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ABSTRACT 

Recently, digital photography has become an efficient and economic method to assist dermatologists in monitoring skin 
characteristics.  Although this technology has advanced a great deal in resolution and costs, conventional digital cameras 
continue to only provide qualitative recording of color information.  To address this issue, we are developing a compact, 
quantitative skin imaging camera by employing spatial frequency domain imaging (SFDI), a non-contact approach for 
determining tissue optical properties over a wide field-of-view.  SFDI uses knowledge of optical properties at multiple 
wavelengths to recover concentrations of tissue constituents such as oxy/deoxy-hemoglobin, water, and melanin. This 
method has been well researched and presented in laboratory and research settings. The next step in the development of 
SFDI systems is to make typical systems compact and cheaper using commercial components. We present our findings 
by performing a component-by-component analysis of key SFDI system components including light sources, projectors, 
and cameras.   

KEYWORDS:  near-infrared spectroscopy, spatial frequency domain imaging, modulated imaging, digital 
micromirror device, dermatology, quantitative functional imaging  
 

1. INTRODUCTION 

The most prominent technique to monitor tissue health in medicine remains visual inspection.  The color and feel of a 
tissue can tell clinicians a great deal about the health of a tissue.  In the same spirit, digital cameras have also become a 
tool to aid clinicians in monitoring various skin conditions.  Cameras have become an increasingly useful tool to record 
tissue appearance, provide surgical guidance, and aid in assessment.  Digital cameras are relatively low cost, based on 
advances in consumer electronics, and compact, which makes them easy to transport and store within a clinical 
environment. 

     Although digital camera technology has advanced tremendously and is pervasive in the consumer market, the data 
obtained is generally qualitative due to dependence on lighting conditions.  Even in identical lighting conditions, a color 
image recorded by two similar cameras for the same object may vary significantly [1].  For certain types of skin 
phenomena, this camera-dependent effect on color data may change the interpretation of clinical images [2].  Varying 
lighting conditions can affect the appearance of an object on the same camera as well.  This suggests that quantitative, 
objective imaging tools could have tremendous impact in clinical applications such as dermatology, which has already 
demonstrated a willingness to use technologies such as dermoscopy, to improve clinical assessment of suspicious tissue 
[3].  

     In recent years, a non-contact quantitative imaging technique known as spatial frequency domain imaging (SFDI) has 
been invented and developed at the Beckman Laser Institute.  SFDI is a non-contact, wide-field imaging modality that 
can measure the absolute concentration of chromophores in tissue.  SFDI is able to make quantitative measurements by 
using a well-calibrated multi-spectral light source coupled with a patterned illumination scheme and camera-based 
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detection. This combination of hardware allows for 
model based recovery of tissue optical properties. 
Chromophores that are typically measured in tissue 
include oxy/deoxy- hemoglobin, melanin, and water.  
SFDI has been applied to a number of skin 
applications including the assessment of port wine 
stain response to laser therapy [4], characterizing tattoo 
optical properties [5], assessing burn severity [6], and 
monitoring the health of skin flaps [7].  Figure 1 shows 
a high-level illustration with the key components 
needed to build a basic SFDI system. These 
components include a projector, light source, and 
camera.            

     An extensive description and analysis of SFDI has 
been described by Cuccia et al [8].  In short, light passes 
through a spatial light modulator (SLM) to generate 
spatially modulated sinusoidal patterns, which are then 
projected onto the tissue.  In many cases, the SLM 
employed is a digital micromirror device (DMD), 
which is commonly used in commercial projectors [8, 9].  
The diffusely reflected light from the tissue enters the camera lens, and is detected by the charge-coupled device (CCD).  
Multiple patterns of different spatial frequencies are required to recover tissue optical properties.  In order to recover the 
AC amplitude, we use a demodulation method first described by Neil et al [10].  In this embodiment, sinusoidal 
illumination patterns of a certain frequency are sequentially projected onto tissue with three phase shifts (0, 120, 240 
degrees), and the amplitude envelope for a given spatial frequency is recovered using a demodulation term.  The multiple 
pattern requirement makes the SLM a key component of a SFDI system.        

     This remitted light data is calibrated to a reference phantom with known optical properties to recover a calibrated 
reflectance.  From the calibrated diffuse reflectance data at multiple frequencies, we can obtain the reduced scattering  
and absorption coefficients using Monte Carlo [9] or diffusion light transport models in the spatial frequency domain.  We 
can then derive relevant chromophore concentrations based on the derived absorption coefficients at specific 
wavelengths using Beer’s Law [11].  The spectral and intensity stability of the light source and camera are crucial in this 
calibration step as fluctuations between calibration and measurement can be misinterpreted as incorrect optical properties 
of the tissue sample.  

     Our lab has developed many generations of instrumentation.  Typically, all components in our systems have been 
scientific grade and or in the form of developer kits with minimal focus for size and cost.  Our group has also typically 
focused on near-infrared (NIR) illumination as it typically interrogates tissue deeper than the naked eye due to the 
relatively low absorption of blood and water.  We feel that deeper detection is advantageous for early disease detection 
and we require that NIR illumination is a design requirement for new systems.  Here, we propose a component 
evaluation as initial steps towards the development of a compact SFDI device in a similar form factor as a handheld 
digital camera.  Our goal is to integrate the functionality of previous SFDI systems we have developed into an 
inexpensive, compact system tailored to clinical use for dermatology in particular.      

     When evaluating components for developing a handheld SFDI system, there are several considerations that are 
needed for each component.  In this paper, we will focus primarily on grayscale linearity, light source stability, and 
spectral throughput.  As described above, SFDI derives chromophore concentration estimates based on data taken from 
multiple spatial frequencies using a demodulation method.  This demodulation equation assumes true sinusoidal patterns 
and is a requirement for any SLM.  In our work with commercial projectors, we have found that this necessitates a 
calibration step by measuring the linear grayscale intensity output versus input curve.  Also, SFDI requires data taken at 
specific known and stable wavelengths.  Therefore, the light sources that we employ must have good spectral stability 
over time so that our measurements are accurate.  Also, a key practical issue for any clinical measurement is artifacts due 
to patient motion.  Although our group has developed algorithms to account for this at some level, it is still ideal to 
minimize our imaging times [12].  Our approach has focused on using discrete, bright sources such as light emitting diodes 

Figure 1 – Schematic of an SFDI instrument. Patterned light is 
impinged on a sample using a light source coupled with a spatial light 
modulator (SLM). The remitted light is then detected by a camera. 
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Figure 5 – Grayscale input/output curves for various COTS projection units including a BenQ PB8260 (left), an Aaxa M2 (middle), 
and a Texas Instruments LightCrafter (right) 

     After applying grayscale correction (described in the previous section) to the LightCrafter, the grayscale intensity 
curve became linear.  As a result, the demodulated images we obtained were far better in quality when compared to those 
obtained without grayscale correction, as will be seen in Figure 6.  The non-linearity in the initial grayscale output 
versus input curve is reflected in the detected sinusoidal pattern.   It should be noted that this data was taken from a 99% 
Spectralon reflectance standard at a spatial frequency of 0.05 mm-1, which is a common spatial frequency that we use to 
make SFDI measurements. 
 

 
   (a)                                                                                       (b) 

Figure 6 – (Top to Bottom) Grayscale calibration curves, and demodulated images before grayscale correction, showing artifacts (a), 
and after grayscale correction (b) 
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engine is shown in Figure 7.  Data is shown only for 
the LightCrafter because it is suitable for a handheld 
system, and is therefore applicable to this study.  The 
ratio of output to input as a function of wavelength is 
given in Figure 7, which shows a clear degradation in 
output intensity beginning at around 700 nm, and 
decaying rapidly up to 900 nm, where there is 
virtually no signal.  The ramifications of this 
degradation in the NIR region are significant, and will 
be discussed in Section 4.    
 

 

 

3.2  Light Sources 

     The temporal spectral stability data acquired from the LED modules is shown in Figure 8.  For the LightCrafter 
LEDs, we measured peak wavelengths at 470, 535, and 625 nm, which correspond to the peak wavelengths of the blue, 
green, and red LEDs respectively.  For the Roithner 970 nm module, we measured a peak wavelength at 970 nm, as 
expected.     

 

(a) (b) 
 

Figure 8 – Plot of LightCrafter visible (a) and Roithner Lasertechnik NIR (b) LED spectra as a function of time 

     Over the course of an hour, we observed an overall reduction in measured intensity of about 10% for the visible 
LEDs, and 15% for the NIR LED. Over that same period of time, we see minimal shifting of the peak wavelength for the 
visible LEDs, and a red-shifting of approximately 10 nm for the NIR LED. These changes occurred predominantly 
within the first 15 minutes after powering up.  The decrease in amplitude and wavelength shifting were a consequence of 
the heating of the LEDs.  One way to account for these effects in an SFDI system is to use thermo-electric cooling (TEC) 
[13].  However, implementation of TEC in a handheld system is not ideal, as it can add to the form factor of the final 
device.  We will discuss possible alternatives to TEC in Section 4. 
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function of input current.  As input currents were increased in increments of one ampere, the amount of heat generated 
by the component was greater, so the shifting was also likely due to heating.   

 

(a) (b) 
 

Figure 9 – Normalized spectra (a) and intensity at peak wavelength (b) of Roithner Lasertechnik (NIR) LED module 

  3.3  Camera 

 Similar to the projector throughput experiment, we also analyzed the throughput of two camera lenses (Schneider 
Kreuznach and Panasonic Lumix).  This data is depicted in Figure 10a.  We show that the throughput of the research-
grade (Kreuznach) lens is excellent for all wavelengths tested, and that the consumer-grade (Lumix) lens throughput 
degrades in the NIR region, presumably a consequence of a manufacturer coating.  

     In Figure 10b, we show a plot of CCD throughput versus wavelength.  The metric that we use to quantify throughput 
is relative efficiency, which is related to the number of photons converted to electrons, which are used to determine 
intensity.  Figure 10b shows a significant degradation in relative efficiency in the NIR region, resulting in a greater than 
five-fold decrease from 500 nm to 900 nm.        

     

(a)  (b) 
 

Figure 10 – Plots of consumer and research-grade lenses (a), and CCD (b) throughput 
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     We also investigated the effect of increasing current to the LED.  These results are shown in Figure 9.  We observed 
that as input current is increased, the output intensity increased.  However, the spectrum was also red-shifted as a 
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4.  DISCUSSION 
 

We have obtained several data sets relating to the performance of low cost, compact components to be integrated into a 
point-of care SFDI system.  These datasets have helped identify a series of tests that are needed to evaluate any 
component before integration into an SFDI system.  The primary properties that we test focus on grayscale calibration, 
spectral stability, and throughput.  A list of these components, tests, and corresponding design requirements are shown in 
Table 1. This information and a set of performance tests will be critical to designing a robust, handheld SFDI imaging 
system.  
 

Component Test Design requirement Concern 
Projector 1.  Perform grayscale calibration 

2.  Test spectral throughput 
1.  Linear output 
2.  High NIR throughput 

  1. Output is not linear 
  2. Anti-NIR coatings 

Light Source 1.  Evaluate spectral stability 
 
2.  Evaluate spectral shifting 

 
3.  Evaluate spectral output vs.  
     current 

1.  Minimize temporal change    
     in spectrum 
2.  Minimize red-shifting due to 
     heating 
3.  Proportional increase over  
     all wavelengths 

  1. LED’s have intrinsic warm-
      up times 
  2. LED thermal changes effect 
      properties 
  3. LED properties change with
      current 

Camera Lens 1.  Test spectral throughput 1.  High NIR throughput      1. Commercial Lens have anti
      NIR coatings 

CCD 1.  Test spectral throughput 1.  High NIR throughput   1. CCD chips have intrinsic 
      NIR deficiency 

 
Table 1 – Summary of suggested tests to run for each hardware component with corresponding design requirements 

     In Section 3.1, we presented results pertaining to the grayscale intensity curves of COTS projectors.  The data 
obtained using SFDI relies heavily on the precise spatial modulation of light.  That is, the sinusoidal intensity patterns 
applied to the sample must be actual sinusoids. Therefore, it is critical that the SLM in an SFDI device produces accurate 
sinusoidal patterns.   In COTS projection units, the grayscale output curve is often non-linear in order to account for the 
non-linear visual response curve of the human eye.  This non-linearity makes sense for the purpose of video projection, 
but results in SFDI data with distinct artifacts.  The grayscale calibration method proposed has shown to be a viable 
option to overcome this effect. 

     Another area of emphasis in this study has been the requirement to interrogate samples at specific wavelengths.  This 
is directly related to the results obtained in Section 3.2, which highlights the spectral stability of visible and NIR LED 
modules.  We found here that attenuation and spectral shifting over time were prevalent.  We also showed that spectral 
shifting was present as we increased input current.  In each case, we hypothesize that this shifting is due to heating of the 
LEDs, to which TEC was not applied due to size constraints.  A barrier to developing a handheld device will be 
addressing these thermal issues.  In order to account for temporal shifting, one possible solution may be to integrate a 
“standby” modality in order to allow the LEDs to warm up.  We found that most of the shifting occurred during the first 
15 minutes after power up, so another solution could be to simply wait for 15 minutes before using the device.  This may 
be cumbersome, however, as a point-of-care device should have properties that allow for on-the-fly availability.  

     In Sections 3.1 and 3.3, we showed the limited spectral throughput for various components.  Spectral throughput of 
components in the light path is directly related to the integrity of the obtained reflectance data and is ultimately used to 
compute chromophore concentrations.  This will become even more relevant when cross polarization, which is used to 
suppress specular reflection from the sample surface, is integrated into the system.  For rough surfaces such as skin, cross 
polarization is necessary for subsurface interrogation [8].  Since throughput in the NIR region is essential to calculating 
the concentration of many chromophores (i.e. oxy/deoxy-hemoglobin, water, etc.), we will eventually need to address the 
lack of NIR throughput issue prevalent in projectors, lenses, and detectors.  One option may be to simply find other 
components whose internal optics do not reject NIR signals.  Another option could be to remove the anti-IR coating on 
the internal optics, or replace these internal components with uncoated components. 
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     In order to evaluate the performance of our device, we must run tests on phantoms with known optical properties that 
closely mimic human skin.  We have already devised a method for fabricating such phantoms [14].  In future studies, these 
phantoms will be used to evaluate the performance of our system in the context of a clinical scenario. 

 
3.  CONCLUSION 

  
     We have analyzed several compact and low cost hardware components, and have presented data relevant to the 
component evaluation for implementation of a handheld point-of-care SFDI device.  We have investigated system 
characteristics including grayscale linearity, spectral stability, and throughput, and related them to how they affect SFDI 
meaasurements.  Although we will use this information to develop a specific device, one can apply the same 
experimental framework to develop most if not all SFDI devices.  
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