maps (columns)
to highlight both the negative and positive vorticities in a turbulent jet data set.

94

9.6 Summary

By visually organizing the data exploration process while providing tools to build

upon and share this process, the VisSheet makes visualization more efficient and effective.

The space of visualization parameters is made clear by the spreadsheet’s structure and

iconic display. The dependence of a result on its parameters becomes transparently avail-

able. Previous results can be extended by operators to further discovery. The interpreter

can be used to construct complex visualizations in a programmatic manner. Finally, the

interface makes the history of the process available to both the user and their collaborators.

Combined, these capabilities utilize the inherent iterative nature of the visualization process

to a user’s advantage.

95

Part IV

Summary

96

Chapter 10

A Framework for Visualization

Exploration

In this chapter, the internal and external representation are brought together with

a framework. This framework provides a set of classes for a complete visualization explo-

ration system implementing the P-set Model and following the visualization exploration

user interface principles. The uses of the complete framework are then demonstrated via

an example.

10.1 The Core Framework

The core framework which implements the internal representation of the visual-

ization process consists of the classes in Table 10.1. In the framework, there is a distinction

between concrete classes (sans-serif type) and abstract classes which must be specialized

(italic sans-serif type); member variables and functions are in type-writer type. The main

functions of each component and its interactions with the other components are discussed

below. Figures 10.1–10.2 provide UML class diagrams [3] which detail the dependence of

the classes upon each other.

97

Component Purpose

VisualizationSession Stores visualization session results. Updates all views
when a new result is generated.

VisualizationSessionResult Represents a single visualization result.

Derivation Represents information describing how a parameter
was derived using the parameter calculus.

VisualizationTransform Describes how the visualization is performed. Pos-
sesses a signature identifying the parameter and re-
sults type used in the transformation. Also responsi-
ble for rendering results.

VisualizationParameterType Parameter type for a visualization transform, e.g. a
colormap.

VisualizationParameterValue Particular value for a parameter, e.g. a rainbow col-
ormap.

VisualizationResultType Class representing the actual type of a result, e.g. a
raster image or geometry.

VisualizationResultValue Particular value for a result, e.g. an empty image.

VisualizationOperator An operator upon parameters or results that gener-
ates other parameters or results.

VisualizationView A UI and UI toolkit-independent class representing
behaviors common to all visualization UIs.

Table 10.1: A summary of the components in the visualization exploration and encapsula-
tion framework.

10.1.1 The VisualizationSession Class

The VisualizationSession class encapsulates the entire visualization session. As

such, it contains information about the visualization transforms used during the session (via

the transforms function). If a new visualization transform is used during the session, it can

be added via the addTransform function. All the parameters used during the exploration

can be accessed via the parameters function; results is used to access the map of p-sets to

visualization results. Session results, which include timestamp and derivation information,

are accessed via the history function.

In addition to storing information about the session, the VisualizationSession class

also manages communication with the different visualization user interfaces (which imple-

ment the VisualizationView abstract class below). Views can be added or removed with

the attatchView and detachView functions. All the views can be accessed via the views

98

C
re

at
ed

 d
ur

in
g

__
re

su
lt

0.
.*

va
lu

e

0.
.* ke

y

D
er

iv
at

io
n

-
__

pa
ra

m
et

er
_l

is
t :

 N
on

M
od

ifi
ab

le
Li

st

-
__

in
pu

t_
tu

pl
e

[0
..*

] :
 M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>

-
__

ou
tp

ut
_t

up
le

 [1
..*

] :
 M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>

+
 _

_i
ni

t_
_(

pa
ra

m
et

er
_l

is
t:

Li
st

,in
pu

t_
tu

pl
e:

 L
is

t,o
ut

pu
t_

tu
pl

e:
 L

is
t)

+
 in

pu
tP

ar
am

et
er

V
al

ue
s(

)
: M

ap

+
 o

ut
pu

tP
ar

am
et

er
V

al
ue

s(
)

: M
ap

+
 p

ar
am

et
er

Li
st

()
 :

Li
st

+
 in

pu
tT

up
le

()
 :

Li
st

+
 o

ut
pu

tT
up

le
()

 :
Li

st

V
is

ua
liz

at
io

nS
es

si
on

R
es

ul
t

-
__

ps
et

 :
M

ap

-
__

re
su

lt
: V

is
ua

liz
at

io
nR

es
ul

tV
al

ue

-
__

tim
es

ta
m

p
: i

nt

-
__

de
riv

at
io

n
: D

er
iv

at
io

n

+
 _

_i
ni

t_
_(

ps
et

: M
ap

,r
es

ul
t:

V
is

ua
liz

at
io

nR
es

ul
tV

al
ue

,ti
m

es
ta

m
p:

 in
t,d

er
iv

at
io

n:
 D

er
iv

at
io

n)

+
 p

se
t(

)
: M

ap

+
 r

es
ul

t(
)

: V
is

ua
liz

at
io

nR
es

ul
tV

al
ue

+
 ti

m
es

ta
m

p(
)

: i
nt

+
 d

er
iv

at
io

n(
)

: D
er

iv
at

io
n

V
is

ua
liz

at
io

nS
es

si
on

-
__

tr
an

sf
or

m
s

[1
..*

] :
 V

is
ua

liz
at

io
nT

ra
ns

fo
rm

-
__

vi
ew

s
[0

..*
] :

 V
is

ua
liz

at
io

nV
ie

w

-
__

pa
ra

m
et

er
s

: M
ap

-
__

re
su

lts
 :

M
ap

-
__

hi
st

or
y

[0
..*

] :
 V

is
ua

liz
at

io
nS

es
si

on
R

es
ul

t

+
 _

_i
ni

t_
_(

tr
an

sf
or

m
s:

 L
is

t,v
ie

w
s:

 L
is

t)

+
 tr

an
sf

or
m

s(
)

: N
on

M
od

ifi
ab

le
Li

st

+
 a

dd
T

ra
ns

fo
rm

(t
ra

ns
fo

rm
: V

is
ua

liz
at

io
nT

ra
ns

fo
rm

)

+
 v

ie
w

s(
)

: L
is

t

+
 a

tta
ch

V
ie

w
(v

ie
w

: V
is

ua
liz

at
io

nV
ie

w
)

+
 d

et
ac

hV
ie

w
(v

ie
w

: V
is

ua
liz

at
io

nV
ie

w
)

+
 p

ar
am

et
er

s(
)

: M
ap

+
 r

es
ul

ts
()

 :
M

ap

+
 h

is
to

ry
()

 :
N

on
M

od
ifi

ab
le

Li
st

+
 a

dd
R

es
ul

t(
pa

ra
m

et
er

s:
 M

ap
,r

es
ul

t:
V

is
ua

liz
at

io
nR

es
ul

tV
al

ue
,d

er
iv

at
io

n:
 D

er
iv

at
io

n)

+
 a

dd
R

es
ul

ts
(p

ar
am

et
er

s:
 L

is
t,r

es
ul

ts
: L

is
t,d

er
iv

at
io

ns
: L

is
t)

+
 s

to
re

(f
ile

: S
tr

in
g)

V
is

ua
liz

at
io

nT
ra

ns
fo

rm

C
on

ta
in

s
1.

.*

__
tr

an
sf

or
m

s

C
on

si
st

s
of

0.
.*

_h
is

to
ry

D
er

iv
ed

 a
cc

or
di

ng
 to

 >

__
de

riv
at

io
n

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e

V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

V
is

ua
liz

at
io

nR
es

ul
tV

al
ue

M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
 L

is
t<

V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>
 >

C
on

ta
in

s

__
pa

ra
m

et
er

s

0.
.*

ke
y

M
ap

<
M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>
, V

is
ua

liz
at

io
nR

es
ul

tV
al

ue
>

C
on

ta
in

s

__
re

su
lts

va
lu

e

M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
 V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue
>

C
re

at
ed

 d
ur

in
g__

ps
et

0.
.*

ke
y

va
lu

e

C
on

ta
in

s

F
ig

ur
e

10
.1

:
U

M
L

cl
as

s
di

ag
ra

m
fo

r
th

e
cl

as
se

s
re

la
te

d
to

st
or

in
g

th
e

vi
su

al
iz

at
io

n
se

ss
io

n.
T

he
se

cl
as

se
s

en
ca

ps
ul

at
e

th
e

us
er

’s
ac

ti
on

s
du

ri
ng

th
e

vi
su

al
iz

at
io

n
pr

oc
es

s.

99

G
en

er
at

es
 r

es
ul

ts
 o

f t
yp

e

V
is

ua
liz

at
io

nO
pe

ra
to

r

na
m

e(
)

: S
tr

in
g

ar
ity

()
 :

in
t

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e

na
m

e(
)

: S
tr

in
g

de
fa

ul
tV

al
ue

()
 :

V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

pa
rs

eR
ep

re
se

nt
at

io
n(

va
lu

e:
 S

tr
in

g,
at

tr
ib

ut
es

: M
ap

)
: V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue

op
er

at
or

s(
)

: S
et

V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

ty
pe

()
 :

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e

va
lu

eO
f(

)

re
pr

es
en

ta
tio

n(
)

: L
is

t

V
is

ua
liz

at
io

nR
es

ul
tT

yp
e

de
fa

ul
tV

al
ue

()
 :

V
is

ua
liz

at
io

nR
es

ul
tV

al
ue

pa
rs

eR
ep

re
se

nt
at

io
n(

va
lu

e:
 S

tr
in

g,
at

tr
ib

ut
es

: M
ap

)
: V

is
ua

liz
at

io
nR

es
ul

tV
al

ue

V
is

ua
liz

at
io

nR
es

ul
tV

al
ue

ty
pe

()
 :

V
is

ua
liz

at
io

nR
es

ul
tT

yp
e

V
is

ua
liz

at
io

nT
ra

ns
fo

rm

si
gn

at
ur

e(
)

: S
tr

in
g

pa
ra

m
et

er
T

yp
es

()
 :

N
on

M
od

ifi
ab

le
Li

st

re
su

ltT
yp

e(
)

: V
is

ua
liz

at
io

nR
es

ul
tT

yp
e

va
lu

eO
f(

pa
ra

m
et

er
s:

 M
ap

)
: V

is
ua

liz
at

io
nR

es
ul

tV
al

ue

O
pe

ra
te

s
up

on
 >

0.
.*

<
 P

ar
am

et
er

 is
 o

f t
yp

e

<
<

C
re

at
es

>
>

<
 R

es
ul

t i
s

of
 ty

pe

<
<

C
re

at
es

>
>

C
on

tr
ol

le
d

by

1.
.*

<
<

C
re

at
es

>
>

F
ig

ur
e

10
.2

:
U

M
L

cl
as

s
di

ag
ra

m
fo

r
th

e
cl

as
se

s
in

vo
lv

ed
in

th
e

fr
am

ew
or

k’
s

ty
pe

sy
st

em
.

T
hi

s
ty

pe
sy

st
em

de
sc

ri
be

s
th

e
co

m
po

ne
nt

s
of

a
vi

su
al

iz
at

io
n

tr
an

sf
or

m
.

100

function.

The most important service of the session class is that it handles the adding of new

results to the session. Using the addResult or addResults, one or multiple new results can

be added. Each function takes a rendered result, its corresponding p-set, and its derivation

information (or a sequence of those when adding more than one result). The results are then

validated (to make sure they were created using a transform associated with this session)

and a new session result is added to the session. In addition, any attached views are notified

that the session has changed. Thus, if two views of the session are active, if one creates a

new result, the other can display this new result concurrently.

Only one VisualizationSession object should be instantiated at a time. When a

session is complete, it can be serialized using the XML representation by calling the store

function. This function uses member functions of the result and parameter types to encode

them along with the other information stored in the session. The load helper function can

then be used to re-instantiate the session at a later time.

10.1.2 The VisualizationSessionResult Class

This class encapsulates a visualization session result: a p-set, rendered result,

timestamp, and derivation information. Each can be accessed by their eponymously named

functions. Only a VisualizationSession object can create session results; they are created

automatically when a new result is added.

10.1.3 The Derivation Class

The Derivation class describes a p-set derivation during the visualization session.

Factory functions for common derivation types (a parameter range or parameter application

derivation) exist to create new Derivation instances. For more complex derivations, the

object can be created directly by providing a list of parameter transformations, input p-

sets, and output p-sets. All of these elements can be extracted from a Derivation instance

using the parameterList, inputTuple, and outputTuple functions respectively.

101

10.1.4 The VisualizationTransform Abstract Class

The VisualizationTransform abstract class describes the visualization type being

performed and handles the actual generation of rendered results. It is part of a type system

describing the components of a visualization transforms—parameter and result types and

values. The parameterTypes and resultType functions return the parameter and results

type classes used by the transform; the signature function returns a string summarizes

these types. More importantly, to actually render a result, the transform’s valueOf function

must be called. This function takes a p-set and returns a rendered result. If one of the

parameters is undefined, an undefined result is also returned. Since the transform has no

information about how the result was rendered (the user interface has this information), it

does not handle adding results to the system. As mentioned, the view must add the result

by providing the derivation information the session’s addResult function.

When implementing a new visualization transform, not only does a Visualization-

Transform class have to be implemented, but the various parameter and result type and

value classes discussed below must be implemented. In addition, for the views, parame-

ter and result renderers and editors will also have to implemented. These latter classes,

however, are more specific to a specific view and thus are not part of the framework.

10.1.5 The VisualizationParameterType and VisualizationResultType Ab-

stract Classes

These two abstract classes represent the parameter and visualization result types

respectively. Each parameter and result type has a name (accessed through the name func-

tion), a default value (accessed through the defaultValue function), and a list of applicable

visualization operators (accessed through the operators function). The default value is

used when generating a default p-set for a visualization transform; in cases where there is

no appropriate default (such as for data sets), an undefined value is used.

Implementations of these classes are also used during session loading from a stored

representation. The parseRepresentation function uses the parsed element data and XML

attributes for the parameter or result and instantiates an appropriate class instance. It is

102

the reverse of the representation function provided by the value abstract classes below.

10.1.6 The VisualizationParameterValue and VisualizationResultValue

Abstract Classes

Like the type abstract classes, these abstract classes encapsulate information about

parameters and results. In this case, they encapsulate parameter and result values. The

type class of the value can be accessed via the type function and the actual value is accessed

through the valueOf function.

Specializations of these classes are used during process serialization. The representation

function generates the textual data stored in the XML element and a mapping of attribute-

values pairs for the element. This information is extracted by the specializations of the type

classes during loading.

10.1.7 The VisualizationOperator Abstract Class

The VisualizationOperator abstract class describe visualization operators—functions

that act on parameters or results to generate other parameters or results. As expressed in

Chapter 8, these operators are important in structured visualization exploration. The class

exposes to functions: name and arity. The former provides a name for the function and

the later is a list of parameter or result types needed to perform the function. The actual

operation is performed by treating specializations of the class as functors—function objects.

By calling the object with the appropriate number of type of parameters, the operator is

performed.

10.1.8 The VisualizationView Abstract Class

This abstract class represents a visualization user interface. It is an interface

and UI-toolkit independent class—it describes the properties inherit in all visualization

interfaces.

The VisualizationView provides access to both its internal visualization session

(via the session function) and to its viewable visualization types (via the transforms

103

function). A visualization interface may not be able to display all the transforms currently

in a session; thus, the transforms function only returns those transforms that are viewable.

New transforms may be added via the addTransform function.

As mentioned previously, specializations of the view class are responsible for adding

new results to the visualization session. This is required since only the view knows what

type of interactions the user performed that generated the result. Thus, four steps occur

when a user generates a result:

1. The result value is created using the current VisualizationTransforms’ valueOf function

using the p-set provided by the interface.

2. The derivation for the result is instantiated.

3. The result value, corresponding p-set, and derivation is passed to the session’s addResult

function, thus updating the session.

4. During the addResult call, each of the session’s VisualizationView instances has its

update function called to redraw themselves with the updated results.

When a new result is added, the session will call each view’s update function, indicating

that a new result was generated. It is then up to each view to update their display. These

steps are illustrated for the VisSheet in the UML sequence diagram in Figure 10.3.

10.2 The VisSheet Framework

The VisSheet user interface prototype in Chapter 9 utilizes the core framework.

It does so by specializing the VisualizationView interface to capture behavior specific to the

VisSheet (see Table 10.2 and the UML class diagram in Figure 10.4).

10.2.1 The VisualizationSheetView Abstract Class

The base visualization sheet class extends the VisualizationView class in several

ways. First, it provides access to its current displayed state via the state function; this re-

turns the sheet’s corresponding state object (see next section). One may also retrieve a cell’s

104

vi
ew

V
al

ue
()

pa
in

t()

ca
llI

nS
w

in
gT

hr
ea

d(
vi

ew
V

al
ue

)

re
pa

in
t()

up
da

te
()

ad
dR

es
ul

ts
(p

ar
am

s,
re

su
lts

, d
er

iv
at

io
ns

)

pr
oc

es
sD

el
ta

(d
el

ta
s)

ru
n(

)

<<
cr

ea
te

s>
>

re
nd

er
V

al
ue

()
__

ce
llP

op
up

:re
nd

er
()

va
lu

eO
f(

pa
ra

m
s)

re
su

lt

fin
dD

er
iv

at
io

n(
)

A
t t

hi
s p

oi
nt

, t
he

 re
su

lt
is

 d
is

pl
ay

ed
 fo

r t
he

 u
se

r

:S
w

in
gT

hr
ea

d
se

ss
io

n:
V

is
ua

liz
at

io
nS

es
si

on
st

at
e:

V
is

ua
liz

at
io

nS
he

et
St

at
e

re
nd

er
er

:R
en

de
rT

hr
ea

d

sh
ee

t:J
FC

V
is

ua
liz

at
io

nS
he

et
V

ie
w

cu
rr

en
tT

ra
ns

fo
rm

:V
is

ua
liz

at
io

nT
ra

ns
fo

rm

F
ig

ur
e

10
.3

:
U

M
L

se
qu

en
ce

di
ag

ra
m

fo
r

ad
di

ng
an

d
di

sp
la

yi
ng

a
ne

w
vi

su
al

iz
at

io
n

re
su

lt
us

in
g

th
e

V
is

Sh
ee

t.
T

he
se

qu
en

ce
fo

llo
w

s
fo

ur
ph

as
es

:
G

en
er

at
in

g
th

e
re

su
lt

,
de

te
rm

in
in

g
it

s
de

ri
va

ti
on

,
ad

di
ng

th
e

re
su

lt
to

th
e

se
ss

io
n,

an
d

up
da

ti
ng

th
e

vi
ew

s
of

th
at

se
ss

io
n.

105

V
is

ua
liz

at
io

nS
he

et
S

ta
te

-
__

tr
an

sf
or

m
 :

V
is

ua
liz

at
io

nT
ra

ns
fo

rm

-
__

ac
tiv

eP
ar

am
et

er
s

: M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
Li

st
<

V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>
>

-
__

de
fa

ul
tP

ar
am

et
er

s
: M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>

-
__

di
sp

la
ye

dP
ar

am
et

er
s

[2
] :

 V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e

+
 _

_i
ni

t_
_(

vi
ew

: ,
tr

an
sf

or
m

: ,
di

sp
la

ye
dP

ar
am

et
er

s:
 ,d

ef
au

ltP
ar

am
et

er
s:

)

+
 p

ro
ce

ss
D

el
ta

(d
el

ta
: V

is
ua

liz
at

io
nS

he
et

D
el

ta
)

+
 d

el
ta

s(
)

: L
is

t

+
 v

ie
w

()
 :

V
is

ua
liz

at
io

nS
he

et
V

ie
w

+
 d

is
pl

ay
ed

P
ar

am
et

er
s(

)
: L

is
t

+
 d

ef
au

ltP
ar

am
et

er
(p

ar
am

et
er

: V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e)

 :
V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue

+
 a

ct
iv

eP
ar

am
et

er
s(

pa
ra

m
et

er
: V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e)
 :

Li
st

+
 s

es
si

on
()

 :
V

is
ua

liz
at

io
nS

es
si

on

+
 tr

an
sf

or
m

()
 :

V
is

ua
liz

at
io

nT
ra

ns
fo

rm

+
 s

et
T

ra
ns

fo
rm

(t
ra

ns
fo

rm
: V

is
ua

liz
at

io
nT

ra
ns

fo
rm

)

+
 u

pd
at

eF
ro

m
S

es
si

on
()

V
is

ua
liz

at
io

nS
es

si
on

JF
C

V
is

ua
liz

at
io

nS
he

et
V

ie
w

+
 c

el
lR

en
de

re
r

: O
bj

ec
t

+
 p

ar
am

et
er

R
en

de
re

rs
 [1

..*
] :

 O
bj

ec
t

+
 p

ar
am

et
er

E
di

to
rs

 [1
..*

] :
 O

bj
ec

t

+
 r

en
de

rA
ut

om
at

ic
al

ly
 [*

] :
 b

oo
le

an

+
 c

el
lS

iz
e

[2
] :

 in
t

+
 h

ea
de

rS
iz

e
[2

] :
 in

t

+
 b

or
de

rW
id

th
 [*

] :
 in

t

+
 s

ho
w

B
or

de
rs

 :
bo

ol
ea

n

-
ui

C
om

po
ne

nt
 :

O
bj

ec
t

+
 _

_i
ni

t_
_(

se
ss

io
n:

 ,t
ra

ns
fo

rm
: ,

di
sp

la
ye

dP
ar

am
et

er
s:

 ,d
ef

au
ltP

ar
am

et
er

s:
 ,c

el
lR

en
de

re
r:

 ,p
ar

am
et

er
R

en
de

re
rs

: ,
pa

ra
m

et
er

E
di

to
rs

:)

+
 u

pd
at

e(
)

+
 c

el
lP

op
up

(e
ve

nt
: O

bj
ec

t,c
el

l:
Li

st
)

+
 c

el
lC

lic
ke

d(
ev

en
t:

O
bj

ec
t,c

el
l:

Li
st

)

+
 c

el
lP

re
ss

ed
(e

ve
nt

: O
bj

ec
t,c

el
l:

Li
st

)

+
 c

el
lR

el
ea

se
d(

ev
en

t:
O

bj
ec

t,c
el

l:
Li

st
)

+
 h

ea
de

rP
op

up
(e

ve
nt

: O
bj

ec
t,i

sR
ow

: b
oo

le
an

,p
os

iti
on

: i
nt

)

+
 h

ea
de

rC
lic

ke
d(

ev
en

t:
O

bj
ec

t,i
sR

ow
: b

oo
le

an
,p

os
iti

on
: i

nt
)

+
 h

ea
de

rP
re

ss
ed

(e
ve

nt
: O

bj
ec

t,i
sR

ow
: b

oo
le

an
,p

os
iti

on
: i

nt
)

+
 h

ea
de

rD
ra

gg
ed

(e
ve

nt
: O

bj
ec

t,i
sR

ow
: b

oo
le

an
,p

os
iti

on
: i

nt
)

+
 h

ea
de

rR
el

ea
se

d(
ev

en
t:

O
bj

ec
t,i

sR
ow

: b
oo

le
an

,p
os

iti
on

: i
nt

)

+
 r

en
de

rV
al

ue
(p

ar
am

et
er

s:
 M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>
)

+
 v

ie
w

V
al

ue
(p

ar
am

et
er

s:
 M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>
)

+
 a

dd
N

ew
P

ar
am

et
er

V
al

ue
(is

R
ow

: b
oo

le
an

,p
os

iti
on

: i
nt

)

+
 e

di
tP

ar
am

et
er

V
al

ue
(is

R
ow

: b
oo

le
an

,p
os

iti
on

: i
nt

)

V
is

ua
liz

at
io

nV
ie

w

+
 tr

an
sf

or
m

s(
)

: L
is

t

+
 a

dd
T

ra
ns

fo
rm

(t
ra

ns
fo

rm
: V

is
ua

liz
at

io
nT

ra
ns

fo
rm

)

+
 s

es
si

on
()

 :
V

is
ua

liz
at

io
nS

es
si

on

+
 u

pd
at

e(
)

V
is

ua
liz

at
io

nS
he

et
V

ie
w

+
 s

el
ec

te
dC

el
ls

 [0
..*

] :
 M

ap
<

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e,

 V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

>

+
 s

el
ec

te
dR

ow
s

[0
..*

] :
 in

t

+
 s

el
ec

te
dC

ol
um

ns
 [0

..*
] :

 in
t

+
 u

pd
at

eF
ro

m
S

es
si

on
 :

bo
ol

ea
n

+
 c

ur
re

nt
T

ra
ns

fo
rm

 :
V

is
ua

liz
at

io
nT

ra
ns

fo
rm

+
 r

ow
P

ar
am

et
er

 :
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e

+
 c

ol
um

nP
ar

am
et

er
 :

V
is

ua
liz

at
io

nP
ar

am
et

er
T

yp
e

+
 d

ef
au

ltP
ar

am
et

er
s

: M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
 V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue
>

+
 n

um
be

rO
fR

ow
s

: i
nt

+
 n

um
be

rO
fC

ol
um

ns
 :

in
t

+
 _

_i
ni

t_
_(

se
ss

io
n:

 ,t
ra

ns
fo

rm
: ,

di
sp

la
ye

dP
ar

am
et

er
s:

 ,d
ef

au
ltP

ar
am

et
er

s:
)

+
 tr

an
sf

or
m

s(
)

: V
is

ua
liz

at
io

nT
ra

ns
fo

rm

+
 a

dd
T

ra
ns

fo
rm

(t
ra

ns
fo

rm
: V

is
ua

liz
at

io
nT

ra
ns

fo
rm

)

+
 s

es
si

on
()

 :
V

is
ua

liz
at

io
nS

es
si

on

+
 s

ta
te

()
 :

V
is

ua
liz

at
io

nS
he

et
S

ta
te

+
 g

et
C

el
lP

ar
am

et
er

V
al

ue
s(

ce
ll:

 L
is

t)
 :

M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
 V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue
>

+
 g

et
C

el
lV

al
ue

(c
el

l:
Li

st
)

: M
ap

<
V

is
ua

liz
at

io
nP

ar
am

et
er

T
yp

e,
 V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue
>

+
 in

se
rt

P
ar

am
et

er
V

al
ue

(is
R

ow
: b

oo
le

an
,p

os
iti

on
: i

nt
,v

al
ue

: V
is

ua
liz

at
io

nP
ar

am
et

er
V

al
ue

)

+
 g

et
P

ar
am

et
er

V
al

ue
(is

R
ow

: b
oo

le
an

,p
os

iti
on

: i
nt

)
: V

is
ua

liz
at

io
nP

ar
am

et
er

V
al

ue

+
 r

em
ov

eP
ar

am
et

er
V

al
ue

(is
R

ow
: b

oo
le

an
,p

os
iti

on
: i

nt
)

D
is

pl
ay

ed
 b

y

0.
.*

__
vi

ew
s

E
nc

ap
su

la
te

s __
vi

ew

__
st

at
e

V
is

ua
liz

at
io

nS
he

et
D

el
ta

-
__

ty
pe

 :
in

t

-
__

ar
gs

 :
M

ap

+
 ty

pe
()

 :
in

t

+
 a

rg
s(

re
tu

rn
: M

ap
)

C
ha

ng
es

 >
0.

.* __
de

lta
s

<
<

cr
ea

te
s>

>

__
se

ss
io

n

B
ui

lt
fr

om 0.
.*

<
<

cr
ea

te
s>

>

F
ig

ur
e

10
.4

:
U

M
L

cl
as

s
di

ag
ra

m
fo

r
th

e
m

aj
or

co
m

po
ne

nt
s

in
th

e
V

is
Sh

ee
t

an
d

th
ei

r
de

pe
nd

en
ce

on
co

m
po

ne
nt

s
in

th
e

co
re

fr
am

ew
or

k.

106

Component Purpose

VisualizationSheetView The UI and UI toolkit-independent class describing
the behavior of the VisSheet.

VisualizationSheetState Encapsulates VisSheet specific state not shared by the
visualization session, e.g. currently displayed rows
and columns.

VisualizationSheetDelta An atomic change in the state of the sheet, e.g.,
changing the displayed row and column.

JFCVisualizationSheetView The Java UI class for the VisSheet.

Table 10.2: A summary of the components in the VisSheet framework.

parameter values or result (via getCellParameterValues and getCellValue respectively),

retrieve a row or column’s parameter value (via getParameterValue), and add or remove

new rows or columns (via insertParameterValue and removeParameterValue). Several

member variables also provide information about the sheet’s displays, these are listed in

Table 10.3. Changing the mutable variables often generates a sheet delta (c.f.) which up-

dates the sheet state. Updates by the visualization session (via update) also generate sheet

deltas.

When created, a VisualizationSheetView constructor must be passed the transform

it will view, the visualization session it is a part of, and renderers and editors for each

parameter and result type in the viewed transform. These are used whenever a user requests

to add a new parameter (for the editors) or when displaying row, column, or cell values (for

the renderers).

10.2.2 The VisualizationSheetState Class

The visualization sheet state captures non-session related state. This state in-

cludes which parameters are currently displayed (accessed via the displayedParameters

function), the default parameters used (accessed via defaultParameterValue), and the

parameters actually used by the sheet (accessed via activeParameterValues). The visual-

ization session, the transforms, and the paired visualization sheet view can also be accessed

via same-named functions. Finally, updates to the state of the sheet are performed by the

processDelta function. These deltas, described in the next section, change the sheet’s

107

Class Purpose

rowParameter The currently displayed row parameter. Mutable.

columnParameter The currently displayed column parameter. Mutable.

selectedRows The currently selected row indices. Mutable.

selectedColumns The currently selected column indices. Mutable.

selectedCells The currently selected cell p-sets. Mutable.

defaultParameters The dictionary of default parameter values. Read-
only.

numberOfRows The number of currently displayed rows. Read-only.

numberOfColumns The number of currently displayed columns. Read-
only.

updateFromSession Boolean value. If true (the default), changes to the
visualization session from outside the sheet will be
reflected by the sheet. Mutable.

uiComponent The actual native UI component used to display the
sheet. Read-only.

Table 10.3: Properties of the VisualizationSheetView abstract class.

state. Some of these delta’s force a change in the session state by requesting a result to be

rendered. In this case, the processDelta function will call the session’s addResult function

appropriately.

10.2.3 The VisualizationSheetDelta Class

The sheet state class stores process information in a manner akin to a transaction

log. Each element in the list of states represent what changed from the last state to the

current state. These “deltas” are built from a set of atomic state change operations. Exam-

ple atomic operations include adding a parameter value, changing a parameter, removing

a parameter, rendering a result, and navigating through the visualization space. These

operations reference the parameter or value relevant to the change. As some interactions

with the spreadsheet can perform several changes in a single action—for example, applying

a script in the interpreter—the atomic operations can be aggregated when needed. These

deltas are encapsulated using VisualizationSheetDelta objects.

108

VisPortal

WebSheet

Portal Application
Server

Visualization
Web Application

The Grid
Logon, Transfer Data,
Start Visualization

Request result

Launch, Update

Launch
Visualization
Session

Authenticate, Transfer Data

Transfer
Data

Request result

Return result (image)
Vis. Server

Web Browser

Figure 10.5: The VisPortal/WebSheet architecture. Elements within the blue box represent
web pages that the user interacts with, green boxes represent web servers, and the other
nodes represent grid-accessible resources. Dashed lines are HTTP/HTTPS connections for
HTML and images (for the client) and connection requests (for the server), and solid lines
are TCP connections. A line’s label indicates the action performed over that link; for
bidirectional connections, the top label corresponds to actions initiated from the left entity
while the bottom label corresponds to actions initiated from the right entity. Note that
the renderer can be located anywhere on the Grid—the VisPortal initializes the connection
between the renderer and the visualization web application when a visualization is first
requested.

10.2.4 The JFCVisualizationSheetView Class

This class implements the version of the VisSheet demonstrated in Chapter 9. The

framework is implemented in Python [57], which is accessed via Jython (the successor to

JPython [32]) bindings. The editors and renderers are also Jython classes. An alternate

sheet implementation is detailed in the next section.

10.3 The Framework in Action

The VisSheet system is one example of the framework in action, though it does

not take advantage of all the capabilities of the P-set Model. A much more complete

usage of the framework is the VisPortal project conducted in collaboration with Lawrence

Berkeley National Laboratory (LBNL). This section details this work, a web-based portal

for visualization exploration and collaboration over the Grid.1

The LBNL VisPortal system consists of three major components: a web-based user

interface to grid-enabled visualization services, a visualization web application which tracks
1“The Grid” is a distributed computing framework which handles user authentication, process control,

data management and security [19].

109

the exploration of visualization results, and the portal application server that manages and

coordinates the authentication for and use of grid resources (including the interface, web

application, and volume renderer, see Figure 10.5). The application server (the VisPortal)

uses established grid technologies to handle user and resource management (such as data

transport). Once authenticated, a new visualization exploration session is initialized by the

web application; the web application (also called a servlet) is a program on the web server

that communicates with the client via HTTP (the Hypertext Transfer Protocol—the pro-

tocol for the World-Wide Web). In this case, the servlet maintains the visualization session

state. After the visualization session is initialized, the web-based visualization interface is

loaded in the client’s web browser. As the visualization session progresses, the visualization

results and the relationships between those results are stored by the web application for

later examination. Finally, when the user is finished visualizing their data, the session is

closed. The user can then initialize another session or re-examine previous explorations.

The interplay between the interface and the web application is explained next.

10.3.1 A Web-based Sheet-like Interface for Visualization

The web interface implements an HTML version of the VisSheet interface discussed

in Chapter 9. The sheet-like web interface shares many characteristics with the VisSheet.

The interface refines the initial VisSheet design to allow a user to easily modify default

and displayed parameters via the default parameter bar and drop-down row and column

parameter lists (Figure 10.6). The default bar assists in the identification of parameter

values and their corresponding results: The parameters are always the parameters belonging

to a cell’s row and column, combined with the default values for the other parameters in the

default bar. Interaction with the tabular display remains essentially unchanged: users can

add, edit, or remove parameter values; render or view a cell’s image; and apply parameter

and value operators to generate new rows, columns, or cells. The implementations of these

two systems, however, differ significantly as the WebSheet uses JavaScript instead of Java

for implementation. However, the JavaScript implements all the core functionality of the

VisSheet framework discussed previously.

110

Figure 10.6: The AMRWebSheet interface, an example of the web interface to grid-based
visualizations. The interface consists of three major areas: The default parameter bar that
displays and allows the modification of the default parameter values; the displayed row and
column parameter drop-down lists; and the tabular result display. The first two components
are used to change the location of the tabular window in visualization parameter space while
the last component is used to request the rendering of new results.

10.3.2 Web-based Encapsulation of Visualizations

The web-based visualization interface structures the visualization exploration pro-

cess. The visualization web application server captures this process. By capturing the

process, the system ensures that the visualization results generated, and the relationships

between those results, are not lost when the visualization session ends. To record the visu-

alization process, the P-set Model of visualization exploration is used. As each requested

image is rendered, the corresponding visualization session result is stored by the web appli-

111

cation server. Thus, at the end of a session, all the rendered images, the parameter value

sets (p-sets) used for creating that image, when that image was generated, and that image’s

relation to previous images are available for later use.

The visualization web application is the entry point to the web interface. When

loaded from the portal, the servlet provides a user with two options: the user may start a

new visualization session or view previous sessions. When the user chooses to start a new

session, another servlet, the UI servlet, is loaded to handle interactions with the visualization

UI. As the user requests images or adds, edits, or removes parameter values, the underlying

JavaScript sends HTTP requests to this servlet. The servlet then processes the requests,

contacting the rendering server if needed, and updates the visualization session and the

client. The UI servlet represents the state of the UI; the interface’s web page presents the

view of this state.

If a user chooses to examine previous sessions, the session servlet is loaded. Ini-

tially, a list of all the previous explorations, sorted by date, is presented to the user. The

list supports three actions. A user can re-load a previous session in the web interface by

clicking on its corresponding link. New results can be added to this session; when the ses-

sion terminates, these results will be stored along with the old session information. This

capability is crucial to the VisPortal—scientists must be able to distribute their work over

time as well as over space.

The second service the session servlet supports is the viewing of previous sessions.

By selecting the “View as HTML” option, the user initiates the generation of an HTML

page that summarizes the corresponding visualization session. Each result, the parameters

corresponding to that result, and the parent and child results for that result are all part of

the HTML page. The HTML page serves as an overview of a previous visualization session

and as documentation of that session. First, the web page fully documents the visualization

process as it completely describes the information captured by the visualization process

model. Second, users are allowed to add or edit annotations of results. These annotations

are stored on the web application server for others to access. Scientists can use these

annotations to flag certain results as “interesting” to collaborators.

The session servlet also allows a user to view an overview graph of a visualization.

112

While the HTML session document describes the visualization in detail, it is difficult to

obtain a sense of the visualization “at-a-glance.” By selecting the “View Overview Graph”

option from the session list, the servlet generates a graph depicting the results and various

relationships between the results. The user chooses a visualization process graph to display

(Figure 10.7. All the graphs use a new radial focus+context visualization technique [33].

In this technique, the radial distance from the center node to another node represents

the distance of that node’s result p-sets from the center result’s p-set according to the

chosen graph; as the distance increases, the size of the node and its radial separation

decreases in order to allow the system to display all results simultaneously. Different process

graphs and the HTML session view provide means of understanding what occurred during

a visualization session.

The web application utilizes all the services provided by the framework. Sessions

are stored using the internal representation. When a new session starts or is loaded, a new

VisualizationSession object is instantiated with the appropriate visualization transform. The

WebSheet, HTML overview, and process graphs each implement different VisualizationView

servlet classes that manage the creation and interaction with the user’s web browser. HTTP

requests from the browser are processed by these same servlets in order to handle changes

between the views, process information requests from the VisualizationSession object, or to

generate new results. Similar servlet/JavaScript classes exist to perform parameter render-

ing and editing. When a user exists the portal, the VisualizationSession serializes itself into

its XML representation that can be accessed again at a later date. Without the framework,

these services would be more difficult to implement and integrate.

113

Figure 10.7: P-set difference visualization process graph for the session in Figure 10.6 using
a focus+context layout. Edges indicate that only one parameter value differs between the
two resulting images.

114

Chapter 11

Conclusions

The visualization exploration process contains a wealth of information; this work

has demonstrated a model to describe this information and a representation to share the

information. Both the visualization technique performed and the process used to generate

visualization results are captured by the model and representation. In addition, principles

for visualization exploration user interfaces have been developed to effectively utilize this

model; the VisSheet demonstrates these principles in action. By visually organizing the

data exploration process while providing tools to build upon and share this process, the

spreadsheet-like interface makes visualization more efficient and effective. The space of

visualization parameters is made clear by the VisSheet’s structure and iconic display. The

dependence of a result on its parameters becomes transparently available. Previous results

can be extended by operators to further discovery. The interpreter can be used to construct

complex visualizations in a programmatic manner. Finally, the interface makes the history

of the process available to both the user and their collaborators.

11.1 Effectiveness

To demonstrate the effectiveness of this research, the example from the introduc-

tion is revisited. This time, Alice and Bob use the VisPortal system utilizing the developed

framework (discussed in Chapter 10). In this scenario, Bob generates the data and places

it on the Grid for Alice to visualize.

115

At the beginning of the session, Alice enters the VisPortal URL into her web

browser. After logging onto the system, she uses the portal’s access to the Grid to transfer

the argon bubble data set from its original location to the visualization server. Alice then

requests a new visualization session from the portal. The portal then transfers control to

the visualization web application.

Upon initialization, the web application determines whether Alice desires to start

a new visualization or view/expand an older session. In this scenario, she starts a new

visualization session. After specifying an initial data set, the WebSheet page is loaded in

Alice’s browser, a few results already generated from the default parameter values the Web-

Sheet uses. She then explores the data via the web-page interface until she is satisfied with

the results. Because the WebSheet uses the principles discussed in Chapter 8, comparison

between results is trivial. Eventually, Alice terminates the visualization session and exits

the portal. When Alice exits, the visualization session is automatically recorded by the

system using the XML representation from Chapter 7. Unlike Alice’s initial scenario, no

manual recording of the session is required.

At some later date, Bob wishes to verify the results generated during the visual-

ization. Like Alice, Bob logs on to the VisPortal to access Alice’s exploration; alternatively,

Alice could have sent Bob the visualization session XML file as it completely describes the

session. After using the portal to load Alice’s session, Bob chooses to examine an overview

graph of the visualization session similar to those from Chapter 6. After familiarizing him-

self with the visualization results, Bob loads the HTML summary of the session. Bob then

annotates a few results of interest and exits the system. As with the original session, the

visualization web application stores Bob’s annotations automatically when he exits. Later,

Alice can reload the session, view Bob’s comments, and perhaps add some comments of her

own. The framework developed here allows users of the portal to focus on exploring their

data, not managing it.

116

11.2 Impact

The framework presented here impacts the user of visualization in several ways.

Systems utilizing the process model assist in reuse since they clearly track the fundamental

interactions a user has with the visualization process. Visualizations sessions employing this

formalism can be used in heterogeneous visualization interface environments, enabling large-

scale collaboration. The salient details of the visualization process are documented, allowing

others to reproduce the process. Finally, others can use the formal model to operate upon or

analyze their results in a rigorous manner. The VisSheet, in turn, structures visualization

exploration. Using the interface, the user always knows where they have been, where they

are, and perhaps where they should go in their exploration.

This work also contributes to the understanding of the visualization process. A

characterization of user interactions with parameters during the visualization process has

been performed. This characterization has led to the development of a parameter derivation

calculus to describe the relationships between results created during a visualization session.

Information stored using this calculus can be analyzed and further visualized to gain insight

in the visualization process itself.

In the future, this research can be extended in several ways. Popular visualization

user interfaces (such as existing data-flow interfaces) and toolkits should be extended in

order to incorporate this research. Such extensions will allow these systems to benefit from

various aspects of this work (e.g., visualization session dissemination). Alternate visualiza-

tion user interfaces using this framework can also be envisioned—consider, for example, a

focus+context version of an Image Graph coupled with an interactive interpreter like the

VisSheet. Finally, the P-set Model only captures what occurred during a visualization ses-

sion; a meta-data model built upon the P-set model would capture why an operation was

performed. With this research as a base, visualization collaboration will become easy and

effective.

117

Bibliography

[1] Greg Abram and Lloyd A. Treinish. An extended data-flow architecture for data
analysis and visualization. Computer Graphics, 29(2):17–21, May 1995.

[2] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of
Wisconsin Press, 1967/1983.

[3] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. OMG United Modeling Language
specification (version 1.5). Technical Report formal/03-03-01, Object Management
Group, March 2003.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). Recommendation, World Wide Web Consor-
tium, 2000. http://www.w3.org/TR/REC-xml.

[5] Ken Brodlie, Andrew Poon, Helen Wright, Lesly Brankin, Greg Banecki, and Alan
Gay. GRASPARC–A problem solving environment integrating computation and vi-
sualization. In Gregory M. Nielson and R. Daniel Bergeron, editors, Proceedings of
the IEEE Conference on Visualization 1993 (Vis ’93), pages 102–109. IEEE Computer
Society Technical Committee on Computer Graphics, IEEE Computer Society Press,
October 25–29 1993.

[6] Margaret M. Burnett. Visual programming. In John G. Webster, editor, Encyclopedia
of Electrical and Electronics Engineering. John Wiley and Sons Inc., New York, 1999.

[7] David M. Butler and M. H. Pendley. A visualization model based on the mathematics
of fiber bundles. Computers in Physics, 3(5), September/October 1989.

[8] Stuart K. Card and Jock Mackinlay. The structure of the information visualization
design space. In John Dill and Nahum Gershon, editors, Proceedings of the 1997 IEEE
Symposium on Information Visualization (InfoVis ’97), pages 92–99, 125. IEEE Com-
puter Society Technical Committee on Computer Graphics, IEEE Computer Society
Press, October 20–21 1997.

[9] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann Publishers, 1999.

[10] Stephen M. Casner. Task-analytic approach to the automated design of graphic pre-
sentations. ACM Transactions on Graphics, 10(2):111–151, 1991.

[11] Ed H. Chi. Expressiveness of the data flow and data state models in visualization
systems. In Proceedings of the International Working Conference on Advanced Visual
Interfaces 2002 (AVI ’02), pages 375–378. ACM, ACM Press, 2002.

118

[12] Ed Huai-Hsin Chi. A taxonomy of visualization techniques using the data state refer-
ence model. In Steven F. Roth and Daniel A. Keim, editors, Proceedings of the 2000
IEEE Symposium on Information Visualization (InfoVis ’00), pages 69–75. IEEE Com-
puter Society Technical Committee on Visualization and Graphics, IEEE Computer
Society Press, October 9–10 2000.

[13] Ed Huai-Hsin Chi, John Riedl, Phillip Barry, and Joseph A. Konstan. Principles for
information visualization spreadsheets. IEEE Computer Graphics and Applications,
18(4):30–38, July/August 1998.

[14] Ed Huai-Hsin Chi and John T. Riedl. An operator interaction framework for visualiza-
tion systems. In John Dill and Graham Wills, editors, Proceedings of the 1998 IEEE
Symposium on Information Visualization (InfoVis ’98), pages 63–70, 1998.

[15] Mei C. Chuah and Steven F. Roth. On the semantics of interactive visualizations.
In Stuart Card, Steven Eick, and Nahum Gershon, editors, Proceedings 1996 IEEE
Symposium on Information Visualization (InfoVis ’96), pages 29–36. IEEE Computer
Socieity Technical Committee on Computer Graphics, IEEE Computer Society, Octo-
ber 28–29 1996.

[16] James Clark. XSL Transformations (XSLT) Version 1.0. Recommendation, World
Wide Web Consortium, 1999. http://www.w3.org/TR/xslt.

[17] Gitta O. Domik and Bernd Gutkauf. User modeling for adaptive visualization systems.
In R. Daniel Bergeron and Arie E. Kaufman, editors, Proceedings of the IEEE Confer-
ence on Visualization 1994 (Vis ’94), pages 217–223, CP 24. IEEE Computer Society
Technical Commitee on Computer Graphics/ACM SIGGRAPH, IEEE Computer So-
ciety Press, October 17–21 1994.

[18] David Duke, Giorgio Faconti, Michael Harrison, and Fabio Paternò. Unifying views of
interactors. In Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Giuseppe
Sanctucci, editors, Proceedings of the Workshop on Advanced Visual Interfaces (AVI
’94), pages 143–152. ACM SIGCHI, ACM Press, June 1–4 1994.

[19] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

[20] N. Freed and N. Borenstein. Multipurpose Internet Mail Extentions Part Two: Media
Types. Technical report, The Internet Engineering Task Force, 1996. RFC2046.

[21] Issei Fujishiro, Yoshihiko Ichikawa, Rika Furuhata, and Yuriko Takeshima. GAD-
GET/IV: A taxonomic approach to semi-automatic design of information visualization
applications. In Steven F. Roth and Daniel A. Keim, editors, Proceedings of the 2000
IEEE Symposium on Information Visualization (InfoVis ’00), pages 77–83. IEEE Com-
puter Society Technical Committee on Visualization and Graphics, IEEE Computer
Society Press, October 9–10 2000.

[22] Issei Fujishiro, Yuriko Takeshima, Yoshihiko Ichikawa, and Kyoko Nakamura. GAD-
GET: Goal-oriented application design guidance for modular visualization environ-
ments. In Roni Yagel and Hans Hagen, editors, Proceedings of the IEEE Conference
on Visualization 1997 (Vis ’97), pages 245–252,548. IEEE Computer Society Technical

119

Committe on Computer Graphics/ACM SIGGRAPH, IEEE Computer Society Press,
October 19–October 24 1997.

[23] Robert B. Haber, Bruce Lucas, and Nancy Collins. A data model for scientific visu-
alization with provisions for regular and irregular grids. In Gregory M. Nielson and
Lawrence Rosenblum, editors, Proceedings of the IEEE Conference on Visualization
1991 (Vis ’91), pages 298–305, 1991.

[24] Robert B. Haber and David A. McNabb. Visualization idioms: A conceptual model
for scientific visualization systems. In Gregory M. Nielson, B. Shriver, and Lawrence
Rosenblum, editors, Visualization in Scientific Computing. IEEE Computer Society
Press, 1990.

[25] Richard Hamming. Numerical Methods for Scientists and Engineers. MacGraw-Hill,
1962.

[26] A. Frederick Hasler, Kannappan Palaniappan, and Michael Manyin. A high perfor-
mance interactive image spreadsheet (IISS). Computers in Physics, 8:325–342, May–
June 1994.

[27] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and naviga-
tion in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

[28] William Hibbard. VisAD: Connecting people to computations and people to people.
ACM SIGGRAPH Computer Graphics, 32(3):10–12, 1998.

[29] William L. Hibbard, Charles R. Dyer, and Brian E. Paul. A lattice model for data
display. In R. Daniel Bergeron and Arie E. Kaufman, editors, Proceedings of the IEEE
Conference on Visualization 1994 (Vis ’94), pages 310–317. IEEE Computer Society
Technical Commitee on Computer Graphics/ACM SIGGRAPH, October 17–21 1994.

[30] William L. Hibbard, Charles R. Dyer, and Brian E. Paul. The VIS-AD data model:
Integrating metadata and polymorphic display with a scientific programming language.
In John P. Lee and Georges G. Grinstein, editors, Proceedings of the IEEE Visualiza-
tion 1993 Workshop on Database Issues in Data Visualization, pages 39–68. Springer-
Verlag, 1994.

[31] David M. Hilbert and David F. Redmiles. Extracting usability information from user
interface events. ACM Computing Surveys, 32(4):384–421, December 2000.

[32] Jim Hugunin. Python and Java: The best of both worlds. In Proceedings of
the 6th International Python Conference. CNRI, 1997. http://www.python.org/-
workshops/1997-10/proceedings/hugunin.html.

[33] T. J. Jankun-Kelly and Kwan-Liu Ma. Focus+Context display of the visualization
exploration process. Technical Report CSE-2002-13, Computer Science Department,
University of California, Davis, 2002.

[34] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80. Journal of Object Oriented Programming,
1(3):26–49, August/September 1988.

120

[35] C. Charles Law, Amy Henderson, and James Ahrens. An application architecture for
large data visualization: A case study. In Proceesings of the IEEE 2001 Symposium
on Parallel and Large-Data Visualization and Graphics (PVG ’01), pages 125–159.
IEEE Computer Society Technical Committee on Visualization and Graphics/ACM
SIGGRAPH, 2001.

[36] John P. Lee and George G. Grinstein. An architecture for retaining and analyzing
visual explorations of databases. In Gregory M. Nielson and Deborah Silver, editors,
Proceedings of the IEEE Conference on Visualization 1995 (Vis ’95), pages 101–108.
IEEE Computer Society, October 29–November 3 1995.

[37] John Peter Lee. A Systems and Process Model for Data Exploration. PhD thesis, U.
of Massachuesetts Lowell, 1998.

[38] Marc Levoy. Spreadsheets for images. In Andrew Glassner, editor, Proceedings of ACM
SIGGRAPH 1994, Computer Graphics Procceedings, Annual Conference Series, pages
139–146. ACM Press, 1994.

[39] Kwan-Liu Ma. Image Graphs—a novel approach to visual data exploration. In David
Ebert, Markus Gross, and Bernd Hamann, editors, Proceedings of the IEEE Conference
on Visualization 1999 (Vis ’99), pages 81–513. IEEE Computer Socieity Techincal
Committee on Visualization and Graphics, October 24–29 1999.

[40] Jock Mackinlay. Automating the design of graphical presentations of relational infor-
mation. ACM Transactions on Graphics, 5(2):110–141, 1986.

[41] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang,
B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design Galleries: A
general approach to setting parameters for computer graphics and animation. In Pro-
ceedings of ACM SIGGRAPH 1997, Computer Graphics Procceedings, Annual Confer-
ence Series, pages 389–400. ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing
Co., 1997.

[42] Bruce H. McCormick, Thomas A. DeFani, and Maxine D. Brown. Visualization in
scientific computing. Computer Graphics, 21(6), 1987.

[43] Patrick J. Moran and Chris Henze. Large field visualization with demand-driven cal-
culation. In David Ebert, Markus Gross, and Bernd Hamann, editors, Proceedings of
the IEEE Conference Visualization 1999 (Vis ’99), pages 27–34, New York, October
1999. ACM Press.

[44] Richard Olson. Science Deified and Science Defied, volume 1. University of California
Press, 1982.

[45] Kannappan Palaniappan, A. Frederick Hasler, J. Fraser, and Michael Manyin. Network-
based visualization using the distributed image spreadsheet (DISS). In Seventeenth
Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology,
Oceanography and Hydrology. American Meteorological Society, 2001.

[46] Penny Rheingans. Are we there yet? Exploring with dynamic visualization. IEEE
Computer Graphics and Applications, 22(1):6–10, 2002.

121

[47] Steven F. Roth and Joe Mattis. Data characterization for intelligent graphics presen-
tation. In Conference Proceedings on Human Factors in Computing Systems (CHI’90),
pages 193–200. ACM SIGCHI, ACM Press, April 1–5 1990.

[48] Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. The cost structure
of sensemaking. In Conference proceedings on Human factors in computing systems
(CHI ’93), pages 269–276. ACM Press, 1993.

[49] Greg Schussman, Kwan-Liu Ma, Davis Schissel, and Todd Evans. Visualizing DIII-D
Tokamak magnetic field lines. In Bernd Hamann, Amitabh Varshney, and Thomas
Ertl, editors, Proceedings of the IEEE Conference on Visualization 2000 (Vis ’00),
Salt Lake City, October 2000. IEEE.

[50] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the 12th IEEE Symposium on Visual Languages (VL
’96), pages 336–343. IEEE Computer Society Technical Committee on Multimedia
Computing, IEEE Computer Society Press, September 3–6 1996.

[51] Robert Spence. Information Visualization, page 92. ACM Press, 2001.

[52] Rebecca R. Springmeyer, Meera M. Blattner, and Nelson L. Max. A characterization
of the scientific data analysis process. In Arie E. Kaufman and Gregory M. Neilson,
editors, Proceedings of the IEEE Conference on Visualization,1992 (Vis ’92), pages
235–242. IEEE Computer Society Technical Committee on Computer Graphics, IEEE
Computer Society Press, 1992.

[53] Ikuko Takanashi, Eric Lum, Kwan-Liu Ma, Joerg Meyer, Bernd Hamann, and Arthur J.
Olson. Segmentation and 3d visualization of high-resolution human brain cryosections.
In Robert F. Erbacher, Philip C. Chen, Matti Groehn, Jonathan C. Roberts, and
Craig M. Wittenbrink, editors, Visualization and Data Analysis 2002, volume 4665,
pages 55–61, Bellingham, Washington, 2002. SPIE- The International Society for Op-
tical Engineering, SPIE.

[54] Soon Tee Teoh, Kwan-Liu Ma, Felix Wu, and X. Zhao. Case study: Interactive visual-
ization for internet security. In Robert Moorhead, Markus Gross, and Kenneth I. Joy,
editors, Proceedings of IEEE Conference on Visualization 2002 (Vis ’02), 2002.

[55] Lloyd Treinish. A function-based data model for visualization. In Proceedings of
IEEE Visualization ’99 Late Breaking Hot Topics, pages 73–76, 1999. Available at
http://www.research.ibm.com/people/l/lloydt/dm/function/dm fn.htm.

[56] Craig Upson, Thomas A. Faulhaber, Jr., David Kamins, David Laidlaw, David Schlegel,
Jeffrey Vroom, Robert Gurwitz, and Andries van Dam. The application visualization
system: A computational environment for scientific visualization. Computer Graphics
and Applications, IEEE, 9(4):30–42, 1989.

[57] Guido van Rossum. Python Language Reference Manual, July 1999.
http://www.python.org/doc/ref/ref.html.

[58] Stephen Wehrend and Clayton Lewis. A problem-oriented classification of visualiza-
tion techniques. In Arie Kaufman, editor, Proceedings of the First IEEE Conference on
Visualization (Vis ’90), pages 139–143, 469. IEEE Computer Society Technical Com-
mittee on Computer Graphics, IEEE Computer Society Press, October 23–26 1990.

122

[59] Robert V. Wilson and Ayodeji O. Demuren. On the origin of streamwise vorticity in
complex turbulent jets. In Proceedings of ASME Fluids Engineering Division Summer
Meeting (FEDSM98). ASME, 1998.

[60] Sherry Yang, Margaret M. Burnett, Elyon DeKoven, and Moshé Zloff. Representation
design benchmarks: A design-time aid for VPL navigable static representation. Journal
of Visual Languages and Computing, 8(5/6):563–599, October–December 1997.

[61] Mark Young, Danielle Argiro, and Steven Kubica. Cantata: Visual programming
environment for the Khoros system. Computer Graphics, 29(2):22–24, May 1995.

	List of Figures
	List of Tables
	List of Symbols
	Abstract
	I Overview
	1 Introduction
	1.1 Problem Statement
	1.1.1 Approach
	1.1.2 Contribution

	2 A Characterization of the Visualization Process
	2.1 The Purpose of Visualization
	2.1.1 Scientific Visualization
	2.1.2 Information Visualization

	2.2 The Visualization Exploration Process
	2.2.1 Visualization Space Paths
	2.2.2 Derivation Models

	2.3 Modeling User Interaction with Visualization
	2.4 The Fundamental Operation of Visualization Exploration

	3 Overview of the Framework
	3.1 Internal Representation
	3.2 External Representation
	3.3 Summary

	II Internal Representation
	4 Visualization Models
	4.1 Visualization Transform Models
	4.1.1 Data-Flow Model
	4.1.2 Data State Model
	4.1.3 Lattice Model
	4.1.4 Evaluation

	4.2 Visualization Data Models
	4.3 Visualization Session Models
	4.3.1 Visualization Space Path Model
	4.3.2 GRASPARC Model
	4.3.3 General Data Exploration Model
	4.3.4 Evaluation

	4.4 Summary

	5 A Visualization Exploration Process Model
	5.1 Visualization Transformation Model
	5.2 Visualization Session Model
	5.3 Examples
	5.3.1 Image Graph Example
	5.3.2 VisSheet Example
	5.3.3 Dynamic Manipulation Interface Example

	5.4 Comparison
	5.5 Summary

	6 Visualization Session Analysis
	6.1 Introduction
	6.2 Visualization Process Relationships
	6.2.1 History Relationship
	6.2.2 Session Result Derivation Relationship
	6.2.3 P-set Derivation Relationship
	6.2.4 P-set Difference Relationship
	6.2.5 Using Visualization Process Relationships

	6.3 Visualization Process Graphs
	6.3.1 History Sequence Graph
	6.3.2 Session Result Derivation Graph
	6.3.3 P-set Derivation Graph
	6.3.4 P-set Difference Graph

	6.4 Examples
	6.4.1 Image Graph Example
	6.4.2 VisSheet Example
	6.4.3 Dynamic Manipulation Interface Example

	6.5 Process Graph Analysis
	6.5.1 Metrics
	6.5.2 Patterns

	6.6 Summary

	7 Representation
	7.1 The P-set Model Representation
	7.2 Using the Representation

	III External Representation
	8 Principles for Visualization Exploration Interfaces
	8.1 Components of User Interface Design
	8.2 Classification of Visualization User Interfaces
	8.2.1 Interactive Control & Dynamic Manipulation Interfaces
	8.2.2 Data-flow Interfaces
	8.2.3 Parameter-based Interfaces
	8.2.4 Spreadsheet Interfaces

	8.3 Desired Visualization User Interface Properties

	9 A Spreadsheet-like Interface for Visualization Exploration
	9.1 Spreadsheet-based Visualization Representation
	9.1.1 Conceptual Model
	9.1.2 Display and Navigation

	9.2 Static Spreadsheet-based Exploration
	9.3 Dynamic Spreadsheet-based Exploration
	9.3.1 Parameter and Value Operators
	9.3.2 Animations
	9.3.3 Scripting

	9.4 Encapsulating and Sharing the Visualization Process
	9.4.1 History Display
	9.4.2 On-Line Collaboration
	9.4.3 Off-Line Collaboration

	9.5 Further Examples
	9.6 Summary

	IV Summary
	10 A Framework for Visualization Exploration
	10.1 The Core Framework
	10.1.1 The VisualizationSession Class
	10.1.2 The VisualizationSessionResult Class
	10.1.3 The Derivation Class
	10.1.4 The VisualizationTransform Abstract Class
	10.1.5 The VisualizationParameterType and VisualizationResultType Abstract Classes
	10.1.6 The VisualizationParameterValue and VisualizationResultValue Abstract Classes
	10.1.7 The VisualizationOperator Abstract Class
	10.1.8 The VisualizationView Abstract Class

	10.2 The VisSheet Framework
	10.2.1 The VisualizationSheetView Abstract Class
	10.2.2 The VisualizationSheetState Class
	10.2.3 The VisualizationSheetDelta Class
	10.2.4 The JFCVisualizationSheetView Class

	10.3 The Framework in Action
	10.3.1 A Web-based Sheet-like Interface for Visualization
	10.3.2 Web-based Encapsulation of Visualizations

	11 Conclusions
	11.1 Effectiveness
	11.2 Impact

	Bibliography

